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Abstract

A review of the present theoretical understanding of the linear stability of internal

m ° = 1 modes is presented and its connection to phenomena observed in toroidal mag-

netic confinement experiments, i.e. "sawtooth" and "fishbone" oscillations, is discussed.

Particular attention is devoted to the analysis of non-magnetohydrodynamic (MHD) ef-

fects, such as those due to finite diamagnetic and electron drift frequencies and ion Larmor

radius, and to the special role played by energetic particles (whose response is wholly ki-

netic and which can stabilize these modes).
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I. Introduction

The initial discovery [1] of so-called "sawtooth" oscillations in toroidal experiments in-

dicated the presence of a cyclical process in which the steady rise in intensity of x-rays

emitted from the center of the plasma was interrupted by a sudden drop in this emission,

indicating either a rapid cooling of the plasma center or an expulsion of the hot core.

Following initial work on ideal magnetohydrodynamic (MHD) instabilities [2] in which

the existence and accessibility of neighboring equilibria were proved, and in which it was

shown that these unstable modes would be too weak to explain the experiment, Kadomtsev

proposed a complete reconnection model [3] in which a resistive m ° = nO = 1 instability

displaces the center region of the plasma (defined as the region within which the magnetic

winding index, q(r) = rB,/RBe falls below unity; B, and Bo are the toroidal and poloidal

components of the magnetic field, respectively) leading to the crowding of flux surfaces on

one side, the creation of a magnetic X-point, and the eventual breaking and reconnection of

magnetic field lines. An intermediate state exists in this picture, consisting of a displaced,

though still circular, hot core and a cool island partially surrounding it. It is followed by

the expulsion of the core and re-circularization of the flux surfaces. In his model, Kadomt-

sev gave an estimate for the time required for complete reconnection, r 7/ arRR/c2 VA,

and a diagrammatical prescription for determining the radial profile of the reconnected

flux, given the initial profile t0(r). Above, we denoted by VA = B;/V/4rnmj the Alfv6n

speed, r the radius of the singular surface where q(r) = 1, R the major radius, while

a = 1/ is the parallel electrical conductivity. While providing a plausible scenario of the

sawtooth crash, Kadomtsev's model could at best only give order of magnitude estimates
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for the relevant time scales.

The first derivation of the linear growth time for resistive m ° - 1 instabilities,

TR THE, /3 where r = R/VA is the hydrodynamic time and = 7c-rH/47rr,

was given by Coppi et al. [4]. Later [5] they showed how finite ion diamagnetic frequency,

wdi, effects could further increase this characteristic time: rR* w2irHE 1. Much exper-

imental evidence has accumulated since these early papers, indicating that the sawtooth

crash involves both the central electron temperature (inferred from electron cyclotron emis-

sion, ECE, interferometry) and the electron density (inferred from millimeter-range wave

scattering measurements), as shown for instance on JET by Campbell et al. [6]. When

the pre-crash density profile is rather fat, as happens in Doublet-III, the sawtooth is de-

tectable also in the electron density, though it has much smaller amplitude than that in

the temperature [7]. The detection of density crashes gives preference to models (including

Kadomtsev's) in which the physics of the sawtooth culminates with the expulsion of the

central plasma core.

With the advent of large high temperature experiments with sophisticated X-ray to-

mography, new evidence has come to light, which casts doubts on the applicability of

models that depend exclusively on resistive reconnection to produce the sawtooth. The

first critical piece of evidence involves the relevant time scale: in JET [8] the central plasma

core is initially displaced sideways and then redistributed poloidally in a very short time

scale, r ~ 100-200 ptsec. While the initial motion is consistent with an m ° = n o = 1 per-

turbation, the time scale is much shorter than the simple resistive time, rR 400 ssec, and

an order of magnitude smaller than the growth time predicted when diamagnetic effects
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are included, TR -' 10-30 msec. This latter time is predicted by linear theory [5 to be the

relevant time for instability. Note that the observed time is commensurate with the linear

growth time of an ideal instability, r C(R/r,)2 TH (where we assumed that r a/b/3.

a and b being the horizontal and vertical minor radii, respectively), provided the constant

1/Co which represents how far the plasma is above threshold, is assigned the value 0.1.

There exist measurements in at least two experiments that indicate that the threshold for

ideal-MHD instability may indeed have been surpassed. In neutral beam heated experi-

ments on Doublet-III [7], giant sawteeth with inversion radii r/a = 0.4-0.5 were observed

in conjunction with poloidal beta, tep = 8r << >>/B2(r = a), reaching values of 0.7.

In the experiment JIPP T-II, both Ohmic and neutral beam heated plasmas were found [9]

to achieve values p- = 0.6-0.7, where now =[-87r/B2(r = r,)] fo8 dr(r/r,)2 (dP/dr) is

computed in the manner appropriate for comparison with theory [10]. If we adopt the quan-

tity AH = (37r/2)(r,/R)2 [ -/3p2c] as the parameter relevant to ideal instability, estimate

pc - 0.25, r = a/3, and rp = -(dlnP/dr) - = a/2, we obtain: AH ; 5 10 - 3 > WaTH/2.

This tells us that the experiment on JIPP T-II operated at a value of ,3p that was sufficient

to overcome the FLR stabilization of the ideal m ° = 1 instability, since the dispersion

2 + 2 o .relation for ideal modes is [5]: w e -WWdi + AH/r~ = 0.

A second critique of the complete reconnection model comes from the topology of the

island, inferred from both soft X-ray tomography and ECE diagnostics. Both Edwards

et al. [8] and Westerhof et al. [11] conclude that, in JET, a complete sawtooth collapse

involves a stage in which a displaced hot core has deformed into an island that partially

surrounds a new cold core. This is in complete contraddiction with the picture presented by
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Kadomtsev 3 as discussed at the beginning of this section. Note that WNesterhof et al. 11i

as well as Campbell et al. [12] mention the possibility that, while Kadomtsev's complete

reconnection model appears to fail for full sawtooth crashes in JET, it may correctly apply

to partial sawteeth for which the magnetic topology indicates a cold island (cf. Figs. 1

and 2 in Ref. [11]). For partial sawteeth, a "crash" time is difficult to obtain from the

time trace of the signal (e.g., Fig. 1(a) of Ref. [11] and Fig. 3 of Ref. [12]). Often,

in these cases, the amplitude of the successor oscillation is initially as large as the crash

itself. There is evidence [12] that partial sawtooth collapses actually form a spectrum

of phenomena whose characteristic time can be very rapid ("fast" partial sawteeth) or

much slower ("slow" partial sawteeth), while full sawtooth collapses are always fast (e.g.,

Fig. 1 of Ref. [12]). The-two main differences between full and partial sawteeth, apart

from (possibly) island topology and time constants, are the amplitude of the successor

oscillation relative to the size of the crash (the ratio is much smaller for full sawteeth than

for partial sawteeth) and the return of the hot core to its initial central position in the case

of partial sawteeth (in the case of a full collapse, the deformed hot core flows in the poloidal

direction and establishes a ring of warm plasma). The topology of the deformed magnetic

surfaces is, at the time of this writing, an unresolved issue. Contrary to the JET results,

experiments in TFTR [13]-[14] seem to indicate the presence of a displaced hot circular

core, surrounded by a crescent shaped cold island, in most cases. Thus, one is tempted to

attribute the observed difference in topology of the reconnection process to experimental

factors, such as circular vs. D"-shaped equilibrium flux surfaces [J. F. Drake, private

communication, 1990]. Until an experimental campaign of careful comparison between
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the two experiments is conducted and/or a statistical data base of island topologies is

assembled, this question will likely remain unanswered.

One last detail worth discussing is the role played by finite diamagnetic frequency

effects. From our expressions for and T R*. and the corresponding estimates for the JET

experiment, it is obvious that the presence of wdi is a major cause for discrepancy between

theoretical predictions and the observations. Since wdi oc dP/dr and the sawtooth collapse

is likely to flatten the pressure profile inside the q(r) = 1 surface, one is led to believe

that finite-wdi must act as a barrier against the initial trigger for the crash, though not

necessarily influencing the crash itself (e.g., fast nonlinear growth once the threshold for

instability is surpassed [15]). There exists at least partial evidence of this barrier from

ASDEX [16] and JT-60 [17] where a strongly peaked electron density profile (due to pellet

injection) was seen to suppress sawteeth and/or lengthen the period between sawteeth by

an order of magnitude. Also, a series of reconstructed soft X-ray profiles in the Tokamak

de Varennes [18] over a time span At ~ 0.1 sec clearly shows the rotation (in the poloidal

direction) of the hot core, suggestive of diamagnetic or E x B rotation. Extremely clear

examples of precursor oscillations in JET (cf. Fig. 4 of Ref. [6]) are the most direct

evidence of finite wdi, while the presence of strong postcursor' oscillations after partial

sawtooth collapses [12] indicates that the pressure profile within the q(r) = 1 surface is

not always completely flattened.

In this work, we consider the status of our present theoretical understanding of saw-

tooth oscillations, within the context of the linear instability of an m ° = n = 1 per-

turbation (so-called internal kink"). Such an oscillation has been detected, at times [6],
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preceding the crash itself; hence the name "precursor oscillation". We will mostly confine

ourselves to cases where the magnetic shear is finite; this is the situation that has been

studied the most. Some remarks on low or zero shear models are made in the conclusions.

In Sec. II we review the basic theory which employs the two-fluid equations of Braginskii

and which is applicable to low temperature Ohmic experiments. The different roles played

by electrical resistivity, ion diamagnetic frequency and collisional viscosity, and electron

drift wave frequency are pointed out and the principal method of solution (involving gen-

eralized Fourier transforms) is described. Extension of the fluid theory to low-collisionality

regimes, where finite electron iertia becomes a dominant contribution to Ohm's law, is

also discussed. The generalization of the theory to kinetic regimes is detailed in Sec. III

where finite ion Larmor radius (FLR) and electron kinetic effects are considered; these

regimes are reached, e.g., in high temperature experiments in large machines with rela-

tively low density, such as JET and TFTR. The consequences of having an energetic species

of particles in the plasma are discussed in Sec. IV. Among those are the stabilization of the

ideal and resistive internal kinks (sawtooth-free regimes which were first termed "monster

sawteeth") and the production of so-called fishbone oscillation bursts". Our conclusions

and discussion of open questions follows in Sec. V.
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II. Fluid Theory

II.1 General considerations

If one considers a current carrying plasma in the cylindrical approximation where

B= B(r)e + B(r)eo (II.1)

and computes the change in potential energy due to an ideal-MHD perturbation, one finds

(see, e.g., [19]):

W = 2 [4(r) dr + g(r) 2 (r) (11.2)

where is the radial component of the Lagrangian displacement; a minimization with

respect to the other two components has already been carried out, yielding conditions for

incompressibility (V. =0) and decoupling the perturbation from the fast magnetosonic

mode. The expressions for the two quantities, f and g are (for the special case where

~exp(iO - iz/R)):

r3 F 2

f(r) 1 + r2 /R 2 (II.3)

9(r) - r 2/R 2 [87r 4 +rF2+2 r /R 2(1 - 2)] (II.4)
1 + r 2/R 2 [ dr + 2/R2 

where we defined q(r) = rBz/RBe (the cylindrical equivalent of the magnetic winding

index defined in the introduction) and F = k B = -Bz/R+Be/r. The first term within g

represents the contribution of the pressure gradient to interchange-type modes, the second

is the bending of the magnetic field lines (a stabilizing effect), while the third drives the

internal kink unstable in a zero-f plasma when q(r) < 1. The important point, here, is

that g(r) is of order E2 F 2 where e - r/R and, thus, toroidal effects (themselves of order

C2 ) will play an important role. The change in potential energy in toroidal geometry has

8

__ M --



been computed, e.g. in [10], [20], where it was shown that the instability requires pressure

gradients in excess of a critical value (cf. our expression for AH in the introduction) that

is largely dependent on magnetic shear.

Since g(r) E2 F2 while f(r) F 2 , it becomes obvious that the displacement which

minimizes the change in potential energy (and is therefore favored from an energetic stand-

point) to order , is one with zero derivative in r everywhere except at r = r where F(r)

vanishes. Thus the solution is constructed [5] as follows:

= o +2 e2 (r) (II.5)

where, in the region r < r,

= = const.; d 2
5Wmi (r) (II.6)

dr , r3 F 2E2

while, in the region r rs

dC2 bW,.i,~(r r)(I.7~o = 0; dt2 = 6Wm(II.7)
dr = or 3 F 2 2

Near r = r we have F(x (r-r,)/r,) oc x and the solution in the ideal-MHD region can

be written as:

,AH
C(r) = CooH(-x) + H (II.8)7rx

where H is the Heavyside step function and

7rSW. i,(r = r),H=X n6mi( = (11.9)
[H [oBOrdq/dr]2

This solution is actually valid only for Ixl > A > 0, and one must match it to the solution

within the inner layer, jx < A, which is non-singular. This solution is provided by a
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more complete formalism, e.g., the two-fluid resistive description of Braginskii [211, which

we consider in the remainder of this section. Note that, at this point the solution in the

ideal region becomes the driver" for the unstable mode (represented by AH) through the

matching condition.

We refer the reader to Ref. [5] for an original statement of the problem; here we simply

sketch the derivation. Within the inner layer, one can neglect toroidal effects. However,

inertia, electrical resistivity, and other non-MHD effects are important. Considering a

cylindrical geometry for this layer, the plasma equation of motion reads:

at + (Vi V)Vi] =-Vp-V. 7r +J x B (II.10)

where p - nimi is the mass density, p = Pe + pi = n(Te + Ti) is the pressure, 7r is the ion

stress tensor, and J = en(Vi - Ve) is the current. Ohm's law is written as:

1Vp
?)llJll + 7lJ± = E + - (V x B) + P`

+ -VllTe (II.11)
e

where the parallel direction is with respect to the magnetic field, a = 0.71 is the thermo-

electric coefficient of friction (from electron-ion collisions).

The thermal conductivity is assumed low enough so that the temperature evolves

through:

3n a+V.V)T+pV.V=0 (II.12)

for electrons and ions.

This set of equations implicitly assumes that the following inequalities hold:

Vei > W; kIljVTe/Vei < 1; pi/A < 1 (II.13)

10



where VTre = v2Te/me is the electron thermal velocity, vei the electron-ion collision fre-

quency, Pi = VTi/v/'2i the ion Larmor radius, and A is the thickness of the singular layer.

Note that the parallel wavenumber is a function of position, kll(z) = F/B ~ xs(r,)/R

where s(r) = dq/dr is the magnetic shear. The modes of interest will, generally, have

frequencies that are significantly lower than the modified electron drift wave frequency,

W*e = (-n°c/enBoR)[Tedn/dr + (1 + a)ndTe/dr]. We have consulted published exper-

imental data (for TEXTOR [22], TFTR [23]-[24], and JET [25]-[26]) and obtained the

dimensionless ratios shown in Table I. We see that the first inequality is generally satisfied

(provided wI < ,e), and that the second can be satisfied in the limit of a thins singular

layer: x < A/r < 1/3 (for all cases except supershots in TFTR [24]). The third in-

1/3equality requires the situation of a "thick" layer, namely A > eC r. Since the two trends

are in opposite directions, we find that current experiments violate at least one of the last

two inequalities shown in (II.13).

The thickness of the layer is controlled by the parameter AH in the fluid theory.

When A AHr, > Pi, the ions can be treated as a fluid species while the electrons are

also fluid but obey an isothermal equation of state (instead of Eq. (II.12)) within most of

the singular layer, for the experiments mentioned above. When Pi > A, the ions must be

treated kinetically, while the electrons response can be determined via fluid equations if

the layer is thin enough. We will return to this point in the next section.

Here, we review the results obtained from the standard set of equations. Lineariz-

ing Eq. (II.10)-(II.12) as well as Maxwell's equations, and considering the limit kr, 
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r,/R << 1, one obtains a set of two coupled differential equations:

d2 d ~ _ 2 d2 (II. 4)
~Vd x- A = xWdi) - i __ d2 - A d2 4' (11.14)

it + = WA d dV (II.15)dx 2
w- c.e dx 2

Here x = (r-r,)/r, is the normalized radial variable used previously, wdi = (n ° qc/enBwr , )

(dpi/dr)r, is the ion diamagnetic frequency (we took kol = n°q/r), WA = s(r4)VA/V/3R

is the Alfv6n frequency (VA = B./47nmi), e = (x)/,oo is the normalized radial compo-

nent of the Lagrangian displacement, and 0 = iBr/s(r,)Bo(rs) is the perturbed poloidal

magnetic flux. The parallel electrical resistivity appears within c, = 1llc 2'/47rr wA (the

perpendicular component plays no role), while the ion-ion collisional viscosity appears

through v, = l/nmir2 where /zL = (3/1O)viinTi/2 is the transverse collisional viscos-

ity [21].

II.2 Limit of negligible ion-ion collisions.

Considering first the limit of vanishing ion viscosity, v, = 0, an elegant solution of the

two coupled second order differential equations (II.14)-(II.15) was originally presented in

Ref. [5]. Here we adopt an alternative approach, namely that of first Fourier transforming

these equations to conjugate space and then solving the resulting dispersion equation. This

method has the advantage of producing a single second order differential equation in the

conjugate variable, k (even in the presence of ion collisional viscosity), which is easier to

solve than the original set of equations. The concept of a generalized Fourier transform

(or, more precisely, the Fourier transform of a "generalized function", i.e., a function which

is not regular but whose integral weighted by an appropriate regular function is finite) was
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established long ago [27] and was applied to the stability of low-m ° modes by Pegoraro

and Schep [28]. The Fourier transform of Eq. (II.14)-(II.15) simply is:

d k2 1 + i k2) ,. dk]

W - Wdji22
+ -2 (w + ivk 2)k 20k(k) = 0 (II.16)

WA

where k is the Fourier transform of (x). Note that there is no difficulty with the trans-

formation of the resistive equations per se; the eigenfunction is regular and a conventional

Fourier transform exists. Indeed, the Fourier version of these equations has been known for

a long time [29]. The concept 6f the transform of a generalized function appears through

the boundary condition, obtained by matching the inner layer solution to that in the outer

(ideal-MHD) layer:

d 1\Ho
d- (z a) -- r2 (11.17)

which means that (X - oc) 1/x and the function "1/x" is a generalized function, as

defined, e.g., by Gelf'and and Shilov [30], whose Fourier transform was written down by

Lighthill [27]:

ek(k < 1/6) = - AHsgn(k) (I1.18)

Note that the transform is defined only for k2 > 1 and, hence, the boundary condition

involves k evaluated for k smaller than the inverse normalized thickness of the singular

layer, 1/6 = r,/A > 1. The solution of Eq. (II.16), in the limit , = 0, is obtained in

terms of confluent hypergeometric functions [31]:

ek(k) = ko[U(Q 62k2)-2 62k2(Q 5 62k2)] exp(2Ik2) (II.19)
4 '2 ' 2 4 '2 ' 2
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where

6 ~W W-Wdi 1/4b~ (nI.20)( A W -*e (.20)

and

Q [w(w-Wd3)(-LZ*e)]"12 (11.21)

From Eq. (11.19) we see how 1/E defines the scale in Fourier conjugate space, and, thus,

6 is a measure of the thickness of the singular layer. Applying boundary condition (11.18)

yields the dispersion relation, first given in Ref. [5]:

W(W-Wdi 1/12 AH 3 / 2 r[(Q-1)/4] 2
2w ~ " '( (11.22)L- W 8 r[(Q +5)/4]

Solutions of this equation can either be obtained numerically or, in various limits, an-

alytically. Examples of some of these limits can be found in Ref. [5] and a pictorial

representation of the various regimes of instability (ideal, resistive, tearing,...) has been

presented, e.g., in [32]-[34]. In particular, we point out a couple of regimes of importance.

First, in the ideal regime, IQI - oc and Eq. (11.22) yields the well-known solution:

w=WdjA2 w2 1 2(12)
w = 2Wdi Hi , A - Wdi (II.23)

2 / 2 

Second, in the resistive regime QI ~ 1 and we find [34]:

Q ~ 1 + 2[ (w d)y-/ (II.24)
WA

with the low frequency (wl < &*e) root

[W E i W [ + 4AH e exp(i )] (II.25)
| e r(1/4) EWA 4

indicating that the mode tends toward stability as AH becomes more negative.
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Recently, a slightly different form of this dispersion relation was written [35] by simple

re-arrangement:

Co06 = AH Q H(Q) (II.26)
Q-1

where Co 2r(5/4)/r(3/4), and

H(Q) = r[(Q + 3)/41r(5/4) (11.27)
r[(Q + 5)/41r(3/4)

This form of the dispersion relation permits far more accurate analytic estimates of the

eigenfrequency in regimes where IQI < 1, since it avoids the singularity in the r-function.

It also has the advantage of allowing a simple approximation of the dispersion relation,

obtained by setting H(Q)=1, to describe a wide variety of regimes (note that H(Q O) = 1,

while H(Q co) o 0.75). This approximate form reads:

i(W- W*e)6 = C [E, WA + i 2 (W - *e)j (II.28)

Taking IAHI << 1 yields:

EnWA + i 2 (w - (.*e) = 0 (11.29)

which can be rewritten as iEnW = (W- Wdi)(W- **), namely the well-known [5] disper-

sion relation at ideal-MHD marginal stability.

If one wants to consider modes with wl < .e, Eq. (11.28) immediately approximates

to a quadratic equation in 6 (-iE,oWWdi/wA*e),)/4, whose solution yields:

= + ( )2]1/2 + ( W,*e )1/2 AH } (II.30)
4E1?ACo 4 E,1 WA Co

where eR*- Ew3 /LodiC%*eI is the growth rate of the resistive internal kink in the presence

of finite ion diamagnetic and electron drift frequency. From Eq. (II.30), we predict that
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this resistive mode will stabilize for AH < -2Co0 v/ ,wA/W*e, a condition that is remarkably

well verified by the numerical solution of Eq. (II.26). This stabilization of the resistive

internal kink, which was suggested by Eq. (II.25), occurs at negative values of AH ( low

,/p), where the magnetic field line bending makes the perturbation energetically "costly" to

the system. In order for this mode to become stable, a finite electron drift wave frequency

(w.e) is required [35]. Although a non-vanishing ion diamagnetic frequency (Wd) helps, it

is not essential for stabilization, as was show numerically in Ref. [35].

Conversely, taking ,1WA > I62 (w - ,)I in Eq. (II.28) and, looking for solutions with

w z we (so-called drift-tearing mode [36]), we obtain the growth rate:

BY -EYDT{1-2(1Ac°) L3*e *e - Wdi)] /}
I -- IDT 1 - 2 ~~~~~~~~~~~~(.31)

where rDT -E (EiWA/2)[L*e(*e-Wd)/W]-2/3(cO/AH)4/3 is the drift-tearing growth rate.

Here also, a marginal stability condition is indicated for AH smaller in absolute value than

a critical value (cf. Eq. (II.31)) which is quite close to that found numerically from Eq.

(II.26). The stabilization of the drift-tearing mode has been linked [35] to the progressive

shielding of the perturbation within the singular layer from the ideal-MHD region, which

"drives" the instability (breakdown of the constant-sb" approximation).

A stability diagram in l. - H space, where lq* - e/1E/3WA and AH =AH/6 ,

is shown in Fig. 1; the solid curves indicate points of marginal stability, -y = Im(w) = O.

The stable region, I < 0 is located above each curve, for a given value of 1/r = -wdi/&*e.

Note, as discussed above, that finite-wdi is not essential; a stable region is encountered

(albeit reduced in size) even for r = . As can be seen from Eq. (II. 31), the drift tearing

mode has a marginal stability point even for wdi = 0 (it occurs for smaller IAH, hence
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"later" as far as the mode is concerned since we are moving inward from AH = -x). The

resistive internal kink, on the other hand, obeys:

(-iw)'1
- 3 \1/2 2i){1±1/2
( _ ( _ a /x( i ){e (AH) We exp (i-

EW*e 4 4fn WA Co 260 e? WA 4

(II.30')

for Wdi = 0, indicating that stabilization is possible for this mode as well. Note that the

characteristic growth rate scales as z', ~ 61 in this case.

11.3 Influence of ion-ion collisions.

When collisional ion-ion viscosity is taken into account (v, 0 in Eq. (II.16)), the nu-

merical solution of the dispersion equation is no more difficult than before. Unfortunately,

there exist no general analytic solutions to this equation. Viscosity represents an energy

sink for the modes considered in this section: its influence is always stabilizing. By itself,

the effect is not significant: viscosity tends to lower the growth rates of the tearing mode

(Y 3/5 AH-4/5 WA) and of the resistive internal kink ( E 3WA) when wce = Wdi = 0,

but never leads to complete stability. This was shown explicitely, e.g. in [5] and [37],

where a list of the various asymptotic regimes was presented along with the scaling of the

relevant growth rates and widths of the singular layers.

In combination with finite ion diamagnetic frequency, viscosity can be an effective

stabilizing agent for the resistive internal kink. A model dispersion relation can be written

as:

(w + iv/2X)(w- wdi) = -Aw -(5i/2)EWE /(W -. *e) (11.32)

This equation, which correctly reproduces the results for the more complete solution of

Eq. (II.16) in the limit v,, - ,oWA < AHWA < wdi, bears a striking resemblance (apart

17
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from the ,% term) to the dispersion relation for electrostatic modes in the presence of ion-

ion collisions, derived by Coppi and Rosenbluth (cf., unnumbered equation, obtained from

Eq. (34) of [38] for the case of vanishing magnetic shear). That paper showed examples

in which these electrostatic modes could be stabilized by ion-ion collisions for sufficiently

high temperatures. The stabilization criterion for electromagnetic m ° = 1 modes was first

derived [39] by direct solution of Eq. (II.16). There it was shown that stability can occur

1/3for D V m/,wA > Dcr, where Dc, < 1 when Iwdil > wAE 1 /3, and the regularization of the

eigenfunction by the presence of v, was explicitely demonstrated. A fit of the numerical

^ ~~~~~~~~~~~~1/3,results, for ,J*e = -di, in the limit of large Wdij /(WA4 1E) gives:

b cr WA )3 [ 5 vW](I.3

D__-- v , = 8 1 + - sgn(AH) (11.33)
eC WA e 8 en WA

Since D oc viiPi/i cx T, one is tempted to conclude that increasing the plasma temper-

ature would automatically lead to stabilization, when combined with finite diamagnetic

frequency. Unfortunately, this does not appear to be the case for two reasons. First, as Ti

is increased, the ion Larmor radius becomes comparable to the width of the singular layer,

thereby invalidating the fluid treatment. As we shall see in the next section, finite Larmor

radius (FLR) can provide a means to decouple the ion and electron motion in the direc-

tion perpendicular to the magnetic field. Maintaining the condition of quasi-neutrality

then necessarily requires a parallel compression of the electron fluid, i.e. a non-zero paral-

lel electric field. This provides a new instability regime for the internal kink, with a growth

rate determined by the parameter pi/r,.

Second, as Te is increased, classical electrical resistivity effectively drops out of Ohm's

law and, in its place, one must now consider finite electron inertia.
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11.4 Weakly collisional and collisionless limits

The generalized version of Ohm's law in the parallel direction reads:

4,' dJll Viipe47T~~ dJ1 1 _ V11Pe ~~(11.34)
Ell = rlllJ + w~2, dt en (II.34)

where the thermoelectric effect has been omitted, for simplicity. The new term appears

in second position within the right side of this equation, and one generally writes: d/dt =

a/at + v. V, where V is the macroscopic fluid velocity.

The effect of aJIl/8t has been considered in two recent papers [40]-[41]. In the first,

[40], the linear stability of m ° = 1 modes with Eq. (II.33) replacing the classical Ohm's

law has been examined with and without diamagnetic frequency effects. In the small

ion Larmor radius limit (and Wdi = 0), the following dispersion relation is obtained at

ideal-MHD marginal stability (AH = 0):

= v/ei 1/2
W -= (1+ L•2)1/2 (II.35)

WA Wpes "ry

In the limit of vanishing electrical resistivity, vi 0, this reproduces the result of an

earlier paper [42] where an instability with growth rate proportional to the normalized

electron collisionless skin depth was predicted. The presence of the ion gyro-radius (p, 

N/T/m/fli, which appears through the ion polarization drift) provides a new regime [43]

for the growth rate in the collisionless limit (and wdi = . = 0), for small values of IAH I:

1 1/3
If , WA - (dp?)/3 (II.36)

where d - c/wp, is the collisionless electron skin depth. This regime was first found by

Drake [43] and denoted "modified collisionless tearing". The use of Pade's expression,
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to approximate [441 the full FLR ion response by a two terms expression that correctly

reproduces the full response in the small and large ion gyro-radius limits, only changes

the above result by [40] p - p2(1 + Te/Ti). When cw*e and/or wdi are finite there exist

regimes where diamagnetic stabilization of the ideal mode is still possible.

In the second of these two papers, [41], the same form of Ohm's law has been incor-

porated in a numerical simulation of the coalescence of two magnetic flux bundles, also

for c., = Wdi = 0. The resulting collapse of the current channel into a layer smaller than

the collisionless skin depth has led the authors to theorize the appearance of a microin-

stability (the "current convective" instability) which then provides an anomalous diffusion

in the direction perpendicular to the magnetic field (this work follows an analysis [45]

in which conditions for the instability of a narrow current sheet, embedded in a sheared

magnetic field, against extremely high poloidal wavenumber micro-tearing modes were

derived). Scalings for the inflow velocity and the width of the current layer have been

obtained [41] in terms of VA, d, 3mi/me, and a (the minor radius), and a fast collapse

time (r 40 tzsec for TFTR, commensurate with the prediction of Ref. [40], cf. Eq.

(11.36)) has been predicted.

Finally, Wesson [461 has considered the other component of the electron inertia term,

namely using V VJIi1 instead of the explicit time derivative of J in Eq. (II.34). This

term is expected to be dominant in nonlinear regimes. Using a line of reasoning analogous

to that of Kadomtsev [3], Wesson shows how fast sawtooth crashes arise from this non-

classical resistivity, in situations where both the ion diamagnetic and electron drift wave

frequencies are negligible.
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III. Kinetic Theory within the Singular Layer

As discussed in the previous section, cf. Table I, present-day experiments operate in

parameter regimes in which at least one of the relevant inequalities (required for validity

of the two-fluid theory) is violated. Indeed, we have seen that the conditions for fluid

treament of electrons and ions, when reduced to conditions on the thickness of the singular

layer, can be mutually exclusive, thereby requiring that at least one species be treated

kinetically. The formal derivation of the kinetic equations for m = 1 modes is a task

rendered formidable by the fact that, unlike the case of high m ° = n°q modes, an eikonal

representation of perturbed quantities is in general not justified and the perpendicular

"wavevector" is an operator. However, if one is interested in describing the physics within

the singular region (where the eigenfunction varies over scale lengths much shorter than

r., itself smaller than the scale length for variation of equilibrium quantities), one can use

standard kinetic equations as found, e.g., in [47].

III.1 Kinetic electrons

Probably the first analysis of kinetic effects on the stability of internal kinks can

be found in [431 and [48]. The ion dynamics were computed via a fluid theory, keeping

only the E x B and polarization drifts (neglecting FLR corrections). Kinetic effects were

retained in the electron dynamics where a Fokker-Planck equation, with a pitch-angle

scattering operator, was solved. The concept of a Doppler frequency was introduced, a

frequency which reduces to WD , kl(x)VTe in the case of free-streaming (collisionless)

electrons, and to WD t kf (z)VTe/Ve in the case of parallel diffusing (collisional) electrons.

In all cases, WD appears in a velocity integral and is velocity dependent (Vre - v, ve *
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Lve(VTe/ V)3 in the above expressions). Thus, the presence of the Doppler frequency brings

about modifications to the temperature gradient contributions due to the effective drift

wave frequency we(v) = w*e6[1 - t(3/2 - v 2/VTe), where w., = (cT,/eBnr,)(dn/dr) is

the electron diamagnetic frequency, and = dnTe/dlnn is the contribution from the

temperature gradient. These modifications, in turn, cause the appearance of instabilities

of drift-tearing modes caused exclusively by VTe. It was found [43] that, apart from the

appearance of these VT, instabilities, electron Doppler (kinetic) effects have no substantial

effects for AH > (pi/r)v/T/T. The VTe mode exists as an instability in collisional

regimes, v, > Iwl, propagates with Re(w) ~ w*e(1 + 57e,/2) and requires (cf. Eq. (34b) of

Ref. [43]):

En _ 3 -rs(w (III.1)r, WA/

where d is the collisionless skin depth mentioned previously. Estimating vei > wf 3w,

this inequality requires (2r./d)(w*e/wA) > 1, which makes this mode relevant to rather

large machines (r, > 30 cm).

In the collisionless limit, the streaming of the electrons (finite Wl/kllVTe) provides an

effective longitudinal conductivity and an instability of the m ° = 1 mode is found with 

WAd/r, when both AH and w.e are negligible, cf. [42], [43], [48]. When AH is negative and

finite, weak instabilities of the "reconnecting" mode [5] appear with Re(w) w*.. In this

regime, the so-called "constant-O" approximation has been applied. This model has been

generalized to cover arbitrary values of pi /r, in [49]-[50], where a trend toward stabilization

of this reconnecting mode was observed. The opposite effect (of finite pi/r.,) was found for

the collisionless internal kink (which does not obey the "constant-O" approximation), in
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regimes where AH > 0: FLR enhances instability of this mode [511. This later study made

use of quadratic forms which employed trial functions adapted from known [421 solutions

obtained for AH = 0. This enhancement of the growth rate was related to the property

that, when IAH < pi/r., the ion Larmor radius defines the minimal size of the singular

layer where tearing and reconnection occur.

Electron kinetic effects are encountered in a sub-layer where kV~e Ve, lWI for col-

lisional regimes (e > w[), or where k(x)VTe < w(, for collisionless regimes. In either

case, kll is an increasing function of x, the distance from the q = 1 surface. This makes

a treatment in x-space the most convenient method for solution of the electron dynam-

ics (i.e., determination of the electron parallel conductivity, (x, w)). Unfortunately, the

ion dynamics are most easily treated in conjugate (i.e., k-) space, especially in full FLR

regimes. We shall return to a discussion of this rather formidable problem later in this

section.

III.2 Kinetic ions

In order to more carefully study the effects of ion FLR, a mixed analysis was per-

formed [44] where perpendicular ion dynamics were determined via kinetic theory (parallel

dynamics are neglected in regimes where jw > kVTi):

hk = k.
Db(b- kp 4/r2) (III.2)

where the subscript k indicates the Fourier transform of a given quantity and the non-local

portion of the ion response is contained within

Db(b) = + [1 - ro(b)] ' ro(b) (1 - iM) (III.3)
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where r - Te/Ti, M = b1 - I,(b)/Io(b)], r(b) = Io(b) exp(b), Io0 1 are modified Bessel

functions, and Pi = dlnT /d lnn. The electron dynamics (E x B drift perpendicular to

the magnetic field and compressible parallel motion) are assumed to be governed by fluid

equations in the isothermal limit (klVTe >> IwjLve - no electron temperature perturba-

tion):

hk = W.u ek + WA d j (III.4)
n w Te w dk

where J-- -01e(k)/VA represents the perturbation of the parallel current (related to the

electromagnetic potential through Ampere's law). Ohm's law takes the form:

I.

Enr, .WA aC D-2 _ J = (1 -w (iII.5)
r ? · w dk2 co

and Ek is the Fourier transform of the perturbed parallel electric field (Ell = -V7 -

(1/c)dAjl/dt). The resulting dispersion relation,

dk( + 1D / )d - (1 )k2( + k2k )i = 0 (III.6)- j- k- + k2k-

is written in terms of the three characteristic "lengths" in Fourier space. The inertial

length

k 2-- ~W
k -_ (111.7 - a)

the FLR length

k2 2 W_ (111.7-b)
r W-Wdi

and the resistive length

k4 iWA WW*e (111.7 - c)
l W W -Wdi
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The parallel perturbed current satisfies the boundary condition:

k 2 1 k 3

J -1- 2k~+ 3 - H 2 sgn(k) (III.8)

for k smaller than the largest of the three lengths indicated in Eq. (III.7).

The use of the isothermal approximation, kjVe/v eiWl >> 1, was made [44] instead

of the more commonly used adiabatic equation of state (cf. Eq. (II.12) and [41-[5]) in order

to describe weakly collisional regimes. Since k varies linearly with the distance from the

q = 1 surface, there will be an inner sub-layer where the isothermal approximation breaks

down. For the resistive internal kink, the half-width of this sub-layer may be estimated

to be x < xe E/6 (VA LveiR)1/2/[VTes(r,)] in the absence of diamagnetic frequency, and

Xe En1 /2 (VA/VT)(VAVe,/R)/2/[l.es(r)] when effects due to lWdiI ~ w., are important.

Note that xe oc 1/s(r,) = 1/rq'(r,), so that low magnetic shear tends to reduce the

width of this sub-layer. Formally then, one should solve the equations within the singular

layer in two domains, one where the isothermal approximation holds, and the other (the

"sub-layer") where electron kinetic effects are important, and subsequently match the two

solutions. Such an approach was taken for the drift-tearing mode [52] with w ~ .*e, for

which the use of the constant-+p approximation is justified. No such approximation can

be made for the lower frequency internal kink, and the authors of Ref. [44] made the

tacit assumption that the sub-layer was small enough that it effectively could be ignored.

Now, if x < max(1/kA,1/kp,1/kJ), this may well be a good description. This is the

situation, e.g., for supershots in TFTR and ICRH (ion cyclotron resonance heating) in

JET (cf. Table I and Refs. [241, [26]), where xe ~ 2 10- 4, while /kp 0.3 (given that

Iw << %e).
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With this limitation in mind, one can solve the dispersion equation (III.6), in the

semi-collisional regime k > (1 -. *e/w)(i - wdi/w) (1 + 1/r)k2 and for low values of ?i.

Using an approximate form for Db, valid for both small and large values of b = k 2p? (i.e.,

a Pad6 approximant), one obtains an analytic dispersion relation (Eq. (11) of Ref. [44]).

In the limit of vanishing resistivity and large gyroradius (k 2 < k ) the dispersion relation

reduces to:

W(W *e)(WWdi) = (2H)2(1 + r) P 4 (III.9)

so that an unstable mode with y = (2AHpi/lrr,)l/2(1 + r)l/4 WA appears for WdiI = 

0. For ,AHPiWA << er, the instability disappears through the same process of FLR

stabilization found originally in the fluid theory [4]-[5]. Since k < k implies Pi > AHr,

in the absence of diamagnetic effects, the growth rate is enhanced over the corresponding

value found in the small gyroradius limit (-Y = AHWA). Similarly, the resistive internal

kink appears with a different growth rate in the large Larmor radius regime [44]: =

[2(1 + r)]2/71E/ 7 (r /pi)3/7. Solutions of Eq. (III.6), using the full form of Db, confirm [44]

the overall destabilizing influence of finite ion gyroradius, establish an overall stabilizing

influence of the ion temperature gradient (i > 0) on the resistive internal kink, and

indicate that, for ri above a threshold value (approximately 1.65), a weakly unstable "ion

temperature gradient mode" appears (albeit with an extremely low oscillation frequency,

Re(w) << jwdi4).

The role of the ion temperature gradient parameter, ri, must be considered with

caution. The authors of Ref. [44] show diagrams (normalized growth rate vs. normalized

Wdi, cf. Figs. 2-4 in that paper) which indicate that a smaller ion diamagnetic frequency
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w.i oc dn/dr is needed to stabilize the resistive internal kink if i is increased: clearly a

stabilizing effect. On the other hand, the authors of Ref. [51] choose to normalize their

parameters in such a way as to maintain the zero-FLR limit of their equations invariant

to changes in, e.g., tli and r = Te/Ti. Thus they conclude that a larger total pressure

gradient, cf. their parameter f = [w.i(1 + r71)/2WA] 2 , is needed to stabilize the mode for

larger temperature gradients (the relative positions of the curves marked i = 0, 2, 4 in Fig.

4 of Ref. 51] would become reversed if plotted against = W*i/wA). Since the equilibrium

temperature gradient also affects parameters such as AH (through the poloidal beta, cf.

[10], [20]) which increases with Idpi/drl, the role of i is by no means obvious. If O is

much smaller than the critical value at which AH = 0, then AH is essentially unaffected

by hi and one is allowed to conclude, as in Ref. [44], that a smaller ion density gradient

is needed to FLR stabilize the resistive internal kink (the rest of the stabilization being

provided by the temperature gradient).

A numerical example of the behavior of the resistive internal kink is shown in Figs.

2-3. These figures are obtained by numerically solving Eq. (28) of Ref. [44], which is the

dispersion relation obtained using full ion dynamics (i.e., without Pade's approximation)

in a regime where the ion Larmor radius is much larger than the inertial width, and where

resistivity is weak (cf. Eq. (31)-(32) of Ref. [44]). From these figures, one can see the same

quantitative behavior as for the fluid theory (cf. the discussion near Eq. (II.30)-(II.31)

in Sec. II): when . 1-* 3el/ WA is large enough (> 3 for the parameters chosen here),

the resistive internal kink stabilizes at large enough negative values of H H- )H/E/ 3 .

One then enters the stable regime that separates the resistive internal kink from the drift-
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tearing mode. Below that critical value for l, the resistive kink connects in a continuous

fashion with the drift-tearing root whose instability occurs with Re(w) : C*e, as shown in

Figs. 2-3.

The model of Ref. [44] was extended to include collisionless regimes by using a gen-

eralized version of Ohm's law (though treating the electron response via fluid theory)

E = ?7J + (47r/w2Je)8J/dt - Vpe/en in Ref. [40]. This topic has been discussed in Sec. II

in some detail; we simply remember here that a new, hybrid, growth rate was found in the

collisionless large Larmor radius regime, y - wA(cp2/wpr) 1/ 3 , provided wdi = we = 0.

This collisionless instability is subject to stabilization by finite ion diamagnetic and electron

drift wave frequency, just like the instability of the ideal kink in the fluid regime.

The kinetic model for the ions was extended [53] to include the stabilizing effect of

ion-ion collisional viscosity. A particle and momentum conserving collisional operator [38]

was introduced for this purpose. The hitherto unexplored regime, Pi < 1/3r,, was studied

numerically and a non-monotonic dependence of the growth rate on the ion Larmor radius

was found: as pi/r, increases, from zero, the mode frequency experiences a downshift from

its starting value. This downshift renders diamagnetic stabilization (by finite Iwdil) more

effective, and the growth rate decreases at first. As pi is further increased, the growth rate

reaches a minimum value and then reverses direction (increases) as the destabilization

takes over due to the fact that the ion Larmor radius defines the singular layer witdh when

Pi > E1/3 r ·

III.3 Kinetic electrons and ions

The simultaneous use of an isothermal equation of state for the electrons (valid, in
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principle, only for k2V >> wvel), and the resistive form of Ohm's law, e.g., Eq. (II.15)

or Eq. (6) in Ref. [44], is problematic in that regimes where E,/rp2 IWA/wI cannot be

explored. A generalized electron conductivity, a(x, w), has been used in [54] to explore ar-

bitrary values of electron collisionality, in the absence of equilibrium temperature gradients

(?li = = 0). By first considering a Lorentzian conductivity model

a(x) = T() (w swe) , 2 (III.10)=~~~~

with

W (w + 2/) (III.11)(k' L,4 2

and k= s(r,)/R (L, is the density gradient scale length), as well as a Pad6 approximant

(cf. [44]) for the ion response, an analytic solution to the stability problem was obtained

[54] for regimes which verify

mne 1
rM << <<(2k 1 )2 (III.12)

Mi (2k' Ln) 2

The right side of this inequality can also be written as wdi/WA < pi/r, and is equivalent

to the limit (1 -z /W) Z /A Z << 1 of Ref. [44] (using their notation). The left side of

(III.12) makes the electron layer, where the conductivity is spatially varying, thin compared

to the inertial width. The resulting dispersion relation is particularly simple (cf. Eqs. (50)

and (A-14) of Ref. [54]):

-AH = i +2+ (III.13)
& 2kA

where a = [2(w - w.i)(w - w.*e)/(1 + r)](3/1 4)(1/klLn,)2 << 1, and x* = (2me/mi/3i)1/ 2

[(w + iLe)/WA(1 + r)]l/2/kA is the effective electron layer width.
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Provided that the inequalities in (III.12) are verified, the dispersion relation given by

Eq. (III.13) can also be obtained [54] with other forms of the electrical conductivity (i.e.,

not Lorentzian). This then justifies the use of the isothermal equation of state (cf. [44])

in the prescribed parameter regime. The dispersion relation, Eq. (51) of Ref. [54], agrees

with that of Ref. [44] (i.e., Eq. (28) in the limit li = 0, see their Appendix C), provided

the dissipative term is modified appropriately:

pi W(W+We)(2)(i9 wwwtik (III. 14)
WA (k'VTp)2 (111.14)

in going from Ref. [44] to Ref. [54].

We conclude this section by presenting a table of estimates for the growth times,

for various experiments, as they arise from resistive theory [4]-[5], drift-modified resistive

theory [4]-[5], collisionless theory [42], and collisionless-FLR theory [40]. The symbol "n/a"

appears in two locations to indicate that the particular time scale is of no relevance, since

{Idi and/or e are smaller than 1/3WA (violating basic orderings of the theory). The

symbol oo" is used to indicate that the model predicts linear stability ( < 0). As can

be seen, none of the models of Table II is able to yield the fast (r < 100 sec) time

scales necessary to explain sawtooth crashes in large experiments. Note that the "FLR

collisionless time" shown in the third column is computed with Wdi = w*e = 0, and, thus is

not an experimentally relevant time scale (it is presented here as an illustrative example).

If one assumes complete flattening of the pressure gradient at the q = 1 surface (by,

e.g., the presence of a magnetic island due to a finite size perturbation), then both the

"collisionless time" and the time scale indicated in Ref. [40], = (pe/Cp-)l/3 /WA ( 40

usec for TFTR; see also [41]) would relevant and help explain these fast crashes.
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IV. Energetic Particles

The concept of using a population of energetic particles as an "anchor" for the purpose of

stabilization has a long history. Among the earliest experiments, for which such a scheme

was proposed, were the Astron [55], ion rings [56], and the ELMO Bumpy Torus [57]. A

concise and elegant paper [581 showed how high-n°q ballooning modes could be stabilized

by energetic trapped particles whose response to perturbation would differ from the rest

of the fluid.

In restrospect, it is not surprising that similar arguments could be applied to m ° = n o

= 1 modes, the more so because these perturbations act principally as rigid displacements

of the entire inner portion (q(r) < 1) of the plasma column. If a particular species does not

follow the column in its helical deformation (cf., Fig. 6.3 of Ref. [59]), and that species has

a density gradient in the radial direction, a charge separation is set up with an electric field

that produces an E x B torque on the fluid, and that opposes the original motion. The

initial indication that such considerations were more than of an academic nature came

from high-power ion cyclotron heating (ICRH) experiments in JET [603-[62], as well as

later in TEXTOR [63] and in TFTR [641. In these experiments, sawtooth-free periods of

up to several seconds were observed, and their appearance has been conclusively [62], [65]

been associated with the presence of energetic ions. These ions arise from either ICRH

or neutral beam (NB) heating. It is important to distinguish these sawtooth suppression

experiments from others, such as those performed in ASDEX [66], T-10 [67], or JT-60

[681, where stabilization was achieved by modification of the current density profile via

electron cyclotron heating (ECH), or by operating in a lower hybrid current drive mode
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(qo q(r = 0) > 1).

Historically, the association between energetic particles and m °= 1 modes arose in

a different manner, namely through the discovery of the phenomenon called fishbone

oscillations", first observed in PDX [69]-[71], then D-IIID [72]-[73], PBX [74], and TFTR

[75]. These are high frequency (relative to the sawtooth repetition frequency) bursts of

oscillations, observed either in the soft X-ray signals or in the Mirnov coils of the Tokamak,

and which are associated with the turn-on of the neutral beams (or, in a milder form with

that of ICRH in JET [76]). The two phenomena (sawteeth and fishbones) are related and

there is a commonality in the effects of energetic particles. Yet, they represent different

roots of a single dispersion relation and, thus, will be considered separately.

Let us begin with a simple illustration of the origin of the two roots. Consider the

following model dispersion relation:

2 WWA (IV. 1)(W + iV)(- di) AH- WA - A(IV.)

where vL is a constant dissipation rate which models either ion collisional viscosity (cf.

Sec. II) or a wave-particle resonance. In the absence of resistivity, this equation has only

two roots. When a finite amount of resistivity is introduced, a third root appears, with

w - w*e. From a solution of the more complete dispersion equation (a differential equation

in either or k space), one can establish that this root is not spatially localized, hence

we will not consider it of relevance here (it turns out that this mode can be localized by

finite parallel electron conductivity [77], an effect which also tends to stabilize that mode).

Let us consider a regime where Wdi/wAI > AH > max(lv/wdl, ,E). Then, a perturbative
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analysis of the dispersion relation establishes the following two roots:

WA 5 . Erl WAcW = AH5- + -iE (IV.2- a)= )- - t, + -?
Wdi 2 IwdiW*e |

2 2 ~5. E,1W 
W = W 1 _ 2 WA) + i (H WA) -i - A (IV.2 - b)

Wdi Wdi 2 Wdi(WdiW*e) 

The first root is a low frequency mode (cf. our orderings) which is destabilized by resis-

tivity (note that wdiw*e < 0), and is stabilized by the dissipation (v > 0 by convention,

here). This is the root which is customarily associated with the sawtooth crash (the "pre-

cursor"). The second root occurs near the ion diamagnetic frequency, is destabilized by

the dissipation (v, though weakly) and feels a stabilizing influence by the resistivity. Note

that considerations of growth or damping do not depend on the sign of Wdi, as should be

expected. This picture is a clear example of dissipation working in opposite directions on

modes which have opposite energy [78].

IV.1 The energetic particle functional (k o -Wh)

The derivation of the dispersion relation, including the effects of energetic particles,

starts with the recognition that, typically, these particles have Larmor radii that are much

larger than the characteristic thickness of the singular layer. As a consequence, their

response within the layer is adiabatic (krph >> 1) and they introduce no new physics

there. In order to describe their response in the outer layer (which we termed the "ideal

MHD region" up to now), we recall the linearized equation of motion:

-'* ~* 1-
-w 2 p V= -V - V. Pa + -[(B . V)B + (B - V)B - V(B B)] (IV.3)

7r

as well as the equation for the magnetic perturbation

= V x xB) (IV.4)
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and a polytropic equation of state (with index r) for the core part of the plasma (i.e., the

plasma minus the energetic species)

P =- e vpC - rpcV. (IV.5)

The energetic particle pressure tensor can be written in standard fashion:

Ph = PIh I + ( -- )h0l11l + (P - P-L)h(llih + eheh) (IV.6)

Since we are dealing with low frequency modes (wl << li-- ion cyclotron frequency), the

pressure tensor is diagonal and has only two components:

P11h = mh v Afh (IV.7-a)

PJh = mh dv 2 h (IV.7-b)

wherefh is the gyrophase average of the perturbed distribution function. Note that, since

we are in the "external region" and the energetic particles are few in number (h E MPC

where M = 1/2 - 1, = 1/2 -- 1 and e, r/R), the ideal MHD equations are used,

to lowest order in c,, to relate field quantities (e.g., Eq. (IV.4) obtained from the ideal

MHD version of Ohm's law plus Faraday's equation). We refer the reader to Ref. [79] for

a detailed derivation of the dispersion relation; here we report only the salient portions.

First, given the ordering on the pressures of the energetic and thermal particles, and given

that the dispersion relation involves only terms of order ,2-P (cf. Refs. [4]-[15] and Sec. II),

terms involving energetic particles will need to be retained to order e, Ph only.

Let us begin by using 11 = B±/B and writing

V Ph = Vllh + VjlPlIh + (PlIh - PlIh) C

1
+ B ill (B -V) (PWl )h (IV.8)
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where C=_ (ll V)all is the magnetic curvature, and we have dropped terms of order V41 -

B 1 /RB E2/r as well as ' VB/B - Ef/R. Operating with ll Vx on the equation

of motion (i.e., Eq. IV.3), this is the annihilation operator" introduced in Ref. [29]), we

obtain

0 = -47r (ll x V)( 151 - 1I)h + ll' V [(B. V)B + ( V)B] (IV.9)

where the contribution from inertia has been disregarded (w - E2WA, so that (47r/B 2 )w 2pall

V x E4 1 /r). The Lorentz term on the right hand side of Eq. (IV.9) can be evaluated

explicitely to yield:

l V x [(B V)b + ( V)B]= i2 [B2 a (r3F2a)
0fr2 B 2 3 

+ 2im°r2Bll (K xV)Bii] (IV.10)

In the derivation of this equation we have made use of the fact that Bl ~ BE, (see below),

so that V .B13 E, B1 and also have used B, = iF{,, where we remember that F = k B.

Now, consider the radial component of Eq. (IV.3) to lowest order in E,

0 = iPc+Plh+ BB 11 (IV.11)
4Ir

which is equivalent to saying that the modes of interest are decoupled from the fast mag-

netosonic mode. Substituting Eq. (IV.10)-(IV.11) into (IV.9), we obtain:

a (r3F2 r = 4rim°r2 (illx a ) V(2p, + PIh + Plh) (IV.12)

Comparing this equation to Euler's equation obtained from the ideal MHD energy princi-

ple, Eq. (II.2), and using Eq. (II.9), we find that the energetic particles contribute to the
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exterior region through the functional:

4ir2im° 0o", o27r d Ak(W) = 4 f dr r2 j 2(ll X ) V (Ih + POjh)

x exp [i (m° - n°% + wt)] (IV.13)

The contribution from 2pc to Eq. (IV.12) is formally included in AH with all other (e.g.,

toroidal) contributions from the core species of the plasma. Thus, once Ak (w) is known, the

dispersion relation for the resistive and/or ideal internal m ° = 1 kink modes is obtained

from Eq. (II.22) by direct substitution:

[- )2 ]1 = 8 [AH + Ak(W)] Q r(Q 5 /14)
WA 8 r[(Q+ 5)/4](V.)

The functional for the energetic particles involves the parallel and perpendicular com-

ponents of the perturbed pressure, determined via the moments of the perturbed distri-

bution function, Eq. (IV.7). The derivation of the gyrokinetic equation for the perturbed

distribution function for m ° = 1 modes is made tedious by the fact that one cannot use the

ordering kL >> 1/r (i.e., the standard [80]-[81] eikonal representation) in the "external

region". This derivation is reported elsewhere [821; here we report the result:

~ ~ + im~(w - w~h -v t ( 1 2(V 5
fh(r, v) = - VFh + im (-) -d' + ) . (IV.15)

In deriving this expression (h is actually the gyrophase average of the perturbed dis-

tribution function), the ideal MHD relation, E- iw e xB/c = 0, was used, as well as

the approximate [79] relationship, V. ± +2 K ..= 0. Contributions from Bll B±

as well as FLR effects (kpa ph/r. << 1 in the exterior region) were neglected. The

equilibrium distribution function Fh is a function of the total energy, = mhV2 /2, and
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of the toroidal component of the canonical angular momentum (a constant of the motion

since the toroidal angle is an ignorable coordinate), P, = mhv, - qo/c. Here bo is the

equilibrium poloidal flux, B = AB + e x VOo. The diamagnetic frequency is expressed

as:

w* = aFhl/aP (IV.16)
Wh-R aFh/a&

The term involving the orbit integral in Eq. (IV.15) is of order (LFh/R) (w -

W*h)/(W - CZh), where wh is a characteristic frequency of the energetic particle orbit (i.e.,

the transit frequency, th, of a circulating particle or the bounce frequency, Wbh, of a

trapped particle). One generaly orders:

Wth > Wbh >> W*h > Dh > Wj (IV.17)

where WDh (nq/11hrR)(v2 + v2/2) is the precession frequency engendered by the cur-

vature and grad-B drifts of the particle guiding center. Then, as a consequence of this

ordering, it is easy to see that the lowest order contribution from the circulating particles

is adiabatic":

fh.c - VFh. (IV.18)

in that it yields no contributions that are out of phase with the displacement (the perturbed

pressure tensor contribution from the circulating particles has the form ph,, - 'Vph.c

and looks identical to the contribution from the core plasma).

Trapped particles, on the other hand, contribute non-negligibly from the orbit integral.

One can adopt a representation for X-- (v + v /2) in terms of the periodicity of
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the trapped particle orbit [83]-[84]

X(r,v,t) = exp [in°(- qO) -i (w - () t] Xm(r)exp (imwbht) (IV.19)
m=-00

where the time variable t can also be written in terms of the particle trajectory along

the magnetic field line: dt = dO/v 1(6). The phase factor shown in Eq. (IV.19) includes

n ° (f - q6) which plays the role of a perpendicular wavenumber; it is the dependence of X

along the magnetic field line which is decomposed in terms of basis functions. The bounce

averaged precession drift frequency is defined as:

(of a d WDh(O)/vll() W (0) f -" 0 0 h(O)/JVJJ(O)(IV.20)
f_ ° o d/Ivll () l

In expression (IV.19), we have introduced the turning angle, 0o, where v(O = 0o) = 0

and we have neglected contributions from the banana radius of the trapped particle orbits.

The expressions correponding to (IV.19) with finite banana radius can be found, e.g. in

Refs. [851-[87]. Then, the perturbed distribution of energetic trapped particles reads:

00
arh.t ) W- W~h

AhAt - .VFh t-m E X.(r) W-() -MWbh
M=-00 W-Dhmwbh

exp [in°( - qO)i (W - WD + mwb) t] (IV.21)

In the limit of large bounce frequency only the m = 0 term contributes. Note that an

analogous form can formally be derived for circulating particles except that Mwbh

(m + S)wth where S - 1 - q(r). It is because of the finite magnetic shear that the "non-

adiabatic" contribution of circulating particles is of order (-w.)/Swth << 1. Evaluating

Xo is straightforward:

f_ jol 2 (1q- 2A ) exp[-in°( - qO) (IV.22) Xo = -I M% 2 (IV.22)
f80 dO/v11(6)
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where we introduce the well-known [84] pitch angle coordinate A -= Bo/ = SBo/v 2B,

as well as h(r, 8) Bo /B; here B 0 is the reference value of the magnetic field at = 0

(the outer point of the mid-plane). In terms of A, phase space is defined as follows:

0 < A < hmin, is occupied by circulating particles, while hmi, < A ha is occupied by

trapped particles. For low-j equilibria h(r, 8) = 1 + (r/R)cos(O), thus hin = 1 - r/R

and hma = 1 + r/R. Since Xo is already of order , one can take 1 - A/2h - 1/2 under

the integral and, using c (1/R)(-i, cos0 + e sin0), obtain [88]:

Xo -(e /Rmh) (cosqO)(°) r(r) (IV.23)

where ,r (r,t)exp[iwt- i(n° - moO)], with m ° = n o = 1. The lowest order relation

V e ~ l = o E -ii, has also been used. Hence we finally obtain [88]:

'-* arh~t c - W~h (coq) ° e.la - e VFh + as (cos q)(OI (IV.24)(9 Lo _ ,(0) Rc s O
W WDhR

The subscript t in the second term indicates that only the trapped fraction of energetic

particles is to be considered, while the superscript (0) denotes a bounce average, cf. Eq.

(IV.20). Note the importance of Eq. (IV.17): it is precisely the fact that the particles

precess (wDh) faster than the mode rotates that sets them apart as a species. This pre-

cession drift dominates their response to the perturbation and causes them not to E x B

drift with the rest of the plasma. An alternate description of the unique role played by

energetic particles has been given by Porcelli [89]: these particles conserve the third adia-

batic invariant (the poloidal flux passing through a surface mapped out by the precessing

guiding centers) when they are fast enough" compared to the mode phase velocity. They

react to the perturbation in such as fashion as to conserve this linked flux, and in doing
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so exert a stabilizing influence (provided a set of conditions on the q-profile and on the

bounce-averaged precession drift frequency is met) on the mode.

From Eqs. (IV.-7) and (IV.13) and the definition of the magnetic curvature vector,

Iv, we see that the energetic particles to the functional Ak through a term of the type

f dO(sin 0 + a cos 0) (something). Thus, the integral vanishes whenever that "something" is

0-independent. For example, the "adiabatic" piece,- e *VFa, does not contribute if the

equilibrium distribution function of the energetic particles is isotropic in velocity space.

When it does contribute, it generally does so in a destabilizing manner, as can be seen

from:

Aad -- 47r2 im 0 f / : dO (coso a
'ak = (B 2s | dr r2 i - exp(io) -= ( B 2 s), - ,,r raO

+sin 0-) [pap (r, ) exp(-iO)] (IV.25)r Or

for the case of a population of deeply trapped particles (0 < 101 < o where o < r/2).

The sinG term drops out, being odd in 0, while an integration by parts yields:

47rm° fre 'apL4d = _ m dr r d cosa (IV.26)
kad~ (B~s)7 , 2 d dOcos Or

which clearly is a positive (destabilizing) quantity for pressure profiles that are peaked at

the center.

From Eq. (IV.7) (IV.13) and (IV.24), one is led to conclude that the expression

for Ak depends principally on the mode frequency (relative to characteristic values of

w() and/or w*h), the degree of anisotropy of the equilibrium velocity space distribution
Dh

function, the degree of peakedness of the density and/or temperature profile, and the q-

profile (cf. (cosqO) (°) in Eq. (.24)). This is indeed true, as will be discussed in the
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next sub-section, however our experience with models used for several experiments seems

to indicate a certain universality in the curve Ak(W), given a real eigenfrequency; this

points out that some of these dependences may be weak. As examples, we offer in Figs.

4 and 5 respectively, plots of Ak(w) appropriate for the experiments in JET [60]-62] and

for a slowing-down distribution of a-particles produced by fusion reactions in the planned

IGNITOR [90] experiment. In the former case, the equilibrium distribution function is

highly anisotropic (being comprised almost exclusively of trapped particles with turning

points at o = ±7r/2). In the latter case, the distribution function is perfectly isotropic.

Yet the two graphs are strikingly similar: Im(Ak) is negative definite (the sign is the

appropriate one for positive dissipation, v > 0 in Eq. (IV.2), necessary to stabilize the

"sawtooth" and destabilize the "fishbone") while Re()Ak) is negative at low frequency and

positive at high frequency. With this information we can glean some salient features of

the effects of energetic particles on m = 1 modes. Let us examine Eq. (IV.14) in the

IQI >> 1 limit, assuming that Ak < AH. Then, using the large argument relationship

between the two gamma functions, cf. [91], we obtain:

LO ( - di) 1/2 5 1

2 ] [AH + Ak(W)] 1- - A (IV.27)
W4 4L(o - Wdi) (W - e)

after using the definition for Q, Eq. (II.21). Proceeding in the same manner as we did in

solving Eq. (IV.1), we obtain the two solutions (in the regime where AH < wdi/2wA):

2~ 5 i co3PW d[AH + Ak(W = 4HA2 /wdi)]2 + 2 1 .A (IV.28 -a)

W Wdi - A [AH + Ak(w = Wd)I -)]2 - A (IV.28 - b)
Wdi 2 wdi(Wd - *e)

Remembering that [H + ,k] 2 = (AH + ReAk) 2 - (ImAk) 2 +2i (H + ReAk)(ImAk), it is

obvious that Eq. (IV.2) and (IV.28) are analogous provided that (ImAk) (AH + ReAk) <0,
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which is the case for low the values of the parameter W/WDh considered here (as shown in

Figs. 4 and 5). Thus, the first root (the resistive internal kink) tends to be stabilized by

the "resonant" coupling to the energetic particles (represented by ImAk), while the second

is destabilized by it.

On the other hand, an ideal-like" instability is obtained from Eq. (IV.27) in the limit

AH > di/2wA:

W - Wdi + WA AH + Ak(W = Wd!/2) - (IV.29)2 ~ ' k2wA JJ

Since ReAk(w < Wdi << Dh) is negative, the introduction of energetic particles tends to

similarly stabilize the ideal internal kink. Here we use ODh =1.2h(1+2s(r))/(mhhRr.)

as a representative value of the bounce averaged precession frequency.

Considerations of this type were responsible for the initial models [92]-[97j that suc-

cessfully explained the physics responsible for the stabilization of sawteeth in existing

experiments [60]-[641, and were used to predict [88] similar beneficial effects from fusion

a-particles in future ignited toroidal experiments. Since this is by now considered an im-

portant success, both theoretical and experimental, in the confinement of particles and

energy within the central portion of the plasma, we address the question of sawtooth sta-

bilization in further detail in the following paragraphs. We will return to the question of

fishbone oscillations (whose experimental observation and theoretical modelling actually

preceded that of sawtooth suppression) in the final sub-section.

IV.2 Sawtooth stabilization

The basic features of the stabilization have been presented above. Here, we begin by

addressing a crucial detail: the stabilization of resistive internal kinks. For a given value of
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AH > 0, the introduction of energetic particles stabilizes the ideal internal kink as soon as

AH +ReAk < wdi1/2wA, cf. Eq. (IV.29). The resistive internal kink, which remains unstable

once that threshold is crossed, has its growth rate decreased by the dissipation due to mode-

particle resonance, represented by the combination 2i(W/Wdi)(AH + ReAk) (ImAk) < O.

At the same time, the real part of the mode frequency decreases like (AH + ReAk) 2 < H

(for the purpose of illustration, we envision a process in which the density of energetic

particles is increased gradually, k oc nh, and the mode adjusts its behavior accordingly).

From Figs. 4-5, we see that, as w --+ 0, IAk also vanishes. Of course, Eq. (IV.28) is no

longer valid, so that Eq. (IV.14) must be considered. As originally shown in Ref. [5], the

point AH + Ak = 0 corresponds to the dispersion relation Q = 1, with a purely growing

mode, w PE iE w/lWdiW.eI. Hence, one must ask: what happen when w - 0? Unless the

real part of Ak remains finite (and negative), the stabilization process "stalls" and resistive

internal kinks cannot be completely stabilized. That was the conclusion reached in Refs.

[92], [94]-[97], where the expression for the energetic particle functional was specifically

derived for a population of deeply trapped particles, Fh oc (A- Ao) with A0 - 1, and was

of the form [98]:

Ak(w) = ph - in 1 - -) (IV.30)
ODh k

(this expression obviously vanishes at zero frequency). As a consequence, this particular

form for A, caused the authors of Ref. [95] to comment that in order to achieve stabiliza-

tion with trapped particles, the kink mode must be above its threshold" ( > di/2wA

in our notation).

However, as indicated in Figs. 4-5, there exists the probability that the real part of
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the energetic particle functional is actually negative and finite as w -- 0. The expression

for the energetic particle functional, in the limit of vanishing mode frequency, is 93]:

473 \312 rlz

A k( 0) =(B( )9( 2 ) ] dF ^ dA (aA)
(Bpons) r, r R Mh~~~ hmi L

x de 63/2 h (IV.31)

where we correct for an improper factor of 1/q (due to an erroneous definition of w*.h) as well

as a misprint in the corresponding formula in Ref. [93]. Here - r/r,, a fo (dO/27r)[1-

A/h(r,O) j 1/ 2 , Ic - (cos )( 0), Iq (cos q)( °), Id- (cos0 + sOAsin )(°), s(r) = rdq/dr, and

So is the turning point of a given trapped particle (i.e., a function of the pitch angle).

This expression has been obtained from (IV.13) by making some simplifying assumptions,

most notably 1 - A/2h z 1/2, and holds for a species of energetic particles that is wholly

trapped: Fh = 0 for A < hmin 1 - r/R. The contribution from the "adiabatic" portion

of the energetic particle response is indicated by the factor Ic, while that from the "non-

adiabatic" reponse is indicated by I/Id = [(cos qO) (0) ]2 ( /lh)(r /R)(whl/w) where &h

is the maximum particle energy. It is obvious that the two contributions tend to oppose

each other. Furthermore, if we assume that q(r) - 1 is small within the r r region, we

can expand this quantity in a Taylor series and obtain:

2 _ dFh a.Ak oc (Iq -IcId) h [2(1 - q(r)) - (r)](Osin) (° .) ar (IV.32)

Thus, in this case Ak(w = 0) is of order 1- q0 as originally stated in Ref. [99]. For parabolic

q-profiles, Ak oc 2[qo/q(r)- q(r)] (sinO)( 0 °)8Fh/8r and is negative definite for trapped

particles with a (perpendicular) pressure profile that is strongly peaked in the center.

Note also that Ak (w = 0) is independent of the particle charge. Hence, energetic electrons,
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due e.g., to ECH, could be candidates for stabilization of resistive internal kinks (G. E.

Guest [private communication, 1988] and [97]). Curves of marginal stability, Im(w) = 0,

have been presented in a number of references (e.g., [88], [93], [95]-[97]), generally in either

Op -/ph or Wdi -/ph parameter space. Here, we choose to reproduce one such figure, from

Ref. [88], which shows the dependence on the parameter = r/R. This figure is Fig. 6

in the present paper.

Note that some form of dissipation is necessary to counter the effect of resistivity (or,

in its absence, electron Landau damping [42], [51], [54]) and, if this dissipation isto come

from a resonance between the mode and energetic particles, then one necessarily needs

Re(w)/w > O. Since the sign of Re(w) is generally the same as that of (AH + ReAk)wdi,

we see that the mode resonates with deeply trapped energetic ions for positive AH + ReAk

and trapped electrons otherwise. The word "deeply" is used here to remind the reader that

the drift-reversal boundary (the point in pitch angle space where w() changes sign) occurs

near the boundary between trapped and circulating particles (cf. Fig. 9 in Ref. [84] and

Fig. 3 in Ref. [79]). The existence of the drift-reversal is well-known and has been fully

taken into account in evaluations of the energetic particle functional, e.g., in Refs. [88] and

[93], contrary to assertions made recently [100]. If parameters are such that a resonant

interaction between the wave and the energetic particles is either absent or insufficient,

stabilization may be possible through other viscous-like processes (e.g., ion-ion collisional

viscosity, cf. [53]).

From a practical point of view, the ratio r,/R is of crucial importance to the stabi-

lization process. The parameter controlling the instability (say, in the limit c - 0) is
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AH z (3r/2) (r, /R) 2 (32 -3p2). The parameter controlling stabilization on the other hand

is Ako0 -/3pa(r,/R) 3/ 2 , for the case of Fig. 6. The two poloidal betas are [10]:

opi__ 87r dr (r dp, (IV.33- a)B (ra) d r.} dr

and [87]:

3pa _ 8ir f T (r )3/2 dpa (IV.33 - b)1 3P4 B 2 (r) dr r- dr

From the properties of Ak(w), cf. Fig. 4-5, there exist maximum values of AH and AkO for

which stabilization is possible. They are determined by a pair of equations, e.g., Eq. (26)-

(27) in Ref. [88] for the case of vanishing resistivity. For instance, maxz(Ako) occurs where

the marginal stability curve crosses the AH =0 axis, and corresponds to ReAk(w) = 0.

This determines w/IwDa, (cf. Fig. 6, where 5WDa is defined) which, in turn, determines AkO

from the second of the pair of equations. The existence of these two maximal" points

immediately tells one that (32)maa o (R/rJ) 2 and m ax oc (R/r,)3/ 2, which accounts

for the shrinkage of the stable region. This makes experiments with large" inverse aspect

ratio, r,/R > 0.5, undesirable from the point of view of stability of m ° = 1 modes, as

was mentioned in Ref. [100]. Some corroboration of this point comes from experiments in

JET. As reported in [62] and [101], the interval of sawtooth-free operation decreased with

increasing inversion radius (which is presumably coincident with q(r = r) = 1). Also of

note from these experiments is the fact that the longest interval occurred for the case where

the ICRH was positioned at the center of the plasma column, which probably maximized

aph/ar.

The scaling Ako oc (r./R)3/2fipa comes about from two sources: (i) a factor of r/R

coming from the magnetic curvature , and (ii) a factor of (r,/R) 1/2 that reflects the

46



fact that only trapped particles contribute to the stabilization. Remember also that, for

isotropic equilibrium distribution functions, only the non adiabatic" part of the perturbed

response contributes to Ak. On the other hand, if all the energetic particles are trapped,

such as occurs for highly anisotropic ion distribution functions produced by ICRH, the

natural scaling is Ako oc (r,/R)3ph, where [93]:

Oph - - I dr 2 a (r1/2p±h) (IV.34)B2(r,) rJ/ 2 8

In either case (pa or ph) the poloidal beta denotes the total (trapped + circulating)

energy content of the species doing the stabilization.

Just like there exists a maximum value of AH at which stabilization is possible, there

also exists a maximum value of Wdi/wDh. This has been addressed and shown, first in Refs.

[96]-[97], and then in Ref. [88]. This is not surprising in retrospect, as it is precisely the

smallness in the parameter W/WDh < Wdi/wDh that makes these particles "energetic" and,

therefore stabilizing. It is instructive to look at a "cartoon" of the stabilization process in

the case of vanishing resistivity, E, = 0. The dispersion relation is given by Eq. (IV.27)

with unstable root

ZZ-di [ A1 dW -Wdi + i [wJ (AH + ReAk) - 1/2

+ 2i (AH + ReAk)(ImAk) (IV.35)
\ cdi/

with Ak evaluated at w = wdi/2 and where we assumed that ImAk is small. Hence, as the

density of energetic particles (or, equivalently, Pph) is increased, the growth rate decreases

through a combination of smaller free energy, AH + ReAk, and dissipation due to wave-

particle resonance, ImAk < 0. When the free energy drops below the value necessary
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to overcome FLR stabilization, wdi/2WA, the ideal internal kink becomes stable, and the

other root is resonantly destabilized

W - Wdi - () [(AH + ReAk) 2 + 2i(AH + ReAk)(ImAk)] (IV.36)OJ ~i - ~Wdi]

with Ak evaluated at w = Wdi. This is the instability of the "fishbone", which we will

consider in the next sub-section. This unstable mode persists until the zero free energy

point, AH + ReAk = 0, is reached, where growth stops.

These last remarks have focussed on the stabilization of ideal modes (, 1 = 0 and

no electron Landau damping). They carry over to resistive internal modes as well. A

stable region of finite size exists in parameter space for resistive modes, as can be seen in

Refs. [93] and [101]. Also, the appearance of the fishbone instability on the heels of the

stabilized resistive internal kink was briefly mentioned in [94]. Note that a finite region

of stability exists only if one or both of the following conditions is satisfied: (i) wji 0 0,

(ii) Ak (w = 0) - 0. The latter corresponds to having 1 - qo > E, r, /R for anisotropic

particles. Models that did not include either of these effects, e.g., [102], necessarily missed

this stability window.

Further work is now underway to determine the effect of finite Larmor radius (i.e.,

FLR of the core plasma ions within the singular layer) on this stabilization mechanism.

As discussed in the previous section, FLR tends to worsen stability and, hence, will make

stabilization by energetic particles harder to achieve. This was noted in a preliminary

fashion in Ref. [88] and has been fully discussed in [103]: energetic particles interact

resonantly with a discrete spectrum of resistively damped Alfven eigenmodes. This wave

particle resonance can destabilize these eigenmodes.
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The existence of a right-hand boundary to the stable region, shown in Fig. 6, namely

the line connecting the point (Ai2)ma to the point B3pa' signals the appearance of a

new instability with higher frequency, Re(w) > Dh. We have indicated how the point

of marginal stability /3pmax corresponds to a frequency w ~ wDh such that ReAk = 0, cf.

Figs. 4-5. Past this point, the combination AH + ReAk necessarily is positive and this

new instability is supported by the energetic trapped particles, both in its resonant form

(near the marginal stability boundary) and in its fluid-like form (far away from it). This

trapped particle branch was discovered by the authors of Ref. [98], in connection with the

theory of fishbone oscillations.

One last detail worth mentioning is the behavior of the instability in the region imme-

diately above the apex of the stable region. Near this apex there exists a small but finite

region in parameter space, where two unstable modes co-exist. One mode corresponds

to the lower frequency branch (for which = di at AH = ph = 0), and the other to

the high frequency branch (w Z Dh at ph = pa')- This region has been identified

numerically in repeated occasions, and can be most easily found in cases where wdi = 0

(cf. Fig. 4 of Ref. [88]) or where the energetic particle equilibrium distribution function is

highly anisotropic. This result helps establish the rather important property that the high

frequency and low frequency unstable roots are indeed distinct modes. With the advent of

the more recent work [103] on FLR effects on this problem of stabilization, this domain of

multiple unstable roots has been enlarged by the appearance of the aforementioned Alfven

spectrum, destabilized by resonant interactions (cf. Fig. 5 of Ref. [103]).

Finally, the existence of an alternate model for the sawtooth stabilization process
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ought to be mentioned. As originally proposed [104], this model ascribed the stabilization

to direct ponderomotive effects from the ICRH wave field. It failed one crucial experimental

test, that of the time delay (approximately 80 - 100 msec in JET [105]) between ICRH

switch-off and the first sawtooth crash. This time delay is commensurate with the slowing-

down time of an energetic ion [101], which tends to favor the model discussed so far. The

ponderomotive force model has since been modified [106] to account for this time delay.

In the modified model, Alfven ion cyclotron waves, generated by the anisotropic energetic

ion distribution, have a ponderomotive force that causes the stabilization. The time delay

is explained in terms of the time required to isotropise the distribution function. Thus,

in final analysis, the energetic particles are again the agents for stabilization though they

might use more than one "channel" to do the job.

IV.3 Excitation of fishbone oscillation bursts

As mentioned at the beginning of this section, work on energetic particle effects on

m ° = 1 modes actually began with the discovery [69]-[72] of so-called "fishbone oscillation

bursts". The two models, that arose initially [98] and [107] to explain these bursts, had

a common main feature: an marginally stable mode is destabilized by a resonance with

trapped energetic ions; the resonance is of the form w - w( (, A, r) = 0. Where they

differed, however, was in the identification of the mode involved. Coppi and Porcelli

[107] identified it as being the higher frequency branch of the already existing pair of

modes from the fluid response of the core plasma. Chen, White, and Rosenbluth [98]

instead ascribed it to a new branch, created by the energetic trapped particles. As we

have seen in the paragraph above, both interpretations are correct. It can be argued that
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experiments were probably operating in the region of parmeter space just above the apex

of the marginal stability curve, cf. Fig. 6. Indeed, if wdi C VDh as occurred in the

experiments which detected the fishbone oscillation bursts in PDX [69]-[71] and DIII-D

[731, the stable region disappears altogether, and the two roots connect into one continuous

instability as ph is varied. In passing, we mention that the models of Refs. [98] and [107]

were further developed and refined in [108] and [79], respectively. The small stabilizing

effect of resistivity on the trapped particle induced fishbone oscillation of Ref. [98] was

first presented in Ref. [109]. As discussed in the latter part of the previous sub-section, the

fishbone instability arises near the marginal stability limit of m ° = 1 modes, and appears

as a reonantly driven version of either a core plasma mode (w ~ wdi) or a trapped particle

mode ( - wDh). A pictorial representation of this, drawn from Ref. [88], is shown in Fig.

7.

Perhaps the most lucid analysis of the relationship between the two fishbone roots

can be found in [96], where the nomenclature "Coppi-Porcelli fishbone" and "Chen-White-

Rosenbluth" fishbone was coined. By specializing to a strongly anisotropic, slowing-down,

distribution of energetic particles

=Ch(A-Ao) (IV.37)
(&3/2 + 3/2

with A0 ~ 1, and thereby obtaining the functional [96], [98], [104]:

A)k(w) = -ph - ln 1 - (IV.38)
WDh k W-

in the limit where 1 - qo is negligible, the authors of Ref. [96] were able to show how the

marginal stability properties of the two roots were related. Here 3ph is a quantity of the
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order of ph whose definition can be found in Eq. (6) of Ref. [96]. From Eq. (IV.38), it is

obvious that one condition for marginal stability is W = wDh/2 when wdi = AH = 0. This

can be seen from the dispersion relation which, in the limit of vanishing resistivity, can be

cast in the form

V/W(w - Wd) = -i[AH + Ak(W)IWA (IV.39)

The corresponding value of ph is [98]: /ph = WDh/7rwA. If Wdi/WDa and A are both

small positive quantities, marginal stability occurs for:

ph =- Dh (1- W AH (IV.40)
13 pA 1--/ -AHx7rWA W Dh

with a mode frequency w c wdi + (r/2)AHWA. Hence, the addition of either finite ion

diamagnetic frequency or free energy makes this branch more unstable [96] (the critical

value of 6ph is encountered sooner).

This has been a description of the marginal stability of the high frequency (Chen-

White-Rosenbluth) fishbone. The other root, the low frequency (Coppi-Porcelli) fishbone

is marginally stable for [96]:

- W~~DhA~HCDwDhAH (IV.41)
=Wdi ln(0DhWdi -1)

for small AH and Wdi/WDh, which shows the opposite trend with AH (also a destabilizing

trend, as now more particles are needed to stabilize the mode). In both cases, the trend

agrees with the complete numerical results presented, e.g., in Figs. 6-7. The decrease in

Oph with larger wdi is simply a consequence of energetic particles no longer having a "fast"

precession frequency compared to the benchmark frequency of the core plasma.
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Both models [98] and [107 also include a nonlinear cycle in which energetic particles

generate the fishbone instability, are in turn scattered out of the region of resonant inter-

action, thereby lowering fphto values below that needed for instability and terminating

the fishbone burst [79], [98], [1081. As the density of energetic particles is replenished, e.g.

by neutral beams, the fishbone is again triggered, and the cycle is repeated. This process

has been invoked [110] as a mechanism for plasma self-purification in ignited experiments.

Slowed-down a-particles, with energies = 300 - 400 KeV, can resonate with w wdi

modes and be transported out of the central plasma core. This would mitigate the problem

of the "poisoning" of the plasma by Helium ash (thermalized a-particles) which dilutes

the D- T fuel.

Where these models are deficient, however, is in describing "fishbone - like" oscillations

observed in PBX [111]-[112] and in DIII-D [113] with tangential neutral beam injection.

Since both models require a population of energetic trapped particles, experiments which

produce mostly passing ("circulating") particles present a challenge to these models. In

the DIII-D experiment it was deemed [W. Heidbrink, private communication, 1990 that

few, if any, trapped particle were generated within the q = 1 radius. Thus, excitation

of these "fishbone - like" oscillations likely requires an alternate mechanism, possibly a

toroidal resonance with transiting particles such as that described in Ref. [114].
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V. Alternate models for sawteeth and discussion

This paper has been devoted to our present understanding of the stability properties of

m ° = 1 modes (ideal and resistive internal kinks) in magnetically confined toroidal plasmas.

Among the topic discussed were: (a) two-fluid theory and its extension to regimes of

finite electron inertia, (b) ion and electron kinetic effects in regimes of high temperature

where two-fluid theory is inadequate, (c) the physics of energetic particle populations, both

isotropic and anisotropic, and their role in stabilizing sawteeth and triggering fishbones.

Perhaps the most important objective of a theoretical model of the physics of these

modes lies in predicting an experimentally acceptable estimate for the linear growth time

of the instability; a time that is shorter than the sawtooth crash times inferred by obser-

vations. An equally important objective, one that can almost certainly be achieved only

after the linear theory is complete, is the explanation of the sawtooth repetition time (this

time is likely to be dynamically linked to the time scale of the relevant perturbation [1151).

Our approach has been to discuss the linear theory of m ° = 1 modes in systems with

finite magnetic shear. This has been motivated by measurements, e.g. on TEXTOR [22],

Text [116], and JET [12], [117], which show that qo < 1 (note that other authors ascribe

very low magnetic shear to JET [118] at the q = 1 surface, based on pellet ablation mea-

surements while a second set of experiments [119] on Text yielded qo = 1 on the average

over a sawtooth period; hence this experimental datum still needs pinning down). This

in no way detracts from the importance of alternate models, each of which may in fact

better explain particular features of some experiments. Perhaps the most important of

these alternate models is that originally proposed by Wesson [120], in which a system with
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very low shear (s(r) <= (r,/R)2 ) is considered. This model was the first attempt at re-

solving the question of discrepancy between the linear time scale predicted by theory (the

"Kadomtsev" time scale) and the much shorter time scale observed in large experiments

(e.g., JET). For the case of Wesson's model, a pressure-driven, ideal quasi-interchange

mode can become unstable for arbitrarily weak pressure gradients [121], with very fast

time scales [122]. Barring this possibility (see below), Table II shows that it is inherently

difficult to obtain instabilities with short enough linear time scales to explain fast saw-

tooth crashes in large, high temperature experiments. One is left to postulate that either

the fast crash is a wholly nonlinear phenomenon [15] or that the density and temperature

profiles of electrons and ions are flat in the vicinity of the q(r) = 1 surface, thereby elim-

inating the beneficial effects of finite ion diamagnetic and electron drift wave frequencies.

If that were the case, electron inertia is a viable dissipation mechanism, which enables the

plasma and magnetic field to slide by one another, and which permits instabilities with

short linear time scales, e.g., r ~ (cp'/r3)/3 ~ 40 /sec (cf. [40]-[41], [43]). Unfortunately,

there is no experimental evidence that such a situation occurs in toroidal systems. In fact,

counter-evidence exists, e.g. by pellet injection experiments 16]-[17], [123] that clearly

shows examples in which peaked pressure profiles are maintained and slow down or sup-

press sawteeth. The question of what description is proper for the q(r)-profile probably is

the most important experimental datum still required for a proper theoretical description

of the phenomenon. In addition to the epxeriments mentioned above, there exist observa-

tions [1241 in JET suggesting that qo remains well below unity throughout the sawtooth

cycle; this creates difficulty for both the quasi-interchange mode [120] that needs flat q-
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profiles and for Kadomtsev-type nonlinear scenarios that result in qo = 1 after complete

reconnection. Analyses of discharges in PBX-M [125] for which fishbone events were de-

tected seem to indicate some degree of flattening of the q-profile late in the discharge,

though the shear appears to remain finite at the q = 1 surface. On the other hand, the

q-profile was also deemed to vary during the evolution of the discharge, with the profile

tending to be less steep in later stages of the shot: q seemed to be nearly constant (and

below unity, q , 0.86) within the inner third of the plasma column. The PBX-M exper-

imenters [125] also raised the point that their measurements cause difficulty to both the

quasi-interchange and Kadomtsev models. These experiments [125] were deemed to have

exceeded the threshold for ideal internal kink instability.

Fast sawtooth crashes have also been postulated [126] to occur for non monotonic

q-profiles (qo ~ 1 = q(r,) and q < 1 for 0 < r < r, see also [127]-[128]; the theory of

internal disruptions in plasmas with non-monotonic q-profiles was first discussed by Parail

and Pereverzev [129]) that arise from gradients in the resistivity, V2 r 0, which engender

skin currents. Since the perturbation travels unimpeded over much of the core region

(that portion where q(r) = 1, and where there is no restoring force from magnetic field

line bending), the effective reconnection time is computed [3] using only the portion Ar

where q(r) < 1 and the Alfv6n perturbation has a finite travel time. As a consequence,

reconnection and, hence, the crash occur on a much shorter time scale. There exists some

corroboration from experiments for this model: in the case of some partial [130]-[131] or

"giant" [132] sawteeth, inferences have been made that mixing ocurred over only part of the

core, r < r. The problem, here, is the apparent lack of universality (from an experimental
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point of view) of this model.

Finally, another approach [133]-[134] has been to invoke the presence of a hypervis-

cosity, by introducing an extra diffusion-type term in Ohm's law. Numerical computations

have established that fast crashes can be obtained in this manner, but the physical origin

of the hyperviscosity has not been identified.

In conclusion, great progress has been made in understanding the basic physics of

the sawtooth crash in toroidal experiments. Some possible explanations for the fast time

scales in latest experiments are being developed, though no model is completely acceptable

yet. The phenomenon of sawteeth is far richer than presented here: there exist compound

sawteeth [61, [1301-[131], and a possible theoretical model for them has been presented in

[135]. Similarly, there exists a vast literature on nonlinear evolution of m ° = 1 modes, e.g.,

[1361-[141], which will require a separate review.
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Table I

Selected dimensionless quantities for various experiments

(OH =Ohmic, NB = neutral beams, ICRH = ion cyclotron, SUP = supershot)

Experiment [ref.] a (a) qO (a) w kjovre () P (b)
a Wz~.e Vei Ao

TEXTOR [22] 0.5 0.6 11.6 0.40 1.06

TFTR-OH [231 0.3 (3/4) 6.0 0.35 1.06

TFTR-NB [23] 0.3 (3/4) 2.2 0.66 1.74

TFTR-SUP [241 (1/3) (3/4) 4.2 2.39 4.57

TFTR-SUP [24] (1/2) (3/4) 1.4 1.26 2.49

JET-OH [25] 0.3 (3/4) 5.7 0.32 1.09

JET-ICRH [26] (1/3) (3/4) 5.8 0.81 2.15

JET-ICRH [26] (1/2) (3/4) 3.3 0.35 0.98

(a) A parabolic q-profile is assumed within r < r. Values shown in parentheses are

assumed (unknown experimentally); a mean minor radius.

(b) klo _ kll(x = E1/3) and Ao - 1/3r,/s(r,) are chosen for purpose of illustration.
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Table II

Selected Time Scales for Linear Growth of M ° = 1 Modes

(OH = Ohmic, NB = neutral beam, ICRH = ion cyclotron, SUP = supershot)

Experiment * [ref.]

TEXTOR [22]

TFTR-OH [23]

TFTR-NB [23]

TFTR-SUP [24]

JET-OH [25

JET-ICRH [26]

Resistive

1
7. -' l/z

f, WA

79 Asec

165 Asec

187 Asec

264 /sec

228 Asec

340 sec

Modified Res.

Tr = 1-d,1;e d
evA

n/a

n/a

692 Asec

25 msec

262 Asec

10 msec

Collisionless (a)

r = r
dWA

158 Asec

146 jtsec

146 /sec

165 tsec

242 jtsec

319 ,sec

FLR Coll.()

00

4 msec

3 msec

oo00

3 msec

00

* Unless experimentally known, r /a is set equal to 1/3.

(a) d c/wp,; this expression for r is valid only for wdi = w*e 0

(b) r =-- 1/'y is obtained from Ref. [40], by solving ( + iwd1 )(-7 + ic*e) = w2 (dp2)4/3/r2
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Figures

Fig. 1 Stability domain for resistive internal kink modes in fluid regimes, in the Q.u - AH

. ,1/3 , /11/3plane. Here . W*e/! 3 WA, AH -AH// 3 and the stable regime for a given value of

1/r -di/w*e is above the corresponding curve.

Fig. 2 Normalized growth rate, y/f1/3 WA, of the resistive m ° = 1 mode in the large ion

Larmor radius regime (cf. Eq. (28) of Ref. [44]), in the negative H regime. We take

Wdi = -*e = WA (pi/2r,), setting temperature gradients to zero. Note the non-monotonic

behavior of the curve for fl. -w *e/e /3 WA = 3, indicating connection of the resistive

internal kink to the drift-tearing mode.

Fig. 3 Normalized mode frequency, Re(w)/el/3wA, corresponding to the growth rates of

the previous figure (large ion Larmor radius regime).

Fig. 4 Energetic particle functional, Ak -- (S/efph)Ak, as function of W/WDh, for high

energy ICRH experiments in JET (cf. Ref. [101]). Here es = r8 /R, s = rdq/drlr9 ,

wDh = 1.2Eh(1 + 2s)/(mhflhRr,) and h is the maximum energy of the trapped ions

produced by ICRH.

Fig. 5 Energetic particle functional, Ak-- (/E/23pa)Ak, as a function of WW/Da, for

a-particles produced, with birth energy a, in Ignitor (cf. Ref. [88]). Here es = r/R,

s = rdq/drlr, and wDa -- Ea/(mafla,,Rr,).

Fig. 6 Marginal stability curve in the (A - f 2= -2c,i3) plane, where 3pc is the

critical value given, e.g. in Ref. [10]; fp and 8p,, are defined in Eq. (IV.33). Other
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parameters are WDa/WA = v/3£a/(mfa.RraVA) = 0.2 and di/WA = 0.05, while the

magnetic shear at the q = 1 surface is set at 0.6.

Fig. 7 Marginal stability curve and instability regimes for the case of an isotropic

population of fusion a-particles in a high temperature ( = 0) plasma with WdI/wDa =

0.1. Definition: p = (r,/R)3 / 2 [,3p/s(r.)] (A/D.)
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