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ABSTRACT

Remanent magnetization measurements were made on samples
collected from many of the Triassic formations of the Eastern United
States. The Nova Scotia igneous rocks were also included. All of
the igneous rocks and some of the sedimentary rocks were given an
a.c. demagnetization treatment. The results of the igneous rocks
are divided according to the three main areas from which the samples
were collected: the Nova Scotia, Connecticut Valley, and Pennsylvania-
Virginia areas. Except for the Northern Massachusetts sediments,
which appear to have been magnetized after deformation, the results
of the sedimentary rocks are in reasonably good agreement. The axis
of a geocentric dipole field that would account for the remanent
magnetization in the sediments is placed within 5 degrees of
longitude 105 1/2 E and latitude 65 1/2 N, for a 95% probability.
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INTRODUCTION

The continental deposits of Triassic age in Eastern North

America are found from South Carolina to Nova Scotia, and occur in

several discontinuous basins (see Fig. I-l). The basins are

generally elongated northward and in many areas are bordered by

faults. The bedding planes in the deposits generally dip toward the

dominant fault, such as the eastern fault along the Connecticut

Valley basin and the northern fault along the New York-Virginia

basin.

The basins are quite similar in respect to lithology and struc-

ture. The sedimentary rocks found in the Triassic basins include

arkoses, conglomerates, sandstones, and shales, and several of the

southern basins also contain coal seams. Extensive basalt flows are

interbedded with the Triassic sediments in Nova Scotia, the Connecticut

Valley, New York, and New Jersey, and all the larger basins have been

intruded by basic igneous rocks (mainly diabase).

Fig. I-2 is a section of a report by John B. Reeside, et al

(1957), correlating the Triassic formations from North Carolina

through Massachusetts. A correlation of the Nove Scotia formations

is given by McLearn (1953). Since the Triassic sediments are of

continental origin, stratigraphic correlation is somewhat difficult.

E'ven within a single basin the results are often subject to doubt.

Results of remanent magnetization studies on most of these

Triassic formations are given in this report. Several areas of

interest, however, have not been sampled, mainly the Richmond basin
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and Northern New Jersey. Although results from the Nova Scotia

basalts are included, sediments from this area have not been

collected'. '.

The purpose of this survey is manifold. 1) Primarily, the

results should give a more accurate picture of the earth's magnetic

field in the eastern United ~tates during Triassic time. It is

expected that factors which may introduce errors into remanent

magnetic studies, i.e., lightning strikes, corrections for geology,

etc., will mostly be averaged out by nIl extensive survey. 2) 0ince

the formations are located in several isolated basins, any systematic

influence of the environment on the remanent magnetism should become

apparent. 3) All of the areas sampled contained both igneous and

sedimentary Triassic rocks. A comparison of the results from these

two kinds of rocks will be important, particularly regarding their

respective values in paleomagnetism. 4) Also, the survey may offer

a test for non-dipolar latitude variations.

Collection

The samples were collected in the form of one-inch diameter

cores. The coring drill was powered by a small gasoline engine and

cooled vuth water which was supplied by a small pressurized tank

(this system has since been described by Graham and Hales, 1957.)
The probably error in orientation of the cores was less than one or

t,vo degrees.

Approximately eight cores were t~ren from each site (mostly

road cuts) with littleconsiderat.ion of the number of igneous flo1'ls.

The samples were spaced so as to be representative of the entire



outcrop • .An attempt wa.s made to select outcrops from vlidely

different locales in order to prevent oversampling anyone formation

or region. iI/lorethan 530 cores ",ere talcen from 77 outcrops during

the survey.

Measurement

Each core was cut into one or more one-inch long samples. The

magnetic moment of each sample was measured with a "rock generator"

type magnetometer (emplo~~ng an air-driven spinner) which rotated at

approximately 282 revolutions per second. The basic sensitivity of
-7 I:the instrument was better than 1 x 10 cgsu/cc, 2nd directions of

magnetization could be determined ~~thin a few degrees for samples
-6 Ihaving intensities of magnetization greater than 2.5 x 10 cgsu cc •

.All of the igneous samples and some of the sedimentary samples

were given an a.c. demagnetization treatment to remove part or all

of the unstable components of the remanent magnetization. This "Tas

accomplished by rotating the slli~pleinside a small pair of Helmholtz

coils (supplied by 60 c.p.s. line voltage). The current in the coils

was increased to a given value and then slowly reduced to zero. The

maximum field attainable was 550 Oersteds, which was usually not

sufficient to complete the demagnetization procedure on the

sedimentary samples.

5





PART I: RE£f1.At1ENT lvlAGNETIZATION

A. Igneous Rocks

According to the results of the remanent magnetization studies,

the igneous rocks can be separated into three main groups. These

correspond to the three principal areas from which the samples were

collected, the Nova Scotia, Connecticut Valley, and Pennsylvania-

Virginia areas. The three groups are characterized primarily by

their average direction of remanent magnetization. vlliensubjected

to an a.c. field, however, the magnetic behavior of the samples is

quite different. The data on the igneous rocks is given in Table I-I.

1. Nova Scotia

The Triassic basin of Nova Scotia is a long, narrow belt '\vhich

borders on the Bay of 1t'undy. The beds dip gently tOvlard the bay at

angles up to 15 degrees. Eleven sites were sampled in this area,

ranging from Cape Blomidon in the north to slightly south of Digby.

The collection sites were spread in an east-west direction so that

they would include a large number of flows.

The results of the measurements on samples from a given core

have been averaged to yield only one direction of magnetization for

each core. Fig. 1-3 ShOvlS the direction of the remanent magnetiza-

tion, after a.c. demagnetization, for the 75 cores. The nomenclature

used is the same for all plots. Fig. I-4 is the same plot after

correction for the dip of the beds.

The most interesting feature of the Nova Scotia samples was

their behavior during the a.c. demagnetization test. It is assumed

7
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10
that the remanent magnetization is composed of a "soft" component,

uhich can be removed by placing the sample in an a.c. field and then

slo\'llyreducing the intensit:>rof the field to zero, and a "hard"

component, which 1vill not be erased during the removnl of the "soft"

component. The results of As and Zijderveld (1958) and Creer (1958)
indicate that 1lllstablecomponents can be removed by partial a.c.

de:!D.agnetization• .ll'ig.I-19 is a plot of the relative intensity of

the remanent magnetization during the demagnetization of several

samples. The corresponding paths of the directions of the remanent

magnetization is shown in ~lg. 1-20, (for the sake of simplicity the

points have been connected by straight lines). Considering N::~35-1,

it is noticed that the magnetic vector tends to vary about an average

direction for a.c. field intensities greater th8n 100 Oersteds. The

variations, however, are relatively large. Ns65-2 shows a similar

tendency to vary, at first to a lesser degree. Above 100 Oersteds

the variations become much greater. At somewhat lower a.c. field

values Ns64-1 begins to vary in the same plane as Ns65-2.

Many of 'the samples did not exhibit any obvious patterns of

behavior even though their magnetization could be easily changed.

Sa.l1lplesfrom outcrops having very little scatter in their remanent

magnetization directions, such as No. 13, were relatively unaffected

by the a.c. fields. A comparison of heat treatment (for the remov,u

of "soft" components' and a.c. field treatment on some of the samples

from outcrop No. 5 gave similar results.



11

2. Connecticut Valley

Eight of the outcrops sampled in the Connecticut Valley represent

the four principal igneous flows: the Deerfield lava of Northern

IlJlassachusetts (4), the Talcott lava (2), the Holyoke lava (1), and

the Hampden lava (1). A plot of the remanent magnetization direction

is ShOvffi in It'ig.1-5 and Fig. 1-6 (after correction for dip of beds).

Because the direction of the earth's magnetic field is dependent

upon the location of the site, the influence of the bedding correction

is shown ,dth respect to the pole positions in Fig. 11-4. A discussion

of its significance is given in Part II.
For the most pc..rt,the demagnetization of the Connecticut V8~ley

lavas was similar to those of Nova Scotia. The results were still

far from ideal, in that the direction of magnetization seldom stayed

,vithin a fev; degrees of an average value during the demagnetization

procedure.

As a result of the demagnetization tests, the average dlrection

of magnetization for each outcrop treated was moved a few degrees in

a northerly direction. The reduction in scatter of the remanent

magnetization was the most significp~t.

3. Pennsylvania - VirF-(inia

Unlike the Nova Scotia and Connecticut Valley areas, the igneous

rocks of the Pennsylv8~ia - Virginia area are mostly intrusives.

It'iveof the outcrops sarnpled are in the eastern part of Pennsylvania,

and two are in the western part. The three Virginia outcrops are

located in the Potomac area.

The remanent magnetization directions are shovm in Fig. 1-7 and
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Fig. I-8. The bedding correction, which restores the beds to a

horizontal position, has reduced the dip of the remanent magnetiza-

tion and has also reduced the scatter. Although the demagnetization

tests reduced the scatter within several outcrops, they hQrdly

affected their average direction of magnetization.

The demagnetization of these sa~ples agrees very well ~dth the

assumption that the total remanent magnetization is composed of a

"hard" and a "soft" component • .ti'ig.I-21 shows the demagnetization

paths of three samples. vmen the peak value of the a.c. field was

increased by small increments most of the relative intensity curves

exhibited the curious hump that appears just after the magnetic

vector has reached a stable direction (see Fig. I-19). This feature

is also evident in the Nova Scotia and Connecticut Valley intensity

plots, although in some cases it is not as clearly developed •

.The accepted value of demagnetization, shown by an open circle

on the intensity curves, usually occurs at the bottom of the first

trough. Hence, the elimination of the "soft" component can often be

predicted from the intensity curves as well as from the direction of

magnetization plots.

The average intensities of magnetization for the igneous rocks

in the Nova Scotia, Connecticut Valley, and Pennsylvania - Virginia

areas are 9.8, 10.0, and 9.7 (x 10-4 cgsu/cc) respectively. These

average values seem remarkably constant since the intensity variations

mnong the samples from a given area were gre~ter than lOOx.

The difference in the direction of remanent magnetization for

these three areas is certainly significant. One possible expla~ation

is that when the rocks wera formed, they failed to acquire a remanent
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magnetization in the direction of the applied field. To test this

hypothesis, six randomly oriented samples were heated to about 650°C

and allowed to cool in the earth's magnetic field. The samples were

from the following outcrops: NS13(2), M6(1), M9(1), P14(1), Vl(l).

Except for a difference of 2 to 3 degrees, accounted for by the error

in orientation, the samples acquired the same direction of magnetiza-

tion. Although the test was not conclusive, it seems to eliminate

this possibility.

B. Sedimenta~r Rocks

The data on the sedimentary rocks is given in Table 1-2. IV!Ost

of the formations in the New Jersey - Virginia area and in the Deep

River area of North Carolina have been sampled. In the Connecticut

Valley only the Northern Massachusetts sediments l<[eresampled.

1. Connecticut Valley

Five outcrops of Turners Falls sandstone and one outcrop of

Longmeadow sandstone were sampled in the Massachusetts area. The

results are given in Fig. 1-9 and F'ig. I-IO.

The scatter of outcrop No. 5 was reduced slightly by partial

demagnetization in a 20 Oersted field. With a 50 Oersted field the

scatter of the 1ongmeado1'1 sandstone was not only reduced, but the

average direction of magnetization was also changed about 10 degrees

due west, bringing the results into better agreement 'idth the

Turners 1"a.11ssandstone.

Because the attitudes of these beds do not differ greatly, the

correction for dip does not constitute a good test for stability.
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However, the influence of the axial dipole field seems to be more

evident here thrn with any of the other sedimentary formations.

The Connecticut Valley beds are resting on the Deerfield diabase

and, according to Willard (1952), they are much redder near the

contact, probably because of the addition of irotftfrom the lava. It

is probable then that the magnetization of the.sediments represents

a chemical process which reflects the influence of post-Triassic

magnetic fields. Thus, pole positions .for these sediments have not

been plotted in Part II. The average pole position would lie about

20 degrees northeast of Massachusetts.

2. New Jersey - Virginia Area

The results from the New Jersey - Virginia area have been

divided into three groups. Fig. 1-11 a.Dd li'ig.1-12 show the remanent

magnetization directions for the Lockatong and Brunswick formations

of eastern Pennsylvania and New Jersey. r'ig. 1-13 and r'ig. 1-14 shaH

the directions for the Gettysburg: and New Oxford formations of

western Pennsylvania and Maryland. The direction of magnetization

plots for Virginia, which contain the results from outcrops located

in the Potomac, Scottsville and Danville areas, are shovffiin

E'ig. 1-15 and Fig. 1-16. No distinction has been made bet1'leenthe

sandstone and shales in this area (nor in the other areas);

Roberts (1928) did make such a distinction, however.

Several of the outcrops responded to a.c. demagnetization treat-

ment 1nth field intensities of 20 - 50 Oe. The scatter was reduced

slightly, but the average direction of magnetization was relatively

unaffected. Most of the outcrops would have required field
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intensities in excess of 550 De. to complete the demagnetization

test. It seemed, however, that the a.c. treatment wOQld have

brought the average direction of magnetization of the outcrops into

much better agreement, and also reduced the scatter vdthin each

outcrop.

It may be noticed in the magnetization plots that some of the

cores show a tendency toward reversed magnetization. fo determine

whether the magnetization was reversed or normal, several samples

from each outcrop were demagnetized in fields up to 550 De. If

their directions of ma~netization moved toward the reversed direction,

the outcrop was labeled reversed (noted by R under remarlcs in

Table 1-2). If the movement was in the normal direction, or non-

committal, the outcrop '\'lEtS labeled norm3~. It is possible, of course,

that some of the outcrops contained both normally 2nd reversely

magnetized sediments, since only a few samples were tested in most

cases.

The bedding corrections suggest that the remanent magnetization

of most of the outcrops has been stable since deformation because

the scatter among the outcrops was reduced.

3. North Carolina

In the Deep River Basin of North Carolina, nine outcrops were

s&~pled to represent the three sedimentary formations. The remanent

magnetization plots are sho'\'ffiin Yig. 1-17 and in li'ig.1-18. The

revers8~ pattern is more clearly developed here than in the sedi-

mentary formations of the New Jersey - Virginia areas. Reversals

occur in both the Pekin and Sanford formations.
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FIG. 1-17 N. C. - SEDIMENTARY
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The remanent magnetization of outcrop No. 8 was originally

scattered between the normal and reversed directions (in the lower

hemisphere of the plot). After demagnetization treatment in a

550 De. field the magnetization was more clearly reversed. Although

the evidence was not conclusive, there was an indication that the

reversal was not a complete 180 degrees from the normal direction.

The demagnetization treatment was not sufficient to indicate when

the "softu components had been completely removed.

Since the bedding corrections do not reduce the scatter of the

remanent magnetization in this area, they cannot be used as a test

for stability. When an overall comparison is made, however, betv!8en

the several basins, the bedding corrections offer much more conclusive

evidence of stability (see Part II).
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TABLE I-I

IGNEOUS" ROCK DATA

Geologic Location Pole
Attitude Position

No. cis Formation Stk. E Dip Long. W Lat. N Ixl04 695 k Long. E Lat. N
0 I 11 0 f II cgau/oc

NS2 Jill North Mountain 35 lOW 64-23-iIJ 45-13-40 8.9 # 137 71! 70tNS3 4/10 It It 35 10 W 64-23-31 45-13-45
NS4* 8/24 11 It 121 10 S 6Lv-25-55 45-18-49 5.7 28~ 4.7 98~ 74
NS5* 9/32 tt II 51 10 N 64-31-34 45-13-23 21 20~ 7.1 153! 59~
NS6-' 2/12 " n 70 14 N 6Lv-30-57 45-13-51 8.7 35 54 11$ 70
NS7* 6/38 tt II 74 9tN 6Lr47-50 45-05-11 8.3 35~ 4.5 346~- 74t
NS8* 5/16 It " 74 9~N 64-45-50 45-05-52 6.8 16 29 119t 77t
NS9-' 7/14 II " 68 5 S 65-04-24 45-02-26 3.9 9~ 42 26 71
NS10 7/17 II at Approx. Flat 65-13-"" 4ir54-1tJ 15 :~~3 345 40t 68t
NSll* 7/15 II II 23 bE 65-19-05 44-52-36 12 8 59 22i- 67
NS12* 7/12 II II Approx. Flat 65-52-35 4Lr37-07 12 12t 24 17# 75t
NS13- 8/15 11 " Approx. Flat 65-55-30 4Lr36-44 5.8 2 667 51t 61t

M6* 8/16 Deerfield 67 37 S 72-33-06 42-36-51 12 5t 105 50t 43
10 4/6 " 52 34 S 72-33-18 42-36-50 9.8 Z7 13 7 58'"2JJE.' 7/9 n 180 20 E 72-35-05 42-32-20 15 80t 1.5 330~ 64
M9* 8/13 II 175 10 E 72-34-01 42-29-03 8.3 11~- 24 ~~ 4f:>

Cl~ 8/12 Hempden 179 20 E 72-45-03 41-53-53 18 6t 72 44 58
C2 6/7 .Talcott 25 10 S 72-43-00 L.J.-26-18 8.1 9 57 71 58
C3* 6/8 II 170~ 9~-E 72-50-04 41-~-1.IJ 7.6 15 22 347 75
C4* 3/5 Ho;l:yoke 170~ 9~ 72-49-00 41-42-27 1n4 5 625 77t 52~



TABLE I-I (cont.)

Geologic Location Pole
Attitude Position

No. cis Formation Stko E Dip Long. .W Lat. N IxlO4 695
k Long. E Lat. N

0
, It C> I " cgsu/ss

P3 8/12 diabase 34 25 W 77-05-21 39-58-41 7.J" 4 176 93 68
P6 6/7 tl 65 12N 76-54-50 40-03-29 27 3t 3.94 120 . 62t
~* 8/8 u 75 15 N 75-32-13 40-20-36 11 8 48 131~ 66~
P1O* 9/15 It 75 15 N 75-32..19 40-21-10 6.3 2~ 396 117 63t
Pll 8/10 n 70 15 N 75-28-01 40-16-02 3.8 3 389 136~ 71t
P14--- 8/19 n 55 15 N 75-19-36 ~23-31 2.7 3 327 102 62t
P16 6/6 n 80 .30 N 74-57-50 40-20-18 15 10 1;8 151 52t

Vl* 15/24 n 25 30 W 77-31-01 .39-olv-07 12 14- 77 125 62
V5* 8/14 II 15 10 W 77-3~25? 38-44-59~ 4 11 26 172t 58~
V6fi 8/16 It 13 15 W 77-48-1$ .' 38-31-45, 7.4 12t 20 353t 88

~

* Samples required &c. demagnetization treatment

cis Cores/Samples

e95 Angular radius of Fisher circle of confidence (95% probability)

k Precision factor

7 Location questionable



TABLE I-2

SEDIMENTARY ROCK DATA

Geologic Location Pole
Attitude Position

No. cis Forma.tion stko E Dip Long. W Lat, N IxlO5 e95 k LongoE LatoN Remarks
0 I U 0 I " cgsu/cc

Ml 7/7 Turners Falls 71 27 S 72-31-41 42-36-22 108
M2 4/4 II 11 73 35 $ 72-31-39 42-36-20 2.7
M3 9/9 u II 76 30 S 72-31-25 42-36-23 104
M4 8/11 11 .. 45 33~ 72-33-05 42-36-/~ 3.0
M5* 8/28 11 11 65~ 39 S 72-.3I-Ii> 42-37-21 105
Ml1* 4/8 Longmeadow 99 15 S 72-31-44 42-17-08 1.1

NJl~" 7/7 Lockatong 65 7 N 74-55-07 40-30-46 3.9 # I~ 107t 63t N
NJ2 11/13 Brunswick 70 7 N 75-01p.Q8 40-27-29 206 71;; 43 66 65 N
NJJ 8/11 " 62 lON 75-04-06 40-27-07 3.5 10 36 8It 73t N
NJ4 6/9 Lockatong 75 15 N 75-03-45 40-25-58 2.6 16~ .18 139~ 61} N

Pl* 8/10 Gettysburg 44 21 W 77-16-/+6 39-49-ll 104 6t 69 105~ 69 N
P2 9/11 New Oxford 19 10 W 77-07-59 39-45-40 _ 0021_6 7~ 46 122 73~ N
P4-' 8/8 " " 55 36 N 76-58-13 39-58-02 __ .-lxlO
P5 10/14 Gettysburg 48 40N 77-01-30 40-02-05 106 6~- 58 illt 61~ N
P7 5/5 New Oxford 25 24 W 76-52-48 40-01-43 0.18 54§- 2.9 196 3# R
P3 10/14 n u 43 20 W 76-45-56 40-02-55 0.47 35 2.3 216~ 14t R
P12 7/7 Brunswick 70 14 N 75-27-03 4O-ll-30 1.6 40 3.3 219 - 8 R
P13 2/2 h 72 15 N 75-27-33 4O-lLv-57 1.4 23ir 227 139 70 N
P15 13/16 Lockatong 30 7W 75-09-40 40-28-40 1.2 43 1.9 138~ 37} R

Mdl 9/12 Gettysburg 101 31 N 77-20-00 39-40-53 2.3 6 71 104 62-fi- N
Md2 15/20 " 57 lON 77-13-/4-9 39-/.0-55 2.6 3 161 91 61:t N
MdJ 6/6 u 74 30 N 77-18-23 39-43-13 1.7 19~ 13 115 52~- N

W
~



TABLE I-2 (cont.)

Geologic Pole
Attitude Location Position

No. cis Formation Stk. E Dip Long. W Lat. N IxlO5 695 k Long.E LatoN Remarks
0 t .. 0 r II cgsu/cc

V2 6/7 sedime.nts 29 31 VI 77-37-J.B 39-01-36 5.1 # 202 125 59 N
V3 8/14 It 5 27 W 77-38-28 38-49-32 0.8 15 15 242 -25 R
V4 8/13 " 14 22 W 77-36-26 38-47-06 18 6 32'~ 3.9 242 82 N
V7 7/7 II 7 6<\W 78-04-04 3S-18-30 4.8 7 81 91t 70ir N2,
VB 9/12 I,' 51 14 N 78-15-18 38-n-Q3 0.59 21~ 607 7 67 N
V9 9/21 " 86 9 N 78-16-01 38-10-34 1.2 W 2.4 312 72 N
VI0 2/2 " 15 19 W 78-31-21 37-49-22 104 7St ':-12 152 72 'N
Vll 11/16 It I.IJ 11 VI 78-37-46 37-44-46 4.2 6 63 74~ 62 N
V12 3/5 Border Gong1. 149 19 W 79-08-23 36-57-24 203 6 10 3 216~ 40 R
V13 4/4 n u 31 23 W 79-10-43 36-54-38 1xl.Cr
Vl4 4.7 sediments. 45 45 N 79-18-15 36-49-43 1.4 12~ .57 lAO 6It N
V16 10/12 " 41 28W 79-4J.-1O 36-37-45 3.0 9~ 28 13# 70 N
V17 9/l2 ,~ 46 32 N 79-41-32 36-37-11.> 3.6 37 2.9 159 71t N
V18 8/10 It 49 30 N 79-41-36 36-38-10 201 77 1.5 227 3J~ R

NOl 8/14 Pekin 15 lOE 79-29-10 35-23-00 1•.3 25 5.9 282t -38 R
Ne2 8/12 u 44 10 E 79-25-55 35-26-/f-5 6.6 14 16 73 53~ N
N03 6/12 Sanford 25 20 E 79-22-09 35-27-27 4.4 65 1.5 16s- 8 N...
NC4 14/28 II 68 7 S 79-15-45 35-27-31 1.5 54 1.5 297l 12~ N
N05 12/24 " 99 12 S 79-14-38 35-32-28 0.98 15 9.4 265~ -2.3 R
NC6 8/9 Cumnock 70 18 S 79-1/v-40 35-31v-13 ~8 3 330 '17t 58 N
NC7 8/16 Sanford 74 17 S 79-12-201 35-27-501 0.92 42- 2.7 249 -13t R
NC8* 9/18 " 105 15 S 79-12-101, 35-2B-20~ 0.79 19~ 30.3 'Z/9 -33:r R
N09 7/9 Pekin 25 14E 79-00-10 , 35-37-45 ' 1.5 lOir 34 92t 59~ N

N Normal

R Reversed
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PART II: PALEOMAGNETIC RESULTS

It is assumed in this analysis that the geomagnetic field acting

during Triassic time approximated on average to that 0 f a dipole

field oriented along the earth1s axis of rotation. Runcorn (1959)
has sho"\'mthat the relative rotation of the core and mantle infers

that even if a permanent non-dipole field could be generated in the

core, thenon-8.Y.ial parts l\Touldbe averaged out by observations over

a long time at the earth's surface. Since the deposition period of

sedimentary rocks is relatively long, the average remanent magnetize_-

tion of samples collected through a considerable thickness of one

rock formation should represent the axial magnetic field (prOvided,

of course, that the magnetization is stable). It is, however, also

expected that the remanent magnetization of the igneous rocks may

show the influence of secular variations of the magnetic field.

The location of the north-seeking pole of the dipole field,

wpich would have produced the remanent magnetization in a given core,

has been obtained for each core. The magnetic inclination (1) and the

latitude (A) are related by:

Tan I = 2 Tan A

where i\ is the latitude of the site location 'tvith respect to the pole

position. By the method of Fisher (1953), the circle of confidence

(for 95% probability) was c8~cuJ_ated for the pole positions of each

outcrop. _The data is given in Table I-I -and Table 1-2.
The circles of confidence are also plotted on an equal-area polar

projection of the northern hemisphere of the globe. Since the
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latitudes of most pole positions are greater than 60 degrees north,

the circles of confidence are actually plotted as circles. The error

introduced is very small end should in no way affect 8n interpreta-

tion. vJhen the pole position occurs in the southern hemisphere, the

corresponding south pole is plotted. South poles are indicated by

open circle plots with dashed circles of confidence.

The pole positions for the igneous rocks are plotted in Fig. II-I,

Fig. 11-2, and :F'ig.I1-3. The only agreement among the three are2.S

seems to be those pole positions which reflect the influence of the

present magnetic field.

Fig. I1-4 shows the pole positions before Blld 2.fter bedding

corrections for some of the more stable outcrops in the Connecticut

Valley and Pennsylvania - Virginia areas. They are ShOl'Inby open

and closed points respectively, and are joined by straight lines.

It is possible then that the magnetization of these tvJO areas has

been stable since deformation. The bedding correction for the Nova

Scotia samples was too small to be of any significance.

:F'ig.11-5, Fig. 11-6, and Fig. 11-7 give the pole positions for

the sedimentary rocks. Fig. 11-8, like Fig. 11-4, shOl-vSthe

influence of the bedding correction and indicates that the magnetiza-

tion in most of the sediments may have been stable since deformation.

Except for the Maryland area, the geologic corrections made in local

areas, such as Ne1'l Jersey, Virginia, 8l1d North Ca.rolina, do not ShOll

conclusively that the magnetizations are stable. Hhen the areas are

considered as a whole, however, the evidence is much more convincing.

Since all of the igneous rocks were given. an a.c. demagnetiza-

tion test, the author did not feel justified in eliminating any of
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FIG.II-I NOVA SCOTIA POLE POSITIONS -IGNEOUS
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FIG. II-2 MASS. AND CONN. POLE POSITIONS -IGNEOUS



FIG. II -3 PA. AND VA. POLE pas IT IONS - IGNEOUS
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FIG. 11-4 INFLUENCE OF BEDDING ON POLE POSITIONS-IGNEOUS
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FIG.11-5 N. J'J PA, AND MD. POLE POSITIONS - SEDIMENTARY
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FIG.11-6 VA, POLE POSITIONS -SEDIMENTARY



FIG. 11"7 N.C. POLE POSITIONS .. SEDIMENTARY
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FIG. 11-8 INFLUENCE' OF BEDDING ON POLE. POSITIONS -SEDIMENTARY



the results in the final analysis. To obtain the final circle of

confidence, the Fisher statistical treatment vlas applied to the pole

positions of the outcrops. This was done for each of the igneous

areas becnuse of the basic differences in their pole positions.

The results are given in Table 11-1.

The tendency of pole positions tilth small circles of confidence

to group together suggests thQt the results may be unduly influenced

by non-Triassic pole positions (i.e., the remanent magnetization of

some outcrops is unstable). Any selection of pole positions according

to the size of the circle of confidence vJill, of course, be arbi trar-y.

Tvlany of the sedimentary outcrops vJere eliminated from the final

analysis for one of the follovJing two reasons:

1. The remanent magnetization was partially reversed.

2. The remanent magnetization contained unstable compo-

nents that might have been removed by partial a.c.

demagnetization •
.Eliminations based on the second reason were somewhat arbitrary and

only the more obvious cases have been excluded. The final analysis

was made on the follovrlng outcrops: NJl, 2, 3, and 4; PI, 2, 5, and

13; Mdl, 2, and 3; V2, 7, 11, 14, and 16; NC2, 6, and 9. The final

data is given in Table II-I. The average pole positions are plotted

in Fig. 11-9.

Triassic pole positions based on measurements by other investi-

gators are given in Table 11-2 and Fig. 11-10 for comparison. This

data is reproduced from an analysis by Irving (1959).
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TABLE 11-1

AVERP_GE POLE POSITIONS

No • .A:rea Type No. of
B-95 k Pole Positions

outcrops Long. E Lat. N

1 N.S. 'Igneous 11 10 1/2 20 77 1/2 78 1/2

2 Conn. n 8 15 15 40 61 1/2Valley

3 Pa-Va If 10 8 1/2 33 129 67 1/2

4 NJ-NC Sediments 19 5 47 105 1/2 65 1/2

Before a final opinion can be expressed about the geomagnetic

field in the eastern United states during Tirassic time, several

explanations for the differences in the sedimentary and igneous

res~lts must be considered. Four possible reasons for the

differences follow:

1. Igneous rocks represent a. small interval of time 2nd

hence were influenced by the local magnetic field more

so than by the average dipole field.

2. The igneous poles represent r8ndom walk positions of

the geomagnetic field (see Green, 1958), which are

averaged out in the sedimentary results.

3. The igneous rocks ,..,erenot magnetized origin2~ly in

the direction of the earth's magnetic field.

4. The igneous rocks (and perhaps the sediments) are

magnetically unstable.
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TABLE II-2

TF~ASSIC POLE POSITIONS

Pole Positions

No. Cormtry Rock Unit 'Long. Lat. N dX d~ Remarks

46 England Ne~lRed Sandstone 131 E 43 7 12 N&R

47 France Red sst. ~f the Vosges 143 E 28 6 12 R

48 U.S.A. Lavas and sediments 88 E 55 8 15 N&RConnecticut IIalley

49 " Lavas 6Connecticut Valley 90 E 54 11 N

50 It Brunswickian formation
of Newark Series 9.3 E 63 3 6 N

51 II Springdale sst. 107 E 55 N

52 Bechuanaland KgomaSeries 44H 54 5 10 N

53 Australia Brisbane tuff. 37 H 39 N & R

d X and d 4 are the semi-axes. of the ovals of confidence of the poles,

in the direction of and perpendicular to the great circle joining the

pole and the site.
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A discussion of the above four points follows:

1. It is not possible to set a time limit on the formation

period of the igneous rocks. However, since the three

Connecticut lava flovls are separated. by several hundred

feet of sediments (see Krynine, 1950), it seems likely

that the deposition period required at least several

thousand years. If this is true, and if the magnitude

of the geomagnetic secular variations resembles that of

more recent times (see Johnson, 1948), then it is

probably that the average pole position of the

Connecticut Valley lavas represents the 2.:x:ial dipole

field (of course, this is based on just a few samples

in time). Further, the pole position of the Connecticut

lavas and sediments, No. 48 in ~'ig. 11-10, indicates

that the sediments are in fair agreement vrith those

from other areas, whereas they should agree more

closely ~~th the lavas. If the magnetization of the

sediments was caused by a long-term, post-depositional

chemical process, differences in the polar plots of

the various sedimentary formations may be smoothed out.

2• .Although the random walk theory is a possibility, it

seems that there shoQld be some evidence of it in the

sedimentary formations, particularly since continental

deposition CE'ill be quite rapid. Chemic2.1 magnetization

may have the SEme effect as that mentioned above.



3. At first this seemed an attractive hypothesis, but the

heating experiments described in Part I ruled it out.

It is unlikely, moreover, that any physical mechanism,

such as anisotropy of magnetization (Grabovsry, 1959)
could be so uniform as to give consistent results over

l~rge areas. If the rocks possess considerable

susceptibility the remanent maglletization may be dis-

torted slightly (Kalashinikov, 1959). Such distortion

should, however, be averaged out by s2~ples collected

over large areas.
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4. p~though corrections for geologic attitude indicate

that some of the igneous rocks have been s tnble since

deformation (see Fig. II-4), there is still the

possibility that they were unstable before deformation.

The close agreement betvJeen the pole positions of most

sediments 1<liththose of the Pennsylvania - Virginia

igneous rocks further suggests that intrusive rocks

may be more stable than extrusive rocks.

F'rorothe above discussion then, it appears thE'.tpoint 3 is the

least valid, whereas points 1, 2, and 4 are still quite possible.

It must also be remembered that the a.c. demagnetization tests reveal

a basic difference in the magnetic stability of the igneous rocks.

The direction of remanent masnetization in most Nova Scotia and

Connecticut Valley igneous smnples can be changed appreciably by

applying a.c. fields of less than 100-200 Oe., whereas this cannot

be done 1-liththe Pennsylvania - Virginif~ igneous samples. Thus,
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point 4 may be better taken.

Proposals for !!uture ::lampling

Although this survey has been quite eA~ensive and has revealed

several hitherto unknovm features of the remanent mab~etization of

the East Coast Triassic rocks, there are still several areas of

sufficient interest to warr2nt further sampling. Because the

northern New Jersey lavas and sediments are similar to those in

Connecticut, they may be the same age. An investigation of these, as

well as a more complete survey of the IVleriden }t'ormation of Connecticut,

may be very enlightening.

Since the igneous rocks of Nova Scotia give pole positions that

are different from those of the sedimentary formations, 2. survey of

t he sediments in this area will also be important.

Although it is doubtful that findings from any of the smaller

basins, such as the Dan Hiver and Richmond basins, will a1ter the

final results, it will never the less be worth while to make

comparative measurements on the rocks in these areas.

Conclusions

Several important conclusions, some of which are very tentative,

may be dralom from this survey, based on findings from the East Coast

Triassic rocks and not necessarily applicable to other areas. They

include the follo~rlng:

1. Results of sedimentary rock measurements from several

basins are in close agreement and indicate that

factors which might introduce errors into magnetic



studies are either negligible or consistent in their

influence.

2. Igneous rocks may not be as reliable as sedimentary

rocks for p~eomegnetic interpretations.

A.C. demagnetization tests can improve the results

from both igneous and sedimentary rocks.

4. Results from small numbers of srunples may be in-

dicative (i.e., the data given in Table 11-2), but

extensive s?~pling is certainly more valid.

5. It seems evident that during the Upper Triassic the

geomagnetic field over the eastern United St2.tes

approximated on average that of a dipole. The axis

of tIllS dipole intercepted the earth's surface in the

vicinity of Long. 105 1/2 E and Lat. 65 1/2 N.
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APPENDIX A: INSTRUMENTATION

1. General

The apparatus is of the "rock generatorn type (Johnson, 1938;
Nugata, 1943; Bruckshaw, 1948; Graham, 1955; Doell, 1955; Hood, 1956)
in which the specimen, in the form of a one-inch diameter cylinder

one-inch long, is rotated near a coil. The magnetic momentof the

rock samplegenerates "an alternating voltage in the coil which is

analyzed for phase and amplitude to determine the direction of

magnetization and the intensity of magnetization, respectively, of

the-specimen.

A block diagramof the apparatus is shownin Fig. 11.-1. The

signal generated in the specimencoil is fed into the attenuator and

then into the battery-operated General Radio amplifier. li'romhere

the signal is sent through a filter and into the phase detector unit.

Thephotocell and light chopper located at the base of the

spinner generate another alternating voltage, referred to as the

reference signal. The photocell maybe rotated about the spinner

and in this way the phase difference between the specimensignal and

the reference signal can be varied. This signal is fed into the

reference aplifier and phase detector unit which contains a filter

that is matchedto the one in the circuit associated with the

specimensignal.

Various methodsfor generating the reference signal and

measuring the phase have been described in the literature. The

spinner arrangement described by Graham(1956), is similar to the

apparatus here, while the detector circuit is similar to that
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described by Hood (1956). li1ig.A-2 is a photograph of the measuring

apparatus in which the components are as follows:

A. Spinner assembly

B. Decade attenuator

C. General Radio amplifier

D. Calibrated attenuator and filter

E. Reference amplifier and detector unit

Ft. Oscilloscope

G. Air pressure regulator and on-off control

H. 300 vol t power supply

I. 6•.3 volt filament supply

J. Ref erence lamp power supply

~. Specimen and Reference Generator

The spinner and coil assemply are sho..m in tig. A-3, in which

the components are as follows:

A. Specimen pick-up coils

B. Specimen holder

c. Reference light chopper

D. Reference photocell assemply

E. Spinner base

F'. Phase dial

Fig. A-4 is a cut-away drawing of the spinner assembly, and

shows details of the various parts.

The specimen coils actually consist of two coils each, connected

in such a manner that the current flow induced in the inner coil is

opposite to that induced in the outer coil. The radii and number of
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FIG. A-2 VIEW OF APPARATUS
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FIG. A-3 COILS AND SPINNER ASSEMBLY
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turns of the coils are designed to give zero flux linkages through
the double coil system.

Considering a concentric pair of coils with rectangular cross-
section, when H is not a function of r, it can be shown that the
current induced in the coils is proportional to the quantity

3 3 3 3 .(r2 + r3 - rl - r4), where rl and r2 are the J.IlIlerand outer radii
of the inner coil respectively, and r3 and r4 are the inner and outer
radii of the outer coil, respectively. (Although the coils used do
not have rectangular cross-sections, they can be divided into several
smaller units for the purpose of meeting the above requirements.)

Thus, if this quantity is made to equal zero, there will be no
currents induced in the coil system by a uniform field H. This is
very convenient for eliminating the effects of stray 60 cycle fields
in the laboratory and also for removing any signals that may be
induced by the coils vibrating in the earth's field. The coils
were balanced for this condition by experimentally determining the
number of turns that were required an the outer coil.

This condition does not exist for curved fields, however, so
the coils are made as small as conveniently possible. Since the
current induced in the coils is a function of R (the distance
from the magnetic source .to the windings) it is apparent that the
signal induced in the coils by the rotating specimen is not made zero
by the two opposing coils because there are m~y more flux linkages
in the inner coil system than in the outer one. The e.m.f. of this
double coil, due to the rotating specimen, is more than 50 per cent
of that which is produced by the inner coil alone.

The inner coil has been p i-wound to decrease the distributed
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capacitance betweenthe windingsand thus to increase the natural

resonant frequency of the coil. This eliminates the possibility

that there maybe undesirable amplitude and phase versus frequency

effects near the operating frequency.

A consideration of the signal to noise ratio will necessarily

involve the input tube in the amplifier. The statistical voltage

, produced in the input of an amplifier of bandwidthWis:

E = 12.7 x 10-11 ~ \'l(Rt + R )n c

whereRt is the equivalent noise-resistance of the first tube and

R is the grid resistance in the first grid (the coil resistance).c

For a rectangular cross section coil, assumingthat the windings are

symmetricallyplaced in horizontal and vertical rows, the coil

resistance R is given by:c

w~ere.,e is the width of the coil and,fJ and a are the conductivi ty

and circular area, respectively, of the wire used in the vlinding.

~"'ora given coil size the voltage induced in the coil by the rotating

specimenis proportional to the numberof turns in the coil, or

inversely proportional to a. Therefore, the signal to noise ratio

is proportional to:

or
1

V W(Rta2 + (7f 2-f/ /4) (r~ - ri»
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Once r2 and rl have been chosen, (which is, of course, arbitra~)

it is clear that the signal to noise ratio increases with a decrease

in a.

The inner coil was woundwith number40 gauge wire and contains

approximately 25 thousand turns, whereas the outer coil was wound

with number38 gauge 'Wireand contains about 8 thousand turns. The

total resistance of these two coils is 24 thousand ohms. bince

there are two sets of coils, the combinedresistance of the system

is 48 thousand ohms. Obviously the voltage induced in the over-all

system is twice that induced in either coil pair alone. The reason

for two pairs of coils is to increase the input signal to the

amplifier and also to reduce the effect of the position of the

spinner on the voltage output.

The reference signal generator consists of a Clairex type Cl - 2

photocell, a 3 volt ngrain of wheatll lamp, and a light chopper.

The photocell and lamp assembly maybe raised and turned at right

angles to facilitate starting and stopping the spinner. The photo-

cell mount is attached to the base plate which supports the spinner

base. The entire assemply can be rotated through 3600, permitting

the phase difference between the reference and specimen signals to

be varied.

The spinner is of the Beams(1930) type, in which the specimen

holder spins freely in air without bearings. This type of mechanism

permits high speeds that otherwise would have been difficult to

attain. The spinner and spinner base are cone-chaped; the spinner

has an angle 0( of 101.5 degrees and the base has an angle J9 of

91.5 degrees. Air holes inside the base are oriented at an angle
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and create a vortex of air which causes rotation of the spinner.

The result of the Bernoulli effect, produced by the narro~dng of the

air passage near the edge of the spinner and spinner base, keeps the

spinner in its place.

The specimen holder stands on a shaft about 6 inches long and

is attached to the spinner. This permits the coils to be shielded

from the air blast at the base of the spinner, which may cause an

undesirable vibration of the coils. It also helps to minimize

coupling between the coils and the reference generator and allows the

photocell to be rotated a full 360 degrees. Of course, it also allo'\-'ls

the specimen holder to be much closer to the coils.

The spinner is usually steadied by hand until it is brought up

to about half speed, at which time it stabilizes and spins freely

without supports. It was fotU1d that the spinner 'iauld also perform

quite satisfactorily with a cloth bearing located near its center

of gravity (8:pproximately the middle of the Shaft.) With this cloth

bearing the spinner may be started and stopped without having to be

supported.

The spinner base is held in place by four springs. The

friction between the spinner base and the bottom plate, and the

three tygon tubes which feed air to the spinner base tend to damp

out any oscillatory motion that may be initiated during the starting

procedure.

Several different materials were used for the specimen holder,

but most of these proved unsatisfactory. Materials such as linen

and paper bakelite, lucite, and fiberglass could not withstand the

added impact that occurred when a rock specimen broke during the



spinning operation.
The most satisfactory material used was laminated West African

mahogany, which was chosen in preference to other woods because of
its high strength to weight ratio. rfhe cap of the specimen holder
was made from Du Pont nylon or Du Pont delrin .. .Another holder was
constructed entirely of delrin, and preliminary tests indicate
that it is quite satisfactory.
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3. Input Attenuator and G. R. iunplifier
A circuit schematic of the input attenuator is show in 1t'ig.A-5.

The output terminals of the'coil are connected to the primary of the
input transformer, a UTe type 0 - 4, via a 6 foot shielded cable ..
The transformer eliminates the necessity for grounding one side of
the coil to the attenuator chassis and helps to reduce the effects
of undesirable electrostatic signals generated by the spinner. The
secondary of the transformer is connected to the attenuator selector
which has two positions for attenuation, one position direct coupled
and one position for amplification. rfhe multiplication factors for
positions 1 through 4 are approximately x 1/100, x 1/10, xl, and
x 10 respectively.

An amplication of x 10 on position 4 is supplied by a battery-
powered type lLE3 vacuum tube. The input signal is applied directly
to the grid and the output is capacitive coupled from the plate.
The signal experiences a phase change of 180 degrees when this
amplifier is used, which must be taken into consideration.

The output signal from the attenuator circuit is then applied
to a General Radio type 1231-B battery-operated amplifier. The
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maximum gain of the amplifier is 86 db and there are tvro attenuators

built into the unit. One of these is a variable gain control and is

always set for maximum gain during the operating procedure. The

other has two settings, labeled < 0.03 volt and < 1 volt on the

front panel. These two settings are referred to as position A and

position B, respectively, on the calibration curve (see li'ig.B-2).

The output of the G. R. amplifier is applied to the specimen signal

filter circuit.

4. Specimen Signal Filter

:B'ig.A-6 is a schema.tic of the specimen signal filter circuit.

The basic components of the circuit are a cathode-follower input

with a variable attenuator, a bandpass filter, an on-off switch, and

a cathode-follower output.

Both cathode followers are of the biased type, employing 6J5
vacuum tubes with decoupled plate circuits to minimize the influence

of 60 cycle ripple in the power supply voltage. The load resistor

in -the cathode circuit of the input tube is a ?l ohm, 10 turn, 0.1%

linearity potentiometer which serves as a variable attenuator. The

dial on this control is linearly divided into 1000 divisions, each

turn representing 100 divisions. Thus, there are three attenuators

in the specimen amplifier circuits; a 4 step attenuator in. the input

circuit, a 2 step attenuator in the G. R. 2mplifier, and a variable

attenuator in the filter circuit.

The filter is used to improve the signal to noise ratio of the

specimen signal and hence to increase the sensitivity of the phase

detector. Since the filter introduces a phase shift versus frequency

dependence, it is necessary to incorporate a ma.tched filter in the
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reference amplifier. The filters were supplied by the Burnell

Company(type ElF bandpass filters with a 6 db grain) according to the

following specifications:

1. Center frequency 287.5 cycles

2. Less than 0.5 degrees relative phase shift within

5 cycles either side of the center frequency

3. Stable within a 60 - 100 degree temperature range

Considering amplitude variations as well as phase variations, the best

operating frequency for the filters 1'1aSfound to be about 282 cycles.

The on-off swltch removesthe specimen signal from the grids of

the detector tubes while the phase meter is being adjusted for zero-

signal condition. The switch is left in the on position during the

operating procedure.

The output cathode-follower couples the signal to the phase-

splitter located on the chassis A in Fig. A-2.

5. Reference Amplifier and !I'ilter "

The reference amplifier and phase detector circuits are on the

samechassis; a schematic of this unit is shownin .trig. A-7. The

output signal from the photocell is applied to the input of the

reference amplifier where,it is converted into a symmetrical square

waveand then applied to the suppressor grids of the 6SJ7 detector

tubes.

Themain componentsof the reference amplifier are a 12AU7 low

gain input amplifier (approx. x 10), a bandpass filter, a variable

gain control, a 6SJ7 high gain amplifier (approx. x 100), an overdriven

6J5 amplifier and a 6H6 clipper. The clipper eliminates the positive
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part of the output voltage which otherwise would drive the suppressor

grids of the detector tubes into the conduction region.

All the amplifiers are of the RCtype, and each plate circuit is

decoupled from the B+line in order to eliminate 60 cycle ripple. lfhe

gain control permits the symmetryof the square waveoutput to be

varied slightly, but other than this it serves only to prevent the

voltage on the grid of the 6J5 from becomingtoo large.

The bandpass filter, as mentionedpreviously, is matched to the

specimen amplifier filter so that the phase vs. frequency response of

the two units will be identical.,

6. Phase Detector

The phase detector circuit includes the 6J5 phase-splitter and

the two 6SJ7 detector tubes sho"min .il'ig. A-7. The specimen input

signal is converted by the phase-splitter into two signals of equal

amplitude, but differing in phase by 180 degrees. The amplitudes of

these two signals are balanced by t he two 27Kohm,1%wire-\'lOund

resistors; (it was not found necessary to match these signals better

than 1%). The outputs from the phase-splitter are then applied to

the control grids of the detector tubes.

The two 6SJ7ls were .selected beforehand for similar character-

istics so as to minimizebalancing problems. IIlhecathode circuits

have a commonresistor, shunted by a 500 micro-farad capacitor,

which biases the tubes for class A operation. The screen grids also

have a commonconnection. A 25Kohmpotentiometer connected to the

300 volt lead varies the plate load resistance of each tube and thus

permits the two plate voltages to be equalized. In this waythe
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phase meter (a Simpson 25 micro-amp, zero-center meter), which is

connected through two l30K ohm resistors to the plates, can be

balanced for zero-signal condition. The meter sensitivity switch is

used to short the meter when the equipment is being turned on or off

and also to lower the sensitivity when the incoming specimen signal

amplitude is unknown.

The reference signal applied to the suppressor grids serves to

turn the tubes on and off at regular intervals. In other words,

during the half cycle when the reference signal has zero voltage

amplitude, the detector tubes behave as class A amplifiers, and any

signal applied to the control grid will be amplified in the plate

circuit. However, during the half cycle when the reference signal has

a negative voltage amplitude, there will be no conduction through the

tube, and the plate voltage will rise to the full B+ value (300 volts).

A complete mathematical analysis given by Hood (1956) involves

the capacitors connected between the plates and ground. 'The circuit

actually acts as a biased commutator, however, and a simple analysis

is given by Nagata (1943).

The phase sensing action of this circuit may be best understood

by considering the action of only one of the detector tubes. l\'ig.A-a

is a diagram of the voltage appearing at the plate of the tube during

one cycle of operation. Assuming that the phase meter has been balanced

for zero current flow when no signal is applied to the control grid,

the plate voltage during the on-time will be some steady d. c. value,

say 150 volts (case I). Now, if a pure sine wave is applied to the

control grid, and it is in phase ~d.th the reference signal, the
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average plate voltage during the on-time "Iill becomeless positive

(case II). Conversely, if there is a 180 degree phase difference

betweenthe two signals, the average plate voltage will becomemore

positive (case III), and if the phase difference is 90 degrees, the

average plate voltage will be unchanged (case IV), i.e., 150 volts.

Variation of the average plate voltage about the zero signal

reference line is therefore proportional to cos tt, wheree is the

phase difference betweenthe control grid and the suppressor grid

signals. The current flow through the phase meter will also be

proportional to cos -e.

The sensitivity of this circuit can be doubled by simply

applying a second signal, 180 degrees out of phase with the first

signal, to the control grid of a second tube and connecting the meter

between the two plate circuits. Whenthe plate voltage of one tube

becomesmorepositive, the other plate voltage becomesless positive

and the phase meter current will be twice that produced by one tube

alone. Theuse of two detector tubes has the added advantage that

variations in the B+voltage, the filament voltage, etc., have a

minimumeffect on the stability of the circuit. The deflection of

the phase meter is obviously dependent upon the amplitude of the

specimensignal, but independent of the amplitude of the reference

signal.

Thecapacitors connected between the plate circuits and ground

cause the plate voltage to assume a d. c. value approximately equal

to the average plate voltage during the on-time of the tube. This

changes the phase meter current from a pulsating d. c. to a steady

d. c. current. By varying the amountof capacitance the response
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time of the meter can be varied; that is, the time r~quired for the

meter to indicate a change of phase. Except for the 4 micro-farad

capacitors permanently in the circuit, the capacitors are used only

when the noise level becomes large enough to m~~e the meter

indications unstable.

Any control grid signal which is not a harmonic of the reference

signal will cause the plate voltage to vary alternately more positive

and more negative, the average variation being zero. Also, even

harmonics will be averaged to zero since there are an equal number of

positive and negative half cycles during the on-time of the tube.

However, it is clear that odd harmonics will not be averaged to zero,

and will therefore il1terfere vdth the phase detection of the

fundamental frequency.

The specimen signal bandpass filter reduces the amplitude of the

odd harmonics so that they do not disturb the operation of the phase

detector. The filter also minimizes the noise level which could have

driven the detector tubes into the cut-off or saturation regions,

limiting the phase sensing action of the circuit. Obviously, the

control grids must be well shielded from the reference signal to

prevent interference.

7. Power Supplies

A Heathkit model PS-3 power supply delivers a regulated 300

volts at 30 milliamps to the amplifier and detector units. The

filaments require 6.3 volts d. v. at 3 amps and are supplied by a

Heathkit model BE-4 battery eliminator.

As mentioned previously, the G. R. amplifier and the input
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amplifier have their ownbattery power supplies. The G. R. uses a

type 6TA60Battery while the input amplifier uses t1'TOtype C

batteries and one type N60battery.

g. Accessory Equipment

Rotation of the specimenis controlled by a 'Vlattsair pressure

regulator, shownin Fig• .8.-2. The frequency is monitored by observing

the Lissajous figures produced on an oscilloscope by the reference

signal and a 282 c.p.s. signal from the audio oscillator. Whenthe

two signals have the samefrequency, the Lissajous figure consists

of one stationary loop.

Fig. A-9 is a photograph of the Fanslau coil used for attaining

a magnetic field-free region. The diameter of the larger coil is 4

feet and each coil contains 20 turns of wire. A 6 volt battery

eliminator supplies approximately I ampof current to the coil, an

amountsufficient to null the earth's magnetic field. A discussion of

the design. of a li'anslau coil is given by Chapmanand Bartels (1940).

The furnace, located inside the :F'anslaucoil, has non-inductively

woundheating coils and is poweredby a 110 volt variac. Temperature

in the oven is controlled by a ]loxboropotentiometer controller

(using a thermocouple) which turns the variac voltage on and off.

The variac is adjusted for minimumpower requirements at the desired

temperature and thus tends to minimize temperature variations as the

thermocouple turns the current on and off.

The magnetic field inside the Fanslau coil is measured by a

nux-gate type zero-field magnetometer (Serson, 1956). The magnetometer

and the flux-gate detector unit are labeled A in Fig. A-9, and a



FIG. A-9 FANSLAU COIL AND OVEN
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transistorized schematic of the circuit (supplied by Serson) is shown
in Fig. A-IO.

This unit is capable of measuring fields of less than 1 gamma
and is more than adequate for its intended use.

It was found that the magnetic field in the laboratory often
varied as much as 1000 gammas, and it was necessary to periodically
adjust the current in the Fanslau coil. 1£0 reduce the effects of
these field variations on cooling rock samples, a rock tumbler was
used, (see Fig. A-ll). The holder holds six samples and will just
fit inside the oven. When the rocks are ready to be cooled the holder
is placed on the table of the tumbler, one end resting on a bearing
and the other end resting directly on the table. When the bearing
supports are turned, the holder also rolls on the table, thus produc-
ing rotation about two axes. From the point of view of the rock
specimen, a d. c. field appears as an a. c. field, the frequency
being determined by the rate of rotation. The radius of the largest
end plate on the holder was made to differ from the radius about the
vertical axis of rotation in such a way that the holder seldom
repeats any of its positions. An air turbine is used to rotate the
unit at several turns per second.

For the a. c. demagnetization experiments a one-sample tumbler
was used inside a small Helmholtz coil (see Fig. A-12). The cross
section of the coils is approximately 3/4 inches square and the mean
radius is 2.5 inches. Each coil contains 250 turns of No. 16 nyclad
wire and they are connected in series. The current is supplied by a
variac capable of delivering over 10 amperes. At maximum current the
field inside the coils is about 550 Oersted. The heat generated by
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FIG. A-II ROCK TUMBLER
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FIG. A-12 DEMAGNETIZATION COI LS
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the resistance in the windings limits the maximumfield that can be

produced. The coils were originally designed to slide apart on

runners so as to produce a continuous decrease in the field intensity

between the coils. This was found to be unnecessary however, so they

were set apart at the proper distance, and the variac was used to

raise and lower the field intensity.

The tumbler is turned by a small a. c. motor that applies power

to the outer rim of a large disk. The motor speed is varied by an

adjustable rheostat, which is usually set to rotate the tumbler from

five to ten revolutions per second.
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APPENDIX B: OPERATION

1. Circuit Adjustments
The electronic units are allowed to warm up for some time until

their tube characteristics have stabilized. This is particularly
important with regard to the audio-oscillator since it sets the
frequency standard for the frequency-sensitive apparatus. After the
spinner has been brought up to speed, the oscilloscope is used to
observe the output of the reference amplifier. The reference amplifier
gain control is first turned to its minimum position, then it is
slowly increased until the output becomes a symmetrical square wave.

The specimen signal is next removed from the detector tubes by
the on-off switch in the specimen filter circuit. The meter switch
is then set for maximum sensitivit~Tand the meter balance control is
used to zero-center the phase meter.' It is usually necessary to
check the meter balance periodically during the initial measurements
until the instrument has become completely stable. If at any time
the meter can not be balanced to zero, a better selection of detecting
tubes has to be made.

2. Calibration
a. Phase Angle
The relative phase angle of the circuits is determined by

measurement of a one-inch wooden cylinder containing a piece of
magnetized drill rod mounted parallel to and centrally located between
the ends of the cylinder. This simulated specimen is oriented in the
holder so that the north-seeking pole of the magnet points toward the



"0" reference mark inscribed inside the holder. When the circuit

alignments have been made, and the spinner is brought up to the

correct speed, the phase meter will show a deflection. The maximum

amount of deflection can be controlled by the specimen amplifier

attenuators. The phase dial is then rotated until the meter indicates

a null reading. Since there are two positions 180 degrees apart on

the graduated phase dial which give a null reading, it is necessary

to establish a convention whereby it is apparent which pole is being

observed. This is accomplished by having the needle of the meter

move from left to right, as the null position is approached, 1-Thenthe

angle indicated by the phase dial pointer is increased.

When the meter indicates the correct null position, the phase

dial is loosened from its holder and rotated until a degrees comes

opposite the pointer. The dial is then secured in place.

In order to minimize errors such as phase-dial shifts, incorrect

orientations of the specimens in the holder, etc., it is best to make

two measurements for each component of magnetization. The second

measurement is made with the specimen rotated 180 degrees about the

axis directed toward the "0" reference mark. The angle between the

direction of the component of magnetization in the plane of rotation

an~ the reference mark is then 360 degrees minus the phase dial

reading. This technique is used during the calibration procedure as

well as during the specimen measurements.

b. Intensity of lVlagnetization

Nagata (1943) has shown that the magnetizat.ion of a rock specimen

can be approximated by a small dipole located at the center 0 f the
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specimen. In order to calibrate the intensity of magnetization
indicated by the attenuator settings in the specimen amplifier
circuits at a given maximum meter deflection, a small coil of known
radius and number of turns takes the place of the specimen. A known
alternating current passing through the coil will simulate in the
pick-up coil the effect of the rotating dipole. A block diagram of
the calibration equipment is shown in Fig. B-1.

The maximum induced magnetic moment of the test coil, i.e.,
when the current is maximum, will be equal to t he moment of the
rotating dipole which produces the same effect in the pick-up coil.
This is given by:

89

c.g.s. units

where: r = radius of coil
E = r.m.s. voltage across coil and attenuator
R = total resistance of coil and attenuator
N = number of turns in coil

If a cylindrical specimen, which is 1 inch long and 31/32
inches wide, produces the same signal. in the pick-up coil as does the
test coil, then the component of magnetization of this specimen is:

IV! s
= Y27rr2 NE

lO(12.04)R c.g.s. units/c.c.

The calibration curves, shown in Fig. B-2, represent the
intensity of magnetization required to deflect the phase meter full
scale to the right for the given attenuator settings, assuming that
the phase dial is adjusted to read the proper maximum.
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FIG. B-2 INTENSITY OF MAGNETIZATION



It maybe noticed in li'ig. B-1 that the reference voltage is not

taken from a point that mayv~ in amplitude during the calibration.

Also the phase shift network should be adjusted periodically for

maximumdeflection.

3. fJieasuringProcedure

Whenthe spinner is rotating at the proper frequency and the

phase meter has been zero-balanced, the methodof measurementis as

follows:

1. The specimensignal attenuators are set for low sensitivity

and then the on-off switch is turned on.

2. Thephase dial is rotated until the meter showsa maximum

deflection to the right.

3. Theattenuators are then adjusted until the meter reads

full scale.

4. The phase-dial is rotated until the meter is nulled. 'When

the phase-dial pointer indicates an increase in angle, the

meter deflection should movefrom left to right, insuring

that the proper pole is being measured.

The frequency will have to be monitored carefully during the

full scale and null readings of the meter. The data obtained is:

1. Theattenuator settings are converted by Fig. B-2 into the

intensity of magnetization of the componentin the plane

of rotation.

2. The phase-dial reading gives the angle, about the spinner

axis and in the plane of rotation, between the nOli reference
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mark and the componentof magnetization in this plane. This

angle is measured counter-clockwise whenlooking into the

holder.

4. Sensiti vity

The sensitivity of the instrument is limited by the electro-

static signal generated whenthe spinner rotates in air. In order to

minimize this signal, the spinner is coated with silver circuit paint

and a wire brush is connected to ground and allowed to rub against

the shaft. In this mannerthe amplitude of the signal can be kept

below 5 x 10-7 c.g.s. units. This meansthat measurementsof moments

of 2.5 x 10-6 c.g.s. units/cc can be madewith errors in direction of

less than 10 degrees.

The amplitude and phase of the electrostatic signal usually

remained constant during the time required to measure a specimen

completely. Henceit is possible to remove this componentfrom the

measurementsand further increase the sensitivity. This was seldom

done, however, since most of the rock specimens had a relatively high

intensity of magnetization.

Whenthere is no electrostatic signal present, and this is indeed

a rare occurrence, the backgroundsignal is 1 x 10-7 c.g.s. units.

Occasionally, neighboring laboratories create frequencies at or near

the operating frequency, and cause the phase meter needle to move

slowly from one side to the other, the rate depending upon the

difference between the two frequencies. Whenthis happens the variable

attenuator is used at as low a setting as possible so as to increase

the signal to noise ratio, since most of the stray signal is induced



-

in the circuitry and not in the pick-up coil. Of course, when

this effect becomestoo large, the equipmentcan not be operated.
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APPENDIX C: COLLECTION AND PREP iillATION Or~ SPECIIvlENS

1. Collection

One-inch diameter rock cores are drilled in situ using a

twelve-inch portable diamondcoring drill poweredby a small

McCulloughchain-saw engine. The engine, originally equippedwith

a gear reduction unit, has been converted to direct drive because the

diamondcore drills muchbetter at higher speeds, and also because

the reduction in weight is significant. Thewater required to cool

the drill is supplied by a three gallon garden-spray tank. Depending

on the length of the cores, whichvary from two to ten inches, any-

where from one to three tanks of water are required to collect eight

cores. This methodof collecting specimenswas first described by

Grahamand Hales (1957).

,It'ig.C-l is a photograph of the engine and the orientation

device. The orienter slides into the hole, with the core still intact,

and then the compassis leveled by rotating the barrel and by adjusting

the dip indicator. The top side of the core is markedby running a

brass rod along the slot in the barrel of the orienter. The azimuth

of the downdip direction of the line is recorded, as well as the dip

of the core, and then the core is broken loose and the top and bottom

are carefully marked. The cores are designated according to state

and numberof core.

Whenthe rocks are too friable to permit drilling, or whenthe

engine becomesinoperative, samples are collected by hand according

to the technique given by Doell (1956).



FIG. C-I PORTABLE DRILL
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2. Preparation

The cores are cut into one-inch lengths, starting at the bottom,

and are numbered consecutively. Each specimen then has two orientation

marks: a vertical line along the side and a mark identifying the top.

The coordinates of the specimen (see Fig. C-2) are designated as

follows:

1. The z axis is parallel to the cylinder axis and is directed

positive upwards.

2. The x axis is perpendicular to the cylinder axis and is

directed positive toward the reference line.

3. The y axis is directed positive so that the system is

right-handed and orthogonal.

Samples collected by hand are drilled in the laboratory so that

the core is perpendicular to the surface of the sample, the orientation

line being scribed on the up-dip side of the core. Hence the dip of

the core is the complement of the dip of the sample.

The errors in orientation of the cores are probably no greater

than one or two degrees. However, errors in orientation of hand

samples are much larger, .perhaps more than five degrees. Thus, the

core-drilling technique is not only much faster than hand sampling,

but is also much more accurate.
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APPENDIX D: DERIVATION OF THE IvIAGNETIC VECTOR

Only three orientations of the specimen in the specimen holder

are required to obtain the direction and magnitude of the magnetic

vector. For increased accuracy, however, six different orientations

are measuredand the twelve data obtained are averaged to yield three

angles and three intensities. Each specimen orientation gives the

following two data:

1. The angle betweenthe componentof magnetication in the

plane of rotation and somereference axis of the specimen.

2. The magnitude of this componentof magnetization.

The orientation of the axes with respect to the specimen has

been shownin Fig. C-2. The system used to describe the magnetic

measurementsis given in It'ig. D-l, where 1\1 is the magnetic vector

and is, of course, directed toward the north-seeking end. A, B, and

C are the componentsof lVi, lying in the planes normal to the x, y,

and z axes, respectively. X, Y, and Z are the componentsof IV!

lying along the x, y, and z axes, respectively. 0\ x is the angle

measured from the +y axis to the componentA in a right-handed sense.

Similarly, 0<. y is measuredfrom the +x axis to the componentB, and

0{ z is measured from the +x axis to the componentC.

For the first measurementthe specimen is oriented with +x

directed toward the "0" reference mark on the holder and +y directed

upward, parallel to the axis of rotation. The z axis is in the "90"

direction (900 from "0"). The data obtained are the componentB and

the ~gle 0{ y. The specimen is then rotated until -y is directed
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upward and +z is directed toward "90"; +x remains in the original

position. Thus, B is once more measured, but the angle obtained is

360 minus c{ y. The two measurements are averaged to give the final

value for B and 0< y.

Accordingly, average values for A, C, c(x, and c;( z are obtained

following the procedure given in Table D-l.

"all pOSe Upvlard "90" pOSe Angle Component
measured measured

+x +y -z O<y B

+x -y +z 360 - d.. y B

+y +x +z clx A

+y -x -z 360 - c:< x A

+x +z +y c(z C

+x -z -y 360 - O<z C

Table D-l

Since

A2 = y2 + z2

B2 = x2 + Z2

C2 = x2 + y2

M2 = x2 + y2 + Z2

it follo'Vls that

1/2

Thus the amplitude of the vector lVl can be obtained from the measure-

ments A, B, and C.

F'inally, the direction of the vector 1/1with respect to the axes 2nd

vuth respect to the geographical coordinates is obtained graphically
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with the aid of the Schmidt equal-area projection. The Schmidt

projection is preferred to the stereographic projection since a unit

area on the sphere remains nearly constant after projection. This

.feature is desirable in the application of the statistical methods
f

described ,in appendix E.

The plotting procedure used here followed that of Doell (1955).
In contrast to the technique of Graham(1949), wherebyonly one

hemisphere is used for plotting, both hemispheres are used. rro

distinguish between the two, solid circles and solid lines were used

for plots on the lower hemisphere, and open circles and dashed lines

for plots on the upper hemisphere.

The orientation of the axes on the Schmidt-net are shownin

Fig. D-2, where the x and y axes are in the plane of projection and

the +z axis is up.

The angle q z defines the plane containing the z axis and the
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. vector lvi, represented by line OA, which intersect s both the upper and

the lower hemispheres. The angles 0( x and 0<. y define t\'lOmoreplanes

which should intersect at a commonpoint along OA. In this illustra-

tion the projected point P obviously lies on the lower hemisphere.

This gives the direction of the magnetic vector Mwith respect to

the specimencoordinates.

However,the projections do not always meet at a commonpoint.

Whena small triangle is formed, giving an estimate of the error in

the measurements, the meandirection is taken a s the center of the

largest circle than can be inscribed inside the triangle. :F'orall of

the measurementsreported in the survey the error was less than

10 - 15° and in most measurementsit was less t~an 1°.
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In order to obtain the direction of !vI in situ, the specimen

coordinates have to be oriented in the position they had in the

field • .Florthis the N-S geographic axis is markedso that the +x

axis assumesthe correct declination; i.e., the angle between the

down-dipdirection of the specimencore and geographic north. The z

axis is then rotated about the y axis until it has the proper

inclination, movingpoint Pinto P'. The original bearing of the

magnetic vector is nowrepresented by point PI, with respect to the

N-Saxis. Thedip of the vector is referred to as positive when

directed downwardand negative whendirected upward. The angle of

declination reads clockwise from north.

Corrections for bedding orientations which restore the specimen

to its pre-deformation position can be madein a similar manner.

The strike of the bedding plane is markedwith respect to the N-S

axis, and then the strike axis is movedinto alignment with the axis

of the Schmidt-net. 'Whenthe z axis is rotated about the strike axis,

by an amountequal to the dip of the bed, point pi will moveinto the

position of the magnetic vector before the deformation (not sholomin

:Flig.D-2)

For a more complete account of the use of the Schmidt-net for

rock-magnetic problems, the reader is referred to Doell (1955).
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A certain amount of scatter is usually present in the direction

of remanent magnetization which is determined from the different

samples taken from any given body of rocks. bince the magnetization

of such.~ocks may reflect the influence of the geomagnetic field

present during the time of formation, it is of interest to determLne

the average direction of magnetization calculated from the several

samples, a1'1d also an estimate of the probable error of this average

direction. A statistical treatment for the solution of this problem

was developed by Fl~her (1953), and has been used throughout this

report •. An outline of this treatment is given below.

Before fisher's treatment is applied, hOlvever, the average

direction of magnetization for each core is used to locate the

geographic position of the north-seeking pole of a geocentric dipole

field that would have produced this direction of magnetization in

the core. The pole position of this dipole field lies in the

direction of the horizontal component of the remanent vector, and

the relative latitude (A) is given by

Tan I = 2 Tan A.

where I is the inclination of the magnetic vector and A is the

latitude of the outcrop location with respect to the pole position.

The stereographic or Schmidt equal-area projection can be used in

the determination of the pole positions (see Grahmn, 1955).
Thus, for each outcrop, there is a set of N pole positions,

l'ihereN is equal to the number of cores t8ken from the outcrop. In .
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practice, these pole positions are plotted on a projection of the unit

sphere such as the Schmidt equal-area projection. If it is assumed

that the Schmidt net represents a north polar projection of the earth,

the longitude and latitude of the pole position can be read directly

from the projection (for instp~ce, the polar plots in Part II are

equal-area projections).

The pole positions therefore define a set of unit vectors,

directed from the center of the unit sphere to the points in question.

fisher has shown that the average direction of a set of 1'1 such unit

vectors, represented by the points P. on a unit sphere (i = 1, 2, ••N),
].

is given by the direction in space of the resultant, R, of the N unit

vectors. Let 1. and m. be the longitude and latitude, respectively,
]. ].

of the ith unit vector, v .• Then
].

z. = sin m. ,
]. ].

xi = cos ffi. cos Ii' and
].

y. = cas m. sin 1.
]. ]. J.

where z. is the vertical component of v. (reckoned positive upwards),J. J.
xi is horizontal component of vi directed toward longitude zero

(positive towa.rd longitude zero), and y. is the horizontal component
].

'of v. directed toward longitude 90 E (positive toward longitude 90 E).
J.

The magnitude of R, I R/ , the longitude of R, L, and the latitude of

R, lVI, can be calculated from x., y., and z., by the use of the
J.]. ].

follovring equations:
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L = Tan-

1 f ~l Yi/ i Xi 1
M = Sin-1 [ Ii Zi /[<!l xi)2 + C!lyi)2 + <!. Zi)2] 1/2}

The confidence of this average direction can then be determined

from

1 - N - IR I f( 1. ) l/n-l }
- Cos e- - , R l (p - 1 1l1sher (1953)

where P is the desired probability level (p is taken as 5 percent

throughout this report). The "radius of t4e circle of confidence,"

6', can be calculated from the above equation. ,r'orP = 5 percent, e

is the semi-angle of a cODe whose apex lies at the center of the

unit sphere and 1rlhoseaxis is the vector R, within which the true

direction lies for 95 percent of such determinations. There is no

limitation on the size of N in this equation, but theoretically the

size of N - R should not exceed 2. However, if N is moderately

large this restriction need not apply, since the error introduced is

of negligible importance.

p~ estimate of the precision of the directions of v., k, can be
~

calculated from

k = N - 1
N - R

r'isher (1953)

For a uniform distribution k is nearly one, and approaches high

numbers as the precision increases. Although 6' gives a direct

estimate of the precision, k has been included in the results.

If reversals are present in any of the measurements, it is

more feasible to consider the probability that the average direction



R lies along an axis, and not only in one direction. In other

words, all of the unit vectors, vi' can be considered positive.

Althoughsomeof the samplesin this report definitely indicate

reversals, there are no clear cases whereboth reversals and

normaldirections of magnetization are contained within the same

outcrop. Thus, this point is not applicable to any of the results.
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ft2PENDIX F: DISCUSSION OF PROCEDUP~ ili~DF~SULTS

1. Collection

ft~l samples from Nova Scotia and some from Massachusetts were

collected during the summer of 1956. all other sa.mples were collected

during the follovdng summer. Most of the s8mples were tal(en from road-

cuts and quarries because the equipment limited the survey to easily

accessible areas, ~~d also because these outcrops were relatively

unweathered. An~vhere from 2 to 14 cores were collected from each site,

depending on the extent of the exposure and the ease of coring.

Although Nova Scotia sediments vlere originally to be included in the

survey, they were found to be too friable and the coring technique

could not be used.

To test for stability of the remanent magnetization in rocks it is

desirable to collect samples from several sites \dthin the same forma-

tion which have significantly different bedding attitudes. Since the

beds of most Triassic basins generally dip tOl'lardone side of the

basin, selection of sites with large differences of strike and dip was

somewhat difficult. }'urthermore, the number of sites available along

road sides was limited. From collections made over large areas,

however, it is possible to infer that the magnetization has been stable

since the beds were deformed.

:2. l'Jleasurement

The interval of time between the collection and measurement of the

specimens ranged from several months to a year. This was not important,

however, since most of the specimens were given an a.c. demagnetization
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test. Any isothermal components of magnetization that maY have been

imparted to the specimen during this interval uere thus removed.

All of the measurements were made with a "rock-generator" type

apparatus. To test the accuracy of this instrument, several specimens

were measured by A. Cox at the University of California, Berkeley. A

comparison of results indicated that the direction of magnetization

determinations were ~~thin a half degree, and the intensity deter-

minations were within one per cent. Due to slight variations in the

amplifier gain, caused by battery and tube replacements, errors in

the intensity may va:ry as much as five per cent.

Although the sensitivity of the instrument 'tiasadequate for the

original measurements of the specimens, it set a limit on the maximum

value of the a.c. demagnetizing field that c01Lld be used in treatll1g

some of the weak sediments. For specimens with magnetization
-6 Iintensities of less than 2.5 x 10 cgsu cc, the error in the direction

of magnetization measurements might be greater than 10 degrees, and

therefore the specimens could not be demagnetized much below this

level.

3. A.C. Demagnetization

Creer (1959) and :As (1958) have demonstrated that it is possible

to reduce the scatter in remlli"'1.entmagnetization results, and also to

bring the results into better agreement vuth those determined from

other sites, by treating the samples in an a.c. demagnetizing field.

The influence of a.c. fields on isothermal-remanent magnetization (IRrvl)

and on thermo-remanent magnetization (Tru1) has been studied by

Rimbert (1958). Im~ components can usually be removed from most



111

rocks by treatment in relatively low intensity a.c. fields. Tru~,

however, is much more difficlut to remove by a.c. demagnetization. In

this respect, the relative stabili ty of chemical magnetization is not

too well knovm, although in some cases its behavior is not unlike a

Tlli~(see Haigh, 1958).
If a rock specimen contains a "soft" component of magnetization,

''lhosedirection can be easily changed, it, is necessary to remove this

component before the original direction of remanent magnetization can

be determined. Many of the specimens examined in this report are

Imown to have acquired an IRI\1component "Thile in the laborato~J.

Thus, it is probable that many of these specimens acquired an IRH

component in the field.

During the demagnetization procedure the intensity of the a.c.

field was controlled by a variable auto-transformer. Since the field

was varied in finite steps, and not continuously, several experiments

were performed to determine whether this affected the resuJ_ts of the

demagnetization tests. Several specimens from the same core were

treated. In one case the a.c. field was reduced by the transformer,

in the next case the fie~d was reduced by sliding the demagnetizing

coils apart very slovlly. llhe specimens gave similar results. ilso,

for one specimen, the field was increased in steps of 10 Oe., and

then reduced alternately by one of the two methods. There was no

related variation in the demagnetization path of the specimen.

Hence, it is assumed that the demagnetizing apparatus does not bias

the results.

Fig. 1-19, Fig. I-20, and tig. 1-21 show some results of the

demagnetization tests that were made on igneous specimens. They are
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representative of many of the specimens, but not all. The behavior

of the remanent magnetization in the Nova Scotia and Pa - Va rocks,

when subjected to a.c. fields, is a point of considerable interest.

Specimens from the Pa - Va area gave similar res~lts, whereas speci-

mens from Nova Scotia responded in a variety of l'laysto the a.c.

field treatment.

In general, the remanent magnetization of the Pa - Va igneous

rocks was quite stable in a.c. fields above 20 - 100 De. The initial

deflection of the remanent vector was probably due to the removal of

a "soft" IRI~ component. Some of the specimens experienced a change in

the direction of remanent magnetization w'hen left in the laborutory

for long periods, but after a.c. field tests the resultant direction

was always the same. After the initial demagnetization in low

intensity fields, the remanent vector remained w~thin about 5 degrees

of an average direction during further demagnetization.

Specimens from several Nova Scotia outcrops, such as NS 13,
responded to the a.c. field tests in a similar manner. The variations

of the remanent vectors about an average direction were, however,

slightly larger than those for the Pa - Va specimens •. &s a rule, the

sma~ler the circle of confidence for a given outcrop, the more stable

the remanent magnetization in the presence of a.c. fields.

~lany of the Nova Scotia specimens were relatively unstable in

a.c. fields, as is sho'tffiin ]'ig. 1-20. Except for the removal of

the "soft" component, a.c. field intensities of 100 - 200 De. 1"ere

usually required to displace the remanent vector by large amounts.

For instance, the remanent vector of specimen number NS 18-3 remained
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within 10 degrees of its original direction for field intensities

below 100 Oe. Above this value the vector was deflected more than

180 degrees.

There is a possibility that the change 'in the direction of

magnetization, resulting from the a.c. field tests, was a random

phenomenon. To test this hypothesis, the demagnetization procedure

was repeated several times at the same field intensity for a number

of specimens. In most cases the remanent vector remained ~dthin a

few degrees of an average value. 1Vhen the field intensity was

increased the remanent vectors continued to change in the same

direction as before the test.

The variation in the direction of the remanent vector was often

confined to a plane, such as that in fig. 1-20. It was not possible

to relate this plane with the geologic attitude of the beds. An

analysis of the physic?~ properties of the rocks may lead to a better

understanding of this phenomenon.

Judging by the a.c. field tests the Connecticut Valley igneous

rocks are more closely related to the Nova Scotia rocks. Some of the

variations in the direction of remanent magnetization resulting from

the a.c. test were quite large, although there was no obvious

tendency for this variation to be confined to a plane.
~Belshe has experienced similar results in a.c. demagnetizing

tests performed on igneous rocks. This pattern of behavior is

therefore not unique in the Nova Scotia and Connecticut Valley

Triassic lavas.
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4. Accented Demagnetization Results

There are several ways to proceed vuth the a.c. field tests for

a given outcrop. They are:

1. Select one specimen from each core, subject them

to an a.c. demagnetizing field, and increase the a.c.

field intensity by regular intervals. Determine the

Fisher circle of confidence for the average direction

of magnetization after each successive a.c. test.

When the circle of confidence is reduced to a minimum

value, proceed vuth the demagnetization of the remaining

specimens at the same field intensity.

2. Proceed as above, treating each core independently,.

ho't>Iever.v!hen the remanent vector begins to vary about

an average direction, treat the remaining specimens

with the same field intensity. The circle of confidence

does not have to be determined.

3. Select only a few representative specimens and determine

the average a.c. field intensity required.

The labor involved in the first method is, obviously, considerable.

If the outcrop is not homogeneous, i.e., contains several flows,

etc., it is possible also that the cores require different intensity

demagnetizing fields, and it is apparent in the case of the Nova

Scotia specimens that too-large a.c. fields 1iLll produce instability

in some specimens. The second method is more reli8.ble for the Nova

Scotia and Connecticut VCJ~ley specimens. The greater stability of the



Pa - Va igneous rocks makes it possible to determine the demagnetization

pattern for only a few specimens. The remaining specimens are then

subjected to a demagnetizing field of the accepted intensity.

It may be possible to improve the results slightly by a more

careful treatment of the samples, although it seems very improbable

that the improvement "dll be significant.

5 • IV!ethodof Averaging Data

It has been the practice of many investigators to let each

specimen represent one unit of data in the final analysis. ~or

instance, pole position number 50 in .r'ig.11-10 was determined from

the remanent magnetization results of 71 specimens taken from 21

samples.

If the specimens are taken along a direction perpendicular to

the bedding plane there is some justification in having each specimen

represent a different interval of time during deposition of the

sediments. If the specimens are taken along the bedding plane, then

this is probably not the case. With the igneous rocks, an interval

of time may be represented by each flow.

E'or many of the outcrops sampled during this survey, specimens

from the same core had remanent magnetization directions that agreed

very well, yet the average directions for the cores were significantly

different. Thus, if each specimen is given the same 1veight in the

statistical treatment, the average direction of magnetization for

the outcrop \v.illbe displaced in favor of the core containing the

most specimens.
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In this report the author prefers to let the cores represent the

basic sampling unit. Thus the specimen magnetizations were averaged

to obtain one direction of remanent magnetization for each core.

6. Geologic Corrections

For the sedimentary beds, a strike and dip determination was made

at, or near, each core. The bedding plane of each core was then

corrected to a horizontal position, presumably orienting the core in

the same position it had before the bed was deformed.

It was found that the average direction of remanent magnetization

was about the same, whether the cores were corrected individually or

an average correction was applied to the entire outcrop. Since an

average strike and dip determination was believed to be more reliable,

this method was used on all the outcrops. The geologic attitude of

the beds at each outcrop is given in Table I-I and Table 1-2.

Corrections for the igneous rocks were more difficult because the

geologic attitudes were not always obvious. In many instances the

strike and dip had to be inferred from neax by sediments.

There is a possibility that the outcrop may have been rotated

about an axis perpendicular to the bedding plane. If this is so, the

results will contain an error which is difficult to evaluate. It

seems improbably, however, that this type of deform2~tion is very

prominent in the eastern United States Triassic rocks. Most of the

beds have dips of less than 35 degrees and folding is not very

extensive.

It is hoped that any errors caused by inaccurate geologic

corrections are averaged out by the large number of observations made

over an extensive area.
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7. Pole Position

The dipole formula was used to obtain the pole position of a

geocentric dipole field that would account for the direction of the

remanent magnetization in a given core. The respective pole positions

were determined for each core within an outcrop, and then Jl'isher's

statistical treatment was applied to obtain the average pole position

and the circle of confidence at the 95% probability level (see Appendix

E) • 'rlhisdata is given in Table I-I and Table 1-2, and the pole plots

are given in Part II.

The average pole position for each of the three igneous areas,

and for the sediments, was determined by averaging the pole positions

for the outcrop. The fact thax poles .iLth small circles of confidence

lie close together, whereas the poles with larger circles of confidence

are generally scattered toward the present geographic pole, suggests

that the final results may be in error. Any selection of poles based

on the angle ~95'or based on the relative stability of the respective

specimens when subjected to a.c. fields, will, of course, be arbitrary.

Since all of the igneous rocks were given the same treatment, the

author feels that none. of'the results can be eliminated from the final

analysis.

This was not the case vuth the sedimentary rocks because the a.c.

tests could not be completed. Many outcrops which appeared to contain

"soft" components of remanent magnetization were not included in the

final results. It is believed that more complete a.c. tests will

bring the results of such outcrops into better agreement vuth the

final average.
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8. Heat Treatment

It is possible to remove "soft" components of remanent magneti-

zation from rocks by applying heat and then allowing the rocks to cool

in a zero-field region (Doell, 1956). This test was applied to one

specimen from each core of outcrop number NS 4 in order to determine

the relative merits of the a.c. field vs. heat treatments. The

specimens were heated to successively higher temperatures (25°C

intervals) and allowed to cool inside the li'anslaucoil. The remanent

magnetization was determined after each application of heat. The

tests were continued beyond 600°C, above the curie temperature of

magnetite. The intensity of magnetization ,,,asreduced almost to zero

at this temperature. (The rock tumbler was not available at this time,

and it was not possible to keep the field inside the ~"anslau coil at

a zero level.)

The a.c. field test was applied to the remaining specimens. The

results of both tests "1ere essentially alike, '\'v1.tha 20 De. ~l.C. field

roughly corresponding to 300°C.

Although the tests may be equally valid, there are several

reasons for preferring.the a.c. method. The heat test requires

approximately t't'lOhours to heat and cool a group of specimens. During

this time the earth's field has to be critically nulled out. The a.c.

test requires only a minute or so per specimen, and the earth's

.field is of no consequence. ~urthermore, it is possible that heat

applications may induce chemical changes in the specimens, either

destroying or altering the remanent magnetization.

The pasic difference in the pole positions for the three igneous

areas suggests that the rocks may not have acquired a remanent
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magnetization in the direction of the earth's field at the time they

were cooled. Kalashinkov (1959) and Grabovsky (1959) have sholffithat

the magnetic susceptibility of the rock m~y account for the divergence

between the vector of the remanence and the earth's magnetic field

which has caused this remanence.

To test the significance of this hypothesis, t\'lO specimens from

each of the igneous areas were randomly oriented inside the oven,

heated to approximately 650 °C, and then allowed to cool in the

presence of the earth's field. The declination of the field inside

the oven was accurately determined. The dip and the intensity of the

field could not be determined at the exact site of the specimens.

The results showed that each specimen acquired a remanent vector

in approximately the same direction • .A. discrepancy of about 2 degrees

could be accounted for by the orientation error. Thus it seems

unlikely that the magnetic susceptibility is responsible for the

difference in the pole positions.

The intensities of magnetization acquired by the above specimens

were slightly different. The intensity of the Nova Scotia specimens

was about 20% less than.the original value, whereas the intensity of

the Massachusetts specimens was increased about 200%. The intensity

of the Pennsylvania and Virginia specimens was increased about 100%.

Since the intensity of the applied field was not lrno\'m,it is not

possible to m~~e any inferences about the intensity of the geomagnetic

field during Triassic times. The interested re~der is referred to an

article by Thellier (1959) for an account of the intensity of the

earth's magnetic field during the geologic and historic past.
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9. Laboratory Deposition Tests

In order to obtain some indication of the magnetization that the

sediments may have acquired in deposition, several specimens-of

North Carolina sandstone were po~uered and redeposited in the labora-

tory. This work vias performed by D. Greenewal t of the Department.

The remanent magnetization was measured with an astatic type magne-

tometer. A brief description of the procedure and the results are

outlined below.

Several specimens were ground to a povmer. Then the powder was

allowed to fall through water to separate those grains which remained

in suspension for more than 5 seconds and less than 30 seconds. The

grain size was found to va~J from 0.1 to 0.02 roms. in diameter. The

powder was redeposited in still water in the earth's magnetic field.

The water was then drained away gradually and the sediment v[as allovled

to dry. Specimens tEJcen from this deposit were found to have a

magnetization which roughly coincided in declination with the earth's

magnetic field, but which had a dip some 10 to 30 degrees less than

the magnetic inclination. The intensit3T of magnetization vIas several

times gre2,ter than that of the original rock before pOvldering.

Similar experiments performed with Triassic sediments from

Englend have been reported by Clegg, et a1 (1954). In their results

the variation in the dip was about 8 degrees and the intensity was

about three times as great as that of the original rock. They suggest

that the lower magnetic intensity of the natural specimen may be

accounted for by turbulence during deposition or by a rise in the

intensity of the earth's field since Triassic time, or it may also be



due to the decay of the remanent magnetism ,dth time •. Nagata (1943)
has found decay times comparable to this in the remanent magnetism of

igneous rocks.

10. Origin of Remanent IViagnetization

The information acquired from the deposition tests indicates that

the sediments may well have become magnetized before cementation. In

some cases this could have occurred on deposition.

The primary magnetic materi8~s in the sediments were magnetite

and hematite. The magnetite occurred as detrital fragments whereas

the hematite was more often present in the form of a pigwent.

Evidence that this form of hematite ffiC'.ybe magnetic and can be

reliable for paleomagnetic work is given by Hargrave and ,tl'ischer(1959).

Their investigation of Jurassic red limestones and radiolarites from

the llips indicated that hematite was the only magnetic material

present.

Howell, et al (1958) experimented w~th Triassic rocks from

Arizona and their results suggested that PQrt of the remanent

magnetization may have been due to the presence of hematite; when

hematite is cooled below -20°C it loses part of its remanent

magnetization. Since it is difficult to measure specimens with such

low temperatures on the rock-generator type megnetometer (because the

specimens become heated quite easily), similar experiments have not

been performed with the Triassic rocks included in this report.

Tests made by D. Greenewalt, using the astatic magnetometer, indicated

that the hematite may have been contributing to the remanent

magnetization.
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Krynine (1950) regarded the Triassic red beds as sediments

derived mainly from red soils produced by weathering of the silicate

rocks in the source area. Thus, the red color is of primary origin

and represent~ physical and (or) chemical deposition. Reinemund (1955)
found these conclusions to be in general agreement with conditions

observed in the Deep River basin of North Carolina.

11. Stability of lv1.agnetization

The fact that many of the rocks show a uniformity in direction

of magnetization indicates some degree of magnetic stability over a

long period of time. Of course, the geologic corrections gave

evidence that most of the rocks have been stable since deformation.

That the magnetization remains stable over short periods of time was

confirmed by repeated measurements of some of the specimens w~ich

had been stored with their magnetic axes oriented in random directions.

Some of the rocks were unstable in the presence of the earth's

field. In most cases the unstable components could be removed by

a.c. field treatment; some specimens acquired IRM components in times

comparable to the measurement time (10 min.) and, therefore, it was

not possible to obtain accurate results. These samples represented

a minority however and in most cases they were not included in the

final results.

The relative instability of the Nova Scotia and Connecticut Valley

igneous rocks, when subjected to a.c. fields, suggested that these

results may not be reliable. In contrast, the Pa - Va igneous rocks

were verJ stable and their results were in good agreement with the

results of the sedimentary rocks.
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12. Magnetic Reversals

Many of the sedimentary rocks were magnetized in a Northerly

direction with a mean downward dip. Considerable scatter ~ms present

in the remanent magnetization of some rocks, however. In general, the

scatter was downward and confined to a plane vrhich contained the

direction of magnetization of the stable rocks and the direction of

the present earth's field. ~fuen given an a.c. field test many of the

scattered remanent vectors moved toward a reversed direction.

Although the tests were not concluSive, due to the upper limit of the

a.c. field intensity, the reversals appeared to be slightly less than

180 degrees.

Reversals were found in most of the sedimentary formations, but

there were no cases where both normal and reversely magnetized

specimens were found uithin the same outcrop. During the a.c. tests

the remanent vectors of some specimens were deflected in a direction

perpendicular to the plane of scatter; in this case the magnetization

was considered to be normal.

There are several reasons for believing that the reversals were

caused by a physical or-chemical effect of the type envisaged by

Neel (1949, 1952), and were not due to a reversal in the main

geomagnetic field.

1. The revers2.1s occured throughout the Triassic rocks, but

there was no evidence of rocks with a stable, reversed

magnetization. Many of the normally magnetized rocks

showed no influence of the present earth's field and

were quite stable in a.c. fields; i.e., some of the

New Jersey sediments.
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2. l\ianyof the rocks vuth normal magnetizations were

scattered in a nearly reversed direction. Conversely,

many of the reversed rocks were scattered toward the

normal direction. Thus, the earth's field was not the

only factor influencing the scatter; the reversal

mechanism seemed to have some influence, also.

3. Two minor points, vlhich mayor may not have a bearing

on the issue, are:

a. Reversed rocks generally had a weaker intensity

of magnetization. ''Illy should the reversed

field always be ,."ea.kerthan the normal

geomagnetic field?

b. No reversed and normally magnetized specimens

"Tere found within the same outcrop.

Clegg, et al, found the same pattern of scatter in the English Triassic

rocks, and apparently there was no physical difference in the reversely

or normally magnetized specimens. Ii'orthe most part they ,vere non-

committal on the reversal issue.

luthough the above points suggest a reversal in the rock itself,

the evidence is certainly far from being conclusive. At present, the

issue is still open to further criticism.

13. Comparison of Pole Positions

fig. 11-10 ShOvlS the Triassic pole positions that have been

determined by other investigators. The pole positions determined from

United States rocks are slightly southw"est of the final pole position

given in this report.
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Poles No. 48 and 49 include results from 'the igneous rocks of the

Connecticut Valley. Since these rocks are considered to be unreliable,

it is safe to assume that these poles are unreliable. Pole No. 50,

determined from the Brunswickian formation in New Jersey, is in good

agreement with the results reported here for the same formation.

Pole No. 51 (Springdale sandstone) has the same longitude as the pole

position given in this report; the latitudes differ by about 10

degrees.

With respect to the Triassic pole positions as determined from

English and United States sedimentary rocks, the longitude difference

is somewhat less and the latitude difference is som81vhat more than

than previously thought to exist. For a comprehensive discussion on

the relative significance of the pole positions, as regards continental

drift and polar wandering, the reader is referred to an analysis by

Irving (1959).

14. Conclusions

One very important result that became evident by this survey

concerned the relative values of the igneous and sedimentary rocks for

paleomagnetic determinations. The sediments gave fairly consistent

results whereas the igneous rocks did not. For the reasons given in

Part II, it was assumed that the igneous rocks were not as stable as

the sediments, and hence their results were not included in the final

analysis.

The pole positions given in Fig. 11-10 led Du Bois, et al (1957)
to conclude that (1) small samplings CCln be quite reliable, and (2)

results from both igneous and sedimentary rocks laid down at the same
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time are in agreement. Concerning point (1), it is noticed that the

difference between the pole position (determined from United States

rocks) given in Fig. 11-10 and the pole position determined from this.

survey, is about half the difference between the English and the

United States pole positions. For this reason the author feels that

small samplings can also be misleading. That point (2) is in error

is obvious from the pole positions given in ~'ig. 11-9.
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lUJPENDIX G: IGNEOUS AND SEDINENTlffiY ROCK DATA

The remanent magnetization data for the igneous a~d sedimenta~J

rocks is contained in Table G-l and Table G-2. The follovrl.ng

information is given:

Outcrop No./ average intensity of a.c. demagnetizing field,

when used, e.g., NS 4/20 Oe.

No. specimen designation; core-specimen

D.M. - Direction of magnetization; declination is east of

north, dip is positive dOvffiward. \Vhere two directions are

given for one specimen, the flrst is the original direction

of remanent magnetization and the second is the direction

after a.c. demagnetization.

I Intensity of remanent magnetization to tviO signifi-

cant figures (cgsu/cc).

N. Pole North seeking pole of a dipole field that

would produce the average direction of ma~~etization in

each core. The longitude is east and the latitude is

positive north.
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T.ABLE G-l

IGNEOUt) ROCK DATA

No. DeL Ixl04 N. Pole No. D. M. IxlO4 N. Pole
NS 2&3

2 27 52t 28.0 69t 71t 1Lv-1 24# 65t 3.4 198 83t
3-1 22t /JJ~ 7.5 83 65 25t 71 1.3

2 22~ /JJt 9.3 2 1~ 46 ;"9
3 22t 45 8.1 2t 46t 1.5
4 23t 1$ 8.1 3 16~ 47 4.5

4-1 35 57t 10.0 47 73t 338 44t 101
2 34t 58 9.2 15-1 9t 41 3.5 168 77*

5-1 37 50 li.O 52 66 352t 52 1.8
2 37 50t 11.0 2 10 47t 3.8
3 37 51 11.0 360 47 1.1
4 38t 53 10.0 3 340.t 55 4.2

6-1 1# 44 7.8 99 68 338t 50 0.84
2 1# 45t 7.7 4 3# 84 3.9
3 16 45t 9.3 13 43t 1.0

7-1 34t 60 5.5 57 75t 16-1 71 46t 5.2 7t 55t
2 Zit 56 6.0 46t 61 3.1
3 29~ 53 6.0 2 51 J{;. 5.0
4

~
60 5.1

3ftt 48 1.4
8-1 47t 6.9 8~- 69 17-1 35t 7.2 156t 59t
9-1 29 51 4.2 68 70 3J.6 31 6.4

2 26t 51 4.6 2 346t 36 7.2
346 27 5.6

3 350i- 38t 7.7
354 30 5.8

NS 1/20 Oe. 4 346 36t 7.3
10-1 26 45 6.6 152!- 6# 344t 31t 5.5

351t 39 4.6
2 2Jt 45 6.5

335t 31 4.6 NS 5/20 Oe.:3 24t 42 6.7
351 34 4.3 18-1 356t 56 22.0 126 70

11-1 328t 53t 506 . 132 70 2 9t 47 25.0
6t 43 2.8 3 ot 51 24.0

2 310 61 6.1 4 359 49 24.0
341 26 4.7 19-1 300i 31 16.0 194 30

3 6t 44 6.3 2 297 34 13.0
13 /IJ 2.6 20-1 280r 5'S! 17.0 213t 26

12-1 ~t 65 5.6 265 7ict 2 288t 57 21.0
67t O.~ 3 288 56 20.0

2 5It 6Oj- 5.7 4 285t 56 22.0
357t 63 1.8 5 282 56 22.0

13-1 99i- -28 6.7 34 -lot 6 28# 58 20.0
2 103 -Zl 6.7 7 287t 56 22.03 100 -21 6.5 8 281t 57t 21.0

96 -30 4.9
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No. D. M. IxlO4 N. Pole No. D. M. IxlO4 N. Pole
21-1 34?k -2:7 11.0 132 44 NS 7/10 Oeo

350t 13 7.1 29-1 69~ 66 8.2 30 622 358t -69 26.0
3M3 4 7.3 60t 58 6.3

3 328 -64 39.0 2 70fi 63 7.3
345t 8 6.6 50~ 59 6.5

3 ' 291- 65t 12.022-1 358~ 53 11..0 105 68 2

12~ 48t 7.7 33~ 64 9.4
2 353 48t 16.0 4 14- 71 702

M3~ 65t 6.110~ 46 8.5 5 51t 56 8.623-1 36~ 35 18.0 71 L.8t 51t 53t 6.02 :'25t 37 14.0 6 39~ 61 8.024-1 24t 60 9.1 87 66 4# 63 5.723 44 6.3 7 50t 6# 8012 23 57 7.9
25t 47 6.1 45} 61 5.5

8 50t 67 7.93 18 59 9.1 30-1 344t 66t 6.6 l81t 744 15 54 11.0
5 8t 51t 13.0 344 61t 5.3

15t 1$ 8.4 2 325t 66 6.2
6 10 52 13.0 349t 63Q- 5.8

13t 43t 8.0 3 332t 74 7.0
25-1 315t 34 16.0 181 41t 336t 67t 5.4

314 33 14,0 31-1 61t 74 4.4 282 80
2 321 27t 1500 307t 83 3.2

317t 36 18.0 2 Bot 78 7.3
3 314 33 19.0 36t 77t 1.4

313 37 17.0 3 87t 76 8.3
26-1 353 59 50.0 92 7# 42t 69~ 3.4

352 57 15.0 4 ~ 78 8.2
2 355t 57t 6300 144~ 83 ~1

355t 5'4- l~O 5 9~- 73 7.9
6 ,:89~ 84t 8.1
7 322 -15 7.3

321t 66 3.4
NS 6 32-1 481- 57 6.4 23 55¥692 57 5.427-1 339 55 8.9 164 65 2 44t 61 7.1

2 330t 57 8.6 56t 51t 5.3.3 331t 56 9.2 3 47t 66 905
4 337t 60 9.8 LJ.t 6# 6.8
5 331 59 9.0 4 6# 65 S.3
6 352 61t 8.5 57 64 5.9
7 347 57t 8.8 5 69t 65 6.8

28-1 16~- 59 7.3 125 73 6# 65 5.2
2 15t 55t 8.7 6 51t 66 6.8
3 9 57 8.9 7 59t 64t 6.14 .348t 60 8.3 8 7.3t 66 6.5
5 343t 65 8.9 33-1 33 75 8.6 96 80t

7t 59:! 9.1
2 63;t 74 9.2

9t 65 7.3
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No. D. Me Ixl04 N. Pole No. D. M. Ixl04 N. Pole
33-3 102 76 lloO NS 9

352t 64 709 40-1 33~ 48 8.2 36t 57t
4 Illt 75 9.7 41-1 27t 54t 1.4 29t 66~

9)- 61 7.2 2 24t 53t 1.4
5 102t 68 9.5 3 20t 56 1.6

31 64t 6.3 42-1 16t 51t 4.3 4St 70t
6 121t 77 8.9 2 20t 50 3.7
7 7# 73 9.0 43-1 2l 52 3.2 40t 68t

34-1 182t 64 15.0 307 4 44-1 lot 60 5.4 355t 81~
174 44 2.9 2 21 62 5.32'

2 172~ 113 16.0 45-1 359/r 65 5.5 316 85
154 66 2.9 2 358 59 6.0

3 aot 52 12.0 46-1 37t 61t 2.7 6 61
170 51 3.6 2 4J.t 6# 2.9

4 174.t 33 5.5 3 22t 61 3.4
155 51 6ct3

5 169t 72t 5.9
150/r 68 1.9

NS 10
47-1 30 53 19.0 42t 64t

NS 8/100 Oe. 2 28 52 16ctO
48-1 30 54k 12.0 40 68

35-1 l31 -11 11.0 60 63 2 24 55t 12.0
30t 60 1.6 49-1 33 51 19.0 41t 63t

2 346t 45 3.4 2 28~ .51t 18.0
32 44 0.83 3 31 54 18.0

36-1 265 17t 12.0 14# 68t 4 29t 52~ 15.0
at 70i- 1.3 5 28,t 53 15.0

2 26* 18 13.0 50-1 26 61 12.0 49 7}~
344 51 0095 2 17t 50~ -17.0

3 259t 19 12.0 3 21t 53 14.0
207 54 0.88 4 10 58 16.0

4 262 18~ 13.0 51-1 20t 55! 15.0 47 72
357 35 0.70 ~ 52-1 25 58 12.0 35,t 70t

5 249i- 18 15.0 53-1 30t 57t 15.0 31 67
37-1 2411 81 2.1 66 82t 2 28t 59 16.0

8 68 0.47
2 271~ 80 1.8

23t 68t 0.42
3 177t 76~ 1.2 NS 11/15 De.

15 66t 0.29 54-1 7t 68t 19.0 19 4738-1 327t 73t 1..0 197 77 50 56 11.0342 62t 1.6 2 359 66 18.02 335t 78 3.7 44 57 11.0323 83t 1.1 3 7t 62 17.03 3ut 71 5.5
351t 64 1.5 50 55 10.0

55-1 17 64t 14.0 34 6239-1 322t 51 3.9 138 67t 26 55 10.0
355t 52 1.7 56-1 8 66 11.0 20 682 322t 63 1..1 16 62 5.8349 48 1.8 2 11 70 13003 31St 64 3.7
347 52 1.6 1St 59t 5.5
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No. D. Me IxlO4 N. Pole No. D.M. Ixl04 N. Pole
56-3 354 68t "9.6 72-1 30t 43 500 51 ' 60l8i 64t 5.6 2 30t 42. 5.1
57-1 8 68t 9.7 1% 78 .3 28 46 5•.3

9 6# 5.2 73-1 2fr} 44t 6.5 55 61t
2 11 71 8.8 7ir1 34 43 7.7 48t 58

6 58'~ 5.l 2 30! 45 7.7
58-1 352 69t 8.2 11 75 3 29t 44 704

9 6.3l 500 75-1 25 49 603 52t 66
59-1 3l8t ~t li.O 32 69t 2 28t 50 5.81St 54 3.0 3 2# Li3 6..3

2 322 64t 8.6
16 62 3.0

60-1 43 64t 8.2 17 67
32 62 3.6 M 6/10 Oe.

2 26 67 11.0 39-1 1~ 11 9.0 45~ 43!-14t 6# 5.4 18 3~- 8.03 17,t 70 8.5 2 1~ 12 90723t 59t 4.5 19t 5 8.9
40-1 16t 18 8.2 41 45

17 10 6.9
NS 12/20 Oe.

2 18 19 9.1
17 8 800

61-1 344 44 18.0 151t 67 41-1 27 6 1100 50t 40
2 345t 43t 20.0 23t - 3 8.7

62-1 337 52t 10.0 174 68t 2 22t . 8t 9.2
2 338 52 11.0 25t - 7 9.0

63-1 33# 47 5.2 171 63t 3 24 5t 1000
61.-1 224 34 6.7 310 81 24t- # 9.3

331 69 2.4 42.-1 14 11 14.0 58t 49
2 137 69t 6.5 15 -11 14.0

33 66 2.1 2 12t lOt 16.0
65-1 302t 62 8.2 213t 67 11 2 l200

324 614- 4.0 43-1 22 5t 9.7 51 ItOt
2 298 52 6.5 21 ~ 4 9.1

329 62 ,"0 2 26t 6t 10.0
66-1 349 52t 22.0 173 67 27 - 5 803

336 50t 6.6 44-1 19! - 3t- 15.0 64 41
67-1 352 64t 14.0 157 73 20 -14 12.0

349 52t 1...6 2 2l-5t 15.0
2 357 62 14.0 22 -17 12.0

343~ 50 4.1 45-1 18 It 7.2 59 43
16t - 8 5.4

2 28 -6 8.2
21t -10 6.4

NS 13 46-1 26 38t 27.0 33t 45
68-1 26 49 3.3 50 64t 15t 17t 9.6
69-1 30t 45 3.1 50 60
70-1 26t 45 4.4 5# 62~-
71-1 30 44 6.7 50 58

2 31t 42 6.5
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No. D.M. IxlO4 N. Pole No. D. M. Ixl04 N. Pole
M7 C 1/50 Oe~

47-1 10 28t 10.0 33t .5.# 1-1 20 67 20.0 34 614-
2 19~ 30t 9.1 4t 56~ 6.748-1 358 53 11.0 242t 50t 2 12 61 17.0

49-1 4 25 7.9 62 66t 2 54 4.4
2 1 13 5.9 2-1 28 51 18.0 59 57l50-1 359 56 15.0 340 45 17 39t 4.5

2 39 49t 19.0
5t 38t 500

3-1 52 44 15.0 4lt 46M8 5 33~ 200
51-1 196 13 4.2 275 -38 2 57 43 1~0
52-1 269 -18 18.0 198t 0 57 43 3.3
53-1 23t 33, 4.2 53 461- 4-1 24 57t 17.0 35t 50

2 30 29 5.0 22t 51 200
54-1 12 33 8.6 65 55t 2 28t 48 19.0
55-1 338~ 52 10.0 73 81 28t J.j!, 2.6
56-1 81t

'1.. 0.60 355 12t 5-1 276t 51t 34.0 33t 53t732 19 53 3.22 106 52 1.2 6-1 22 56 19.0 60 5957-1 91 74 99.0 298'~ 38 9 40 2.4
7-1 324 62 9.8 58 63t

4 44 5.6
M9/50 De. 8-1 23 46 20.0 34~ 6st

2 '56 609
58-1 26 40 6.3 59~ 48t

27 25 3.9
59-1 22t 31 7.9 75 49

18 27t 6.2 C 2
2 3# 1St 8.9 9-1 7t 19 605 81 5It24 8 6.2 2 20t 7 l2.060-1 30 27 8.0 6.3 44

29 1'4- 6.8 10-1 15 16 2.4 7St 53
11-1 25 24 503 59 5061-1 87t J(J 4.2 66 39t 12-1 1 46 60S 68 7329 9 3.4 . 13-1 13t 39 7.8 6oi- 63t2 87 25t 3.7

31t 5t 304 14-1 17 25 16.0 70 55t
62-1 22 66~ 9.0 31 64

l7t 56 6.1
63-1 95 57'~ 7.8 31 37t

C 3/150 Oe.36 J2, 3.4
2 106 4lt 8.6 15-1 350t 22t 5.6 153 7960 26 2.9 338 52 407

64-1 68 37 8.4 38~ 37t 16-1 67 -29 11.0 21 63t46 24 3.1 23 59 3.1
2 72 40 8.0 2 20 74 2.2

48 34 2.9 19 60 3.1
65-1 73 59 14.0 23 36t 17-1 173 73 4.5 338 72

56 46 4.7 358t 71 4.2
2 65 57t 13.0. 18-1 7 69 12.0 31<Jt 54

53t 44t 3.7 5 83 5.1
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No. D. M. IxlO4 N. Pole No. D. Me IxlO4 N. Pole
19-1 175 50 602 9 78 P 9/50 Oelt

158 64 2.7 '~-1 27 59~ 907 53 67t20-1 274 47 9.6 337 74 30t 54 6.3358 71 3.4 69-1 352 57 1600 1'4- 63t2 273 58 10.0 342 49 9.4354 70 3.8 70-1 350 56~' 12.0 138t 62
344 4~! 602

71-1 305 78~ . 18.0 134t 67
c 4/100 Oe. 349t 51 6.8

72-1 332 58t 809 138 63t
22-1 8 24t 4.1 75 50t 345 47 5.8

14 15 3.3 73-1 348 51 11.0 J33 62?r
2 12 23 4.1 347t 43 6.8

17t 1St 3.0 74-1 338 51 10.0 138t 62
3 J2 26 4.2 344 '4- 5.9

19 16t 3.0 75-1 350 ~1t 5.4 144 67t
23-1 J2t 37 3.9 81 55-t 345 4.6

11 22 2.5
24-1 10 43t 3.9 76t 5lt

17 19 2.2 P 10/50 Oe.
76-1 ot 40t 5.8 ill 63

359 41 4.8
P3 2 359 ~.~ 5.2

358t 41 4.6
21-1 11 39 9.2 no 63t 77-1 356 '43~ 4.0 11# 63t
22-1 12 46 7.0 118 67 357 42 3.4
23-1 26 42 7.1 86 69 2 357t 44 3.2

2 25 4# 6.3 357l 42 2.9
24-1 26 46t 5.0 91 71 78-1 354 35t 7.4 115 59t
25-1 24 45 8.9 100 7,* 356t 34t 6.4

2 18t 47 7.8 2 35# 35t 6.8
26-1 22 1+2 8.3 93:r 66 356 34t 6.1

2 20 42~ 7.8 79-1 354 40t 2.9 113 62
27-1 26 37 6.9 82 6# 357 40 2.6
28-1 28 40t 7.3 . 82t 67 2 358 ~t 3.7

2 25 40t 6.9 359 40t 3.4
80-1 341 37 6.5 1J3 64

357 41 6.1
2 346i 40t 5.8

P 6 358t 42t 5.1
47-1 354 35 60.0 ll5 6J.t

81-1 338 41 9.3 122 63
353 41 6.32 359 33 55.0 82-1 326t 40t 7.9 ]35 6348-1 354 36 52.0 120 6ck49-1 358t 38 14.0 112 64 349 44 5.6

50-1 350 32 0.22 125 58t
2 333 44 7.7

51-1 350 35 0.36 126 60 343 46 5.7
52-1 356 45 6.3 121t 67t 83-1 338t 50 li.O 109 67

1* 46 6.0
81,-1 3531 49 6.6 118 65

356t 44 5.1
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No. D. M. IxlO4 N. Pole No. D. M. Ixl04 N. Pole
P11 P 16
85-1 353~ 5# 3.9 132t 71 125-1 322t 1+2. 13.0 153 47t
86-1 348 58 2.5 143 6% 126-1 312 44t 1800 163 45

2 348 531 3.6 127-1 330 44 16.0 145l 51
87-:;J. 354 52 4.4 129t 69t 128-1 316 43t 18.0 160 46
88-1 360 53~ 2.1 117~ 7l:~ 129-1 338t 44 11.0 137 53
89-1 343 61t 3.7 159 71 130-1 348 71t 12.0 136 71
90-1 352t 57'~ 3.8 137 72
91-1 355 53! 500 132 72

2 354 59 4.3 V 1/20 Oe.92-1 353 wt S.o 142 74
1-1 351 39~ 6.4 122 61

7 38 L..2
2-1 23~ 50 14.0 122 66t

P 14/S0 Oe. 15 LJ. 11.0
103-1 16 37 2.5 0/7 63

2 '19~ 47 12.0

8t ilJ 2.9 lot 43 10.0
3-1 41 35 15.0 83 662 13 34 3.0 28 34t 6.49' 35t 2.62 1,-1 6 36 2.8 115 5et3 12t 33it 2.9

10 ilJ 2.6 3t 27t 2.5
104-1 300 38t 2.1 111 63 5-1 7 30 26.0 107 61

lot 31 16.02 38t 2.2 2 7 28 24.02 358t 35 2.6 12 .29~ 16002 37 2~9
105-1 1~ 4# 2.4 91t 65 ,,6-1 359t 42t 6.3 125 62t

9 38 1..220 43 2.4 2 352t 1$ 8.22 27t 39t 2.6
6].-38 2.3 4 J.Ot 4.4

2 7-1 1 L.2~ 10.0 120t 61106-1 2t 32 2.3 lloi 61t 6t 32 5.7
358t 35 2.5 2 352t 46t 8.72 1 31 3.0

3t 31t 2.5 5 38 4.7
8-1 360 47i 11.0 117 63t107-1 9 ilJ 2.4 9St 63 10 36t 60814 39 2.3 .

2 17t 34t 2.7 9-1 349 47 8.9 147 59

12t 38 2.4 ot 44 4.8

3 8t 33~ 2.9 2 355 45 8.2
352 47 5.210 33~ 2.4 10-1 10 38 7.4 115 61t108-1 7t 30t 2.4 101 60 7 3# 4.86t 32t 204 2 6 37b: 7.9

109-1 7.t 35 2.7 112t 59 11 32t 4.2
358t 33t 2.5 11-~ 339t 50 12.0 152 4~2 356~ 30t 3.1 336t 40 6.6354 31 2.5

3 3 34t 3.2 2 337 46 1200

6 31 3.5 343t 40t 6.6

110-1 16 37t 2.3 93 63t
12-1 332 51 1000 14# 57

353t 43 5.4
lot 37'i- 2.2 13-1 at 53! 11.0 13# 652 12t 34 2.6 8 46 64.012t 37'~ 2.2

3 15 111 3.1
~ 204



135

No. D. Mo IxlO4 N. Pole Noo D. M. Ixl04 N. Pole
14-1 2t 38 25.0 119 . 62 48-1 339~ 62 11.0 156 . 76k-

7 3.3 21.0 352 56~ ~5
2 328 44 28.0 2 355 65 7.B

8 38t 11.0 2t 50 4.5
15-1 359 43 11.0 129 62 49-1 46 49 8.9 65 80t

4 ~~ 5.8 26 49 A.5
2 358 44.! 8.6 2 42 51 8.6

4t 39 5.1 2# 50~ 4.7
50-1 12t 72t 5.1 188 85

19~ 60 1..5
V 5/20 Oe. 51-1 101 75 7.1 268 60i

81 75 4.6
38-1 351 28t 5.9 125 58 2 46 76t 803

351 21t 3.8 28 73 504
39-1 3 40 4.3 127t 72t 52-1 99 66 7.3 350 82

355 44~ 3.3 38 59 4.7
2 14- 38t 5.0 2 76 6<Ji 6.7

5 40t 4.2 31 56t 4.6
40-1 325 53~ 4.2 182 52 53-1 66 43t 5.7 1 59~

320~ 47 2.6 50~ 39 5.4
2 329 55 403 2 75t 51~ 7.0

327 52t ~'.3~0 71 53-t 5.3
41-1 332t 36 4.5 157'~ 57 3 .68 51~ 6.0

334 3~- 3.4 50t 52 5.2
2 339 45 4.1

339~ 41- 3.5
42-1 341 51 3.9 183 55

328 51t 3.4 tv 12
43-1 298 58t ~~6 187t 56 91-1 143 53 1.4 very unstable316 51'2 2.7 92-1 148 7 0.622 30~ 55 3.2 2 30B 25 2.434ll set 2.8 93-1 334 28 1.944-1 320 44 1.8 184 51

328 46t 108
2 322 45 3.9

3IB! 53t 3.9 .
45-1 312 60 4.1 195t 471;;

321 53 4.1
2 304 60 2.6

310 59i 2.6

V 6/20 Oe.
46-1 34~ 59 7.9 130 78

355t 55 505
2 16 56 5.6

2l~ 42~ 5.0
47-1 20t 61t 6.6 71 85

24 55! 3.9
2 6 63 805

2J~. 52~ 5.5
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TABLE G-2

SEDI~illNTARY ROCK DATA

No. D. M. Ix105 N. Pole No. D. N~ Ixl05 N. Pole
M 1 29 350 70 5.0

1 broken 30 71 5Ei 7.6
2 360 43 1.1
3 J2I 40 1.7 M 5/20 Oe.4 2 48t 1.7
5 2 50 1.7 31-1 339t 55 0.64
6 354 51t 2.4 5 45 0.57
7 #40 1.7 2 354 5# 0.62
8 7 50 2.0 0 42t 0.61

3 8 55 0059
358 49t 0.57

32-1 357 52 0.57
-'M 2 2 356 1# 0.54

9 3t 3~ 2.6 33-1 lot 50 104
10 354 53 2.1 6 53t 102

11 359t 4S 3.5 2 6t 52t 1.3
12 broken 6~ 55t 1.0

13 7t 56 2.4 3 352 72 1.7
344 63 1.1

4 17 .50t 1.2
5t 51 1.1

M3 34-1 4 55 1.6
2 ot 50 2.0

14 355 30 1.5 3 1 56f 1.7
15 345 1.$ 0.87 4 358 56 1.8
16 342 59 0.96 35-1 350 57t 106
17 3AB 52 1.2 2 347t 56t 1.7
18 351 4# 1.5 3 354 56 1.8
19 1 50 1.3 36-1 346 58 1.7
20 358 52t 2.1. 344 59 1.6
21 351 58 1.2 2 6 59! 1.5
22 351 47t 2.0 346 &J 1.6

3 354 61 1.7
342 59 1.6

37-1 358'~ 6J~ 2.4
M4 2 360 66t 200

23 332 64 3.4 3 It 61 1.7
24 347t; 55 1.8 4 8 61 1.9

5 7t 60 1.625a 3~ 59t 2.3 38-1 359t 54 1.625b 33# 59 2.2 357 56 2.1
250 343 60 2.3 2 14 55! 1.6
25d 345t 58 2.3 4 53 1.826 349i 4* 1.5 3 7t 50t 1.927 342 65t 2.2 2 53 2.2
28 330 68t 1.9 4 10 65t 1.7

2 59 2.2
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No. DoM. Ix105 N. Pole No. D. M. IxlO5 N. Pole

M ll/50 Oeo 25-1 1St .46t 3.1 gO 65
74 1St 67 1.1 2 17 33 ~2

6 54 0.79 26 12 52t 2.7 85 75
75 40 28t 1.6It 57 0.91
76 14 39~ 1.8

2 5# 1.3 J4
77 15 64 0.85 27-1 347 44 0.71 168 53t

16 62 0.62 2 295 45 0.94
28 333 31 16.0 147 50t
29-1 336 2l~ OGt49 140 44

J 1
2 335 8t 0.49

30-1 335 42 0065 136 52
i 350 ItJ 7.4 131 65t 2 3.46 14 0.53
2 4 35 3.9 loot 65 31 26 66 1.3 49~ 79
3 4 34 2.4 100~ 6# 32 18 67 3.0 66 81t
4 359 22 509 108t 57
5 358t 33t 3.0 111 62
6 7t 28t 2.6 93t tot
7 360 38t 108 109 66t P l/50 Oe

1. 12 36 2.2 113t 65
6 42~ L7

J 2
2 _356 43 1.7 130 68

3t.52 1.8
.8-1 32 40 3.0 63 65 3 16 38t 2.1 119t 6#

2 10 43t 2.4 3t 43t 1.8
9 28 4# 2.8 51 64 4 357t 49t 0.94 122 63t

10 7 53 2.6 90 77 1t 43 0.87
11 43 42~ 2.9 ..-:.3# 54 5-1 51- 38t 1.3 91 58

" .. '

12 17 29~ 2.9 76 59 13 30 1.5
13-1 28 39 2.5 56 59t 2 8 LJ. 1.4

2 28 36 2.8 13t 29 1.6
14 2t 2~ 2.1 102 61t 6-1 31 63 1.3 80 75t
15 9 39 2.} 89 66 3~ 45t L1
16 g,t 1;2 2.2 89t 69 2 35 58 105
17 36~ 40 3.1 43 56 27 63 1.4
18 broken 7 50 67t 0.61 88 77t

28 57 0.35
8 44 67 0.63 83t 72t

26 51 0.33
J 3
19 28 47 4.0 55t 66
20 35 45t 3.8 45t 61t P2
21 355t M:> 5.0 124 70
22-1 broken 9 17 33 0.57 83 66

2 t1 10-1 19 43 0.58 104 69
23 355 4% 3.2 130 71t 2 359t 32 0.51
2~1 lit 65 2.6 70 87 11-1 349~ 42t 0.56 119~ 70

2 15 6&} 206 2 17 39 0.63
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No. D. 1-1. Ixl05 N. Pole No. D. M. Ixl05 N. Pole
12-1 too weak and unstable P8

2 " II " It .58 2l7t 13t 0.52 234 -28t13 tt Il It U
59-1

193~- 8 0.41 255 -3314 II " 11 tt
2 198 24 003615 5t 47t 0.27 127 74 60-1 213 17 0.59 237, -2916 20t 56 0.28 90 84 2 214 12 0.5717 339 53 0.20 172t 60 61 283 39t 0.45 191 20t18 13 53 0.54 118 81 62-1 335 to 0.45 182 49b;19 12t 46 0.58 103 75 2 304 56 0.5120 353 41 0.88 140 65 63 322t 73t 0.56 196b; 56

64 276 47 0.56 10/1 21
65 205 3 0033 21$ -.38
66-1 272 61t 0039 205 .31P4 2 278 66 0.57

29 67 35 68 0.35 146 88
30
31
32 too weak and unstable~
33 <1 x 10-6 Pl2
34 93 208 - 6 200 246t -4135 94 228 -lot 207 223t -33!36 95 346 69 0.58 179~- 77

96 247 66 0.76 245 16
9? broken
98 238 - 3 102 217 -24P 5 99 238 -22 LA 209 -31

37 353 61t 1.5 1~ 55t 100 284t 6 2.8 184 10
38 354 49 1.2 135t 5~
39-1 13 4lt 2.1 109 57

2 13 43 2.7
.40-1 20t 38 105 9# 58 P13

2 27 4J.t 108 101 352 59 1.4 140 73tLJ. 15 59~ 1.4 131~ 63 102 347 40 1.3 138 6642 30~ 52 105 103 66
4.3-1 31~ 45 1.6 95t 64

2 31 52 1.8
44 31t 50 1.9 99 65 P 1545-1 .32 46t 103 95t 64

2 .30 50 1.4 111 too weak
46 13t '4- 103 1l0~ 58 112 6 64 0.50 212 86

113 47 42 0.21 26 53
114 333~- 65 0023 207t 65
115 265 33 0.14 208t 7

P7 116 250 59~ 1.5 230 14
117 34 45 0.23 40 64. 53 270 58 0.17 203t 1St 118-1 354 68 0.63 239~- 6454 21$ 42 0.28 210 0 2 305 81t 0.7555 310 58 0.17 187 .38 119-1 215 8t 1.0 224 5t56 274 L{l 0.10 196 13 2 296 66 10457 17 34 0.18 96b; 65 3 281 55 102



139

No. D.M. IxlO5 N. Pole No. D. N... Ixl05 N. Pole
120 346 514- 2.0 171 71 Md 3
121 264 58 2.:5 222 20
122 200 -22 3.6 253t -56 26 19t sat 0.42 89~ 67t
123 169 lit 2.0 298 -iJ. 27 360 57t 0.46 117 65
124 187 8 2.1 'Z74 -1,,4 28 333 -24 0.46 1.30 lot29 34# 2% 3.5 112 51

30 7t 49~ 3.0 102 61t31 352 37t 2.3 119t 53
Md 1

1-1 343 62 1.0 110t 6CJt2 343 65 1.0 V2
3 343 66 1.1

2 353 54 3.9 104 63t 16-1 359 38t 3.5 132 58
3-1 3'Zl 50 3.0 130 62t 2 359t 40 3.9

2 342 56 2.9 17 360 36Q- 4.5 128 58
4 352t 42 2.5 108 57 18 8 35t 4.0 117 61
5 3~ 5# 2.0 wi- 63t 19 2 'Zl 6.7 li5t 55
6 352~ 31j- 3.7 110 51 20 2 ~ 7.8 140~ 61t
7 359 48 3.5 98 59t 21 4 32 50.3 117t 58
8 21 65 1.0 63t 65t
9 ok 54 1.9 94 62t

V3

Md 2 22-1 203 54t 0034- 250 -25
:2 184 29 0.39

10 18 32 2.9 75 61~- 23 1Sl3t 23 0057 248 -37
11 9 2# 3.2 91 58'~ 24-1 17St 12 100 270 -42
12-1 7t 16 2.9 95 58 2 174 14 1.1

2 6 30 2.7 25 195 74 0.33 236 7t
13 359t 37t 2.5 lilt 63t 26-1 189 28 0.94 254 -37
14 1t 20 3.0 113 56t 2 194t 22t 1.2
15-1 16t 3It 1.8 75! 60t 27-1 243t 4J. 0.41 217 -13

2 1St 29 1.9 2 228 38t 0.45
16 broken 28-1 195 5l:t 1.1 242 -22t
17 13 26 6.1 85 58t 2 202t 32' 0.83~
18-1 5~ 31 2.1 93~ 63 29-1 217t 27 1.4 230 -25

2 11 33 2.1 2 216 LJ. 1.2
19 9~ 32 1.9 90 63
20 14t 37t 1.9 81 65t
21 5 34 1.8 100 63
22-1 13 29~- 2.3 86 60i V4

2 11 27t 2.5 30 71 68t 0.82 279t 6223-1 20t 362" 2.1 73~ 63 31 205 20 2.2 242t -342 18 35~- 2.5 32-1 88 55 1.8 323 65
2/.J. 4 25 3.1 99t 59
25 8 25 2.8 93t

2 45 57 1.5
59 33-1 17t 46 1.5 li5 77t

2 24 50t 1.6
3iv-1 37t 52 1.2 li5t 83

2 17 51 1.1
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No. D. M. Ix105 N. Pole No. D.M. I:x105 N. Pole
35-1 358 67~ 0.70 144 77 75-1 lei 3 200 80 I$t2 26 38t 1.1 2 11 9 1.6
36 20 53t 1.5 147 79 76-1 156 38 1.6 313t -1537-1 34 1$ 2.6 66 80t 2 140 43 1.4

2 32t 49 2.8 77-1 104 72 0.55 330 LJ.t2 85 69t 0.71
77a-1 110 114- 0078 355t - 52 107 16 0.74

V7
.54 71;;32t 5.3 94 69

55 3 Z7 9.1 103 65 V 1056 357t 33 5.5 118 68
57 18 31 2.7 68 66 78 348 to 1.0 98t 71t58 12 49 3.4 76t 80t 79 15 37 1.8 184 61
59 3 Zl 4.7 103 65
60 18 ~ 3.2 62 73

Vll

V 8 80-1 28 36 2.3 56t 63
2 2# 35 1.9

61 67t 56 0.70 357 5# 3 27t 31 4.3
62-1 43 47 0.56 30t 59r 81 24 28 5.7 64 60~-

2 45 42t 0.63 82 17t 25 1.9 75 Eo
63-1 36~ 36~ 1.0 J$ 59 83 19 8 605 73 51

2 33 34 0.73 84 352 31 6.7 127 ~
64 154 49t 0.50 296 - 5 85 10~ 15t 5.1 87 57
65 J.o~ 49 0.55 34 65 86 14 30 5.3 81 64
66 36 57t 0.55 27 74t 87-1 22 22 7.1 67 58
67 36 53 0.53 34t 70 2 22t 23 6.9
68-1 1# 52t 0.67 66~ 76 88-1 22 35 4.1 55 62i

2 29 51t 0.32 2 32 31 4.2
69 69 67 0.39 336 62 89-1 16 30 107 81 64

2 12 210\- 1.56;,

90 24 36 2.0 60 65

V 9
70-1 38~- 53t 0074 22 67t tv 122 3~ 60 0.72
71-1 281~ 45 0.41 207t 35 9~1 282 - 2 1.5 180 - 1t

2 285 53! 0.44 2 286 - 4 1.8
3 303 66 0.59 95-1 119 20 3.7 19'7t 37t

72-1 2l 53 1.1 68 79 2 126 31t 2.7
2 20 57 1.0 96 316 50t 1.8 331 -1%
:3 5 56 0.96

73-1 358 52t 1.3 '17 83
2 8 56k 1.5
3 24t 65~ 1.8 V1374-1 3~.# LJ.t 1.6 140t 65 972 350t 39 1.7 98

99 weak and unstable
100
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No. D. M- In05 N. Pole No. D. M. Ixl05 N. Pole
V 14 V18
101 360 49 0.74 13nt 55t 126 122t 36 0.51 32# 14t
102-1 1 42t 1.6 124 57 127 150 -13 2.8 319~ -37t

2 12 52t 1.7 128 346 Z7 0.72 128 51
103-1 7 82t 1.1 164 60~ 129-1 200t 11 2.7 249 -4J.

2 21 67 1.7 '. 2 201t -13 6.3
104-1 45 68t 1.4 147,t 69 130 359 66 1.9 160 67t

2 28 66~ 1.4 131 Z72 60t 1.7 195 29
132-1 239 32 2.3 217t - 92 219 31 0.80
133 319 70 1.6 181 52t

V 15
105 broken106 NC 1

1-1 187t 35 1.7 276 -47
2 197 38 1.5

V 16 2-1 189i 16t 1.8 269 -38t
107 26 53 1.9 103 76 2 201 41 1.2
108-1 2lt tIJ 2.7 141t 75 3 71t 55 1.0 353t 26

Lr1 196 17~- 1.3 263 -422 15t 62 3.1 2 195t 22 1.0109-1 13 59 2.4 154 70t 5 19~ 17t 104 260 -40~2 lit 63t 2.8 6-1 183 27t 0.'l7 278 -41110 19t 59 3.1 134 75 2 189t 25 1.3111 .3L.Ot 56 5.3 161 57
112 16t 37 2.5 93t 64 7-1 185 16 1.3 277 -35
113 358t 61t 3.0 158t 65t 2 186t 18 1.2
114 11 7 3.7 84 49-~ 8-1 174 15t 1.6 290 -47
115 3t 58 3.3 147t 68t 2 179 18 1.1
116 354t 68t 2.5 173~- 64t

NC 2

V 17 9-1 1$ 7t 16.0 35 3#
117 352 47 4.6 138t 58 2 46 7 15.0
118 3L.Ot 47 2.4 1L.8 52t 10 7t - 4 5.2 87 57
119-1 189t 38t 4.3 249 - 6 11-1 356t 2t 4.7 102t 63

2 358 4 4.92 177t 48 5.1 12 29 -10 6.2 61~ 45]20 170t 1.$ 2.8 257t 2t 13 346 11~ 0.61 128 67121 12t 46 1.3 113 65t 14 22}-10 4.3 74 IIJ122-1 40t 16 4.9 46 44t 15-1 31 - 3 3.1 57t 462 14- 13 5.3 2 26 - 7t 3.8123-1 3 44t 3.2 120 62
2 6 41 3.4 16-1 10 - 9 7.7 88 54

124 It 53 1.6 13~ 63t 2 8 -11 7.8
125 20t 52 3.8 110 70t
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No. D. M. Irl05 N. Pole No. D. M. IrlO5 N. Pole
NO3 NO 5
17-1 332t - 6 6.1 120 59t 37-1 162t &>t 1.1 274 -37

2 3t 9i 6.3 2 1CJl 27t 1.1
18-1 15# - 3 3.9 326 -57t 38-1 205 33 2.1 271~ -iIJ

2 155 - 5 ~5 2 164 4# 2.1
19-1 153t - 3t 3.5 328t -57 39-1 160 49~ 103 288t -33

2 152 - 6 3.3 2 178t 49 1.7
20-1 102 17 3.9 5 -tt 40-1 176 39~ 2.3 274 -i;fJ

2 95 23 3.7 2 194 40 1.8
21-1 51 35 4.4 18t 32 41-1 219 32t 0.69 241 -31

2 1$ 33~" 2.7 2 215 4J.2 0.66
22-1 16 - 4 5.3 73 53 42-1 241 75 0.38 245~ 6

2 14t 3 5.6 2 274 67 0.50
43-1 178~- 52!- 0.70 273 -15

2 Z76 83 0.73
44-1 53 59~ 0.48 300 -lot

NO 4 2 181 43 0.90
23-1 37 55t 0.40 348 6ti 45-1 224 56 0.45 251 -13

2 229t 69~ 0.332 '6 52t 0.40 46-1 174 28t 0.88 279t -42-24-1 43t 20it 1.0 31 45 2 187 45 1.12 36 21 106 47-1 202 34 0.90 245t -2525-1 129 9 5.4 345l-30~ 2 21;7"t 59 0.572 129 5 5.0
26-1 105 23 0.89 353t - 3t

L.8-1 7 69 0036 248 21
2 98 28 0.92 2 289 55 0.50

27-1 279 8 4.2 191 9
2 277 6 404

28-1 54 26 0.84 8 41t NO 62 1;0 55 0.67
29-1 319t 51t 0.33 20It 70 49 6t -14 5.4 90t 55t

2 31$ 4l 0.62 50 6~-- -16k- 4.6 92 54
30-1 172 14 0.91 292 -50t 51 4 -ll,t 5.3 9# 57t

2 173 11t 0.72 52 4 - 9 6.1 93t 58
31-1 177~ 29 0088 279 -37t 53 3 -8 5.3 95~ 58t2 194 50 0.77 54 1~-9t 503 98t 58"2-
32-1 289 41 0.63 233t -17t 55-1 357 - 7t 502 106~ &>t

2 193 16 1.0 2 357 - 4 3.6
33-1 302 43 0.82 181t 56 56 355 - 4 2.6 III 61

2 31;0 25 1.0
34-1 227 75 0.74 285 -13

2 143 70~ 0.89
35-1 176t 2 3.1 290t -58 NO7

2 172t 4 2.7 57-1 220 20 0.63 234 -1136-1 65 76 0.94 303! 13 2 308 56t 00532 158 73t 0.65 58-1 51t -49 0.95 15 -51
2 67 -49 0.90

59-1 303 87 0.50 262 ot
2 255 60 0.71

60-1 248t 38t 1.7 226~ - 9
'2 2&> 41 103
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No. D. M. Ixl05 N. Pole No. D. M. Ixl05 N. Pole
61-1 259 50t '0.43 228t - 1 Ne 9

2 265 45 0.65
62-1 205t 21t 2.2 246~ -45 74-1 357 - .3 1•.3 92 57

2 208 1~ 1.8 2 3~t # 1.4
63-1 .30.3 37,t 0.94 206~ 28 75-1 2r 2.3 141 55

2 314 34 0.73 2 32Sf 4 2.1
64-1 29 72 0.42 310 7t 76 5 - 3 1.3 92~ 55

2 126 70 0•.33 77 16~ 14t 1.1 64 57
78 355 2 1.2 109 59
79 broken
80 9 10~ 1.4 77 5~

Ne 8/550 Oe. 81 10 II 1.5 72t 59

65-1 142 2~ 1.3 268t -46
178 29t 0.98

2 1iJ. 38t 10.3
198 29 1.1

66-1 5i- 55 0.75 267 -32t
208t .36 0.58

2 1 62 0.98
161t 6.3 0•.39

67-1 214 7# 1.0 255 -45
1.38 57 0.18

2 202 62 1.1
228t 1.3t 0.66

68-1 26~ .39i 0.84 284 -37t
177 2l 0.28

2 29t 50t 0.96
164 72t 0.35

69-1 303 78t 0.jJ) 323 -25
not .32 0.69

2 343 55 0.67
155 47t 0.52

70-1 352t 22t 0.88 267 -26
.332 74t 0.18

2 337~- 38 0.59
182 20 0.64

71-1 21 46t 0.53 29# 25
110 54 0.21

2 l7t 36 0.55
332 57t 0.38

72-1 175 ~t 0.56 259~ -/let
200 32 0.57

2 200t 50 0.44
1.89 20 0.51

73-1 320 73t 0.76 303 -q
165 28 0.17

2 250 74 0.59
151 42t 0.39



APPENDIX H: COI\1MENTS ON PROCEDURE AND CONCLU~IONt)

1. Rejection Criteria "for Sedimentary Outcrops

The final analysis of the sedimentary pole positions did not

include the data from many of the outcrops. These outcrops were

rejected on the basis that they contained unstable components of

remanent magnetization which could not be removed with demagnetizing

fields as high as 550 De. Several of the magnetic vector demagnetiza-

tion paths for some of the igneous rocks are shown in Part I. It is

noticed that the magnetic vector generally moves in a given direction

during the demagnetization procedure until the unstable component has

been removed. ~urther demagnetization causes the magnetic vector to

vary randomly about an average direction. The magnetic vectors of

many sedimentary outcrops also moved in a constant direction during the

demagnetization procedure. However, after demagnetization in fields

as high as 550 Oe, many of these showed no tendency to vary randomly,

indicating that part of the unstable component still remained.

As an example of this behavior several of the magnetic vector

paths for outcrop number NC 8 are plotted in fig. H-l. The initial

direction is given, as well as the directions after demagnetization

in fields of 250 Oe and 550 De. Intermediate values of the demagnetiz-

ing field fell along these paths. Although the vectors seem to be

moving toward the same area it is clear that further demagnetization

is required. Hence, when the magnetic vector continued to move in a

given direction after the application of 550 Oe demagnetizing fields,

the outcrop was rejected.
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Even if larger demagnetizing fields had been available it still

may not have been possible to remove the unstable components because

the magnetic intensity was approaching the limit of the instrument
( -6. I ) -7 I2.5 x 10 cgsu cc for 10° accuracy. Also, in the 10 cgsu cc

range, the magnetization may not be meaningful (see ~agata, 1953).
Table H-l contains the original direction of magnetization and the

direction after demagnetizing in 250 Oe and 550 Oe fields, respectively,

for several samples from each outcrop. Those outcrops which were

rejected because of the above criteria are marked vuth an asterisk (*).

2. Influence of Earth's Field

The average direction of magnetization for each outcrop is shovm

in Part I. It is possible that the present earth's field (or axial

dipole field) has influenced the direction of magnetization of some of

the outcrops. This is evident in Part II where it is noticed that

several of the circles of confidence include the magnetic dipole axis.

It is doubtful, however, that this influence has affected the results

to any extent.

The geologic attitude of the beds unfortunately displaces the

original average magnetic vector of many outcrops toward the earth's

field. However, there is no general tendency for anyone geologic

formation to show consistent influence of the present earth's field.

Fig. 11-8 indicates that the geologic correction has brought the average

directions of magnetization together. Many of the circles of confidence

that included the earth's field before correction did not do so after

correction.

The rejection of several outcrops from the final analysis eliminated

most of the earth's field influence, although perhaps not all.



Ta.b1eH-1
SEDIMENTARY DEMAGNETIZATION VALUES

No. D. M. No. D. M. No. D. M.
M 5 30-1 335 42 54 248 42

33-3 352 72 340 45 221 35
10 69 330 41 206 25

354 73 56 274 42
35-3 354 56 P 1 246 34

12 49 1 12 36 228 17
5 52 2 44 P 8*38-4 10 65 1/2 11 3223 56 2 356 43 62-1 335 60
9 60 1/2 359 40 273 28

5 45 266 - 8
J 1 7 50 67 1/2 64 276 47
1 350 40 48 60 263 27

352 47 44 70 256 2
328 39 67 35 68

4 359 22 P 2 346 79
355 20 9 17 33 271 64
1 22 13 29

16 35 P 12*
J 2 16 20 1/2 56 95 346 69

11 43 42 1/2 2 60 297 55
44 44 15 49 280 26
39 1/2 42 20 353 4l 96 247 66

13-2 28 36 349 47 251 43 .
26 32 354 42 254 10
21 34 1/2 100 284 1/2 6

14 2 1/2 29 1/2 p 5 283 -13
7 24 37 353 61 1/2 288 -36

11 27 1/2 10 59 P 132 1/2 58
J 3 41 15 59 1/2 101 352 5921 355 1/2 46 28 51 358 54354 42 23 44 334 47359 47 44 31 1/2 50 102 347 4026 12 52 1/2 25 45 345 3215 56 27 52 359 3313 50 46 13 1/2 44 1/2

14 50
J 4 15 42

27-1 347 44
350 40 P 7*
348 45 53 270 5829-1 336 21 1/2 232 55345 25 205 40342 27



No. D. M. No. D. M. No. D. 1'-1:.
P 15* 19 2 27 V9*
116 250 59 1/2 358 25 71-1 281 1/2 453 29258 50 21 4 32 302 54263 35 10 33 332 55119-1 215 8 1/2 2 39 73-1 358 52 1/2

208 - 8 358 42
194 -22 V 3* 359 31

120 346 54 1/2 76-1 156 38
343 54 22-1 203 54 1/2 126 65
339 1/2 55 112 191 38 54 66

186 20
Md 1 26-1 189 28 V 10*

186 13
78 348 602 353 54 185 1

359 56 29-1 217 1/2 27 319 53
355 45 196 28 282 40

4 352 1/2 42- 178 20 79 15 37
2 47 359 40

356 41 V 4* 336 39
6 352 1/2 31 1/2

358 40 31 205 20 V 11
357 29 208 61

5 79 81 24 28
Md 2 32-2 45 57 20 32

62 56 23 34
10 18 32 42 51 84 352 31

15 35 35-1 358 67 1/2 2 34
17 29 6 55 1 29

14 1 1/2 20 14 42- 88-1 22 35
358 19 19 40

3 22 V 7 20 32
17 13 26

14 24 54 7 1/2 32 1/2 V 12*
11 32 358 35

94-1 28216 27 - 2
Md 3 57 18 31 260 -22

21 40 234 -24
26 19 1/2 58 1/2 15 39 96 316 50 1/2

16 64 59 3 27 270 66
17 56 1 22 216 54

29 344 1/2 29 1/2 9 28
350 27 V 14
351 34 V 8* 101 360 49

31 352 37 1/2
67 1/2

15 47
348 42- 61 56 2 54
355 39 50 47 103-1 7 82 1/2

38 31 24 61
V 2 64 154 49 1/2 5 57

18 8 35 1/2
138 49
107 42-10 40 69 69 67

7 38 50 56
39 40



No. D. M. No. D. M. No. D. M.
V 16 12 29 -10 56 355 - 4107 26 53 34 - 6 356 -10

34 58 15 2 358 - 2
27 54 14 22 1/2 -10

III 340 1/2 56 24 -15 NC 7*
2 43 17 - 4 57-1 220 202 49 206 16114 11 7 NC 3* 195 1215 34 .18-1 154 1/2 - 3 60-1 248 1/2 38 1/22 37 li8 2 218 4l85 7 192 32V 17* 20-1 102 17 62-1 205 1/2 21 1/2

117 352 47 81 28 195 18
359 40 60 28 187 10

3 31 22-1 16 -4 64-1 29 72
121 12 1/2 46 13 8 171 70

12 35 11 22 182 40
10 24

124 1 1/2 53 NC 4* NC 8*
7 44 23-1 37 55 1/2 65-2 14l 38 1/210 36 22 46 161 3212 32 178 29 1/2V 18* 32-1 289 4l 68-2 29 1/2 50 1/2

126 122 1/2 36 298 12 52 70
148 27 309 - 8 135 72 1/2
172 19 34-1 227 75 72-1 175 48 1/2

128 346 27 208 68 190 42
336 67 229 48 200 33
194 69 36-1 65 76

131 272 60 1/2 12 64 NC 9
222 60 358 42 75-1 333 1/2 2 1/2189 40

NC 5* 340 5
342 1/2 -19NC 1* 38-1 205 33 77 16 1/2 14 1/2

1-1 187 1/2 35 198 28 14 19
189 29 189 26 19 1/2 20
184 16 40-1 176 39 1/2 81 10 11

3 71 1/2 55 180 31 5 6
110 62 183 19 9 15
162 46 47-2 247 1/2 59

6-1 183 27 1/2 216 52
184 19 200 39
187 6 NC 6

Rejected from*NC 2 49 6 1/2 -14 final analysis
10 7 1/2 - 4 8 -15

348 -10 5 - 4
.2 -12 52 4 - 9

6 - 5
7 -15



With the Massachusetts sandstones the situation is very different.

All of the outcrops seem to have been influenced by the earth's field.

Also, the geologic correction displaces the magnetic vector directly

away from the average direction of the other formations. ,It'inally,the

probability that the iron in the sandstone was derived from the Deer-

field Diabase further suggest that the magnetization may be later than

Triassic.

3. Reduction of Scatter ~ Geologic Correction

It has been stated in Parts I and II that the geologic correction

has reduced the scatter among the average outcrop directions within

most of the areas. As evidence of this, the circle of confidence for

95% probability has been calculated for the average direction of

magnetization of the outcrops before and after geologic correction.

Only those outcrops which were included in the final analysis have

been used. This data is given in Table H-2.

The lack of significant variations in the strike and dips within

the area tends to minimize the influence of the corrections on the

scatter. It is noticed, however, that the outcrops with the smallest

circles of confidence show a better reduction in scatter than those

with large circles of confidence. This point is not demonstrated ~~th

statistics but can be inferred from the illustrations in Part II.

In the igneous areas, only Nova Scotia showed an increase in

scatter with correction. So was the case with the Maryland-vlest

Pennsylvania sediments. However, both of these increases of scatter

were less than the corresponding decreases of scatter in the other

areas. Also, note that the overall influence on the sediments from the

four areas was a significant reduction in scatter.



Table B-2
INFLUENCE OlF GEOLOGIC CORRECTION

Area e95 (Original) e95 (Corrected)

Igneous N. S. 80 8 3/40

Mass. - Conn. 18 1/20 16 1/40

Pa. - Va. 8 1/20 7 1/20

Sed. N. J. - E. Pa 13 1/20 90

Md. - W. Pa. 8 3/40 10 1/20
Va. 14 1/20 130

N. C. 170 12 1/20
Avg. (sed.) 90 6 1/20



BIBLIOGRAPHY

Since most literature on rock magnetism is relatively easy to

find, the bibliography includes only those articles which are

directly concerned with this report. Several selections are

particularly worthy of mention, however, because of their extensive

coverage of a topic or because of their comprehensive bibliographies.

They are: Nagata (1953), Watson and Irving (1957), Rimbert (1958),
Irving (1959), and Thellier (1959).
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