MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

Al Working Paper 286 April, 1986

Cognitive Cliches

David Chapman

Abstract

This paper is an exploration of a wide class of mental structures called cog-
nitive cliches that support sntermediate methods that are moderately general
purpose, in that a few of them will probably be applicable to any given task;
efficient; but not individually particularly powerful. These structures are useful
in representation, learning, and reasoning of various sorts. Together they form
a general theory of special cases.

A cognitive cliche is a pattern that is commonly found in representations
and, when recognized, can be exploited by applying the intermediate meth-
ods attached to it. The flavor of the idea is perhaps best conveyed by some
exa.mples TRANSITIVITY, CROSS PRODUCTS, SUCCESSIVE APPROXIMATION,
CONTAINMENT, ENABLEMENT, PATHS, RESOURCES, and PROPAGATION are all
cognitive cliches.

A.L Laboratory Working Papers are produced for internal circulation, and may contain infor-
mation that is, for example, too: preliminary or too detailed for formal publication. It is not
intended that they should be considered papers to which references can be made in the literature.



1 Introduction

We can evaluate an Al technique or system according to three criteria. First, generality:
what percentage of interesting problems can be attacked using this method? Then,
power: if the method is applied, will it solve the problem? Finally, efficiency: when
implemented, does the technique run in finite time on problems of realistic size?

Existing Al techniques can be divided into two rough categories, general and special
purpose. Then best general purpose systems pass the generality and power criteria.
Consider theorem proving: almost any problem can be represented as a theorem to be
proved, and if a complete theorem prover is run to completion it will always give the
right answer. Another example is search: most Al problems can be reformulated as
a search problem, and breadth-first search will always find a solution. Unfortunately,
no one has been able to write a theorem prover or general search program that runs in
realistic amounts of time on realistic problems; in fact it is impossible to write a theorem
prover that is always correct and always halts. Theorem proving and search are extreme
cases on all three counts, but general purpose Al techniques have never been used in
systems that solve real world problems, because they do not pass the efficiency criterion.

Some special purpose methods have great power (can solve all or most problems in
their domain of applicability) and may be efficient enough for real-world use, but these
have always depended heavily on details of their domain: they do not generalize. While
special purpose Al methods may be extremely useful, they are ultimately unsatisfying
for two reasons: an engineering reason, that the cost of building each system based on
special purpose methods is very high, so that a more general system would have greater
potential; and a scientific reason, that people seem to satisfy all three criteria.

I believe that the tradeoff between these three criteria is inevitable; that there are no
“big hammers,” or general powerful efficient procedures, in the mind. I do not believe
that anyone can ever write an efficient general theorem prover or search heuristic.

There are two ways out of this conundrum, both of which need to be explored. First,
it may be that an apparently general purpose effective system in fact consists of a lot
of special purpose systems that have been constructed by a learning mechanism. Thus,
the system gives the appearance of being general purpose by incrementally extending
itself to solve new problems. Second, it may be that one or more of the criteria can be
relaxed without drastically affecting the usefulness of the resulting system. I propose to
weaken somewhat the requirements of power and generality while maintaining efficiency
and usefulness.

This paper is an exploration of a wide class of mental structures called cognitive
cliches that support intermediate methods that are moderately general purpose, in that
a few of them will probably be applicable to any given task; efficient; but not individu-
ally particularly powerful. These structures are useful in representation, learning, and
reasoning of various sorts. Together they form a general theory of special cases.

A cognitive cliche is a pattern that is commonly found in representations and, when
recognized, can be exploited by applying the intermediate methods attached to it. The



flavor of the idea is perhaps best conveyed by some examples: TRANSITIVITY, CROSS
PRODUCTS, SUCCESSIVE APPROXIMATION, CONTAINMENT, ENABLEMENT, PATHS, RE-
SOURCES, and PROPAGATION are all cognitive cliches.

Problem solving often proceeds by recognizing the form of the problem, and knowing
what solution type will work for that problem type. Cliches are partial characterizations
of problems which suggest parts of solutions. If many cliches can be recognized in a
problem, many intermediate methods can cooperate in solving it. The overall paradigm
for use of a cognitive cliche is that it is first recognized in a representation that instan-
tiates it, and then competence attached to the cliche is applied to the representation.
Attached competence might aid in planning, analogy, or prediction, for example.

Section 2 of this paper explicitly defines the notion of a cognitive cliche and gives
some examples. Section 4 talks about building mental models from cliches, and section
3 explains how to use such a model.

This working paper is deficient in many respects. It is a very shallow overview of
a lot of semi-digested ideas. I have nothing concrete to back up the claims I make.
Perhaps more important, many of the more interesting ideas, particularly a lot of work
on describing specific cliches and their properties, are not presented at all, and will have
to wait for later papers.

This paper is a follow-on to [2], which describes a partial implementation of some of
the ideas herein.

This paper has no serious related work section. The problem is that much of what
I have read over the past six years has contributed to the theory, and even if I could
remember all the influences, they could not be summarized in a paper of this length.
I have been particularly influence by the Programmer’s Apprentice theory of program-
ming cliches (from which I derive the word) [13]. Minsky and Papert describe “concept
germs” which seem similar to cognitive cliches, but are only sketchily defined [11].
diSessa’s theory of “phenomenological primitives” is also similar to that of cognitive
cliches [5]. I have been much influenced by work on naive physics, particularly 8].

Another deficiency of this paper is that it does not discuss what I see as the out-
standing problems with the theory. Some of these are the lack of connection to a theory
of perception; the lack of an explanation of how cliches relate to domain-specific knowl-
edge; and the lack of a theory of how cliches themselves arise developmentally or are
acquired.

2 Cognitive Cliches

2.1 What is a cliche?

A cognitive cliche is a class of structures

e which are components of mental models

e which occur in many unrelated domains

2



e which can be recognized in several kinds of input data, and

o for which several sorts of reasoning can be performed efficiently.
For methodological reasons, a cliche should also be
e rigorously definable.

The cliche theory has both empirical and methodological content. The empirical
claims are that

o there actually are many structures that fit the definition of cliche given above;
and

o these structures with their associated intermediate competence are sufficient to
explain much common-sense reasoning.

The methodological content is a format constraint in the sense of [1]: a requirement
that theories of mind be of a certain sort. The format constraint is that

o theories of reasoning should consist of efficient techniques for computing properties
of instances of specific cognitive cliches.

The power of the theory is that the same set of structures appears to be useful in
many forms of reasoning in many domains. By the term “cognitive” cliches, I mean to
emphasize their domain-independence. There are also cliches applicable only to specific
domains, commonly occurring patterns that can be used to reason about programs or
electronics or mechanics or whatever. Much of what is said in this paper is true of
domain-specific cliches as well as general cognitive ones; I have chosen to concentrate
on the latter because they offer a solution to the intermediate competence problem.

Cliches are tinker-toy pieces that can be assembled to form “runnable” mental mod-
els which perform reasoning tasks. In fact people typically use multiple, overlapping,
incomplete models, in contrast to current Al technology, which tries to give programs
unitary, modular, and complete theories.

Cognitive cliches are not intended as a theory of representation. They are patterns
that can be found in any representation scheme: . logic, frames, semantic networks, or
whatever. Unconstrained representations in any language are very hard to compute
with. If, for instance, all the terms in a semantic net or set of logical axioms are
replaced with gensyms, it becomes very difficult for humans to understand or use the
result. If such an unlabeled representation can be computed with, it is usually only
by recognizing the intended meanings of the symbols, and then computing with those.
Cognitive cliches are common patterns in representation that can be recognized and
- then used in reasoning. They can be thought of as a set of well-understood models for
representations which have useful precomputed properties. Thus, computation can be
done in effect semantically in the model, rather than syntactically in the theory.

3



2.2 Links between cliches

Cliches are connected by a variety of types of links into a complex web. These links
are important in a variety of types of reasoning, and some their uses will be described
in section 3. The link types are specialization, extension, abstraction, isoonticity, and
approximation. Specialization and extension are defined conventionally in a standard
logical framework. Abstraction and isoonticity are taken from McAllester’s symmetric
set theory [12]. Approximation is a concept new to this paper.

One cliche specializes another if every instance of the first is an instance of the
second. For instance, TOTAL ORDER specializes PARTIAL ORDER.

One cliche eztends another if each instance of the first would be an instance of the
second, except that it has extra parts. (This can be defined rigorously in model theory
by considering the signatures of first order structures. The intuition is clear.) Typically,
extension is combined with specialization, because there is some constraint between the
new and the old parts. For example, POOL extends and specializes RESOURCE: a pool
is like a resource, except that it also involves a set (the items), the order relation of
the resource is constrained to be the cardinality of the items, the producer to be a
SET-INSERTION on the items, the consumer to be a SET-REMOVAL on the items, and
the threshold to be that the items be NON-EMPTY.

Isoonticity is a relation definable (to my knowledge) only in McAllester’s symmet-
ric set theory. (Each o is pronounced separately; iso, “same” + ontic, being.) In
McAllester’s framework, two objects are isoontic if they are both “views of the same
thing;” or if they “carry the same information.” For details, see [12]. I use the word
somewhat more broadly: two cliches are isoontic if for each instance of the one, there
is an instance of the other to which it is isoontic in McAllester’s sense. The intuition
is perhaps best given by some examples. EQUIVALENCE RELATIONS and PARTITIONS
are isoontic: for each equivalence relation, there is a partition that “carries the same
information” and from which the equivalence relation can be recovered. For another
example, TUPLES can be defined in (at least) two equivalent ways: as FUNCTIONS from
INITIAL SEGMENTS OF THE INTEGERS, or as nested PAIR structures. These two views
of tuples are isoontic. A CHOICE FUNCTION has as its domain a family of sets; it maps
each set to a member of that set (the one “chosen”). The set of choice functions on a
family is isoontic to the cross product of the family.

Abstraction, as I use the term, is also defined using symmetric set theory. An object
abstracts another if it contains strictly less information about the same things. Again, I
say that a cliche abstracts another if every instance of the first abstracts some instance of
the second. For example, SET abstracts SEQUENCE. Every sequence has an underlying
set; if you know that set, you know something but not everything about the sequence.
If you know the sequence, you know nothing more if you are handed the set.

The notion of epprozimation can not be precisely defined; it is a purely heuris-
tic notion. One cliche approximates another if every instance of the first can usefully
be reformulated (viewed) as an instance of the second, but this reformulation is not
correctness preserving. In general this relation is not symmetric; its converse is com-

4



plication. Large DISCRETE ORDERS and CONTINUA symmetrically approximate each
other. Adding a DIMENSION to a space is often a way to complicate it. ORDERS often
are reformulated as CYCLES. A PROPAGATION complicates an INCREMENT. A problem
involving a CONTAINER can often be reformulated by approximating the container as a
MUTABLE SET. And so on.

2.3 Examples of cognitive cliches

I estimate that there are more than two hundred and fewer than a thousand cognitive
cliches; I’ve identified about a hundred. There are perhaps between three and three
hundred things you know about each cliche. This section presents a small sampler of
cliches to give the flavor of the full set. For some of them I give some interesting property
they have.

I have given each cliche a name, spelled in small capitals: RESOURCE. Whenever pos-
sible the English meaning coincides with the rigorous one, but the names are mnemonic
only. Since this is not analytic philosophy, I don’t care what a resource “really” is. In
cases where no common-sense word was available, I have often used a technical word:
CROSS PRODUCT, ENERGY WELL. Some names I’ve had to make up: CATOOLYST.

The most basic cliches together form nasve mathematics. Naive mathematics is
an srrational reconstruction of parts of mathematics. It is that of which mathematics
is the formal sublimation. Mathematical cognitive cliches are the central, core ones
from which many of the others are built. Naive mathematics concentrates on finite set
theory, combinatorics, and algebra. People, like computers, are good at manipulating
finite, discrete structures. _

Naive mathematical cliches are all quite familiar: PARTIAL and TOTAL ORDERS,
EQUIVALENCE RELATIONS, MULTISETS, SEQUENCES, ONE-TO-ONE and MONOTONIC
FUNCTIONS. COMPOSITION, ASSOCIATIVITY, HOMOMORPHISM, WEIGHTED AVER-
AGE and INTERVALS are naive mathematical cliches. Most Al programs in fact incorpo-
rate some of these cliches in their operations; some even represent the cliches explicitly.
But no one has systematically built a toolkit of these simple mathematical ideas that
can be assembled into runnable mental models.

Some very abstract cliches are not familiar as part of mathematics, often because
they deal with change. For example, REVERSIBILITY of actions is a very useful property
to notice. Some combinations of cliches are themselves cliches, because they support
intermediate methods not obviously derivable from the parts. For instnace, we can
precisely define a RESOURCE as consisting of a state variable whose value must be
a member of a TOTAL ORDER, a consumer action, which DECREMENTS the variable
relative to the order, and a dependent action, which is ENABLED only when the value of
the variable is greater than some THRESHOLD. Reasoning about resources is extremely
important in planning, prediction, and diagnosis. A POOL is a resource in which the
order is the CARDINALITY of some SET, and the consumer REMOVES elements from the
set.

TRADE-OFFS may give rise during planning to a CONTINUUM of possible solutions

5



to a problem. In a trade-off there are two quantities which you can control, but not

independently; they are constrained to be related by a MONOTONIC DECREASING FUNC-
TION.

Many cognitive cliches are spatial. Minsky, in unpublished work, has proposed a
cliche theory of shape. There are a few dozen shape cliches like BLOBS, ELBOWS, T-
JUNCTIONS, and WEDGES. Other shapes are represented by combining and modifying
cliched shapes. There’s a lot you know about each shape cliche: for example, two L-
SHAPES are best fit together by turning one upside-down and making the two elbows
FACE each other CATTY-CORNERS. Knowledge like this might be used in a VLSI lay-
out system. In robot navigation, to pass an OBSTACLE, you must go UNDER, OVER,
AROUND, or THROUGH it; there are no other alternatives.

The spatial cliches IN and BETWEEN approximate each other. If the objects which
something is between can be seen as comprising a single object, it can be considered to
be in that object. Conversely, if something is in something else, it can be thought of as
between the sides or walls of it. Between is both a mathematical concept (y is between
z and z if z < y < z) and a spatial concept (for which the definition is less clear). This
provides a portal between the mathematical and the spatial domains.

Consider a space S with a function f on it; let v be in the range of f. A PROPA-
GATION is a process which changes f to be v on some elements of S adjacent to those
that already have an f-value of v. Propagation suggests a limit analysis in which all
CONNECTED COMPONENTS of the space that have any v-valued points will be entirely
v-valued. There are planning techniques for controlling propagation: consider a micro-
biologist who must infect a culture selectively with one micro-organism and not others.
He must assume that any object that comes into contact with another that may be
infected, will be infected. Such techniques are also needed in diagnosis, in which causes
must be localized.

The cliche CONTAINER is important in many common-sense domains; and is often
used non-physically. One thing you know about containers is that you can’t displace the
contained arbitrarily without removing it from the container. A container, if displaced,
may displace the contents with it. This suggests a plan: to move something, put it in
a container, then move the container.

The idea of a fluid FLOW is used analogically in an enormous number of domains in
which there is no literal liquid. ATTACHMENT, CREATING, ENERGY WELLS, OSCILLA-
TORS, REGENERATION, OPPOSITION, and RESISTANCE are other physics-like cliches.
Each of these can be precisely defined and used abstractly in non-physical domains.

Pll give now a single incomplete example of a mental model assembled out of cog-
nitive cliches. A zipper is a SEQUENCE of PAIRS of teeth. There is a ONE-TO-ONE-
CORRESPONDENCE between teeth on one side and teeth on the other. Each tooth is
BETWEEN two others. Teeth from each side ALTERNATE with the other. Each tooth is
ADJACENT to two and OPPOSITE one other. Zipping is a MONOTONIC PROPAGATION
along the TOTAL ORDER that is the isoontic view of the sequence. The WAVEFRONT
of the propagation is at the handle. At the end of the zipper there may be a tab that

6



acts as an OBSTACLE to propagation. The zipper ATTACHES the two sides. If you ap-
proximate the DISCRETE zipper order by a CONTINUUM, you would get a ziplock bag.
The zipper typically serves to OPEN and CLOSE a CONTAINER, and so acts as a sort of
GATE. And so on. '

3 Exploiting Cliches

In this section I sketch techniques for using a mental model built out of cliche instances.
Presumably such a4 model is derived from cliche analysis (see section 4). There are very
many ways of using cliches; in every type of reasoning I’ve looked at, at least some
cliches seem to have attached reasoning methods.

The most basic form of reasoning I call “calculation.” Calculation is the “running”
of a mental model. Different cliches structures have different things they can calculate.
You can apply a function to an argument; construct the partition that is the isoontic
view of a specific equivalence relation; enumerate the elements of a set; count the
cardinality of a multiset; remove an element from a pool; find the reverse of an action
or the optimal value of a trade-off; optimally pack a set of cliched shape instances; or
find the amount of a flow against a known resistance. Each of these things is very
simple, and computationally inexpensive as compared with general inference (theorem
proving). Every Al system does some of these things; a comprehensive package of
routines to perform such calculations efficiently and uniformly would be very useful. In
fact, calculation is used in all the other types of cliche-based reasoning I’ve looked at.
Simulation and prediction, for example, are just calculation turned sideways in time.

Analogy is taken to be a fundamental mental operation, and considerable research
in Al and cognitive science has been devoted to it. Cognitive cliches suggest some ways
of approaching analogy that are either new or have received little previous attention in
Al

There are cliched analogies: This is the point of [9], and the same point is made
by [11]. Approximation links are standard reformulations (analogies) between cogni-
tive cliches, and can be extended to reformulations of whole mental models. [10] uses
techniques like this in the automatic algorithm design.

Cliches can help decrease the computational complexity of analogy matching. Naively,
an analogy system might match every representation against every other representation;
but this is generally too expensive. An alternative is to index representations by their
most important features and only match representations that are similar. [7] suggests
higher-order relations are the important features to match; cliches, as particularly inter-
esting higher order relations, might be the best choice. The specialization and extension
lattice of cliches can be extended to a lattice of mental models built from them. Then,
to find good analogies for a representation, you can climb up the lattice a ways, and
then drop down again to find something similar. (This idea is not unique to me; it
occurred to several people in our lab independently some years ago.)

Cliches can be used in planning in a number of ways. In [2] I describe an implemented

7



system in which “canned” plans are attached to cliches. In [3] I discuss an approach to
solving the frame problem using cognitive cliches. A planner has to maintain a model
of the world and its changes over time; such a model can be built out of cliches, and
cliche computation can be used to discover things in the model.

Taxonomy is the problem of finding useful PARTITIONS. Useful partitions often
have structure to them; that is, the EQUIVALENCE CLASSES themselves participate in
cognitive cliches. Let us raise any representation by replacing elements with equiva-
lence classes. Then HIERARCHICAL CLASSIFICATIONS are the raises of TREES; MULTI-

FEATURE CLASSIFICATIONS, the raises of CROSSPRODUCTS; dichotomies the raises of
PAIRS.

4 Cliche Analysis

One of the two fundamental components of the cliche paradigm is cliche analysis, the
subject of this section. Cliche analysis is the process of building a mental model by
examining a representation, recognizing instance of cliches, and making connections
between them. Cliche analysis can be viewed as a type of learning: when you have built
a mental model, you know something new that will often be useful in achieving your
goals.

Cliche analysis can be thought of as proceeding in two phases, though in fact they
must be intermixed. The first phase is recognition, which is the process of examining
the input representation for the patterns which allow one to instantiate cliches that
index (model) the representation. An example is checking all presented pairs of a
dyadic relation to see if it is symmetric. The second phase is cliche elaboration, which
extends a mental model by adding cliche instances which model the input simply by
virtue of other cliche instances modeling the input. For example, if it is known that a
relation is a finite total order, one can elaborate the model by adding a finite sequence
that isoontically models the same relation. In fact, some patterns of cliche connections
may only suggest, rather than imply, elaborations: in this case, elaboration will call
recognition as a subroutine to verify that the suggested cliche will model the input.

Recognition has generally been thought of as a matter of perception, and in fact
some forms of cliche recognition do have a perceptual taste to them. Whether it is
better to think of recognition as learning or perception seems to depend on the input
to the recognizer: if it is quantified, abstract knowledge structures (like a text-book),
recognition is like learning; if the input is sense-data or the output of other perceptual
systems, recognition is like perception. I'll discuss both forms of recognition in this
section.

Cliche elaboration is a function from models to models, and so does not depend on
the input representation formalism, while recognition typically depends heavily on the
representation. It is useful to distinguish the two for this reason: only one elaborator
need be written, while a new recognition module might be needed for every representa-
tion the mind is expected to deal with.



The system I reported on in [2] has one cliche recognition module and no elaboration.
The one form of input it can recognize is presented tuples of relations. This is the form
of input that most classical Al learning systems have been given. My system was
able to learn to stack blocks by experimentally taking actions in a blocks world, and
being told the effects in the form of tuples of the on relation. Each tuple consists of
a relation symbol and some arguments. Using simple induction coupled with directed
experimentation, the system was able to recognize such cliches as equivalence and order
relations, increment functions, compositions, stacks and queues, and inverse functions.

One of the key techniques used was temporal abstraction, which allows one to view
an action (function from states of the world to states of the world) as a mathematical
function (from objects to objects). Temporal abstraction depends on the functionality
of operators: that is, applied to the same inputs, they will always have the same effect.
In the real world, this is not always true. There are three sources of afunctionality
for actions: dependency of effect on state variables (as well as arguments); noise; and
changes in the world due to processes other than the system itself. My pilot system was
unable to deal with any of these effects; a more powerful recognizer ought to.

I have done a number of experiments that suggest that cliche recognition is both
possible for and useful in coping with dependence on hidden state. Dietterich [4] has
presented an elegant technique for understanding hidden state variables; his theory
has at one point a kludge, that it requires preconceptions of what “types” of actions
can exist. These types are exactly cognitive cliches. Another approach might be to use
standard finite state machine induction techniques interleaved with recognizing patterns
in the state transitions of the induced machines. This could perhaps overcome the
efficiency problem due to the NP-hardness of the induction task.

A more interesting form of input is quantified abstract propositional knowledge
structure, such as semantic networks or logical formulae. These might be the output of
a language module given text or spoken input; or the output of cliche recognition from
data; or the output of other learning mechanisms, statistical induction for example. Such
knowledge is amorphous and ought to be structured, or formalized, or made explicit.
This can be done by fitting cliches to the knowledge. The techniques for recognizing
cliches in such knowledge are quite different from those for recognizing cliches in data.
No induction is involved; parsing or matching is the image. I don’t have any good ideas
about how to do this, but it will probably be important.

Dyer’s BORIS system [6] builds mental models from components much like cognitive
cliches, starting with English text input. His approach is to attach to English words
the possible structures that they could represent, and to use later constraints to disam-
biguate in cases of multiple possibilities. I think that a similar approach will work for
cliches in general, attaching cliches not to words but to specific predicates. Thus cliche
recognition can start where most natural language systems leave off, with a semantic
network. '

I have done cliche recognition and elaboration by hand starting from high-school
level accounts of genetics. Beginning with a text-book, I translated the account into a

9



quantified semantic network formalism, and then derived the cliche analysis of the text:
the output of a recognizer. Comparison of these two representations suggest that the
approach of the last paragraph is plausible, and that there is sufficient constraint that
consistency checking can disambiguate alternative analyses.

Quantified knowledge can come from other sources than language. For example,
many statistical learning algorithms produce such knowledge as output. The difficulty
with such algorithms is that it is often very hard to know what to do with the mass
of assertions they produce. If cliches can be recognized in them, though, all the cliche-
associated competence will be applicable.

Acknowledgments

Portions of this research have been supported by Thinking Machines, the SRI AI Center,
Schlumberger Palo Alto Research, and the MIT Artificial Intelligence Lab. I’d like to
thank Danny Hillis, Mike Georgeff, Pat Hayes, and Chuck Rich for making my work
possible.

As this paper represents a core-dump of much of my thought over the last six years,
innumerable people have contributed ideas in conversation, net mail, and comments on
paper drafts. Phil Agre, Margaret Fleck, Chuck Rich, and Dan Weld read the most
recent draft and have very usefully applied continued pressure to finish the damn thing.

10



References

[1] Agre, Philip E., “The Methodological Armamentarium of Faculty Psychology.”
Unpublished manuscript, 1984.

[2] Chapman, David, “Naive Problem Solving and Naive Mathematics.” MIT AI Work-
ing Paper 249, June, 1983.

[3] Chapman, David, Planning for Conjunctive Goals. MIT AI TR 802, forthcoming.

[4] Dietterich, Thomas G., “Learning About Systems That Contain State Variables.”
AAAL 84, pp. 96-100.

[5] diSessa, Andrea A., “Intuition as Knowledge.” Unpublished manuscript, July 5,
1983.

[6] Dyer, Michael G., In-Depth Understanding. MIT Press, Cambridge Mass.: 1983.

[7] Gentner, Dedre, “Structure-Mapping: A Theoretical Framework for analogy.” Un-
dated unpublished manuscript.

[8] Hayes, Patrick J., The Second Naive Physiés Manifesto. University of Rochester
Cognitive Science Technical Report 10, October, 1983.

[9] Lakoff, George, and Mark Johnson, Metaphors We Live By. University of Chicago
Press, Chicago and London, 1980.

[10] Lowry, Michael, “Reformulation of Algorithms in Computational Geometry.” Un-
published manuscript.

[11] Minsky, Marvin, The Society of Mind. Unpublished manuscript.

[12] McAllesﬁer, David Allen, “Symmetric Set Theory: A General Theory of Isomor-
phism, Abstraction, and Representation.” MIT Al Memo 710, August, 1983.

[13] Rich, Charles, Inspection Methods in Programming. MIT Al Technical Report 604,
June, 1981.

11



