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Laws for Communicating Parallel Processes

I. INTRODUCTION
In recent years, there has been a shift from the centralized serial computing system to the

distributedl parallel computing network. There are many driving forces behind this shift: the
geographical distribution of information sources and sinks, requirements for faster response,
cheaper small computers, replacement of paper shuffling with digital message switching, greater
system reliability, and so on. In response to this demand, many popular computer languages have
added "parallel process" and "message switching" constructs which in many cases are little more than
syntactic sugar for very low level operating system tasking facilities. However, little has been done
in the way of providing a precise semantics for what these constructs mean.

But a semantics for distributed computing would be required even without geographically
distributed systems because tightly coupled systems2 of large numbers of processors are becoming
available which are more powerful than the fastest serial computers in terms of instructions per
second. Taking advantage of such massive parallelism has proved more difficult than was expected
due to the lack of conceptual and formal models for these systems.

The semantics of serial programs are quite well understood using Floyd-Hoare logic [2,3,4] and
the Scott lattice model [5,6,7]. However, most current semantics for parallel programs try to map
parallel computations into non-deterministic serial ones by "considering all shuffles" of the
elementary steps of the various parallel processes (8,9). This approach leads to program proofs with
a frightful number of cases and no insight [10], and is unnatural because it models independent,
local computation steps as sequential incremental changes to the global state of a system.

Actor theory is an attempt to remedy these defects. Computations in the actor model are partial
orders of events. Hence, specifications for an actor and correctness assertions for a computation can
be given very naturally in terms of events and causal relations among events. Since inference rules
can use these partial orders directly, the number of cases in proofs is considerably reduced. Thus,
actor theory attacks the problem of distributed system design by offering an abstract conceptual and
formal model for thinking about and proving theorems about distributed systems.

Many current multiprocessing systems allow control messages between processes, but most data is
communicated by means of shared memory [11,12], which can easily become the main bottleneck in
the system. Dataflow schemata [13) avoid this problem by binding control and data into messages
known as tokens. This model allows for increased parallelism since any functional unit (e.g. a
multiplier) which has received tokens on all of its inputs may proceed to compute with this data and
output other tokens quite independently from the rest of the system. Thus dataflow computations
can be represented by sets of local histories of input-output pairs of values [14]. However, the
notion of a computation as a set of local histories of value pairs is not robust; modelling true
non-determinism seems to require the greater structure of a single partial order for all the events.

The dataflow and other models [15,16] are also currently biased toward a static ensemble of
functional units with a fixed topology connecting them; the actor model generalizes by allowing for
the creation of new actors and for a dynamically changing topology during the course of a
computation. Hence, actor messages must be able to convey the names of other actors as well as data
so that new actors may be introduced to old. The power to create new actors and pass their names
in message enables actor systems to implement procedure calls by sending a procedure actor a

1: Lamport [11 defines a distributed system as one in which "the transmission delay is not negligible
compared to the time between events in a single process."
2: A tightly coupled system is one in which the transmission delay between parts is of the same
order of magnitude as the cycle time of those parts.
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message consisting of a parameter list and a continuation--the name of an actor which will receive
the result message returned by the procedure.

In programming languages such as Simula-67 [17], Smalltalk [18], and CLU [19,20), the emphasis
has changed (compared to Algol-60) from that of procedures acting on passive data to that of active
data processing messages. The actor model is a formalization of these ideas, where an actor is the
analogue of a class or type instance, but considers the added effects of parallelism.

In this paper, we argue that in a distributed computation, the notions of local state, local time,
and local name space, should replace those of global state, global time, and global name space. This
replacement of local notions for global notions is equivalent to the reformulation of computation in
relativistic terms.

We present axioms for actor systems which restrict and define the causal and incidental
relations between events in a computation, where each event consists of the receipt of a message by
an actor, which results in the sending of other messages to other actors. These axioms make it
unnecessary to postulate the existence and "fairness" of some underlying global scheduler [21] or
oracle [221. The actor theory can be used to model networks of communicating processes which may
be as close together as on the same LSI chip or as far apart as on different planets. It can be used
to model processes which communicate via electrical busses, crossbar switches [12], ring networks [23],
Ethernets [241, or Batcher sorting nets [251 Programming systems [261 and machines [27,28]
especially suited for actor computations have been designed. Simulations of complex control
structures by patterns of message-passing have been worked out [261]. Incremental garbage-collection
strategies for passive [29,28] and active [30] objects have been devised so that large actor
computations can be efficiently mapped onto hardware of reasonable size. Computations which are
partial orders of events have been used to develop specifications and proof techniques for modular
synchronization primitives [31,32,33,341

IL EVENTS AND ACTOR COMPUTATIONS
In a serial model of computation, computations are sequences of states, and each state in the

sequence determines a next state for the computation by considering the program text in a Von
Neumann computer or the specifications for the finite state control of an automaton in
computability theory. In the actor model, we generalize the notion of a computation from that of a
sequence of global states of a system to that of a partial order of events in the system, where each
event is the transition from one local state to another. One interpretation of this partial order is
that unordered events proceed concurrently. Other models whose computations are partial orders of
events have been studied previously [35,36], but not with the generality considered here.

I.1 The Precedes Ordering
An actor computation is a pair <c,"-->">, where E is a set of events and "-->" is a strict partial

order on 8, i.e. "-->" is transitive and for no event E in 8 does E-->E. We say that event El in 8
precedes event E2 in 8 if EI-->E2; we say that El is concurrent with E2 if neither El-->E2 nor
E2-->E1. Intuitively, El-->E2 only if there is some chain of physical actions from El to E2; i.e.
"-->" is the weakest partial order consistent with this principle.

Actor computations are intended to be constructed inductively from some base by adding events
in discrete steps. Although this base could be a finite set of initial3 events, we posit a single initial
event E. for simplicity. Again, since the computation is to be inductive, we postulate that in any

3: An initial event E in 8 is one which precedes all others in 8.
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actor computation, the number of events between any two events is finite; i.e. given events El and

E2 in an actor computation, the set {EIEI-->E-->E 2} is finite.4 This property, which we call

discreteness, means that the immediate predecessors and immediate successors of an event are

well-defined. 5 Finally, we restrict the number of immediate successors of any single event to be
finite.

These finiteness conditions do not rule out non-terminating actor computations; they only
eliminate the possibility of "Zeno machines"--machines which compute infinitely fast. For example,
consider a computer which can execute its first instruction in I second, its second in 1/2 second, its
third in 1/4 second, etc. This machine could solve the "halting problem" by simulating a normal
computer running on some input, and if the simulation were still running after 2 seconds, it could
conclude that the simulated machine does not halt on that input.

These three restrictions (existence of a least element, discreteness, and finite immediate
successors) implies that every actor computation has a monotonic6 injection7 into the set of
non-negative integers N. The existence of these mappings implies that actor computations are no
more powerful than serial computations since the existence for every actor computation of a
monotonic injection into N implies that every actor computation can be simulated on a serial
computer and that simulation will terminate if and only if the actor computation terminates.

The fact that monotonic injections exist for every actor computation shows that actor
computations are consistent with the "consider all shuffles" approach. However, we do not use the
injections directly, we only note that they exist; all properties of actor computations are expressed in
terms of partial orders, not monotonic injections.

II.2 The Activation Suborder
The action in the actor model consists of objects called actors sending messages to other actors,

called the targets of those messages. We model only the receipt of these messages as events because
this choice yields a simpler model, while still retaining those aspects of distributed computing systems
of interest to us. Hence, an event E is the receipt of the message "message(E)" by the actor
"target(E)". Upon receipt of this message in the event E, the target consults its script (the actor
analogue of program text), and using its current local state and the message as parameters, sends
new messages to other actors and computes a new local state for itself. The events in which those
messages are received are said to be activated by the event E. Every actor computation E is complete
in the sense that if an event E in E causes a message to be sent, there exists an event E' in E in
which that message was received; i.e. every event which was activated has occurred.

Activation is the actor notion of causality and forms a sub-ordering 8 of the precedes relation;
i.e. if event E1 activates E2, then El precedes E2 . A crude analogy from physics may make
activation more clear. A photon (message) is received by an atom (target) which puts it into an
excited state. After a while, the atom gives off one or more photons and returns to its ground state.

4: This is a stronger condition than requiring that all chains between El and E2 be finite.
5: Ep is an immediate predecessor of E in the computation <c,"-->"> if there does not exist an E' in
E such that E -- >E'-->E.
6: A function f from a partial order <A,"s"> to a partial order <B,"s"> is monotonic if alsa2 implies
f(al)sf(a2).
7: A function f is injective if it is one-to-one.
8: A suborder of a strict partial order <A,"<"> is a strict partial order <A,"<'">, where "<'" is a
transitively closed subset of "<".
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These emitted photons may then be received by other atoms, and these secondary events are said to
be activated by the first event.

What does this activation suborder look like? Since an event is the receipt of a message by an
actor, the message must have been sent by some previous event-the activator event-and since only
one message can be received in an event, there is at most one activator for the event. Now since
there is a least element E. for the whole computation, it cannot have an activator; however, we will
require every other event to have one. Hence, the activation suborder Is a tree and for each event
in the computation there is a unique finite path in this tree back to EL.

II.3 The Arrival Suborder
All messages that are sent are eventually received by their targets. If many messages are en

route to a single target, their simultaneous arrival may overload the target or cause the messages to
interfere with one another. Therefore, to guard against these possibilities and ensure a kind of
super-position principle for messages, we postulate an arbiter in front of every actor which allows
only one message to be received at a time. In terms of the precedes ordering on the events in a
computation, this means that all events with the same target are totally ordered. We call the
sub-relation defined by the restriction of the precedes relation to the set of events with a particular
target actor the arrival ordering for that actor. Since there may be no necessary (causal) relation on
two events other than that due to the effect of an arbiter, these arrival orders record the arbitrary
decisions of the arbiters. Due to the discreteness of the precedes relation, every arrival order is
isomorphic to a sectionl 0 of N.

11.4 Creation Events and the Precursor Suborder
Every actor is either one of a finite number of initial actors or is created during the course of a

computation. Every created actor is created in a unique event called that actor's creation event.
Several actors may be created in a single event; the only restriction is that only a finite number may
be created in any single event. To satisfy our intuition about creation, we require that an actor's
creation event precede the first event in which it receives a message.

From the arrival orderings and creation events, one can construct another subordering of the
precedes ordering called the precursor suborder. For any event E in a computation, define
precursor(E) to be 1) the immediate predecessor of E in the arrival order of the target of E, if one
exists; else 2) the creation event of the target of E, if one exists; or else 3) E., if EsE.L. Precursors
are thus defined for every EsEI. The precursor suborder is then the transitive closure of the
precursor relation and is a suborder of "-->" due to the restrictions on creation events. The
precursor suborder is also a tree with E. as its root, and for every event in the computation there is
a unique finite path in this tree back to E.L.

We have exhibited two distinct suborders of the precedes order which are independent in the
sense that neither by itself encodes all the information in the precedes relation. However, if an
event El precedes an event E2 then there is a finite chain of events through the activation and

precursor orderings from El to E2 ; i.e. the precedes order is precisely the transitive closure of the
union of the activation and precursor suborders. Thus, every actor computation is the transitive
closure of the union of two finitary trees, and encodes the interplay of the two.

9:. More parallelism requires additional copies of an actor; these copies will not lead to problems so
long as the actor is "pure", a concept defined later.
10: A section of IN is either {neninss), for some seN, or N itself.
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II.5 Actor Induction
One reason for defining all of these orders and suborders on actor computations is to allow a

form of computational induction for actor systems called actor induction. Actor induction is defined
for all of the orders defined above, and when faced with proving some property of an actor
computation, one chooses which one based on the complexity of the interactions on which the
property depends. Properties of programs without "side-effects" can usually be proved using only
"activation" induction, while properties of isolated databases can usually be proved using only
"arrival" induction. Complex programs with side-effects will require full-blown "precedes" induction.

"Precedes" induction states that if P(E.) is true, and if P(activator(E)) and P(precursor(E))
imply P(E), then P is true of all events in the computation. Precedes induction can be trivially
proved correct by considering any monotonic injection from a computation into N and using weakll
induction. The other inductions and their proofs are similar.

II.6 Fork- loin Synchronization
Let us consider how a system of actors, when requested to calculate some value, can split up the

load among themselves and combine the results to form the final answer. Actor F receives a request
message to calculate the value f(x)-h(gl(x),g2(x)) and send the reply to the actor R. Actor F then
creates an actor H and sends a message to G1 requesting it to calculate gl(x) and send its reply to H.
Simultaneously, F sends a message to G2 requesting it to compute g2(x) and send its reply to H.
Assuming that G1 and G2 are both total, H will receive messages from both G1 and G2 containing
the values gl(x) and g2 (x), respectively. Now because of the arbiter on H, these two messages are
guaranteed to arrive at H in some order, but the order cannot be predicted. Therefore, the reply
messages to H will also contain an indicator I or 2 to tell H that they were sent by G, or G2,
respectively. The script for H specifies that H is to wait until it has received replies from both G1
and G2 , and when it has, it is to compute h(gl(x),g2 (x)) and send that value to R; i.e. H uses its
arrival order to accumulate information over time before replying. Thus, fork-join behavior can be
implemented in an actor system.

NLAWS

11: Weak induction states that if P(O), and if P(i) for all i<k implies that P(k), then P(n) for all n in
N.
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F <- [request: x reply-to: R]

4..1..4..4..4.1.,.4...... ....-. l.........

V +
G1 <(- [request: x reply-to: HI V

+ G2 <- [request: x reply-to: H]
+ 4.

V V
H (- [reply: [1 gl(x)]] =c=> H (- [reply: [2 g2 (x)]]

++++d+++÷+ d++ d++++

V
R <- [reply: h(gl(x),g 2(x))]

Figure 1. Diagram of Fork-Join Synchronization
"A <- M" means the event where actor A receives message M;

"El ++> E2" means E1l precedes E2 in the activation sub-ordering;
"E1 => E2 " means El precedes E2 in H's arrival sub-ordering.

We have been asked "why use the arrival order to effect joins? Why not simply say that the
calculations of gl(x) and g2 (x) together activate the calculation of h(gl(x),g2 (x))?" The reason is that
activation is more than the sending of a "control token", more than a "goto"; it is the sending of a
message which contains data. In this sense it is more analogous to a data flow token or a procedure
call. Since we have declared that an event is the receipt of a message by an actor, and since a
message can have but one event which activated its sending, we are forced to the conclusion that an
event can have but one activator. Given this, the activation sub-ordering of the precedes relation is
a tree, hence incapable of performing joins by itself.12 Another reason for the reliance of joins on
the arrival ordering is that for two concurrent and separated events to both activate a join event
would require the conjunction of those two concurrent and separated events to be noted by some
agent. This would allow information to flow by means other than the exchange of messages, a
situation which is inconsistent with our philosophy of computation.

III. LOCALITY
Information in an actor computation is intended to be transmitted by, and only by, messages.

The most fundamental form of knowledge which is conveyed by a message in an actor computation
is knowledge about the existence of another actor. This is because an actor A may send a message
to another actor B only if it "knows about" B, i.e. knows B's name. However, an actor cannot know
an actor's name unless it was either created with that knowledge or acquired it as a result of
receiving a message. In addition, an actor cannot send a message to another actor conveying names
he does not know. In the next section we give restrictions which enable actor computations to satisfy
these intentions.

Working Paper 134A
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111.1 Actor Acquaintances
The order of arrival of messages at an actor defines a "local time axis" for the actor which is

punctuated by its receipt of messages. Therefore, for any event along this local time axis we can
define a vector of acquaintances for the actor, which encodes the names of other actors this actor
knows at that instant. A name in this vector is just enough information to allow this actor to send a
message to the actor denoted by the name.

In order to be precise about how an actor's vector of acquaintances may evolve over the course
of its local time, we must define the notion of a participant. A participant in an event E is either

the target of E, an acquaintance of the target13 , an actor mentioned in the message of E, or an actor
created in E.

An actor is given a finite initial vector of acquaintances when it is created. Every element of
this initial vector must be a participant of the actor's creation event. Intuitively, an actor can
initially know about no more than its parents, acquaintances of its parents, and its siblings. This
acquaintance vector may change as a result of the messages the actor receives; when an actor
receives a message, it may add to its acquaintance vector any name mentioned in the message (a
message may mention only finitely many names). Of course, it is also allowed to forget
acquaintances at any time. In the worst case (for storage), an actor could remember the names of
every actor it knew about when created, as well as every name it was ever told in a message.14

However, most actors remember very little of what they have been told. For example, a cell15

remembers only one acquaintance, and pure actors like the number "3" or the function "+", by
definition remember only their initial acquaintances.

As we have noted above, an actor at a given point in its local time is restricted in what other
actors it can send messages to. In particular, an event E may activate an event E' only if 1) the
target of E' is a participant of E; and 2) any actor mentioned in the message of E' must also be a
participant of E. Through these locality restrictions, we have ruled out "broadcasting" protocols in
which messages are sent to every actor in the system [1], because in a model with no global states
which allows the creation of new actors, the phrase "every actor" is not well-defined.

An analogy can be made between actor computations and the computations of programs in
block-structured languages like Algol and Simula [26]. The "free variables" of an Algol block are
analogues of actor acquaintances; calling a procedure and returning a value both correspond to
sending messages. The actor model is considerably more general, though, because actors may be sent
messages asynchronously, may be created during a computation, and may gain new acquaintances
and forget old ones.

111.2 Names, Paths, Ids
One may ask "in what form is this knowledge about other actors encoded?" In current

distributed systems, each component is given a unique name in some global name space. For
example, the PDP-l1 Unibus16 assigns a bus address to each component which other components on
the bus use to access it. However, as computer networks grow and meet, each with its own naming
conventions, the hope for such a global name space is doomed.

13: An acquaintance of an actor A is simply an actor B whose name is encoded in A's acquaintance
vector.
14: One can prove by actor induction that the number of acquaintances remains finite.
15: More will be said about cells later.
16: Unibus is a trademark of the Digital Equipment Corporation.
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Names for actors have at least two uses: sending the actor a message and determining whether
two names denote the same actor. To send an actor a message, one must only be able to compute a
path to it from the sending actor. Therefore, different actors may have different names for the
same target. To determine identity, however, one must be able to take two names, compare them in
some fashion, and determine whether the actors they denote are indeed the same actor. A naming
system which assigns to every actor a unique id, independent of context, we call a global id space. A
global id space has the properties that the id can be independent of any communication path and
identity checking is trivial because the id uniquely determines the actor.

We contend that using a global id space to implement message passing is awkward to manage
in a distributed system in which new actors are created and connectivity varies. This is because
global directories have to be continually updated to permit the conversion of ids to paths.

Therefore, we prefer local naming for denoting actors in distributed systems. A local name is
simply the encoding of a path from an actor to a target. Such a path need not be the only path to
the actor denoted; system reliability could be increased by allowing an actor to convert one path to
another, using its knowledge of system connectivity. Indeed, if paths are encoded as sequences of
elementary connections in the network, then subsequences which converge on the same component
are interchangeable. For some networks, one might even be able to define for each actor a
canonical path to each other component, thus allowing that actor to determine trivially whether two
paths converge on the same target. In general networks, however, one would like both unique ids
and paths; identity of the targets of two paths could then be determined by using the paths to
request and compare the unique ids of the actors they denote.

IV. CELLS
One of the simplest examples of an actor which depends on its arrival ordering for correct

behavior is the cell. The cell in actor theory is analogous to the program variable in modern
high-level programming languages in that it has a value which can be changed through assignment.
This value is encoded as the cell's single, changeable acquaintance which is initialized to the name
of some actor when the cell is created. A cell responds to two types of messages, "contents?" messages
and "store!" messages. When a cell receives a request [contents? reply-to: cl the cell sends the name
of its acquaintance to the actor c. When a cell receives a request [store! y reply-to: c], it memorizes
new contents by making y its new acquaintance, forgetting its previous acquaintance, and then
sending an acknowledge message to c.

IV.1 Busy Waiting and Fairness
Busy waiting is a synchronization mechanism used in some multiprocessing systems where the

only communication channel between processors is through shared memory. To synchronize two
processors with this method, one processor continually checks the contents of a shared cell for a
change'due to a store message from the other processor. When a change is detected by the first
processor, it is synchronized with the second. This kind of synchronization is used when the first
processor cannot depend on the second to "wake it up" when the second changes the cell's contents.
One problem with this method is that unless the arbiter in front of the cell is "fair", the messages
from one processor could be ignored and never be processed because the cell is flooded with
messages from the other processor. Much effort has gone into the problem of specifications for
fairness of the scheduling mechanism and elaborate algorithms for fair synchronization have been
developed (see biblio. in [31,S32).
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The actor model requires no such notion of scheduling or fairness to prove that such flooding
is impossible. Why? A complete actor computation has no undelivered (unreceived) messages
outstanding. Furthermore, the existence of a monotonic injection from the computation into IN
implies that between any two messages received by a cell, there are at most a finite number of other
messages received. Hence, between the first "contents?" messages received by the cell from the first
processor and the "store!" message from the second processor, there can be only a finite number of
other messages received. Therefore, if time is measured by the arrival of messages at the cell, the
first processor will eventually find that the contents of the cell have changed. However, the "length
of time" required to synchronize is not bounded by any computable function, so although busy
waiting works, it may not be a satisfactory synchronization method.

V. GOAL-DIRECTED ACTIVITIES
Since one of the goals of actor theory is to study patterns of passing messages, we must identify

several common message types. The two most common types of messages are requests and replies to
requests. A request message consists of two parts: the request itself, and the name of an actor which
is to receive the reply. A reply to a request consists of a message sent to the actor named in the
request for this purpose; this reply usually contains an answer to the request, but may contain a
complaint or excuse for why an answer is not forthcoming.

We define the goal-directed activity corresponding to a request event Eqin a computation to be
the set of events which follow Eq in the partial order but precede any reply ER to the request.
More formally, let "E--Ž" denote the set of events which follow E (including E itself) and "-->E"
denote the set of events which precede E (including E) in the computation. Then
activity(Eq) , (Eq-->) n u{--ŽERIER is reply to Eq). Activities embody the notion of "goal direction",
since we only include those events in an activity which contribute to a reply. Note that if no reply is
ever made to the request Eqin the computation, then the activity corresponding to Eq is vacuous,
since no event can contribute to a reply which does not occur.

If we let concurrent activities be those whose request events are concurrent, then concurrent
activities may overlap--i.e. share some events. However, this can only happen if the activities
involve some shared actor which is called upon by both; if two concurrent activities involve only
"pure" actors and pure actors are freely copied to avoid arbitration bottlenecks, then goal-directed
activities are properly nested, meaning that two activities are either disjoint, or one is a subset of the
other.

We say that an activity corresponding to a request is determinate if at most one reply occurs
regardless of the request, and non-determinate otherwise. Thus, determinate activities correspond to
our usual notion of the subcomputations needed for subroutines. In fact, many interesting actor
computations are activities; they start with a request and end with a reply. However, if no reply is
forthcoming, the activity is by definition empty even though the computation may be infinite.

The notion of activities allows one to vary the level of detail in using actors to model a real
system. Let us define a primitive event as a request which activates exactly one immediate reply,
with no events intervening. Thus, the activity corresponding to a primitive event always consists of
exactly two events. A crude model for a system might represent an actor as primitive, i.e. one whose
receipt events are all primitive. However, at a finer level of detail, one might model the internal
workings of the actor as an activity in which a group of "sub"-actors participate. Perhaps a suitable
theory of homomorphisms of computations which map activities into single events can be worked out.
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VI. CONCLUSIONS and FUTURE WORK
In creating a model for some real phenomenon, one must choose which features of the

phenomenon to emphasize and which to ignore. The actor model ignores the sending of messages
and concentrates instead on their arrival. The handling of messages upon their arrival is
considerably more interesting because of the non-determinacy involved. Our model also ignores
unreliabilities in the network--every message is eventually received--because we believe that this
issue is orthogonal and separable from our current concerns. The model ignores the issue of "real
time", i.e. time which can be measured, and concentrates only on the orderings of events. Thus,
though messages are eventually received, there is nothing in the theory which specifies an upper
bound on how long that might take. Finally, like all models, issues of representation are ignored in
favor of issues of behavior; i.e. the representation of actors and messages has been left somewhat
fuzzy.

We are currently working on a Scott-type fixed-point semantics [5,6,7] for actor systems in
which completed computations are fixed points of some continuous functional over a conditionally
complete semilattice. However, the elements of the lattice cannot be simply partial computations
because of the arbitrariness in the arrival sub-ordering due to arbitration. They must encode all the
different ways that this arbitrariness could have been resolved. Perhaps the work of Plotkin [37] or
Lehmann [38] on non-deterministic computations can be extended to solve this problem of actor
computations.

In a follow-on paper [39], we investigate very simple kinds of actors which use fork-join
parallelism to compute mathematical functions, and show how the laws presented here can be used
to prove that the objects computed by them are fixed points of continuous functionals in a complete
semilattice.
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