I|I'I- Computer Science and Artificial Intelligence Laboratory

Technical Report

MIT-CSAIL-TR-2008-038 June 23,2008

Safe Open-Nested Transactions Through Ownership
Kunal Adgrawal, I-Ting Angelina Lee, and Jim Sukha

massachusetts institute of technology, cambridge, ma 02139 usa — www.csail.mit.edu

CSAIL

Safe Open-Nested Transactions Through Ownership

Kunal Agrawal I-Ting Angelina Lee Jim Sukha
MIT Computer Science and Atrtificial Intelligence Laboratory
Cambridge, MA 02139, USA

ABSTRACT

Researchers in transactional memory (TM) have proposed ogsting as a methodology for increasing the
concurrency of a program. The idea is to ignore certain “‘level” memory operations of an open-nested
transaction when detecting conflicts for its parent tramsacand instead perform abstract concurrency
control for the “high-level” operation that nested trartgat represents. To support this methodology, TM
systems use an open-nested commit mechanism that cominiisaalges performed by an open-nested
transaction directly to memory, thereby avoiding low-lex@nflicts. Unfortunately, because the TM runtime
is unaware of the different levels of memory, an unconstiéinse of open-nested commits can lead to
anomalous program behavior.

In this paper, we describe a frameworkavfnership-awardgransactional memory which incorporates the
notion of modules into the TM system and requires that tretitsas and data be associated with specific
transactional module®r Xmodules. We propose a neswnership-aware commit mechanisen hybrid
between an open-nested and closed-nested commit which it®@rpiece of data differently depending
on whether the current Xmodule owns the data or not. Moreavergive a set of precise constraints on
interactions and sharing of data among the Xmodules basthuliar notions of abstraction. We prove that
ownership-aware TM has has clean memory-level semantit€am guaranteserializability by modules
which is an adaptation of multilevel serializability fronatdbases to TM. In addition, we describe how
a programmer can specify Xmodules and ownership in a Jagddnguage. Our type system can enforce
most of the constraints required by ownership-aware TNMcstifit, and can enforce the remaining constraints
dynamically. Finally, we prove that if transactions in theogess of aborting obey restrictions on their
memory footprint, th@AT model is free fromsemantic deadlock

1. INTRODUCTION

In the past few years, transactional memory [4] has been taredield of research. Transactional memory
(TM) is meant to simplify concurrency control in parallebgramming by providing a transactional interface
for accessing memory; the programmer simply encloses titieatrregion inside arat om ¢ block, and
the TM system ensures that that section of code executescaltynA TM system enforces atomicity by
tracking the memory locations that each transaction in jtstem accesses, finding transaction conflicts,

This research is supported in part by NSF Grants CNS-06182d3°NS-0540248 and a grant from Intel corporation.

Permission to make digital or hard copies of all or part o§ tork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

Copyright© ACM [to be supplied].. . $5.00.

and aborting and possibly retrying transactions that atnfliM guarantees that transactions seealizable
[10], that is, transactions affect global memory as if theyrevexecuted one at a time in some order, even if
in reality, several executed concurrently.

When using TM, one of the issues that programmers must dehlisvihe semantics afiested trans-
actions When a TM system hadosed-nestedransactions [6], if a transaction contains a closed-nested
transactiorY, afterY commits, for the purpose of detecting conflicts the TM rueticonsiders any memory
locations accessed byas conceptually also being accesseKbyM with closed-nested transactions guar-
antees that transactions are serializable at the level afone Researchers have observed, however, that
closed nesting might unnecessarily restrict concurrendyansactional programs because it does not allow
two “high-level” transactions to ignore conflicts due to @sses to shared “low-level” memory inside nested
transactions.

To increase concurrency in transactional programs, relsees have proposed the methodologypén-
nested transactionslhe open-nesting methodology incorporatesapen-nested commit mechanigis, 8].
Conceptually, when an open-nested transactigmested inside transactiof) commits,Y makes its changes
directly to memory instead of propagating the changes tmeitentX. Thus, the TM runtime no longer detects
conflicts withX due to memory accessed Wy In this methodology, the programmer considéisinternal
memory operations to be at a “lower level” thanthereforeX should not care about the memory accessed
by Y when checking for conflicts. Instead,must acquire aabstract lockbased on the high-level operation
thatY represents and propagate this lockktpso that the TM system can perform concurrency control at
an abstract level. Also, with open nestingXifaborts, it may need to executempensating action® undo
the effect of its committed open-nested transactidndoss in [7] illustrates use of open nesting with an
application that uses a B-tree. In [9], Ni et. al describefensye TM system that supports the open-nesting
methodology.

An unconstrained use of the open-nested commit mechanisiead to anomalous program behavior [1]
that can be tricky to reason about. Since programmers mdstrstand the open-nested commit mechanism
to program using open nesting, at first glance, it might seleab asing the open-nesting methodology
is complicated. Although researchers have demonstratedfigpexamples that safely use an open-nested
commit mechanism, the literature on TM offers relativetifdiin the way of formal programming guidelines
which one can follow to haverovableguarantees of safety when using open-nested commits. Meneo
since these working examples require only two levels ofingsit is not obvious how one can correctly use
open-nested commits in a program with more than two levesbsfraction.

We believe that one reason for the apparent complexity ofh apesting is that the mechanism and
methodology make different assumptions about memory. i@ens transactiorlY open-nested inside
transactionX. The open-nesting methodology requires tKaignore the “lower-level” memory conflicts
generated by, while the open-nested commit mechanism will ignaliethe memory operations insidé
SayY accesses two memory locatiofisand /,, and X does not care about changes madé;{dut does
care about,. The TM system can not distinguish between these two acgeasd will commit both in an
open-nested manner, leading to anomalous behavior. Indpetific uses of open nesting that researchers
describe [3, 9] work because they exhibit a clean separatidhe data accessed by an outer transaction
and its (nested) inner transaction. For instance, in the €&nples [3], the open-nested transactions are
operations on a data structure, and the data structure "owasiory needed for its implementation that can
not be accessed by a user’s application.

Contributions

In this paper, we bridge the gap between memory-level mésimsnfor open nesting and the high-level
view by explicitly integrating the notions dfansactional moduleéXmodules) andwnershipinto the TM
system. We believe such an ownership-aware TM system ajpoagrammers safely use the methodology
of open nesting because the runtime’s behavior more closéiscts the programmer’s intent, and because

the additional structure imposed by ownership allows adagg and runtime to enforce properties needed to
provide provable guarantees of “safety” to the programiviere specifically, the contributions of this paper
are as follows:

1. We extend the theoretical framework from [1] to model tié System with the modules and ownership,
and suggest a concrete set of guidelines for sharing of datngeractions between Xmodules.

2. We describe how the Xmodules and ownership can be spetifiedlava-like language and propose a
type system that enforces the above mentioned guidelindseiprograms written using this language
extension.

3. We formally describe the operational model, called@#& model, which uses a neawnership-aware
commit mechanismwhich is a compromise between open-nested commit andd:losgted commit. An
ownership-aware commit of a transactibrcommits a memory location globally if that location belongs
to the module off'; otherwise, the read or write to the location is propagafetbd’s parent transaction.
Unlike an ordinary open-nested commit, the ownership-awammit treats memory locations differently
depending on the Xmodule that owns the location. Note thatadivnership-aware commit is still a
mechanism; programmers must still use it in combinatiom\alistract locks and compensating actions
to get the full methodology.

4. We prove that the if a program follows the guidelines fdaddnaring and interactions between Xmodules,
then theOAT model guarantees serializability by modules, which is aegaization of “serializability-
by-levels” used in database transactions. Ownershipeaw@nmit is the same as open nested commit if
no module ever accesses data belonging to other modulesfdtee one corollary of our theorem is that
open-nested transactions are serializable when modulestdihare data. This observation explains why
researchers [3, 9] have found it natural to use open-nestaddctions in the absence of sharing, in spite
of the apparent pitfalls in the open-nested transactiorastios.

5. We prove that under certain restrictive conditions, thejgutation can not enter a semantic deadlock.

Outline

The rest of the paper is organized as follows. In Section 2pmedly review the transactional computation
framework [1], and explain how we extend this framework tarfally incorporate Xmodules and ownership.
In Section 3, we describe an example application and destailguage constructs for specifying Xmodules
and ownership. In Section 4, we describe AT model, an operational model for the TM system. In
Section 5, we give a formal definition of serializability byodules, and proof-sketch that tiAT model
guarantees this definition. In Section 6, we give conditionder which theOAT model does not exhibit
semantic deadlocks.

2. COMPUTATIONS WITH MODULES

In this section, we formally define the structure of tranemetl programs with Xmodules and incorporate the
concepts of Xmodules and ownership into the transactiomapeitation framework described in [1]. First,
we briefly review the framework. We then add Xmodules to thésrnfework, and describe a way to restrict
data sharing between transactions of different Xmodule®gyws“module tree” structure.

Transactional Computations

In the framework from [1], the execution of a program is medelising a “computation treel” that
summarizes both the information about the control strectofra program and the nesting structure of
transactions, and an “observer functio® which characterizes the behavior of memory operations. A
program execution is assumed to generataee (C,P).

A computation tree” is defined as an ordered tree with two types of nodesmory-operation nodes
memOps(() as leaves andontrol nodesspNodes((C) as internal nodes. A memory operatiosatisfies the

O P-Node
O S-Node
[] Transaction
O Memory Op.

Figure 1. A sample (a) computation tre@ and (b) its corresponding d&gy(C).

read predicate Ry, /) if vreads from locatiorf, while v satisfies thevrite predicate Wy, ¢) if v writes to/.
Control nodes are eithes (series) orP (parallel) nodes. Conceptually, the children of &node must be
executed serially, from left to right, while the children®hode can be executed in parallel. SoSmodes
are labeled as transactions; defizetions(() as the set of these nodes.

Instead of specifying the value that an operation reads ibesvio a memory locatiof, we abstract away
the values by using aobserver function®. For a memory operation that accesses a memory locatin
the noded(v) is defined to be the operation that wrote the valuéthiatv sees.

We define several structural notations on the computatie®. tDbenote theoot of a computation tree
C as root((C). For any tree nodeX € nodes((C), let ances(X) denote the set of all ancestors Xf
in C, and letdesc(X) denote the set of alK's descendants. Denote the set of proper ancestob$ of
by pAnces(X). Denote theleast common ancestoof two nodesX;,X> € C by LCA(Xy,X2). For any
node X € nodes(C), we define thetransactional parentof X, denotedxpar ent (X), asparent(X) if
parent(X) € xactions((), or xpar ent (parent(X)) if parent(X) ¢ xactions((). Define thetransac-
tional ancestorsof X asxAnces(X) = ances(X) Nxactions(C). DefinexLCA(X1,X2) asZ = LCA(X1,X2)
if Z € xactions((), and axpar ent (Z) otherwise.

A computation tree can also be represented as a computatip(@olected acyclic graph). Given a tr€g
the dagG(C) = (V(C),E(C)) corresponding to the tree is constructed recursively. yEveernal nodeX in
the tree appears as two vertices in the dag. Between theseettices, the children ok are connected in
series ifX is anSnode, and are connected in paralleXifs aP node. Figure 1 show a computation tree and
its corresponding computation dag.

In classical theories on transactions and serializabiéityparticular execution order for a program is
referred to as aiistory [10]. In our framework, a history corresponds to a topolagisort § of the
computation dads(C). We define our models of TM using these sorts. Reordering targiiso produce
a serial history is equivalent to choosing different togidal sorts$’ of G(C) whose observer function is
still “consistent” with$’, but where all transactions appear contiguous’in

Xmodules and Computation Tree

In this paper, we consider traces generated by a programhvidiorganized into a set/ of Xmodules.
Each XmoduleA € A has some number of methods and a set of memory locationsatssbwith it. In the
transactional computation framework, we assume everyadaihan XmoduleA generates some transaction
instancer . We use the notatioxbd(T) = Ato associate the instan@ewith the XmoduleA. We also define

the instances associated witlras
modXactions(A) = {T € xactions(C) : xMd(T) = A}.

We partition the set of all memory locations into sets of memory owned by each Xmodule. Let
modMemory(A) C L denote the set of memory locations ownedAyfor a location/ € modMemory(A),
we say thabwner(¢) = A. Xmodules of a program are arranged as a rooted, orderedatied themodule
tree, denoted byD. The root of D is called thewor | d module. An XmoduléA is said to be owned by its
parentnodParent(A) in . The set of ancestors #fis modAnces(A) (modDesc(A) for descendants).

Each Xmodule is assigned arevel according to its position in the tree as follows: visit thedas in a
left-to-right depth-first search order and assign ids inscdrding order. Therefor®r | d has the maximum
level. Lower-level Xmodules have lowéevel numbers.

We use the module tre® to restrict the sharing of data between Xmodules and to lingitvisibility of
Xmodule methods according to the rules given in Definition 1.

DEFINITION 1. A program with a module treé@ should generate only trace€C, ®) which satisfy the
following rules:

1. For any memory operation v which accesses a memory latgtiet T = xpar ent (v). Thenowner(¢) €
modAnces(XMod(T)).

2. Let XY € xactions(C) be transaction instances such thatbd(X) = A andxMbd(Y) = B. We can
have X= xpar ent (Y) only ifmodParent(B) € modAnces(A), andlevel(A) > level(B).

By Rule 1, an XmoduleA can only directly access memory that it owns, or memory thaamcestor
Xmodule B owns (e.g., becaud® passed in that data to a lower-level Xmodule). Since all stoce of A
have highel evel thanA, a transaction from modul& can not directly access any “lower-level” memory.

Rule 2 says that a method frofncan call a method frorB only if B is the child of some ancestor 8§
and if B is “to the right” of A in the tree. The second rule requires that an Xmodule canaatiiynethods of
some (but not all) lower-level Xmodules.

In our model, primarily for convenience, we assume an meihcah XmoduleA never calls another
transactional method frovh or an ancestor oA. If a method fromA does call another transactional method
from A, the new method call does not generate a new transactioangestand we subsume the nested
method call using flat nesting. Similarly, if a method fradncalls a method from an ancestor Xmodule
(e.g., callback), we subsume the nested method call, an@lInttid case aé accessing the memory from
ancestor Xmodule directfy.

The concept of higher-level and lower-level modules is ierheto the definition of serializability-by-
modules and abstract serializability; the very justificatdof open-nesting is that transactions must be able
to ignore lower-level conflicts. Therefore, our formalisequires a partial order among Xmodules; if an
XmoduleA can call XmoduleB, then conceptually is at a higher level thaB. Therefore B can not callA
(except in a flat-nested manner described in the previowpaph), since lower-level modules can not call
methods from higher-level modules transactionally. If memnponents of the program call each other, then
we would require that these two components be combinedlietsame Xmodule.

Properties of Xmodules

Definition 1 guarantees certain properties of the comprtdtiee which are essential to the ownership-aware
commit mechanism. The following lemma can be proved by itidoon nesting depth of transactions.

LEMMA 1. Given acomputation tre€, consider any T xactions(C). Let§ = {xMdd(T’) : T’ € xAnces(T)}.
ThenmodAnces(xMod(T)) C Sr.

10ne could also use closed nesting instead of flat nesting ahétmodule calls its own methods or its ancestor’s methods.

PROOFE We prove this fact by induction on the nesting depth of taatiens in the computation tree.

In the base case, the top-level transacfior- root(C), andxMd(root(C)) = worl d. Thus, the fact
holds trivially.

For the inductive step, assume thatiAnces(xMbd(T)) C Sy holds for any transactiom at depthd. We
show that the fact holds for arly* € xactions(() at depthd + 1.

For any suchT*, we know T = xparent (T*) is at depthd. By Rule 2, modParent(xMd(T*)) €
modAnces(xMd(T)). Thus,modAnces(xMd(T*)) C modAnces(xMd(T)) U {xMd(T*)}. By construction
of the setSr, we haveSr- = Sy U {xMd(T*)}. Therefore, we havgodAnces(xMd(T*)) C Sr-. U

THEOREM 2. If a transaction Te xactions(() directly (without nesting) accesses a memory location
then there exists a unique transactiof & (xAnces(T) — {root(()})), such that

1. owner(¢) = xMod(T*), and
2. For all transactions Xe pAnces(T*) Nxactions(C), X can not directly access locatidn

PrROOF This result follows from the properties of the module treel @omputation tree stated in Defini-
tion 1.

First, by Rule 1, we knowwner(¢) € modAnces(xMd(T)), i.e.,/ is owned by some Xmodule which is
an ancestor ofMd(T) in the module tree. By Lemma 1, we knawsdAnces(xMbd(T)) C Sr. Therefore,
there exists some transactidr € xAnces(T) such thabwner(¢) = xMd(T™).

We can use Rule 2 to show that tfi€ is unique. LetX; be the chain of ancestor transactions of
T. More formally, letXo = T, and letX; = xparent (X_1), up until Xx = root(C). By Rule 2, we
know level(xMd(X;)) > level(xMd(Xi_1)), that is, the module ids become strictly larger walking up
the tree fromT. Thus, there can only be one ancestor transactiorof T with level(xMd(T*)) =
level(owner(!)).

To check the second condition dr, consider anyX € pAnces(T*) Nxactions((C), and assume for
contradiction thatX could accesd directly. By Rule 1,X can accesg directly only if owner(?) €
modAnces(XMd (X)), which then impliedevel(owner(¢)) > level(xMd(X)), since an Xmodule always
has a smaller id than its ancestor Xmodules. This, howewerradicts the facts derived earlier, that
owner(/) =T* andlevel(T*) < level(xMd(X)). U

Intuitively, Theorem 2 implies that for programs that obbg tonstraints described in Definition 1, if a
transactionT accesses a memory locatigrthen some unique ancestoriofsayT *, belongs to the Xmodule
that ownst. In the context of the ownership-aware commit mechanisia,tthnsactionl * is “responsible
for” committing ¢ and making it visible to the world. The second condition oedtem 2 states that no
ancestor transaction af* in the call stack can ever directly accésshus, it is “safe” forT* to commit/.

3. OWNERSHIP TYPES FOR Xmodules

In this section, we illustrate how one may use an ownersWigr@ transaction system to write a simple
example application. First, we describe the example agjbic, which consists of user code interacting with
a simple database system. Next, we describe one way to lsgliapplication into Xmodules, and explain
the restrictions imposed by Definition 1 in the context okthpplication. Finally, we describe language
constructs for Java that can be used to both specify Xmodaridsownership for this application, and
describe a type system design (called @#T type system) that statically enforces some of the resiristi
of Definition 1.

Example Application

To explain the notions of modules and ownership, we desenbapplication similar to the one in [7], but
extended to include more than two levels of transactionmgaind data sharing between a nested transaction
and its parent.

UserApp level:4

level:3 “ level:0

level:2 level:l

Figure 2. A module treeD for the program described in Section 1. Thevel’s are assigned by visiting
Xmodules in a left-to-right depth-first tree walk, numberiXmodules in a descending order.

Consider a user application which concurrently accessatahase of many individuals’ book collections.
The user application may provide many other functionalitreaddition to accessing the book database, but
for the purpose of this paper, we are only describing a sulgbarcomplex system.

The database implementor chooses to store records in g Isiearch tree, keyed by name. Each tree node
corresponds to a different person, and maintains a list ok&adn that person’s collection. The database
supports queries by name, as well as updates that add a nesnpera new book to a person’s collection.
The database also maintains a private hashmap, keyed bytidepto support a reverse query, i.e., given a
book title, return a list of people who own the book.

Finally, the user application wants the database to loggésmon disk for recoverability. Whenever the
binary search tree or hash table are updated, the datalsastsimetadata into the buffer of a logger to record
the change that just took place. Periodically, the useriegtjn is able to request a checkpoint operation
which flushes the buffer to disk.

One may implement this example in Java with the followingstsUser App as the top-level application
that manages the book collectioRsy son andBook as the abstractions representing book owners and books,
DB for the databaseBST andHashnap for the binary search tree and hashmap maintained by thbatsa
andLogger for logging the metadata to disk. In addition, there are sother auxiliary classes such as tree
nodeBSTNode for the BST, Bucket in theHashmap, andBuf f er used by the.ogger .

Xmodules for Example Application

Intuitively, an Xmodule is as a stand-alone entity that aorg data and methods; a Xmodule owns data
that it privately manages, and uses its methods to provididigpservices to other modules. Not all of a
program’s classes are meant to be Xmodules; some classew/i@p data, while others are Xmodules that
provide services. In our example, we identify five Xmodul&ser App, DB, BST, Hashnmap, andLogger . The
User App uses services froB, BST andHashnmap are submodules @B, andLogger provides services to all
User App, DB, Hashmap, andBST. Classes such @&vok andPer son, on the other hand, are data types used by
User App. Similarly, classes lik®STNode andBucket are data types used BT andHashmap to maintain
the internal state of the data structures.

We organize the Xmodules of the application into the mode shown in Figure 2Jser App is directly
owned bywor | d, DB and Logger are ownedUser App; BST and Hashmap are owned byDB. By dividing
Xmodules this way, the ownership of data falls out natural/, an Xmodule owns certain pieces of data
if the data is encapsulated under the Xmodule. For exantpanstances dfer son or Book are owned by
User App because they should only be accessed eltherApp or its descendants.

If Definition 1, Rule 1 is satisfied, all ddB, BST, Hashmap, andLogger can only directly access data
owned byUser App, but theUser App can not directly access data owned by any of the other Xmedililds
rule corresponds to standard software-engineering roleslfstraction; the “high-level” Xmoduléser App

can pass its data down and lower-level Xmodules can accaisdata directly, butlser App itself should not
modify data owned by lower-level Xmodules.

If Rule 2 is satisfied, thé&ser App may invoke methods frorBB, DB may invoke methods froBST and
Hashnmap, and every other Xmodule may invoke methods frbogger . While theBST Xmodule can call
methods fromLogger, it can not pass data owned by itself directly into tlegger. But it can pass data
owned by thelser App to the logger, which is all that is required in this applioati In the module tree in
Figure 2, if theLogger had any children, then they would be lower level tH&8T, but BST can not call
methods from this hypothetical child.

Specification of Xmodules and Parametric Ownership Types

Angelina: Ok, maybe the title

Although the restrictions on Xmodules required by Defimtib are not difficult to state or reason about
abstractly, the programmer has to specify the Xmodules ameship of data in their programs. In addition,
if the program violates the rules from Definition 1, then tleenpiler or the runtime system should be able
report this error. We propose tH@AT type system, which is an extension of the ownership typemsehe
of Boyapati et. al [2], because the restrictions descrilpeDefinition 1 are similar to the concept of object
containment / encapsulation in an object-oriented langublgte that the scheme of Boyapati et. al allows
owner polymorphism by parameterizing class / method dattars with ownership tags. We adapt this
annotation as well to enable code reuse.

Before describing how to specify Xmodules and their comesiing data, we first describe the scheme of
Boyapati et. al [2]. Their type system enforces the follayvproperties:

1. Every object has a unique owner.
2. The owner can be either another objectwarl d .
3. The ownership relation forms anvnership tregooted ator | d.

4. An objecta can access another objdxtlirectly (@ can obtain a pointer tb) only if b is eithera’s child
or a's ancestor’s child in the ownership tree.

They enforce these properties by adding annotations ts desnitions and type declarations. Every type
T1 has a set of associated ownership tags, denidtéfi, fo, ... fy). The first formalf; denotes the owner of
the correspondinghi s object. The remaining formal®, fs, ... f, are additional tags which the object can
propagate down to its encapsulated objects. The formalasg&ined with actual ownegs,0,,...0, when

an objecta of type T1 is created. The type system checks #@igtownero; is a descendant @, Vi € 2..n,
(denoted byo; < o henceforth) in the ownership tree. Of course, when an assghtakes place, the type
system also enforces that the types from both sides matcitiyexa

Within the class definition of typ&l, the only visible ownership tags aféi, f2,... fo} U{thi s,worl d},
wheret hi s denotes the owner to be the correspondihgs object, andwor | d denotes the object to be
globally accessible. The object can declare (and theretsay another object of tyd@ using only owners
from this set. Thus, an object can not access another dijetis owner is nota or one ofa’s ancestors.

Boyapati et. al's type system enforces constraints on thjebich are similar to, but not exactly the
constraints that we would like for Xmodules (i.e., Definitith). Therefore, we extend their type system to
satisfy three additional requirements.

First, the OAT type system imposes restrictions to guarantee that only d{tes own other objects.
Normally, in the ownership tree of [2], every object can beamer of other objects. Therefore, we explicitly
distinguish between objects and Xmodules by requiringXmabdules extend from a specigiodul e class.

In addition, theOAT type system allows the use tofi s as an ownership tag only in the class definition that
is a subtype oKrmodul e.

Second, theOAT type system prohibits an Xmodule from having any primitiype fields. In the
parametric type system we use, one can not specify the oviipeingtive fields of an object, and primitive
fields are owned by the owner of the corresponding objects;Taay primitive fields of an Xmodula are

1 public class UserApp<appO> extends Xmodul e {
2 private DB<this[0], this[1], this[2]> db;
3 private Logger<this[1], this[2]> |ogger;

4 publ ic UserApp() {

5 | ogger = new Logger<this[1], this[2]>();

6 db = new DB<this[0], this[1], this[2]>(logger);
7 t

8 }

9 public class DB<dbO 10g0 dataC>
extends Xnmodul e where(logO <= dataQ ({

10 private Logger<logOQ dataC> |ogger;

11 private BST<this[0], |ogQ dataC> bst;

12 private Hashmap<this[1], [ogQ dataC> hashmap;
13 public DB(Logger<logQ, dataC> |ogger) {

14 this.logger = |ogger;

15 '}

Figure 3. Specifying Xmodules and ownership for the example appticadescribed in Section 1.

owned byA's parent in the ownership tree. Therefore, two sibling Xoied would be able to access each
other’s primitive fields directly, since they have the sammer. To disallow this behavior, we do not allow
Xmodules to declare primitive fields.

Lastly, the OAT type system enforces ordering between sibling Xmodflend B to prevent cyclic
dependencies between the subtreea ahdB in the module tree. In Boyapati's type system, an object can
call any of its ancestor’s siblings, while Definition 1 digts that an Xmodulé can only call its ancestor’s
siblings to the right. To enforce this restriction, we exteach ownership tagwith anindex o.index

Inside a class file for an Xmodulks, whenever the programmer wishes to specify an ownéhp$, the
programmer must also specify a static index, i.e., paskiig[i] as the tag. The taichi s[i] replaces some
formal tago in the type ofB;, and the index become®. index the index of the tag. The type system uses
these indices to impose a partial order on the childrefiofthe module tree. In this example, by specifying
indices, the type system can statically enforce Byatever call a method from; if j <.

For the same reason, we disallow arbitrary use ofwthié d tag; otherwise it would be difficult to enforce
an ordering between sibling Xmodules owned directly byatrd d. Instead, we allow only theai n method
for the application program to specify owners usiogl d[i] (with an index), thereby imposing an ordering
among children belong to theor | d.

With these restrictions, the ownership tree in our systethonly have Xmodules as internal nodes, and
all other objects as leaves. Note that in our ownership &garent-child relationship has two meanings. If
an XmoduleA has a regular objed as its child, therA owns all the memory associated withWhen an
XmoduleA has another XmodulB as its child,B is A’s child in the Xmodule tree. The Xmodule tree does
not contain objects.

Figure 3 illustrates how one can specify Xmodules and ovhigrssing ownership types. The programmer
specifies an Xmodule by creating a class which extends fragmeeiaXnodul e class. ThéB class has three
formal owner tags -dbO which is the owner of th&B Xmodule instancel, ogO which is the owner of the
Logger Xmodule instance that tHeB Xmodule will use, and one owneat aOfor the user data being stored
in the database. When an instanceUsér App initializes Xmodules in lines 5-6, it declares itself as the
owner of theLogger, the DB, and the user data being passed DBoThe indices or hi s are declaring the
ordering of Xmodules in the module tree, i.e., the user datawer-level than théogger, and theLogger

is lower level than thé&B. lines 10-12 illustrate how thaB class can initialize its Xmodules and propagate
the formal owner tags (i.el.ogOanddat a0) down.

Type System Guarantees

We extend the type system of [2] to encompass the requirent@sicribed in the previous section. To state
the guarantees of our type system, we first define a partiel @mlindexed ownership tags.

DEFINITION 2. For ownership tags with indices, we adopt the notatiem-@, to mean that either p=< 0,
and q # 0, or 0 = 0 and q.index< 0,.index.

Note that if A has owner tagsi, B has owner tag,, 01 = 0y, and0;.index < 0,.index theno; and o,
represent the same Xmodule instance, Arehd B are sibling Xmodules, withB to the right ofA in the
module tree.

In summary, type system enforces the following properties.

1. Thetag hi s[i] can be used as an ownership tag only in the class file of an Ximadhject.
2. Xmodule objects can not have primitive-type fields.
3. For a typeTl (01, 0y,...0,), we must have, > o; for all i € {2,...n}.

4. A variable c, with type T2(0,,...) can be assigned to a variabig with type T1(os,...) (either via
assignment statement or passing arguments for methodacallsuch) if and only ib; = 0, ando; > 0,.

The detailed type rules for our type system are describegpeAdix B.

THEOREM 3. Our type system guarantees the following properties.

1. An Xmodule A can access an object with ownership tag o bAlyio.
2. An Xmodule A with ownership tag can access another Xmodule B with ownership tagrdy if A owns
B, orif 0, > 05.

PrOOF Condition 1 is the same as Boyapati et. al's access ruleseSiur type system makes the type
rules stricter, it still holds with our type systefh. Jim: Conliion 1 is essential
Condition 2 requires more explanation. An Xmod@lean access another XmodwBeonly if inside A’s
class file, it is possible to declare a variablef type T and assigmB to x. The only ownership tags thafs
class file can use as the owner Toare one ofA’s formal tags, ot hi s[i] tag.
If the owner ofT is one of the formal tage;, then by Property 3, we know > 0;. By Property 4, we
know B can be assigned toonly if 0; = 0, ando; > 0,. Since the relation- is transitive, we have, &> 0.
Similarly, if x is declared with a taghi s[i], then by Property 4, we can assignto x only if 0, =
this[j] (wherei <j).Thus, we havé\ ownsB.
(]

These properties translate to the definition Definition Ulittee children of a particular Xmodule have
unique indices. By indexinghi s owner tags, we are able to enforce some ordering constria@tigeen
sibling Xmodules. One should note, however, that our typsesy can not prevent cyclic dependencies
between Xmodules, since the programmer can always dewlar&modulesA andB with the same indexed
ownerthis[i]. In this case, the type system does not enforce any ordedngtraint betweer and
B statically. In general, it seems difficult enforce the omdgrof children entirely statically (Rule 2 of
Definition 1) without imposing too many programming redtdons. The runtime system, however, could
dynamically check for cycles and throw a runtime error if aleyis detected.

2Note that in this paper, we do not consider the possibilitinnér classes, unlike the original ownership type systef@]of

4. OWNERSHIP-AWARE TRANSACTIONS

In this section, we informally sketch tH@AT model, an abstract execution model for TM with ownership
and Xmodules. The novel feature of t&AT model is that it uses the structure of Xmodules to provide a
commit mechanism which can be viewed as a hybrid of closedoped nested commits. TH@AT model
presents an operational semantics for TM, and is not inttrmldescribe an actual implementation.

Overview

The TM system is modeled as a nondeterministic state maehithetwo components: @rogramand a
runtime systemThe runtime system, which we call ti@AT model, dynamically constructs and traverses
a computation tre€ as it executes instructions generated by the program OAlemodel maintains a set
of readynodes, denoted hyeady(C) C nodes(C), and at every step, tHeAT model nondeterministically
chooses one of these ready nodes ready(() to issue the next instruction. The program then issues one
of the following instructions (whose precondition is séid) on X's behalf:f ork, j oi n, xbegi n, xend,
xabort, read, orwite. For shorthand, we sometimes say tHassues an instruction.

The OAT model describes a sequential semantics, that is, we asdwveratime step, a program issues
a single instruction. The parallelism in this model arigestthe fact that at a particular time, several nodes
can be ready, and the runtime nondeterministically choa$ésh one to have issue an instruction.

In the rest of this section, we give a detailed descriptiothefOAT model. First, we describe the state
information maintained by th©AT model and define the notation we use to refer to this statarfsleeve
describe how th®AT model constructs and traverses the computation tree agdtiehs are issued. Then,
we describe how th®AT model handles memory operations (ireead andwr i t €), conflict detection, and
transaction commits, and transaction aborts.

4.1 State Information and Notation

As the OAT model executes instructions, it dynamically constructs ¢cbmputation tre”. For each of
the sets defined in Section 2 (e.ggdes(C), spNodes((C), memOps(C), xactions((C), etc.), we define
corresponding time-dependent versions of these sets byimglthem with an additional time argument. For
example, we define the sebdes(t, C) denotes the set of nodes in the computation tree afiere steps
have passed. The generalized sets from Section 2 are marapincreasing, i.e., once an element is added
to the set, it is never removed at a later tim&ometimes for shorthand, we omit the time argument when it
is clear that we are referring to a particular fixed time

Since theOAT model has a computation trge which is dynamic, at any fixed timg each inter-
nal nodeA € spNodes(t,C) has astatus field status[A]. If A € xactions(t,(), i.e., A is a trans-
action, thenstatus[A] can be one ofCOW TTED, ABORTED, PENDI NG, or PENDI NG.ABORT. Otherwise,
A€ spNodes(t, C) —xactions(t, C) is either a P-node or a nontransactional S-node; in this saseus|A|
can either b&\ORKI NG or SYNCHED. We define several abstract sets for the tree based on ttus §itgdd. The
first 6 sets partition thepNodes(t, C), the set of internal nodes of the computation tree. The |as#td
categorize transactions and nodes as being either actoamgplete.

1. pending(t,C) = {X € xactions(t,C) : status[Z] = PENDI NG} (Pending transactions).

2. pendingAbort(t,C) = {X € xactions(t,C) : status[Z] = PENDI NG.ABORT} (Aborting transactions).
3. committed(t,C) = {X € xactions(t,C) : status[Z] = COW TTED} (Committed transactions).

4. aborted(t,C) = {X € xactions(t,() : status[Z] = ABORTED} (Aborted transactions).

5. working(t,C) = {Z € spNodes(t,C) —xactions(t, () : status[Z] = WORKI NG} (Working nodes).

6. synched(t,C) = {Z € spNodes(t, C) —xactions(t,C) : status[Z] = SYNCHED} (Synched nodes).

7. activeX(t,C) = pending(t, C) UpendingAbort(t, C) (Active transactions).

8. activeN(t, C) = activeX(t, C) Uworking(t, C). (Active nodes).

9. doneX(t,C) = committed(t, C) Uaborted(t, C) (Complete transactions).
10. doneN(t, C) = doneX(t, C) Usynched(t, C) (Complete nodes).

The OAT model maintains a set eéady S-nodes, denoted agady(t, C). We discuss the properties of
ready nodes later, in Section 4.2. Note thatdy(t, C), and the sets defined above which are subsets of
activeN(t, C) are not monotonic, because completing nodes removes eiefnem these sets.

For the purposes of detecting conflicts, at any tinfer any active transaction, i.e.,T € activeX(t, C),
the OAT model maintains aeadsetR(t,T) and awritesetwW(t, T) for T. The readsek(t,T) is a set of pairs
(¢,v), wherel € L is a memory location ande memOps(t, C) is a memory operation that reads frédmVe
definew(t,T) similarly. We represent main memory as the readset/wtitefseocot(C). Attimet = 0, we
assume(0,root(()) andwW(0,root(()) initially contain a pair(¢, L) for all locations/ € L.

The OAT model maintains two invariants @&{t, T) andw(t, T). First,w(t,T) CR(t, T) for every transac-
tion T € xactions(t, (), i.e., a write also counts as a read. Sec&ttl,T) andw(t, T) each contain at most
one pair(¢,v) for any location/. Thus, we use the shorthaic: R(t, T) to mean that there exists a node
such that(/,u) € R(t, T), and similarly forw(t, T). We also overload the union operator: at some tifran
operationR(T) < R(T) U {(¢,u) } means we construai(t+1,T) by

R(t+1,T) ={(£,u)}URELT)—{(,U) eRET)}).

In other words, we ad¢¢,u) toR(T), replacing any/,u’) € R(t,T) that existed previously.
Finally, for a transactiofil € activeX(t, C), we also define anodule readseas

modR(t,T) = {(¢,v) €R(t,T) : owner(¢) =xMd(T)}.

In other wordsmodR(t, T) is the subset ok(t, T) that accesses memory owned B XmodulexMVod(T).
Similarly, we define thenodule writeseis

modW(t, T) = {(¢,v) €W(t,T) : owner(¢) =xMd(T)}.

4.2 Constructing the Computation Tree

In the OAT model, the runtime constructs the computation tree in dégéitfarward fashion as instructions
are issued. Th®AT model maintains a computation tree that satisfies two siraicproperties.
First, theOAT model builds only computation tregswhich have the following canonical form.

PROPERTY 1. A canonical computation tre€ satisfies the following properties.

1. root((C) is a transaction.

2. All transactions Z xactions((C) are S-nodes.

3. InC, every P-node Y has exactly two nontransactional S-noges\d Z as children, ancarent(Y) is
an S-node.

Second, at any timg if one looks only the active nodes:tiveN(t, C), the OAT model maintains the
invariant the active nodes form a tree, with the ready nodl¢isealeaves. In other words, tl@AT model
preserves the following invariant.

PROPERTY 2. At any time t, the computation treggsatisfies these properties:

1. For all X € ready(t, C), ances(X) C activeN(t, C).
2. For all X € ready(t, C), (pDesc(X) Nnodes(t, C)) C doneN(t, C).

In other words, the setctiveN(t, C) forms anactive tree

Since theDAT model is a sequential semantics, itis clear that the seguafgstructions always generates
a valid topological sorg of the computation dadz(C). Jim: Don't know where this s

oes this actually make any
to be careful about having

The instructions in th©AT model maintain Properties 1 and 2 for the computation treestraightfor-
ward fashion. For completeness, however, we give a mordetkbtiescription of this construction.

Initially, at timet = 0, we begin with only the root node in the tree, imades(0, C) = xactions(0,) =
{root(C)}. Throughout the entire computation, tAT model always maintainstatus[root(C)] =
PENDI NG, i.e., the root node of the tree is alwaENDI NG. This root node also begins as ready, i.e.,
ready(0,C) = {root(C)}.

The OAT model creates new internal nodesdnduring time stegt + 1 when it chooses a ready node
X € ready(t, C) and hasX issue & or k or xbegi n instruction. IfX issues d or k, then the runtime creates
a P-nodeP as a child ofX, and two S-node§; andS, as children ofP, all with statusWORKI NG. Thef or k
also removeX from ready(() and addsS; and$S; to ready(C). If X issues anxbegi n, then the runtime
creates a new transactiohe xactions(() as a child ofX, with status[Y] = PENDI NG, removesX from
ready((), and add¥ to ready(C).

The OAT model completes a nontransactional S-ndde ready(t, C) — xactions(t,C) (which must
have status[Z] = WORKING) by having Z issue aj oi n instruction. Thej oi n instruction first changes
status[Z] to SYNCHED. In the tree, sincgarent(Z) is always a P-nodeZ has exactly one sibling. £
is the first child ofparent(Z) to be SYNCHED, the OAT model remove& from ready(C). OtherwiseZ is
the last child ofparent(Z) to be SYNCHED, and theOAT model remove& andparent(Z) from ready(C)
and addgarent(parent(Z)) to ready(C).

The OAT model can complete a transacti®re ready(t, C) by having it issue either arend or xabor t
instruction. If status[X] = PENDI NG, then X can issue arxend to changestatus[X] to COW TTED.
Otherwise status[X] = PENDI NG_ABORT, andX can issue amabort to change its status #BORTED. For
bothxend andxabor t , theOAT model removeX from ready(() and addparent(X) back intoready(C).
Thexend instruction also performs an ownership-aware commit armhgls readsets and writesets, which
we describe later in Section 4.4.

Finally, a ready nod& issues aead andwr i t e instruction, if the instruction does not generate a conflict
it adds a memory operation nogte¢o memOps(t, C), with v as a child ofX. If the instruction would create
a conflict, the runtime may change the status of BEMDI NG transactionT to PENDI NG_ABORT to make
progress in resolving the conflict. For shorthand, we refethe status change of a transactibrfrom
PENDI NG to PENDI NG_ABCRT as asi gabort of T.

4.3 Memory Operations and Conflict Detection

The OAT model performs eager conflict detection; before perfornaimgemory operation that would create
a newv € memOps(C), the OAT model first checks whether creatingvould cause a conflict, according to
Definition 3.

DEFINITION 3. Suppose at time t, the OAT model issuasead or wr i t e instruction that potentially
creates a memory operation node v. We say that v generatesnaory conflictif there exists a location
¢ € £ and an active transaction,E activeX(t, C) such that

1. T, & xAnces(v), and
2. either Rv,£) A ((£,u) € W(t, Ty)), or W(v,£) A ((¢,u) € R(t, Ty)).

If vwould generate a conflict, then the memory operatidioes not occur; instead sagabort of some
transaction may occur. We describe the mechanism for almo®tsction 4.5.

Otherwise v does not generate a conflict. Thembserves the valuéfrom R(Y), whereY is the closest
ancestor o/ with ¢ in its readset (i.e(¢,u) € R(Y) and®(v) = u). Ther ead also addw to X's readset.

A successfulvr i t e operationv sets the observer functioh(v) in the same way asreead. Thew ite
adds(¢,v) to bothr(X) andw(X).

4.4 Ownership-Aware Transaction Commit

The OAT model implements an ownership-aware commit mechanismested transactions which contains
elements of both a closed-nested and an open-nested coMPRENDI NG transactionY issues arxend in-
struction to commiY into X = xpar ent (Y). WhenY commits, it commits locations from its readset/writeset
which are owned byMd(Y)’s in an open-nested fashion to the root of the tree, whileimits locations
owned by other Xmodules in a closed-nested fashion, by gaipay those reads/writes ¥

We can describe th®AT model’s commit mechanism more formally in terms of moduledsets and
writesets. Suppose at tinteY € xactions(t,C) with status[Y] = PENDI NG issues arxend. This xend
changes readsets and writesets as follows.

R(root(C)) « R(root(C))UmodR(Y)

R(xparent (Y)) <« R(xparent (Y))U(R(Y)—modR(Y))
Wroot(C)) <« Wroot(C))UmodW(Y)

Wxparent (Y)) «— Wxparent (Y))U(W(Y)—modW(Y))

For a memory operation, Theorem 2 implies that the the ownership-aware commit mn@sin has a
well-defined “committer” for.

DEFINITION 4. Forany memory operation u, which accesses a locatjaiefine theeommitterof u, denoted
committer(u), as the unique transaction*ffrom Theorem 2 such thatmer(¢) = xMod(T¥).

Intuitively, committer(u) is the transaction which “belongs” to the same Xmodule addbation ¢ which
u accesses, and is responsible for commitiing memory. One can also show for anywhich accesses
a location/, ¢ can never appear in the readset (or writeset) of any transatt which is an ancestor of
committer(u). Note that this property does not hold for TM with open-ndstemmits; in that case&,(T’)
may contain a different value fdrthat may be replaced upon commit. Jim: THIS WAS AN OLD PAI
For programs where every Xmoduleaccesses only locatiorswhich it owns, an open-nested commit
is equivalent to an ownership-aware commit because any myemodified by T with xMbd(T) = A is
committed directly taroot (). Some program examples, however, are arguably easierdoredout using
an ownership-aware commit. For instance, suppose in the@raapplication from Section 1, thatBaok
object has a field of ast Sear ched that keeps track of the last time a query was performed inmvglthat
Book in a successful top-level transaction. Suppose this fietdsis read by thé&ser App Xmodule. In this
case, if theBST uses an open-nested commit, the programmer must worry abbonly the commutativity
with methods irBST Xmodule, but also the commutativity with methods in tser App Xmodule that access
(read or write) the ast Sear ched field. Similarly, when compensating the methods of88& Xmodule, the
compensating action would need to undo the modificationed #&ist Sear ched field. With an ownership-
aware commit mechanism, on the other hand, the write ohdbeSear ched field is then propagated up
to the parent transaction, and eventually committed to nmgronly when a top-level transaction of the
User App Xmodule ends, (since we assume Boek instance is owned by thdser App).

4.5 Transaction Abort

When the OAT model detects a conflict, it aborts one of the conflicting geamtions by changing its
status fromPENDI NG to PENDI NG_ABORT. In the OAT model, a transactio € xactions(C) might not
abort immediately; instead, it might continue to issue miasgructions after it's status has changed to
PENDI NG_ABORT. This condition allows the system to use compensating r&tio compensate for the nested
transactions that may have committed. Eventual¥elDl NG_ABCORT transaction issues and instruction,
which then changes its status fréaNDI NG.ABORT to ABORTED.

Later, it will be useful to refer to the set of operations ansactionT issues while its status is
PENDI NG_ABORT.

DEeFINITION 5. The set of operations issued by T or its descendants aftestdtiss changes tBENDI NG ABORT
are called T’sabort actions. This set is denoted yportactions(T).

If a potential memory operatiomgenerates a conflict witl, andT,'s status isPENDI NG, then theOAT
model can nondeterministically choose to abort eigpar ent (v), or T,. In the latter casey then “waits” for
Ty to finish aborting (i.e., change its statusABORTED) before continuing. IfTy’s status iSPENDI NG_ABORT,
thenv just waits forT,, to finish aborting before trying to issuead or wr i t e again.3

This operational model uses the same conflict detectionriliigp as TM with ordinary closed-nested
transactions does; the only subtleties are W&n generate a conflict withRENDI NG_ABORT transactionl,,
and that transactions no longer abort instantaneouslyusedaey have abort actions. Some restrictions on
the abort actions of a transaction may be necessary to agadlatk, as we describe later in Section 6.

5. SERIALIZABILITY BY MODULES

In this section, we definserializability by modulesa definition inspired by the database definition of
multilevel serializability (e.g., as described in [11]).e\then provide a proof sketch that t@&AT model
from Section 4 guarantees serializability by modules.

First, we describe the definition of serializability in thrarisactional computation framework, as given
in [1]. Next, we incorporate Xmodules into this definitiondadefine serializability by modules. We then
prove that th@OAT model guarantees serializability by modules. Finally, igeuaks the relationship between
the definition of serializability by modules, and the notmfrabstract serializability for the methodology of
open nesting.

5.1 Transactional Computations and Serializability

In [1], serializability for a transactional computationtivicomputation tree” was defined in terms of
topological sortsS of the computation da(C). Informally, a trace(C, @) is serializable if there exists
a topological sort orders of G(C) such thats$ is “sequentially consistent with respect @', and all
transactions appear contiguous in the orgletn this section, we give more precise, formal definitions of
this concept.

Content Sets

For a given tracéC,®), we define “content” sets for every transactidrby partitioningmemOps(T) into
three setscContent(T), oContent(T) andaContent(T). For anyu € memOps(T), we define the content
sets based on the status of transactions that one visits when walking up the tree franto T.

DEFINITION 6. Forany transaction T and memory operation u, define thecs®istent(T), oContent(T),
andaContent(T) according theContentType(u, T) procedure:

ContentType(u,T) > For any u€ memOps(T)
1 X« xparent (u)
2 while(X#T)
3 if (X is ABORTED) return u € aContent(T)
4 if (X =committer(u)) return u € oContent(T)
5 X — xpar ent (X)
6 returnue cContent(T)

Recall that in theOAT model, the commit off commits some memory operations in an open-nested
fashion, directly to memory, and some operations in a clogsted fashion, tparent(T). Informally,

3If v causes a conflict, we know that= parent(v) andZ € ready((); waiting until T, has finished aborting can be modeled as
either the runtime not choosirg as a ready node to issue an instruction untikabort for T, occurs, or having issue “nop”
instructions untilTy as finished aborting.

oContent(T) is the set of memory operations that are committed in an “dpeanner byT’s subtransac-
tions. Similarly,aContent(T) is the set of operations that are discarded due to the abednoé subtrans-
action inT’ subtree. FinallycContent(T) is the set of operations that are neither committed in anrfope
manner, nor aborted.

Sequential Consistency with Transactions

For computations with transactions, we can modify the atasstion of sequential consistency to account
for transactions which abort. Transactional semantidsidichat memory operations belonging to an aborted
transactionl should not be observed by (i.@iddenfrom) memory operations outside of

DEFINITION 7. Forany two vertices v €V (C), let X=xLCA(u, V). We say that u isiddenfrom v, denoted
uHv, if u€ aContent(X).

Our definition of serializability by modules requires thatputations satisfy some notion of sequential
consistency, generalized for the setting of TM.

DEFINITION 8. Consider a trace(C,®) and a topological sorts of G(C). For all v € memOps(C) such
that Rv,¢) VW(v, /), the transactional last writerof v according toS, denotedX;(v), is the unique
u € memOps(C)U{ L} that satisfies four conditions:

1. W(u,0),

2. u<sv,

3. =(uHv), and

4. YWW(W,) A (U<sW<gV))=WHV.

DEFINITION 9. A trace (C,®) is sequentially consistentf there exists a topological sot such that
® = Xs. We say thag is sequentially consistent with respect @.

In other words, the transactional last writer of a memoryrapen u which accesses locatiof; is the
last writev to location? in the orders, except we skip over writew which are hidden from (i.e., aborted
with respect tou. Intuitively, Definition 9 requires that there exists an@rd explaining all the memory
operations of the computation.

Serializability

DEFINITION 10. A trace(C,®) is serializableif there exists a topological sorf that satisfies two condi-
tions:

1. ® = Xs (S is sequentially consistent with respectd®p, and
2.VT € xactions(C) andVv eV (C), we havexbegin(T) <s Vv <s xend(T) implies ve V(T)).

Ordinary serializability can be thought of as a strengthgrof sequential consistency which also requires
that the orders both explains all memory operations, and also has all trdioses appearing contiguous.

5.2 Defining Serializability by Modules

In [1], a trace(C,®) was said to beserializableif there exists a topological sogt of G(C) such thats is
sequentially consistent with respectd and all transactions appear contiguouss irSerializability in this
context can be thought of as a sequential consistency ptuetuirement that transactions are atomic. For
ownership-aware transactions, this definition of seuddlility is too strong because conflicting accesses to
memory owned by a low-level Xmodule causes transaction$igteer-level Xmodule to conflict, preventing
these transactions from commuting with each other.

Instead, we describe a definition of serializability by miesuvhich checks for correctness one Xmodule
at a time. Informally, the definition proceeds as followsvesi a trace(C,®), for each XmoduleA, we

transform the tree” into a new treenTree((C,A), and then check that in the traGeTree(C,A),®), that
only the transactions of Xmodukeare serializable. The new tre€ree((,A) is constructed in such a way
as to ignore memory operations of Xmodules which are loeeellthanA, and also to ignore all operations
which are hidden from transactions AfIf the check holds for all Xmodules, then tra@é, ®) is said to be
serializable by modules. We construdtree((,A) according to Definition 11.

DEFINITION 11. For any computation tre€’, letmTree((C,A) be the result of modifying as follows:

1. For all memory operations & memOps(C) with u accessind, if owner(¢) = B for somelevel(B) <
level(A), convert u into a nop.
2. For all transactions Te modXactions(A), convert all uc aContent(T) into nops.

The intuition behind Step 1 of Definition 11 is that when loukiat XmoduleA, we throw away memory
operations belonging to a lower-level Xmod@esince by Theorem 2, transactionsfdtan never directly
access the same memory as those operations anyway. For ,Skepi@nore the content of any aborted
transactions nested inside transactiong&;ahose transactions might access the same memory locatons
operations which we did not turn into nops, but those opematare aborted with respect to transactions of
A

Lemma 4 argues that for a trace which is originally sequiynt@nsistent, turning memory operations
into nops according to Definition 11 does not create an idvalice, i.e., one where an operatiorihat
remains in the trace attempts to observe a value frania which was turned into a nop.

LEMMA 4. Let (C,®) be any sequentially consistent trace. Then for any Xmodul@®ree(C,A), P)
is a valid trace. In other words, if & memOps(mTree(C,A)), then®(u) € memOps(mTree(C,A))). Fur-
thermore, anyS which is sequentially consistent f@r in (C,®) is also sequentially consistent f@¥ in
(mTree(C,A), D).

PROOF In the new treenTree((C,A), pick anyu € memOps(mTree(C,A)) which remains. Assume for
contradiction that = ®(u) was turned into a nop in one of Steps 1 and 2.

If vwas turned into a nop in Step 1, the we know becausecessed ahsatisfyinglevel(owner(/)) <
level(A). Sinceu must access the same locatigm must also be converted into a nop.

If v was turned into a nop in Step 2, ther aContent(T) for somexMd(T) = A. Then we can show
that eithervHu, or u should have also been turned into a nop. Xet xLCA(v,u). SinceX andT are both
ancestors o¥, eitherX is an ancestor of or T is a proper ancestor of.

1. First, supposd is a proper ancestor of. Consider the path of transactiolg Y1, ... Yk, whereYy =
xparent (v), xparent (Y;) = Yiy1, andxparent (Ys) = T. Sincev € aContent(T), for someY; for
0 < j < k must havestatus|Yj] = ABORTED. SinceT is a proper ancestor of, X = Yy for somex
satisfying 0< x < k.

(a) If status[Y;] = ABORTED for any j satisfying 0< j < x, then we know € aContent(X), and thus

vHu. Since we assume(’, ®) is sequentially consistent antl(v) = u, by Definition 8, we know
—vHu, leading to a contradiction.

(b) If Y; is ABORTED for any j satisfying x < j <k, then status(Y;] = ABORTED implies thatu
aContent(X), and thus,u should have been turned into a nop, contradicting the aigsetup of
the statement.

2. Next, consider the case whetés an ancestor of . Sincev € aContent(T), we havev € aContent(X).
Therefore, this case is analogous to Case la above.

Finally, if @ is the transactional last writer accordingddor (C,®), it is still the transactional last writer
for (mTree(C,A),®) because the memory operations which are not turned into respain in the same
relative order. Thus, the last condition is satisfied.

O

Note that Lemma dlepends otthe restrictions described in Definition 1. Without thisusture of modules
and ownership, the construction of Definition 11 is not gontead to generate a valid trace. Also, note that the
set of memory operations which are turned into nops strictseases as we look@afree(C,A) and increase
level(A). For the lowest-level Xmodule, sayp, we keep all memory operations (i.eTree(C,Ao) = C).
Once a memory operatianis turned into a nop for Xmodul#, it is turned into a nop for all XmoduleB
with 1level(B) > level(A).

Finally, we can define serializability by modules.

DEFINITION 12. A trace (C,®) is serializable by module§ it is sequentially consistent, and if for all
Xmodules A inD, there exists a topological sagt of Ca = mTree((C,A) such that:

1. ® = X, (S is sequentially consistent with respectd, and
2. For the treeCa, VT € modXactions(A) andVv eV ((a), if we havexbegin(T) < v <5 xend(T), then
veV(T).

Informally, a trace(C, ®) is serializable by modules if it is sequentially consistamid if for every Xmodule
A, there exists a sequentially consistent otsléor the tracegmTree(C,A), ®) which also has all transactions
of A contiguous.

5.3 OAT Model Guarantees Serializability by Modules

In this section, we show that th®@AT model described in Section 4 generates tra@égsb) that are
serializable by modules, i.e., that satisfy Definition 1ReTproof of this fact consists of three steps. First,
we generalize the notion of “prefix race-freedom” descriipgd], to computations with Xmodules. Second,
we prove that th®©AT model guarantees that a program execution is prefix raeeffiaally, we argue that
any trace which is prefix race-free is also serializable byuhes.

Defining Prefix Race-Freedom

First, we define the prefix races. These definitions are galgnihe same as those in [1], except adapted for
a system with an ownership-aware commit mechanism instea gpen-nested commit mechanism.

DEFINITION 13. For any execution orders, for any transaction Te xactions((C), consider any ¥
memOps(T) such thatxbegin(T) <5 vV <s xend(T), we say there exists prefix race between T and v
if there exists a memory operationavwcContent(T) S.t., w<;s v, =(VHW), v and w both access and one
of v, w writes to/.

DEFINITION 14. A trace (C,®) is prefix race-freeiff exists a topological sorfs of G(C) satisfying two
conditions:

1. ® = X; (S is sequentially consistent with respectd® and
2.YveV(C) andVT € xactions(C) there is no prefix race betweenvand T.

S is called aprefix race-free sorof the trace.

Properties of theOAT Model

Second, we prove several invariants teT model preserves, and then use these invariants to prove that
the OAT model generates only tracés, ®) which are prefix race-free.

The sequence of instructions that tBAT model issues naturally generates a topological Savf the
computation dads(C): the fork andxbegi n instructions correspond to the begin nodes of a parallel or

series blocks in the dag, th®i n, xend, andxabort instructions correspond to end nodes of parallel or
series blocks, and threead orwri t e instructions correspond to memory operation hodesnem0Ops(C).

THEOREM 5. Suppose the OAT model generates a trag€gP) and an execution ordes. Then,® = X,
i.e.,S is sequentially consistent with respectdo

PrROOFE This result is reasonably intuitive, but the proof is tediand somewhat complicated. We defer
the details of this proof to Appendix A. (]

Next, we describe an invariant on readsets and writesatthth®AT model maintains.

LEMMA 6. Suppose the OAT model generates a trigcgb) with an execution ordef. For any transaction
T, consider a memory operationdicContent(T) which accesses memory locatiémt step §. Let t; be
step whenxend(T) or xabort(T) happens. At any time t such that{ t < t; there exists some active
transaction T € xDesc(T) NactiveX(t, C) (which is a descendant of T) such that

1. If R(u,?), thent e R(t,T').
2. IfW(u,?), thenl e W(t, T').

PROOF Let X1,Xo,... Xk be the chain of transactions frorpar ent (u) up to, but not includingr, i.e.,
Xy = xparent (u), X; = xparent (Xj_1), andxpar ent (Xx) = T. Since we assume € cContent(T), and
since T completes at time¢, we know at some timé; which satisfiestyg < t; < tf, anxend changes
status[X;] from PENDI NG to COW TTED; otherwise, we would have € aContent(T).

Also, by Definitions 4 and 6, we knowommitter(u) € xAnces(T), i.e., none of the;’s will commit
location? in an open-nested fashion to the world; otherwise, we woalgh € oContent(T).

First, supposeR(u, /). At time t;, when the memory operatiamcompletes,(¢,u) is added tR(X;). In
general, at time;, the ownership-aware commit mechanism, as described itio8et.4, will propagate
¢ from R(X;) to R(Xj4+1). Therefore, for any time in the interval[t;_1,t;), we know/ € R(t,X;), i.e., for
Lemma 6,7’ = X;. Similarly, for any timet in the intervalty,t;), we havel € R(t,T), i.e., we choose
T =T.

The case wher@/(u,?) is completely analogous to the caseRifl, /), except we have bothe R(t,T')
and/ e w(t,T').]

Informally, Lemma 6 states that, if a memory operatiorthat reads / writes locatiod is in the
cCont ent (T) for some transactioi, thenl is pending in the readset / writeset of some active trarmacti
underT’s subtree between the time when the memory operation isipeeid and the time wheh ends.

Finally, we use Theorem 5 and Lemma 6 to prove thatQAd model generates traces which are prefix
race-free.

THEOREM 7. Suppose the OAT model generates a tra€eP) with an execution ordess. Thens is an
prefix race-free sort of C, D).

PROOF

For the first condition of Definition 14, we know by Theorem % know theOAT model generates an
orderS$ which is sequentially consistent with respectio

To check the second condition, assume for contradictionwieshave an orde§ generated by th©AT
model, but there exists a prefix race between a transattamd a memory operationZ mem0Ops(T). Letw
be the memory operation from Definition 13, i.&.& cContent(T), W <s V <s xendT, ~(VHW), w andv
access the same locatiénwith one of the accesses being a write. t,eandt, be the time steps in which
operationsv andv occurred, respectively, and lehqt be the time at which eithetend(T) or xabort(T)
occurs (i.e., eithel commits or aborts). We argue that at titgethe memory operation should not have
succeeded because it generated a conflict.

We consider three cases. First suppd&e, /) andR(w, /). Sincety <ty < tengt, by Lemma 6, at timé,,
¢is in the writeset of some active transactibhe desc(T). Sincev ¢ mem0Ops(T), we knowT ¢ ances(V).

Thus, sincel’ is a descendant af, we haveT’ ¢ ances(v). SinceT’ ¢ ances(v), by Definition 3, at time
ty, v generates a conflict witfi’. The other two cases, wheR{v,¢) AW (w,¢) or W(v,£) AW(w,¢), are
analogous.

O

Prefix Race-Freedom Implies Serializability by Modules
Finally, we show that a tracg”, @) which is prefix race-free is also serializable by modules.

THEOREM 8. Any trace(C,®) which is prefix race-free is also serializable by modules.

PROOF

First, by Definition 11 and Lemma 4, it is easy to see that axprefie free sor§ of a trace(C, ®) is also
prefix-race free of the sofmTree(C,A),®) for any XmoduleA. Now we shall argue that for any Xmodule
A, we can transforng into S such that all transactions #tactions(A) appear contiguous ia.

Consider a prefix-race free sastof (mTree(C,A),®) which hask nodesv which violate the second
condition of Definition 12. We show how to construct a new orstewhich is still a prefix race-free sort of
(mTree(C,A),®), but which has onlk — 1 violations.

We reduce the number of violations according to the follappnocedure:

1. Of all transaction§ € modXactions(A) such that there exists an operatiosuch thatkbegin(T) <g
v <sxend(T) andv ¢V (T), choose thd = T* which has the latestend(T) in the orders.

2. InT*, pick the firstv ¢ V (T*) which causes a violation.
3. Create a new sof’ by movingv to be immediately beforgbegin(T*).

In order to argue thag’ is still a prefix race-free sort dinTree(C,A),®), we need to show that moving
v does not generate any new prefix races, and does not create & sdich is no longer sequentially
consistent with respect 1@ (i.e., that® is still the transactional last writer according . There are three
casesv can be a memory operation, abegin(T’), or anxend(T’).

1. Suppose is a memory operation which accesses locafidror all operationsv such thakbegin(T) <
w < V, we argue thatv can not access the same locatiuanless bothw andv read from/. Since we
chosev to be the first memory operation such thakgin(T) <5 v <5 xend(T) such thav ¢ V(T), we
knoww € V(T). We know by construction aiTree(C,A), thatw € cContent(T) (if w € oContent(T)
orw € aContent(T), then steps 1 or 2, respectively, in Definition 11 will twrinto a nop). Therefore,
by Definition 13, unlessv andv both read fron¥, v has a prefix race witli, contradicting the fact that
S is a prefix race-free sort of the trace. Thus, movin be beforexbegin(T) can not generate any
new prefix races or change the transactional last writerrfgmaemory operation, ang!’ is still a prefix
race-free sort of the trace.

2. Next, suppose& = xbegin(T’). Moving xbegin(T’) can not generate any new prefix races with
because the only memory operationswhich satisfy xbegin(T) <5 U <5 xbegin(T’) satisfy u ¢
cContent(T’). Also, movingxbegin(T’) does not change the transactional last writer for any node
because the move preserves the relative order of all menmeyations. Therefore§’ is still a prefix
race-free sort.

3. Finally, supposev = xend(T’). By moving xend(T’) to be beforexbegin(T), we can only lose
prefix races withT’ that already existed s because we are moving nodes out of the interval
[xbegin(T’),xend(T')]. Also, as withxbegin(T’), moving xend(T’) does not change any transaction
last writers. Therefore§’ is still a prefix race-free sort of the trace.

Since we can eliminate violations of the second conditioD&finition 12 one at a time, we can construct
a sortSa which satisfies serializability by modules by eliminatirbvéolations.

Jim: This proof is probably st

cks work the same way?

Finally, we can prove th®AT model guarantees serializability by modules by puttingaite¥ious results
together.

THEOREM 9. Any trace(C,®) generated by the OAT model is serializable by modules.

PROOF By Theorem 7, theOAT model generates only trace”,®) which are prefix race-free. By
Theorem 5.3, any tradg”, @) which is prefix race-free is serializable by modules. L

5.4 Abstract Serializability

By Theorem 9, the@OAT model guarantees serializability by modules. We now retaite definition to the
notion of abstract serializabilityused in multilevel database systems [11]. As we mentionesirtion 1,
ownership-based commit mechanism forms a part of a metbggalvhich includes abstract locks and
compensating actions. In this section we argue @&t model provides enough flexibility to accommodate
abstract locks and compensating actions. In addition, ifognam is “properly locked and compensated,”
then serializability by modules guarantees abstract|sility.

The definition of abstract serializability in [11] assumbattthe program is divided into levels and a
transaction at levelcan only call a transaction at levie} 1. In addition, transactions at a particular level have
predefined commutativity rules, i.e., some transactiorth®@Bsame Xmodule can commute with each other
and some can not. These commutativity rules might be speécifisng abstract locks [9]: if two transactions
grab the same abstract lock in a conflicting manner, then ¢aepot be reordered. Using the application
in Section 1 for instance, transactions callingsert andrenove on theBST using the same key do not
commute and should grab the same write lock.

The transactions at level 0 are naturally serializable.e@Githis schedulezy of level-0 transactions,
the schedule is said to be serializable at level 1 if all watiens in Sy can be reordered, obeying all
commutativity rules, so that we can construct a serialezabtler for level-1 transactions. This order of level-
1 transactions can be callery. Similarly, for leveli transactions, reordef; ; of leveld — 1 transactions,
obeying all commutativity rules, so that we get a serialigadrder for leveli transactions. Continuing in
this way up to the top-level transactions, the original sicite is said to be abstractly serializable if it is
serializable for all levels.

This definition holds for our model in the special case whemtiodule tree is a chain (i.e., each non-leaf
module has exactly one child). A transactidrnis at leveli if 1evel(xMd(T)) =i. Although abstract locks
are not explicitly modeled in th®AT model, simple read/write locks can be modeled as reads atebvo
memory locationé.We can think transactions acquiring the same abstract ®tfean writing to a common
memory locatior?. Locks associated with an Xmodueare owned bynodParent(A). A moduleA is said
to beproperly lockedif the following is true for all transaction$;, T, with xMd(T;) = xMd(T,) = Arif Ty
andT, do not commute, then they access sdfmenodMemory(modParent(A)) in a conflicting manner. In
the special case when the module tree is a chain, one can bab @ll modules are properly locked, then
serializability by modules implies abstract serializiail

In the general case, however, a transaction at legah call transactions at many levels, not justl.

By Rule 2 of Definition 1, however, we know that transactionteeel i can only call transactions at a lower
levels. Thus, we change our definition slightly. Insteadeafrdering justS;_; while serializing transactions

at leveli, we have to potentially reordek for all x where transactions at levietan call transactions at level
X. Even in this case, the module tree properties guaranteéef tixaery module is properly locked (by the
same definition as above), serializability by modules guaes abstract serializability.

The methodology of open-nesting in TM often requires theomobf compensating actions or inverse
actions. For instance, the inverse RST. i nsert is BST. renove with the same key. When a transaction
T aborts, all the changes made by its subtransactions musivbgad. Again, althougAT model does
not explicitly model compensating actions, it allows anréibg transaction with statuBENDI NG_ABORT

4More complicated locks can be modeled by generalizing tfigitlen of conflict.

to perform an arbitrary but finite number of operations befonanging the status #BORTED. Therefore,
an aborting transaction can compensate for all its aborbttansactionsOAT model does not place any
restrictions on the order of execution of compensatingasti

6. DEADLOCK FREENESS

In this section, we argue that tiiAT model we described in Section 4 can never enter a “semarsiazk”

if we impose suitable restrictions on the memory that a &retien’s abort actions can access. In particular,
an abort action for a transactidnfrom xMd(T) can read (write) from a memory locatidrbelonging to
modAnces(xMbd(T)) if ¢ is already inR(T) (W(T)).% Under these conditions, we show that tBAT model
can always “finish” reasonable computations.

Intuitively, an ordinary TM without open nesting and withgea conflict detection never enters a semantic
deadlock because it is always possible to finish abortingrestictionT without generating additional con-
flicts. Thus, a scheduler in the TM runtime could abort alhs@ctions, and then complete the computation
by running the remaining transactions serially. Using @%&T model, however, a TM system can enter a
semantic deadlock because it can enter a state in whichnifgessible to finish aborting two parallel trans-
actionsT; andT, which both have statuRENDI NG_ABORT. If T;'s abort action generates a memaory operation
u which conflicts withT,, thenu will wait for T, to finish aborting and change its statusABORTED. Simi-
larly, To’s abort action can generate an operatiamhich conflicts withT; and waits fofT; to finish aborting.
SinceT; andT, are both waiting on each other, neither transaction wilt émésh aborting.

Defining Semantic Deadlock

Intuitively, we want to say that th@AT model exhibits a semantic deadlock if it causes the TM systiaie
machine to enter a state in which it is impossible to “finisttoaputation because of transaction conflicts.
A computation might not finish for other reasons, such as fnit@ loop or livelock. This section defines
semantic deadlock precisely and distinguishes it frometlediser reasons for noncompletion.

Recall that our abstract model has two entities: the progeatl a generic operational modi¢represent-
ing the runtime system. At any tintegiven a ready nod¥ € ready(C), the program chooses an instruction
and hasX issue the instruction. If the program issues an infinite nemalb instructions, thei can not com-
plete the program no matter what it does. To eliminate pragrahich have infinite loops, we only consider
bounded programs

DEFINITION 15.We say that a program isoundedfor an operational modeN if any computation tree
that N generates for that program is of a finite depth, and theretexasfinite number K such that at
any time t, every node B nodes(t,() has at most K children with statU/8ENDI NG, COVM TTED or
PENDI NG_ABORT.

Notice that this definition does not disallow infinite numb&aborted transactions, since even a computation
without an infinite loop may have to re-execute a transactionnfinite number of times if th@l keeps
aborting the transaction. However, there is no reason te ainfinite number of pending or committed
transactions unless the computation is infirfite.

Another reason a program might run forever is if an operatiorodel makes bad scheduling decisions. An
operational modeN makes two types of nondeterministic choices. First, at emgt, N nondeterministically
chooses which ready nodé € ready(C) executes an instruction. This choice models nondetermiriis
the program due to interleaving of the parallel executi@econd, while performing a memory operation
u which generates a conflict with transactibnN nondeterministically chooses to abort eitkgar ent (u)
or T. This nondeterministic choice models the contention managthe TM runtime. A program may run

5Roughly, this translates into restrictions on the compémgactions as follows: A compensating action for transact’ can not
access any new memory belonging to higher level modules.

6We assume that if a transaction aborts, it is not retried itriithishes aborting. That is, a transaction is retried cafter its status
changes té&BORTED.

forever due tdivelockif N repeatedly makes “bad” choices. For example, two trarmastinay continually
abort each other due to retries, causing the program to remdo

An intelligent scheduler, however, might be able to avoidvaldck. Therefore, we use a notion of
scheduleto distinguish a livelocks from a semantic deadlock.

DEFINITION 16. A schedulel" on some time intervdlo,t;] is the sequence of nondeterministic choices
made by an operational model in the interval.

Intuitively, an operational model deadlocks if it allows @inded computation to reach a state where no
schedule can complete the computation after this pointicBdhat this definition excludes livelocks since
livelocks can be solved by good subsequent schedulingidesjsvhile deadlocks can not be.

DEFINITION 17. Consider anN executing a bounded computation. We say tRatloes not exhibit a
semantic deadlockf for all finite sequences ofytinstructions thatN can issue that generates some
intermediate computation tre®, there exists a finite scheduleon [to, t;] such thalN brings the computation
tree to a rest statg?, i.e.,ready((1) = {root((1)}-

This definition is sufficient, since once the computatiom tieat the rest state, and only the root node is
ready,N can execute each transaction serially and complete thetatign.

Restrictions to Avoid Semantic Deadlock

The generaDAT model described in Section 4 exhibits semantic deadlockuserit is possible to enter a
state where two parallel aborting transactidasand T, keep each other from completing their aborts. But
for a restricted set of programs, wherBENDI NG ABORT transaction never accesses new memory belonging
to high-level modules, we can show tBAT model is free of semantic deadlock.

More formally, for all transaction¥, we restrict the memory footprint @bortactions(T).

DEFINITION 18. An execution (represented by a computation t@ehas abort actions with limited
footprint if the following condition is true for all transactions & aborted((C). At time t, if a memory
operation ve abortactions(T) accesses locatiofi and owner(¢) € modAnces(xMod(T)), then (1) if
R(v,¢) then? € R(T), and (2) if W(v,¢) then? € W(T).

Intuitively, Definition 18 requires that once a transacfios status becomeENDI NG ABORT, any memory
operationv which T or a nested transaction insideperforms to finish abortin@ can not read from (write
to) any location? which is owned by any Xmodules which are ancestorshdfl (T), unless/ is already in
the in the readset (writeset) of

First, we show that the properties of Xmodules from Theoremcdmbination with the ownership-aware
commit mechanism imply that transaction readsets and setiseexhibit nice properties. In particular, we
have Corollary 10, which states that a locatiboan appear in the readset of a transacfioonly if T's
Xmodule is a descendant ofmer(¢) in the module treeD.

COROLLARY 10. For any transaction T if € R(T), thenxMod(T) € modDesc(owner(¥)).

ProoFr Follows from Definition 1 and Theorem 2, and induction on he¥ecation? can propagate into
readsets and writsets using the ownership-aware commbhanéem. L]

If all abort actions have a limited footprint, we can showt thigerations of an abort action of an Xmodule
A can only generate conflicts with a “higher-level” Xmod&le

LEMMA 11. Suppose the OAT model generates an execution where abmmstiave limited footprint.
For any transaction T, consider a potential memory operatios abortactions(T). If v conflicts with
transaction T, thenlevel(xMdd(T’)) < level(xMod(T)).

PROOF Supposev € abortactions(T) accesses a memory locatighwith owner(¢) = A. Since
abortactions(T) C memOps(T), by the properties of Xmodules given in Definition 1, we kndwatteither

A € modAnces(xMd(T)), or level(A) < level(xMd(T)). If A € modAnces(xMd(T)), then by Defini-
tion 18, T already had in its read or write set. Therefore, using Definitionvd;an not generate a conflict
with T’ because thefm would already have had a conflict willf beforev occurred, contradicting the eager
conflict detection of th®©AT model.

Thus, we havelevel(A) < level(xMd(T)). If v conflicts with some other transactioff, then T’
has/ in its read or write set. Therefore, from Corollary DX\bd(T’) € modDesc(A). Thus, we have
level(xMd(T')) < level(A) < level(xMd(T)). U

THEOREM 12.In the case where aborted actions have limited footpring @AT model is free from
semantic deadlock.

PROOF Let (p be the computation tree after any finite sequendg wistructions. We describe a schedule
I which finishes aborting all transactions in the computatignexecuting abort actions and transactions
serially.

Without loss of generality, assume that at tignell active transactions havestatus[T] = PENDI NG.ABORT.
Otherwise, the first phase of the schedulis to make this status change for all active transactions

For a module treeD with k Xmodules, the schedule hask phases, (,...k— 1, one for each Xmod-
ule in D, starting at the lowest level Xmodule. The invariant we rtaim is that immediately before
phasei, we bring the computation tree into a stat®’ which has no active transaction instandesvith
level(xMbd(T)) <, i.e., no instance$ from Xmodules at level lower thain

In the proof, let; denote the subset of all active transaction instaficdsat are generated by Xmodule
at leveli. In other words,

Bi(t) ={T € xactions(C)NactiveN(t,C) : level(xMd(T))=i}.

By induction, we show that if after phasefor all j wherej < i, B(t) = 0, then after phasescheduld
makesBi(t) = 0, after some finite number of steps.

In the base case, consider the XmodAilat the lowest levellevel(A) = 0). We know, from Definition 1
thatT € 3o has no nested subtransactions, since a transaction fromle®dan only call transactions from
a module at a lower level.

First, we claim that aborting any transactidne [3p never causes any conflicts. By Lemma 11, we
know that if v € abortactions(T) causes a conflict with transactiolY, then level(xMd(T’)) <
level(xMbd(T)). But xMod(T) has level 0. Thereford completes aborting eventually without generat-
ing any new conflicts. By Definition 15, there are a finite numiifethese transactionE in 3o, and each of
these transactions can generate a finite number of abashacfihus, in th©AT model,I" can finally issue
anxabort for all T € Bp and in some finite number of time steps, phase I cin make3y = 0.

In the inductive step, assume before phiestimet, 3 (t) = 0 for all j < i. Pick any transactiof < [;(t).

By the inductive hypothesis, we know that there are no adtaesactionsT’ with level(xMd(T')) <
level(xMbd(T)). Therefore by Lemma 11, we can conclude thaan finish aborting in a finite amount
of time without generating any new conflicts. Therefbrean abort all sucii serially in a finite number of
steps.

After phasek — 1 of the scheduling algorithri, we havef3; = 0 for all i < k. Thus, we only left with the
root transactiorroot () from the Xmodulenor | d , completing the proof.

L

A slightly less wasteful serial scheduler in this case catabg and issue ai gabort to T if and when the first conflict td@ is
discovered; the rest of the proof still works assuming BEADI NG.ABORT transactions of the same Xmodule are all scheduled and
completed before attempting to finiBBNDI NG transactions.

Restrictions on compensating actions

If transactionsYi,Y,... are nested inside transactidhand X aborts, typically abort actions of simply
consists of compensating actions ¥arY... Therefore, restrictions on abort actions translate irragsit-
forward manner to restrictions on compensating actionsoymensating action for a transactignshould
not access any memory owned blybd(X) or its ancestors unless the memory location is already’sn
read/write set. Assuming locks are modeled as accessesnonyéocations, the same restriction applies,
meaning, a compensating action can not acquire new locksvédra not already acquired by the transaction
it is compensating for.

7. CONCLUSIONS

In this paper, we have bridged the gap between the intentfen@xecution of open-nested transactions.
Open-nested transactions are meant to allow the TM to iglmwvdevel memory conflicts while doing
conflict detection on high-level transactions. We have desd a framework that incorporates the notions of
high-level and low-level in the specification of the progrdhus allowing a transactional memory system to
make the right decisions about which memory conflicts shbal@ynored.

We have described a framework that incorporates the notbnémodules and ownership into a TM
system. We propose precise restrictions that must be indposehe interactions between Xmodules. In
addition, we introduce the ownership-aware commit medmnwhich commits memory selectively based
on which Xmodule owns that piece of memory. If a program feBaall the restrictions we detailed and
the TM system uses the ownership-aware commit mechanisnprawe that the system will guarantee
serializability by modules. Finally, it might be difficulbf the programmer to make sure that they have
followed all the restrictions outlined. Therefore, we puep a type system that allows the compiler to check
that the programmer has obeyed all the restrictions neegeldebownership-aware transactional memory
system.

REFERENCES

[1] K. Agrawal, C. E. Leiserson, and J. Sukha. Memory modetsofpen-nested transactions. Pnoceedings of
the ACM SIGPLAN Workshop on Memory Systems Performance amdcthess (MSPC)October 2006. In
conjunction ASPLOS.

[2] C. Boyapati, B. Liskov, and L. Shrira. Ownership types édject encapsulation. IRroceedings of the ACM
Symposium on Principles of Programming Languages (POR&)v Orleans, Louisiana, Jan. 2003.

[3] B. D. Carlstrom, A. McDonald, M. Carbin, C. Kozyrakis,@&K. Olukotun. Transactional collection classes. In

Proceedings of the ACM SIGPLAN Symposium on Principles aactifes of Parallel Programming (PPoPP)
pages 56—67, New York, NY, USA, 2007. ACM Press.

[4] M. Herlihy and J. E. B. Moss. Transactional memory: Ateltural support for lock-free data structures. In
Proceedings of the International Symposium on Computemifecture (ISCA)pages 289-300, 2003.

[5] A. McDonald, J. Chung, B. D. Carlstrom, C. Cao Minh, H. @h€&. Kozyrakis, and K. Olukotun. Architectural
semantics for practical transactional memory. Fioceedings of the International Symposium on Computer
Architecture (ISCA)June 2006.

[6] J. E. B. Moss.Nested Transactions: An Approach to Reliable Distributesn@uting MIT Press, Cambridge,
MA, USA, 1985.

[7]1 J. E. B. Moss. Open nested transactions : Semantics gbsgu InProceedings of the Workshop on Memory
Performance Issues (WMPRRwustin, Texas, Feb 2006.

[8] J. E. B. Moss and A. L. Hosking. Nested transactional mgmidodel and architecture sketches. Sgience of
Computer Programming/olume 63, pages 186—201. Elsevier, Dec 2006.

[9] Y. Ni, V. Menon, A. Adl-Tabatabai, A. L. Hosking, R. L. Hstn, J. E. B. Moss, B. Saha, and T. Shpeisman.
Open nesting in software transactional memoryPtoceedings of ACM SIGPLAN Symposium on Principles and
Practices of Parallel Programming (PPoPRYar. 2007.

[10] C. H. Papadimitriou. The serializability of concurtefatabase updatesournal of the ACM26(4):631-653,
1979.

[11] G. Weikum. A theoretical foundation of multi-level coumrrency control. IrProceedings of the ACM SIGACT-
SIGMOD symposium on Principles of database systems (P@Ra§és 31-43, New York, NY, USA, 1986. ACM
Press.

A. THE OAT MODEL AND SEQUENTIAL CONSISTENCY

This appendix contains the details of the proof of Theorethds, if theOAT model generates a tra¢e, @)
and a topological sort orded, that.§ satisfies Definition 9, i.e§ is sequentially consistent with respect to
.

In this appendix, we first define some useful notation for tremp Next, we prove that th©AT model
preserves several invariants about memory operatiordsegaand writesets. Finally, we use these invariants
to prove Theorem 5.

A.1 Notation

We define some notation that is useful later for stating djmeral invariants of th@©©AT model.
For any subse$ of nodes in the computation treg i.e.,SC nodes((), define

® low(S)={X €S : phesc(X)NS=0}.
® high(S) = {X €S : pAnces(X)NS=0}.

Intuitively, Low(S) represents the nodes$tlosest to the leaves of the tree. Similatlygh(S) represents the
nodes inSclosest to the root of the tree. In cases where th&geguaranteed to fall along one root-to-leaf
path in the tree, we definewest(S) as the only elemerX € 1ow(S). Similarly, we definehighest(S) as
the only element imigh(S).

We also define two time-dependent sets of transactions.

* Thereader setreaders(t,/) = {T € activeX(t,C) : L €R(t,T)}.
e Thewriter set writers(t,/) = {T € activeX(t,C): L € W(t,T)}.

Said differently,readers(t, /) is the set of active transactions at timehich have locatiort in their readset.
Similarly, writers(t,) is the set of active transactions at titneith £ € W(T).
Next, we generalize the content sets from Definition 6 anthdediset of dynamic content sets.

DEFINITION 19. At any time t, for any transaction € xactions(t,) and a memory operation &
memOps(t, C), define the setsContent(t,T), oContent(t,T), aContent(t,T), and vContent(t,T) ac-
cording theContentType(t,u, T) procedure:

ContentType(t,u,T) > For any u€ memOps(t, T)
1 X« xparent (u)
2 while(X#T)

3 if X € activeX(t, (), return u € vContent(t,T)
4 if X € aborted(t, (), return u € aContent(t,T)
5 if (X=committer(u)) returnu € oContent(t,T)

6 X «— xpar ent (X)
7 returnu e cContent(t,T)

The difference between Definition 19 and the previous staterm Definition 6 is that for dynamic content
sets, if we encounter BENDI NG or PENDI NG_ABORT transaction when walking up the tree from a memory
operationu to a transactior, we placeu in theactive contendf T, i.e.,u € vContent(t, T). If a transaction
T completes at timé*, it is not hard to see that the dynamic classificatiententType(t,u,T) gives the
same answer as the static classificatontentType(u, T) for all timest > t*.

Finally, we define subsets of the dynamic content sets whiitie to a particular memory location.

A.2 OAT Model Invariants

Because th©AT model performs eager conflict detection according to D&dmi8, it is not hard to prove
the following invariant about the readers and writers todi@aar memory locatiort.

THEOREM 13. At all times t, the OAT maintains the following invariants thre setsreaders(¢) and
writers({):

1. Foralll € L, |low(writers(t,/))| =1, i.e.,lowest(writers(t,()) exists.
2. Forany Te readers(t, /), eitherlowest(writers(t,/)) € desc(T) or T € desc(lowest(writers(t,/))).

PrRoOOFE The proof is by induction on the instructions that ®AT model issues.

In the base case, for all locations £, we begin withreaders(0,¢) = writers(0,¢) = {root(()}, and
no other nodes in the computation tri€exceptroot (). Thus, Invariants 1 and 2 are satisfied.

In the inductive step, suppose at tilne 1, Invariants 1 and 2 are satisfiedr #ad orwri t e instruction at
timet can not break the invariants without causing a conflict atiogrto Definition 3. Therefore, successful
read andw i t e operations preserve the invariant. An unsuccessfadl orwr i t e operation can only trigger
thesi gabort of transactions, which does not affect either invariant.

An xend instruction that commits a transactidrcan only add the transactioipar ent (T) to readers(/)
orwriters(¢). Sincexparent (T) is an ancestor of , it can not break either of the two invariants.

The remaining instructions preserve Invariants 1 and 2atlyv A fork or j oi n instruction at timet
preserves the invariants because they do not change thetiset teansactions or any transaction readsets
or writesets. Arxbegi n preserves the invariants because it creates new transa€tivith empty readsets
and writesets. Theabort instruction preserves the invariants because it can ontpve transactions from
readers(t, £) Or W(t,{). Jim: This proof could be bett

The following invariant shows that, informally, the reatdsef transactions act as caches for pairs!)
stored in writesets.

LEMMA 14. Atanytimet, for any E readers(t, /), supposé/,u) eR(t,T). Let T' = lowest(xAnces(T)N
writers(t,)). Then(¢,u) e W(t,T').

PrROOFE The proof is by induction on the instructions issued by @&T model. In the base case, we
know for all memory locationg € L,, we start withreaders(0,¢) = writers(0,/) = {root((C)} and
R(root(C)) =W(root(()). SinceT’ =T =root(C), Lemma 14 is satisfied in the base case.

For the inductive step, assume the lemma is satisfied atttinfe We show after anf-nodeX issues an
instruction at time, the lemma is still satisfied.

For anyT € xactions(t —1,C), after af ork, j oi n, or xbegi n instruction in stegd, we haveR(t,T) =
R(t—1,T)andw(t,T) =W(t—1,T). Thus, the lemma is satisfied after these instructionsxtegi n which
creates a new transactiohat time steg starts withr(t, X) = w(t,X) = 0; thus, the lemma is satisfied.

Next, consider arabort issued byX € xactions(t—1,C). Suppose, before thabort of X there exists
a transactiorm € readers(t —1,¢) with (/,u) e R(t —1,T). Let T' = lowest(xAnces(T) Nwriters(t —
1,¢)). Then before theabort, (¢,u) € W(t — 1, T’). Assume for contradiction after thabort of X, that
there exists some transactidne xactions(t, C) such that the invariant no longer holds fbri.e., we no
longer havg/,u) € W(t,T'). Since arxabort does not change the contents of any transaction’s writieset,
removesX from writers(?), the only way to violate the invariant is X = T’. Consider two cases: either
X=T'=T,orX=T'#T. Inthe first case, we can not violate the invariantTdoecausd is aborted and
removed fromreaders(¢). In the second case, we must hadve pDesc(X). But then, before theabort,
we haveT € pDesc(X)NactiveN(t —1)C andX € ready(t — 1), contradicting Property 2, that the ready
nodes are the leaves of tree of active nodes. Thuaba t must preserve the invariant.

Finally, suppose at time a ready nod«X issues aend. Consider two cases:

1. X # owner(¢). The only transactiol for which we could have(t,Y) #R(t—1,Y) orw(t,Y) #w(t—1,Y)
is Y = xparent (X). Thus, after thexend, for all T € readers(t,¢) with T # Y, since the readset or
writeset of T or any transaction irAnces(T) remains the same, the invariant is still preservedrfor

2. Suppos&X = owner(¥). Then, the only transaction whose readset or writeset camgehisY = root(().
But the only way to break the invariant is{fcommits a paif/,v) to root(C), which corrupts the version

(¢,u) e R(t—1,T), for some parallel transactioh. But then, we would violate Theorem 13, and should
have had a conflict earlier.

Since all possible choices for actitin- 1 preserve the invariant, the lemma holds by induction. [
Theorem 15 characterizes when a transaction should hawatido in its writeset.

THEOREM 15. At any time t, consider any transactioncTactiveX(t, C) and any memory locatioAsuch
thatlevel(owner(¢)) > xMod(T). Let S(t) = {u € memOps(t,C) : W(u,/)}. Exactly one of the following
cases holds:

1. T=root((), (¢,L) €W(t,T), and two conditions are satisfied:
(a) cContent(t,T)NS = 0.
(b) For all ve S(t), we have & aContent(t,T) UvContent(t,T).
2. There exists af¥,u) € W(t, T) which happens at timg,tand two conditions are satisfied:
(@) u€ cContent(t, T)NS(t)
(b) For any operation v (S(t) —{u}) which happens at timg,twhere § <t, <t, we have w
aContent(t,T) UvContent(t,T).
3. We have ¢ W(t, T), andcContent(t,T)NS(t) = 0.

PROOF

This theorem can be proved by a straighforward, albeit tegjimduction on time.

Note that because we assulrerel(owner(£)) > xMd(T), S(t) "memOps(t, C) NoContent(t,T) =0,
i.e., the theorem is only concerned with memory locatiénghich belong toT’s open content. Because
of the properties of ownership and Xmodules, any locatiovith 1evel(owner(¢)) < xMd(T) can never
propagate intd’s writeset anyway. L]

The intuition for Theorem 15 is that if at tintg, a pair(¢,u) appears in the writeset of a transactibn
then all otherv which write to/ which happen after timg, are inT’s subtree, ané € aContent(t,T)U
vContent(t,T) (i.e.,vis aborted or still pending with respectT9.

A.3 Proof of Sequential Consistency

Finally, we can use the invariants from Lemma 14 and Theorgmo prove Theorem 5.
PROOF [Theorem 5]

The first condition and second conditions are true by coastm, since theOAT model can only set
d(v) =uif u<s v, W(u,£) andR(v,¢) A\W(V, ¢).

To check the third and fourth conditions, we require someseuppose at time= $5(v), theOAT model
sets®(v) = u. LetA= lowest(readers(t,/) Nances(Vv)). Because th©AT model setsp(v) = u, we must
have(/,u) € R(t,A). LetT = lowest(xAnces(A)Nwriters(t,/)). By Lemma 14, we know/,u) € W(t,T).
By Theorem 15, sincé/,u) € W(t,T), we knowu € cContent(t,T). Let X = xLCAuv. We must have
T € ances(X); otherwise, we could not haves, v} C memOps(t, T).

Sinceu € cContent(t, T), we knowu € cContent(t,X)UoContent(t, X). Therefore, we have (uHv),
satisfying the third condition.

To check the fourth condition, assume for contradictiort thare exists av such thatW(w,¢), and
u<sw<gs V. Lett, be the time thav happens. Then, sinc@(v) = u, we knowu € W(ty, T). Therefore,
by Theorem 15 we know € memOps(ty, T), W € aContent(ty, T) UvContent(ty, T).

LetY = xLCAwv. Sincew € memOps(t,, T), we knowT € ances(Y). Consider the two cases for

1. Supposev € aContent(ty, T). SinceT € ances(Y), we knoww € cContent(ty,Y)UaContent(ty,Y).

We can show by contradiction that we must haves aContent(t,,Y). If Y = T, then we already
know w € aContent(ty,Y). Otherwise, assumé < pAnces(Y). If we hadw € cContent(ty,Y), then

by Theorem 15, we must havé y) € W(t,,Y). This statement contradicts the fact t@&T model found

(¢,u) from transactiorT, since a closer transactidhhad/ in its readset.

But then, sincev € aContent(ty,Y), we havewHv.

2. Supposev € vContent(ty, T):
Then, we knoww € cContent(ty,Y) U vContent(ty,Y). As in the previous case, we can showw/
cContent(ty,Y).
If we vContent(ty,Y), then there exists some transactiba activeX(ty,Y)—{Y} such that € w(ty, Z).
Sincew € memOps(ty,Z), we can strengthen this condition Zoc activeX(ty,LCA(W,V)) — {LCA(W,V)}.
This statement leads to a contradiction, however, becaus#(t,,Z) must conflict withv.

More formally, by statement Invariant 2 of Theorem 13, amy mead operatiowv at timet, must satisfy
v e desc(low(writers(ty,/))) (i.e.,vis a descendant of the base of the spine’foAt timet,, however,
we must hav@ow(writers(ty,/)) € desc(Z).

O

B. RULES FOR TYPE CHECKING

This appendix contains the type rules for AT type system. The grammar for the type system is shown
below.

P == defrfe
defn := class ocn{formal+) extends oc
where constr { field* meth} |
class xcr(formal+) extends Xxc
where constr {xfield* meth}
C == ocC|Xxc

oc = ocnowner+) | Object(owner
Xc = xcn{owner-) | Xmodule(ownen
owner := world[i] | formal | this]i]
constr = (owner>ownen | (owner /% owner) |
(owner=owner | (owner /= owner
meth = tmn(formal*)(arg") where constr{e}
field == tfd
xfield = cfd
arg = tx
t = c|int
formal = f
e = newc|X|x=e|
let (arg=e€) in {e} |
x.fd | x.fd=y | xmn{owner)(y*)
ocn € class names that are not subtypexofodule
xcn € class names that are subtypexafodule
fd € field names
mn € method names
X,y € variable names
f € owner names
i,j € typeint literals

We define a number of predicates used in the type system. Phedieates are adapted from [2], but our
type system does not handle inner classes for now.

| Predicate | Meaning \

WFClasses(P) There are no cycles in the class hierarghy
ClassOnce(P) No class is declared twice i
FieldsOnce(P) No class contains two fields, decalred

or inherited with the same name
MethodsOnce(P) No class contains two methods with

the same name
OverridesOK(P) Overriding methods have the same

return type and parameter types as the
methods being overridden.
WorldinMainOnly(P) | Only themain method uses the

world tag to initialize owner.
ThisInXcOnly(P) Only classes that are subtype of
Xmodule usethis tag to initialize owner.

Our typing judgment follows the form adapted from [B; E + e:t, whereP is the program being
checked to provide information about class definitidass an environment providing type information for
the free variables ig; finally, t is the type ofe.

The typing environment is defined as
E:=0] E,tx | E, ownerf | E, constr

The typing environtment contains the the declared typesnébles, the decalred owner parameters, the
declared constraints among owners, and certain inferradti@nts, such asis[i] = this[j] when they are
used in aXmodule class definition.

The typing system uses the following judgments.

| Judgment | Meaning
FP:t programP yields typet
P defn defnis a well-formed class
P; E constr constraintconstris satisfied
P; E - (01 =02) | 01 andoy represent the same owner instance
P; E Fowner O 0is an owner
P; E F wf typing environmenk is well-formed
P;E 1t t is a well-formed type
P,EF i<t t1 is a subtype of,
P; E - t; <=ty | tyis assignable to,

P I xfield e xc | Xmodule classxc declares/inherits field

P I field € oc non-Xmodule classoc declares/inheritield
P; E - field field is a well-formed field

P methe xc Xmodule classxc declares/inheritsneth

P + methe oc non-Xmodule classoc declares/inheritsneth
P; E F meth methis a well-formed method

P,EF e:t expressiore has type

We present the type rules for these judgments in the follgwiages.

The type rules for these judgments are presented below:

[PROG]
W FClassed) ClassOncéP) FieldsOncéP) MethodsOncgP) OverridesOKP)
WorldInMainOnlyP) T hisInXcOnlyP) P=defn e P defn P, 0 e:t
H Pt
P I defn
[CLASS
E = ocn(fy) this, ownerfy ,, f1> fj, constr
P; E + wf P. E + od P: E field; P; E F meth
P I class ocn(fy) extends oc where constr {field* metH}
[XMODULE CLASS]|
E = xcn(fy n) this, ownerfy , f1> fi, constr
P; E + wf P. E I xd P: E field; P; E F meth
P I class xcn(fy) extends xc where consti {xfield* metH}
|P; E I constr|
[CONSTR ENV [> WORLD)] [> OWNER| [> REFL] [> TRANS]
P,E F (01>0p)
E = E;, constr E; P; E Fowner 0 P; E - e:xcn(01.pn) P; E Fownero P, E - (02> 03)
P; E - constr P; E F (o> world) P, E F (e>01) P, E - (o>0) P, E F (01>03)
[P EF (01=0p)]
[= OWNER [= REFL] [= TRANS]
P.E F (01 = 02)
E = E1, xcthis, Ep P; E Fownero P,E F (0=03)
P; E b (this[i] = thisj]) P,EF (0=0) P,E F (01=03)
|P; E Fownero]
[OWNER WORLD [OWNER FORMAL [OWNER THIS

E = E;, ownerf, E

E = E;, Xcthis, Ep

P; E Fowner world P; E Fowner f

P; E Fowner thisi]

[ENV 0] [ENV X] [ENV OWNER
P, E -t
X £ Dom(E) f £ Dom(E)
P; E - wf P; E F wf

P; 0 Fwf P; E, tx F wf P; E, ownerf ~ wf

[ENV CONSTR

constr= (o>0) vV (0 £ 0d)Vv(o=0)V (0 £0)
P; E + wf P; E Fowner O, O E' =E, constr
Axy (P, E'E x>y) A (P E F xBYy) Axy (P, E'F x=y) A (P E' - X £Y)
P; E, constr - wf

[TYPE INT] [TYPE OBJECT [TYPE (e]®
P I class ocn(fi pn) ... where constr ...
P; E Fowner O P; E Fowner O P,EF 0o1>0 P; E F constr[oy/f1]..[0n/ fn]
P; E F int P; E - Object(0) P; E - ocn(01.n)

[TYPE XMODULE] [TYPE XC]

P I class xcn(fy) ... where constr ...

P; E Fowner O P; E Fowner Oi P,EF 010 P; E F constr[oy/ f1]..[0n/ fn]
P; E - Xmodule(0) P, E = XCrX01.n)
PEFt <t

[SUBTYPE REFL [SUBTYPE TRANS

P,EFtH <t
P.EFt P.EFt < t3
PEFT <t P,EF1t < t3
[SUBTYPE Xd [SUBTYPE e]e:
P; E - xcn(og.n) P, E - ocn{oy. n)
P I class xcn(fy) extends xcri({f; o) ... P I class ocn(fy) extends ocr(f; o) ...

P; E - xcn{oy.n) <: xcrf(fy 0%) [01/f1]..[on/fa] P; E F ocn{oy.n) <: ocri(fy 0*) [01/f1]..[0n/ fr]

‘P; EFt <= tz‘
[ASSIGNABILITY REFL] [ASSIGNABILITY TRANS]

PPEFL <=1

P,EFt PPEFt <i=t3
PPEFt <=1t P,EFN§L <=13
[ASSIGNABILITY FOR XC] [ASSIGNABILITY FOR O(C
P; E = xcr(0y.n) P; E - xcn(o} p) P; E = ocn(oy) P; E - ocn(0})
P,EF (6=0)" P, EF (0>0)*" P EF (6=0d)" P EF (o>0)<t"
P; E F xcn(og) <:= xcn(o]) P; E - ocn(oy n) <:= ocn(o])

‘P - xfield xc‘
[XFIELD DECLARED] [XFIELD INHERITED)]

P I~ xfield € xcr(fyn)
P I class xcn(fy n)... {... xfield...} Pk class xcri(gy.m) extends Xcn(0p p)...

P F xfield € xcn(fy) P I xfield [o1/f1]..[on/fn] € xcr(g1.m)

\P - field € oc\ P: E I field

[FIELD DECLARED)] [FIELD INHERITED] [FIELD]

P I field € ocn(fy pn)
P I class ocn(fy p)... {... field ...} P+ class ocr(gy.m) extends ocn(01 pn)... P,EFt

P I field € ocn(fy pn) P + field [01/f1]..[on/fn] € ocr{(g1 m) P;E -t fd

|P - meth e xc
[METHOD DECLARED IN XC] [METHOD INHERITED BY XC]

P + meth € xcn(fy)
P class xcr{fy p)... {... meth...} P+ class xcri{g;.m) extends XCr{O1 p)...

P F meth e xcn(fy) P meth[oy/fi1]..[0n/fn] € xcr (g1 m)

|P - methe oc|
[METHOD DECLARED IN OQ [METHOD INHERITED BY OC

P F meth € ocn(fy n)
P + class ocn{fy p)... {... meth...} P I class ocr(gy.m) extends ocn(01 p)...

P - meth e ocn(fy) P F meth|oy/f1]..[on/fn] € ocr(g1.m)

[METHOD)] [EXP SUB [EXP NEW,
E' = E, ownerfy , constr, arg* P,EF e:t
P, E' - wf P,E' I e:t P,EFT <t P,EFc
P; E F t mn(fy n)(arg”®) where constr {e} P,EF e:t P,Et+ new c:c

[EXP ASSIGNABILITY] [EXP LET] [EXP VAR] [EXP VAR ASSIGN

P,E I e:t arg = tx P,EF e:t P;E - x:t
P.EFt <=t P, E,arg - € :t E =E,tx E P.EF e:t

P;E F e:t P;E F let(arg = e)in {€}:t P;E F x:t P.EF x=e:t
[EXP REEI [EXP REF ASSIGI‘}I

P; E F x:cn(o1.n) P; E F x:cn(og.n) Pk (tfd) € cn(fin)
P E (t fd) € cn(fyn) P, E F y:t[oy/f1]..[on/

P; E - x.fd:t[o1/f1]..[on/ fn] P, E - xfd = y:t[oy/f1]..[on/ n]
[EXP INVOKE]

P = (t mn(fin) m)(tj Y 1<%) where constr ...) € cn(fyn)
P; E F x:cn{(og.n) P, E F xj :tj [01/f1]..[0m/ fm)]
P; E F o > 0 P; E + constr[o1/f1]..[0m/ fm]

P, E F Xmn{0ny1).m)(X1.k) : t [01/f1]..[Om/]

