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Abstract 
Ultra-wideband (UWB) communication is an emerging technique for wireless 

transmission in the 3.1-10.6 GHz unlicensed band with signal bandwidths of 500 MHz or 
greater. A non-coherent receiver based on energy collection reduces complexity, cost, 
and power consumption at the cost of channel spectral efficiency. The receiver collects 
the signal energy in two time windows and determines the transmitted bits based on 
which window has greater energy. 

This thesis explains the implementation of low-complexity detection, 
synchronization, and decoding algorithms for a non-coherent ultra-wideband receiver. 
The receiver is modeled in MATLAB to measure performance. The UWB receiver 
performs effectively in noisy channels. At the signal-to-noise ratio (SNR) of 0 dB, the 
receiver achieves a detection miss rate of 2.1% and a false alarm rate of 1.2%. The 
synchronization error (within ±2 chip periods) rate is 0.5%. The bit error rate is 8.6%, but 
it drops sharply to 0.1% at an SNR of 5 dB. Moreover, the detection and the 
synchronization processes take 19.72 μs and 22.53 μs, respectively. The digital system is 
implemented in Verilog, which is mapped to hardware (FPGA). In the final system, a 
radio frequency and an analog front-end interface with the FPGA, resulting in a complete 
radio receiver. 
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Chapter 1 

Introduction and System Overview 

 

1.1 Ultra-Wideband Technology Overview 

Ultra-wideband (UWB) communication is an emerging technique for wireless 

transmission in the 3.1-10.6 GHz unlicensed band with bandwidths of 500 MHz or 

greater [1]. The emergence of commercial wireless devices based on ultra-wideband 

radio technology is widely anticipated. This novel technology has recently received much 

attention for major advances in wireless applications such as wireless communication, 

networking, radar, imaging, and positioning systems. Ultra-wideband technology brings 

the convenience and mobility of wireless communications to high-speed interconnects in 

devices throughout the digital home and office. Designed for short-range wireless 

personal area networks (WPANs), UWB is an emerging technology for freeing people 

from wires, enabling wireless connection of multiple devices for transmission of video, 

audio, and other high-bandwidth data [2]. 

UWB differs substantially from conventional narrowband radio frequency 

(RF) and spread spectrum technologies (SS), such as Bluetooth Technology and IEEE 

802.11a/b/g, as shown in Figure 1-1. An ultra-wideband (UWB) device transmits 

sequences of information carrying pulses of very short duration, about 0.1 to 2 

nanoseconds, thus spreading the signal energy from near DC to a few gigahertz. The 
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corresponding receiver then translates the pulses into data by listening for a familiar pulse 

sequence sent by the transmitter. Specifically, UWB is defined as any radio technology 

having a spectrum that occupies a bandwidth greater than 20 percent of the central 

frequency, or a bandwidth of at least 500 MHz.  

 

Narrow-band RF

Bluetooth, 802.11a

Frequency

Po
w

er

UWB

Note: Figure is not to scale  
Figure 1-1: Comparison of UWB and other technologies. 

  

Figure 1-2 compares UWB radio devices with conventional short-range 

wireless systems in terms of the achievable spatial capacity and the maximal transmission 

range. Although its transmission range is within 10 meters or about 30 feet, UWB radio 

devices have a very high spatial capacity for transmitting information [1]. Therefore, 

UWB, short-range radio technology, can complement other longer-range radio 

technologies such as Wi-Fi, WiMAX, and cellular wide-area communications. It can be 

used to relay data from a host device to other devices in the immediate area. 

Modern UWB systems use other modulation techniques, such as Orthogonal 

Frequency Division Multiplexing (OFDM), to occupy these extremely wide bandwidths. 
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In addition, the use of multiple bands in combination with OFDM modulation can 

provide significant advantages to traditional UWB systems. 

 

 

Figure 1-2: Comparison of UWB radio devices  

and conventional short-range wireless systems [1]. 

 

UWB’s combination of broader spectrum and lower power improves speed 

and reduces interference with other wireless spectra. In the United States, the Federal 

Communications Commission (FCC) has mandated that UWB radio transmissions can 

legally operate in the range from 3.1 GHz up to 10.6 GHz, at a limited transmit power of 

-41 dBm/MHz. Consequently, UWB provides dramatic channel capacity at short range 

that limits interference [2]. Therefore, the ultra-wideband radio technology is not only 

applicable to communications, imaging, and ranging, but it also alleviates the problem of 
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scarce spectrum resources. The ultra-wideband radio technology potentially enables 

implementation of wireless platforms that support a variety of operating modes such as 

data transmission, precision positioning and tracking, and radar sensing. The technology 

can be used in wireless personal area networks (WPANs) and wireless local area 

networks (WLANs) with integrated position location and tracking capabilities. Table 1-1 

summarizes features and benefits of the ultra-wideband technology in WPAN 

entertainment and personal computer environments. 

 

Feature Benefit 
High-speed throughput Fast, high-quality transfers 
Low power consumption Long battery life of portable devices 
Silicon-based, standard-based radios Low cost 
Wired connectivity options Convenience and flexibility 

 
Table 1-1: Features and benefits of UWB 

 

1.2 Problem Statement 

Many of the approaches for implementing UWB receivers use a coherent 

receiver, which correlates the received signal with a well-designed template signal. It has 

been shown that a coherent receiver is optimal over AWGN (additive white Gaussian 

noise) and non-ISI (non-intersymbol interference) multipath channels. This type of 

receiver, however, has to cope with great design challenges. First, to correlate the 

received signal with the template signal, the receiver needs to achieve very precise pulse-

level synchronization. Thus, despite some fast synchronization algorithms, the 

synchronization process continues to take long. Secondly, a precise template signal 



18 
 

design is required to maximize the signal-to-noise ratio (SNR). This coherent design is 

difficult to achieve because of the distortions on the pulse shape over wireless channels. 

Finally, multipath energy combining requires a RAKE matched-filter receiver, which 

leads to high receiver complexity of the receiver design. A high-speed and precise clock 

may also be required.  

A non-coherent receiver based on energy collection reduces complexity, cost, 

and power consumption at the cost of channel spectral efficiency [3-5]. The energy-

collection based receiver utilizes binary pulse position modulation (BPPM). A receiver 

collects the signal energy in two time windows and determines the transmitted bits based 

on which window has greater energy. Table 1-2 summarizes key features of a coherent 

and a non-coherent receiver [6]. Because many wireless applications require energy 

efficiency, the non-coherent method is used in this project. 

 

Feature Coherent Non-Coherent 

Description 
Correlates the received signal with 
a well-designed template signal 

Based on energy collection 

Advantage 
Optimal over AWGN and 
multipath channels 

Low complexity, low cost,  
low power consumption 

Disadvantage High complexity SNR degradation 
 

Table 1-2: Comparison of a coherent and a non-coherent receiver 

 

In order for energy-collection decoding to work efficiently, a receiver has to 

know the beginning of a bit period. Therefore, pre-determined preamble signals need to 

be transmitted before actual data. An algorithm that synchronizes the system is also 

needed. Moreover, a non-coherent UWB receiver must be able to distinguish signals 
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from noise (detection). UWB wireless system designs must balance tradeoffs among 

high bandwidth efficiency, low transmission peak power, low complexity, flexibility in 

supporting multiple rates, and reliable performance as expressed in terms of bit error 

rate (BER) [7].   

This thesis proposes low-complexity detection, synchronization, and decoding 

algorithms for a non-coherent ultra-wideband receiver. The parameters of the algorithms 

are chosen to maximize the performance in AWGN and multipath channels. The receiver 

is modeled in MATLAB to measure performance. This thesis also aims to implement a 

digital system that receives a train of binary pulse position modulation signals and 

produces decoded bits. The digital baseband is implemented in Verilog, which is mapped 

to hardware (FPGA). In the final system, a radio frequency (RF) and an analog front-end 

will interface with the FPGA, resulting in a complete radio receiver. 

 

1.3 Previous Works 

A time modulated UWB receiver block diagram is presented in [8], where the 

implementation requirements of an integrated correlator are determined. However, [8] 

does not present the power consumption of the UWB-IR transceiver. Another UWB 

digital receiver, based on the frequency domain approach, is presented in [9]. This 

architecture requires a large number of low noise amplifiers (LNAs) and filter banks, 

which translates into increased power consumption. In [10] and [11], a digital UWB 

transmitter and a subbanded UWB receiver are implemented in 90 nm CMOS technology, 

respectively. Moreover, a complete UWB-IR transceiver architecture for tag-based 
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wireless sensor networks in 0.35 μm BiCMOS process is presented in [12]. The theoretical 

framework for a non-coherent UWB receiver is developed in [13], [14], and [15]. 

 

1.4 Thesis Outline 

This chapter describes the system model and the receiver structure. The 

synchronization, the detection, and the decoding algorithms for a non-coherent ultra-

wideband receiver are explained in Chapter 2. The synchronization algorithm is also 

analyzed. Chapter 3 presents the MATLAB implementation of the receiver. The 

synchronization algorithm is simulated, so that its parameters may be chosen to minimize 

the synchronization error. The detection algorithm is simulated in order to minimize the 

probability of missed detection and false alarm. The decoding algorithm simulation is 

also presented in order to verify the robustness and the efficiency of a non-coherent UWB 

receiver. Chapter 4 describes the digital baseband architecture of a UWB receiver. Each 

module in the system is discussed, and the whole system is fully tested. The hardware 

testing system and the digital system performance are discussed in Chapter 5. Finally, 

Chapter 6 presents the conclusion. 

 

1.5 Signal Model 

The transmitted signal used for this paper is based on the Binary Pulse 

Position Modulation (BPPM) [16]. The bit interval Tb is divided into two equal time slots 

with length Tb/2. The pulses in the first time slot define a “0” transmitted symbol, while 

the pulses in the second slot define a “1” symbol. The width of each pulse is Tc. The 

BPPM signal is illustrated in Figure 1-3.  
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“0”

“1”

Tc

Tb  

Figure 1-3: Binary pulse position modulation (BPPM) signal. 

 

In this scenario, the transmitted signal from the transmitter is given by: 

)2()( ∑
∞

−∞=
−−⋅=

i
bibtri TaiTtwcts , 

where wtr(t) is a burst of transmitted pulses in half a bit period. The ci’s are pseudo-

random binary sequences (ci = ±1) that serve to smooth out the power spectral density of 

the transmitted signal. The ai’s are binary independent and identically distributed data 

symbols taken from the alphabet 0 or 1 (i.e., }1,0{∈ia ) and Tb is the symbol period. Note 

that if the ai’s are all zero, a pulse burst will always appear at the beginning of a symbol 

interval. This is the case for the simple preamble sequence used in this project. Vice versa, 

when the ai’s are either 0 or 1, the pulse burst starts either at the beginning or at the 

midpoint of the interval. The data rate is defined by 1/Tb. 

The received signal after the Rx antenna is modeled as: 

)()2()(
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where wrx(t) is the first derivative of wtr(t), M is the number of resolvable paths, Am 

defines the gain for path m, and n(t) is a zero-mean additive Gaussian noise. Finally, τ 

represents an unknown arrival delay at the receiver. 

 

1.6 Receiver Structure 

 

Figure 1-4: High-level block diagram of a UWB receiver. 

 

Figure 1-4 presents the high-level structure of the UWB receiver. This paper 

focuses mostly on the PHY layer. The detection process, which is executed after the 

signal is received at an antenna and passed through a band-pass filter, is based on a non-

coherent, energy-collection structure (Figure 1-5). For the BPPM signal, the receiver 

squares and integrates the signal in both time slots to detect the received energy. The 

decoder calculates the following: 

∫
++

+

=
2)1(ˆ

2ˆ

2 )(
bsync

bsync

Tmt

Tmt
m dttrz , 

for m = 0 and m = 1, where syncht̂  is the integration starting point for the first integration 

time slot. The decision device sets 0ˆ =ka  or 1ˆ =ka  according to the rule: 

RF/ 
Analog ADC 

Rx 
Modem 

Processor 
Subsystem 

PHY Layer Layer 2 and above 

bit 

DSP + Memory + 
Peripheral CPU 

Rx signal  
from  
antenna 

symbol 
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⎩
⎨
⎧ >

=
otherwise ,1

 if,0
ˆ 10 zz
ak . 

Specifically, the receiver measures the energy of the received signal r(t) in the two parts 

and selects the symbol corresponding to the maximum energy.  

 

 

Figure 1-5: Block diagram of the receiver front-end. 

 

1.7 Channel Model 

The analysis of the synchronization and the detection algorithms is based on 

AWGN (additive white Gaussian noise) and non-ISI (non-intersymbol interference) 

multipath channels. The noise signal is generated for different signal-to-noise ratio (SNR) 

values. The unknown arrival delay at the receiver is also modeled as a random variable. 

The time-dispersive effect of the channel plays a fundamental role in the achievable data 

rate of the system. 

 

BPF ( )2 Integrator Demodulator 
zm kâ
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Chapter 2 

Receiver Algorithms and Analysis 

 

This chapter describes the synchronization, detection, and decoding 

algorithms for a non-coherent ultra-wideband receiver. The synchronization algorithm is 

proposed in [4]. The author’s key contribution is on the detection and the decoding 

algorithms. The receiver constantly decides whether the pre-determined preamble signal 

is present. If the preamble signal is detected, synchronization begins and the system looks 

for the right instant, at which to start integrating the received signal for energy-collection 

decoding. The receiver produces decoded bits after the system is synchronized. The 

system then compares bits with the 11-bit Barker code. This sequence is used to mark the 

start of the header bits and is called the start frame delimiter (SFD). If the received bits 

match the SFD Barker code, then header and payload bits follow. The header bits specify 

the length of the payload. Specifically, the 8-bit header tells how many bytes there are in 

the payload section. Figure 2-1 illustrates the signal packet structure. 

 

Preamble SFD Header Payload

11 bits 8 bits

 

Figure 2-1: Packet structure. 
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2.1 Synchronization Algorithm and Analysis 

2.1.1 Synchronization Algorithm 

This section discusses a possible synchronization scheme based on heuristic 

arguments. In a non-coherent UWB receiver, the synchronization stage should be based 

on the energy-collection approach, as should the receiver decision scheme, in order to 

maintain the low complexity of the receiver [13-15]. The synchronization algorithm 

presented in this paper is developed from the energy-collection scheme proposed in [17] 

and [4]. We first define the synchronization time delay tsync as the delay that leads to the 

maximum information signal energy collection for the transmitted symbol in the 

associated data symbol time slot. Ideally, for an additional white Gaussian noise 

(AWGN) single-path channel, the synchronization point corresponds to the beginning of 

the data symbol slot, where all the received signal energy appears in one integrator. For a 

multipath channel, the correct synchronization time is the delay that maximizes the 

information signal energy collection.  

 

 

Figure 2-2: Block diagram of a receiver with synchronization process. 

 

BPF ( )2 Integrator ADC Demapper 

Synchronizer 

Decoder

enable
synct̂  

Message 
bits

Analog Front-end 

Digital Baseband Processor 
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The synchronizer performs a serial search and selects the maximum digitized 

energy corresponding to each integrating window frame. The synchronizer is 

implemented entirely in the digital domain and produces an output synct̂ , which lies in the 

range [0, Tb]. This output adjusts the starting point of integration of the transmitted signal 

energy by enabling the integrator after a delay of synct̂  (Figure 2-2). For a single-path 

channel, the synchronization time synct̂  enables the integrator exactly at the beginning of 

the data symbol slot, where all the received signal energy appears in one integrator. 

 

 

 

 

 

 

 

 

 

Figure 2-3: Sequential-search synchronization algorithm. 

 

The synchronization process starts after the detector detects a train of 

preamble symbols, which contain Z bits of all 0’s; that is, a pulse always appears at the 

beginning of a symbol interval. In the digital implementation, the synchronization stage 

uses one integrator. The integrator has an integration window of Tb/2, where Tb is the 

Tb/2 

Tb 

1st integration 

2nd integration 

Nth 
integration 

 
 
 
 

MAX 
selection

ts(1) 

ts(2)=ts(1)+Tb/N 

ts(N)=ts(1)+(N-1)Tb/N 
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symbol interval. Let N be the number of integration starting points or “integration 

phases.” The space between each integration phase is, therefore, ⎣ ⎦NTb . According to 

Figure 2-3, the synchronization algorithm selects the starting time that maximizes the 

integral of the received signal energy as the synchronization point. The starting point of 

the ith integration is given by: 

NTitit bss )1()1()( −+= , 

where },,2,1{ Ni K∈  and ts(1) is the integration starting point of the first integration. At 

the end of the preamble (i.e., after time ZTb), the synchronizer computes the sum of the 

integrals at each starting integration point over the entire preamble period: 

∑ ∫
−

=

++

+ ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

1

0

2)(

)(

2 )(
Z

j

jTTit

jTit
i

bbs

bs

dttrR , 

for },,2,1{ Ni K∈ . The synchronizer selects the maximum energy collection from these 

integral values. Therefore, the synchronization is correctly achieved when 

i
i

i
i

RRR maxandmaxarg ==α α . 

The synchronization point is thus given by the following: 

NTtt bssync )1()1(ˆ −α+= . 

The accuracy of the synchronization algorithm is proportional to the number of 

integration phases, N. However, the complexity of the receiver increases as the number of 

phases increases. With N integration phases in an AWGN channel, the serial search 

algorithm produces the synchronization point value within the error range: 

],[ˆ
22 N
T

syncN
T

syncsync
bb ttt +−∈ , 
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where tsync is the true optimal synchronization point [12]. As N increases, the 

synchronization algorithm becomes more accurate. However, the implementation of the 

digital baseband for the synchronization process becomes more complex with more 

power consumption and larger circuit area. This project aims to determine the optimal 

number of integrators (N) and the number of “0” bits (Z), which produce a reasonable 

synchronization performance and maintain the low complexity of a non-coherent UWB 

receiver. Chapter 3 presents the synchronization algorithm simulation in MATLAB and 

determines the optimal number of integration phases. The usual energy-collection decoding 

(section 1.6) is used once the synchronized starting time of integration synct̂  is determined. 

 

2.1.2 Synchronization Analysis in AWGN Channel 

The delay of the synchronization starting point after the starting point of the 

first integrator is to be chosen from the set {0, Tb/N, Tb/2N,…, (N-1)Tb/N}. The 

probability that the synchronization is correct is the probability that the first integral R1 is 

greater than the other integral values R2, R3,…, RN [4]. The probability that the first 

integrator output is the largest is: 

)|,,,Pr( 13121| sNts tRRRRRRP
s

>>>= K , 

where ],0[ NTt bs ∈ . The probability of synchronization is obtained by: 

∫=
NT

ssItss

b

s
dttpPP

2

0
| )(2 , where ]2,0[~)( NTUtp bsI . 
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NT

stsT
N

s

b
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dtPP

2

0
|
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This project aims to choose the optimal value for N by plotting the probability 

of failure versus the signal-to-noise ratio (SNR) for different values of N. The probability 

of failure is essentially one minus the probability of synchronization discussed above. 

The desirable number of integration phases N must achieve a low probability of 

synchronization failure for a given level of signal-to-noise ratio. The SNR is defined by: 

bwb TBNESNR −= 0 , 

where Eb is the signal energy, N0 is the noise energy, and Bw is the signal bandwidth [4]. 

We can also plot BER performance of the receiver versus SNR to measure 

synchronization error for an AWGN channel. 

Chapter 3 determines the probability of synchronization error for various 

values of SNR by simulation. The simulation results illustrate how the performance of the 

receiver changes when the condition of the channel varies. 

 

2.2 Detection Algorithm 

As illustrated in Figure 2-1, synchronization only begins when the receiver 

detects the preamble signal. The detection process determines whether the preamble 

signal or noise is received. In a non-coherent UWB receiver, the detection stage should 

be based on the energy-collection approach, as should the receiver decision scheme, in 

order to maintain the low complexity of the receiver. The detection algorithm is similar to 

the synchronization algorithm described in the previous section. The detector runs 

continuously. 

The detection process decides whether the preamble signal is received and 

triggers the synchronization process when the transmitter sends a train of the preamble 
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signals, which contains bits of all 0’s; that is, a pulse always appear at the beginning of a 

symbol interval. The detection stage integrates over Nd phases, where Nd < N. That is, the 

number of integration phase used in the detection process is less than that in the 

synchronization process. We do not need accuracy to determine the exact integration 

interval during the detection process. However, we need to make sure that the incoming 

signal is a sequence of all “0” BPPM bits, not just an AWGN noise. As in the 

synchronization stage, each integrator has an integration window of Tb/2, where Tb is the 

symbol interval. Therefore, the space between each integration phase is ⎣ ⎦db NT . 

For an AWGN channel, the detection algorithm selects one of the Nd 

integration phases that maximizes the integral of the received signal energy. A “winner” 

{ }W
kk 1=α  is defined as the phase that has the maximum energy when the energy collection 

process covers Zd bits of all 0’s. The process of choosing a “winner” is repeated W times. 

The receiver declares that it detects the preamble signal when one particular phase wins 

D times. The detection process is halted, and the synchronization process then begins. If 

there is no phase that “wins” at least D times, the receiver declares that it does not detect 

the preamble signal. The detection process is then repeated until the receiver detects the 

preamble signal. 

The analysis for the energy-collection detection scheme is similar to the 

analysis for the synchronization algorithm. The main difference is that the detector needs 

to keep track of the phase “winners.” According to Figure 2-3, the starting point of the ith 

integration is given by: 

dbdd NTitit )1()1()( −+= , 
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where },,2,1{ dNi K∈  and td(1) is the integration starting point of the first integration. At 

the end of the preamble (i.e., after time ZdTb), the detector computes the sum of the 

integrals at each starting integration point over the entire period of length ZdTb: 

∑ ∫
−

=

++

+ ⎥
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⎦

⎤

⎢
⎢
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1

0
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d bbd

bd

Z

j

jTTit

jTit
i dttrR , 

for },,2,1{ dNi K∈ . The detector selects the maximum energy collection from these 

integral values. Therefore, a phase “winner” is determined by: 

iii
i

k RRR
k

maxandmaxarg == αα , 

for },,2,1{ WUk K=∈ . That is, the process of choosing a “winner” over a window 

period of ZdTb is repeated W times. Note that },,2,1{ dk NK∈α  for all 

},,2,1{ WUk K=∈ . 

Let { }Ukk k ∈∀== ,11 αβ , 

{ }Ukk k ∈∀== ,22 αβ , 

… 

and { }UkNk dkNd
∈∀== ,αβ . 

If there exists },,2,1{ dNm K∈  such that Dm ≥β , then the receiver declares 

that it detects the preamble signal. The detection process is halted, and the 

synchronization process then begins. If there does not exist },,2,1{ dNm K∈  such that 

Dm ≥β , then the receiver declares that it does not detect the signal and the detection 

process is then repeated. If the preamble signal is transmitted, the phase “winners” should 

be consistent and Dm ≥β  should be satisfied. On the other hand, if the preamble signal 



32 
 

is not transmitted, the phase “winners” will randomly vary and the condition Dm ≥β  

will not be satisfied for all values of },,2,1{ dNm K∈ . The diagram of the overall 

detection algorithm is presented in Figure 2-4. 

 

 
Figure 2-4: Overall detection algorithm. 

 

Chapter 3 aims to determine the optimal number of integration phases (Nd), 

the optimal number of bits of “0” (Zd), the number of windows to declare a phase 

“winner” (W), and the number of “winners” to declare detection (D) that minimize the 

probability of missed detection and false alarm. The four parameters must maintain low 

complexity of a non-coherent UWB receiver. The detection algorithm is simulated in 

MATLAB in order to specify the four optimal parameters. 
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2.3 Decoding Algorithm 

After the signal is synchronized, the decoding process begins and the receiver 

outputs bits. The bits sent by a transmitter contain an 11-bit Barker start frame delimiter 

(SFD) code, an 8-bit header, and payload bits as shown in Figure 2-1. The goal of the 

decoding algorithm is to minimize the payload bit error rate. The energy-collection 

decoding algorithm is explained in section 1.6. 

 

2.3.1 SFD Matching Algorithm 

After the synchronization process, the most recent eleven bits are compared to 

the known 11-bit Barker code, a[10:0] = 00011101101. If all eleven bits match the 

Barker code, then the receiver knows that the next eight bits belong to the header section. 

Figure 2-5 shows the diagram of the SFD matching algorithm.  

According to Figure 2-5, the SFD matching algorithm begins by operating 

XNOR on each of the eleven most recent decoded bits, x[10:0], with each corresponding 

bit of the 11-bit Barker code. If the bits are matched, then the result from the XNOR 

operator is 1; otherwise, the result is 0. The results from all eleven XNOR operators are 

accumulated. If the sum of the results is eleven, then the SFD codes are detected and the 

receiver starts decoding the header and the payload bits. If the sum of the results is less 

than eleven, then the receiver declares that it does not detect the SFD code. The SFD 

matching process is then restarted with the updated decoded bits (i.e. shifted to the left). 

If the SFD matching process continues until the timeout limit is reached, then the receiver 

declares that it does not detect the header and the payload. The header and the payload bits 
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are, therefore, not decoded. The receiver system then starts over once again with the 

detection process. The simulation of the SFD matching algorithm is presented in Chapter 3. 

 

 

Figure 2-5: SFD matching algorithm. 

 

2.3.2 Header and Payload 

The 11-bit SFD Barker code is followed by eight header bits. The header bits 

specify the length of the payload data bits. Specifically, the header bits specify the 

number of bytes of the payload. The payload bits constitute information sent by the 

transmitter. 
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Chapter 3 

Receiver Implementation in MATLAB 

 

3.1 Synchronization Algorithm Simulation 

3.1.1 MATLAB Simulation System 

This section focuses on the synchronization algorithm and the system 

simulation in MATLAB for a non-coherent ultra-wideband receiver. The synchronization 

algorithm must be able to detect the position of the signal in a pulse and to calculate the 

synchronization point. The usual energy detection (section 2.3) is then performed when 

the synchronized starting time of integration synct̂  is specified. 

It is difficult to achieve very precise synchronization required by a coherent 

ultra-wideband receiver. However, a non-coherent ultra-wideband receiver has less 

stringent requirement for the synchronization accuracy. Thus, the synchronization 

algorithm for a non-coherent ultra-wideband receiver can be developed to achieve 

synchronization with higher inaccuracy but much lower implementation complexity than 

a coherent receiver. Therefore, this section aims to simulate the parallel search 

synchronization discussed in Chapter 2 so that the optimal number of integration phases 

(N) and the number of preamble bits used in the process (Z) can be determined. The 

optimal parameters, which are determined by MATLAB simulation results, should 
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produce a reasonable synchronization performance and maintain the low-complexity 

nature of a non-coherent ultra-wideband receiver. 
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Figure 3-1: Gaussian pulse with σ = 1.4 ns and Tc = 2 ns. 

 

The binary pulse position modulation (BPPM) received signal is generated by 

a MATLAB function. A pulse in the time domain is modeled as a Gaussian distribution 

with a standard deviation σ of 1.4 ns. In Figure 3-1, a pulse centered at time τ can be 

modeled according to the following equation: 

22

2

2)(
2
1)( στ
πσ

−−= tety . 

The chip period Tc is defined as the width of the pulse up to the point where the signal 

decays. For the MATLAB simulation, the chip period Tc is set to 2 ns, which corresponds 
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to a pulse with a one-sided bandwidth of 250 MHz. When the signal is modulated up to 

passband by the carrier with frequency fc, the signal bandwidth is 500 MHz. Figure 3-2 

shows the power spectral density of the Gaussian pulse in Figure 3-1. For the ultra-

wideband technology, the carrier frequency fc is comparable to the signal passband 

bandwidth of 500 MHz. The incoming signal is over-sampled in the time domain so that 

the Gaussian-shaped pulses are modeled accurately in MATLAB. Furthermore, the bit 

period Tb is modeled to be 32×Tc or 64 ns. That is, each time slot in the chip period 

consists of 16 consecutive Gaussian-shaped pulses. 

 

0 0.5 1 1.5 2 2.5 3

x 109

-140

-120

-100

-80

-60

-40

-20

0
Power Spectral Density of Gaussian Pulse (σ = 1.4 ns)

Frequency [Hz]

P
ow

er
 [d

B
r]

 
Figure 3-2: Power spectral density of Gaussian pulse with σ = 1.4 ns. 
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Figure 3-3 depicts the transmitted signal sequence in details. The preamble 

signal, which consists of a train of all 0’s, is used to test the functionality of the 

detector and the synchronizer. The burst length and pulse width are specified 

according to Figure 3-1.  

 

 
 

 

 

 

 

 

Figure 3-3: Transmitted signal sequence. 

 

The goal for the MATLAB synchronization simulation is: 1) to determine the 

optimal number of integration phases (N) and the number of preamble bits used for 

synchronization (Z) that minimize the probability of synchronization error and the time to 

synchronize, and 2) to plot the probability of synchronization versus SNR for different 

number of integration phases (N) used for the synchronizer. The low-complexity nature 

of a non-coherent UWB receiver has to be maintained. 
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3.1.2 MATLAB Simulation Results 

The MATLAB simulation results for the synchronization algorithm explained 

in section 2.1 are presented in this section. The optimal number of integration phases (N) 

and the optimal number of preamble bits (Z) are determined from MATLAB simulation. 

The function synchNonCoherent in MATLAB models the synchronization algorithm. The 

MATLAB code of the functions can be found in the appendix. 

The function synchNonCoherent has two main parameters and an output. The 

two important parameters are phaseSpace, which is the space between each integration 

phase, and numAve, which is the number of “0” bits in the preamble signal used for 

synchronization. Note that phaseSpace corresponds to ⎣ ⎦NTb  as explained in Chapter 2. 

numAve is exactly the variable Z described in the previous chapter. The output of the 

function is the time index of the synchronized point. The receiver jumps to that point and 

begins decoding the bits after the synchronization process is finished. The simulation is 

run 1,000 times for each set of parameter values to determine the probability of 

synchronization error.  

The synchronization error within ±2Tc means that the synchronization 

function fails if the time index of the synchronized point determined from 

synchNonCoherent function differs greater than ±2Tc with respect to the ideal 

synchronization point. The optimal parameters are determined when the probability of 

synchronization error is less than or equal to 0.5 percent. Tables A1 to A5 in the appendix 

present MATLAB simulation results for the probability of synchronization error when 

numAve varies. The numbers in bold indicate the minimum numAve such that the 

synchronization error is less than 0.5 percent. 
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For each simulation in Tables A1 to A5, the beginning of the preamble signal 

is truncated randomly over the interval of Tb to model random start. Specifically, the 

MATLAB simulation models the system in a way that the detection process starts 

anywhere over the first interval of time Tb with uniform probability distribution. Note that 

the signal-to-noise ratio (SNR) is fixed to 0.0 dB for all simulations in Tables A1 to A5. 

The optimal parameters determined from the simulations would work even in a very 

noisy AWGN channel because we use 0.0 dB SNR for channel simulation. Figure 3-4 

plots the results in Table A1. The more “0” bits the receiver covers in the integration 

process, the less probability of synchronization error the receiver achieves. 
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Figure 3-4: Synchronization simulation with phaseSpace = Tc and error within ±2Tc. 
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The time to synchronize the receiver is given by numAve×Tb. That is, the 

synchronization time grows linearly with the number of bit periods of integration. Table 

3-1 summarizes the results from Tables A1 to A5 by presenting the number of “0” bits in 

the minimum preamble signal that make the synchronization error probability less than 0.5 

percent for each phaseSpace value. For an error within ±2Tc, the phaseSpace of Tc requires 

22 bits of “0”; the phaseSpace of 2Tc requires 29 bits of “0”; and the phaseSpace of 3Tc 

requires 39 bits of “0”. It is difficult to achieve a synchronization error probability of less 

than 0.5 percent for phaseSpace of 4Tc or greater. This is because the synchronization error 

lies between –phaseSpace/2 and phaseSpace/2 with a uniform probability distribution. 

Therefore, in order to achieve the synchronization error probability of less than 0.5 percent, 

we need to allow an error within ±3Tc for the phaseSpace of 4Tc. 

 

phaseSpace Error within numAve % synch error 

Tc 

2Tc 

3Tc 

4Tc 

4Tc 

±2Tc 

±2Tc 

±2Tc 

±2Tc 

±3Tc 

22 

29 

39 

- 

17 

0.4 

0.5 

0.5 

- 

0.5 

 
Table 3-1: Synchronization simulation to determine the minimum number of “0” bits in the 

preamble signal that makes the synchronization error rate no more than 0.5% at 0 dB SNR 

 

According to the simulation results, the synchronization error probability of 

less than 0.5 percent for a phase space of Tc and error within ±2Tc can be achieved with 

numAve of 22 so that the minimum time to synchronize is ½×22×32×Tb (note that the 
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integrator integrates over a period of Tb/2; so we can collect energy of two phases in one 

bit period), which equals 22.53 μs. For the synchronization process, we use phaseSpace, 

which equals ⎣ ⎦NTb , of Tc and numAve, which equals Z, of 22. The phase space for the 

synchronization scheme is Tc so that the error rate within Tc still remains low. We cannot 

achieve an error rate within Tc if the phase space is 2Tc. Therefore, the integration phases 

(N*) is Tb/Tc = 32. These parameters are determined for the case when the signal-to-noise 

ratio (SNR) is 0.0 dB. Figures 3-5 and 3-6 plot the probability of synchronization versus 

the SNR of the AWGN channel. The actual results can be found in Tables A6 and A7 in 

the appendix. Note that for a very low SNR, the probability of synchronization varies 

linearly with the logarithm of SNR. 
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Figure 3-5: Probability of synchronization with  

phaseSpace = Tc, error within ±2Tc, and numAve = 22. 
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Figure 3-6: Probability of synchronization with  

phaseSpace = 2Tc, error within ±2Tc, and numAve = 25. 
 

3.2 Detection Algorithm Simulation 

The MATLAB simulation results for the detection algorithm explained in 

section 2.2 are presented in this section. The goal for the MATLAB detection simulation 

is: 1) to determine the optimal number of integration phases (Nd), the optimal number of 

“0” bits (Zd), the number of windows to declare the phase “winners” (W), and the number 

of “winners” to declare detection (D) that minimize the probability of missed detection 

and false alarm, and 2) to plot the probability of detection error versus numDetect for 

various conditions. The low-complexity nature of a non-coherent UWB receiver has to be 

maintained.  
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The function detection in MATLAB models the detection algorithm. The 

MATLAB code of the function can be found in the appendix. The function detection has 

four main parameters and two outputs. The four important parameters are: 1) phaseSpace, 

which is the space between each integration phase; 2) numAve, which is the number of 

“0” bits in the preamble signal used to determine a phase “winner”; 3) windowSize, which 

is the number of windows to declare the phase “winners”, and 4) numDetect, which is the 

number of “winners” to declare detection. 

phaseSpace corresponds to ⎣ ⎦db NT  as explained in Chapter 2. NumAve, 

windowSize, and numDetect are exactly the variables Zd, W, and D described in the 

previous chapter, respectively. The main output of the function is a Boolean indicating 

whether the receiver detects the preamble signal. The receiver will begin the 

synchronization process if it declares detection of the preamble signal. If not, the receiver 

will repeat the detection process. Similar to the synchronization simulation, the detection 

simulation is run 2,000 times for each set of parameters value: 1,000 times where the 

preamble signal is transmitted and another 1,000 times where the preamble signal is not 

transmitted, in order to determine the probability of detection error.  

Tables A8 to A19 in the appendix present the MATLAB detection simulation 

results. The four parameters discussed above are varied so that the minimum probability 

of detection error can be achieved. The probability of detection error is defined as: 

Pr(error) =  Pr(preamble signal transmitted) × Pr(missed detection) 

 + Pr(preamble signal not transmitted) × Pr(false alarm), 

where Pr(missed detection) is the probability of not declaring detection when the 

preamble signal is transmitted, and Pr(false alarm) is the probability of declaring 
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detection when no preamble signal is transmitted. For all simulations, windowSize is 

fixed to 11 so that a detection process is time efficient. The minimum probability of 

detection error is chosen for each set of parameters. 

 

phaseSpace 
numAve 

4 5 6 7 

4Tc 
3.65% 

(5) 
3.05% 

(5) 
1.90% 

(6) 
1.25% 

(6) 

6Tc 
4.35% 

(6) 
4.25% 

(6) 
3.30% 

(6) 
3.20% 

(6) 

8Tc 
6.45% 

(6) 
7.45% 
(6,7) 

6.95% 
(6) 

6.25% 
(7) 

 
Table 3-2: Minimum probability of detection error with windowSize = 11 

Note: The optimal numDetect values that minimize the probability of detection error for 

each case are reported in parentheses below the minimum probability of detection error. 

Assume equal probability of transmitting the preamble signal. 

 

Table 3-2 summarizes the results reported in Tables A8 to A19. The 

probability that the preamble signal is transmitted and the probability that the preamble 

signal is not transmitted are both set to 0.5. Also, the SNR is fixed to 0.0 dB to model a 

noisy channel. The optimal numDetect is chosen to minimize the probability of detection 

error for each set of the three parameters: numAve, phaseSpace, and windowSize. In the 

simulations, numAve are varied from 4 to 7 so that the detection time is not too long. 

According to Table 3-2, the minimum probability of detection error can be achieved 

when phaseSpace is 4Tc, numAve is 7, and numDetect is 6. The optimal probability of 

error is 1.25 percent.  
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Figure 3-7: Probability of detection error with phaseSpace = 4Tc and windowSize = 11. 
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Figure 3-8: Probability of detection error with windowSize = 11 and numAve = 7. 
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The four optimal parameters for the detector can thus be determined. Because 

phaseSpace is equal to ⎣ ⎦db NT , the optimal number of integration phases (Nd
*) is Tb/4Tc 

= 8. The optimal number of “0” preamble bits (Zd
*) is 7; the number of windows to 

declare the phase “winners” (W*) is set to 11; and the optimal number of “winners” to 

declare detection (D*) is 6. 

Figure 3-7 plots the probability of detection error with phaseSpace equal to 

4Tc and windowSize equal to 11. The four curves correspond to different numAve values. 

The more number of preamble bits is used in the detection algorithm, the less probability 

of detection error the receiver achieves. Figure 3-8 plots the probability of detection error 

versus numDetect for three phaseSpace values. For a small phaseSpace, the probability of 

false alarm is small, but the probability of missed detection is large. On the other hand, 

for a large phaseSpace, the probability of false alarm is large, but the probability of 

missed detection is relatively small.  

The probability of detection, which equals 1 minus the probability of detection 

error, is plotted versus the signal-to-noise ratio (SNR) in Figure 3-9. The four optimal 

parameters are used in the MATLAB simulation. The simulation results for this plot can 

be found in Table A20 in the appendix. Note that the probability of missed detection 

increases as the SNR decreases. However, the probability of false alarm is constant over 

SNR from -6.0 to 2.0 dB. Therefore, the probability of detection error increases as the 

SNR decreases because of the missed detection. In other words, as the SNR increases (i.e. 

less noisy channel), the probability of detection increases because the energy integration 

values become more accurate. 
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Figure 3-9: Probability of detection error versus SNR with optimal parameters. 

 

3.3 Decoding Algorithm Simulation 

Function uwbSim shown in the appendix implements and simulates the SFD 

matching algorithm and decoding algorithm for the header and the payload bits. The sub-

function rxNonCoherent receives the signal and produces decoded bits by the energy 

collection scheme explained in section 2.3. The important input to this function is the 

signal after the synchronization point. That is, the input signal includes the SFD code, the 

header, and the payload bits. The output of rxNonCoherent is the decoded bits 

determined by the energy collection algorithm. 

The MATLAB simulation is run 1,000 times to determine the bit error rate 

(BER), which equals to the total number of bits in error divided by the total number of 

bits transmitted. One thousand independent identically-distributed binary bits are 
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transmitted for each simulation. Table A21 in the appendix presents the payload decoding 

simulation results. The bit error rate (BER) is measured for various values of the signal-

to-noise ratio (SNR). The condition of the channel affects the performance of the 

decoder. Specifically, the bit error rate increases, as the signal-to-noise ratio decreases.  

Figure 3-10 plots the natural logarithm of the bit error rate, log(BER), versus 

the signal-to-noise ratio (SNR). The bit error rate drops sharply (around 2-4 orders of 

magnitude) as the SNR increases from 0 dB to 7 dB. We can conclude that the bit error 

rate is less than 10-5 for the SNR of greater than 7 dB. Consequently, the decoding 

algorithm works effectively in a normal AWGN channels.  
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Figure 3-10: Payload decoding simulation. 
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3.4 Summary 

In summary, this chapter determined the optimal parameters for the detection 

and the synchronization algorithms explained in the previous chapter. The receiver 

system and algorithms are simulated in MATLAB. Table 3-3 reports the optimal values 

of important parameters determined in sections 3.1 and 3.2. Chapter 4 describes the 

digital baseband design and implementation for a non-coherent ultra-wideband receiver. 

 

Parameter Description Value 

N* 

Z* 

Nd
* 

Zd
* 

W* 

D* 

Number of integration phases for synchronization 

Number of preamble bits used for synchronization 

Number of integration phases for detection 

Number of preamble bits used for detection 

Number of windows to declare a phase “winner” 

Number of “winners” to declare detection 

32 

22 

8 

7 

11 

6 

 
Table 3-3: Optimal parameters determined from MATLAB simulations 
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Chapter 4 

Digital Baseband Architecture 

 

4.1 Digital System Overview 

A non-coherent ultra-wideband receiver is implemented in Verilog, a 

hardware description language (HDL). The Verilog code is then mapped to hardware. 

This project utilizes the embedded system design technique for realizing the digital 

system. This technique leverages the advanced capabilities of today’s integrated circuit 

technology by implementing many of the components of the system within a field 

programmable gate array (FPGA). An FPGA is a good choice for implementing a digital 

baseband system for an ultra-wideband receiver because it offers large logic capacity, 

exceeding several million equivalent logic gates, and includes dedicated memory 

resources. It is also capable of embedding special hardware circuitry that is often needed 

in digital systems, such as baseband digital signal processing blocks. The Verilog code is 

implemented along with the rest of the system by using the logic and memory resources 

in the FPGA fabric. In the final system to be implemented by other members of the 

research group, a radio frequency (RF) and an analog front-end will interface with the 

FPGA, resulting in a complete radio receiver. 
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Figure 4-1: High-level block diagram. 
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Figure 4-1 shows the high-level block diagram of the FPGA along with the 

analog and the mixed-signal components. The receiver system receives an analog 

transmitted signal. The integrator and the analog-to-digital converter (ADC) accumulate 

the energy of the signal. The digital baseband in the FPGA contains a demodulator, 

which serially runs the detection, the synchronization, and the decoding processes 

described in the previous chapters. The FPGA outputs the decoded digital bits. With the 

optimized parameters for the algorithms described in Chapter 3, the bit error rate is small 

even in a presence of noise. 

This chapter presents the digital baseband architecture and design for a UWB 

receiver. The finite state machines are designed separately for each operational block. 

The major finite state machine controls the operation and the interaction of all blocks. 

The digital design is implemented in Verilog. 

 

4.1.1 System Organization 

The ultra-wideband receiver system consists of three main modules: 

RX_MODEL, COUNTER, and DEMOD, as illustrated in Figure 4-2. All blocks except for the 

square-and-integrate module and the analog-to-digital converter are implemented in an 

FPGA. The system has eight input signals, and produces three output signals. One of the 

input signals, rxsig, is analog; the rest are digital bits. The receiver system receives a 

wirelessly transmitted signal and determines the payload bits and their length. 

Specifically, decodedBit signal outputs the payload bits, while detect_payload and 

byte_length are the qualifier of the payload (i.e., detect_payload goes high only when the 

detect_payload signal is valid) and its length in bytes, respectively. 
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Figure 4-2: Overall block diagram of the receiver system.
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The RX_MODEL module receives an analog transmitted signal, rxsig, and 

calculates the energy of the signal over half a chip period, Tb/2. This module operates at a 

clock frequency of 1/Tc, which is approximately 500 MHz. In other words, the clock 

period is Tc or 2 ns. Because Tc is the phase space of the synchronization algorithm 

explained in Chapter 2, this clock is called “phase clock” (pclk). The RX_MODEL module 

controls the integration process and specifies the phase at which the integration begins. 

This block squares and integrates the signal in analog domain, and then quantizes the 

energy so that the output, energyq, is a 6-bit digital signal. Qual is the qualifier of the 

quantized energy output. All blocks in Figure 4-2 except for the square-and-integrate 

module and the analog-to-digital converter are implemented by the author. 

The COUNTER module is both a phase counter and a clock divider. It counts 

the phase from 0 to 15 at every clock period Tc. This module also generates a 

synchronous clock signal with period 16Tc. That is, the slower clock toggles at every 8Tc. 

This clock operates the DEMOD module, which is the core module for the demodulating 

process. Therefore, this slower clock is called “chip clock” (cclk). 

The DEMOD module processes the detection, the synchronization, and the 

decoding algorithms in order to determine the transmitted payload bits. The optimized 

parameter values determined in Chapter 3 are used in each process in order for the 

receiver to achieve reliable performance in a presence of additive white Gaussian noise. 

This module operates with the chip clock (cclk), whose frequency is 1/(16Tc) or 

approximately 31.25 MHz. This module runs the three processes only when the hunt 

signal is asserted high. Num_division specifies the maximum possible value of the phase 

for integration. Detect_timeout and decode_timeout signals indicate the maximum time 
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that the module can execute the detection and the decoding process, respectively. Note 

that the bit size of each signal is parameterized so that the Verilog code is flexible for any 

change in bit resolution. 

 

4.1.2 Receiver’s Functionality 

Figure 4-3 shows the major sequence of operations of the overall receiver 

system. The demodulator system is initialized when the reset signal is asserted. The 

demodulator then waits until the hunt signal goes high to begin the following processes 

serially. First, the detection process determines whether the receiver receives a train of 

preamble signals. If the preamble signal is detected, the synchronization process begins. 

If the preamble signal is not detected, then the detection process is repeated until the 

demodulator detects the preamble signal or until the detection time reaches the pre-

specified timeout limit. Second, the synchronization process specifies the correct phase of 

integration, at which the integral of the preamble signal over half a chip period is 

maximized. Finally, the decoding process produces output bits by comparing the energy 

in the first and the second half of the chip period. If the last eleven bits match perfectly 

with the eleven-bit Barker SFD code, then the next eight bits specify the length in bytes 

of the payload. The demodulator repeatedly finds the SFD code from the decoded bits 

until the SFD searching time reaches the pre-specified timeout limit. After the 

demodulator finishes all three processes, it waits until the hunt signal goes high again. 
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Figure 4-3: Overall control flow. 

 

The timing diagram of the input and the output signals of the demodulator that 

interact with the RX_MODEL module is shown in Figure 4-4. The demodulator asserts the 

enable signal when it wants the integrator to start integrating the received signal at a 

specified phase number. The RX_MODEL module processes the request from the 

demodulator and outputs 6-bit quantized energy values along with a qualifier, qual. The 

delay of the integration scheme can be varied over different input/output conditions. Note 

that the implementation of the detection and the synchronization schemes only changes 

phase forward. 
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Figure 4-4: Timing diagram of the inputs and the outputs  

of the demodulator that interact with RX_MODEL module. 

 

The timing characteristics of the output signals of the overall receiver are 

illustrated in Figure 4-5. The detect_payload signal goes high after the demodulator 

detects the eleven-bit SFD code and the eight-bit length (in bytes) of the payload is 

decoded. In other words, detect_payload is high from when the first payload bit is 

decoded.  DecodedBit signal outputs bits at every Tb or 32Tc. The propagation delay from 

when the preamble is received to when detect_payload goes high is variable and depends 

on the condition of the channel. 
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Tb/2

cclk

detect_payload

byte_length

decodedBit

Tb = 32Tc  
Figure 4-5: Timing diagram of the outputs of the receiver. 

 

4.2 Receiver’s Front-end Module Description and Implementation 

The receiver’s front-end contains two main modules: RX_MODEL and COUNTER. 

Figure 4-6 presents the block diagram of the receiver’s front-end. There are five input and 

three output signals that feed into the demodulator module. Rxsig is the wirelessly 

transmitted signal, which is observed by the receiver. This signal is in continuous time and 

has analog value. The reset_rx signal resets and initializes the RX_MODEL module. Pclk is 

the phase clock with period Tc. In the actual system, Tc is approximately 2 ns, but a slower 

clock can be used to test the system operation. The enable and phase signals come from the 

demodulator to start the integrating process at the specified phase number. Since one chip 

period is divided into 16 phases, the phase signal contains 4 bits. Cclk is the chip clock 

with period 16Tc. The receiver’s front-end outputs 6-bit quantized energy, energyq, every 

chip period with a qualifier, qual. 
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Figure 4-6: Receiver’s front-end block diagram in the actual system. 

 

4.2.1 Rx_model 

In the final system, the RX_MODEL module consists of the analog square-and-

integrate module, the analog-to-digital converter (ADC), and the main controller. Only 

the controller is implemented in digital baseband. The other two sub-modules are not 

implemented in this project. However, a digital block that squares and integrates 

incoming signals is modeled in digital baseband in order to test the RX_MODEL module. 

On a reset (reset_rx is high), the controller stops enabling the integrator (EN is low) so 

that qual and energyq remain zero. The square-and-integrate module first squares rxsig 

and then integrates the result while the EN signal is high. The typical integration period 

for a non-coherent ultra-wideband receiver is half a chip period, Tb/2. The analog energy 
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output is the result of the square-and-integrate process. Note that energy is zero when EN 

is low to initialize the integrator. 

The analog-to-digital converter samples energy at frequency 1/(16Tc) or 

approximately 31.25 MHz and quantizes the signal such that the resulting digitized 

energy, energyq, is a 6-bit digital signal. This energyq signal is an important input of the 

demodulator because the detection, the synchronization, and the decoding algorithms are 

based on the energy-collection scheme. Moreover, energyq changes value only at each 

positive edge of the chip clock (cclk). 

The controller is a purely digital module, which operates at the phase clock 

with frequency Tc. It takes the enable and the 4-bit phase signals from the demodulator 

and enables the square-and-integrate module at the right phase. Specifically, EN goes 

high only when enable is asserted and the phase counter, phase_pclk, is equal to the 

phase input. The controller sets qual high when the energyq signal is valid (i.e., when the 

analog-to-digital converter finishes the process and outputs the digital bits). 

 

rxsigsq

RX_MODEL

COUNTER

4 phase_pclk

pclk (Tc)

qual
energyq
enable
phase 4

6

reset_rx

cclk (16Tc)

16

 
Figure 4-7: Receiver’s front-end block diagram in the FPGA testing system. 
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In order to model the system for testing and debugging in the digital domain, 

the receiver’s front-end is modeled in an FPGA, as shown in Figure 4-7. That is, the 

square-and-integrate sub-module is modeled in the digital domain. The RX_MODEL 

module is implemented in Verilog, which is mapped to hardward (FPGA). All inputs and 

outputs to the receiver’s front-end are the same as those in the actual system, except for 

rxsigsq. The 16-bit rxsigsq signal is the square of rxsig, which is sampled at frequency 

1/Tc. The RX_MODEL module imitates the integral operation by summing the square of the 

received signal from a point where phase_pclk is equal to the phase input and the enable 

signal is asserted. The summing period is typically 16Tc. Since we sum 16 samples of the 

16-bit rxsigsq signal, the resulting energy has 16+4 = 20 bits. The module then outputs 

only six most significant bits of the 20-bit energy, resulting in the 6-bit energyq output 

signal. The controller sets qual high when the energyq signal is valid 

 

4.2.2 Counter 

The counter module has two main functions. First, it divides the clock period 

by a factor of 16. This resulting clock then operates the demodulator. Second, it keeps 

track of the phase number for each positive edge of the phase clock (pclk). The counter 

module has a 4-bit internal register, counter[3:0], which increments at every positive 

edge of pclk. The phase_pclk output is literally equal to counter. Since cclk transitions 

every 8Tc, it is equal to the most significant bit of counter (i.e., cclk equals to counter[3]).  
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4.3 Demodulator Module Description and Implementation 

The demodulator has four main modules and two muxes, as shown in Figure 

4-8. Although each module has a specific functionality and responsibility in the system, 

they interact with each other to perform the desired processes. Each module is 

discussed in this section. 

The four main blocks in the demodulator are: 1) the detector, 2) the 

synchronizer, 3) the decoder, and 4) the major finite state machine (FSM). There are also 

two 4-to-1 muxes. The detector determines whether the preamble signal is received. The 

synchronizer specifies the correct integration phase for the decoder. The decoder 

produces bits and performs the SFD matching algorithm. The major finite state machine 

controls the three processes. There are eight input and five output signals for the 

demodulator. Two of the eight outputs, enable and phase are fed into the RX_MODEL 

module; the rest, detect_payload, byte_length, and decodedBit, are the output signals of 

the entire receiver system. The demodulator module operates at a clock frequency of 

1/(16Tc). On a reset (reset is high), all operations are halted and the module is initialized. 

The 4-bit num_division input specifies the number of phases per chip clock. 

Energyq and qual are the 6-bit quantized energy and its qualifier from the receiver’s front-end, 

respectively. The demodulator waits until the hunt signal goes high to process the detection, the 

synchronization, and the decoding algorithms serially. Detect_timeout and decode_timeout 

specify the timeout limit for the detection and the decoding process, respectively. The 

demodulator starts the integration process of the receiver’s front-end by asserting the enable 

signal and assigning the beginning phase of integration to the 4-bit phase output. 

Detect_payload is a qualifier of decodedBit. Byte_length is the length in bytes of the payload. 
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Figure 4-8: Demodulator block diagram. 
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 The four main modules interact with one another so that the algorithms can 

be processed serially. The detect_preamble signal is sent from the detector to the major 

FSM in order to indicate whether the preamble signal is detected. Likewise, the 

detect_sfd signal is sent from the decoder to the major FSM to indicate whether the 11-bit 

Barker code in the received packet is detected. The synchronizer outputs the 5-bit 

int_phase signal, which specifies the correct phase of integration, to the decoder and the 

major FSM once the synchronization process is finished. The four lower bits of int_phase 

specify the phase number, and the most significant bit specifies whether we should start 

integrate in the first or the second half of the bit period. The count signal, which is 

generated by the major FSM, toggles between zero and one every chip clock period. 

Count indicates whether each chip period belongs to the first or the second half of the bit 

period, Tb. 

The major-minor finite state machine abstraction method is utilized in the 

demodulator. The detection, synchronization, and decoding processes are subtasks of the 

demodulating process. The subtasks are encapsulated in “minor” finite state machines 

with common reset and cclk. The simple communication abstraction is used for the major 

FSM to control the operation of the minor FSMs. For example, detect_start tells the 

detector to begin the operation and detect_busy, which is an output from the detector, 

tells the major FSM whether the detection process is done. Another control signal from 

the major FSM, detect_stop, forces the detector to terminate its process. The major-minor 

finite state machine abstraction is good for a non-coherent ultra-wideband receiver 

because each minor process requires a variable period of time, which depends on the 

distortion level and the length of the packet. 
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There are three main sections for the Verilog code of each module: 1) defining 

states with parameter keyword, 2) defining a state register and some outputs in the 

sequential always block, and 3) specifying a next-state logic within a combinational 

always block. The state gets updated at every positive chip clock edge. 

The two muxes select the enable and the phase signals from the detector, the 

synchronizer, and the decoder modules. If any of the three modules is in operation, then 

the enable and the phase signals from that particular module are selected by the muxes. If 

none of the three modules is in operation, then enable and phase are both zero. Since the 

three modules are serially processed, the two muxes always choose the correct signals 

from the only module that is in operation. 

 

4.3.1 Detector 

The detector determines whether the binary pulse position modulation 

(BPPM) preamble signal is received. The process is repeatedly executed unless the 

timeout limit is reached. The detection algorithm is based on energy collection, as 

explained in Chapter 2. For an AWGN channel, the detection algorithm selects one of the 

8 integration phases (the detection phase space is 4Tc) that maximizes the integral of the 

received signal energy. A “winner” is defined as a phase that has the maximum energy 

when the energy collection process covers 7 bits of all 0’s. The process of choosing a 

“winner” is repeated 11 times. The receiver declares that it detects the preamble signal 

when any phase wins 6 times. The detection process is halted, and the synchronization 

process then begins. If there is no phase that wins at least 6 times, the receiver declares 

that it does not detect the preamble signal. The detection process is then repeated until the 
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receiver detects the preamble signal. Since the detection process can be done with 6 

winners, the number of preamble bits used by calling a detector once is at least ½ × 8 

phases/winner × 7 bits/phase × 6 winners = 168 bits and at most ½ × 8 phases/winner × 7 

bits/phase × 11 winners = 308 bits. The control flow of the detector is shown in Figure 4-9. 

 

Initialize

Do energy collection 
for all phases

Find a “winner”

Is there a 
phase that 

wins at least 6 
times?

detect_preamble = 1

Have we 
determined 
11 winners?

Yes

No

No

Yes

reset

 

Figure 4-9: Control flow of the detector. 

 

There are eight input signals going into the detector module: cclk, reset, 

num_division, qual, energyq, detect_start, detect_stop, and count. The module outputs 

four signals: a detect_enable and a 4-bit detect_phase signals to the two muxes; and 

detect_preamble and detect_busy to the major finite state machine. The most important 

output is detect_preamble, which is high when the detector finds a phase that “wins” at 
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least 6 out of 11 times. This module implements a Mealy machine because the output 

signals depend on both the current state and the current inputs. 

Internal registers are used as counters for various parameters. CountZ keeps 

track of the number of bits per phase, from which the detector should collect energy. 

CountW counts the number phase “winners” that the detector determines so far. 

Winpoint[0] to winpoint[6] hold the number of winning for all eight detection phases. 
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Figure 4-10: Detector block diagram. 

 

Figure 4-10 shows the detector block diagram. The energy signal from the 

receiver’s front-end is accumulated over 7 preamble bits. Next, the phase “winner” with 

maximum energy across all 8 phases is determined. The winning counter increments the 

number of wins for that phase. This process is repeated until one phase wins 6 times or 

until 11 winners are determined but no phase wins 6 times. 
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In the sequential always block, the state parameter gets updated at every 

positive edge of cclk. The detection process is implemented as a finite state machine with 

six states, as illustrated in Figure 4-11. If reset or detect_stop is asserted, the system is 

halted and is initialized in the IDLE state. In this state, all output signals are set to zero. 

The state machine transitions to the next state, COLLECT0, if the major FSM asserts 

detect_start and the integrator is not in operation. Another condition that count has to be 

zero is added so that the energy collection process begins at the first half of the bit period. 

Note that detect_busy is high in all states, except for IDLE, to tell the major FSM that the 

detector is in operation. 
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detect_enable = 1

detect_start & !qual& !count qual

qual
{countZ++}

detect_busy = 1
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Figure 4-11: State transition diagram of the detector. 
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In COLLECT0 and COLLECT1, the energy in the first and the second half of the 

chip period, respectively, is accumulated for 7 times per phase. The detect_enable signal 

is asserted to start the integrator. For each phase value, the state machine toggles between 

the two states for 7 times. The detector then transitions to the DELAY state, where the 

phase that has maximum energy so far is determined and the phase of integration is 

incremented. The energy-collection process is repeated until the detector collects energy 

over all 8 phases. The state machine transitions to WINNER, where the first phase 

“winner” is identified and the winning point for that particular phase is incremented. Also, 

the counters and other internal registers are initialized before the energy-collection 

scheme is repeated all over again. If there is any phase that wins at least 6 times, then the 

detect_preamble goes high in the DETECT state. If 11 winners are determined but there is 

no phase that wins at least 6 times, then the detector declares that the preamble signal is 

not detected and the state machine loops back to the IDLE state. 

 

4.3.2 Synchronizer 

The synchronizer determines the phase of synchronization, where the energy 

of the binary pulse position modulation (BPPM) preamble signal is maximized. The 

process begins only if the preamble signal is detected. Similar to the synchronization 

algorithm, the detection scheme is based on energy collection, as explained in Chapter 2. 

For an AWGN channel, the synchronization algorithm selects one of the 32 integration 

phases (the synchronization phase space is Tc) that maximizes the integral of the received 

signal energy. The energy collection process for each phase covers 22 preamble bits of all 

0’s. The synchronizer processed only once before the decoding process begins. The 
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number of preamble bits used by a synchronizer is ½ × 32 phases × 22 bit/phase = 352 

bits. Therefore, the length of a detection process ranges from 48% to 88% of the length of 

a synchronization process. The control flow of the synchronizer is shown in Figure 4-12. 

 

Initialize

Do energy collection 
for all phases

Specify the correct 
integration phase

reset

 

Figure 4-12: Control flow of the synchronizer. 

 

There are seven input signals going into the detector module: cclk, reset, 

num_division, qual, energyq, synch_start, and count. The module outputs four signals: a 

synch_enable and a 4-bit synch_phase signals to the two muxes; int_phase to the decoder 

and the major finite state machine; and synch_busy to the major FSM. The most 

important output is the 5-bit int_phase signal, which returns the correct phase of 

integration for the decoding process. Similar to the detector, this module implements a 

Mealy machine because the output signals depend on both the current state and the 

current inputs. There is also an internal register, countZ, which keeps track of the number 

of bits per phase, from which the detector should collect energy.  
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Figure 4-13: Synchronizer block diagram. 

 

Figure 4-13 shows the synchronizer block diagram. The energy signal from 

the receiver’s front-end is accumulated over 22 preamble bits. Next, the phase with 

maximum energy across all 32 phases is determined. This resulting phase is the correct 

phase of synchronization. 

According to Figure 4-14, there are five states for the finite state machine that 

implements the synchronizer. On a reset, the system is halted and is initialized in the IDLE 

state. In this state, all output signals are set to zero. The state machine transitions to the 

next state, COLLECT0, if the major FSM asserts synch_start and the integrator is not in 

operation (i.e., qual is low). Also, count has to be low so that the energy collection 

process begins at the first half of the bit period. Note that synch_busy is high in all states, 

except for IDLE, to tell the major FSM that the synchronizer is in operation. 
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Figure 4-14: State transition diagram of the synchronizer. 

 

In COLLECT0 and COLLECT1, the energy in the first and the second half of the 

chip period, respectively, is accumulated for 22 times per phase. That is, for each phase 

value, the state machine toggles between the two states for 22 times. The synch_enable 

signal is asserted to start the integrator. The synchronizer then transitions to the DELAY 

state, where the phase that has maximum energy so far is determined and the phase of 

integration is incremented. The energy-collection process is repeated until the 

synchronizer collects energy over all 32 phases. Note that two phases are done in each 

energy-collection loop. The state machine transitions to SYNCH when the phase of 

synchronization is determined and returned in the int_phase output signal. The state 

machine then loops back to the IDLE state. 
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4.3.3 Decoder 

The decoder determines the received bits by energy collection. It compares the 

energy in the first half and the second half of the bit period with respect to the correct 

synchronization phase determined from the synchronizer. If the energy in the first half of 

the bit period is greater than that in the second half, then decodedBit is zero; otherwise, it 

is one. The detection process starts promptly after the synchronization process finishes. 

The decoder decodes preamble bits, an 11-bit SFD code, an 8-bit header that specifies the 

length in bytes of the payload, and payload bits sequentially. The decoding time thus 

depends on the length of the payload. If the SFD code is not found in the packet, the 

decoding process halts when the timeout limit is reached. 

There are nine input signals going into the detector module: cclk, reset, 

num_division, qual, energyq, int_phase, decode_start, decode_stop, and count. The 

module outputs five signals: a decode_enable and a 4-bit decode_phase signals to the two 

muxes; decode_busy, detect_sfd, and decodedBit to the major FSM. Detect_sfd tells the 

major FSM that the 11-bit SFD code is detected in the received packet. The detector 

module implements a Mealy machine because the output signals depend on both the 

current state and the current inputs. There is also an internal register that holds the last 

eleven decoded bits in order to do the SFD matching algorithm.  

The decoder module contains a sub-module, SFD_MATCH, as shown in Figure 

4-8. This sub-module takes the last eleven decoded bits, along with the 11-bit pre-

specified Barker SFD code, and outputs the sum of the results when the XNOR operator 

is executed on each corresponding bit of the two inputs. This sum indicates how many 

bits of the last eleven decoded bits match with the 11-bit Barker code. Detect_sfd goes 
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high when the Barker code is found in the packet. It will stay high until the all the 

payload bits are decoded.  

 

decode_busy = 0
decode_enable = 0

decode_busy = 1
decode_enable = 1

decode_busy = 1
decode_enable = 1

Do SFD 
matching

decode_start & !qual& 
count = int_phase[4]

qual

qual

!decode_start || 
qual || count = 
!int_phase[4] IDLE COLLECT0 COLLECT1

decode_stop  
Figure 4-15: State transition diagram of the decoder. 

 

The decoder is implemented as a small finite state machine with three states, 

as illustrated in Figure 4-15. If reset is asserted, the system is halted and is initialized in 

the IDLE state. In this state, all output signals are set to zero. The state machine transitions 

to the next state, COLLECT0, if the major FSM asserts decode_start and the integrator is 

not in operation (i.e., qual is low). Also, count has to be equal to the most significant bit 

of int_phase so that the energy collection process begins at the first half of the 

synchronized bit period. Decode_busy is high, when the decoder collects the energy from 

the received signal and produces bits, so that the major finite state machine recognized 

that the decoder is still in operation.  

The energy in the first and the second half of the chip period is repeatedly 

accumulated in COLLECT0 and COLLECT1, respectively. The decode_enable signal is 

asserted to start the integrator. The state machine toggles between the two states when the 

qual signal from the integrator is high. DecodedBit is produced right after the energy in 

the second half of the bit period is collected. If the timeout limit is reached without 
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finding the SFD code or all payload bits are decoded, then decode_stop signal is asserted 

by the major FSM and the decoder transitions back to the IDLE state.  

 

4.3.4 Major Finite State Machine 

The major finite state machine governs the operations of the detector, the 

synchronizer, and the decoder. As previously described in this chapter, the major-minor 

finite state machine abstraction is used as a method to control each operation. The three 

processes run sequentially. Therefore, the major FSM communicates to only one module 

at a time. Apart from controlling the overall operation of the demodulator, the major FSM 

keeps track of time spent in the detection and the decoding processes. If the timeout limit 

for the detector (detect_timeout) or the decoder (decode_timeout) is reached, then the 

demodulator halts and loops back to the initial state. Moreover, the major FSM extracts 

the header and the payload from decodedBit, which is determined by the decoder. 

There are fourteen input signals going into the detector module: cclk, reset, num_division, 

qual, hunt, int_phase, detect_preamble, detect_sfd, decodedBit, detect_busy, synch_busy, 

decode_busy, detect_timeout, and decode_timeout. The module outputs eight signals: 

detect_start and detect_stop to the detector; synch_start to the synchronizer; decode_start 

and decode_stop to the decoder; count for the three modules above; and detect_payload 

and byte_length to an external user. The start/stop signals from the major FSM implement 

a major-minor finite state machine abstraction. The count signal, which toggles between 

zero and one every chip clock period, indicates whether each chip period belongs to the 

first or the second half of the bit period, Tb. Detect_payload is high when the decodedBit 
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outputs payload bits. Moreover, the 8-bit byte_length output specifies the length in bytes 

of the payload. 

Internal registers are used as counters for various parameters. Timeout counts 

time when the demodulator executes the detection or the decoding process. CountBit 

keeps track of the number of decoded payload bits. The 11-bit bit_length register holds 

the length in bits of the payload. Because one byte equals to eight bits, the eight most 

significant bits of bit_length are equal to byte_length; the tree least significant bits are all 

zeros. Each internal register gets updated at every positive edge of cclk. 

The major FSM is implemented as a finite state machine with twelve states. 

Figure 4-16 shows the state transition diagram and some output assignments for the 

major finite state machine. If the reset signal is asserted, the process is halted and the 

state machine loops back to the IDLE state, where all parameters, except for the stop 

signals, are initialized to zero. The overall demodulation process starts when hunt is high. 

The major FSM starts each process serially. Three states are used for calling each 

module; for example, SYNCH0, SYNCH1, and SYNCH2 control the synchronizer. In the first 

state, the major FSM waits until the minor FSM is ready. Once the minor FSM is ready 

(the busy signal goes low), the major FSM transitions to the second state and triggers 

the minor module by asserting the start signal. If the minor module starts, the busy signal 

goes high and the major FSM transitions to the third state, where it waits until the minor 

FSM is done. That is, if the busy signal goes low, then the major FSM knows that the 

minor module completes the process and the next procedure can begin. 
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Figure 4-16: State transition diagram of the major finite state machine. 
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In the DETECT2 state, the major FSM waits for the detector to be done. If the 

demodulator is stuck during the detection process for too long without detecting the 

preamble signal, the major FSM goes to IDLE. Otherwise, if the preamble is not detected 

and the detector already finished the process, then the state machine loops back to 

DETECT0 in order to restart the detection process. If the detector is working, then timeout 

is incremented. The major FSM transitions to SYNCH0 to start the synchronization process, 

if the preamble signal is detected and the detector finishes its process. The decoder 

unconditionally starts after the synchronizer is done. In the DECODE2 state, if detect_sfd 

goes high, the state machine transitions to header in order to extract the header bits from 

decodedBit. If the timeout limit for decoding is reached, then the demodulator stops 

decoding and goes to the initial state. Again, if the decoder is processing, then timeout is 

incremented and the major FSM stays in the same state. 

After the 11-bit SFD code is found in the received signal, the eight next 

decoded bits are stored in byte_length to specify the length of the payload. If countBit is 

eight, then the major FSM transitions to the next state, PAYLOAD. In this state, 

decode_payload is set to one to indicate that the payload bits are valid. If the demodulator 

decodes all payload bits (i.e., countBit equals to bit_length), then the overall demodulating 

process is finished and the major FSM loops back to the IDLE state. Otherwise, the FSM 

stays in the PAYLOAD state and counts how many bits the decoder produces so far. 
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4.4 Summary 

This chapter explained the digital baseband architecture of a non-coherent 

ultra-wideband receiver. The Verilog implementation of the receiver is mapped to 

hardware. The embedded system design technique for realizing the digital baseband 

system, which implements many of the components of the system within a field 

programmable gate array (FPGA), is used to build a receiver. Chapter 5 describes the 

FPGA implementation, the system set-up for testing and debugging, and the performance 

of a non-coherent ultra-wideband receiver. 
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Chapter 5 

Receiver Implementation in FPGA 

 

5.1 FPGA Testing System 

The receiver digital system is implemented in an FPGA. The total number of 

gates for the design is 6,673. The UWB receiver system is connected to a Tektronix 

Logic Analyzer machine in order to verify the implementation and measure the 

performance. A Tektronix Logic Analyzer consists of a pattern generator and a logic 

analyzer. A pattern generator generates output signals, which can be pre-specified in an 

input text file. On the other hand, a logic analyzer measures incoming signals and reports 

them in an output text file. 

 

MATLAB

Pattern 
Generator

Logic 
Analyzer

Input
File

Output
File

UWB 
Receiver 
(FPGA)

decoded bits

rxsigq

 
Figure 5-1: Test set-up for the receiver digital system. 
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The FPGA testing system for the UWB receiver is shown in Figure 5-1. The 

wirelessly received signal is modeled in MATLAB for different channel conditions (i.e., 

different signal-to-noise ratios) and is saved in text files. The received signal is modeled 

by adding the Gaussian noise, which is randomly generated in MATLAB for a particular 

SNR level, to the oversampled transmitted signal. The received signal, rxsig, is 

normalized such that the average power of the normalized signal, rxsig*, is equal to 0.5. 

Specifically, rxsig is multiplied by a constant factor: 

∑
=

=⋅= N

i
irxsig

Nrxsigrxsig

1

22
,* αα , 

where N is the length of rxsig vector. The normalized signal is saturated and quantized to 

8 bits. On average, the digitized signal lies in the middle of the 8-bit range. 

In a Tektronix Logic Analyzer machine, MATLAB reads an input text file and 

starts the pattern generator. The pattern generator then outputs four main signals to the 

FPGA. The four signals are reset, reset_rx, hunt, and rxsiqsq, as shown in Figure 4.7. 

Rxsigsq is the square of the quantized and normalized received signals. The logic 

analyzer measures the output signals from the UWB receiver at pre-specified times and 

saves the results in a text file. The three outputs of the UWB receiver system are 

decodedBit, byte_length, and detect_payload, which is the qualifier of the first two 

signals. Figure 5-2 shows a logic analyzer screenshot when the signal packet is 

transmitted in a 3 dB SNR channel. The detect_payload signal goes high right after the 

header bits to indicate that the payload bits and the length outputs are both valid. 
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Detect_payload

Decoded Bits

Byte Length

SFD Header Payload

 
Figure 5-2: Logic analyzer screenshot. 

 

5.2 Performance 

The digital baseband implementation of the UWB receiver system in Verilog 

is fully tested. The performance of the digital system for detection, synchronization, and 

decoding processes is consistent with the performance measured from MATLAB 

simulation. Figure 5-3 presents the detection performance in MATLAB and Verilog. 

Note that the probability of transmitting a signal is assumed to be 0.5. The probability of 

detection increases, as the signal-to-noise ratio increases. Verilog shows a slightly worse 

probability of detection because we lose accuracy of data from quantizing the received 

signal and its energy. The maximum time for detection is 19.71 μs. Moreover, the UWB 

detector performs reasonably well in noisy channels. At 0 dB SNR, the missed detection 

rate is 2.1% and the false alarm rate is 1.2%. The data for receiver’s performance in 

MATLAB and Verilog can be found in the appendix (section 7.5). 
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Figure 5-3: Detection performance. 

 

The synchronization performance in MATLAB and Verilog is illustrated in 

Figure 5-4. The probability of synchronization increases with the signal-to-noise ratio 

because at high SNR, the energy received is approximately equal to the energy 

transmitted. Since the modeled signal is oversampled in MATLAB, the error within ±2Tc 

should be less than the error within ±2Tc but greater than the error within ±Tc measured 

from Verilog. The time to synchronize is 22.53 μs, which is longer than the detection 

time. At 0 dB SNR, the synchronization error rate (within ±2Tc) is 0.5%. 
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Figure 5-4: Synchronization performance. 

 

Lastly, Figure 5-5 presents the decoding performance of the digital system 

comparing to MATLAB simulation results. The bit error rate (BER) increases, as the 

signal-to-noise ratio decreases. The performance measured in Verilog is similar to the 

performance obtained from MATLAB simulation. Because of digital bit quantization, the 

receiver system implemented in Verilog achieves slightly higher bit error rate. At 0 dB 

SNR, the bit error rate is 8.6%, but it drops sharply to 0.1% at an SNR of 5 dB. 

 



86 
 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10-3

10-2

10-1

SNR [dB]

B
it 

E
rro

r R
at

e 
(B

E
R

)

Decoding Performance in MATLAB and Verilog

Verilog
MATLAB

 
Figure 5-5: Decoding performance. 
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Chapter 6 

Conclusion 

 

Ultra-wideband (UWB) communication is an emerging technique for wireless 

transmission in the 3.1-10.6 GHz unlicensed band with signal bandwidths of 500 MHz or 

greater. This technology is capable of transmitting more data in a given time than other 

existing technologies. Therefore, UWB technology can be used in various wireless 

personal area network (WPAN) applications. A non-coherent receiver based on energy 

collection achieves low complexity, low cost, and low power consumption. Because 

many ultra-wideband technology applications require efficient energy consumption, the 

non-coherent method is used to implement a receiver.  

This thesis presents the algorithms and the digital implementation for a non-

coherent ultra-wideband receiver. The detection, synchronization, and decoding 

algorithms are implemented in MATLAB and mapped to hardware (FPGA). Crucial 

parameters for each of the three algorithms are determined from MATLAB simulations, 

so that the receiver performs efficiently in noisy channels and the digital implementation 

maintains low complexity. 

For the digital system implementation of the UWB receiver system, the major-

minor finite state machine abstraction is used since each process requires a variable 

period of time. The demodulator module controls the energy-collection process for each 
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algorithm. In the final system, a radio frequency and an analog front-end will interface 

with the FPGA, resulting in a complete radio receiver. 

The UWB receiver performs effectively in noisy channels. At the signal-to-

noise ratio (SNR) of 0 dB, the receiver achieves a missed detection rate of 2.1% and a 

false alarm rate of 1.2%. The synchronization error (within ±2 chip periods) rate is 0.5%. 

The bit error rate is 8.6%, but it drops sharply to 0.1% at an SNR of 5 dB. Moreover, the 

detection and the synchronization processes take 19.72 μs and 22.53 μs, respectively. 

Possible future research would be to implement more sophisticated detection 

and synchronization algorithms in order to improve performance in noisy channels. 

However, the ultra-wideband receiver should maintain low power consumption and quick 

processing time. 
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Chapter 7 

Appendix 

 

7.1 MATLAB Code for Receiver System Algorithm Simulation 

Below is the hierarchy of the overall MATLAB simulation system. 

 

 uwbSim.m 

 makeParam.m 

 makePreamble.m 

 makeSym.m 

 tx.m 

 channel.m 

 detection.m 

 synchNonCoherent.m 

 rxNonCoherent.m 

  

Initializing parameters and signal 

Detection, synchronization, and 
decoding algorithm 

Signal transmission and 
channel modeling 
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uwbSim.m 
 
% 
% Simulates an UWB system 
% 
  
clear all 
close all 
  
rand('state',0); 
randn('state',0); 
  
% System level parameters 
Nbits = 1e2;    % Number of bits to transmit 
SNRdB = 10.0;         
Npkt = 1e2;     % Number of pkts to be simulated 
  
% Modeling parameters 
Fs = 1/(0.4e-9); 
  
%%%%%% No programmable parameters below %%%%%% 
  
fprintf('\n========================================== \n'); 
% Initialize parameter structures 
makeParam;     
  
tic 
  
error = 0; 
missed = 0; 
totBerr = 0; 
 
for pkt = 1:Npkt 
    % Tx Modem: Bits -> modulated Tx packet 
    dataBits = randint(Nbits,1); 
    txSig = tx(dataBits, txParam); 
  
    % Channel impairments 
    rand('state',pkt); 
    [rxSig, chParam] = channel(txSig, chParam); 
  
    % Rx Modem: Rx signal -> bits 
    detect = 0; 
    i = 0; 
    while detect==0 & i<1 
        [detect,synchStart] = detection(rxSig, txParam, rxParam, 
4*txParam.NsC, 7, 11, 6); 
        rxSig = rxSig(synchStart:end); 
        i = i+1; 
    end 
  
    if (detect==0) 
        fprintf('Pkt:%d\tSignal not detected%d\t ',pkt); 
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        fprintf('\n'); 
        missed = missed + 1;   
    else 
         
    intStart = synchNonCoherent(rxSig, txParam, rxParam, txParam.NsC, 
22);   
    rxBits = rxNonCoherent(rxSig(intStart:end), txParam, rxParam); 
     
    L = length(rxBits); 
    j = 1; 
    while (j+length(txParam.sfd)-1 <= L) & 
(sum(xor(txParam.sfd',rxBits(j:j+length(txParam.sfd)-1))) > 0) % SFD 
detection threshold 
        j = j+1; 
    end 
     
    hdrStart = j+length(txParam.sfd); 
    if (hdrStart > L-txParam.hdrBits) 
        fprintf('Pkt:%d\tSFD not detected%d\t ',pkt); 
        fprintf('\n');         
    else 
        bitlength = sum(rxBits(hdrStart:hdrStart+7).*[2^10 2^9 2^8 2^7 
2^6 2^5 2^4 2^3]); 
    end 
    bitStart = hdrStart+txParam.hdrBits; 
    rxDataBits = rxBits(bitStart:end); 
     
    %% Record statistics 
     
    % Synchronizer error 
    if (chParam.truncSamp >= 160) 
        synchErr = intStart + mod(synchStart-1,160) - 
(2*length(preamble.code)*txParam.NsC - chParam.truncSamp); % + 
mod(synchStart,160) 
    else 
        synchErr = intStart + mod(synchStart-1,160) - 
(length(preamble.code)*txParam.NsC - chParam.truncSamp); 
    end 
     
    if (synchErr < -80 | synchErr > 160) 
        synchErr = mod(synchErr,160); 
    elseif (synchErr > 80) 
        synchErr = -mod(-synchErr,160); 
    end 
     
    if (abs(synchErr)>2*txParam.NsC) 
        error = error + 1; 
    end 
     
    % Bit error 
    if (hdrStart > L-txParam.hdrBits) 
        Berr = Nbits; 
    else 
        Berr = sum(xor(rxDataBits(1:Nbits)', dataBits)); 
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    end 
     
    if (Berr > 2) 
        totBerr = totBerr + 1; 
    end 
     
    fprintf('Pkt:%d\tSynchError:%d\tBitError:%d\t ',pkt,synchErr,Berr); 
    fprintf('\n'); 
  
    end 
end % for pkt = 1:Npkt 
  
fprintf('NumDetectMissed:%d\tProbDetectMissed(percent):%d\t 
',missed,100*missed/Npkt); 
fprintf('\n'); 
fprintf('NumSynchError:%d\tProbSynchError(percent):%d\t 
',error,100*error/Npkt); 
fprintf('\n'); 
fprintf('NumBitError:%d\tProbBitError(percent):%d\t 
',totBerr,100*totBerr/Npkt); 
fprintf('\n'); 
  
toc 
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makeParam.m 
 
% ~mymatlab/modem/makeParam 
% 
% Initializes transmit, channel, and receive parameters 
% 
% 
  
% Hop parameters 
% Can be removed by defining 802.15.4a style scrambler. 
hopStateInit    = 93758; 
signStateInit   = 8247; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% Transmit Parameters 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
txParam.Fs      = Fs;       % 
txParam.Tc      = 2e-9;     % Chip period     
  
txParam.NsC     = round(txParam.Tc*Fs);    % NsC = # of samples / chip 
  
% Pulse parameters 
pulse.type      = 0;        % 0 = Gaussian 
pulse.width     = 1.4e-9;   %  
[pulse.xt, BW10dB] = uwbPulse(pulse.type, pulse.width, Fs); 
  
txParam.pulse   = pulse; 
  
  
% Preamble parameters 
preamble.code   =  [ones(1,16) zeros(1,16)]'; 
preamble.rep    = 128;   % # of code repetitions 
preamble.sfd    = [1]; % Outer code for preamble code 
preamble.NTc    = 1;   % Preamble chip in multiples of Tc 
  
txParam.preamble = preamble; 
  
% Header parameters 
txParam.hdrBits = 8; 
  
% UWB Symbol parameters 
% Used to construct the header/payload 
sym.maxSyms     = 2048;     % Max syms/pkt. 
sym.Nb          = 32; 
 
txParam.sym     = sym; 
txParam.sfd     = [0 0 0 1 1 1 0 1 1 0 1]'; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% Channel Parameters 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
chParam.Fs          = Fs; 
  
% Impairment ON/OFF options 
chParam.addAWGN     = 1;        % 1: Yes, 0: No  
chParam.trunc       = 1;        % Randomly truncate packet 
chParam.addDly      = 0;        % Add random delay before (truncated) 
packet 
  
% Impairment parameters 
chParam.SNRdB       = SNRdB;    % Signal to noise ratio 
chParam.BW10dB      = BW10dB;   % 10dB BW of signal of interest (one-
sided) 
chParam.maxTruncNs  = 32;       % Truncation range 
chParam.truncSamp   = 0;        % Samples truncated(set in channel.m) 
chParam.maxDlyNs    = 1e3;      % Delay range 
chParam.dlySamp     = 0;        % Samples delayed (set in channel.m) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% Receive Parameters 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Receiver block ON/OFF options 
rxParam.synchBypass = 0;        % Bypass synchronizer 
rxParam.hdrBypass   = 0;        % Bypass header decoding 
  
% Parameters used when blocks are bypassed 
rxParam.pktStart    = ...       % Expected start of pkt.  
    (preamble.rep + length(preamble.sfd))*length(preamble.code)... 
     *preamble.NTc*txParam.NsC + 1; 
  
rxParam.pktLenByte  = 13;       % Pkt. length when header bypassed 
  
% Synchronization parameters 
synch.threshSFDInit = 84; 
  
rxParam.synch = synch; 
  
% Receiver state initialization (for scramblers etc.) 
rxParam.hopState    = hopStateInit; 
rxParam.signState   = signStateInit; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% Assertions 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Include all assumptions about parameters here. 
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% Integral number of samples in a chip period 
tempNsC = txParam.Tc*Fs; 
if tempNsC - round(tempNsC) 
    warning('\n\n*** Warning: Non-integer # of samples in a chip 
***\n\n'); 
end 
  
% Start of SFD 
if preamble.sfd(1) == 0 
    fprintf(... 
        '\n\n*** SFD Code: Synch might work incorrectly. ***\n\n'); 
end 
  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% Report important parameters 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
fprintf('\n10dB BW of pulse (one-sided): %.3fMHz\n\n',BW10dB/1e6);  
  
% Impairments 
if ~chParam.addAWGN 
    fprintf('\n*** Warning: No receiver noise added ***\n\n'); 
end 
  
% Receiver bypass 
if rxParam.synchBypass 
    fprintf('\n*** Warning: Synchronizer bypassed ***\n\n'); 
end 
  
if rxParam.hdrBypass 
    fprintf('\n*** Warning: Header decoding bypassed ***\n\n'); 
end 
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makePreamble.m 
 
function ySym = makePreamble(preamble) 
  
%%MAKEPREAMBLE Generate a preamble. 
%% 
%% ySym = makePreamble(preamble, Fs) 
%% 
%% Inputs 
%% ------ 
%% 1. preamble  : Structure specifying preamble parameters. 
%% 
%% Outputs 
%% ------- 
%% 1. y         : Unmodulated preamble symbols. 
%% 
%% Notes 
%%  
%% i. Fields of the preamble structure. 
%     i.1. code     : Preamble's PN code 
%     i.2. rep      : # of times preamble is repeated 
%     i.3. sfd      : Start of frame delimiter 
%     i.4. Tc       : Preamble chip period 
  
% Form preamble code 
sync = repmat(preamble.code,preamble.rep,1); 
  
% Make SFD 
sfd = conv(preamble.code, ... 
               upsample(preamble.sfd, length(preamble.code))); 
sfd = sfd(1:end-(length(preamble.code)-1)); 
  
% Append and separate pulses with right preamble spacing 
ySym = upsample([sync; sfd], preamble.NTc); 
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makeSym.m 
 
function ySym = makeSym(bits) 
  
%%MAKESYM Generates UWB symbols. 
%% 
%% ySym = makeSym(bits, symParam) 
%% 
%% Inputs 
%% ------ 
%% 1. bits      : Data bits to be transmitted. 
%% 
%% 2. symParam  : Relevant UWB parameters. 
%% 
%% Outputs 
%% ------- 
%% 1. ySym      : 2-PPM symbols. 
%% 
%% Notes 
%% 
  
yBits = []; 
zero_code = [ones(1,16) zeros(1,16)]; 
one_code  = [zeros(1,16) ones(1,16)]; 
  
for i=1:length(bits) 
    if (bits(i) == 0) 
        yBits = [yBits zero_code]; 
    else 
        yBits = [yBits one_code]; 
    end 
end 
  
ySym = upsample(yBits, 1); 
  
ySym = ySym'; 
  
return; 
 



98 
 

tx.m 
 
function y = tx(bits, txParam) 
  
%% TX Generate a UWB packet. 
%% 
%% txSig = tx(txParam) 
%% 
%% Inputs 
%% ------ 
%% 1) txParam   : Structure specifying parameters like 
%%                packet length, preamble type etc. 
%%                (see makeParam.m for details) 
%% 
%% 2) bits     : Vector of data bits to be transmitted. 
%% 
%% Outputs 
%% ------- 
%% 1) txSig     : Packet sampled at spg6hnu8by7reecified rate. 
%% 
%% Notes 
%%  
%% i. Scramblers do not retain state across function boundaries. 
%%  
  
txDebug = 1; 
  
% Global parameters 
Fs              = txParam.Fs;    % Sampling frequency (Hz) 
Tc              = txParam.Tc;    % Chip period 
  
% Pulse, preamble, payload parameters 
pulse           = txParam.pulse; 
preambleParam   = txParam.preamble; 
symParam        = txParam.sym; 
  
%%%%%%%%%%% 
  
% Make preamble 
preSym = makePreamble(preambleParam); 
  
% % Make payload 
% paySym = makePayload(bits, payloadParam); 
  
% Pad data bits to make complete bytes 
N = length(bits); 
bits = [bits; zeros(mod(N,8),1)]; 
if bits > symParam.maxSyms 
    error('Payload exceeds capacity'); 
end 
  
sfdSym = makeSym(txParam.sfd); 
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% Make header (8-bit field with pkt. length in bytes) 
hdrSym = makeSym(dec2bin(length(bits)/8, 8) - '0'); 
  
% Make payload 
paySym = makeSym(bits); 
  
% Make packet 
packetSym = [preSym; sfdSym; hdrSym; paySym]; 
  
% Modulate 
NSampC = round(Tc*Fs);    % Number of samples in a chip period 
y = conv(pulse.xt, upsample(packetSym, NSampC)); 
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channel.m 
 
function [y, chParamOut] = channel(x, chParam) 
  
%% CHANNEL Add impairments to packet. 
%% 
%% [y, chParam] = channel(x, chParam) 
%% 
%% Inputs 
%% ------ 
%% 1) x         : Modulated packet. 
%%  
%% 2) chParam   : Structure specifying impairments. 
%%                (see makeParam.m for fields and explanation) 
%% Outputs 
%% ------- 
%% 1) y         : Packet with impairments. 
%% 
%% 2) chParamOut: chParam updated with actual values of impairments. 
%% 
  
Fs = chParam.Fs; 
  
%% Impairment: Packet truncation 
% Models receiver waking up in the middle of a packet 
% or AGC chewing part of the packet etc. 
if chParam.trunc 
    chParam.truncSamp = floor(rand*chParam.maxTruncNs*2e-9*Fs)+13; 
    yTrunc = x(chParam.truncSamp+1:end); 
else 
    yTrunc = x; 
end 
  
%% Impairment: Random, unknown delay 
if chParam.addDly 
    chParam.dlySamp = floor(rand*chParam.maxDlyNs*1e-9*Fs); 
    yDly = [zeros(chParam.dlySamp,1); yTrunc]; 
else 
    yDly = yTrunc; 
end 
  
%% Impairment: AWGN 
% Always adds unit variance noise.  
if chParam.addAWGN 
    xPwr = mean(x.^2); 
    SNR = 10^(chParam.SNRdB/10); 
    pwrFactor = SNR/xPwr; 
    oSamplingFactor = (Fs/2)/chParam.BW10dB; 
    yNoise = yDly + sqrt(oSamplingFactor/pwrFactor)*randn(size(yDly)); 
else 
    yNoise = yDly; 
end 
y = yNoise; 
chParamOut = chParam; 
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detection.m 
 
function [detect,synchStart] = detection(rxSig, txParam, rxParam, 
phaseSpace, numAve, windowSize, numDetect) 
  
%% DETECTION Non-Coherent detector. 
%% 
%% synchStart = detection(rxSig, txParam, rxParam, phaseSpace, numAve, 
windowSize, numDetect) 
%% 
%% Inputs 
%% ------ 
%% 1) rxSig         : Received packet sampled at specified rate. 
%% 
%% 2) tx/rxParam    : Structure specifying tx/rx parameters 
%% 
%% 3) phaseSpace    : Space between each integration phase 
%% 
%% 4) numAve        : Number of averaging periods per phase 
%% 
%% 5) windowSize    : Window size (number of results) 
%% 
%% 6) numDetect     : Number of windows that one phase has maximum 
%%       energy so that the detection declares that the 
%%        preamble signal is detected 
%% 
%% Outputs 
%% ------- 
%% 1) synchStart    : Preamble start index 
%% 
%% 2) detect   : 1 if the preamble signal is detected; 0 otherwise 
%% 
   
% Extract relevant fields 
Tc          = txParam.Tc; 
Fs          = txParam.Fs; 
pulse       = txParam.pulse; 
preamble    = txParam.preamble; 
sfdCode     = preamble.sfd; 
  
NSampC = round(preamble.NTc*Tc*Fs);  
NSampB = length(preamble.code)*NSampC; 
Nint = round(NSampB/phaseSpace); %% Number of Integrations 
  
k = 0; 
F = 0; 
maxArray = []; 
  
while (F<numDetect & k<windowSize) 
    R = zeros(1,Nint)'; 
    for j=1:numAve 
        for i=1:Nint 
            ts = 1 + k*NSampB*numAve + (i-1)*phaseSpace; 
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            R(i) = R(i) + sum(rxSig(ts+(j-1)*NSampB:ts+NSampB/2+(j-1) 
*NSampB).^2); 
        end 
    end 
    [maxValue,maxIndex] = max(R); 
     
    maxArray = [maxArray maxIndex]; 
    [M,F] = mode(maxArray); 
    k = k+1; 
end 
  
k = k-1; 
 
if (F>=numDetect) 
    synchStart = 1 + numAve*windowSize*NSampB + (M-1)*phaseSpace; 
    detect = 1; 
else 
    synchStart = 1 + numAve*windowSize*NSampB; 
    detect = 0; 
end 
  
return; 
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synchNonCoherent.m 
 
function intStart = synchNonCoherent(rxSig, txParam, rxParam, 
phaseSpace, numAve) 
  
%% SYNCHNONCOHERENT Non-Coherent synchronizer. 
%% 
%% intStart = synchNonCoherent(rxSig, txParam, rxParam, phaseSpace, 
numAve) 
%% 
%% Inputs 
%% ------ 
%% 1) rxSig         : Received packet sampled at specified rate. 
%% 
%% 2) tx/rxParam    : Structure specifying tx/rx parameters 
%% 
%% 3) phaseSpace    : Space between each integration phase 
%% 
%% 4) numAve        : Number of averaging periods per phase 
%% 
%% Outputs 
%% ------- 
%% 1) intStart      : Payload start index 
%%                    ([] returned if no preamble found) 
  
start = 1;  
% Extract relevant fields 
Tc = txParam.Tc; 
Fs = txParam.Fs; 
pulse       = txParam.pulse; 
preamble    = txParam.preamble; 
sfdCode     = preamble.sfd; 
NSampC = round(preamble.NTc*Tc*Fs);  
NSampB = length(preamble.code)*NSampC; 
Nint = round(NSampB/phaseSpace); %% Number of Integrations 
  
R = zeros(1,Nint)'; 
for j=1:numAve 
    for i=1:Nint 
        ts = start + (i-1)*phaseSpace; 
        R(i) = R(i) + sum(rxSig(ts+(j-1)*NSampB:ts+NSampB/2+(j-1) 
*NSampB).^2); 
    end 
end 
[maxValue,maxIndex] = max(R); 
  
if maxIndex ~= 1 
    intStart = start + (maxIndex-1)*phaseSpace - 2*NSampC; 
else 
    intStart = start + NSampB - 2*NSampC; 
end  
if (intStart <= 0) 
    intStart = intStart + NSampB; 
end 
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return; 
rxNonCoherent.m 
 
function rxBits = rxNonCoherent(rxSig, txParam, rxParam) 
  
%% RXNONCOHERENT Non-Coherent receiver 
%% 
%% rxBits = rxNonCoherent(rxSig, txParam, rxParam) 
%% 
%% Inputs 
%% ------ 
%% 1) rxSig              : Received packet sampled at specified rate. 
%% 
%% 2) txParam, rxParam   : Structures specifying Tx, Rx parameters 
%% 
%% Outputs 
%% ------- 
%% 1) rxBits             : Decoded bits (= [] if no packet found). 
%% 
  
L  = length(rxSig); 
Tc = txParam.Tc; 
Fs = txParam.Fs; 
pulse  = txParam.pulse; 
  
NSampC = round(Tc*Fs);  
NSampB = txParam.sym.Nb*NSampC; 
  
k = 0; 
ts = 0; 
rxBits = []; 
 
while ts < (L - 2*NSampB) 
    ts = 1 + k*NSampB; 
    if (sum(rxSig(ts:ts+NSampB/2).^2) > 
sum(rxSig(ts+NSampB/2+1:ts+NSampB).^2)) 
        rxBits = [rxBits 0]; 
    else 
        rxBits = [rxBits 1]; 
    end 
    k = k+1; 
end 
  
return; 
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7.2 MATLAB Simulation Results for Synchronization Algorithm 

 
Table A1: Synchronization Simulation with phaseSpace = Tc and error within ±2Tc  

numAve % Synch Error numAve % Synch Error 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

55.6 
41.8 
30.3 
21.4 
17.4 
14.0 
10.5 
8.4 
7.3 
6.3 
4.1 
3.9 
3.1 
2.7 
1.7 
1.3 

17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

1.0 
0.7 
0.8 
0.8 
0.6 
0.4 
0.4 
0.3 
0.2 
0.3 
0.2 
0.1 
0.1 
0.1 
0.1 
0.0 

 

Table A2: Synchronization Simulation with 

phaseSpace = 2Tc and error within ±2Tc  

numAve % Synch Error 

23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

1.4 
1.0 
1.0 
1.2 
1.3 
0.7 
0.5 
0.3 
0.3 
0.2 
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Table A3: Synchronization Simulation with  

phaseSpace = 3Tc and error within ±2Tc  

numAve % Synch Error 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 

0.8 
0.8 
0.8 
0.8 
0.6 
0.7 
0.6 
0.7 
0.5 
0.3 
0.3 

 

 

Table A4: Synchronization Simulation with  

phaseSpace = 4Tc and error within ±2Tc 

numAve % Synch Error 

30 
40 
50 
60 
70 
80 
90 
100 
110 
120 

7.1 
5.8 
5.5 
4.7 
3.7 
3.4 
3.3 
3.0 
2.7 
2.6 
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Table A5: Synchronization Simulation with  

phaseSpace = 4Tc and error within ±3Tc 

numAve % Synch Error 

10 
12 
13 
14 
15 
16 
17 
18 
20 
30 

2.6 
1.5 
1.3 
1.1 
0.8 
0.6 
0.5 
0.4 
0.5 
0.1 

 

 
Table A6: Synchronization Simulation with  

phaseSpace = Tc, error within ±2Tc, and numAve = 22 

SNR (dB) % Synch Error 

-6.0 
-5.5 
-5.0 
-4.5 
-4.0 
-3.5 
-3.0 
-2.5 
-2.0 
-1.5 
-1.0 
-0.5 
0.0 
0.5 
1.0 

41.7 
36.0 
31.7 
25.7 
19.9 
15.4 
11.3 
7.8 
5.1 
3.1 
2.1 
1.2 
0.7 
0.4 
0.1 
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Table A7: Synchronization Simulation with  

phaseSpace = 2Tc, error within ±2Tc, and numAve = 25 
 

SNR (dB) % Synch Error 

-6.0 
-5.5 
-5.0 
-4.5 
-4.0 
-3.5 
-3.0 
-2.5 
-2.0 
-1.5 
-1.0 
-0.5 
0.0 
0.5 
1.0 

36.8 
31.9 
27.1 
21.1 
16.1 
12.9 
8.8 
7.0 
4.8 
2.8 
1.6 
0.9 
0.5 
0.2 
0.2 
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7.3 MATLAB Simulation Results for Detection Algorithm 

 
Table A8: Detection Simulation with  

phaseSpace = 4Tc, windowSize = 11, and numAve = 4 
 

numDetect % Missed % False Alarm % Total Error* 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

0.0 
0.0 
0.0 
0.0 
1.2 
11.2 
28.9 
50.9 
68.7 
85.4 
96.4 

100.0 
100.0 
84.4 
31.7 
6.1 
0.5 
0.0 
0.0 
0.0 
0.0 
0.0 

50.00 
50.00 
42.20 
15.85 
3.65 
5.85 
14.45 
25.45 
34.35 
42.70 
48.20 

 
* Assume equal probability of transmitting and not transmitting the preamble signal 

Note: Number in bold indicates the minimum total detection error. 
 

Table A9: Detection Simulation with  

phaseSpace = 4Tc, windowSize = 11, and numAve = 5 
 

numDetect % Missed % False Alarm % Total Error 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

0.0 
0.0 
0.0 
0.0 
0.5 
7.2 
22.1 
38.7 
58.7 
76.8 
93.2 

100.0 
100.0 
86.8 
29.8 
5.6 
0.9 
0.0 
0.0 
0.0 
0.0 
0.0 

50.00 
50.00 
43.40 
14.90 
3.05 
4.05 
11.05 
19.35 
29.35 
38.40 
46.60 
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Table A10: Detection Simulation with  

phaseSpace = 4Tc, windowSize = 11, and numAve = 6 
 

numDetect % Missed % False Alarm % Total Error 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

0.0 
0.0 
0.0 
0.0 
0.0 
2.7 
15.6 
32.1 
50.1 
69.4 
88.7 

100.0 
100.0 
84.2 
27.7 
5.3 
1.1 
0.3 
0.0 
0.0 
0.0 
0.0 

50.00 
50.00 
42.10 
13.85 
2.65 
1.90 
7.95 
16.05 
25.05 
34.70 
44.35 

 

 

Table A11: Detection Simulation with  

phaseSpace = 4Tc, windowSize = 11, and numAve = 7 
 

numDetect % Missed % False Alarm % Total Error 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

0.0 
0.0 
0.0 
0.0 
0.0 
2.1 
14.4 
26.6 
43.0 
60.4 
83.9 

100.0 
100.0 
86.0 
26.0 
6.3 
0.4 
0.0 
0.0 
0.0 
0.0 
0.0 

50.00 
50.00 
43.00 
13.00 
3.15 
1.25 
7.20 
13.30 
21.50 
30.20 
41.95 
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Table A12: Detection Simulation with  

phaseSpace = 6Tc, windowSize = 11, and numAve = 4 
 

numDetect % Missed % False Alarm % Total Error 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

0.0 
0.0 
0.0 
0.0 
0.0 
3.1 
15.1 
30.2 
44.6 
67.6 
86.8 

100.0 
100.0 
100.0 
71.6 
28.7 
5.6 
0.9 
0.0 
0.0 
0.0 
0.0 

50.00 
50.00 
50.00 
35.80 
14.35 
4.35 
8.00 
16.10 
22.30 
33.80 
43.40 

 

 

Table A13: Detection Simulation with  

phaseSpace = 6Tc, windowSize = 11, and numAve = 5 
 

numDetect % Missed % False Alarm % Total Error 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

0.0 
0.0 
0.0 
0.0 
0.0 
1.9 
12.1 
25.6 
40.2 
56.6 
77.8 

100.0 
100.0 
100.0 
72.0 
26.4 
6.6 
0.6 
0.0 
0.0 
0.0 
0.0 

50.00 
50.00 
50.00 
36.00 
13.20 
4.25 
6.35 
12.80 
20.10 
28.30 
38.90 
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Table A14: Detection Simulation with  

phaseSpace = 6Tc, windowSize = 11, and numAve = 6 
 

numDetect % Missed % False Alarm % Total Error 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

0.0 
0.0 
0.0 
0.0 
0.0 
0.7 
10.1 
21.5 
33.6 
48.9 
70.8 

100.0 
100.0 
100.0 
70.5 
24.2 
5.9 
0.9 
0.2 
0.0 
0.0 
0.0 

50.00 
50.00 
50.00 
35.25 
12.10 
3.30 
5.50 
10.85 
16.80 
24.45 
35.40 

 

 

Table A15: Detection Simulation with  

phaseSpace = 6Tc, windowSize = 11, and numAve = 7 
 

numDetect % Missed % False Alarm % Total Error 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

0.0 
0.0 
0.0 
0.0 
0.0 
0.4 
10.7 
21.2 
31.0 
44.5 
66.7 

100.0 
100.0 
100.0 
70.8 
25.5 
6.0 
1.0 
0.0 
0.0 
0.0 
0.0 

50.00 
50.00 
50.00 
35.40 
12.75 
3.20 
5.85 
10.60 
15.50 
22.25 
33.35 
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Table A16: Detection Simulation with  

phaseSpace = 8Tc, windowSize = 11, and numAve = 4 
 

numDetect % Missed % False Alarm % Total Error 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

0.0 
0.0 
0.0 
0.0 
0.0 
0.9 
13.6 
26.6 
41.4 
61.4 
81.5 

100.0 
100.0 
100.0 
90.4 
42.5 
12.0 
2.2 
0.3 
0.1 
0.0 
0.0 

50.00 
50.00 
50.00 
45.20 
21.25 
6.45 
7.90 
13.45 
20.75 
30.70 
40.75 

 

 

Table A17: Detection Simulation with  

phaseSpace = 8Tc, windowSize = 11, and numAve = 5 
 

numDetect % Missed % False Alarm % Total Error 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

0.0 
0.0 
0.0 
0.0 
0.0 
0.5 
11.8 
22.7 
35.9 
52.6 
71.7 

100.0 
100.0 
100.0 
91.3 
45.7 
14.4 
3.1 
0.4 
0.0 
0.0 
0.0 

50.00 
50.00 
50.00 
45.65 
22.85 
7.45 
7.45 
11.55 
17.95 
26.30 
35.85 
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Table A18: Detection Simulation with  

phaseSpace = 8Tc, windowSize = 11, and numAve = 6 
 

numDetect % Missed % False Alarm % Total Error 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

0.0 
0.0 
0.0 
0.0 
0.0 
0.4 
12.0 
21.4 
31.6 
44.8 
66.1 

100.0 
100.0 
100.0 
92.3 
45.8 
13.5 
3.5 
1.2 
0.3 
0.1 
0.0 

50.00 
50.00 
50.00 
46.15 
22.90 
6.95 
7.75 
11.30 
15.95 
22.45 
33.05 

 

 

Table A19: Detection Simulation with  

phaseSpace = 8Tc, windowSize = 11, and numAve = 7 
 

numDetect % Missed % False Alarm % Total Error 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

0.0 
0.0 
0.0 
0.0 
0.0 
0.2 
10.1 
19.7 
28.6 
40.7 
60.7 

100.0 
100.0 
100.0 
80.4 
45.8 
13.2 
2.4 
0.3 
0.0 
0.0 
0.0 

50.00 
50.00 
50.00 
40.20 
22.90 
6.70 
6.25 
10.00 
14.30 
20.35 
30.35 
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Table A20: Detection Simulation with  

phaseSpace = 4Tc, numAve = 7, windowSize = 11, and numDetect = 6 
 

SNR (dB) % Missed % False Alarm % Total Error 

-6.0 
-5.5 
-5.0 
-4.5 
-4.0 
-3.5 
-3.0 
-2.5 
-2.0 
-1.5 
-1.0 
-0.5 
0.0 
0.5 
1.0 
1.5 
2.0 

84.8 
78.6 
71.7 
64.0 
54.7 
42.6 
30.8 
21.7 
14.2 
8.0 
4.9 
2.6 
1.7 
0.8 
0.5 
0.2 
0.1 

0.7 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 

42.75 
39.65 
36.20 
32.35 
27.70 
21.65 
15.75 
11.20 
7.45 
4.35 
2.80 
1.65 
1.20 
0.75 
0.60 
0.45 
0.40 
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7.4 MATLAB Simulation Results for Decoding Algorithm 

 
Table A21: Decoding Simulation 

SNR (dB) 
% Bit Error Rate 

(BER) 

0.0 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
5.5 
6.0 
6.5 
7.0 

5.2847 
5.0669 
4.1108 
3.3382 
2.5036 
1.7526 
1.1462 
0.6813 
0.3807 
0.1888 
0.0862 
0.0323 
0.0122 
0.0036 
0.0015 
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7.5 Receiver’s Performance in MATLAB and Verilog 

 
Table A22: Detection Performance in MATLAB and Verilog 

SNR (dB) % Missed % False Alarm % Total Error* 
Verilog 

-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 

48.6 
27.5 
14.3 
6.2 
2.1 
0.5 
0.2 

1.2 
1.2 
1.2 
1.2 
1.2 
1.2 
1.2 

24.90 
14.35 
7.75 
3.70 
1.65 
0.85 
0.70 

MATLAB 

-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 

49.3 
29.5 
12.2 
4.5 
1.6 
0.3 
0.0 

0.4 
0.4 
0.4 
0.4 
0.4 
0.4 
0.4 

24.85 
14.95 
6.30 
2.45 
1.00 
0.35 
0.20 

 
* Assume equal probability of transmitting and not transmitting the preamble signal 
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Table A23: Synchronization Performance in MATLAB and Verilog 

SNR (dB) 
% Synchronization Error 

MATLAB  
(error within ±2Tc)

Verilog  
(error within ±Tc) 

Verilog 
(error within ±2Tc) 

-6.0 
-5.0 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 

41.7 
31.7 
19.9 
11.3 
5.1 
2.1 
0.7 
0.1 
0.0 

50.9 
41.7 
31.0 
21.5 
12.7 
6.6 
3.0 
1.8 
0.5 

35.9 
25.8 
18.0 
10.5 
3.6 
1.5 
0.5 
0.1 
0.0 

 

 

Table A24: Decoding Performance in MATLAB and Verilog 

SNR (dB) 
% Bit Error Rate (BER) 

Verilog MATLAB 

0.0 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 

8.6 
7.5 
5.7 
4.2 
2.9 
1.8 
1.2 
0.8 
0.4 
0.2 
0.1 

8.0 
6.6 
5.1 
3.9 
2.8 
1.8 
1.1 
0.67 
0.37 
0.14 
0.07 
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