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Chapter 1

Introduction

Quadrature mirror filter (QMF) banks have been of great interest during the past

decade, ever since their introduction by Croisier, Esteban, and Galand [1],[2]. These

filters find applications where a discrete signal is to be split into a number of consecutive

bands in the frequency domain, so that each subband signal can be processed in an

independent manner. Typical processing includes undersampling the subband signals,

encoding them and transmitting over a channel, or merely storing the coded signals.

Eventually, at some point in the process, the subband signals should be recombined so

that the original signal is properly reconstructed. Typical applications of such signal-

splitting include subband coders for video signals [2],[3], digital transmultiplexers [4]

used in FDM/TDM conversion, and frequency domain speech-scramblers.

In this thesis we look at the QMF design problem purely as a signal-reconstruction

problem. The channel is therefore assumed to be noiseless, and the exact signal char-

acteristics are not given. We treat the QMF design problem as a multivariable opti-

mization over the filter coefficients. We further require all the filters to be linear phase

and FIR, with even number of taps.

In this thesis we present a new algorithm for designing quadrature mirror filters

in the time domain (called the jointly-optimal QMF design algorithm). Closed-form

solutions for the optimal filters can not be derived, however the optimal analysis filters
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for a given pair of synthesis filters can be analytically found as a solution to a system

of linear equations. The computation of the optimal analysis filters for a given pair of

synthesis filters is similarly possible. The joint optimization algorithm is an iterative

procedure that alternates between computing a pair of optimal analysis filters and

optimal synthesis filters, until the error reduction is negligible.

Using this algorithm, we would then design QMF banks in which one of the filters is

pre-described. Such a QMF bank can not be designed by the existing algorithms, since

they derive all the filters from the v-pass analysis filter. With these algorithms, fixing

one of the filters would completel ;termine the QMF bank and no optimization can

be done.

This thesis consists of five chapters. The first two chapters review the previous

work done in the area of QMF design. Chapter three presents the jointly-optimal

design algorithm in detail. Chapter four offers several design examples and compares

our algorithm to the previous QMF design algorithms. Finally in chapter five, we give

a short summary of the most important issues discussed in this thesis.

1.1 Decimators and Interpolators

The QMF bank is a rr :irate digital system. The term multirate signifies that the

sampling rate is not coastant throughout the system; there are decimators in the

system which down-sample a sequence, and there are interpolators which perform up-

sampling. Since decimators and interpolators are the building blocks of any multirate

digital system, let us briefly review their characteristics [11].

Decimators

A two-fold decimator is shown in Figure 1.1 [5]. Its input sequence is x(n), and the

output sequence y(n) is a compressed version of x(n). More specifically, the output

is obtained by retaining only those samples of x(n) which occur at times that are
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Figure 1.1: Two-fold decimator with a lowpass input.
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Figure 1.2: Two-fold decimator with a highpass input.
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multiples of two. The input-output relation of this two-fold decimator is y(n) = x(2n).

Note, that the decimator is a linear, time-varying device. Accordingly, it can not be

represented by a transfer function; although there are other methods to describe the

decimator in the frequency domain. For a two-fold decimator, the quantity X(ei/ 2) is

a stretched version of X(ej"). Since X(e "w/2 ) has a period of 47r rather than 2r, it is

not a valid transform of a sequence. It can be verified that Y(eij) in fact has two terms.

The first term is X(eJi / 2) , and the second term is X(e- i " / 2) which is a shifted version

of the first term (shifted by amount 2r). More formally, the input-output relation for

a two-fold decimator can be written in the frequency domain as

Y(ejw) = 0.5[X(ejw/ 2) + X(_ejw/ 2)] (1.1)

Note that Y(ejw) given as above does have a period of 27r. This is demonstrated in

Fig. 1.1(b),(c) where x(n) is assumed to be a lowpass signal. If the transform of x(n)

is not bandlimited to -r/2 < w < r/2, there is an overlap of the two terms in (1.1) as

shown by the shaded area in Fig. 1.1(c). This overlap is the aliasing effect, caused by

undersampling. There is no way we can get back the original signal x(n) from y(n),

once aliasing has taken place.

What happens if a highpass signal is decimated by a factor of two? Since it is not

bandlimited to -r/2 < w < r/2, the first impression is that there will be aliasing. Let

us refer to Fig. 1.2. Assuming the highpass signal to be bandlimited to r/2 < w <

3r/2, the decimator's output Y(eji) is as shown in Fig. 1.2(b). Thus, the decimated

version of the highpass signal looks like a lowpass signal. Notice that if a signal having

a lowpass spectrum as in Fig. 1.2(c) were decimated, we have would obtained precisely

the spectrum of Fig. 1.2(b); it is not possible to tell whether it came from Fig. 1.2(c)

or Fig. 1.2(a). However, as long as we have the additional information as to whether

x(n) is lowpass or highpass signal, we can reconstruct the signal x(n) from y(n).

In practice, before a signal is passed through a decimator, it is first bandlimited by

using a bandpass filter, to reduce the effects of aliasing. Such filters are called analysis

filters or pre-filters in the QMF terminology.

6
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Interpolators

A two-fold interpolator, schematically shown in Fig. 1.3, inserts a zero between adja-

cent samples of its input [5]. Its input-output relation is

y(n) =,( z(n/2) if n is even
O otherwise.

The effect of this stretching in the time domain is a compression in the frequency

domain, as demonstrated by Fig. 1.3(b). Since Y(ejw) has a replica (image) of the

basic prototype spectrum, the interpolator is said to cause an imaging effect (which

is the dual of the aliasing effect of a decimator). The frequency domain relation for a

two-fold interpolator is

Y(ejw) = X(e23j). (1.3)

It can be verified through simple examples, that an interpolator is also a linear, time-

varying system.

In practice, an interpolator is followed by a filter called the interpolation filter,

which eliminates the images in Fig. 1.3 so that the final result is a simple bandpass

signal (or lowpass signal if desired).

It is interesting to see what happens when a decimator and interpolator are cas-

caded, Fig. 1.4(a). The decimator causes stretching and aliasing, whereas the interpo-

lator causes compression, all in the frequency domain. The end result is shown in Fig.

1.4(c). If the spectrum of x(n) is bandlimited to -r/2 < w < r/2, then the output

of the cascade is an imaged version of its input with no stretching or compression.

A simple way to see that decimators and interpolators are time-varying systems is to

observe that if the decimator and the interpolator are interchanged, the result will be

an identity system; one which is obviously not equivalent to the original system. How-

ever, cascades of LTI systems can be interchanged without affecting the input-output

relation. Therefore, decimators and interpolators must be time-varying systems.

7
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Figure 1.5: Two-Channel QMF bank

1.2 Two-Channel Quadrature Mirror Filter Bank

The two-channel QMF bank, shown in Fig. 1.5, is one of the earliest and most com-
monly used filter bank structures [5]. The analysis bank is composed of a lowpass filter

rl and a highpass filter rl2, which split the input sequence (n) into two frequency
bands. The lowpass signal x 1(n) and the highpass signal 2(n) are then decimated
by a factor of two. The decimated signals are typically coded and transmitted. At
the the receiver, the signals are decoded, and passed through the interpolators. The
decimator-interpolator cascade causes aliasing and imaging as discussed in the previous
section; the purpose of the synthesis filters h and h2 is to eliminate these images. hi
is a lowpass filter so that the highpass image of the interpolated lowpass signal zl(n)
is suppressed. Similarly, h2(n) is a highpass filter so that the lowpass image of the
interpolated highpass signal 2(n) is eliminated. As a result, the signals ul(n) and
u 2(n) are good approximations to zl(n) and z2(n), and the reconstructed signal i(n)
hopefully resembles z(n) closely.

What makes the QMF problem nontrivial and interesting? To avoid aliasing (due
to decimation), the response of N(ejd) and N 2(ejw) must be disjoint. On the other
hand, to have no frequency range left out in the reconstructed output, the responses
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should be overlapping. The only obvious solution is to make the filter responses very
sharp (approximately the ideal brickwall response). But it is well known that sharp

filters require very high orders, are highly sensitive to quantization, and never exactly

produce the ideal desired frequency response. Furthermore, pictures resulting from
these filters have perceptually poor quality due to the ringing caused by these filters.

The philosophy adopted in the QMF bank to overcome this problem is to permit

aliasing at the output of the decimators, by designing overlapping analysis filters, and
then choosing the synthesis filters such that the imaging produced by the interpolators

cancels the aliasing. In fact exact cancellation of aliasing is possible with the correct
choice of filters.

Based on the relations developed previously for the two-fold decimators and inter-
polators, we can write

X(e jW) = [Ni(eJw)H(e jw) - N2 (eJw)H 2 (ew)]X(ew) +

[Ni(-ejw)H(ej) - N 2 (-ejw)H 2(ej)]X(-ejw). (1.4)

Due to the second term in (1.4), the term involving X(-ej"), we can not write down

an expression for X(eJ")/X(ejw) that is independent of X(ejw) itself. This is not

surprising, since the QMF bank is a time-varying system. The second term in (1.4)

represents the effects of aliasing and imaging. This term can be made to disappear

simply by choosing the synthesis filters to be

HI(ejw) = N 2(- eJ), H 2(ew) = Ni(-ejw). (1.5)

The time domain interpretation of (1.5) is that to eliminate aliasing completely we
should choose the synthesis filters such that

hl(n) = (-l)772(n), h 2(n) = (-1)%vl(n). (1.6)

Note that to eliminate aliasing completely, the number of degrees of freedom in
choosing the filters is reduced by a factor of two; choosing two filters would then

10
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completely specify the QMF bank. If complete elimination of aliasing is not necessary,

the designer can use these additional degrees of freedom to reduce some other unwanted

characteristic of the QMF bank.

Once aliasing is canceled by the above choice of filters, the QMF bank becomes a

linear,time-invariant system with transfer function

T(ew) = X(ew) - [N (eW)N2 (-ew) - N 2(ejW)N,(-ejw)]. (1.7)

Ideally, we would like T(ej') = e- j no so that the reconstructed signal is a delayed

version of x(n). Since T(n) in general is not a delay, it represents a distortion and is

called the overall transfer function.

To reduce the number of variables involved in the problem, most QMF designers

impose the additional constraint that synthesis filters and the analysis filters are the

same. Obviously this would reduce the degrees of freedom in choosing the filters by

another factor of two. These two constraints would then leave only one of the filters

free to be chosen; choosing any of the four filters completely specifies the QMF bank

in this case. These constraints lead to the structure shown in Fig. 1.6.
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Figure 1.6: Alias-free two-Channel QMF bank

Elimination of aliasing and making the analysis filters the same as the synthesis
filters would result in the following distortion function

T(ew) = N2(ejw) - Nj(j(Wf)). (1.8)

Assuming that NI(e j") is a linear phase filter, T(ei ' ) given by (1.8) clearly has linear
phase, and phase distortion is completely eliminated. By further assuming that rl(n)

has N,even, number of taps, we can rewrite (1.8) as

T(e j' ) = e'i(N)[N2(ew) + N (ej(w-')), (1.9)

where Nl,,(ejw) is the real-valued amplitude response of NI(eJW).

Now comes the bad news: if two linear-phase transfer functions H1 (e jw) and H 2(e j"w)

are such that IHI(ejw)12 + IH2(e"w)l 2 is constant for all w, HI(eiw) and H 2(ejw) must
be trivial transfer functions [5] with frequency responses of the form cos2(kw) and
sin 2(kw). In other words, for the above choice of filters, there does not exist a non-
trivial, linear-phase, FIR filter r7l(n) which makes the overall response of the QMF
bank distortionless. It is clear that the best we can do is to minimize the distortion in
the QMF bank, since we can never completely eliminate it.

12



Chapter 2

Previous Work

This chapter reviews two papers which we consider representative of the previous work

done in the area of quadrature mirror filter design. Both papers use optimization

techniques to minimize the difference between the input and the reconstructed output

in either the time domain or the frequency domain. Johnston uses a simple Hook

and Jeaves optimization algorithm to minimize the distortion in the frequency domain

[9]. On the other hand, Jain and Crochiere offer an iterative technique to minimize

the distortion in the time domain [8]. Both papers assume FIR linear-phase filters

with N, even, number of taps. They further assume that synthesis filters are the

same as the analysis filters, and the high band filters are the mirror image of the low

band filters. With these assumption, both techniques are guaranteed to have alias-free

reconstruction at the cost of reducing the degrees of freedom by a factor of four.

2.1 Johnston's Work

Basic Assumptions and Definitions

Figure 2.1 shows the two-band QMF bank used by Johnston [9]. Yl (n) is a linear-phase,

lowpass, FIR filter with N, even, number of taps. All other filters are derived from

13

I ·I _I 1�1�____ __II__·_�_� _·__·jl___� __I ----· -CI - -



TN:SMIT C RCVVP

0()

f fn f1

Figure 2.1: Two-channel QMF bank

rll(n) according to the following relations:

2(n) = (-1),,(n) n = O,...,N-1 (2.1)

h1(n)=i (n) n = O,...,N-1 (2.2)

h2(n) = (-l)nl(n) n = O,... , N - 1. (2.3)

The above relations guarantee that aliasing in the reconstructed output is completely
eliminated. In absence of aliasing, the QMF bank becomes an LTI system characterized
by its impulse response; that is,

:(n) = t(n)x(n). (2.4)

Optimization Criteria

Johnston's design algorithm minimizes a weighted sum of two errors, The first error

corresponds to the flatness of IT(ei')l, and is the determining factor in the accuracy of

the reconstructed output. Another consideration in the QMF design is the frequency

band separation of the filters. In subband coders, filtering is intended to split the

input signal into various frequency bands so that each one is processed independently.

14
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Therefore, the second error term is associated with the out of band rejection of the

filters. Johnston constructed a metric which combines these two errors into a single

scalar function of the filter taps.

The following scalar function is minimized by Johnston's design procedure

E = E, + aE,(wub). (2.5)

Corresponding to the flatness of the overall frequency response,

N-1
E, = [N2o(w'") + N,2a(ej(k - )) - 1]2, (2.6)

k=O

where N = 512 and wk = -Nk. The user can specify the stopband frequency W.b and

the stopband error weight a. Measuring the out of band rejection of the filters,

N/2

E, = E N1a(Wk), (2.7)

where N = 512, wk = k, and k,b = A EN. Johnston then used a simple optimization

routine to minimize E as a function of the filter taps r (n) n = O0..., N - 1.

Hooks and Jeaves Optimization Technique

Having chosen the objective function to be minimized, Johnston then used the Hooks

and Jeaves algorithm to carry out the optimization [9]. This algorithm requires a

subroutine that takes the search variables as its inputs and returns the value of the

objective function as its output [10]. Furthermore, it makes no assumption about the

objective function to be minimized, and does not require calculation of the gradient

of the objective function. This direct search method relies only on evaluating the

objective function at a sequence of points to find a local minimum of the objective

function.
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To illustrate this technique, we shall consider the problem of minimizing f(S). We

choose an initial base point b and step length hi for the respective variables zj. The

quantities

If(b + hjej) - bi (2.8)

are the magnitudes of the changes in f(b 1) due to change of one step length in each

variable, where ej is the unit vector in the direction of zj. After f(b) has been

evaluated, the method proceeds by a sequence of exploratory and pattern moves. If

an exploratory move leads to a decrease in the value of f(s), it is called a success;

otherwise, it is called a failure. A pattern move is not tested for success or failure.

Exploratory Moves

The purpose of an exploratory move is to acquire information about f(xz) in the neigh-

borhood of the current base point. The procedure for an exploratory move about the

base point b is as follows:

1. Evaluate f (bl + h'le). If the move from b1 to [b1 + hle1 ] is a success, replace the

base point b by [b, + hle1 ]. If it is a failure, evaluate f(b, - he1 ). If this is a

success, replace b by [b - he 1]. If it is another failure, retain the original base

point b1.

2. Repeat step (1) for the variable X2 by considering variations ±h 2e 2 from the point

which results from step (1). Apply this procedure to each variable in turn.

3. If b2 = b1, halve each of the step lengths hi and return to step (1). If b2 # bl,

make a pattern move from b.

Pattern Moves and Subsequent Moves

A pattern move attempts to speed up the search by using the information already

acquired about f(s) by the exploratory moves. It is invariably followed by a sequence

16
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of exploratory moves, with a view to find an improved direction of search in which

to make another pattern move. We shall denote by -1, ,.-. the points reached by

successive pattern moves. It seems sensible to move from b2 in the direction [b2 - ],

since a move in this direction has lead to a decrease in the value of f(s). The procedure

for a pattern move from b2 is therefore as follows:

1. Move from b2 to 1T1 = [2b 2 - b1] and continue with a new sequence of exploratory

moves about -.P

2. If the lowest function value obtained during the pattern and exploratory moves is

less than f(b2 ), then a new base point has been reached. In this case, return to

exploratory moves. Otherwise, abandon the pattern move from b2 and continue

with a new sequence of exploratory moves about b2.

2.2 Critique of Johnston's Work

The two error terms defined by Johnston are merely approximations. The exact ex-

pression for E,, the reconstruction error, is

E, = =0 [N2.(w)- N 2.(W - 7r)- 1]2dw. (2.9)

The expression used by Johnston approximates the above integral by a sum. Similarly,

the exact expression for E,, the stopband error, is

E. = NJ2,(w)dw. (2.10)

To closely approximate the integrals in (2.9) and (2.10), the sums must be taken

over a large number of terms. However, summing over a large number of terms in each

iteration makes the algorithm very slow to execute.

Johnston's method reduces the degrees of freedom in choosing the filters by a factor

of four to eliminate aliasing; however, it was shown in the chapter 1 that a reduction by
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a factor of two is sufficient to do this. These additional degrees of freedom can be used
to achieve the same performance with fewer filter taps, or to achieve better performance
with the same number of filter taps. A more flexible design algorithm would allow the
designer to trade off the aliasing error against other errors, by removing the constraint
that aliasing must be completely eliminated.

Short filters obtained by Johnston have very poor performance. The reconstruction
error, as measured by the ripple in the overall frequency response, is quite large for
these filters. Moreover, these filters offer very little frequency band separation. Short

filters are necessary where time localization is important, such as in image processing.
The large reconstruction error and stopband error of these filters make them useless
for such applications.

There are several problems associated with using the Hooks and Jeaves optimization
routine. The starting point of the search and the initial step size used are critical to
the success of this routine. A starting point that is too good may not minimize well,
because it will get trapped in a local minimum. If the step size is initially set large
enough to avoid these local minima, it is usually so large that the search will not find
any better minima and terminate. Like all other direct-search algorithms, this one
does not guarantee termination at the global minimum. Manual intervention in form
of different starting points and increments is essential, and so is careful observation of
the rum-time output results.

18
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2.3 Jain and Crochiere's Work

Jain and Crochiere formulated the QMF design problem in the time domain, and

showed that it results in an optimization problem requiring minimization of a quadratic

multinomial [8]. They suggested an iterative solution which involves computation of
eigenvectors of a matrix with dimensionality equal to one half of the number of filter

taps in each iteration. In each iteration, the optimal synthesis filters for a given pair of

analysis filters are found. The authors further claim that this technique converges to

the solution independent of the initial guess. As in Johnston's technique, the user can

specify the stopband edge frequency,the relative weights of the reconstruction error and

the stopband error, and the number of filter taps. A weighted sum of the reconstruction

error and the stopband error is then minimized using the iterative technique mentioned

above.

Basic Assumptions and Definitions

Figure 2.2 shows the QMF bank used by Jain and Crochiere [8]. To obtain the aliasing

cancellation property in the QMF bank, filters h and h2 are respectively symmetrical

19
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and antisymmetrical with N,even, number of taps. The symmetry and antisymmetry

properties imply that

hl(n) = hl(N - -n) n = O,..., v 1 (2.11)

h 2(n) = -h 2(N- 1 - n) n = ,..., - 1 (2.12)

The aliasing cancellation further requires that the filters in Fig. 2.2 satisfy the

following condition

h 2(n) = (-l)nhl(n) n = 0,...,N- 1, (2.13)

which is the mirror image relationship of the filters. With the above constraints, the

aliasing cancellation property of the QMF bank is guaranteed, and the QMF bank

becomes an LTI system (characterized by an impulse response).

Time Domain Analysis of the QMF Bank

To carry out the design, it is necessary to find the input-output relation of the QMF

bank in the time domain. The reconstructed signal :(n) is obtained as the difference

ul(n) - u 2(n) which can be written as

:(n) = (n) + i(n), (2.14)

where

N-1 N-I

i(n) = (-1)" E a h(i)h(k)(n- - i)[(-1)k - (-1)'] (2.15)
i=O k=O

N-i N-i

2(n) = a a h(i)h(k)x(n - k - i)[1 - (-1)i+']. (2.16)
i=0 k=0

Note that for simplicity of notation we have let h(n) = hl(n). Now, we observe that

:(n) 0. This is so because whenever i = k, the quantity within the summation sign

20



is zero, and for i # k the quantity within the summation sign is exactly the negative

of that obtained for the transposed indexes. On the other hand, it can be shown that

2N-2 N-1

i(n) = E a h(k)h(m - k)[1 - (-l)m]x(n - m) (2.17)
mn-O k=O
2N-2

= g(m)z(n - m), (2.18)
m=O

where
N-1

g(m) = 11 - (-1)"] E h(k)h(m - k). (2.19)
k=0

Then, it is clear that g(m) is the impulse response of the QMF bank. Note that

i(n) O0 is the time domain requirement for alias-free reconstruction.

Optimization Criteria

This design algorithm minimizes a weighted sum of reconstruction error and the stop-

band error. In absence of aliasing, a necessary and sufficient condition on for perfect

reconstruction is that g(n) be a delta function . From (2.19) we see that g(N - 1)

equals the energy of the filter taps (and thus cannot be be zero). Therefore, we require

that g(n) = 6[n - N + 1]. This condition can be restated in two parts:

2N-2

E, = g 2(k) (2.20)
k=O,k#*N-1

g(N-1) = 1 (2.21)

Another consideration in the QMF design is the out-of-band rejection of the the

analysis filters. In subband coders, filtering is intended to split the input signal into

various frequency bands for independent processing. Eb, the stopband energy error,

is defined as

Eb= IH(W)12
dw, (2.22)
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where H(ej*) is the Fourier transform of h(n). Substituting the definition of the Fourier

transform in (2.22) we get

1 M-1 M-1
E.b = ] £]O 2h(i)h(k). [cs(i-k)w + cos(i + k - N + 1)w]dw (2.23)

i=0 k= - Bb

This is a quadratic form and can be more elegantly written using vector matrix notation

as

Eb = 2t5TFw-, (2.24)

where w(n) = h(2n) n = O,...,n = M -1, and the i,k entry of the M x M matrix

F is

(i,k) 1 r - -web ik 1 -w i+k= N - 1 (2.25)
f. () ain(i-k)w,. , sin(i+k-N+)W +

(i-k) i k (i+k-N+l)b i + k - 1

Note that for a specific stopband frequency wab, the matrix F can be pre-computed

and used throughout the iteration process. The design problem can now be posed as:

minimize E,

E = E, + aE&, (2.26)

subject to the constraint that

VTW` =1 (2.27)
2'

where E, is the reconstruction error, and Eb is the stopband error. The user can

specify the stopband edge web, the weight-factor a, and of course the number of filter

taps N.

Optimization Technique

Having chosen the objective function to be minimized, Jain and Crochiere developed

an iterative algorithm to carry out the optimization. Closed-form solutions for all four

optimal filters cannot be derived; however, the optimal synthesis filters for a given pair
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Figure 2.3: Two-channel QMF bank used by Jain and Crochiere

of analysis filters can be analytically found and vice versa. Therefore, their algorithm
is an iterative procedure that first finds the optimal synthesis filters for a given pair of
analysis filters and then replaces the old analysis filters by these newly found synthesis
filters and proceeds to find another set of optimal synthesis filters. This procedure is
repeated until the error is below a certain threshold.

The Optimum Synthesis Filters

To develop an iterative algorithm, it is reasonable to approximate the system of Fig.
2.2 by that of Fig. 2.3. Notice that in Fig. 2.2 the analysis and synthesis filters
are the same, but in Fig. 2.3 they are not. In Fig. 2.3, we have used the filters

nl(n) = l(n) and 712(n) = (-1)"7(n) in the analysis bank. Similarly in the synthesis

bank, h(n) = h(n) and h 2(n) = (-l)nh(n). It is very important to keep in mind that
h(n) is yet to be determined.

Next, we need to express E, and En in terms of the unknown filters taps h(n) n =

O,..., NV - 1. Ignoring aliasing, the impulse response of the filter bank of Fig. 2.3 is

g(n) = 0' if n is even. (2.28)
g{'- ro ~ (n - k)h(k) if n is odd .
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Indeed, it can be shown that

M-1

g(2n - 1) = j a(n,k)w(k), (2.29)
k=o

where M = N and2'

a(n, k) = u(n- 1 - k)7(n - k) + u(n + k- M)#(n + k- M). (2.30)

Here, u(.) denotes the unit step sequence, and the following M-length sequences are

derived from the fixed analysis filters:

Y(n) = r1(2n) n = 0,...,M-1 (2.31)

f(n) = r(2n+l) n=0,...,M-1 (2.32)

wt(n) = h(2n) n = 0,...,/M-1. (2.33)

As expected from the setup of Fig. 2.3, the impulse response g(n) is linear in the

unknowns wt(n) n = 0,..., M - 1. We can now compute E,,the reconstruction error,

as
2N-1

E, = g92(k) (2.34)
k=O,k$N-1

M-1

= 2 E g 2(2k-1) (2.35)
k=l

M-1 M-1 M-1

= 2 v t (i)a(n,k)wt(k) (2.36)
n=O =0 k=0

2twTA, (2.37)

where the i, k entry of the M x M matrix A is M-1o a(n, i)a(n, k). Recall that a(n, k)

was defined in (2.30), and M = N2. On the other hand, since

N-1

g(N- 1) = ~ h 2(n) (2.38)
n=O

= 2wTW ' (2.39)
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the constraint of (2.21) can be rewritten as

-Ta 1
2

Next, we need to calculate
already done in (2.12);that is,

Eb, the stopband error, in terms of h(n). This was

E.b = 2wTFw,, (2.41)

where the i, k entry of the M x M matrix F is

i, k = 1 {r - W,
(i-k)=b

The problem of finding
the approximate system of
minimizes

i = k 1 7 - Wb + k=N- 1
ifk f . (+k-N+1).b i+kN-1 li 3 k I (,+-N+l) i + k -N-+1

the optimum synthesis filters can now be posed
Fig. 2.3) as follows: find wt(n) n = 0,..., M - 1

E = E, + E,b

= 2 TAw + 2T cTaFwt

= 2 T (A + aF)Wt

(2.43)

(2.44)

(2.45)

subject to the constraint
t*T - 1W w=-

2
(2.46)

The solution to this type of problem, by using a Lagrange multiplier, is well known.

This solution is given by the eigenvector of (A + aF) corresponding to its minimum

eigenvalue Am,,, where the length is constrained to be 1. Also it can be shown that

the minimum value of (E, + aEb) equals Amn,.
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Figure 2.4: Iterative solution of the filter taps optimization.

Iteration Cycle

The iteration process is depicted in Fig. 2.4 [8]. Recall that the following M-length

sequences are derived from the fixed analysis filters:

y(n) = (2n) n=O,...,M-1 (2.47)

$(n) = tl(2n+ 1) n=O,...,M-1. (2.48)

Starting with a given pair of analysis filters i(n) and (-l)n7r(n), the optimization

procedure aims at finding a pair of synthesis filters h(n) and (-1)nh(n) which minimizes

the error measure E, but no constraints are imposed for aliasing cancellation. In the

next iteration, the old analysis filters are replaced by these newly found synthesis filters,

and again an optimum pair of synthesis filters is found. Continuing this procedure, we

hope that in the limit of convergence the analysis and synthesis filters are equal, and

therefore aliasing is automatically canceled.
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2.4 Critique of Jain and Crochiere's Work

There are two problems with the Jain and Crochiere's approach.Recall that aliasing and

non-flat frequency response are the two sources of distortion in the QMF bank. Jain

and Crochiere's algorithm only minimizes the reconstruction error in each iteration.

The implicit assumption made is that minimizing the reconstruction error would result

in filters which guarantee alias-free reconstruction. This assumption is not obviously

valid, and no justification for it is given by Jain and Crochiere. A more intelligent

algorithm would introduce another error term corresponding to aliasing and would

minimize it in each iteration as well.

To circumvent the above problem with aliasing cancellation, Jain and Crochiere

simply make the final analysis filters the same as the synthesis filters obtained in the

last iteration. But, the resulting QMF bank is then not guaranteed to have the same

distortion as the QMF bank obtained in the last iteration. Moreover, such elimination

of aliasing reduces the degrees of freedom in choosing the filters by a factor of four.

But it was shown in chapter 1 that a reduction by a factor of two is sufficient to achieve

alias-free reconstruction. A more flexible algorithm would allow the designer to trade

off the aliasing error against other errors, by removing the constraint that aliasing must

be completely eliminated.
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Chapter 3

Jointly-Optimal Analysis and

Synthesis QMF Design

The design of jointly-optimal FIR analysis and synthesis QMF filters is the main focus

of this chapter, with the distortion measure to be minimized being a weighted mean-

square difference between the input and the reconstructed output. Unlike other design

techniques, this algorithm assumes no relationship between the four filters, therefore

it has more degrees of freedom in choosing the filter coefficients. The input signal to

the QMF bank is a discrete-time signal, and the channel is assumed to be noiseless.

All filters are FIR with even number of taps. Furthermore, the two lowpass filters are

symmetric, and the two highpass filters are antisymmetric.

Closed-form solutions for the optimal filters cannot be derived; however, the op-

timal analysis filters for a given pair of synthesis filters can be analytically found as

a solution to a system of linear equations whose coefficients are easily determined.

The computation of the optimal analysis filters for a given pair of synthesis filters is

similarly possible. The joint optimization algorithm is an iterative procedure that al-

ternates between computing a pair of optimal analysis filters and optimal synthesis

filters, until the error reduction is negligible.
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Figure 3.1: Two-channel QMF bank used for the jointly-optimal design.

The optimization problem is formulated as a minimization of a scalar function of
filter coefficients /l (n), r?2(n), h(n), and h2(n), but it is virtually impossible to analyze
such issues as convexity and convergence since the error is a quartic form. However, if
we fix the analysis (synthesis) filter coefficients, then the error is a quadratic form on
the synthesis (analysis) filter coefficients, which is much easier to study. Thus, we shall
follow the following route toward derivation of the jointly-optimal filters: obtaining
first independent solutions for analysis and synthesis filters, and then combining them
in an iterative procedure that computes the jointly-optimal filters.

This chapter consists of four sections. The analysis of the QMF bank in the time
domain is discussed in the first section. Derivation of the optimal analysis filters for
a given pair of synthesis filters is presented in the second section. Derivation of the
optimal synthesis filters for a given pair of analysis filters is discussed in the third
section. Finally, the joint optimization of the analysis and synthesis filters is presented
in the fourth section, combining the results of the previous sections.
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3.1 Time Domain Analysis of the QMF Bank

We shall consider the system depicted in Fig. 3.1. The filters 1l, 1i2, hl, and h2 are FIR

with N,even, number of taps. The symmetry and antisymmetry properties imply the

followings:

,1l(n) = l,(N-- 1 n) n = O,..., N (3.1)

hl(n) = hi(N-1-n) n=O,...,N (3.2)

2(n) = -7- 2(N- 1 - n) n=O,...,N (3.3)

h2 (n) = -h 2 (N - 1 - n) n= 0,...,N. (3.4)

Deriving an input-output relation is the first step in analyzing the QMF bank.

From the lower branch of the QMF bank in Fig. 3.1, we can write

N-1

xi(n) = C Tl(i)x(n - i) (3.5)
i=o

N-1

pl(n) = 0.5 C r1 (i)x(n - i)[1 + (-1)n] (3.6)
i=o
N-1 N-1

ul(n) = 0.5 F r7(i)hl(k)x(n - i - k)[1 - (- 1)"L]. (3.7)
i=O k=0

Similarly, from the upper branch we obtain an expression for u2(n) except that n is

replaced by n2, and h is replaced by h2 in (3.7) ,that is,

N-1 N-1

u 2(n) = 0.5 E E 12 (i)h2(k)x(n - i - k)[1 - (-1)n"-k]. (3.8)
i=O =O

Then, the reconstructed signal i(n) is obtained as the difference 2[ul (n) - u2(n)] which

can-be written as a sum of two terms:

i(n) = (n) + *(n), (3.9)
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where
2N-2 N-1 N-1

(n) = j ' h(k)v(m - k)- h2(k)rm2(m- zh(n--m)
m=O =0 k=O

2N-2

i(n) = -(-l)" 
.m=O

(3.10)

N-1 N-1

( (-1)khl(k)nl(m -k) - (-l)'h2(k)r2(m-k) x(n - m).

(3.11)

Much insight can be gained by making the following substitutions in (3.10) and

(3.11)

= (-1)khl(k)

= (-1)kh 2 (k)
N-1

= Z hl(k)l,(m
k=o
N-1

= h;(k).l(m
k=o0

N-1

= Z h2 (k) 2 (m
k=0

N-1

= ~ h' (k).2(m
k=o0

-k) m = 0,...,2N-2

-k) m = 0,...,2N-2

-k) m=0,...,2N-2

-k) m = 0,...,2N- 2.

By substituting (3.12)-(3.17) in (3.10) and (3.11), we can rewrite the expressions

for (n) and (n) in the following way:

i(n)

i(n)

2N-2

= E [91(m)-92(m)]z(n-m)
M=O

2N-2

= (-1)" E [g(m)- g(m)]z(n - m).
m=O

(3.18)

(3.19)

By substituting (3.18) and (3.19) in (3.9), we can also rewrite the reconstructed output

as
2N-2 2N-2

i(n) = E [g(m) - 92(m)]z(n - m) - (-1)" , [gL(m) - g(m)]x(n - m).
m=O m--=O

(3.20)
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hi(k)

h;(k)

gl(m)

gl(m)

92(m)

92(m)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
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Expression (3.20) is the desired input-output relation which expresses the output signal

,(n), in terms of the input signal, x(n), and the filter coefficients.

The second term in (3.20), containing (-1)", is the aliased component of the recon-

structed signal. If this term was equal to zero for all n, the reconstructed signal would

be given by 2N -2[g(m) -g 2(m)](n - m). In this case, &(n) is simply the result of

convolving the input signal with an impulse response equal to [gl(m) - g2(m)]. Being

an output of an LTI system, the reconstructed signal i(n) is obviously alias-free in this

case.

3.2 Errors to be Minimized

There are four error terms that are minimized by the optimization technique presented

in this chapter. Assuming that aliasing is eliminated, the first error term, el, measures

the flatness of the frequency response of the QMF bank. The second error term, e2,

measures the degree of aliasing in the reconstructed output. The third error term, e3,

corresponds to the frequency band separation of the analysis filters; in other words, it

measures the energy compaction of the filters in the frequency domain. The last error

term, e4, corresponds to the flatness of the frequency response of the individual filters

in their passbands.

As mentioned before, it is desirable to make the first term in (3.20) equal to a unit

impulse at n = N - 1; that is,

n=N-1
[gl(n)- 92(n)] = 0 otherwise. (3.21)

This would in turn result in a flat frequency response in the absence of aliasing. We

can guarantee that g(N - 1) - g2(N - 1) = 1 is always satisfied, by repharsing this

optimization problem as a constrained optimization. In other words, the problem is now

to minimize the reconstruction error under the constraint that gl(N-1)-g 2(N-1) = 1.
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The expression for el in this case is

2N-2

el = ' [g(n) - 92(n)]2. (3.22)
n-O,n$N-l

As mentioned before, aliasing is eliminated whenever the second term in (3.20)
equals zero. Therefore, it is reasonable to set e2 equal to the energy of this term, that
is,

2N-2

e2 = E [g(n) - g(n)]2 . (3.23)
n=O

The third error term, e3, corresponds to the frequency band separation of the filters.
More specifically, it is desirable to make l(n) a lowpass filter and rl2(n) a highpass

filter with each having as little stopband energy as possible. Therefore, a reasonable
expression for this error term is:

2 1 a,.,2 i _i2
e3 = IN(ew)l dw + - N 2(eJw) dw, (3.24)

T' ,Wbt r JO

where N,(e jw) and N 2(ejw) are the Fourier transforms of rl (n) and r72(n) respectively.
The designer can specify the lowpass stopband edge wMbl, and the highpass stopband
edge w,b2. Note, if the analysis filters are designed so that they have good frequency
band separations, the corresponding synthesis filters will also have good band sep-
aration as long as the reconstruction error is small. Hence, this error term is only
considered for the analysis filters and not for the synthesis filters.

The last error term, e4, corresponds to the passband ripple of the synthesis filters.
As in any other filter design problem, it is desirable to have filters that have as little
passband distortion as possible. For example, one would like the magnitude of the fre-
quency response of hl(n) to equal one in the frequency range 0 < w < w.bl. Therefore,
a reasonable expression for e4 is:

e -- | -[IH(e ) - 1]2dw + - [H 2(e"w)l- 1]2dw. (3.25)
X o Or @,1I
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Note, if the above synthesis filters are designed so that they have little passband ripple,

the corresponding analysis filters will also have little passband ripple as long as the

reconstruction error is small. Hence, this error term is only considered for the synthesis

filters and not for the analysis filters.

3.3 Optimum Synthesis Filters

This section is devoted to the design of the optimum synthesis filters for a given pair of

analysis filters. The optimum synthesis filters are obtained as the solution of a system

of linear equations whose coefficients are determined from the known analysis filters.

The dimension of the optimization problem can be halved due to the symmetry

of the filters, since only coefficients are needed to completely specify an Nth-order,

symmetric, FIR filter. For convenience, we define M = ~ and the following M-length

sequences which are to be determined as to minimize the errors defined in the last

section:

wi(n) = hl(2n) n = O,...,M-1 (3.26)

w 2 (n) = h 2(2n) n = O,...,M- 1 (3.27)

vl(n) = hl(2n + 1) n = O,...,M-1 (3.28)

v2 (n) = h2 (2n + 1) n=O,...,M- 1. (3.29)

We will also make use of the following M-length sequences which are derived from the

known analysis filters and are fixed throughout this section:

fl(n) = rtl(2n) n = O,...,M- 1 (3.30)

2(n) = 12(2n) n = O,...,M-1 (3.31)

7,(n) = vl(2n + 1) n = O,...,M- 1 (3.32)

72(n) = rt2(2n + 1) n = O,...,M-1. (3.33)
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Note that vi(n) = wl(M-l-n), v 2(n) = -w 2(M-l-rn), 71(n) = Bf(M-1-n), and

72(n) = -2(M-1-n). These relations hold because every filter is either symmetric or
antisymmetric. Note that each of these - length sequences contains all the necessary

information to completely determine the N-length filter corresponding to it.

To carry out the optimization over the -length vectors 'ul and t 2, it is neces-

sary to express the relevant errors in terms of these two vectors. Since these errors

are already expressed in terms of gl(n), g(n), g2(n) and g(n) we need to rewrite

g1(n), g(n), g2(n) and g2(n) in terms of the these two vectors. It is easier to derive

two separate expressions for each of these sequences depending on whether index n is

even or odd. The following expressions can be easily derived by simple substitution of

(3.26)-(3.33) in (3.12)-(3.17):

g9(2n - 1) = Cl(n, k) * w (k),
where

(3.34)
Cl(n, k) = ly(n - 1 - k)u(n - 1 - k) + 3(n + k - M)u(k - M + n)

n = 1,...,N- 1 and k = O,...,M- 1.

92(2n) = B,(n, k) * w (k),
where

(3.35)
BI(n, k) = (n - m + k)u(k - M + n) + (n - k)u(n - k)

n = O,...,N-1 andk = O,...,M- 1.

9g(2n - 1) = Di(n, k) * w(k),

where
(3.36)

Di(n, k) = y(n - 1 - k)u(n - 1 - k)- (n + k- M)u(k- M + n)

n = 1,..., N- 1 and k = O,..., M- 1.
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g9(2n) = El(n, k)* w (k),

where,

E(n, k) = - (n- M + k)u(k - M + n + 1) + (n - k)u(n - k)

n = O,...,N- land k = O,...,M- 1.

g2(2n - 1) = C 2(n, k) * t 2 (k)

where,

C 2 (n, k) = 7 2 (n - k - 1)u(n - 1 - k) + 2 (n - M + k)u(k- M + n)

n = 1,...,N- 1 and k = 0,...,M- 1.

92(2n) = B 2(n, k) * tW2(k)

where,

B 2 (n, k) = - 2 (n - M + k)u(k- M + n + 1) + B2(n - k)u(n - k)

n = 0,..., N- 1 and k = 0,..., M - 1.

g9(2n - 1) = D 2(n, k) * ti(k)

where,
(3.40)

D 2(n, k) = 2(n - k - 1)u(k - M + n + 1) + 2(n - k)u(n - k)

n= 1,,N-and = ,...,N-and ,...,M- 1.

g9(2n) = E 2(n, k) * wt2(k)

where,

E 2(n, k) = ' 2 (n - M + k)u(k - M + n + 1) + $ 2(n - k)u(n - k)

n = O,...,N- 1 and k = O,...,M- 1.

Having obtained the above expressions for g(n), g(n), g2 (n), and g(n), we can

easily express the relevant errors in terms of the unknown vectors wt1 and 2 . The three
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error terms used in finding the optimum synthesis filters are the ones which correspond

to perfect reconstruction, el, aliasing, e2, and passband ripple, e4.

The first error term, corresponding to the flatness of the frequency response in the

absence of aliasing, can be broken into an even and odd part as:

N-1 N-1

el = E (gl(2n- 1) -g 2 (2n- 1)- 6[2n- 1])2 + E (g 1(2n)- g92(2n) - 6[2n]) 2 . (3.42)
n=l n=O

Letting b0(n) = 6[2n - 1] n = 1,..., N - 1 and (n) = (2n) n = ,..., N-1, we

can rewrite (3.42) in matrix format as:

el = (CtWI 1- C 2 - )T(Cti 1 - C 2 2 - 6 )+(BiWti - B 2t 2 - )T(BiWi - B 2W2 - 6),

(3.43)
where matrices C 1, C 2, B, and B 2 are known and defined in (3.34), (3.38), (3.36),

and (3.39) respectively.

The second error term, corresponding to aliasing, can be similarly expressed in

matrix format as :

e2 = (Di - D2i 2 )T(DWi - D 2 2 ) + (Et-I - E2 2 )T(ElW - E22) (3.44)

where D 1, D 2, E 1, and E2 are defined in (3.36), (3.40), (3.37), and (3.41) respectively.

The last error term to be considered here is e 4, corresponding to the passband ripple

of the synthesis filters. With a bit of algebra, we can write this error term in matrix

format as

e4 = 2TGW' I + 2 + + 2w2 G2 w2 + 2w2Tqs, (3.45)

where the i, k entries of the M x M matrices G1 and G2 are :

91(i, k) = wbwl i = k i + k N- 1
r- = ikn(i-k)wb. i k (+kN+)W i + N -N+

-- (i-k) i~- (i+k-N+1)
(3.46)
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1 7r - W,,2(- i= I 1 wb 2 -ir i+k=N- 1
92s in(i- k)w,b2 - sin(i+k-N+l)wb 2 i+k N-i

(i-k) i#k ' (i+k-N+1) k N-1
(3.47)

The elements of the M x 1 vectors q and q2 are

2 sin(i - N)w l _ 2 cos( N-l _ i)W2
j(i) = (i- 2 q2(i) = 2t- (3.48)

In short, the problem of finding the optimum pair of synthesis filters for a given
pair of analysis filters reduces to finding wl and t- 2 which minimize

e = el + e 2 + e 4 (3.49)

- (C,,I - C2W2 - 6)T(Clt - 2 t2 - g) + (BIWI - B2tW,2 - )T(B,1 1 - B 2W2 - 4e) +

(Dlw - D 2 22 )T(D1lw - D2t 2) + (Elt - E 2w 2)T(Ell - E2 ti 2 ) +

T +G2,2 + G + - (3.50)W52 TQG2W2+ + t52 lTUI + t

subject to the constraint that

T~-.- 11 + 2T2) = (3.51)

By introducing a Lagrange multiplier, A, we can easily transform this constrained
optimization problem into an equivalent unconstrained optimization. More specifically,

the problem can be restated as finding twl, w2, and A which minimize

= e + A[ TB1 + tT2 -2] (3.52)

where e is defined in (3.49). Due to the quadratic nature of each term involved in ,
the resulting optimization problem is a least-square one. With the mild assumption

that each matrix involved has linearly independent columns, the existence of a unique

solution which minimizes is guaranteed [12].
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The necessary conditions for wi, w2, and A to minimize e are: 0 = O, --~ = ,

and 0. = . These conditions lead respectively to the following set of simultaneous

linear equations:

= , + (BT1 + CTC + DTD1 + ETE + Gl)w1 -

A

(BTB2 + CTC2 + DTD2 + ETE2 )W 2 - (CT6 + BT q) (3.53)

B c

0 A#XP2-(BTB1 + C2TCj + D2D1 + E2 Yl)l +

D

(BTB 2 + C2TC2 + DD 2 + ETE 2 + G 2)w 2 + (C + B + (3.54)

E i

2 - Tl + WT2. 2 (3.55)

With a bit of algebra, it can be easily shown that the solutions to the above set of

equations are

A 2 (A + ArT) (3.56)

Wt = +AI (3.57)

W2 = m,+An, (3.58)

(3.59)

where

k = (A - BE-'D)-'(BE-f - c) (3.60)

r = (A - BE-'D)-'(BE-' (3.61)

mi = (B - AD-'E)-'(AD-'f- (3.62)

n = (B- AD-'D)-'(AD-'1 2 - ). (3.63)
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Note that (3.57)-(3.58) determine wl and W2 which in turn completely specify the

optimum synthesis filters, hi(n) and h 2(n), according to the following relations:

hi(n) i 1 2 fnsvn(3.64)
t i (M - ) f n is odd

h2(n)- fW 2() if n is even3.65)
-w 2(M - +.) if n is odd.

This concludes the design of optimum synthesis filters for a given pair of analysis

filters. The important observation from this section is that it is possible to obtain

optimal synthesis filters for a given pair of analysis filters as the solution to a system

of linear equations whose coefficients can be easily determined from the given analysis

filters.

3.4 Optimum Analysis Filters

In this section we assume that the synthesis filters are fixed. Similar to the last section,

the optimum analysis filters are obtained as the solution to a system of linear equations

whose coefficients are determined from the known synthesis filters. The only conceptual

difference between this section and the previous one is that the objective function to

be minimized here has an additional term that corresponds to the frequency band

separation of the analysis filters.

For convenience of notation and reduction of the optimization order, we define M =

N and the following M-length sequences which are to be determined as to minimize

the error measure:

wl(n) = 1(2n) n = O,...,M-1 (3.66)

w 2(n) = /2(2n) n = O,..., M- 1 (3.67)

vl(n) = (2n + 1) n= O,...,M-1 (3.68)

v2(n) = /2(2n + 1) n = O,...,M- 1. (3.69)
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We will also make use of the following M-length sequences which are derived from

the known synthesis filters and are fixed throughout this section:

1(n) = hl(2n) n = 0,...,M- 1 (3.70)

2(n) = h2(2n) n = O,...,M-1 (3.71)

1l(n) = hl(2n + 1) n=0,...,M-1 (3.72)

2(n) = h 2(2n + 1) n=O,...,M-1. (3.73)

Note that vl(n) = wl(M- 1 - n), v2 (n) = -2(M- 1 - n), l1(n) = 1l(M-

1 - n), and 72(n) = - 2(M - 1 - n) . These relations hold because every filter is

either symmetric or antisymmetric. Each of these -}-length sequences contains all the

necessary information to completely determine the N-tap filter corresponding to it.

To carry out the optimization over the N-length vectors twl and t 2, we need

to express the relevant errors in terms of these two vectors. Since all these errors

are already expressed in terms of gl(n), g(n), 2 (n) and g(n), we need to express

g1 (n), g(n), g2(n) and g(n) in terms of these two vectors. It is easier to derive two

separate expressions for each of these sequences depending on weather index n is even

or odd. By simple substitution of variables, the following expressions can be derived

from (3.14)-(3.17):

g1(2n - 1) = Cl(n, k) * wl (k),

where

Cl(n, k) = -l(n - 1 - k)u(n - 1 - k) + (n + k - M)u(k - M + n) (3.74)

n = 1,..., M- 1.

92(2n) = Bl(n, k) * w(k),
where

n=O,..,19-where ,...,(3.75)
BI(n, k) = (n - m + k)u(k - M + n) + P(n - k)u(n - k)

n = ,...,N- 1 and k = ,..., M - 1.
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g9(2n - 1) = Di(n, k) * wt(k),
where ~~~~~where ~(3.76)

D (n, k) = -(n- - k)u(n - 1 - k) + (n + k- M)u(k - M + n)
n = N- and = ,..., M- 1.

g9(2n) = El(n, k) * l (k),

where,

EI(n, k) = -l(n - M + k)u(k - M + n + 1) + /(n - k)u(n - k)

n = O,...,N-l and k = O,...,M- 1.

92(2n - 1) = C 2 (n, k) * 2 (k)

where,

C 2(n, k) = 7 2(n - k- )u(n- 1 - k)- 2 (n - M + k)u(k- M + n)

n =i, 1 and = ,..., andM- 1.

g2(2n) = B 2(n, k) * 2 (k)

where,

B 2(n, k) = - 7 2 (n - M + k)u(k - M + n +1)+ 2(n - k)u(n - k)

n = O,...,N-1 and k = O,...,M- 1.

9(2n - 1) = D 2(n, k) * 2 (k)

where, (3.80)

D 2(n, k) = - 2 (n - k- )u(k- M + n + 1) - 2(n - k)u(n - k)

n = ,...,N- 1 and k = O,..., M - 1.

9g(2n) = E 2 (n, k) * t 2 (k)

where,

E 2(n, k) = 72(n - M + k)u(k - M + n + 1) + 2(n - k)u(n - k)

n = 0,...,N-1 and k = O,...,M- 1.
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Now, we can easily express the relevant error terms as a function of the unknown

vectors wi and w2. The first error term,corresponding to the flatness of the frequency

response in the absence of aliasing, can be written in matrix format as:

el = (CI -_CC 2 -- 0 )T (Cltl - C 2t2 - 6 0) + (Blt-B 2 t 2 -e)T(BiWti-B 2 t 2 - Se),

(3.82)

where 6o(n) = 6[2n - 1] n = 1,...,N - 1 , b.(n) = 6[2n] n = O,...,N-1 .

Furthermore, C 1, C 2, B1 , and B2 are defined in (3.74), (3.78), (3.75), and (3.79)

respectively.

The second error term, corresponding to the amount of aliasing present in the

reconstructed output, can be similarly expressed in matrix format as:

e2 = (Dl - D2 t2 )T(D l - D2t 2 ) + (E 1 - E2 t 2 )T(Ew 1 - Et 2 ), (3.83)

where D 1, D 2, E1 , and E2 are defined in (3.76), (3.80), (3.77), and (3.81) respectively.

Finally, the third error term, representing the frequency band separation of rl(n)

and r72 (n), must be expressed in terms of wl and t 2. Since there was no error term

similar to this one in the last section, we shall present in detail how this term is

expressed as a function of til and tW2. To be concise, we will concentrate on the part

of e3 which corresponds to l7 (n). Recall from (3.24) that

e = N,(ei ' ) dw + 1b21 N 2(eiw) l dw. (3.84)
e 71' bl I e)/d 7r JO

Substituting the following definition of the Fourier transform for rl(n)

N-1

N,(ew) = E l(n)e-j w"

n=O

M-1 N-

2i(n)e-j( )[cos(n- 2 )w] (3.85)
n=O

into the first part of e3 and realizing that le- l( ) I = 1, we obtain the following:

1 ir N M-1 1
1- N 12 ' 4(- r (n)[cos(n )W]) dw (3.86)
T Wbl 7r We. n-O 2
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4= N((k) - 1 N- 1
- E i(i)7(k)] cos(i - -)wcos(k - )wdw.

By using the closed-form solution to the integral in (3.86), we can show that

By using the closed-form solution to the integral in (3.86), we can show that

1 r M- M-1 M-1
IN(ew)l2dw = 2 E E nl(i)FI(i, k) 7l(k),

wher J i---=O k-O

where the i, k entry of the M x M matrix F is

(3.87)

Fl(i,k) =1 -kwbl

.,i'·i -( (i-k)

=k 1 -wl i + k = N - 1
i k W\r _(i+k-N+l)~,b i + k N- 1.

(3.88)
Next, it is necessary to express (3.89) in terms of wl. Due to the long and

lightening derivation of this expression, we only give the final results here:

' /i ~M-lM-1
| INI(ejw)12dw = 2 j p ,l(i)Fi(i, k)7l(k)

7rbl, i=O k=O

M-1 M-1

= 2 C E WO(i)GI(i,k)iW(k)
i=O k=O

= 2iG 1ll,

unen-

(3.89)

where the i, k entry of the M x M matrix G1 is derived from the entries of matrix F

according to the following relations:

F (2i, 2k)
F(N - 1 - 2i,2k)
FI(2i, N- 1 - 2k)

F(N- 1 - 2i, N - 1 - 2k)

O < k < M-

< k < M-1

M < k < M-1
2 -

2

M < i < M -

M<i< M-1.

(3.90)
Similarly, the part of e3 that corresponds to 12 can be elegantly written in matrix

format as:
M-1 M-1

i_ fb 2 iN2(ejw)12dw = 2 E 12 (i)F2(i, k) 12(k),
-.= ko

(3.91)
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where the i, k entry of M x M matrix F2 is

Fl(i, k) = { inWb(i-k) 2
(i-k)

i = k } +-{ i(i+k-N+),, 2 i + k = N-1 (3.92)
+ - _ +(is+k-N1) +i 96 kW (ikN, k& -

Similarly, we need to express the second part of e3 in terms of t 2 . Due to the long
and unenlightening derivation of this expression, we only give the final results here:

f ysbo M-1 M-1
1 iWbl 1V(ej)l 2dw = 2 r l ~7(i)F 2(i,k) 2 (k)

i=O k=O

M-1 M-1

= 2 ~ t W2(i)G2(i,k) 2 (k)
i=O k=O

= 2w2tG 2 w2, (3.93)

where the i, k entry of the M x M matrix G 2 is derived from the entries of matrix F2

according to the following relations:

F2(2i, 2k)

-F 2 (N- 1 - 2i, 2k)

-F 2 (2i, N- 1 - 2k)

F2 (N - 1 - 2i, N - 1 - 2k)

< k < M--1

M<k<M 1
2 - -

M<i<M-1
M < i < M -12 <i M-1

M <i<M-1.2 - -

(3.94)
Having obtained expressions for both parts of e3 in matrix format, we can rewrite

e3 as the sum of these two expressions:

e = 2ri G + 2W G 2 2. (3.95)

An analogous derivation would easily show that constraint (3.21), expressed in
vector format, is

(i.T + iT2) 12
(3.96)
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In short, the problem of finding the optimum analysis filters for a given pair of
synthesis filters reduces to finding wtl and t 2 that minimize

e = e +e 2 +e 3 (3.97)

= (CIl -C2 -.)T(Cltl - C2 2 -o) + (BIti - B2 ti2 - )T(B 1 i -- B22 - S) +

(Dl - D2 tii;)T(Dl - D2 2 ) + (Ell - Et 2 )T(E, - E2 t;2 ) +

W"TG2W2 + tGlrGW, t (3.98)

subject to the constraint that

( + W2 2) (3.99)

By introducing a Lagrange multiplier, A, this constrained optimization problem

is easily transformed into an equivalent unconstrained one. Specifically, the above
problem can be restated as finding wl , t 2, and A which minimize

1 R~-·Ta )· (3.100)Te , + A(,;T + ,2~,3 - 2) (3.100)

Due to the quadratic nature of each term involved in , the final optimization
problem is a least-square one. With the mild assumption that each matrix involved

has linearly independent columns, the existence of a unique solution which minimizes 

is guaranteed [12]. Therefore, the necessary conditions for wl, -t, and A to minimize e

are: 8~ , = = , and i = 0. These conditions lead respectively to the following

set of simultaneous linear equations:

= A + (BB 1 + CC 1 DTD + ETE + GW-
A

(BT 2 + CTC 2 + DTD2 + EE 2)W 2I -(C + BI r). (3.101)
B e

0 = p2- (B2TB + C2TC+ D , + + E2TE,)wl +

D
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(BTB2 + CTC2 + DTD2 + ETE2 + G 2)W2 + (C2T6 + BT6o). (3.102)

1 wT& + W2 T2- (3.103)2

With a bit of algebra, it can be easily shown that the solutions to the above set of

equations are

A = -T + M (3.104)

W1 = k +Al (3.105)

t2 = m + An, (3.106)

(3.107)

where

k = (A - BE-D)- '(BE f - ) (3.108)

I = (A - BE-'D)-(BE-/ 2 -' ,) (3.109)

m = (B - AD-'E)-'(AD-'f - c) (3.110)

= (B - AD-'D)-(AD-'/ - ) (3.111)

Note that, (3.105)-(3.106) determine til and t 2 which in turn completely specify

the analysis filters, t (n) and 2(n), according to the following relations:

11(n)= W t() if n is even(3.112)
i(M - ) if n is odd

n-w2 (M ) if n is even
This concludes the design of the optimum if n is odd.

This concludes the design of the optimn m analysis filters for a given pair of synthesis
filters. The important observation from this section is that it is* possible to obtain
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optimum analysis filters for a given pair of synthesis filters as the solution to a system

of linear equations whose coefficients can be easily determined from the given synthesis

filters. The only conceptual difference between this section and the previous one is the

presence of the frequency band separation error term.

3.5 Jointly-Optimal Solution

In the last two sections, we derived the optimal analysis filters for a given pair of

synthesis filters and vice versa. The availability of these solutions suggest using them

alternatively, until they converge to an optimal set of filters. More formally, the above

procedure corresponds to the flow chart of Fig. 3.2.

The above algorithm is in the class of coordinate descent algorithms for minimiza-

tion of functions of several variables [6],[7], since at each step it finds the unique global

minimum of the error, with either the analysis or synthesis filters kept fixed. There-

fore, the algorithm necessarily converges to a stationary point of the error [6], with

a monotonic decrease in the error at each step. Unfortunately, there is no guarantee

that the stationary point will be the global minimum; it could be a local minimum or

a saddle point.

Our experiments show that convergence to the optimum QMF coefficients is stable,

and the accuracy of the final solution is limited only by the accuracy of the matrix

inversion routine. With rather arbitrary starting points for the analysis filters, we have

always been able to find a solution with very small error. The aliasing error of the

resulting QMF banks have always been extermely small, about half the reconstruction

error of the alias-free QMF banks obtained by other design techniques.

The iterative algorithm discussed above has a rate of convergence typical of coor-

dinate descent methods; i.e, a weakly linear convergence [7] that is somewhat slower

than that of the steepest descent algorithms [6]. Faster convergence, in terms of the

number of iterations, could be obtained by using steepest descent or Newton's method.

48

1



IaitiiXlize the analysis filters.

_I_ 
Fix the analysis filters: find

the optimal synthesis filters.

F x th sy thi le.

X~~~~~~~~
Fix the ynthesis filters; find
the optimal analysis filters.

_ I t 
ItS _I

No error reductio Yes

~ Threshold/l

Figure 3.2: Iterative algorithm for jointly-optimal QMF design.
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In either of these cases, additional information would have to be computed, namely

the gradient of the error for the steepest descent method, and both the gradient and

the Hessian for the Newton's method. For example, the Newton's method requires

about 1200 operations per iteration with N = 8. Typically the coordinate descent

algorithm would have converged before a handful of iterations of the Newton's method

are completed,since much fewer computations are needed in each iteration of the co-

ordinate descent. Another advantage of the coordinate descent method is that at the

end of every iteration we have a partially-optimal solution, in t sense that at least

the analysis filters are optimal for the current synthesis filters or vice versa.
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Chapter 4

Design Examples

Three algorithms for designing quadrature mirror filters were presented in the last two

chapters. To compare these algorithms, it is necessary to consider several different

issues. Some of these issues are naturally related to the performance of the designed

filters, while others are concerned with the efficiency of the design algorithms.

We used these algorithms to design four set of quadrature mirror filters. The number

of filter coefficients, the stopband edge frequency, and the passband edge frequency

were given to each algorithm and the resulting filters are shown in figures 4.3-4.6.

For each set of specifications, the filters designed by our procedure are compared to

those designed by either Johnston's or Crochiere's algorithm [9],[8]. For convenience

of notation, these filters will be referred to by the following abbreviations:

JON12: Johnston's 12-tap stop band edge =0.7 r

JON16: Johnston's 16-tap stop band edge =0.7 7r

JON24: Johnston's 24-tap stop band edge =0.625 r

JAC32: Jain and Crochiere's 32-tap stop band edge =0.6 r

Corresponding to each of the above QMF banks, there will be a QMF bank designed

by our algorithm as well. The QMF banks designed by our algorithm will have the

same specifications as the ones given in the above table.
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In the last section of this chapter we will present a QMF bank whose .lowpass
analysis filter is fixed. Since such a QMF bank can not be designed by the other design
techniques, no comparison is made in this case.

4.1 Performance Criterion

This section describes the various criterion we will be using to compare the QMF design
algorithms. These criterion can be divided into two groups. The first group is related
to the performance of the filters obtained by each algorithm. On the other hand, the
second group is concerned with the efficiency of the design algorithms.

For a given number of filter coefficients and transition width, different algorithms
produce filters with different passband and stopband characteristics. Like any other

filter design algorithm, it is desirable to obtain quadrature mirror filters that have
unity gain in their passbands. Another consideration is the amount of attenuation at
the stopband edge, which is usually the minimum attenuation observed in the stopband.
Finally, it is most desirable to have as little reconstruction error as possible. Due to
the time-varying nature of the QMF banks, we need to consider the response of each
QMF bank to two impulses (6[n] and 6[n - 1] ). We then use an average of these two
impulse responses to measure the overall reconstruction error.

We also looked at several issues related to the efficiency of these algorithms. For
each set of specifications, we considered the number of iterations each algorithm took to
converge to its final result. Furthermore, we examined the complexity of each iteration
by calculating the number of multiplications needed to perform each iteration. Finally,
we considered the sensitivity of each algorithm to the choice of initial guess.
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Example Stopband Edge Edge Attenuation Max Reconstruction Error
JON12 0.7w -28dB 0.043dB
JON16 0.7 w -35.5dB 0.0174dB
JON24 0.625 w -35.4dB 0.0174dB
JAC32 0.6wr -35dB 0.0174dB

Figure 4.1: Performance of previous design algorithms

Example Stopband Edge Edge Attenuation Max Reconstruction Error

12-tap 0.7w -26dB 0.05dB

16-tap 0.7 w -42dB 0.0174dB
24-tap 0.625 w -31.4dB 0.026dB

32-tap 0.6w -37.0dB 0.0174dB

Figure 4.2: Performance of the Jointly-Optimal design algorithm.
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4.2 Performance Results

Figures 4.1 and 4.2 smmarize the performance of filters obtained by various algo-

rithms. As far as stopband edge attenuation is concerned, our algorithm performs

about the same as the previous algorithms. For N = 12 and N = 24, our filters have

slightly less attenuation than the ones given by Johnston. On the other hand, with

N = 16 and N = 32 our filters have slightly more attenuation than the ones given by

Johnston and Crochiere.

The overall distortion of our QMF banks is about the same as the ones designed

by the other algorithms. The last column in figures 4.1 and 4.2 represents the recon-

struction error of the various QMF banks. For N = 12 and N = 24, our filters produce

slightly more distortion Johnston's filters. For N = 16 and N = 32, our filters produce

the same amount of distortion as Johnston's filters or Crochiere's filters [9],[8].

Figures 4.3-4.6 show the performance of various filters in more detail. Consider, for

example, figures 4.3(a)-4.3(f). Figures 4.3(a) and 4.3(b) depict respectively the Fourier

transform magnitude of the 12-tap analysis and synthesis filters obtained by our design

algorithm. Figure 4.3(d) is a plot of the Fourier transform magnitude of the impulse

response of our QMF bank. For ease of comparison, Figure 4.3(e) plots the frequency

response of our analysis filters and JON12 analysis filters on the same graph. Figure

4.3(f) shows, on the same graph, the overall impulse responses of JON12 QMF bank

and our 12-tap QMF bank.

To make a complete comparison, we shall examine the efficiency of each design

algorithm based on the number of calculations it performs before converging to a final

solution.

First, we compare the number of iterations each algorithm takes to converge to

its final solution. This number naturally increases as the number of filter coefficients

increases;therefore, we will base our comparisons on the number of iterations required

by each algorithm for N = 32. Johnston's algorithm requires about 300 iterations;Jain
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and Crochiere's algorithm requires about 30 iterations; and our algorithm requires

about 40 iterations.

The next issue is the sensitivity of each algorithm to the choice of initial guess.

Johnston's method is extremely dependent on this choice. Manual intervention in the

form of different starting points and starting step sizes is essential. On the other hand,

both Crochiere's method and our method converged to a solution regardless of the

initial guess used. Using different starting points effectively increases the number of

iterations needed for the algorithm to converge.

The last important issue is the complexity of the calculations required in each

iteration. Johnston's technique is the simplest one, because it only needs to evaluate

the error function at the neighboring points. Our method requires to invert four 1V x N2

matrices, with each inversion requiring about ()3 multiplications. On the other hand,

Jain and Crochiere's method requires finding all the eigenvalues of a x matrix. This

requires about 30 x ()3 multiplications. Therefore, Jain and Crochiere's technique

requires about eight times more computations per iteration than our technique.

4.3 QMF Bank with a Guassian Analysis Filter

Using the jointly-optimal algorithm, it is possible to design QMF banks in which the

lowpass analysis filter is pre-described. A sharpened Guassian filter was used as the

lowpass analysis filter in the QMF bank of figure 4.7(a). Figure 4.7(a) and 4.7(b)

depict respectively the frequency responses of the analysis and the synthesis filters.

Figure 4.7(c) is a plot of the Fourier transform magnitude of the impulse response of

this QMF bank.

The frequency response of the lowpass synthesis filter has a large gain at about

w = , because the corresponding analysis filter has a large attenuation at the same

frequency. At those frequencies which the highpass analysis filter has an attenuation

in its passband, the corresponding synthesis filter has a gain and vice versa. Although
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the individual filters do not have a flat frequency response in their passbands, each
cascade of the analysis and synthesis filters has a flat response in its corresponding
passband. Therefore, the non-flat frequency response of the filters in their passbands
is not a problem.
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Figure 4.3(a): Our 12-tap analysis filters.

0.2 0.4 0.6 0.8 1 · 1.2 1.4 1.6 1.8 2

Radian frequency/pi

Figure 4.3(b): Our 12-tap synthesis filters.
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Radian froquency/pi

Figure 4.3(c): Our 12-tap, lowpass analysis filter.

I

Radian frequency/pi

Figure 4.3(d): Overall response of our 12-tap QI4F bank.
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Radian frequency/pi
- ON12

- - - Our Filter

Figure 4.3(e): JON12 s our 12-tap, lowpass analysis filter.

I t1

*1

0 0.2 0.4 0.6 0.8 I 1.2 1.4 1.6 1.8 2

Radian frequency/pi JON12 QMF Bank
- -- Our QMF Bank

Figure 4.3(f): Overall response of our 12-tap QMF bank vs JON12 QMF bank.
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Radian frequency/pi

Figure 4.4(a): Our 16-tap analysis filters.

! .............

,/
\ i

t

0r
'/ .......

.. .\
I, \

...... I... ..... .:: I: t

: I

I
I
,

:,

l~~~~~~~~~~~~! ' -

'rrr!errrrr es!rue~rrbmee~..i ......

%. . .~~~~~~~~~~~~~~

.
: . : :~~~~~~~~~~~~~~

II
It

.......................... ........ t...

: : ,
: ' : ,

............. ........... ...... .........

I Ii~~~~~~
: ~ ~ ~~~~~~ I I

...... .......... 1./!·- ···· ··...
:

: :

; :# :I
I

I...

II

II:II

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Radian frequency/pi

Figure 4.4(b): Our 16-tap synthesis filters.
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Figure 4.6(a): Our 32-tap analysis filters.
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Figure 4.6(c): Our 32-tap, lowpass analysis filter.
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Figure 4.7(c):Overall response of the Guassian QMF bank.



Chapter 5

Conclusion

A new algorithm for designing two-band quadrature mirror filter banks was presented

in this thesis. It was shown that this algorithm is computationally more efficient than

the existing algorithms by a factor of eight. Moreover, this algorithm is not sensitive

to the choice of initial guess. By using this algorithm, we were able to design two-band

QMF banks in which the lowpass analysis filter was pre-described. Unfortunately, the

frequency band separation of the resulting filters is not very good.

The ability to choose one of the filters in the QMF bank is extremely useful in

certain applications. For example, in a compatible EDTV system where the NTSC

picture is obtained by pre-filtering and subsampling the EDTV picture, it is essential

to use pre-filters which do not cause ringing. However, the previous QMF design

techniques provide no way of controlling this ringing. Using our algorithm, one can

completely eliminate this ringing by an appropriately choosing the lowpass analysis

filter.

The jointly-optimal analysis and synthesis QMF design algorithm is in the class of

coordinate descent algorithms for minimization of a function of several variables. It

was shown that the optimal analysis filters for a given pair of synthesis filters can be

analytically computed as the solution to a system of linear equations. The computation

of the optimum synthesis filters for a given pair of analysis filters is similarly possible.
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The joint optimization algorithm is an iterative procedure which alternates. between
computing a pair of optimal analysis filters and optimal synthesis filters, until the error
reduction is negligible.

The extension of this algorithm for designing M-band QMF banks is the most
obvious area for future research. This extension should be quite easy, since the resulting
optimization problem is a least-square one. In the M-band case, care must be taken
as to how many of the filters can be fixed. It would also be useful to improve the
frequency band separation of the filters, in the case that one of the filters is fixed.
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