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Abstract

Theoretical and practical aspects of parallel numerical methods for solving initial value
problems are investigated, with particular attention to two applications from electrical
engineering.

First, algorithms for massively parallel circuit-level simulation of the grid-based analog
signal processing arrays currently being developed for robotic vision applications are
described, and simulation results presented. The trapezoidal rule is used to discretize the
differential equations that describe the analog array behavior, Newton's method is used
to solve the nonlinear equations generated at each time-step, and a block preconditioned
conjugate-gradient squared algorithm is used to solve the linear equations generated by
Newton's method. Excellent parallel performance of the algorithm is achieved through
the use of a novel, but very natural, mapping of the circuit data onto a massively parallel
architecture. The mapping takes advantage of the underlying computer architecture and
the structure of the analog array problem. Experimental results demonstrate that a full-
size Connection Machine can provide a 650 times speedup over a SUN-4/490 workstation.

Next, a new conjugate direction algorithm for accelerating waveform relaxation ap-
plied to the semiconductor device transient simulation problem is developed. A Galerkin
method is applied to solving the system of second-kind Volterra integral equations which
characterize the classical dynamic iteration methods for the linear time-varying initial
value problem. It is shown that the Galerkin approximations can be computed iteratively
using conjugate-direction algorithms. The resulting iterative methods are combined with
an operator Newton method and applied to solving the nonlinear differential-algebraic
system generated by spatial discretization of the time-dependent semiconductor device
equations. Experimental results ae included which demonstrate the conjugate-direction
methods are significantly faster than classical dynamic iteration methods.

The results from both applications are encouraging and demonstrate that for specific
initial value problems, the largest performance gains can be achieved by using closely
matched algorithms and architectures to exploit characteristic features of the particular
problem to be solved.
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1

Introduction

1.1 Initial Value Problems

Many interesting applications can be modeled as an initial value problem (IVP), e.g.,

F(z'(t), x(t), t) = 0 = 0 ~~~~~~~~(1.1)
x(O) = z 0

where z(t) E Rn and F: R 2n+ -* R". Here, (1.1) can describe an IVP for an ordinary

differential equation (ODE) system or for a differential algebraic equation (DAE) system.

It is assumed that The function F is such that the solution z(t) exists and is unique on a

simulation interval of interest, say, t E [0, T], and that the initial condition is consistent

for the DAE case.

In general, an analytic solution to (1.1) cannot be found, so the problem must be

solved numerically. With the typical approach, (1.1) is first discretized in time with

an integration method. Since DAE and stiff ODE systems require the use of implicit

integration schemes, the time discretization will generate a sequence of nonlinear alge-

braic problems which are solved with an iterative method, usually a modified Newton

method. The sequence of linear algebraic systems generated at each iteration of the non-

linear solution method are then solved with Gaussian elimination. The above process is

the "implicit-integration, Newton, direct method" canon and forms the basis for most

general-purpose codes for solving large-scale IVP's [1].

The standard approach has two computational bottlenecks (which bottleneck will

dominate depends on the particular problem):

* Function evaluation - computation of F(-) and the associated Jacobian JF(-).

The cost of evaluating JF grows with problem size and with the degree of coupling.

1



CHAPTER 1. INTRODUCTION

For densely coupled problems, evaluating JF costs O(n2 ) operations; for sparsely

coupled problems, the cost of evaluating JF can be as low as 0(n).

* Linear system solution - solving the linear system at each iteration of the nonlinear

solution process. The complexity of direct elimination methods for solving systems

of equations is polynomial in n, typically from O(nL5) for sparse problems to 0O(n3 )

for dense problems.

When using the standard Newton method, the function evaluation and the linear sys-

tem solution are performed at each iteration of each nonlinear system solution at each

timestep. However, certain modified Newton methods recalculate the Jacobian only at

certain intervals (e.g., every third Newton iteration) [2], thereby reducing the work re-

quired, although not the complexity, by a constant factor.

Efforts to improve the computational efficiency for numerically solving IVP's focus

on improving the efficiency of the function evaluation and the linear system solution.

These efforts fall into two general (overlapping) categories: algorithmic improvement and

hardware improvement. For example, one could use an iterative method for the linear

system solution, or implement the solver on a vector or parallel processing machine.

For some problems, such an approach might be highly effective, but for other problems,

such an approach might be a disaster. It seems that general-purpose codes for solving

IVP's must follow the "implicit-integration, Newton, direct method" canon because such

codes are written to be able to reliably handle the largest possible class of problems.

However, this formula can be quite limiting for specific problems that can benefit from

the application of more specialized algorithms.

Therefore, the following observation is made, which is the theme of this thesis: For

specific initial value problems, one can achieve the largest performance gains by using

closely matched algorithms and architectures to exploit characteristic features of the par-

ticular problem to be solved.

This thesis will examine methods for solving two initial value problems from electrical

engineering - a circuit simulation problem and a device simulation problem. The attacks

on these problems will be two-fold. First, methods suitable for implementation on parallel

machines will be developed. Second, it will be attempted to exploit the problems fully

through the use of sophisticated numerical techniques.
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1.2. A CIRCUIT SIMULATION PROBLEM

1.2 A Circuit Simulation Problem

The nodal analysis formulation of the circuit transient simulation problem is described

by

dq (v(t)t) + i (v(t)t) = 0 (.2)Tt~~~~~~ (1.2)
v(0) = v0

where v(t), q (v(t),t), i (v(t),t) E Rn are the vectors of node voltages, sums of node

charges, and sums of node resistive currents, respectively, and n is the total number of

nodes in the circuit.

Numerical techniques for solving (1.2) are very well developed - for all practical

purposes, the general circuit simulation problem has been solved [3, 4]. Programs like

SPICE [5] or ASTAP [6] - which follow the "implicit-integration, Newton, direct method"
approach to solving (1.2) - are capable of simulating virtually any circuit, given enough

time. Unfortunately, for some types of circuits, "enough time" is too much time for

simulation to be a practical part of a circuit design cycle.

Robotic vision circuits [7, 8] form one such class of circuits which are intractable

for standard analog circuit simulators such as SPICE or ASTAP. The vision circuits are

necessarily very large and must be simulated at the analog level (i.e., one cannot perform

simulations at a switch or gate level as is commonly done with very large digital circuits).

Standard analog circuit simulators are not able to handle vision circuits simply because of

their immense size, since the computation time for these simulators grows super-linearly

with the size of the circuit. This super-linear growth is particularly pronounced for vision

circuits because their structure produces a Jacobian matrix that generates much more fill

during Gaussian elimination than do generic circuits having the same number of nodes.

Although the structure of the vision chips is disadvantageous for a direct-methods

solver, it is advantageous for other algorithms and for certain parallel architectures. In

particular, the regular structure of the problem implies that the simulation computations

can be accelerated by a massively parallel SIMD computer, such as the Connection

Machine®[9]. Moreover, the coupling between cells in the analog array is such that

a block-iterative scheme can be used to solve the equations generated by an implicit

time-discretization scheme.

Connection Machine is a registered trademark of Thinking Machines Corporation.
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CHAPTER 1. INTRODUCTION

1.3 A Device Simulation Problem

The second problem to be examined is the semiconductor device transient simulation

problem. For this problem, a new class of waveform methods, waveform conjugate direc-

tion methods, will be developed and applied. This approach is somewhat more general

than that used for the circuit simulation problem, but there are specific features of this

problem which make application of the new method effective. Moreover, details of im-

plementation exploit other aspects of this problem in order to increase efficiency.

After standard spatial discretization on an n-node rectangular mesh, the semiconduc-

tor device transient simulation problem is modeled by a differential-algebraic system of

3n equations in 3n unknowns denoted by

f 1 (u(t),n(t),p(t)) = 0

f 2 (u(t), n(t),p(t)) = dn(t)

f 3 (u(t),n(t),p(t)) = d p(t)

n(O) = no

p(O) = Po
fL(u(0), n(0),p(0)) = 0

where t E [0, T], and u(t),n(t),p(t) R are vectors of normalized potential, electron
concentration, and hole concentration, respectively, and fl, f 2 , f 3 R3' - Rn are the
Poisson, electron current continuity and hole current continuity equations, respectively.

The device transient simulation problem is studied in much detail in [10]. The ap-

proach used is to discretize the problem in time with a low-order implicit method, apply

Newton's method, and use a direct-methods solver for the linear system solution. The

use of iterative methods for the linear system solution is discussed in [11], but the re-

ported results are discouraging. For two-dimensional simulations, the authors claim that

direct methods ae superior to iterative methods, but that iterative methods may be

more effective with three-dimensional simulations.

A waveform relaxation (WR) based approach to the device transient simulation prob-

lem was introduced in [12]. This approach was shown to be computationally efficient

compared to the traditional "implicit-integration, Newton, direct method" approach.

However, the WR algorithm typically requires hundreds of iterations to achieve an ac-

curate solution, which suggests that further performance gains can be realized by the

application of methods for accelerating the convergence of the WR algorithm.

In this thesis, waveform conjugate-direction methods are developed for accelerating

waveform relaxation applied to solving the linear, but possibly time-varying, initial value

problem. The development of the waveform conjugate-direction methods proceeds in a

4



1.4. OVERVIEW

few key steps. First, the linear initial value problem is converted to a system of second-

kind Volterra integral equations through the use of a dynamic preconditioner. It is then

shown that a Galerkin method can be used to solve this integral equation system and that

certain conjugate direction methods can be used to generate the Galerkin approximations.

The resulting method is combined with the waveform Newton method to produce a hybrid

algorithm for solving nonlinear initial value problems. The hybrid method is then applied

to solving the differential-algebraic system of equations that describe the device transient

simulation problem.

1.4 Overview

A review of some of the most popular techniques for solving initial value problems is

given in Chapter 2. In Chapter 3, algorithms are developed for CMVSIM, a program

for simulating grid-based analog signal processor chips on the Connection Machine. The

waveform conjugate direction methods are studied in Chapter 4, where the waveform

generalized conjugate residual algorithm is developed and analyzed as a particular wave-

form conjugate direction method. The device transient simulation problem is described,

and simulation results comparing conjugate direction algorithms with standard waveform

techniques are presented.

References

[1] K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of Initial- Value
Problems in Differential-Algebraic Equations. New York: North Holland, 1989.

[2] J. M. Ortega and W. C. Rheinbolt, Iterative Solution of Nonlinear Equations in Sev-
eral Variables. Computer Science and Applied Mathematics, New York: Academic
Press, 1970.

[3] L. O. Chua and P.-M. Lin, Computer-Aided Analysis of Electronic Circuits. Engle-
wood Cliffs, New Jersey: Prentice Hall, 1975.

[4] J. Vlach and K. Singhal, Computer Methods for Circuit Analysis and Design. Berk-
shire, England: Van Nostrand Reinhold, 1983.

[5] L. W. Nagel, "SPICE2: A computer program to simulate semiconductor circuits,"
Tech. Rep. ERL M520, Electronics Research Laboratory Report, University of Cal-
ifornia, Berkeley, Berkeley, California, May 1975.

[6] W. T. Weeks, A. J. Jimenez, G. W. Mahoney, D. Mehta, H. Quasemzadeh, and T. R.
Scott, "Algorithms for ASTAP - A network analysis program," IEEE Transactions
on Circuit Theory, pp. 628-634, November 1973.

- 3

5



CHAPTER 1. INTRODUCTION

[7] C. Mead, Analog VLSI and Neural Systems. Reading, MA: Addison-Wesley, 1988.

[8] J. L. Wyatt Jr., et al, "Smart vision sensors: Analog VLSI systems for integrated im-
age acquisition and early vision processing." Massachusetts Institute of Technology.
Unpublished, 1988.

[9] W. D. Hillis, The Connection Machine. New Haven, CT: MIT Press, 1985.

[10] R. Bank, W. Coughran, Jr., W. Fichtner, E. Grosse, D. Rose, and R. Smith, Tran-
sient simulation of silicon devices and circuits," IEEE Trans. CAD, vol. 4, pp. 436-
451, October 1985.

[11] C. Rafferty, M. Pinto, and R. Dutton, Iterative methods in semiconductor device
simulation," IEEE Trans. CAD, vol. 4, pp. 462-471, October 1985.

[12] M. Reichelt, J. White, and J. Allen, "Waveform relaxation for transient two-
dimensional simulation of MOS devices," in International Conference on Computer
Aided-Design, (Santa Clara, California), pp. 412-415, November 1989.

6



2

Review of Numerical Techniques
for Initial Value Problems

2.1 Introduction

There exist a myriad of approaches for solving initial value problems - a non-exhaustive

taxonomy is presented in Figure 2-1. To solve the IVP, the system is first decomposed in

time (for point-wise solution methods) or space (for waveform methods). The point-wise

solution is computed with the application of an integration method, possibly followed by

a nonlinear algebraic and linear algebraic solution step. The waveform methods treat the

nonlinear IVP as a nonlinear problem on a function space - note the similarity of the

taxonomies above and below "Discretize".

In this chapter, techniques for solving initial value problems are reviewed. Although

the techniques are applied in top-down fashion (e.g., integration, nonlinear solution,

linear solution), the techniques are presented in somewhat of a bottom-up order since

the "top" algorithms generally build upon the "bottom" algorithms. The reader should

refer to Figure 2-1 as a roadmap to keep the different algorithms in their proper context

within the framework of solving initial value problems.

2.2 Linear Solution Methods

In this section, methods are reviewed for solving the n-dimensional linear system of

equations

Ax = b (2.1)

where , b E Rl and A: R -n Rn and is assumed to be non-singular.

7



CHAPTER 2. REVIEW OF NUMERICAL TECHNIQUES

Figure 2-1: A (non-exhaustive) taxonomy of methods for solving IVP's. To solve the
IVP, the system is first decomposed in time (for point-wise solution methods) or space
(for waveform methods). The point-wise solution is computed with the application of
an integration method, possibly followed by a nonlinear algebraic and linear algebraic
solution step. The waveform methods treat the nonlinear IVP as a nonlinear problem on
a function space- note the similarity of the taxonomies above and below "Discretize".
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2.2. LINEAR SOLUTION METHODS

2.2.1 Direct Methods

The classical direct method for solving linear systems is Gaussian elimination, typically

implemented with LU-factorization techniques. This algorithm decomposes the matrix

A into lower and upper triangular factors L and U, respectively, such that A = LU.

The solution x to (2.1) is computed by first solving Ly = b with a forward elimination

process and then solving Ux = y with backward substitution. A discussion of direct

methods can be found in most linear algebra or numerical methods texts - see [1, 2] for

dense matrix problems and [3] for sparse matrix problems.

The chief advantage of direct methods is reliability. With exact arithmetic, the so-

lution x can be computed exactly in a fixed number of steps. However, direct methods

have two major disadvantages: computational complexity and storage. The complexity

of direct elimination methods for solving linear systems of equations is polynomial in N,

typically from O(N' 5) for sparse problems to O(N3 ) for dense problems'. For direct

methods, the matrix itself must be stored in memory. This might not be particularly dis-

advantageous for the matrix itself, if the matrix is sparse. However, direct methods also

require storage for the fill-in elements, i.e., matrix zero locations which become non-zero

as the elimination process proceeds. Most iterative methods for solving linear systems

only require that the matrix itself be stored, so the fill-in storage, which can be quite

substantial, is not needed. Moreover, certain nonlinear solution methods, e.g., the so-

called "matrix-free methods" do not even require an explicit representation of the matrix

at all.

Relaxation and conjugate direction iterative methods for linear systems are presented

in Sections 2.2.2 and 2.2.3. Matrix-free methods are discussed in Section 2.3.4.

2.2.2 Relaxation Methods

Linear relaxation methods seek to solve (2.1) by first decomposing the problem in space

(i.e., pointwise) and then solving the decomposed problem in an iterative loop. The

simplest relaxation method is the Richardson iteration [5, 6] which solves (2.1) by solving

the following equations
n

xk+l = x5+ = x + bi - aijxix~~+bi-Za1x

'O(N 3 ) is the commonly cited complexity for dense matrix problems. However, it is known that
Gaussian elimination is not an optimal direct method. For instance, in [4], Strassen describes an algo-
rithm for dense matrix problems having O(N 2 8 ) complexity.
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for each xk+l, i.e., component i of z at iteration k. Two other popular relaxation meth-
ods are the Gauss-Jacobi and Gauss-Seidel algorithms which solve (2.1) by solving the
equations

aiik+l _= bi - E aijx
c~~~~ia i j

and
k

aiixk + l = bi- aE + -E a
i>j i<j

respectively, for x [6]. The above iterations can be described compactly in matrix
form. Let L, U, and D be the strictly lower triangular, strictly upper triangular, and
diagonal of A, respectively. Then, the Richardson iteration can be expressed compactly
as

zk+l = zk + b- Axk,

and the Gauss-Jacobi and Gauss-Seidel algorithms as

Dxk+l = b- (L + U)Xk,

and

(L + D)zk+l = b - UXk,

respectively.

It is interesting to note that the Gauss-Jacobi and Gauss-Seidel algorithms are essen-
tially the Richardson iteration applied to a preconditioned form of (2.1). Consider the
system of equations:

D - 1Ax = D - lb

to which the Richardson iteration is applied:

xk+1 = xk + D - l b - D - AXk

= D-lb D-(L + U)zk

which is precisely Gauss-Jacobi relaxation. Preconditioning with (L + D)- 1 similarly
yields the Gauss-Seidel algorithm.

In general, splittings of A can be described by letting A = M - N so that the generic
relaxation method can be written as:

MXk+l = Nz k + b

or that
xk+1 = M-lNxk + M-lb

10
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Let z* be the exact solution to (2.1) and define the error at the kth iteration by ek =

k *. The error equation for the relaxation method is given by:

ek+l = M - 1Nek = (M-'N)k+l e0

The asymptotic convergence rate of linear relaxation is determined by the spectral radius

of M - 1N. In order to guarantee convergence of the method for arbitrary e ° , the spectral

radius of M-'N must be strictly less than unity (see [6]).

2.2.3 Conjugate Direction Methods

The Richardson iteration produces updates of the form

x k+ = a ° + qk(A)ro

where qR(A) is a polynomial of order k given recursively by

q[(A) = I + (I- A)qR' (A)

with q(A) = I, and where r = b- Ax° is the initial residual. Considering the

Richardson iteration as a polynomial method highlights the weakness of the method: the

Richardson iteration always generates the same sequence of polynomials, regardless of

the particular problem to which the method is applied. One implication of this is that,

generically, the iteration will not terminate in a finite number of iterations. However, by

the Cayley-Hamilton theorem, there exists an nth order polynomial in A which is exactly

A - ', but in general, the polynomial of order n generated by Richardson iteration will

not correspond to the Cayley-Hamilton polynomial. One way of considering conjugate

direction methods is that they are methods which at each iteration generate an optimal

polynomial for calculating x k+l (optimal in the sense that Xk+1 minimizes a pre-defined

cost functional).

As an example, consider the conjugate gradient (CG) method [7], used to solve (2.1)

for the case of symmetric and positive-definite A. This method again generates xk+1

with polynomials of A:
k+1 0 +qak+l = o + qCG(A)rO

but does so by seeking to minimize the cost functional

+= b--1~(x=(ab b- -Ax).
2

11
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Here, the inner product < x, y > is the standard Euclidean inner product on Rn. The

relation xek = X °0 + qk-(A)r° implies that a k E xo + Kk(rO, A), where Kk(rO, A) is the

k-dimensional Krylov space:

Kk(r° , A) = span{r ° , Ar°,..., Ak-lro}.

The minimization of q can be accomplished for each iteration k by enforcing the Galerkin

condition that the gradient of be zero on Kk(r °, A), i.e.,

(Vq(Xk), y) = 0 Vy E Kk(ro, A).

It is sufficient to enforce the Galerkin condition on any basis of Kk(r °, A) that might be

chosen. In particular, by choosing {pO,...pm} as a basis for Km+1(ro, A), such that

(Ap,pi )=0 i j,

and by using the update
k+ k + (rkp k) k

, k+1 =-2, + (Apk, pk)'

the sequence {Xl, X2,...} can be generated iteratively so that k+ l minimizes on

Kk+l(r°,A) for each k = 0,...,m (see [8, pp. 271-273]).

Since the largest amount of work in the CG iteration is in the matrix-vector product,

the CG algorithm requires only a modest increase in work per iteration when compared

to Richardson-based iteration methods. However, the optimality of the CG algorithm

provides a guarantee of finite termination (by Cayley-Hamilton) plus much better con-

vergence properties prior to termination [9]. In fact, the convergence rate of the CG

algorithm is bounded by:

k

IlekIIA < 2 ( ' X(A ) lleOllA (2.2)
Vn.(A) +11

where ellA = (Ae, e)2 is the A-norm of e and K(A) is the condition number of the
matrix A. In practice, the bounds given in (2.2) are not necessarily sharp, particularly

when A has clustered eigenvalues.

For non-symmetric matrices, the CG algorithm cannot be directly applied. Krylov-

space methods which are appropriate for non-symmetric systems include CG applied to

the normal equations (CGNR) [7], generalized conjugate residual (GCR) algorithm [10],

the generalized minimum residual (GMRES) algorithm [11], and the conjugate gradient

squared (CGS) algorithm [12]. These methods are quite powerful and are widely used,

12
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but none completely preserves the elegance of the original CG algorithm (see [13] for a

discussion of necessary and sufficient conditions for the existence of a conjugate gradient

method).

The CGNR algorithm solves (2.1) for non-symmetric A by applying CG to the equiv-

alent symmetric system

AtAx = Atb,

where the superscript t denotes algebraic transposition. However, convergence of CGNR

can be drastically slower than convergence of CG. Convergence of CG is bounded by

(2.2), so convergence of CGNR is bounded by

/ ~~~kk

Vr(t)- +A 1lle'IlAtA = ~'J<2 - rl= 2 K(A - 1 rolll • Ic (A tA) 1 1I1(I (A) + 1 

For large (A), the convergence of CG is essentially a function of r(A), whereas con-

vergence of CGNR is essentially a function of r(A).

The GCR and GMRES algorithms are theoretically equivalent algorithms which seek

to minimize Ir 112 at each iteration. To do this, the basis for the Krylov space must be

formed explicitly with an orthogonalization scheme at each iteration so that the work at

each iteration grows linearly with the iteration number. Restarted and incomplete orthog-

onalization versions of these methods seek to bound the length of the orthogonalization

process, but in so doing also tend to corrupt the effectiveness of the full orthogonalization

versions of the algorithms.

The CGS algorithm [12] uses a low-order recurrence relation at each iteration and

abandons guaranteed minimization properties altogether. This is a theoretical drawback,

but in practice, CGS seems to work quite reliably.

2.3 Nonlinear Solution Methods

In this section, some methods are discussed for solving systems of nonlinear equations

F(x) = 0 (2.3)

where E and F: R1 - R1.

13
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2.3.1 Newton's Method

The most popular method for solving (2.3) is undoubtedly Newton's method, where the

n-dimensional linear system of equations

JF(m) m + l = JF(m) -F( m )

is solved for xm+ l in an iterative loop. Here, JF(X) = F() is the Jacobian of F.

Typically, the iteration is performed in two steps:

JF(Xm)Azrm = -F(x m ) (2.4)
Xm+l = Om + /Z m .

Newton's method converges quadratically, provided the initial guess, X0 , is sufficiently

close to the exact solution [8].

The standard Newton method has some drawbacks. First, a linear system solution

step is required at each iteration. This can be expensive in terms of computation and

in terms of storage, especially if a direct factorization method is used. Second, global

convergence can be problematic if the initial guess is not close enough to the exact solu-

tion. Alternative nonlinear solution methods seek to improve the computation, storage,

and/or convergence properties of the standard Newton method.

2.3.2 Nonlinear Relaxation

As an alternative to the standard Newton method, (2.3) can be decomposed into smaller

sub-problems, each of which is solved independently in an iterative loop, using fixed

values from previous iterations for the variables from other sub-problems. Two com-

mon decompositions produce the Jacobi-Newton and Seidel-Newton algorithms (see [8]).

These methods can be considered to be generalizations of the corresponding linear Gauss-

Jacobi and Gauss-Seidel relaxation methods.

The Jacobi-Newton algorithm solves (2.3) by solving the equations

· n m m m+l m mrn 
fi(X, I... X, X i+l . X = 0

for xm +l , usually with a scalar form of Newton's method. Similarly, the Seidel-Newton

algorithm solves (2.3) by solving the equations

; { m ~ _m+l xm+l m m it (X .1 X1 IXi lj , X ,X ) = o

for x + l . The essential difference between Jacobi-Newton and Seidel-Newton is that,

when computing x +1 Seidel-Newton uses the values of x+1 for the jth subsystem

14
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if it has already been computed, otherwise xT is used. In some sense, Seidel-Newton

uses the most recently computed information that is available. The class of nonlinear

solution algorithms to which Jacobi-Newton and Seidel-Newton belong are referred to as

relaxation-Newton algorithms.

Each iteration of a relaxation-Newton method requires solving a scalar nonlinear

problem to determine xn + 1 - usually with a scalar form of Newton's method. Even if

the scalar nonlinear solution method is iterated until convergence, the outer loop will

generally not be converged for x. This suggests that in the early iterations, x +l does

not need to be determined very precisely. The n-step relaxation-Newton methods take a

predetermined fixed number, n, of scalar Newton iterations - often as few as one [8].

2.3.3 Inexact Newton Methods

The class of nonlinear solution methods known as inexact Newton methods are obtained

by combining Newton's method with a linear solution method that only solves the linear

system approximately. As in [14], the linear system that is solved with an inexact Newton

method can be specified as

JF(m)Z = F(xm ) + m

xm+l = m + A m

where rm is the residual and represents the difference between JF(Xm)AzIm and F(xm).

One common context in which inexact Newton methods arise is when an iterative

linear solver is used to solve (2.4). In this case, the linear system is only solved ap-

proximately to within the convergence criterion of the particular iterative method. Here,

methods combining Newton with linear relaxation are referred to as Newton-relaxation

methods; methods combining Newton with a conjugate direction method are referred to

as Newton-Krylov methods.

A typical Newton-relaxation or Newton-Krylov method has the form shown in Al-

gorithm 2.3.1. Using this formulation, convergence of the iterative linear solution is

determined by llrkll/llr°ll, i.e., the ratio of the linear residual at iteration k to the initial

linear residual. As discussed in [14], choosing a fixed convergence criterion 0 < e < 1 for

all m will result in linear convergence of the nonlinear iteration. However, by scheduling

a sequence {E0 ,e1 ,...} so that cm < 1 for all m and Em 0 as m - oo, the nonlinear

iteration will converge superlinearly.
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2.3.4 Matrix-Free Methods

One modification that can be made to Newton-relaxation or Newton-Krylov methods is to

dispense with the explicit formation of the Jacobian. The iterative linear solvers require

only the result of a matrix-vector product, not the matrix itself. Since the matrix for

the linear system in question is the Jacobian of a nonlinear function F, an approximate

matrix-vector product can be calculated according to
1

JF(X)P = a( p -[F( + p) - F(x)]
,ox a

where u is a small scalar parameter.

The use of matrix-free Newton-Krylov methods within the context of solving stiff

systems of ODE's was first studied by Gear and Saad in [15] and subsequently studied

by Brown and Hindmarsh [16, 17] and Chan and Jackson [18]. Matrix-free Newton-Krylov

methods with global convergence properties are examined in [19].

2.4 Integration Methods

Many initial value problems admit an explicit representation as

d (t) = F(z(t), t) (25)
dt ~~~~~~~~~~~~~(2.5)

z(0) = O

where x(t) E RN and F: RN+1 RN.

A linear multistep integration formula applied to solving (2.5) is expressed by:

S S

A ji;(tm+l-i) = hm /3 iF(x(tm+l-_i), tm + l - s)
i=O i=O

where h = t+l - t is the discretization timestep, x(tm) is the estimated value of the

solution at time t = tin, F(ax(t), t) represents the dynamics of the equation at the given

Algorithm 2.3.1 (Inexact Newton for solving F(z) = 0).

Choose z0, .

For m = 0,1,... until converged
Pick Azm,o
Set r = -F(zm) - JF(m)ZXm'o
For k = 0,1,... until [[rkII/I[roI < em

Perform relaxation or Krylov linear iteration steps
Set zm+l = Xm + *mk
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timepoint using the estimated value, the parameters ai and Pi are chosen for accuracy
within stability limits, and s is the order of the formula [20, 21]. If go = 0, z(tm+l) can
be found explicitly as a function of previous values of x and F(.) evaluated at previous
values of x. For o = 0, an implicit equation in terms of x(tm+,) and F(x(tm+), tm+l)

must be solved for x(tm+l). Hence, one obtains the denotation "explicit method" for

/30o = 0 and "implicit method" for Po = 0.
For problems such as (2.5), explicit methods have a potentially significant advantage

over implicit methods because there is no need to perform a nonlinear system solution.

Without a nonlinear system solution step, the system Jacobian and linear system solu-
tion are obviated, resulting in a substantial reduction in computation as well as storage.
However, explicit methods are far less stable than their implicit counterparts. For prob-
lems having eigenvalues that differ by several orders of magnitude (i.e., stiff problems),
implicit methods are computationally superior to explicit methods. The stability of the
implicit methods allows for substantially larger timesteps, resulting in lower overall com-
putational work for the simulation.

Explicit integration methods also lose their advantages when the differential portion

of the initial value problem is itself implicit. e.g., the circuit transient simulation problem

dtq (v(t), t) + i (v(t), t) 0 (2.6)Tt ~~~~~~~~~~~~~~~(2.6)
v(0) = v 0.

A linear multistep integration formula applied to solving (2.6) is expressed by:

s S

aiq(v(tm+li)) = hm E /ii(v(tm+l-i),tm+l-s) (2.7)
i=O i=o

Even if an explicit integration method is used, i.e., by choosing /3 = 0, (2.7) is still

implicit in v(tm+l). Therefore, a nonlinear solution step is still required, but the sta-
bility inherent to an implicit integration method is not retained. In special cases, some
advantage can be gained because q may be easier to invert than i, but in general this
advantage is not enough to compensate for the lack of the strong stability properties of

implicit integration methods.

2.5 Waveform Methods

The discussion in the previous sections concentrated on different methods that could
replace the three components of the "implicit-integration, Newton, direct method" ap-
proach. Another means of obtaining a computational advantage in solving (1.1) is in
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selecting an alternative decomposition of the original problem. It has already been shown
how alternative decompositions applied to the nonlinear and linear system solution steps

produced nonlinear and linear relaxation algorithms. If this type of decomposition is

applied at the ODE level, one obtains waveform methods.

One approach to studying waveform methods is to consider the IVP to be an operator

equation on some function space. The traditional waveform methods can then be derived

as extensions of nonlinear solution methods to that space. It is this point of view which

leads to the derivation of the waveform conjugate direction methods in Chapter 4, for

instance.

The operator formulation of the IVP can be written as

Fx=0 (2.8)

where x is now a member of some function space and F is a nonlinear differential operator.

An example definition of is

Fx(t) = dz(t) + F(x(t), t) (2.9)

with x Cl(zo, [0, T], Rn), F : C(Xo, [0, T],IR-) -- C'(xo, [0, T],Rn) and the function

space Cl (xo, [0, T], Rn) defined as

Cl(x:o,[0,T],R) = {f E C 1([O,T],Rn)If(0) = o}.

Note that F is at best densely defined on Cl(xo, [0, T], Rn).

Given the formulation of the IVP in (2.8) one can apply abstracted forms of the

methods described Section 2.3 to obtain various nonlinear waveform methods. These

abstracted nonlinear methods are discussed in the following sections.

2.5.1 Waveform Newton Methods

The waveform Newton method is obtained by applying an abstracted form of Newton's

method to (2.8). This method is discussed in [22] and applied to the circuit simulation

problem in [23] and [24]. The waveform Newton method is expressed as

J(mr)Axm = -F(X m )
whm+1 -i m + Axr.

where JF is the Frechet derivative of F defined by

(2.10)JFX(t) = ' 4X(t) + JF(X (t),t).
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Using (2.9) and (2.10), the waveform Newton method can be expressed as

d + JF(Xm(t),t)) Ax m (t) = - m (t) -F(x m (t),t)

m+ 1 () = 0

which can be rearranged to remove the d from the right-hand side to obtain the linear
dt

IVP
(d+ JF(Xm)) Xm+l = JF(Xm)xm _ F(Xm )

Xm+l (0) = X0.

This linear IVP can be solved with a variety of methods, as can be seen in Figure 2-1.

For instance, the problem can be immediately discretized and a linear system solver can

be used to solve the resulting sequence of matrix problems2. Alternatively, the linear IVP

can be solved iteratively with a linear waveform relaxation method or with a conjugate

direction waveform method. In this case, the problem is discretized (and the resulting

linear systems solved) within the main iterative loop.

A discussion of the convergence properties of the waveform Newton method can be

found in [23].

2.5.2 Waveform Relaxation Methods

As with the linear and nonlinear relaxation methods, the nonlinear IVP can be decom-

posed in space and solved iteratively. The Jacobi waveform relaxation algorithm solves

(1.1) by solving the scalar IVP's

i i(t) + fi(xk(t), .*. x =l(t) 0
x,(O) = o

for each x+ 1 (t) with a scalar integration scheme. The historical basis for waveform relax-

ation methods is the Picard-Lindelof iteration, used to demonstrate existence and unique-

ness of solutions to IVP's [25]. Waveform relaxation has been used very successfully for

simulating VLSI circuits [26, 27]. Convergence theory for the linear time-invariant case

is studied in [28] for ODE's and in [29] for DAE's.

2.5.3 Inexact Waveform Newton Methods

One can continue to maintain the analogy between nonlinear solution methods and wave-

form methods and construct the class of inexact waveform Newton methods. These meth-

ods would result from the combination of the waveform Newton method and an iterative

2 0r, as in [24], an n-dimensional linear IVP discretized with m timepoints can be treated as one
mn x mn problem instead of a sequence of m separate n x n systems.
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linear waveform method. The combination of waveform Newton with a linear waveform

relaxation method is sometimes known as waveform Newton relaxation (WNR) and is
discussed in [30]. The combination of waveform Newton with a linear waveform conju-
gate direction method is presented for the first time in [31] and developed more fully in

Chapter 4 of this thesis.

2.6 Parallel Techniques

In addition to improving the algorithms for solving (1.1), significant computational time-

savings can be gained by using parallel processing hardware. However, no true general-

purpose parallel machine yet exists- obtaining good parallel performance requires care-

ful matching of problem, algorithm, and architecture.

Solving IVP's in parallel is difficult because the initial value problem is inherently

serial due to the ODE structure. The approaches used for parallelizing IVP solution
algorithms are inherently tied to the original decomposition of the problem. For instance,

with a point-wise decomposition, one would attempt to parallelize the solution steps

required at every timepoint, since those solutions are generated sequentially. On the

other hand, for a waveform-based solution, one would attempt to parallelize the solution

steps required for the set of waveforms.

In general, iterative techniques are easier to parallelize than direct techniques. For
instance, the waveform and point relaxation methods solve a sequence of equations for

xk+l using values of other components of x from previous iterations. An obvious use
of parallel hardware for such methods is to assign each component of to a separate

processor. Each processor i is then responsible for obtaining those values of x from other

processors that are necessary to calculate x~+1 .

Relaxation methods can also use a technique known as chaotic relaxation in which

the processors run asynchronously [32], i.e., each processor has a local iteration count

independent of the iteration count of the other processors. Each processor computes
the value of its assigned variable using whatever values for the components from other

processors are available at the time. The conjugate direction methods, however, require
a global control thread and all processors must synchronize several times during each
iteration. Whether the superior convergence properties of the conjugate direction meth-
ods will outweigh the added synchronization cost in a parallel implementation is an open

question.

Many methods have been developed for parallelizing direct techniques, and a very
good survey of such methods can be found in [33]. However, the successful techniques rely
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on certain special structures of the problems to be solved (such as the matrix possessing

a band structure). There has not been a truly successful parallel implementation of

sparse Gaussian elimination for the types of matrices produced by the general circuit

simulation problem, for instance. There is some recent interesting work in this direction

by Karmarkar, however [34, 35].
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3

Parallel Simulation Algorithms for
Grid-Based Analog Signal

Processors

3.1 Introduction

The recent success in using one- and two-dimensional resistive grids to perform certain

filtering tasks required for early vision [1] has sparked interest in general analog signal

processors based on arrays of analog circuits coupled by resistive grids. As is usually the

case, before fabricating these analog signal processors, substantial circuit-level simulation

must be performed to insure correct functionality. Although desirable, simulation of these

types of signal processors is particularly difficult because they must be simulated in their

entirety at the analog level. Ambitious circuits consist of arrays of cells where the array

size can be as large as 256 x 256, and each cell may contain up to a few dozen devices

[2]. Therefore, simulation of a complete signal processor requires solving a system of

differential equations with hundreds of thousands of unknowns.

The structure of grid-based analog signal processors is such that they can be simulated

quickly and accurately with specialized algorithms tuned to certain parallel computer

architectures. In particular, the coupling between cells in the analog array is such that a

block-iterative scheme can be used to solve the equations generated by an implicit time-

discretization scheme, and furthermore, the regular structure of the problem implies that

the simulation computations can be accelerated by a massively parallel SIMD computer,

such as the Connection Machine® [3].

Connection Machine is a registered trademark of Thinking Machines Corporation.
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In this chapter, algorithms are presented for simulating grid-based analog signal pro-

cessors on a massively parallel computer. In Section 3.2, motivation is provided for this

work by way of an idealized example of a grid-based analog signal processor, and a gen-

eral model of grid-based circuits is developed. The simulation algorithms for performing

transient simulation of grid-based circuits are discussed in Section 3.3 and the massively

parallel implementation of the algorithms is presented in Section 3.4. Experimental re-

sults using the Connection Machine are presented in Section 3.5. Finally, conclusions

and suggestions for further work are contained in Section 3.6.

3.2 Problem Description

Preceding the discussion of the simulation algorithms, a description of the problem to

be solved is presented in order to highlight the salient features of the problem which will

be exploited later by the algorithms. An idealized grid-based analog signal processor is

presented first as a motivational problem and then a general description for these types

of circuits is developed.

3.2.1 Motivational Problem

Consider the circuit in Figure 3-1, an idealized version of a grid-based analog signal

processor used for two-dimensional image smoothing and segmentation [4]. The Kirchoff's

current law (KCL) equation for a node at grid location (j, k) in the network is

CVj,k = gf (Vj,k - uj,k)

+g9(v,k - Vj+li,k) + g9s(Vj,k - Vj-,k)

+g,(Vj,k - vj,k+1) + g9(vj,k -Vj,k-l),

where uj,k and vj,k represent the input and processed output image data at the grid point

(j, k), respectively, gf is the input source impedance, c is the parasitic capacitance from

the grid node to ground, and g,(-) is a nonlinear "fused" resistor. In this circuit, the g.

resistors pass currents in such a way as to force vj,k to be a spatially smoothed version

of Uj,k, unless the difference between neighboring Uj,k's is very large. In that case, g, no

longer conducts, there is no smoothing, and the image is said to be "segmented" at that

point.

In a physical implementation of the image smoothing and segmentation circuit, the

idealized elements in the circuit in Figure 3-1 are replaced by subcircuits of physical

circuit elements. For example, in Mead's Silicon Retina [1], the voltage source uj,k and
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Figure 3-1: Grid of nonlinear resistors.

the source admittance g are replaced with a subcircuit containing transconductance

amplifiers and a phototransistor; the gs nonlinear resistor is replaced with a subcircuit

comprised of biasing circuitry and MOS transistors (see Section 3.5).

3.2.2 General Array Description

The circuit grid can be represented generally as an N x N array of identical subcircuits,

each of which is connected to its four nearest neighbors. Consider a single such subcircuit,

shown abstractly as a multiterminal element in Figure 3-2. Let the subcircuit have Mint

internal nodes and let it be connected to its nearest neighbor to the north, east, west,

and south with MN, ME, Mw, and Ms terminals, respectively. For present purposes,

it is assumed that the subcircuit acts as a voltage-controlled element with respect to its

terminals.

In order to create an N x N grid circuit of subcircuits, a single subcircuit must be

replicated N 2 times, and then each subcircuit must be connected to its four nearest

neighbors. The following proposition and its corollaries are provided as a means of

describing the grid circuit behavior, given the description of the behavior of the individual

subcircuits.

Proposition 3.2.1. Let C be an n + m node circuit with nodal voltage vector (t) E

Rn +m , and nodal charge and current vectors E((t),t),i((t),t) E + m , respectively.

Consider a second circuit, C, which is formed from C by joining each node j = n +

1,...,n + m to some node k E {1,...,n}, such that C is a well-defined circuit and has
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Figure 3-2: A single subcircuit, shown here as a multiterminal element, and a grid
constructed of such elements.

nodal voltage vector v(t) E Rn, and nodal charge and current vectors q(v(t), t), i(v(t), t) E

Rn, respectively. Then, there exists a topological matrix H, such that

q(v(t),t) = Ht1(Hv(t),t)

i(v(t),t) = Hti(Hv(t),t).

Proof. Define H :Rn -+ Rn+m by:

1 ifj=k
Hj,k = 1 if node j in C was joined to node k in C (3.1)

0 otherwise

It should be obvious that substituting Hv(t) for (t) will give all devices in C the same

terminal voltages as if the nodes were connected as in C. Thus, each device in C will

produce the same charge at its terminals as it would in C. Consider a component q of

the vector q(v(t), t), corresponding to the sum of charges at node j in C. Node j will
either correspond directly to node j in C or to node k joined with node j in C. In the

former case, qj = 4j, in the latter, q = k + qj. Therefore, q(v(t),t) = Ht4(Hv(t),t).

An identical argument shows that i(v(t),t) = Hti(Hv(t),t). a

An alternative proof can be constructed using branch incidence matrices:

Proof. The topological matrix H simply maps the correspondence of node numbers
between the nodes in circuit C and C. Define H: Rn -+ Rn+m by:

1 ifj=k
Hi,k = 1 if node j in C was joined to node k in C (3.2)

0 otherwise
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Let C and C be described abstractly as collections of nodes and edges. Then C will have

the same edges as C but fewer nodes. In addition, those edges that meet at nodes in C

will also meet at nodes in C. However, some nodes will be merged so that some of the

branches in C which meet at different nodes will meet at the same nodes in C. Thus, the

branch incidence matrix B for circuit C is related to the branch incidence matrix B for

circuit C according to:

Bt BtH

or, equivalently,

B= HtB.

The proposition follows by reducing the sparse tableau formulation for voltages and

currents for C to the nodal formulation. That is, the nodal current vectors i and are

defined by
i(v) = Bg(Btv)

i(u) = Bg(Btf)

where g is the vector of branch currents for C and C, and dependence on t is omitted for

clarity. Substituting HtB for B produces

i(v) = HtBg(Bt Hv)

= Hti(Hv).

An identical argument shows that q(v) = Ht4(Hv). 0

Example. Consider the circuit graphs shown in Figure 3-3. In this case the H matrix

relating the two circuits is given by:

1
1

1

1

1

(3.3)

Remark. The matrix H can be defined more generally by relaxing the condition on

the ordering of nodes in the hypothesis of Proposition 3.2.1. That is, C can be constructed

from C by joining a set of m distinct nodes {k1 , ... , km} C {1,... , n + m} to some of

the n nodes {1,.. , n + m}\{ki,..., km}. The remaining n nodes are then renumbered

from {1,.. , n}. The matrix H then maps the former node numbers {1,.. , n + m} to

the new node numbers {1, . . ., n}.

H=
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b2 b2 

b6

-- n4 Db n4
b4 b4

C' C

Figure 3-3: Example graphs for circuits C and C. The circuits both have branches bl
through b6; circuit C has nodes nl through n, while circuit C has nodes nl through n4.
The topological matrix relating the nodes for this example is given in (3.3).

The following corollary provides a simple way of describing the construction of a grid

circuit from subcircuits.

Corollary 3.2.2. Consider an N x N circuit grid of identical subcircuits, as shown

in Figure 3-2. Assume each subcircuit has Mi,,t internal nodes plus Mterm terminals,

and define M = Mit + Mterm. Let v<(t) E RE be the nodal voltage vector for the

subcircuit at grid location a when that subcircuit is separated from the grid, and let

((t),) E R"s and E((t),t) E R be the associated nodal charge and current

vectors, respectively. Next, define = N 2 M, let E En represent the nodal voltage

vector for the N 2 subcircuits separated from each other, and let (v(t),t) E R and

i((t), t) E Rn be the associated nodal charge and current vectors, respectively. Finally,

define n = N2Mint, let v(t) E Rn represent the voltage vector for the connected grid
circuit, and let q(v(t),t) E R ' and i(v(t),t) E Rn be the associated nodal charge and

current vectors, respectively.

Then, q and i can be related to q and by a topological matrix H : Rn -R',n such

that

q((t),t) = Ht4(Hv(t),t)

i(v(t),t) = Ht*(Hv(t),t).

Proof. Order the subcircuit terminals such that nodes {1,... , n} correspond only to

the internal nodes of the subcircuits and nodes {n + 1,... , h} correspond to the terminal

nodes of the subcircuits. Apply Proposition 3.2.1. 0
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Remark. If all N 2 subcircuits are identical, then = N 2 Mint + N 2 Mterm and n =

N2Mint. However, the boundary subcircuits may differ from the subcircuits internal to

the grid in such a way that the boundary subcircuits have no unconnected terminals. In

that case, the values of fi and n will be slightly different from the above, depending on

the particular differences of the values Mint and Mterm for the boundary subcircuits.

Corollary 3.2.3. Let Jq = a, J=i = _. j = and J = be the Jacobian

matrices for the functions q, i, q, and i described in Corollary 3.2.2, respectively, and

let H be the topological matrix relating q to q and i to . Then, Jq is related to Jj and

Ji is related to Ji by

Jq(V(t), t) = H*J(Hv (t), t)H

Ji(v(t),t) = Ht J;(Hv(t),t)H

and Jj and Jr are block diagonal.

Proof. The result follows directly from the relations between q and q, and between 

and i. -

Remark. Computationally, Proposition 3.2.1 and its corollaries demonstrate how it

is possible to compute the nodal sums of charge and current for the connected circuit by

evaluating the constitutive relations for the unconnected circuit.

Example. A decomposition of the example circuit shown in Figure 3-1 is shown in

Figure 3-4. Note that the subcircuits internal to the grid have one internal node and

two terminal nodes, the subcircuits on the east and south border of the grid have one

internal node and one terminal node, and the subcircuit on the south-east corner of the

grid has one internal node and no terminal nodes.

Similar results to Corollary 3.2.2 and Corollary 3.2.3 can be constructed for other

types of grid circuits as well (such as hexagonal grids).

3.3 Numerical Algorithms

The system of equations that describes an N x N grid circuit, constructed as in Corol-

lary 3.2.2, can be written compactly as

dq (v(t), t) + i (v(t), t) = . (3.4)
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Figure 3-4: Decomposition of the example circuit shown in Figure 3-1. Note that the
subcircuits on the east and south borders of the grid differ from the subcircuits elsewhere
in the grid.

Here, n is the total number of nodes in the circuit, v(t), q (v(t), t), i (v(t),t) R are

the vectors of node voltages, sums of node charges, and sums of node resistive currents,

respectively.

The transient simulation of the analog grid involves numerically solving (3.4). Dis-

cretizing (3.4) with the trapezoidal rule leads to the following algebraic problem for each

time step h:

[q(v(t + h),t + h)-q (v(t),t)] + [i(v(t + h), t + h) + i(v(t),t)] = . (3.5)
h

As is standard, the algebraic problem is solved with Newton's method,

JF (v m (t + h),t + h) [vm+l (t + h)- vm (t + h)] = -F (v m (t + h),t + h) (3.6)

where

F (v(t+ h),t + h) = (3.7)

2 [q (v(t + h), t + h) -q (v(t), t)] + [i (v(t + h), t + h) + i (v(t), t)]

and the Jacobian JF (v(t + h), t + h) is

2&q(v(t + h),t+h) i(v(t + h),t+h) (3.8)
JF (V(t+ h),t +h) h -- 49 + 6 38

In "classical" circuit simulators such as SPICE [5], the linear system of equations for

each Newton iteration is solved by some form of sparse Gaussian elimination. Sparse

32

....

. .0



3.3. NUMERICAL ALGORITHMS

Gaussian elimination is not well-suited to the present problem for several reasons. First,

because of the structure of the matrix generated by grid-type circuits, sparse Gaussian

elimination creates substantially more fill than for typical circuits with an equivalent

number of nodes. Second, it is well known that sparse Gaussian elimination is difficult

to parallelize. Therefore, a parallelizable iterative method is sought, such as a conjugate-

direction method [6].

There are several conjugate-direction algorithms which are suitable for use as a linear

system solver for grid circuits. Since, in the general case, the grid circuits may be

constructed from non-reciprocal elements (e.g., MOS transistors), only methods suitable

for non-symmetric matrices are considered, e.g., CGNR, GCR, GCR(k), ORTHOMIN,

CGS [6, 7]. The present discussion will be restricted to CGS, presented in Algorithm 3.3.1,

since experience has shown that it is the most efficient of the methods examined (see

also [8, 9]).

One reason for the suitability of conjugate direction methods to the problem under

consideration is that the convergence rates of these methods depend on the condition

number of JF. By taking timesteps small enough, the capacitive portion of the Jacobian,

which tends to be better conditioned than the conductive portion, will dominate (see [10]).

To demonstrate the effectiveness of the conjugate-direction methods, in Table 3-1

the CPU time required to compute the transient analysis of the network in Figure 3-1 is

compared using several different matrix solution algorithms to solve (3.6). The conjugate-

Algorithm 3.3.1 (Conjugate Gradient Squared algorithm for solving Az = b).

Xo=O 0
ro = b

q = p-l =0

P-1 = 0
For k = 0,1,...

if converged, break

Pk = (io, k), 3k = Pk/Pk-1
Uk = rk + kqk

Pk = Uk + 1k(qk + /kPk-1)
Vk = APk

Ok = (iO, Vk), k = Pk/ k

qk+l = Uk - akvk

rk+l = rk - CakA(Uk + qk+l)

Zk+l = Zk + ak(Uk + qk+l)
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Size Direct CG ILUCG CGS ILUCGS
16 x 16 2.69 0.94 0.85 1.12 1.07
32 x 32 39.3 4.10 3.93 5.08 4.69
64 x 64 464 24.5 24.2 27.8 30.6
128 x 128 25000 713 1340 1420 1790

Table 3-1: Comparison of serial execution time for the transient simulation of the circuit
in Figure 3-1, when using direct, CG, ILUCG, CGS, and ILUCGS linear system solvers.
For this example, gf = 3.0 x 10-5f-1 and gs has a conductance of 1.0 x 10-3Q-1 when
linearized about zero. All execution times are CPU seconds for an IBM RS/6000 model
530 workstation.

direction methods shown in Table 3-1 are conjugate gradient (CG), incomplete LU pre-
conditioned CG (ILUCG), conjugate gradient squared (CGS), and incomplete LU pre-

conditioned CGS (ILUCGS). As the table indicates, sparse Gaussian elimination is much
slower than the conjugate-direction methods, especially for larger problem sizes.

3.4 Implementation

For an algorithm to approach peak parallel performance on a SIMD machine, it must
satisfy three requirements. First, the problem must have enough parallelism to effectively
use the available processors. Second, the algorithm should depend only on local or

infrequent interprocessor communication. And third, the algorithm must be mostly data-

parallel, meaning:

* One can identically map individual pieces of data to individual processors for all
relevant processors, and

* One can operate identically on the data with all the relevant processors

The general circuit simulation problem violates all three of the above constraints,
and previous attempts at using a SIMD machine to accelerate circuit simulation have
not yielded impressive results [10, 11]. As will be shown in the rest of this section,
simulation of grid-based analog signal processors is well suited to SIMD architectures.
These circuits are large enough to keep a large number of processors active, and they can
be simulated with algorithms that depend on nearest-neighbor communication between
processors.
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Figure 3-5: Mapping of subcircuits to processor grid. Each processor, represented by
a single box, contains the data necessary for simulating a single subcircuit. The lines
connecting the boxes represent the inter-processor communication network.

3.4.1 Data to Processor Mapping

The two-dimensional nature of grid-based analog signal processing circuits maps naturally

onto a two-dimensional grid-connected processor network so that data parallelism and

locality are maintained. In particular, assume that it is desired to simulate an N x N grid

circuit that is constructed by replicating identical subcircuits as described in Section 3.2.

The problem is mapped onto an N x N processor array by assigning the data for one

subcircuit to each processor (see Figure 3-5).

The characteristics of the grid circuit can be obtained with this mapping by using

Corollary 3.2.2, as described in Sections 3.4.2 and 3.4.3. Note that v, (f), and (i)

can be completely represented by keeping (Mit + Mterm,) components of these vectors on

each processor. However, representing v, q(v), and i(v) requires only Mit components of

each vector on each processor. Therefore, the convention is adopted that the components

of , (f), and i(v) which correspond to the internal nodes are stored in locations

{l1,...,Mint} and the components which correspond to terminal nodes are stored in

locations Mint + 1..... , Mit + Mterm,}. With this convention, the vectors v, q(v), and

i(v) are simply the first n locations of the vectors v, (f), and (f), respectively.
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3.4.2 Device Evaluation

The device evaluation stage of circuit simulation involves the computation of the right-

hand side and the Jacobian for the Newton iteration (3.7), i.e., computing F and JF

as in (3.7) and (3.8). Since the linear system solver is a conjugate-direction iterative

method, JF is not needed explicitly, rather, it is only necessary to calculate the matrix-

vector product y = JFX. If (by definition) Jp = Jq + Jr, then by Corollary 3.2.3,
the matrix-vector product y = JFz can be calculated according to y = HTJPHX.

Therefore, only Jp is calculated during the device evaluation process.

Using the topological matrix described in Corollary 3.2.3, the computation and com-

munication required to compute F and Jp can be described by the following, where the

dependence on t is omitted for clarity:

1. Calculate v = Hv. In this step, the values of v corresponding to terminal nodes

are set with nearest-neighbor communication operations.

2. Calculate the Jacobian, J(i) = Jj(b) + Jj(V) and "right-hand-side" compo-

nents, 4(f) and i(i), by evaluating the cell devices in parallel.

3. Calculate q(v) = HT4(,) and i(v) = HTi(i). In this step, the values of 4(f)

and (,) corresponding to terminal nodes are communicated with nearest-neighbor

communication operations and added into the appropriate locations of q(v) and

i(v).

An explicit representation of H is not needed to accomplish the communication oper-

ations - a local representation of how nodes are connected to each other across the

processor boundary is the only requirement.

3.4.3 Linear System Solution

There are two parts of the CGS iteration which involve parallel data: the vector inner

product and the matrix-vector product. The vector inner-product is computed with an

in-place multiply and a global sum. The matrix-vector product y = JFz is computed

according to y = HTJpHz, using the result of Corollary 3.2.3, with the following

sequence of operations:

1. Calculate = Hx.

2. Perform parallel block matrix-vector multiplication, Y = Jpi.

3. Calculate y = H T.
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Here, x, y and y are stored and Hz and HTi, are calculated just as in the device

evaluation process above. Again, steps 1 and 3 involve explicit communication operations,
but 2 does not involve any communication, since JF is block diagonal.

Block Diagonal Preconditioning

An effective technique for improving the performance of conjugate-direction iterative
methods is the use of preconditioners. That is, instead of solving Ax = b directly, the
conjugate-direction method is applied to the equivalent system

P-1 A = P-lb.

Typically, P is chosen so that the system Pz = r for z is easy to solve and so that the
conjugate direction method applied to the preconditioned system converges faster than
when applied to the non-preconditioned system.

The general structure of the Jacobian matrix JF is that of a block diagonal matrix
with block off-diagonal bands. The diagonal blocks are of size Mit x Mint; the block
off-diagonal bands are of size MN X MN, ME x ME, Mw x Mw, and Ms x Ms. This sug-
gests a block iterative method for solving (3.6), using the diagonal blocks of JF as the
preconditioner. A block iterative scheme is particularly well suited to a SIMD imple-

mentation, since each block can be solved simultaneously in parallel. Note that although
Jp is already block diagonal, inverting its blocks is not the same as inverting the block

diagonal portion of JF.

Rather, let JF = P + R, where P is the block diagonal part of JF. To use P as a
preconditioner in the CGS algorithm, it must be formed from JP. Let Rak be the part
of Jp corresponding to the coupling between internal and terminal nodes of the same

subcircuit - this coupling will become the off-diagonal coupling blocks in JF. Define P
by JF = P + (see Figure 3-6). Using Corollary 3.2.3, note that

P = HTPH. (3.9)

Solving the linear system Pz = r for z is then accomplished by:

1. Form P = HTPH.

2. Solve Pz = r.

Comments on Preconditioning

On serial machines, conjugate-direction methods have benefitted greatly from the use of
preconditioning. However, the author's experience, as well as the results reported in [12],
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Figure 3-6: Definition of P. Since the coupling between internal nodes and terminal
nodes will become off-diagonal blocks in JF, these coupling elements are removed from
Jp to form P.

indicate that some the advantages of using a preconditioner are lost when implementing
conjugate-direction methods on a massively parallel machine. In this section, results
from [13] regarding parallel algorithms for solving PDE's are applied to provide some
explanations about the limitations of a parallel preconditioner. The main idea is that
there are two bounds on algorithmic performance - communication bounds and compu-
tation bounds - and preconditioning a conjugate-direction method cannot improve the
communication lower bound.

As a model problem, consider the Dirichlet problem in two dimensions:

V 2u = f (xy) Q c R2 (3.10)

uIas = O.

For simplicity, let f2 = 2 C R 2. To solve (3.10), apply a finite-difference scheme with
stepsize h to obtain:

Au = f (3.11)

where n = h - 2, A E RnXn, and u, f E Rn. The linear system of equations in (3.11) can
also be realized with a grid of linear resistors.

Consider the behavior of the CG algorithm for solving (3.11). As is well known,
the number of iterations required to solve (3.11) for a fixed convergence criterion, say
e, is ( /K(A)), where ((A)) is the condition number of A [14]. For the discretized
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Laplacian, K(A) = ch -2 , so that the number of iterations required to solve (3.11) for a

fixed e is O(V).
The premier preconditioning techniques for CG applied to the discretized Lapla-

cian are the incomplete factorization methods, such as modified incomplete Cholesky

(MICCG). What makes these preconditioners so powerful is that they lower the complex-

ity of the condition number of the system to be solved. In fact, the serial implementation
of the MICCG method is known to solve (3.11) for fixed e in O (n¼) iterations.

Unfortunately, this complexity improvement is not necessarily achievable with a par-
allel preconditioned CG algorithm. If sufficient processors are available such that each
iteration of CG takes constant time, then the computational complexity for CG on a

parallel machine is the number of iterations required, i.e., O(\/rF), and the communica-

tion lower bound is the maximum network distance that information must travel so that

each processor can compute its solution. For the discretized Laplacian, this distance is

the maximum network distance between any two processors, since each processor must

at some point get information from every other processor to compute the solution [13].
This implies that the communication lower bound for CG is Q(v) on a two-dimensional
network or Q(logn) on a hypercube network. Now, for preconditioned CG, the compu-
tational complexity may be less than the O(/i) for plain CG (e.g., 0(n¼) for MICCG).

However, the communication lower bound is the same, i.e., Q(/ ) .

The conclusion is that a preconditioner which only uses a two-dimensional network
communication pattern, as is the case with incomplete factorization methods, cannot

reduce the complexity of the parallel CG algorithm applied to the discretized Laplacian.

However, a preconditioner which uses a hypercube network communication pattern, such

as a hierarchical basis preconditioner, can at least improve the communication lower
bound. These conclusions are borne out in the experiments reported in [12]. Whether
those preconditioners which improve the communication lower bound will also provably
lower the computational complexity is an open question.

3.4.4 Grid Boundaries

To this point, what happens on the boundaries of the grid has been glossed over. Since
the subcircuits represent physical circuitry, the boundary subcircuits will differ from the
subcircuits internal to the grid (as in the grid of nonlinear resistors shown in Figure 3-4).

To handle the boundary subcircuits properly, the grid subcircuits are subdivided into
smaller sub-subcircuits, some of which can be omitted from the boundary subcircuits in
order to produce correct circuit behavior. Since all processors contain identical data, the
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boundary processors do, in effect, still have all the sub-subcircuits. However, by turning

off the appropriate boundary processors whenever data corresponding to an omitted

sub-subcircuit is manipulated, the correct circuit behavior at the grid boundaries can

be produced. For reasons of clarity, further discussion of this operation is omitted; it is

performed in a straightforward manner for all the algorithms to be presented.

3.5 Experimental Results

In this section, experimental results are presented that compare serial and parallel execu-

tion times for several types of grid-based analog signal processors. To make the results as

meaningful as possible, the fastest serial algorithm is compared with the fastest parallel

algorithm. The programs used to test the serial and parallel programs both use MIT's

SIMLAB program [15, 16] as a base - in other words, to a large extent the serial and

parallel programs are the same program. This is done to guarantee that the code is as

similar as possible for the two programs.

The parallel algorithms were executed on the Connection Machine model CM-2-

a single-instruction multiple data (SIMD) parallel computer which, in its largest con-

figuration, contains 65,536 bit-serial processors and 2048 Weitek floating-point units

(FPU's) [17]. The bit-serial processors are clustered together into groups of 16 within

a single integrated circuit, and these IC's are connected together in a 12-dimensional

hypercube. Two IC's, or 32 processors, share a single Weitek FPU. Note that a fully

configured CM-2 contains 2048 times as much floating point hardware as a conventional

computer containing a single Weitek FPU (e.g., a SUN-4).

The Connection Machine allows the user to map problems which are larger than the

actual number of physical processors through a software emulation process which creates

virtual processors. All CM experiments reported here used a virtual processor ratio of

one, i.e., the problems were the same size as or smaller than the actual number of physical

processors on the CM.

The serial experiments were run using the VSIM (Vision SIMulation) program. The

VSIM program is essentially SIMLAB with idealized nonlinear elements and image I/O sup-

port added. The parallel experiments were run using the CMVSIM (Connection Machine

Vision SIMulation) program [18, 19]. Implementation of the CMVSIM program required

major enhancement to SIMLAB to support the parallel algorithms. The parallel portions

of the code were written in C* Version 6.0, a CM superset of C [20, 21]. In those cases

where the parallel code was to be a parallel version of code already existing in serial form

in SIMLAB, care was taken to make it as much like the serial code as possible.
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The serial experiments were run on a SUN-4/490 workstation, and the CM results

were obtained on a 16K CM-2 with double-precision floating point hardware, using a

SUN-4/490 as a front-end. The serial execution times were run on the same machine

which was used as the front-end for the parallel experiments. All computations were

performed in double precision arithmetic.

Example Circuit File

CMVSIM constructs the vision circuit grid by reading a description of the simple cell, which

is partitioned by the user into separate circuit files so that the borders can be handled

properly. Each of the simple cell files contains a complete circuit given in SIMLAB circuit

syntax. The files are denoted by their relationship to the border of the cell, i.e., north,

east, west, or south; the circuitry internal to the cell which does not vary on the borders

of the grid is known as the here circuitry. The files containing the circuitry are given the

extensions . rel. n, . rel. e, . rel. w, . rel. s, and . rel. h (with the obvious associated

directions).

The north, east, west, and south circuit files contain the sub-circuits which connect

cells together. In order to connect cells, the border circuits contain special elements

called connector elements which specify how the terminal elements are connected across

processor boundaries (see Figure 3-7).

Since the simple cell is divided into separate circuit files, CMVSIM must be told which

nodes are common to all files. This is done with a "common" comment in the here

circuit file. The "common" comment has the form:

; common (nodel) [(node2) ... ]

Normally, the common nodes correspond to those nodes to which terminals from neigh-

boring subcircuits are joined. Refer to the "CMVSIM users' guide" [19] for more details

on using CMVSIM.

The contents of the circuit files to specify a resistive grid are shown in the files

lres.rel.e, res. rel. s, and lres .rel.h.

Linear Resistive Grid

Table 3-2 shows the results obtained while simulating the linear resistive circuit grid

shown in Figure 3-8. The circuit for which the results are shown had a 1K resistance

between neighboring nodes, a 33.33K resistance to ground, and a parasitic capacitance

I
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Figure 3-7: Example separation of a subcircuit into sub-subcircuits. This subcircuit is
divided into three separate SIMLAB circuits: east, south, and here. The east and south
circuits contain grid connectors which specify how the terminal elements are connected
across processor boundaries.

of 1 x 10-15F at each node. A random image was introduced to the network and the

startup transient of the first 1 x 10- 5 seconds was simulated.

For the 128x 128 grid - which is the largest that will fit directly on the 1/4 size

CM-2 - the CM achieved a speedup of about a factor of 50. If the serial and parallel

results are extrapolated to a 256 x 256 grid - which is the largest that will fit directly

on a full size CM-2 - the CM should be able to achieve a speedup of over a factor of

200.

Serial CM
Size Direct CG ILCG CG

16 x 16 9.95 5.6 4.55 10.30
32x32 107.15 30.0 25.57 10.46
64 x 64 1322.28 126.25 113.22 9.26
128x128 (1.63x10 4) (531) (501) 9.54
256 x256 (2.01 X 105 ) (2236) (2220) (10)

Table 3-2: Experimental result: Linear circuit grid.
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Figure 3-8: Linear resistive grid.

lres.rel.e

global 0

rl here east r r=lk

cO east here connector

lres.rel.s

global 0

rl here south r r=lk

cO south here connector

ires .rel.h

global 0

; common here

rl here 1 r r=lk
vl 1 0 dc v=2

cmvsim options cmin = 1.e-6
plot here
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Serial CM
Size Direct CG ILCG CG

16 x 16 183.13 176.03 126.15 227.88
32 x 32 4027.23 1802.10 1445.75 487.16
64 x 64 (8.86 x 104) 14287.90 10377.90 896.01
128 x 128 (1.95 x 106) (1.13 x 105) (7.45 x 104) 1445.12
256 x 256 (4.28 x 107) (8.99 x 105) (5.35 x 105) (2330)

Table 3-3: Experimental result: Nonlinear circuit grid.

Nonlinear Resistive Grid

Table 3-3 shows the results obtained while simulating the nonlinear resistive circuit grid

shown in Figure 3-1. The nonlinear resistance has the following characteristic equation:

i(v) = a1 + e-~(~-~2) (3.12)

The circuit for which the results are shown had a resistance of 10k to ground, a parasitic

capacitance of 1 x 10- 7 and parameter values for the nonlinear resistance of a = 1 x 10-3,
7 = 2 x 10- 5 with being swept from 0 to 1 x 105 over the simulation interval. A random
image was introduced to the network, the DC solution was found with /3 = 0 (i.e., so that
the network was linear), and then a transient simulation of one second was performed,

during which /3 was increased from 0 to 1 x 105. The reasons for this type of simulation

are explained in detail in [22].

For the 128 x 128 grid, the CM achieved a speedup of about a factor of 50. If the
serial and parallel results are extrapolated to a 256 x 256 grid, the CM should be able to

achieve a speedup of over a factor of 200.

Mead's Silicon Retina

Tables 3-4 and 3-5 show the results obtained while simulating Mead's Silicon Retina
as described in [1] and shown in Figure 3-9. Table 3-4 shows results obtained when

presenting the circuit with a constant image while Table 3-5 shows the results obtained
when presenting the circuit with a random input image. The simulations used the same

SPICE MOS level 3 devices in both the serial and parallel versions.
The Silicon Retina example contains a significant amount of circuitry in each cell and

the block diagonal preconditioner is quite effective in reducing the CPU time required
to compute the solution. For the examples with the constant input image, the block
diagonal preconditioner reduced the CPU time by approximately a factor of two over
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Figure 3-9: Mead's Silicon Retina. The simulated chip contains 23 MOS level 3 devices
per cell for a total of 376,320 devices and 261,888 nodes in a 128 x 128 grid.

Serial CM
Size Direct CGS ILCGS CGS PCGS

16 x 16 516.15 1911.72 605.22 840.34 436.225
32 x 32 3353.68 8241.03 2532.37 936.89 454.67
64 x64 (21790) (35525) (10596) 1020.88 461.42
128x 128 (141583) (153142) (44336) 1048.25 463.89
256 x 256 (919959) (660172) (185510) (1076) (466)

Table 3-4: Experimental result: Mead's Silicon Retina with constant input image.

plain CGS for all grid sizes. For the examples with the random input image, the block

diagonal preconditioner reduced the CPU time by up to a factor of four over plain CGS.

For the 128 x 128 grid, the CM achieved a speedup of about a factor of 95 for the circuit

with the constant input image and a speedup of over a factor of 144 for the circuit with

the random input image. If the serial and parallel results are extrapolated to a 256 x 256

grid, the CM should be able to achieve a speedup of about a factor of 400 for the circuit

with the constant input image and a speedup of over a factor of 650 for the circuit with

the random input image. If one assumes that the Sun4/490 workstation on which the

serial results were obtained can attain about 2 MFlops floating point performance then

the factor of 650 speedup represents over a gigaflop for the full-sized CM-2.
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Serial CM
Size Direct CGS ILCGS CGS PCGS

16 x 16 1239.50 4405.77 1244.75 1845.34 894.42
32x32 10713.1 25740.9 7343.03 2414.55 1221.14
64 x 64 (9.2 x 104 ) (1.5 x 105) (4.3x104) 4787.49 1303.49
128 x 128 (8.0 x 105 ) (8.8 x 105) (2.5 x 105 ) 6661.22 1730.36
256 x 256 (6.9x10 6) (5.1x106) (1.5 x 106 ) (9268) (2297)

Table 3-5: Experimental result: Mead's Silicon Retina with random input image.

Figure 3-10: 256 x 256 image of the San Francisco sky line.

Processing Images

One of the most significant features of CMVSIM is that the program can be used to inves-

tigate how particular vision circuits process images. To demonstrate this use of CMVSIM,

the results of two experiments are presented where the same network is subjected to two

different types of continuations, resulting in drastically different output images (see [22]

for detailed treatment of the continuations). The network used is shown in Figure 3-1
and uses the nonlinear element described by (3.12); let the linear conductance to ground

be called Af. Figure 3-10 shows a 256 x 256 image- a portion of the San Francisco sky

line- used as the input image.

Figure 3-11 shows the output produced by the idealized nonlinear network with a

46



3.5. EXPERIMENTAL RESULTS

continuation performed on the value of P3. The fixed parameter values were a = 1 x 10- 3 ,

7 = 1 x 10-5, Af = 3 x 10-5; the value of was linearly varied as a function of time from

/ = 0 to /3 = 1 x 106. Figure 3-11(a) shows the output of the network at the beginning

of the continuation when /3 = 0; Figure 3-11(b) shows the output of the network at an

intermediate point of the continuation when /3 = 2x104 ; Figure 3-11(c) shows the output

of the network at the end of the continuation when P = 1 x 106.

Figure 3-12 shows the output produced by the idealized nonlinear network with a

continuation performed on the value of A . The fixed parameter values were ca = x10-3 ,

7 = 1 x 10 - 5, and = 1 x 106; the value of the Af was linearly varied as a function of

time from Af = 1 to Af = 3 x 10-5 . Figure 3-12(a) shows the output of the network at

the beginning of the continuation when )Af = 1; Figure 3-12(b) shows the output of the

network at an intermediate point of the continuation when Af = 1 x 10-3; Figure 3-12(c)

shows the output of the network at the end of the continuation when Af = 3x10- 5 . Note

that the final parameter values of this network are identical to those for the network of

Figure 3-11.

Discussion

The 128 x 128 example of Mead's Silicon Retina contains well over 300,000 MOS level 3

devices, but the examples with constant and random input images were simulated in

eight minutes and 29 minutes, respectively.

It is interesting to note that the improvement provided by CMVSIM over VSIM was

quite a bit higher for the Silicon Retina examples than for the linear and nonlinear re-

sistive grid examples. One reason for this is that the Silicon Retina examples provide a

much higher computation to communication ratio than the linear and nonlinear resistive

grids. The linear and nonlinear grids each have three simple devices, one internal node,

and two connecting nodes per subcircuit, whereas the Silicon Retina has 23 MOS level 3

devices, 16 internal nodes, and four connecting nodes per subcircuit. Moreover, simula-

tion of the Silicon Retina with the block diagonal preconditioner also involves a parallel

linear system solution step. Maintaining a large computation to communication ratio is

especially important when using the Connection Machine since the CM has notoriously

slow communication functions.

At present, CMVSIM only supports Manhattan-style circuit grids. However, enhance-

ments to allow other regular grid geometries, such as hexagonal grids, have been antici-

pated and should be able to be incorporated in a straightforward manner. CMVSIM could

also be enhanced to allow the simulation of circuits which are "mostly regular," such as

I
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Figure 3-11(a): Output image produced
by -continuation network. Here, the
parameter values are ca = 1 x 10- 3 , =
1 x10- 5, A = 3x10-5 , and S = 0.

Figure 3-11(b): Output image produced
by $-continuation network. Here, the
parameter values are a = 1 x 10 - 3, 7 =

lx0l - 5, Af = 3x10 - 5, and = 2x104 .

Figure 3-11(c): Output image produced
by -continuation network. Here, the
parameter values are a = 1 x 10 -3 , y =
1 x10-5, Af = 3x10-5 , and = 1x106.
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Figure 3-12(a): Output image produced
by Af-continuation network. Here, the
parameter values are a = 1 x 10 - 3 , -y =
lxlo-5 , = 1x10 6, and Af = 1.

Figure 3-12(b): Output image produced
by A-continuation network. Here, the
parameter values are = 1 x 10 - 3 , =

x 10-5 , = 1 x 106 , and Af = 1 10- 3 .

Figure 3-12(c): Output image produced
by Af-continuation network. Here, the
parameter values are a = 1 x 10 - 3 , y =

x10-5, 3 = lx106, and Af = 3x10-5 .
Note that the final parameter values of
this network are identical to those for
the network of Figure 3-11, but that the
output image is much closer to the input
image shown in Figure 3-10.
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memory chips. To do this, CMVSIM would operate in a hybrid mode in which the regular

portions of the circuit would be simulated on the CM and the non-regular portions would

be simulated on the front-end.

3.6 Conclusion

Although the irregular structure of the general circuit simulation problem seems to pre-

clude the use of massively parallel machines, such as the Connection Machine, for circuit

simulation, there are nevertheless certain interesting (and increasingly important) classes

of circuits which do benefit from these architectures. In this chapter, one such class of

circuits, namely robotic vision chips, was examined.

In developing algorithms for these circuits, the fact that the circuits have a regular

structure which maps nicely to a massively parallel architecture was exploited. Moreover,

the coupling between cells in these arrays is such that block iterative methods could be

used to solve the equations generated by an implicit time-discretization scheme.

The experimental results were very encouraging. It was possible to simulate a 128 x 128

example of Mead's Silicon Retina, a circuit having over 300,000 SPICE level 3 MOS de-
vices, in about half an hour. The same circuit simulated with the best serial algorithm

running on a Sun4/490 would take an estimated three days- assuming the workstation

had enough memory to accommodate the problem at all. The simulation capability pro-

vided by CMVSIM should allow simulation to be an important part of the design cycle of

real robotic vision chips for the first time.
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4

Conjugate Direction Waveform
Methods with Application to

Semiconductor Device Transient
Simulation

4.1 Introduction

The enormous computational expense and the growing importance of mixed circuit/device

simulation, as well as the increasing availability of parallel computers, suggest that spe-

cialized, easily parallelized, algorithms be developed for transient simulation of MOS

devices [1]. Recently, the easily parallelized waveform relaxation (WR) algorithm was

shown to be a computationally efficient approach to device transient simulation [2]. How-

ever, the WR algorithm typically requires hundreds of iterations to achieve an accurate

solution, which suggests that significant performance gains can still be realized by the

application of methods for accelerating the convergence of the WR algorithm.

For linear algebra problems, conjugate-direction algorithms have enjoyed success as

techniques for accelerating classical relaxation methods. Since the WR algorithm can in

some sense be considered a function-space generalization of a linear algebra relaxation

method, it seems only natural that conjugate-direction methods can be similarly gen-

eralized. Such a generalization can be rigorously analyzed with respect to asymptotic

behavior by formulating the conjugate-direction method as a Galerkin method.

Beginning in the next section, a Galerkin method will be developed for solving an

operator equation formulation of the linear time-varying initial-value problem. It is then

shown that certain conjugate-direction methods iteratively generate the Galerkin approx-
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imations. The resulting methods are then combined with an operator Newton method

in a hybrid scheme for solving the nonlinear initial-value problem. The semiconductor

device transient simulation problem is described in Section 4.3. In Section 4.5, experi-

mental results are presented which demonstrate that the conjugate-direction acceleration

significantly reduces the computation time for device transient simulation.

4.2 Description of the Method

Consider the problem of numerically solving the linear time-varying initial value problem

(IVP),

(d + A(t))z(t) = b(t) (4.1)

x(O) = Xo,

where A(t) E RNXN, b(t) E RN is a given right-hand side, and X(t) E RN is the un-

known vector to be computed over the simulation interval t E [0, T]. There are several

approaches to solving the IVP. The traditional numerical approach is to begin by dis-

cretizing (4.1) in time with an implicit integration rule (since large dynamical systems

are typically stiff) and then solving the resulting matrix problem at each time step. This

approach can be disadvantageous for a parallel implementation, especially for MIMD

parallel computers having a high communication latency, since the processors will have

to synchronize repeatedly for each timestep.

A more effective approach to solving the IVP with a parallel computer is to decom-

pose the problem at the ODE level. That is, the large system is decomposed into smaller

subsystems, each of which is assigned to a single processor. The IVP is solved iteratively

by solving the smaller IVP's for each subsystem, using fixed values from previous itera-

tions for the variables from other subsystems. This dynamic iteration process is known

as waveform relaxation (WR) or sometimes as the Picard-Lindel1f iteration [3].

In this section, conjugate-direction methods are considered for accelerating the clas-

sical dynamic iteration methods. The approach is to first convert the IVP to a system of

second-kind Volterra integral equations by using a "dynamic preconditioner." Next, it is

shown that the classical dynamic iteration methods are obtained by applying the Richard-

son iteration to the integral equation system. Finally, conjugate-direction methods are

developed for accelerating the classical dynamic iteration methods. This development is

approached by considering conjugate-direction methods as Galerkin methods.
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4.2.1 Operator Equation Formulation

Let A(t) = M(t)- N(t) and consider the system of second kind Volterra integral
equations given by

x(t)- M(t, 0)x()-j Pm(t,s)N(s)x(s)ds = j m(t,s)b(s)ds, (4.2)

where AM is the state transition matrix [4] for the equation

dX (t) = M(t)X(t).

It is assumed throughout that A, M, and N ae such that (4.1) and (4.2) each have

a unique solution. A sufficient condition for this assumption is that A, M, and N be

piecewise continuous; a weaker sufficient condition is that A, M, and N be measurable.

Note that the solution x to (4.2) also satisfies (4.1). In some sense, (4.2) is obtained

from (4.1) by the application of a "dynamic preconditioner" to both sides of (4.1). More

precisely, this preconditioner, denoted M - 1, is defined by:

(M-l2x)(t) = jl M(t, s)(s)ds.

Informally, one can think of M'1 as being ( + M(t))-'.

Equation (4.2) can be expressed as an operator equation over a space H as

(I - C) = b, (4.3)

where H = L2 ([0, T], RN), I: H - H is the identity operator, C : - H is defined by

at
(K)(t) = JKM(t, s)x(s)ds

- o'I M(t, s)N(s)x(s)ds

and 4' E H is given by

iP(t) = M(t, O)x(0) + J m(t, s)b(s)ds.

The following are standard results (see, e.g., [5, 6]) which will be used in subsequent
discussions of (4.3).

Lemma 4.2.1. If M and N are piecewise continuous (or measurable) then AM is

measurable and hence KM E L 2([0, T] x [0, T], RN"N).

Lemma 4.2.2. If KM L2 ([0, T] x [0, T], RNxN), then the operator C has spectral
radius zero.

I
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Lemma 4.2.3. If KM E L 2([0, T] x [0, T], RNv), then the operator K:C is compact.

Lemma 4.2-4.- If KM E L 2([0, T] x [0, T], RNXN), then K:*, the adjoint operator for C,

is given by

(K*X)(t) = f [KM(S, t)]t x(s)ds

= - [~M(s, t)N(t)]t x(s)ds,

where superscript t denotes algebraic transposition.

Remark. It should be apparent from Lemma 4.2.4 that, in general, C is not self-

adjoint. Therefore, attention is restricted to those conjugate-direction methods which

are appropriate for non-self-adjoint operators.

4.2.2 Classical Dynamic Iteration Methods

The classical dynamic iteration is obtained by applying the Richardson iteration to the

"preconditioned" problem (4.3):

zk+1 = Kak + . (4.4)

This approach is known as the method of successive approximations, waveform relaxation,

or the Picard-Lindel6f iteration [3, 6, 7, 8, 9].

Example. Let M(t) = 0. Then AM = I so that (4.2) becomes

x(t)- x(0) + j A(s)x(s)ds = b(s)ds.

The corresponding dynamic iteration is

zk+1(t) = z(O) + (b(s) - A(s)Xk(s)) ds

which is the familiar Picard iteration.

Example. Let M(t) be the diagonal part of A(t). Then (4.4) becomes the Jacobi

WR algorithm where the following IVP is solved at each iteration k for each x+l(t):

(d + aii(t)tx:(o) = bi(t)
joi

si(O) = xos-
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As a direct consequence of Lemma 4.2.2, one has:

Theorem 4.2.5. Under the assumptions of Lemma 4.2.1, the method of successive

approximations, defined in (4.4), converges.

Remark. Theorem 4.2.5 only provides a description of the asymptotic behavior of the

dynamic iteration. In [3], Miekkala and Nevanlinna examine the dynamic iteration on the

infinite interval. In that case, more intuition about the convergence rate of the dynamic

iteration can be obtained, although the extent to which that intuition applies for a given

dynamic iteration on a finite interval depends on the stiffness of the problem.

4.2.3 Accelerating Dynamic Iteration Methods

Another approach to solving (4.3) is to apply a Galerkin method to solving a variational

formulation of the problem. This approach leads directly to the conjugate-direction

methods. Galerkin methods have been well studied for second-kind Fredholm integral

equations [6, 7], of which second-kind Volterra equations are a special case, but infre-

quently studied for second-kind Volterra equations in particular (see, however, [10]).

With the conjugate-direction approach, instead of applying the Galerkin method over a

space of polynomials or splines, as is typical, one applies the Galerkin method over a

Krylov space generated by (I - C). The use of a Galerkin method over a Krylov space

generated by (I -A) is discussed in [11] and [12] where the approach is called the method

of moments (see also [13]).

The Galerkin Method

Let X and Y be Hilbert spaces and consider the operator equation

A4x = b (4.5)

where z e X, b E Y and A: X Y is a bounded injective operator.

Here, a Galerkin method is any scheme where the solution x (4.5) is computed by

solving the problem in a sequence of finite-dimensional subspaces via the use of orthogonal

projections. That is, one takes the subspaces X C X and Y C Y with dim Xn =

dim Yn = n and requires the Galerkin approximation zn to satisfy

(b- 4AXn,y) 0 Vy E y. (4.6)

In general, it is sufficient to satisfy (4.6) over some basis of Yn by defining X =

span{fu, u', ... n1} and Yn = span{v °0 ,v ... Vn-}, so that the solution Xn must

I '
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satisfy

(b-Az' ,v j ) =0 j = 0,1,... n-1. (4.7)

If z ' is taken to be
n-1

~n Ely [uiX? = E a(U
i=O

then (4.7) generates a linear system of equations for {7yi}:

n-1

(A E 1'ivi vi) = (b, vi)
i=O

The crucial question, of course, is whether or not a particular Galerkin method con-

verges. To answer this, the following notion of convergence (which is standard for the

Galerkin method [6, 14]) is used:

Definition 4.2.6. The Galerkin method is said to be convergent for the operator A if

the following hold for every b E Y,

1. The solution x E X to the original equation (4.5) exists and is unique.

2. Either:

(a) There exists an index M such that for every n > M, the Galerkin equation

(4.7) has a unique solution zn.

(b) The approximate solutions an converge, i.e., a? -+ z as n oo.

or

(a) There exist indices M and N such that for every n, M < n < N the Galerkin

equation (4.7) has a unique solution n.

(b) The solution xN = a.

The particular Galerkin method in which Y = X and Yn = Xn is often called the

Bubnov-Galerkin method. If A is positive definite in addition to being bounded and

injective, it is well known that the Bubnov-Galerkin method is convergent for (4.5) [15].

Furthermore, if A is self-adjoint, the Galerkin approximations can be computed itera-

tively with the conjugate-gradient method (appropriately extended from RN to X, of

course) [6].

For the problem under consideration, the operator (I- K) is not self-adjoint, yet one

still seeks a conjugate-direction method appropriate for solving (4.3). Such methods can
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be derived by considering the Galerkin method where Y = A(X) and Yn = A(Xn). That

is, zn is required to satisfy

(b-. Azn, Aui)=0o j= 0,1,...,n-1. (4.8)

Note that this method can also be derived from a variational formulation of the

problem. That is, instead of solving (4.5) directly, the following functional is minimized:

+(Z) = b - AxllI2 ,

where Ix 112 = (x, x). Clearly, if (4.5) has a solution, the x which minimizes will also

satisfy (4.5).

To be a minimizer of +(x) over z E Xn, the projection of the gradient of onto Xn

must be zero, that is,

(Vq(xn),u,) = 0 j = 0,1,...,n-1. (4.9)

An expression for the gradient, V+(x), can be obtained by straightforward calculation

and is given in the following claim.

Claim 4.2.7.

(Vq(x), y) = (b - Ax, Ay)

By observation it can be noted that (4.9) is equivalent to (4.8). This particular method

is also known as the method of least squares [6, 15].

Now the main result can be stated.

Theorem 4.2.8. Let X be a Hilbert space and let A: X - X be a bounded bijective

linear operator. Let X C X be a finite-dimensional subspace with Xn C Xn+ l for all

n e N. If x is in the closure of S = U Xn, then the Galerkin method for (4.5) is

convergent. Moreover, there exists the estimate

IIx- 'n1I < ClIb- Axnl (4.10)

for some constant C depending only on A.

Proof. The conditions for the method to be convergent are verified. Let

Xn = span{ u ,u, ... - }.

Since A is bijective, the solution to (4.5) exists and is unique. Furthermore, there

exists a constant C = IIA-111 such that

(4.11)

I
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Case 1: It is first assumed that dim X n = n for all n e N. If the Galerkin equations

(4.8) are not uniquely solvable for some n, then the homogeneous portion of (4.8) has a
non-trivial solution, i.e., there exists a set of coefficients {7k}, not all zero, such that

n-1

(Z kAuk, Au j ) = 0 j= 0, 1, ... , n-1.
k=0

A linear combination of uJ's is taken to obtain

n-1 n-1

(E jkAuk, Eyj7Au) = 0,
k=O j=0

which contradicts the assumptions that A is injective and dimXn = n. Therefore, (4.8)

is solvable for all n > 1.

If x E clS, then for any e > 0, there exists a y e S such that

IIA(z, - y)1 < -
-C.

Since y E S, there must be an integer N such that E XN. But in that case, one must

also have for n > N

IIA(x- ")[ • IIA(x - y) < --C,
because, from (4.9), N minimizes IIA( - )II for all y E xN and, as X D XN for all

n > N, the minimum does not increase for n > N. Therefore, by (4.11), Ix - xl < 
for n> N. Thus, Xn , x as n oo.

Case 2: Next, assume that dim S = N. Without loss of generality, one can take S =
span{u°,u l ,. .,uN- l} and form X = span{u°, u l ,... , unl}. The Galerkin equations
are then uniquely solvable for n = 1,2,... , N. If x E cl S, can be expressed as

N-1

= E ciU.
i=O

Since b = Ax, (4.8) is equivalent to

N-1

(A( - N) Au j ) = (A E (a - 7i)ui , Au j ) = 0 j = , 1,.., N-1.
i=O

In particular,
N-1 N-1

(A E (a' - ')u', A (' i)i,) = 0,
i=O i=O

implying that ca = 'i i = 0,...,N-1, i.e., that N = .

The estimate (4.10) follows from (4.11):

Ia, - X|I < CIIA(a - n')I = CIIA, - Ax ,11'
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so that

2:- < Clb-Ax'11-

Remark. The case for which dimS = oo but dim X" : n for all n is handled by

redefining the Xn's so that the assumption dim Xn = n holds (see [15, p. 93]).

Corollary 4.2.9. The Galerkin method described in Theorem 4.2.8 is convergent for

(4.3) in the space H, with finite-dimensional subspaces Hn = {1,b,Kp, ... AKn-pb} for all

nEN.

Proof. By the Riesz theory for compact operators, (I - K) is bounded and bijective

since KC is compact. Let S = Uoo =Hi. The recursive definition of H guarantees that

1. If dimS = oo, then dim H n = n for all n E N, in which case the Galerkin equations

are uniquely solvable for all n E N.

2. If dims = N, then dimlEHn = n for all 1 < n < N and dimlH = N for all n > N.

To show that ax E cl S, note that

00

x (I-bZ)-lo= E=Z Ci
j=O

where the Neumann series for (I- A)- converges since the spectral radius of C is

zero. Since the sum CoKjigb is clearly contained in clspan{i/,b,KA2 4,...}, then

x E clspan{u° , ul,.. .}. a

Remark. Corollary 4.2.9 can be applied to the case where A = - AC, provided J

has a bounded inverse and the spectral radius of J-1KC is strictly less than unity. In that

case, J-1 can be applied to the system to obtain

(I- J-l)X = J-la.

Corollary 4.2.9 is then applied since '-lC is compact.

Iterative Algorithms

Various iterative algorithms exist which can be used to implement the Galerkin method

described in Corollary 4.2.9. The foremost of these in the linear algebra setting are

the generalized minimum residual algorithm (GMRES) [16] and the generalized conju-

gate residual algorithm (GCR) [17]. The GMRES and GCR algorithms can be adapted
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quite readily to the space Hl instead of RN and are shown in Algorithm 4.2.1 and Algo-

rithm 4.2.2, respectively. The function-space versions of these algorithms are referred to
as WGMRES and WGCR (waveform GMRES and waveform GCR) to distinguish them

from their linear algebra counterparts.

The two fundamental operations in Algorithm 4.2.1 and Algorithm 4.2.2 are the
operator-function product Ap and the inner product (.,). When solving (4.3) in the
space H, these operations are as follows:

Operator-Function Product: To calculate w-_ (I - )p:

1. Solve the IVP

(d + M(t))y(t) = N(t)p(t)

Y(0) = Po = 

Algorithm 4.2.1 (WGMRES).

Set r ° = b - x°, 1= r°ll, and v = r ° /
For k = 1,2,... until (rk,rk) < e,

hj,k= (Avi, vk), i= 1,2,...,k
bk+l = Avk E4=l hj,kvi

hk+1lk = jk

Vk+l = ik+llhk+lk

Set k = ° + Vky k

Here, yk minimizes libel- fkykll where
Hk is the (k + 1) x k matrix with nonzero entries h,j,
V k= [vl,...,vk], and

el = [1, 0..., O]T

Algorithm 4.2.2 (WGCR).

Set p = ro = b - Ax°

For k = 0,1,... until (rk,rk) < 
(Apkr k )

(Ap.Ap.)
Xk+l = Xk + p k

rk+l = rk _ oApk

pk+l = k+l + Eo pi

where {} are chosen so that
(Apk+l,Ap) = 0 for 0 < j < k
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for y(t), t E [0, T]; this gives y = Kp.

2. Set w=p-y

Inner Product: The inner product (, y) is given by

N T

(* Y) -e xi(t)yi(t)dt.

Remark. Step 1 of the operator-function product is equivalent to one step of the clas-
sical dynamic iteration. Hence, the WGMRES and WGCR algorithms can be regarded

as being accelerations of the classical dynamic iterations.

The conjugate-direction methods are just as amenable to parallel implementation as

the classical dynamic iteration methods. As already discussed, one step of the dynamic

iteration is embedded within the operator-function product. Moreover, the inner product
is accomplished by N separate integrations of the pointwise product xi(t)yi(t), which can
be performed in parallel, followed by a global sum of the results.

Convergence Properties

The convergence result in Corollary 4.2.9 only provides an asymptotic estimate. A
stronger convergence result can be obtained by making suitable assumptions about C;
in particular, it is assumed that K is a contraction.

Definition 4.2.10. An operator A4: - X is said to be a contraction on X iff for all

z6X,

J1>x1 < yJxJ

for some a E [0, 1).
The assumption that K; be a contraction may seem unnecessarily strong; however,

note that under the assumptions of Lemma 4.2.1, K is always a contraction over some
interval [0, T].

Lemma 4.2.11. Under the assumptions of Lemma 4.2.1, there exists an interval [0, T]
such that KC is a contraction on L 2([0, T], RN).

Proof. By assumption, KM(t, s) = 4M(t, s)N(s) is measurable, so that

IIK2 < J K(t,s)dsdt < T 2 CK

where CK = ess.supStE[o,T] K(t, s). But since

II
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T < - can be chosen so that
CK

IIKxI < Y11x11-

0

If C is a contraction, one can formulate the following result for the method of succes-

sive approximations.

Theorem 4.2.12. Let the system of (4.4) be such that K is a contraction, i.e., I[kx <

ylz[I for some E [0,1). Then, the method of successive approximations, defined in

(4.4), converges. Moreover, there exist the estimates

I|x"1 _ ok < Ilxk _ k -l

and

IIrkl < akIrI11I

Proof. Using (4.4),

ilxk+1 _ kII = IiCxk + b _ (Ka- 1 + b)II
= IIK:(ak - Zk-~1)I

Using Ilxk+1 - zkll= Irk1l, the second estimate follows from induction on the first. 0

If C is a contraction, one can formulate similar results for WGCR.

Theorem 4.2.13. Let the system of (4.4) be such that K is a contraction, i.e., IIKx II <

11IlI for some y E [0,1). Then, the waveform generalized conjugate residual algorithm,

Algorithm 4.2.2, converges. Moreover, there exists the estimate

k

IrkII < min Iqk(Ij - K:) IIl 1 [1 (1i-7)2] 173q F (1 + a)J ] 1° 1

Proof. The result can be obtained by following the analogous proof for algebraic

GCR [17, p. 40]. 0

To demonstrate the convergence properties of WGCR, the results of three numerical

experiments are presented. The three examples are of the 2 x 2 system

(4.12)
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Figure 4-1: Convergence comparison between WR and WGCR for the 2 x 2 system (4.12).
In this example, A has eigenvalues {1,10} and Ilril 2 is plotted against iteration number.

In the first experiment, A has eigenvalues {1,10}, in the second A has eigenvalues

{1,100}, and in the third, A has eigenvalues {1, 1000}. The plots shown in Figures 4-1 -

4-3 compare convergence of Jacobi WR (JWR), Seidel WR (SWR), Jacobi-preconditioned

WGCR (JGCR), and Seidel-preconditioned WGCR (SGCR).

4.2.4 Hybrid Methods for Nonlinear Systems

Many interesting applications are not necessarily described by a linear system of ODE's,

but rather by a nonlinear system of ODE's:

dx (t) + F(x(t),t) = 0 (4.13)Tt ~~~~~~~~~~~~~(4.13)
X (0) = 0.

To solve (4.13), Newton's method is applied directly to the nonlinear ODE system (in a

process sometimes referred to as the waveform Newton method (WN) [18]) to obtain the

following iteration:

d + JF(xm)) X2m+l = JF(m)m - F( m ) (4.14)
dt JF(X~~~~~~~n)X~~~n ~(4.14)

xm+l (0) = X0.

Here, JF is the Jacobian of F. Note that (4.14) is a linear time-varying IVP to be solved

for zm+l , which can be accomplished with a waveform conjugate direction method. The

resulting operator Newton/conjugate-direction algorithm is shown in Algorithm 4.2.3;

note that the method is in the class of hybrid Krylov methods [19].

T_
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Itation

Figure 4-2: Convergence comparison between WR and WGCR for the 2 x 2 system (4.12).
In this example, A has eigenvalues {1,100} and I1ril2 is plotted against iteration number.
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Figure 4-3: Convergence comparison between WR and WGCR for the 2 x 2 system (4.12).
In this example, A has eigenvalues {1,1000} and 1r1il 2 is plotted against iteration number.
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4.3. DEVICE TRANSIENT SIMULATION

4.3 Device Transient Simulation

A device is assumed to be governed by the Poisson equation, and the electron and hole

continuity equations:

ckT
-V 2 u + q(p-n + ND-NA) = 0

q

V.Jnq (at+R = 0

V.Jp+ ( + R) = 0

where u is the normalized electrostatic potential, n and p are the electron and hole

concentrations, Jn and Jp are the electron and hole current densities, ND ad NA are

the donor and acceptor concentrations, R is the net generation and recombination rate,

q is the magnitude of electronic charge, and e is the dielectric permittivity [20, 21].

The current densities Jn and Jp are given by the drift-diffusion approximations:

Jn = -qDn (n Vu- Vn)

Jp = -qDp (p Vu + Vp)

where Dn and Dp are the diffusion coefficients, which are assumed here to be related to

the electron and hole mobilities by the Einstein relations, that is D - T#. J and Jp

are typically eliminated from the continuity equations using the drift-diffusion approxi-

mations, leaving a differential-algebraic system of three equations in three unknowns, u,

n, and p.

Given a rectangular mesh that covers a two-dimensional slice of a MOSFET, a com-

mon approach to spatially discretizing the device equations is to use a finite-difference

formula to discretize the Poisson equation, and an exponentially-fit finite-difference for-

mula to discretize the continuity equations (the Scharfetter-Gummel method) [22]. On an

Algorithm 4.2.3 (Nonlinear GMRES/GCR).

Pick z ° ,e° , V < 1
For m = 0,1,... until (rmrm ) < q,

Linearize (4.13) to form (4.14)
Solve (4.14) with Algorithm 4.2.1 or Algorithm 4.2.2 using em

Update m+l and rm+l
Set cEm+l = em .

T
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N-node rectangular mesh, the spatial discretization yields a differential-algebraic system

of 3N equations in 3N unknowns denoted by

f (u(t),n(t),p(t)) = 0 (4.15)

f 2(u(t),n(t),p(t)) = 'fn(t) (4.16)

f 3(u(t),n(t),p(t)) = ap(t) (4.17)

where t E [0, T], and u(t), n(t),p(t) E RN are vectors of normalized potential, electron

concentration, and hole concentration, respectively. Here, f l, f 2, f 3 : R3N -- R N are

specified component-wise as

f 1 i(uinpi,ui) = k _(ui-uj)-qAi (pi-ni + ND-NA)
q i i

f 2 (uini uj,nj) = An Ej[nj B(uj-ui)-niB(ui-uj)] -R.

f 3 i,(ui,p i , u j ,pj) = DP Edj [pj(ui-uj)-piB(uj-u)]R
Ai j i

The sums above are taken over the four nodes adjacent to node i (north, south, east,

and west), Lij is the distance from node i to node j, dij is the length of the side of

the Voronoi box that encloses node i and bisects the edge between nodes i and j, and

B(v) = v/(ev - 1) is the Bernoulli function, used to exponentially fit potential variation

to electron concentration variation.

On the order of a thousand mesh nodes are typically needed to accurately represent

a 2-D slice of a MOS transistor, so that simulating a circuit where even a few transistors

are treated by numerically solving the device equations leads to an enormous coupled

system of algebraic and differential equations.

The standard approach used to solve the differential-algebraic system generated by

spatial discretization of the device equations is to discretize the d/dt terms with a low-

order implicit integration method such as the second-order backward difference formula.

The result is a sequence of nonlinear algebraic systems in 3N unknowns, each of which

can be solved with some variant of Newton's method and/or relaxation [23]. Another

approach is to apply relaxation directly to the differential-algebraic equation system with

a WR algorithm [2, 24], as given in Algorithm 4.3.1.

In the present approach, the hybrid Krylov method described in Section 4.2.4 is

applied to (4.15)-(4.17) to obtain the following IVP at each Newton iteration m:

0 Jf1 1 Jf. Jf 1 Um+l1

dnm+l + Jf2 , Jf22 Jf23 n m+l
d pm+l m+
d m+1 Jf JI32 J 1 P

;iiP I~~~~~~~~. 

68



4.4. IMPLEMENTATION

U +l (0)
rn+l (0)

pm+l (0)

J/~,

Jf 21

Jf3

= no

Po

Jf12

Jf 22

Jf 32

Jf13

Jf2 3

Jf 33 I pm[m] [

4.4 Implementation

The nonlinear WGMRES and WGCR algorithms described in Section 4.2 were imple-

mented in Mark Reichelt's WORDS program, a WR-based device transient simulation

program. In addition, a waveform-relaxation-Newton algorithm (WRN) and a waveform
conjugate-gradient-squared algorithm (WCGS) were implemented [9, 25]. As previously
mentioned, the operator-waveform product has embedded within it one step of tradi-

tional waveform relaxation. Therefore, the operator-waveform product routine need only

make a function call to the WR routine already implemented within WORDS- the

preconditioning scheme inherent to the WR routine will automatically be used by the

conjugate-direction method as well. In this section, the main WR routine already con-

tained within WORDS is described [2] and the modifications made to that routine to

support the conjugate direction methods are developed.

4.4.1 Main WR Routine

As reported in [2], the node-by-node Gauss-Jacobi WR algorithm as given in Algo-
rithm 4.3.1 will typically require many hundreds (or even thousands) of iterations to
converge, severely limiting the efficiency of WR-based device simulation. Moreover, as-

Algorithm 4.3.1 (WR for Device Simulation).

guess u,n°,p° waveforms at all nodes

for k = 0,1,... until converged
for each node i

solve for u, n 1,p ? 1 waveforms:

f/i (, ,,p, .0) = o

s ( P,~ -, JI) - dt 
f 3 (ui~'ph U = d -pI

I

r-
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signing each node to a separate processor in a parallel implementation would require on

the order of a thousand processors or more (the number of nodes necessary for accurate

device simulation). Since the WR algorithm is more suited to a coarse-grained MIMD

type of architecture, such a fine-grained division of the problem is not necessary or de-

sirable. Instead of the node-by-node approach, WORDS collects groups of mesh nodes

into blocks and solves the nodes in each block simultaneously. The block WR algorithm

is similar to node-by-node WR, except that the system of equations for each node i in

Algorithm 4.3.1 is replaced by a larger system of equations representing the systems of

equations for all the nodes contained in block I. In each WR iteration, the solution

Xk(t) = [Xl(t),...,xN (t)]t is computed by solving the equation system for zI(t), the

vector of u, n, and p waveforms of the nodes in block I, while holding the waveforms of

neighboring mesh nodes in adjacent blocks fixed. This approach of blocking for WR is

typical in WR-based circuit simulators [9].

Using blocks of nodes typically produces faster WR convergence; however, the compu-

tational expense of directly solving the system of equations for blocks of nodes is higher

than that for solving the smaller system of equations for a single node. Furthermore, the

same timepoints are used for all nodes within a block, so that a block algorithm cannot

take advantage of multirate behavior within a block. The challenge is to find a blocking

which covers the device mesh in relatively few easy-to-solve blocks and groups tightly-

coupled nodes together, but that does not group nodes together which are expected to

change at different rates.

The blocking scheme used by WORDS is to group together the nodes according to

the vertical lines of the discretization mesh - this has been shown to be a particularly

effective blocking strategy for MOSFET simulation [2] for the following reasons:

1. The vertical lines cross the oxide-silicon interface, a traditional source of numerical

difficulty with a Neumann reflecting boundary condition on the electron and hole

current equations.

2. Since each vertical line is essentially a one-dimensional device simulation problem

the resulting block-based problems produce block-tridiagonal matrices which are

easily solved.

3. Each vertical line in the channel of a MOSFET has both ends pinned by the gate

and substrate contacts, so that the line's solution correctly accounts for these con-

tacts and directly captures the nonlinear electric field dependence governing surface

depletion and channel width from the very first WR iteration.
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4. The vertical line blocking allows the WR algorithm to take advantage of the mul-

tirate behavior resulting from the horizontal distance between the contacts. For

example, if the drain voltage of a MOSFET is increased while the source is held

steady, more timepoints are needed to accurately resolve the widening of the drain

depletion region than are needed to resolve the source end of the device.

The main WR routine in the WORDS program uses a red/black block Gauss-Seidel

scheme, with vertical mesh-line blocks. In the main WR routine, the equations governing

nodes in each block are solved simultaneously using the second-order backward-difference

formula. The implicit algebraic systems generated by the backward-difference formula

are solved with Newton's method and the linear equation systems generated by Newton's

method are solved with sparse Gaussian elimination.

4.4.2 Operator Waveform Product

Although the operator waveform product has one step of traditional WR embedded

within it, the main WR routine within WORDS is nonlinear WR, so some small mod-

ifications are necessary to compute the linearized WR step as required by the operator

waveform product.

For reasons of clarity, the methods for computing the linearized operator-waveform

product are developed by considering the nonlinear IVP (4.13):

d0,(t) = F(x(t),t)
(O) = Xo

instead of the device simulation equations. The waveform Newton algorithm (4.14) ap-

plied to solving the nonlinear IVP can be written as:

d3 m+1 + JF(m)Xm+ = JF(X) -

Xm+ (O) = X0

From (4.2), the preconditioned linear IVP is given by

Xm+(t) - PM(t, O)XM+ (0) - jM(t, s)N(s)xm+l (s)ds =

f @M(t, s) (JF(Xm (s), ) S) - F( m(s), s)) d,

or, in operator equation form, as

(I- ) m+ l = P.

I
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Equivalently, the result of the operation Cz can be expressed as being the vector i which

satisfies the IVP
(d + M(x(t),t)) (t) = N(x(t),t)x(t)Ot ~~~~~~~~~~~~~~~(4.18)

· (0) = o

(recall that JF(z(t), t) = M(x(t), t) - N(x(t), t) ).

In the following discussion, three different approaches are examined for calculating the

operator-waveform product product (I - ) x, or more specifically for calculating kzx.

The methods require increasing levels of modification to the main WR routine within

WORDS.

Matrix-Free Approach (Level One)

The simplest means of obtaining an approximation to the linearized operator waveform

product is to use a matrix-free approach. In this approach, KC is approximated by

1p - ( + p) - ()

where W (z) is taken to mean one iteration of the WR routine within WORDS, using z

as the input.

The matrix-free approximation turns out to not be a very good approximation in

practice. This is due to more than the effects of the perturbation due to p. To see why,

consider a 2 x 2 example:
dXdxl + fA(xl, x 2) = 0 (4.19)

dt 2 + f2(XI, X2) = 0

Let xl and x2 be the output of one iteration of the Gauss-Seidel WR routine applied to

solving (4.19). Then = [l 2]t satisfies

dtIa + fI (xl x 2) =0 (4.20)
dtX2 + fL(i, 2) = 0

Let y be the output of one iteration of the Gauss-Seidel WR routine applied to solving

(4.19) with y as the input. Then

d~
dl + f(1Yl,Y2) = 0 (4.21)

dt2 + f2(1, 2) = 0

Define p = y- and p = - I. From (4.20) and (4.21), P satisfies (to first approxi-

mation):
dj + ah(l.2)P + f'(il,c2)- = 0

Tt axI 9XP2 +,p(4.22)
TP2 + (0~~+ 82 = 0

72



4.4. IMPLEMENTATION

However, for p to be the result of the operator-waveform product within the conjugate-

direction method, it should satisfy:

d f(x,, ) of ((, ,2)_ =o
di + , '+ a '=0d ______ __+___9X)l+ 2 P2 = ° (4.23)
dtP +f2(X1X2)fi1 + af 2 (xiX 2 )h =T oP, +s&(1,,x)fP = 0

Comparison of (4.22) with (4.23) shows that the evaluation point of the Jacobian is

incorrect with the matrix-free approach.

The 2 x 2 example is easily generalized to N dimensions:

:p = W ( + p) - W () + O(IIW () - X11)

This inaccuracy is present with any nontrivial decomposition of the problem (e.g., Gauss-

Jacobi will have this same inaccuracy). This inaccuracy is a function of 11-xII and hence

cannot be made smaller by scaling p as is typically done with matrix-free methods [19].

Relaxation Newton Approach (Level Two)

An improvement to the matrix-free approach is to instead use one step of a relaxation-

Newton method. This approach attempts to correct the problems in the level one method

regarding the evaluation points of the Jacobian. This approach is still approximate,

although experiments comparing the performance of the level two method with the level

one method indicate that the level two approach provides a much better approximation.

Consider one step of the Jacobi-Newton waveform method, in which the IVP

(d + D(x)) x = D(x)x -F(x) (4.24)
d(0) = z0

is solved for x. Define the operator X according to (4.24), i.e., = Xx. Let = (x)y
be the result of the following iteration applied to y:

(d + D()) = D(x)y - F(y) (4.25)dt ~~~~~~~~~~~~~~(4.25)
,(0) = o

Note that D is still evaluated at x. Define p = y - and p = - . From (4.24) and

(4.25), it is required that pi satisfy

(d + D(x)) P = D(a)p - JF(z)p + O(pIIII2)
p(0) = PO

or in operator equation formulation:

p = Cp = 7(x)y- 7-x + O(llpll2)
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for y = ax +p.

In general, the operator 7' is defined by

(Hz) (t) = M(t, O)x(O) + M(t, s) (M(x(s), s)z(s)- F(z(s), s)) ds

or, equivalently, that x = 7'x satisfies

d + M(x)) = M(x)x- F(x)

i(o) = 

The Jacobi-Newton iteration as described in (4.24) for M = D, computes 7-ax ex-

actly, and then the operator-waveform product is approximately computed according to

7/(x)y- 7'x. Now, for the case M ~ D, a second approximation is introduced, i.e., the

relaxation Newton for M D only approximately computes 7-H(z).

Consider, as an example, taking one step of the Seidel-Newton waveform method for
solving the nonlinear IVP. If the procedure is examined component-wise, the following
sequence of scalar IVP's needs to be solved, where the dependence on t is omitted for

clarity:

Tt(F( -) a (x - X ) = -dxi - F(2)
8F2 x) dt

Tt - o( X2) + _ -X2) = -d~ - F2 (lX2...d~~~ (.~2- x) = x ~(,..89X2 d

The equation for 2 can be approximated by expanding F 2(x,x 2 ,...) in a Taylor series

about :

(2- X2) + a (
2 -X 2 ) = -dX2-F2(l x2 . . .

= d 2 (z) _F2( ) xl)2)
= - - F(2:) Ox, - x) + o(( - )

so that

d ~OF2(a,) _F_(_)t( - 2) + a ( - ) + a ( - 2 ) -d X- F2(x)

The Seidel-Newton waveform method can therefore be expressed compactly as approxi-

mately solving the system of equations:

d + (L(X) + D(x)) = (L(x) + D(x)) - F(x)

In this case, the approximation depends on HS:- Xl12. In operator equation formulation,

the Seidel-Newton waveform method calculates

X= x + O(11X - 1ll2)
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The WORDS program computes - by incorporating the following small modifica-

tions to the main WR routine:

1. Use zm(t + h) as the initial guess for xm+l(t + h) within the Newton iteration in the
numerical integration routine, instead of using an extrapolation based on values of
X'm+1 at previous time points.

2. Perform only one Newton iteration at each timestep of the integration method.

In order to calculate 7'l(x)y, there is the additional requirement of linearizing M about
z instead of y. Since approximations are already involved in the level two operator

waveform product, one additional approximation is made where (z + p) is used in

place of 7t(x)(x + p), introducing an error of O(IIpII). Then, is calculated according
to:

p = (X + p) - Hx + O(IIixz - xlI2) + O(I[plI) + O(IIpII 2).

Full Linearization Approach (Level Three)

The third, and most accurate approach, is to actually use the fully-linearized Jacobian.
To implement this, the main WR routine in WORDS was augmented in the following
manner:

1. Compute the full matrix JF(X)- this requires additional data-structures as well
as additional computation since the normal WORDS WR routine only requires the

diagonal blocks of JF(X).

2. Perform a matrix-vector product JF(X)p in place of the function evaluation for F
the result of the matrix-vector product is used as the right-hand side for the

integration routine.

3. Perform only one Newton iteration at each timestep of the integration method
(since the problem is linear).

This approach gives the exact operator-waveform product for the conjugate-direction
methods, with the slight drawback of some extra function evaluations. Preliminary ex-
periments showed that this extra work was more than offset by improved performance;
thus the level three operator-waveform product was used for all experimental results
reported in Section 4.5.
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4.4.3 Inner Product

The inner product (x, y) on the space H is given by

N T
( = ]0 xj(t)y(t)dt

A simple quadrature method (i.e., the trapezoidal rule) was used to perform the numerical

integration.

4.4.4 Initial Residual

The initial residual is calculated in WORDS with the main WR routine as well. In-

terestingly, the initial residual can be approximately calculated by taking one step of a

relaxation-Newton waveform method (in the present case, the Seidel-Newton waveform

method).

Again consider computing the linearized operator-waveform product for a conjugate-

direction method applied to the nonlinear IVP. The initial residual for the preconditioned

linear IVP is simply b - (I - K) xm+ l' °,O, or

rm+,0 = M(t, 0)XM+l'o(0) + j' M(t, s) (JF(Xm (S), s)x m () - F(xm (s), s)) ds

+ f '4M (t, s)N(xm(s), s)xm+l (s)ds - xm+(t)

= PM(t, O)z0o + J M(t s) (M(x m (s), s)x m (s) - F(x m (s), s)) ds-x m+l(t)

Here, it is assumed that xm+' ° = X m.

Consider one step of the Jacobi-Newton waveform method, in which the IVP

(d + D(x(t),t)) = D(x(t),t)ax - F(x(t),t)

.i(o) = o

is solved for x. In other words,

(t) = PD(t, O)io + j !D(t, S) (D(zx(s), s)(s)- F(x(s), s)) ds

which can be expressed in operator equation form as

X = HDX

Now, it should be easy to see that

rm+l, (I- CD) Xm+lO

= b + CDx m+ l' O - xm+l,O

='D X m - m
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where 'D and CD are defined by substituting D for M in the definitions of h and AC.
Here, it has been attempted to calculate ta in the same way as for the level two

operator-waveform product. That is, for M #: D, one step of relaxation-Newton only
approximately computes the 7-. This is the only approximation involved for the residual
calculation and is much less grievous than, say, the approximations made in the level
one and level two operator-waveform product methods. In any case, WORDS uses the
following relationship for the initial residual:

rm+1,0 = Kxm - m

4.5 Experimental Results

Four N-channel MOSFET examples were used to compare the performance of the relax-
ation and conjugate-direction waveform methods:

kG: 2.2 gm channel-length; 50 psec, 0-5V ramp on the gate with the drain at 5V.

kD: 2.2 gm channel-length; 50 psec, 0-5V ramp on the drain with the gate at 5V.

jG: 0.17 m channel-length; 5 psec, 0-1V ramp on the gate with the drain at 1V.

jD: 0.17 gm channel-length; 5 psec, 0-1V ramp on the drain with the gate at 1V.

The parameters used with the conjugate-direction methods were: e° = 0.1, v = /0-.,
and 5 = 1 x 10- 8. To simplify comparisons, 32 equally-spaced timesteps were used in all
experiments.

Table 4-1 shows the number of function evaluations and the CPU time required for
each of the waveform methods to reduce the max-norm of the drain terminal current error
below 0.01% of the max-norm of the drain terminal current. As Table 4-1 indicates,
conjugate-direction methods significantly reduced the number of function evaluations
and CPU time over WR and WRN. In fact, in the jG example, WCGS is 22 times
faster than ordinary WR. As is common in the algebraic case, WGMRES and WGCR
perform similarly in terms of function evaluations, but WGMRES is computationally
more efficient because it avoids several waveform inner products on each iteration. As
is also common in the algebraic case, WCGS performs very well on most problems, but

can also exhibit convergence difficulty on others.

Note that the speedup in CPU time is not as impressive as the speedup in terms of
function evaluations. This is partly due to the extra work required at each iteration of

the conjugate-direction methods - however, careful profiling and hand optimization of

I
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Example Method FEvals CPU sec
jD WR 8.43 x 106 14469

WRN 3.77 x 106 7088
WGCR 2.21x 105 1138
WGMRES 2.21 x 105 991
WCGS 2.77 x 105 820

jG WR 7.48 x 106 12615
WRN 3.41 x 106 6214
WGCR 1.97 x 105 1011
WGMRES 1.97 x 105 877
WCGS 1.97 x 105 568

kD WR 1.22 x 106 1526
WRN 3.94 x 105 559
WGCR 9.03 x 104 315
WGMRES 9.03 x 10 4 280
WCGS 9.92 x 104 214

kG WR 1.43 x 106 1756
WRN 4.09 x 105 578
WGCR 1.03 x 105 353
WGMRES 1.03 x 105 316
WCGS Non-Convergence

Table 4-1: Comparison of WR, WRN, WGCR, WGMRES, and WCGS. CPU times shown
are for an IBM RS/6000 model 540.
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Figure 4-4: Convergence comparison between WR (dotted), WRN (dashed),
WGCR/WGMRES (solid), and WCGS (dash-dotted) for jD example. The max-norm
of the relative drain terminal current error is plotted against the number of function
evaluations.

Function Evaluations

D0

x10 s

Figure 4-5: Convergence comparison between WR (dotted), WRN (dashed),
WGCR/WGMRES (solid), and WCGS (dash-dotted) for kD example. The max-norm
of the relative drain terminal current error is plotted against the number of function
evaluations.
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the conjugate-direction code will improve the CPU time comparison. The difference is

especially apparent with WGMRES and WGCR, because the amount of extra work per

iteration grows linearly with the number of iterations (the number of linear iterations

per Newton iteration in the nonlinear versions). On the other hand, WCGS maintains

the same amount of work per iteration but can suffer from occasional stability problems.

Recently, Freund and Nachtigal have developed the QMR algorithm which is character-

ized by a minimization property over a Krylov space but which does not have a linearly

increasing amount of work per iteration [26]. A function-space generalization of the QMR

algorithm is a topic which is currently being investigated.

The graphs in Figures 4-4 and 4-5 compare the convergence of WR, WRN, WGCR,

WGMRES, and WCGS for the jD and kD examples, respectively. In the graphs, the

terminal current error versus number of function evaluations is plotted and clearly demon-

strates the rapid convergence of the conjugate-direction methods.

4.6 Conclusion

In this chapter, some new dynamic iterative methods were presented to accelerate the

convergence of the WR algorithm. The methods are based on the application of the

Galerkin method to an operator equation formulation of the linear time-varying initial-

value problem. Experimental results demonstrated that this acceleration significantly

reduces the computation time for device transient simulation.

Future work is primarily focused on developing theoretical results about the con-

vergence of linear and nonlinear conjugate-direction methods for differential-algebraic

systems of equations. Expectations are to be able to provide intuitive convergence rates

as in [3] and [27]. Other open questions remain regarding the behavior of the conjugate

direction methods in the presence of multirate integration methods as well as in the pres-

ence of errors due to numerical quadrature. Finally, the function-space generalization of

the QMR algorithm is under further study.
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5

Conclusions

The observation was made in the introduction that for specific initial value problems,

one can achieve the largest performance gains by using closely matched algorithms and

architectures to exploit characteristic features of the particular problem to be solved.

This claim was well borne out by the results obtained by both the circuit and device

simulation problems.

In developing algorithms for the vision circuits in Chapter 3, the fact was exploited

that the circuits have a regular structure which maps nicely to a massively parallel

architecture. Moreover, the coupling between cells in these arrays is such that block

iterative methods could be used to solve the equations generated by an implicit time-

discretization scheme. The experimental results were very encouraging. A circuit having

over 300,000 SPICE level 3 MOS devices was simulated in about half an hour, compared

to three days using even the best serial algorithm running on a Sun4/490. The simulation

capability provided by CMVSIM should make it a useful tool in the design cycle of real

robotic vision circuits.

In Chapter 4, a new class of waveform methods was developed to accelerate the con-

vergence of the WR algorithm. Although the conjugate direction waveform methods are

more general than the techniques developed for the vision circuits, they were particularly

effective in reducing the computation time for performing device transient simulation. In

the best cases, computation time was reduced by more than an order of magnitude over

the conventional WR algorithm.
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