

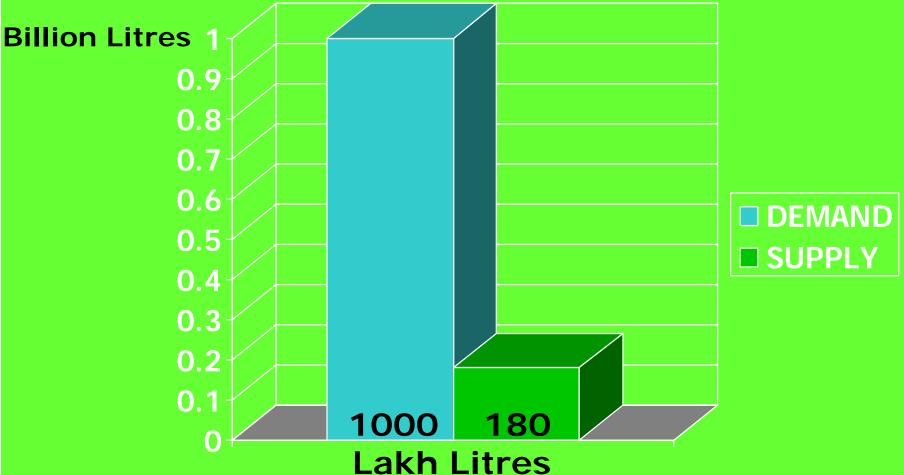
Biofuels: Demand

for

Ethanol and Biodiesel

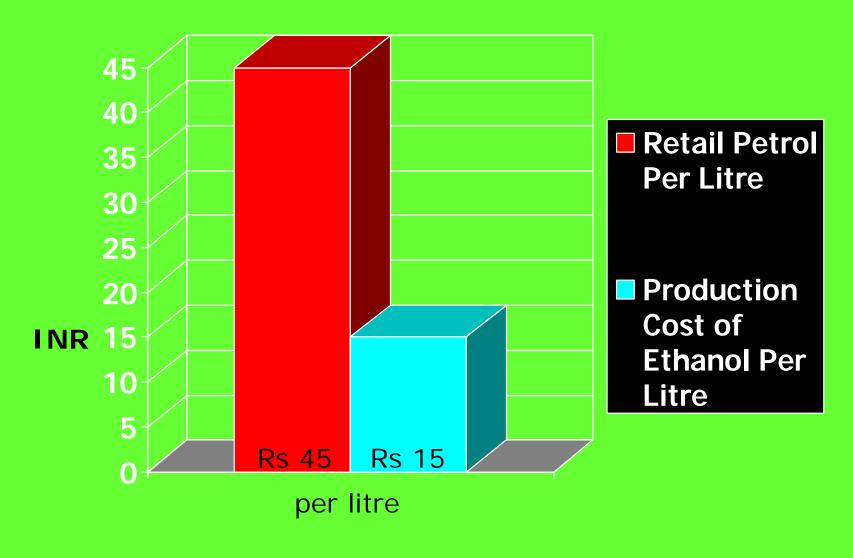
Example: India

Compiled by
Dr Shoumen Palit Austin Datta
School of Engineering
Massachusetts Institute of Technology


Biofuel Sources

- Ethanol
 - molasses, beet, sweet sorghum, sugarcane
 - cellulosic (wood, grass, biomass residue)

- Vegetable oils (non-edible)
 - Jatropha curcas
 - Karanjia


Ethanol Demand vs Supply

Data per Government of India. According to the US Department of Commerce, the current demand for ethanol in India is 3.6 billion litres or 3,600 lakh litres.

Price of Petrol vs Cost of Ethanol

Biofuels: Bridge to Hydrogen Economy

> 60 million
~ 10,000 per day
10 billion litres per annum
>130 million tons of crude
40 million tons
80%
60 billion litres
6 billion litres
> 500 million tons per year
> 200 billion litres per year
> 50000 MegaWatts per year

^{*} Projected by the Asian Development Bank

Ethanol Use in India

 IOC R&D undertaken detailed studies using ethanol blended gasoline (EBG) including 5% (95EGB) and 10% (90EBG) for commercial use.

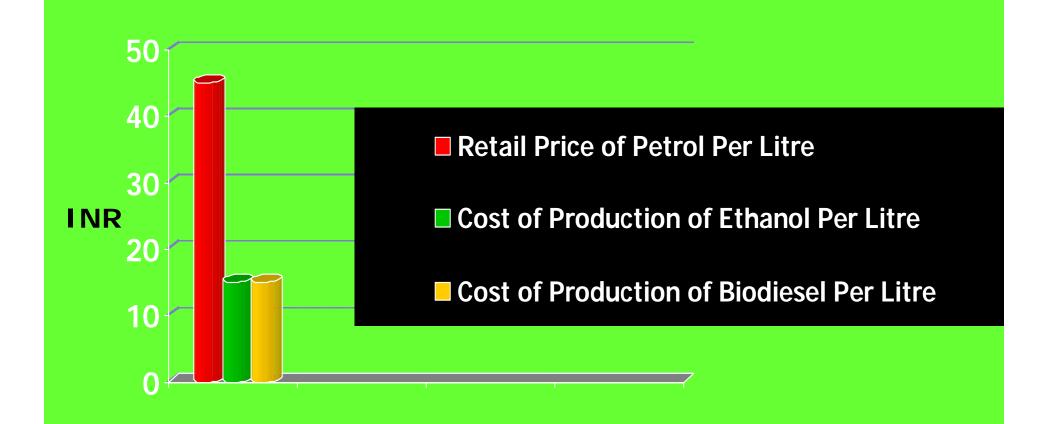
 Ethanol blended gasoline mandatory in many states and 90EBG approved on 1 October 2003

Adequate supply of ethanol is not available

Cellulosic ethanol preferred over grain ethanol

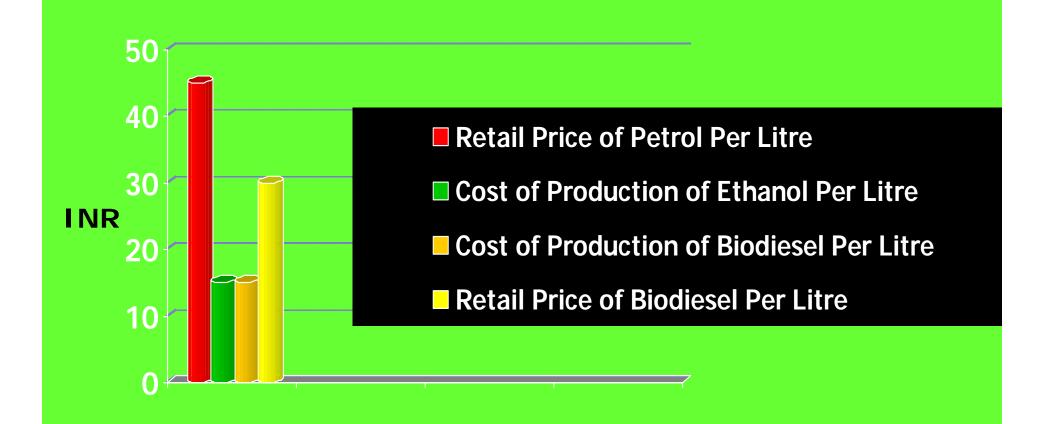
Ethanol Use in Brazil

- 360 million tons sugarcane from 5 million hectares producing 500,000 jobs on plantations and 500,000 jobs in production
- 25,000 petrol pumps dispensing Gasoline, EBG and Ethanol (Alcool)
- VW and GM flex-fuel vehicles (FFV) can run on any fuel or any blended fuel (mixtures)
- Brazil-India cooperation MOU signed in 2001



Biodiesel

- Renewable, non-toxic, biodegradable, non-edible vegetable oil
- Lower emissions compared to diesel (zero sulphur, 78% reduction of CO₂ and 50% reduction of CO)
- Better fuel properties (cetane number, lubricity, flash point)
- Daimler Chrysler India successfully tested cars running on 100% biofuel extracted from Jatropha curcas
- 11 million hectares of wasteland suitable for Jatropha cultivation
- 126,000 hectares adjacent to railway tracks owned by Indian Rail



Price of Petrol vs Cost of Biofuels

Rs 30/L Biodiesel: Profit/Hectare ~ Rs 25,000

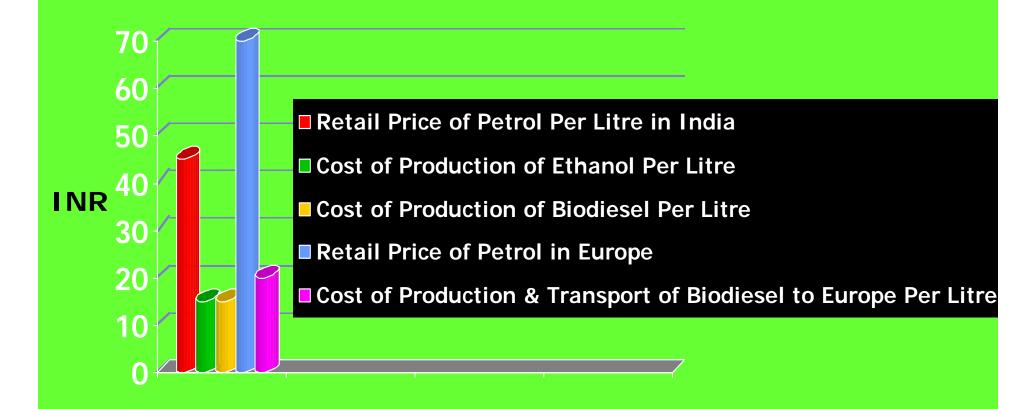
Biodiesel: Profit & Jobs

Lifecycle of plant	50 years
Oil content of seed	35%
Oil yield / kg of seed	250 ml
Plants / hectare	2,500
Job creation / hectare	0.25 FTE
Cost of maintenance / hectare / year	INR 20,000
Seed yield / hectare / year	7 tons
Oil yield / hectare / year	1750 litres
Cost of oil production / litre	INR 15
Cost of oil transport to Europe / litre	INR 5
Cost of oil production / hectare	INR 26,250
Pressed seedcake / hectare	4.5 tons
Selling price of seedcake / ton	INR 4,000
Cost of oil production & maintenance / hectare	INR 46,250
Sales of oil @ INR 30/L and seedcake / hectare	INR 70,500
Gross earnings from biodiesel / hectare	INR 24,250
Area adjacent to railway tracks (hectare)	126,000
Earnings from biodiesel from 126,000 hectares	INR 30 CRORES
New job creation from use of 126,000 hectares	30,000
Wasteland	10 million hectares
Earnings from biodiesel per million hectare	INR 2,425 CRORES
New job creation per million hectare	250,000
Potential for new job creation from Wasteland	25 LAKHS **

** 1 LAKH = 100,000

IOC, Indian Railways, Tata & Other Initiatives

- Trans-esterification, process optimization and commercialization
- Testing of locomotive engines with biodiesel (B100) and blends
- Vehicle performance and emission studies (Escorts, Tata, M&M)
- Field trials with buses in Gujarat
- Jatropha plantation on 70 hectares adjacent to rail tracks
- Studies on 16 cylinder engine (3100 hp) with B5, B10 and B20
- Shatabdi & Jan Shatabadi Train trial runs
- Trains through Lucknow using bio-diesel (B10) from June 2006
- Evaluation of B20 for 4 passenger cars and 2 commercial vehicles
- Tata Motors employee buses using B10 in Pune
- Haryana Roadways converts entire (Gurgaon) bus depot to use B5



Biodiesel Purchase Policy (9 October 2005)

- Biodiesel policy involves PRIs for Jatropha plantations and oil extractions by establishing Rural Business Hubs
- OMC purchase price INR 25 per litre.
- Assistance for Jatropha plantation and oil extraction.
- IOC R&D to increase biodiesel content from 5% to 20%

Profit from Export of Biodiesel

February 2006: BP invests \$9.4 million in India for Jatropha biodiesel.

China: Biofuel Boom

13 million hectares for Jatropha plantation

200,000 tons of biodiesel by 2010

1 billion litres of Ethanol produced in 2006

Production cost for cellulosic ethanol \$0.25 / L

Biofuels in India: Potentially Profitable

- Significant profit from ethanol and biodiesel
- Export potential for higher profitability
- Ethanol-resistant yeast to improve yield
- Enzyme-catalysis for cellulosic ethanol
- Creates new jobs even in wastelands
- Implementable with minimal time
- Foreigners ready to grab market

Strengths

Increasing Demand ROI 15% of Capital INR 20000 / ton capacity Robust supply chain Distribution Channels Job creation in wasteland No new carbon addition

Decrease fossil fuel use Reduce carbon emissions Oil crisis mitigation Government regulation European distribution Worldwide awareness

Opportunities

Weaknesses

Does not eliminate carbon emissions completely

In the very long run may be more expensive than hydrogen via electrolysis

Existing engine conversion

US / EU investors Slow pace of bureaucracy MNCs land lease venture Failure to use new tools Lethargic approach Paralysis from analysis

Threats