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Abstract

Blast attacks have become the most pervasive threat in both civil and military con-
texts. However, there is currently a limited understanding of the mechanisms of
loading, damage and failure of structures, and injury to humans produced by blast.
This thesis seeks to advance our current understanding of the mechanisms of blast
loading on structures. Towards this end, a comprehensive analytical and numerical
study of basic problems in the interaction of blast waves with structures is conducted.
The analysis is of interest in the conception of blast mitigation strategies and in the
design and optimization of protection systems with improved performance against
blast.

The approach builds on a classic solution by G. I. Taylor on the interaction of
acoustic blast waves with free-standing plates (In G. K. Batchelor, editor, The Scien-

tific Papers of Sir Geoffrey Ingram Taylor, vol. III, p.287-303, Cambridge University
Press, 1963). Taylor’s analysis demonstrates that the coupled fluid-structure interac-
tion effect can be exploited for the purpose of reducing the impulse transmitted from
the blast to the structure. This basic result is not applicable to the case of air blasts
due to non-linear compressibility effects.

In this thesis, a number of extensions of Taylor’s theory is proposed. The case of
air blast waves interacting with free-standing plates of variable mass is given special
attention. The limiting cases of extremely heavy and extremely light plates are ex-
plored analytically for arbitrary blast intensities, from where it is concluded that a
modified non-dimensional parameter representing the mass of compressed fluid rela-
tive to the mass of the plate governs the fluid-structure interaction. The intermediate
asymptotic regimes are studied using a numerical method based on a Lagrangian for-
mulation of the Euler equations of compressible flow and conventional shock-capturing
techniques. Based on the analytical and numerical results, approximate formulae for
the transmitted impulse describing the entire range of relevant conditions are pro-
posed. The main conclusion of the theory is that non-linear fluid compressibility
further enhances the beneficial effects of fluid-structure interaction in reducing the
impulse transmitted to the structure. More specifically, it is found that impulse re-

3



ductions due to fluid-structure interaction are more significant than in the acoustic
limit when compared to those obtained ignoring fluid-structure interaction effects.

In addition, a number of acoustic results for uniform shocks, viscoelastic supports,
two fluid media, impulsively deployed and pressure actuated plates are proposed which
provide the basis for evaluation of the benefits of the fluid-structure interaction in a
wide variety of settings. The governing non-dimensional parameters in each specific
context are determined and exact solutions to the fluid-structure interaction problem
are provided. The results for the actively deployed plates reveal that significant
cancellation of the blast impulse can be achieved thus suggesting a plausible blast
mitigation strategy.

Thesis Supervisor and Committee Chair: Raúl Radovitzky
Associate Professor of Aeronautics and Astronautics
Thesis Supervisor

Committee Member: Mary Boyce
Gail E. Kendall Professor of Mechanical Engineering

Committee Member: John Hutchinson
Professor of Engineering & Applied Sciences
Harvard University

Committee Member: Gareth McKinley
Professor of Mechanical Engineering
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Chapter 1

Introduction

This thesis is concerned with the development of models of blast effects on structures.

This chapter describes the relevance of the research conducted to society, summarizes

previous work in the understanding of the fundamentals of blast mechanics and blast

mitigations strategies and outlines the scientific contributions of the thesis.

1.1 Effects of Explosions on Structures and Hu-

mans

The significant recent increase in terrorist activity and the military involvement in

prolonged conflicts has revealed the vulnerability of humans and structures to explo-

sions and blast waves. Buildings and public transportation systems have often offered

terrorists the largest potential for human life losses and destruction. The examples

of high profile terrorist attacks on buildings include the truck bomb in front of the

Alfred E. Murrah Federal Building (Figure 1-1) in Oklahoma City and the fuel truck

explosion next to the Khobar Tower (Figure 1-2) in Saudi Arabia. In both attacks

many lives were lost and the buildings were damaged beyond repair. The examples of

attacks on transportation infrastructure include the simultaneous explosions of four

bombs on commuter trains in Madrid, Spain, on March 11, 2004 [103] and the series

of small bomb attacks in London during the month of July, 2005 [26]. Several hundred

17



Figure 1-1: The Alfred E. Murrah Federal Building in Oklahoma City, Oklahoma
after the terrorist attack of April 19, 1995 [18].

Figure 1-2: The Khobar Tower in Saudi Arabia after the terrorist attack of June 25,
1996 [74].

18



Figure 1-3: USS Cole after the terrorist attack of October 29, 2000 in the port of
Aden, Yemen [78].

Figure 1-4: RG-31 vehicle after an attack with an improvised explosive device near
Camp Taqaddum, Iraq [123].
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lives were lost in this tragic events. Despite its better technology, the military has

also lost a number of lives and vehicles due to insufficient blast protection capabilities.

The examples of attacks on military targets include the small boat explosion against

USS Cole (Figure 1-3) and the typical improvised explosion devices (IEDs) attacks

from Iraq and Afghanistan (Figure 1-4).

The problem of blast wave caused damage and injury has become ubiquitous with

the steep increase of traumatic brain injuries (TBI) observed in Iraq and Afghanistan

[40]. TBI is a primary injury [20, 68] occurring on the sub-cellular level which cannot

be treated by conventional medical techniques [40]. TBI is usually expressed in the

form of concussions, hemorrhages and edemas [115] leading to immediate or gradual

deterioration of the neural activity. In addition to the brain, the lung has also shown

vulnerability to blast waves with lung contusions leading to contamination of the

alveoli with blood [20, 113]. The need for improved personal protection against TBI

and lung injuries makes blast injury mechanics an active research topic [21, 114, 115].

In spite of the significant governmental, military and civil resources directed to-

wards reducing the vulnerability of humans and structures to blast waves, it is widely

accepted that the effects of blast waves on humans and structures are poorly under-

stood. It is therefore of critical importance to develop theories and models capable

of describing these effects qualitatively and quantitatively.

1.2 Explosions and Blast Waves

The effects that are described in the previous section are caused by explosions gen-

erated by conventional or nuclear explosives [79, 80], high pressure gases [6] or dust

mixtures [9] with their primary effect being the creation of blast waves. In this work

we focus on those caused by chemical reactions. A common feature of all explosions

is the release of large amounts of chemical, mechanical or nuclear energy in very short

time periods on the order of 10−6 to 10−3 seconds [57]. The fast energy release causes

instantaneous increase in the pressure and temperature within the explosive material

[106] to values that can reach 100 MPa and 3000 K, respectively, or even higher in

20



Figure 1-5: Blast wave generated by a 4.8 kiloton explosion [31].

the case of nuclear explosions. The extremely high pressure within the explosion

products generates a strong blast wave propagating in the surrounding medium away

from the explosion center at supersonic speeds on the order of 2-3 km·s−1. The blast

wave contains as much as 95% of the available energy for conventional high-energy

explosives. For nuclear explosions, the blast wave contains as little as 50% of the

total energy, but the total yield is significantly higher [41]. The rest of the energy

is dissipated through thermal radiation, light generation and, in the case of nuclear

explosions, various forms of X-rays.

A blast wave generated by a conventional explosive with energy release equivalent

to 4.8 kilotons of TNT is shown in Figure 1-5. The front of the blast wave is visible

close to the center of the picture due to light diffraction caused by the large differences

of the optical properties of the gas in front and behind the wave discontinuity. The

diamond shaped patterns close to the ground are shock waves caused by supersonically

flying fragments which have overtaken the blast wave [31].

The most important parameter characterizing the blast wave is the peak overpres-
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sure ps which scales with the energy E0 released during the explosion [7, 11, 12]. The

scaling laws for explosions were first derived by Taylor [117]

L = CL(γ)

(
E0t

2

ρ0

) 1
5

(1.1)

ps = Cp(γ)

(
E2

0ρ
3
0

t6

) 1
5

= C̃p(γ)
E0

L3
, (1.2)

where L is the distance between the explosion center and the blast wave front, ρ0

is the ambient atmospheric density, γ is the specific heat ratio for air, and CL, Cp

and C̃p are constants depending only on the properties of the medium. Von Neu-

mann [126] found the exact similarity solution (available in Appendix A) to the point

source explosion problem suggested by expressions (1.1) and (1.2). Since then, a se-

ries of exact solutions for strong explosions has been developed [4, 5, 14, 73, 104, 105],

e.g. explosions in variable density atmospheres, homothermic (constant temperature)

explosions, bursts in atmospheres with steady winds, etc. A general framework for

similarity solutions independent of the exact equation of state has been developed

by Oppenheim [82]. Similarity solutions have limited validity because they rely on

the assumption that the pressure in the quiescent medium is zero, which is a good

approximation only for large peak overpressures, ps ≥ 1 MPa [117]. Approximations

for small peak overpressures have been proposed based on small parameter expan-

sions [100] and the semi-similarity solutions [83]. Numerical investigations of the

propagation of blast waves in two and three dimensions have also been performed

[14, 15]. Numerical simulations are capable of handling complex equations of state

which are not tractable analytically [84, 111, 112], and provide better agreement with

experimental measurements than analytical models [39].

If a sensor is placed at a fixed location close to an explosion, an overpressure (the

difference between the static pressure and the ambient atmospheric pressure) profile

with the features shown in Figure 1-6 will be recorded. The profile is characterized

by the peak positive overpressure ps, the duration of the positive phase t+, the peak

negative overpressure p− and the duration of the negative phase t−. Various empir-
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Figure 1-6: A schematic overpressure profile measured by a pressure sensor at a fixed
distance from the explosion center.

Table 1.1: TNT equivalent of various explosives [10].
Name Explosion Energy [MJ·kg−1] TNT equivalent fraction
TNT 4.187 1.000
PETN 5.904 1.410

Nitroglycerine 6.155 1.470
Compound B 6.239 1.490

Compound C-4 6.699 1.600

ical formulae for the parameters characterizing the blast wave based on analytical,

numerical and experimental results have been proposed [15, 32, 43, 106]. Brode [15]

has proposed a commonly used formula giving the peak overpressure ps in terms of

the scaled distance z = r/W 1/3 where r is the distance from the explosion to the

point of measurement and W is the TNT equivalent of the explosion:

ps =







6.7
z3 + 1, 10 bar < ps

0.975
z

+ 1.455
z2 + 5.85

z3 − 0.019, 0.1 bar ≤ ps ≤ 10 bar
. (1.3)

This formula can be used later on to characterize the effects of the blast in terms

of native characteristics of the explosive charge. Conversion tables for obtaining the

TNT mass equivalent for common explosives are available, e.g. [10]. Table 1.1 shows

a few illustrative examples.
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Various analytical expressions approximating the pressure profile shown in Figure

1-6 have been proposed [8, 54]. One of the simplest approximations is given by the

exponential profile

p(t) = pse
− t

ti , 0 ≤ t ≤ ∞ (1.4)

where the decay time ti is usually chosen so that the peak overpressure ps and the

impulse of the positive phase

I =

∫ t+

0

p(t)dt (1.5)

are the same as the experimental values. Expression (1.4) is convenient basis for the-

oretical developments, but it neglects the negative phase of the blast. More complex

expressions have also been proposed, including the following one due to Brode [8]

p(t) = ps

(

1 − t

t+

)(

ae−α t
t+ + (1 − a)e−β t

t+

)

, (1.6)

which can give excellent fits to experimental data.

Once generated, blast waves propagate undisturbed in a spherically symmetric

fashion until they encounter natural or man-made objects setting up complex inter-

actions and reflection patterns. During the World War II G. I. Taylor provided the

first comprehensive analysis of fluid-structure interaction [119]. He recognized the

beneficial effects of fluid-structure interaction in reducing the impulsive loads pro-

duced on structures by blast waves. The basic concept is that the motion of the

structure relieves the pressure acting on it, thus reducing the transmitted impulse

and, as a consequence, the effects of the blast on the structure. The amount of

momentum acquired by the structure will, as a result, depend on its inertia. More

precisely, Taylor [119] showed that the interaction between a unidimensional blast

wave and a plate is governed, at least in the case of negligible compressibility ef-

fects, by a single non-dimensional parameter representing the relative time-scales of

the duration of the blast overpressure and of the fluid-structure interaction. As-

suming the acoustic limit, Taylor’s analysis furnishes the solution of the problem in

closed-form including an expression of the relative transmitted impulse in terms of
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the fluid-structure interaction parameter, independently of the intensity of the blast.

Closed form solutions for blast waves interacting with spherical and cylindrical ob-

jects are also available [44, 45]. More complex geometries can be handled numerically

[63, 66, 67, 97, 98, 108, 134].

1.3 Blast Mitigation Strategies

The use of explosive devices by terrorists as means for destruction has renewed the

interest in improvement of the blast resistance of civil and military structures and

vehicles. Significant governmental, military and civil resources have been directed

towards reducing the vulnerability of the society to bomb attacks. In addition to

operational changes, such as provision of sufficient distance between possible targets

and public spaces [24], a variety of technical recommendations for blast hardening

have been made [81, 25]. The main technical recommendations are continuity of

the structures, redundancy in the load bearing paths, reserve strength in excess of

live loads, increased energy absorbing capabilities and increased building component

mass [81, 109]. Increased energy absorption is usually accomplished through plastic

deformation and design guidelines for buildings relying on concepts such as ductility

ratio and maximum support rotation are available [69]. Fragmentation and struc-

tural collapse can be prevented by bonding of fiber-reinforced polymers to masonry

walls [13], placing layers of aluminum foams on walls [102], steel stud reinforcements

[101], profiling of the metal plates used in movable constructions [65] and laminated

architectural glazing [131]. The majority of these concepts is based on increasing the

energy dissipation capabilities of the structure and its components with most of the

attention focused on metal foams [72, 99], foam-like materials such as honeycombs

[3], and polymers [13, 125]. Due to dramatic advances in ballistic protection, such as

the use of Kevlar fibers, modern personal armor offers an efficient protection against

missiles and debris [42], however, it has remained inefficient against the direct effects

of blast waves on the human body [22, 68, 113].

Significant contributions to the conception and design of structures with increased
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Figure 1-7: Sandwich plates with (a) corrugated and (b) pyramidal cores [94]

blast mitigation performance have recently arisen from the academic environment

[37, 46, 49, 50, 64, 71, 96].

Xue and Hutchinson [135] recently proposed a new protection concept utilizing

light sandwich constructions. This concept is based on the fluid-structure interaction

effect discovered by G. I. Taylor [119]. In an oversimplified form, Taylor’s result

states that lighter structures acquire less momentum than heavier structures when

exposed to the same blast. The reduction in transmitted impulse can be utilized

advantageously by the light face sheets of sandwich panels. Examples of two different

core topologies are shown in Figure 1-7. The original study by Xue and Hutchinson

[135] ignored the fluid-structure interaction effects and concentrated on the structural

response of the panels. A subsequent study [136] considered fluid-structure interaction

by obtaining the impulse imposed on the plate from Taylor’s theory [119] which is

valid for unsupported plates in acoustic media.

Xue and Hutchinson [136] propose what in effect decouples the analysis of the

problem in two phases: fluid-structure interaction phase and structural response

phase. Fleck and Deshpande further split the structural response phase into two

stages: core crashing stage and plastic bending and stretching stage:
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• Phase I: Fluid-structure interaction phase. The main result of the analysis

in this phase is a single number: the momentum per unit area transmitted to

the structure. The assumption under which the effects of the interaction can

be captured by a single number have been discussed at large in [37, 38, 116].

• Phase II: Core compression stage. In this phase the total momentum is

conserved, but the total energy is reduced due to dissipation in the sandwich

core. Typically the densification of the core is not studied in detail, however

the plastic shock wave propagation can be modeled [29] and the shock arrest

location and time can be identified.

• Phase III: Bending and stretching phase. If there is any remaining energy

after the sandwich core has completely densified, this energy is dissipated by

bending and stretching processes similar to those observed for monolithic plates

[37, 48].

The three stage analysis relies on separation of the time scales between the phases.

The separation of time scales between the phases has been argued based on results

from on finite element simulations [88, 89]. However, experiments have shown that

separation of the timescales cannot be always assumed [71, 96]. Indeed four different

types of response coupling phases II and III have been identified [70, 122]. The spe-

cific response mechanism depends on the loading and the sandwich core thickness and

strength which determine the time at which the core densification is completed, the

time at which back face deceleration commences and the time at which both faces at-

tain the same velocity. Additionally Tilbrook et al. [122] have shown that sometimes

phase coupling enhances the beneficial effects of sandwich plates and sometimes it

makes the sandwich panels inferior to monolithic plates. The majority of the analy-

ses mentioned above consider full span blast wave loading of the beams and plates,

but the case of localized loadings over central patches has also been considered [90].

Detailed finite element analyses have been conducted providing further insights

into the response of sandwich panels to impulsive loading. Deshpande et al. [29]

and Rabczuk et al. [91] have shown that the assumption of impulsive load leads to
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an underestimation of the impulse transmitted from the blast wave to the structure

and an overestimation of the benefits offered by sandwich panels. In [29, 46, 64] the

sandwich core resistance during the fluid-structure interaction phase is taken into

account by assuming a constant core resistance. Water cavitation is shown to occur

in the fluid domain (see Chapter 3) which is accounted for in the models by adding

the impulse of the cavitated water layer to the loading of the structure [46]. Rabzcuk

et al. [92] considered the case of a sandwich plate core with rheological response.

The modeling effort aimed at improving the understanding of blast effects on

monolithic and sandwich structures has been accompanied by experimental studies

including fabrication and testing. A variety of core topologies has been considered

and tested in laboratory setting under static and dynamic loads [55, 86, 87, 129, 130].

The growing body of monolithic and sandwich plate test results has provided physical

evidence of the response mechanisms as well as valuable opportunities for model

validation [17, 47, 62, 75, 76, 77, 137]. Due to the difficulties associated with explosion

experiments, creative testing approaches have been proposed as surrogates. One such

approach involves shooting low density projectiles directly or indirectly onto plates

[94]. Typically the projectiles are cut out of metal foam and shot directly at sandwich

beams or circular plates with foam, pyramidal, corrugated and honeycomb cores

[71, 93, 95, 96]. However the loading produced in this manner differs substantially

from characteristic blast load profiles, causing the damage to localize around the

impact area [94]. The underwater shock simulator of Deshpande et al. [30] is an

example of indirect loading in which the foam projectiles are fired against the piston

of a shock tube filled with water.

Most of the experimental studies are accompanied by finite element simulations

using the commercial software package ABAQUS, in reasonable agreement with the

experimental results. Two modeling approaches for the sandwich cores have been

used: a detailed approach which explicitly considers the topology of the core [136] and

a homogenized approach which models the core as a continuous solid whose response

is equivalent to that of the core [91]. The advantage of the latter technique is that

it simplifies the creation of the computational model and reduces the computational
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time. However it necessitates the development and calibration of the homogenized

model for each core type and may miss important details of the response.

The role played by the structural supports has been discussed by Langdon and

Schleyer [58, 59, 60, 61] who have found significant dependence of the blast perfor-

mance of the plates on the type of boundary conditions. Hutchinson and Xue [46]

investigated the failure modes arising in clamped sandwich plates and observed that

clamping promotes large strains and shear-off of the face sheets at the supports.

Novel concepts such as filling the core space with polymeric foams [125] or us-

ing packaging bubble wraps in water [30] have also been explored. The polymeric

foam has been shown to neither enhance nor reduce the structural advantages of the

sandwich plates, but it may be of interest for other applications such as acoustic

insulation. The bubble wrap led to an extremely large reduction in the deflection

of the structure. Another concept that has been proposed exploits the large energy

dissipation capabilities of thin wall tubes [120].

To a large extent, blast mitigation strategies exploiting fluid-structure interaction

have thus far been conceived based on Taylor’s acoustic theory. This is relevant for un-

derwater explosions (see Chapter 3), but not for air blast where non-linear compress-

ibility effects become important. It is therefore of critical importance to develop the-

ories, descriptions and models addressing the additional complexities brought about

by blast waves in air.

1.4 Objective

The objective of this thesis is to develop an improved understanding of fluid-structure

interaction effects in the air blast loading of structures. The expectation is that the

resulting descriptions will provide a rational basis for the conception of improved

blast mitigation strategies and the design of material systems with improved blast

protection performance.
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1.5 Contributions

Towards the end of achieving the objective of this thesis a comprehensive study leading

to extensions of Taylor’s acoustic theory to the non-linear compressible regime has

been conducted. The research consisted of developing a number of semi-analytical

and numerical solutions of basic one-dimensional problems in the interaction of blast

waves with structures subjected to a variety of supports. As part of the outcome of the

research the sought solutions are provided, the governing parameters in the presence

of compressibility are elucidated and practical formulae for the impulse transmitted

to the structures depending on the characteristics of the blast and the structure are

derived. One of the formulae has already been used in the design and optimization

of blast resistant sandwich panels [124]. Additionally a number of acoustic problems

have been solved.

The specific contributions of this work are:

• Acoustic solutions for the following fluid-structure interaction problems:

– Alternative derivation of the interaction of an exponential wave with a

monolithic plate (Taylor’s problem)

– Interaction of uniform shock waves with monolithic plates

– Interaction of exponential waves with monolithic plates supported by an

acoustic medium

– Interaction of exponential waves with monolithic plates on viscoelastic sup-

ports

– Interaction of exponential waves with actively deployed monolithic plates

for two different deployment mechanisms: one in which the impulse is

imparted instantaneously and another one in which the plate is actuated

upon by a constant pressure

• A compressible fluid-structure interaction parameter has been identified
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• Light and heavy plate asymptotic solutions for blast waves in compressible

media interacting with free-standing plates

• Extended (compressible) fluid-structure interaction formulas for the impulse

transmitted from a blast wave to a structure in the following cases:

– Uniform waves impinging on free-standing plates

– Exponential waves impinging on free-standing plates

– Exponential waves impinging on actively deployed plates for which the

impulse is imparted instantaneously

• Additional contributions

– A one dimensional numerical code for general analysis of blast-plate inter-

action

– A generalized derivation of the von Neumann/Sedov solution for all spatial

dimensions

– A blast code to compute blast wave characteristics

1.6 Structure

This thesis is organized as follows. Chapter 2 presents the general equations of motion

of Newtonian fluids: mass, momentum and energy conservation. A closed system of

equations can be obtained by adding an equation of state [2]. Two equations of state

are considered: air is modeled as an ideal calorically perfect gas with constant specific

heats [1] and water is assumed to follow the Tait equation of state [121]. When com-

plemented with appropriate initial and boundary conditions these equations can be

solved for the time histories of the density, pressure, velocity and internal energy. For-

mulas for the discontinuous jumps characterizing shock waves (the Rankine-Hugoniot

relationships) are provided. The theoretical jump values are compared to experimen-

tal data from the open literature. Section 2.1 ends with a review of the acoustic
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approximations of the equations of motion. Section 2.2 describes the reflection of

waves from rigid walls and free surfaces.

Chapter 3 contains the exact analytic solutions to a series of acoustic linear wave

reflection problems together with the general technique for solving such problems.

The solution of each problem is analyzed and conclusions about the effectiveness

of the various protection concepts are drawn based on the transmitted momentum,

energy and force. The following problems are described in this chapter:

1. Infinitely-long uniform wave impinging on an initially stationary plate

2. Exponential wave impinging on an initially stationary plate

3. Exponential wave impinging on a plate with perfectly-plastic support

4. Exponential wave impinging on a plate with visco-elastic support

5. Exponential wave impinging on a plate supported by another acoustic medium

6. Exponential wave impinging on a plate moving in the opposite direction with

the opposite impulse imparted instantaneously

7. Exponential wave impinging on a plate moving in the opposite direction under

the action of a constant pressure actuator

The acoustic results are extended into the compressible range in Chapter 4. In

the first section, the general approach to the wave reflection problem in compressible

media is outlined and the detailed derivation of the light plate asymptotic limit is

presented. The second section begins with the uniform wave analysis and continues

with the compressible extension of Taylor’s fluid-structure interaction formula. Nu-

merical results verifying each extension are given. The relationship between the wave

momentum carried by the pressure and the “total” momentum carried by the wave is

discussed in Section 4.2.3. The active protection concept is extended to compressible

media by building onto the acoustic results from Section 3.4.1. The chapter ends with

an analysis of the fluid-structure interaction effects for point source explosions. The

scaling approach is similar to the technique of Taylor [117] and Von Neumann [126],
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but an exact similarity solution could not be found. Von Neumann’s solution with

a generalized derivation applicable to planar, cylindrical and spherical explosions is

given in Appendix A.

The details of the finite difference numerical scheme [34] are given in Appendix B

together with some further information about the numerical calculations.
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Chapter 2

Fundamentals of Blast Wave

Propagation

The propagation of blast waves is governed by the fundamental physics principles of

conservation of mass, momentum and energy. As the viscous stresses in air and water

are negligible compared to the pressures developed within the blast waves, viscosity

is typically ignored and the inviscid form of the Navier-Stokes equations, the Euler’s

equations, is used.

2.1 The General Equations of Wave Motion in Flu-

ids

This section presents the conservation of mass, momentum and energy equations fol-

lowed by the equations of state for air and water, the Rankine-Hoguniot relationships

describing the jump conditions across shock waves and the acoustic approximation of

blast wave motion.

2.1.1 Conservation Equations

Euler’s equations governing fluid motion can be written in various forms, three of

which will be used in this work: differential form in Eulerian coordinates, differential
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form in Lagrangian coordinates and integral form for a fixed volume.

The Eulerian formulation of the mass, momentum and energy conservation differ-

ential equations for an inviscid fluid in a Cartesian coordinate system with coordinates

x, y, z and time t is [2]:

(
∂

∂t
+ u · ∇

)

ρ = −ρ∇ · u, (2.1)

(
∂

∂t
+ u · ∇

)

u = −1

ρ
∇p, (2.2)

(
∂

∂t
+ u · ∇

)(

e +
u2

2

)

= −1

ρ
∇ · (pu), (2.3)

where ρ is the fluid density, u is the fluid velocity, p is the fluid pressure, e is the

internal energy and the gradient ∇ is defined as

∇ =

(
∂

∂x
,

∂

∂y
,

∂

∂z

)

. (2.4)

An additional equation, an equation of state, is required to solve the system of equa-

tions (2.1-2.3). The two most commonly used equations of state for air and water are

given in Section 2.1.2.

In Lagrangian coordinates the conservation equations take the form [34]

ρ̂ = const. (2.5)

d

dt
û = −1

ρ̂
∇̂p̂ (2.6)

d

dt

(

ê +
û2

2

)

= −∇̂ · (p̂û) (2.7)

where the flow quantities with hatsˆare measured relative to the X, Y and Z axes

of an orthogonal Lagrangian coordinate system and the gradient ∇̂ is defined as

∇̂ =

(
∂

∂X
,

∂

∂Y
,

∂

∂Z

)

. (2.8)

The system of equations (2.5-2.7) is rarely used in fluid dynamic simulations because
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Lagrangian coordinates do not provide a natural basis for the description of most

systems of engineering interest and the large deformations typical for fluids cause

severe numerical problems. Nevertheless, in this work we make use of Lagrangian

coordinates for the numerical formulation (see Appendix B) because of the ease with

which the motion of rigid bodies is modeled in Lagrangian coordinates.

Both sets of differential equations (2.1-2.3) and (2.5-2.7) do not hold across dis-

continuities which are more conveniently handled through the integral form of the

conservation equations [36]

d

dt

∫

V
ρdV +

∫

S
ρu · ndS = 0, (2.9)

d

dt

∫

V
ρudV +

∫

S
ρu(u · n)dS = −

∫

S
pndS, (2.10)

d

dt

∫

V
ρ

(

e +
u2

2

)

dV +

∫

S
ρ

(

e +
u2

2

)

u · ndS = −
∫

S
pu · ndS, (2.11)

where the volume V with surface S is assumed to be fixed in space and n is the

surface normal.

All governing equations presented above assume that there are no body forces

acting on the fluid particles, no heat is generated within the fluid and no heat transfer

or radiation is taking place as these are known to be unimportant for the propagation

of blast waves [34].

2.1.2 Equations of State

Fluids (and some solids) can be modeled by the Tait equation of state [28, 53]

e = e0 −
p0 + pc

Γ0ρ0

+
p + pc

Γ0ρ
, (2.12)

where e0, p0 and ρ0 are the energy, pressure and density at a reference state, Γ0 is a

constant and the reference pressure pc is given by

pc = ρ0a
2
0 − (Γ0 + 1)p0 (2.13)
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with a0 being the speed of sound at the reference state. If the internal energy e is

taken to depend on the entropy s and the specific volume v = 1/ρ then its partial

derivative gives the negative of the pressure,

∂e

∂v

∣
∣
∣
∣
s

= −p. (2.14)

This equation defines the isentrope which after substitution from (2.12) can be rewrit-

ten as

− ρ

Γ0

∂p

∂ρ
+

p + pc

Γ0
= −p. (2.15)

Upon integration one obtains

p =
pc

Γ0 + 1

[(
ρ

ρ0

)Γ0+1

− 1

]

+ p0

(
ρ

ρ0

)Γ0+1

. (2.16)

Sometimes a different version of this equation is referred to as the Tait equation of

state [121]

p = B

[(
ρ

ρ0

)Γ0+1

− 1

]

, (2.17)

where B is a constant. The latter version tends to be preferred by most researchers

as it is simpler and the correction due to the second factor in (2.16) is small. The

equation of state for water used in the numerical simulations is a hybrid between

(2.16) and (2.17):

p = B

[(
ρ

ρ0

)Γ0+1

− 1

]

+ p0, (2.18)

with B = 3.042× 108 Pa, Γ0 = 6.15, ρ0 = 1.0× 103 kg·m−3 and p0 = 1.014× 105 Pa.

The corresponding speed of sound at the reference state is a0 = 1474.6 m·s−1.

The equation of state of a polytropic gas is a specific case of Tait’s equation when

pc = 0 Pa. For a polytropic gas the isentrope (2.16) takes the familiar form

p

ρΓ0+1
=

p0

ρΓ0+1
0

(2.19)

with the polytropic constant being equal to Γ0 + 1.
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The most familiar form of the equation of ideal gas is

p = ρRT (2.20)

where R is the gas constant and T is the absolute temperature. This equation intro-

duces the temperature and does not provide a connection to the energy, so commonly

it is complemented with the assumption that the internal energy is proportional to

the temperature

e = CvT (2.21)

where the specific heat at constant volume Cv = ∂e
∂T

∣
∣
v

is assumed to be constant.

A gas that satisfies equation (2.20) is referred to as thermally perfect, while a gas

that satisfies (2.21) is referred to as calorically perfect [35]. After elimination of the

temperature the relationship between the pressure, density and energy becomes

e − 1

R/Cv

p

ρ
= 0 (2.22)

which is clearly equivalent to (2.12) for pc = 0 Pa, as the energy can be measured

from an arbitrary reference level

e − 1

Γ0

p

ρ
= e0 −

1

Γ0

p0

ρ0
, (2.23)

with Γ0 = R/Cv = γ − 1. The constants for air are γ = 1.4 and R = 287 J·kg−1·K−1.

Even though real gases follow very closely the thermal equation of state (2.20)

at moderate temperatures and pressures, significant deviations can occur at elevated

temperatures or at low pressures. For air, these deviations are due to dissociation of

the nitrogen N2 and oxygen O2 molecules and ionization of the resulting atoms. One

way to characterize the deviation form the thermal equation of state is through the

compressibility parameter z [27, 54],

z =
p

ρRT
. (2.24)
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Figure 2-1: Variation of the compressibility factor z, characterizing the deviation from
the thermal equation of state (2.20), with the temperature T for various pressures p
[27].

A plot of the variation of z with temperature for different values of the pressure p is

given in Figure 2-1. Most of the variation in z is due to the variation of the ideal

gas constant R in equation (2.24) caused by mole fraction changes due to dissociation

and ionization processes.

A calorically perfect gas has a constant specific heats ratio γ = Cp/Cv where

Cp = ∂h
∂T

∣
∣
p

and Cv = ∂e
∂T

∣
∣
v

with h being the enthalpy per unit mass defined as

h = e + pv. The variation of γ with temperature is shown in Figure 2-2 indicating

that air is not a calorically perfect gas. Most of the variation in the figure is due to

excitation of vibrational modes which modifies the values of the specific heats even

before the temperature has raised enough for dissociation and ionization to occur [27].

The deviations of air from the ideal gas equation of state are of relatively little

interest in blasts due to large differences in the timescales of the blast wave and the

dissociation, ionization and vibrational excitation mechanisms. Anderson [1] esti-

mates the dissociation time of oxygen O2 and nitrogen N2 molecules to be on the

order of hundreds of milliseconds while the total duration of the blast waves is in the
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Figure 2-2: Variation of the ratio of specific heats γ of air as a function of the
temperature T [27].

order of a few milliseconds. Excitation of vibrational modes takes about a tenth of the

time required for molecule dissociation [1], but still remains relatively large compared

to the blast decay time. In his assessment of the effects of the first atomic bomb

[118], G. I. Taylor argued that even under those extreme conditions the changes in

the specific heats are approximately compensated by the radiative heat loss making

the value of γ = 1.4 a very good assumption for blast wave problems.

2.1.3 Shock Jump Relationships

The word “shock” is typically used to describe a traveling wave discontinuity [23]

which is the result of inherently non-linear effects causing higher pressure regions

of the wave to catch up with the lower pressure regions. Shocks are useful macro-

scale abstractions of the very fast atomic scale heat transfer and viscous processes

occurring over very thin regions in space which can be ignored for most engineering

applications including blast wave propagation. As shown in Figure 1-6 blast waves

consist of discontinuous jumps (shocks) in the pressure followed by relatively slow
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u1 u2

Us

moving shock stationary shock

U1 = u1 + Us U2 = u2 + Us

Figure 2-3: Moving and stationary shock waves

decays to ambient conditions and therefore thorough understanding of blast waves

propagation requires thorough understanding of the shock front discontinuities which

will be characterized in this section.

Consider a shock wave moving with velocity Us into a uniform stream with particle

velocity u1 as shown in the left part of Figure 2-3 and let the particle velocity behind

the shock be u2. The analysis is simplified greatly if a reference frame moving with Us

is utilized, so that the flow appears steady, as shown in the right part of Figure 2-3.

The velocities in front of and behind the shock are U1 = u1 + Us and U2 = u2 + Us.

Application of the integral forms of the mass, momentum and energy conservation

equations (2.9-2.11) to a control volume which includes the shock wave gives:

U1ρ1 = U2ρ2 (2.25)

p1 + ρ1U
2
1 = p2 + ρ2U

2
2 (2.26)

e1 +
p1

ρ1
+

U2
1

2
= e2 +

p2

ρ2
+

U2
2

2
, (2.27)

where the subscript 1 refers to the flow quantities in front of the shock and subscript

2 refers to the flow quantities behind the shock. For an ideal gas, the equation of

state applied to the regions on both sides of the shock (2.22):

e1 =
1

γ − 1

p1

ρ1
(2.28)

e2 =
1

γ − 1

p2

ρ2

, (2.29)

42



closes the system of equations. The simplest way to solve this system is to introduce

the Mach number M ,

M =
U

a
, (2.30)

where a is the speed of sound in the ideal gas given by

a2 =
∂p

∂ρ

∣
∣
∣
∣
s=const

= γRT = γ(γ − 1)e = γ
p

ρ
. (2.31)

The energy equation can be rewritten in terms of the Mach number M as

a2
1

(

1 +
γ − 1

2
M2

1

)

= a2
2

(

1 +
γ − 1

2
M2

2

)

. (2.32)

The momentum equation can be divided by the mass conservation equation and

rewritten as

a1
1 + γM2

1

M1

= a2
1 + γM2

2

M2

. (2.33)

The square of equation (2.33), divided by equation (2.32) gives

M2
2 =

1 + γ−1
2

M2
1

γM2
1 − γ−1

2

. (2.34)

The temperature ratio may be found by substituting the temperature in equation

(2.32):
T2

T1
=

e2

e1
=

(

1 +
2γ

γ + 1
(M2

1 − 1)

)
2 + (γ − 1)M 2

1

(γ + 1)M2
1

. (2.35)

Conversion of the speed of sound a into the particle velocity U via the Mach number

M in equation (2.32) leads to

ρ2

ρ1
=

U1

U2
=

(γ + 1)M2
1

2 + (γ − 1)M 2
1

, (2.36)

where mass conservation was used for the first equality. The pressure ratio may be

found from equation (2.20)

p2

p1

= 1 +
2γ

γ + 1
(M2

1 − 1). (2.37)
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Figure 2-4: Behavior of the density ratios ρ2/ρ1 and ρ3/ρ1 as a function of the pressure
ratio ps/p1 of the incoming wave for air (γ = 1.4).

Equations (2.35-2.37) are the shock jump (or Rankine-Hugoniot) relationships of the

flow quantities across a normal shock wave. The derivation presented here loosely

followed the derivation given in [2].

For blast waves, it is useful to express the particle velocity, the shock speed and

the jump conditions in terms of the blast wave peak overpressure ps = p2 − p1 elim-

inating the Mach number M1. The speed Us of the shock wave propagating in still

atmosphere, u1 = 0 m·s−1, is

Us = a1M1 =

√
p1

ρ1

√
p2

p1

γ + 1

2
+

γ − 1

2
=

√
p1

ρ1

√
γ + 1

2

ps

p1
+ γ, (2.38)

and the particle velocity us behind the shock is

us = −u2 =
ps

p1

√
p1

ρ1

√

1
γ+1

2
ps

p1
+ γ

. (2.39)
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(a) Density (b) Temperature

Figure 2-5: Real gas effects on the density and temperature jump conditions across a
shock wave in nitrogen N2 at temperature T1 = 300 K and pressure p1 = 1.014× 105

Pa [52].

The jump relationship for the density is obtained from equations (2.36) and (2.37) as

ρ2

ρ1
=

2γ + (γ + 1) ps

p1

2γ + (γ − 1) ps

p1

. (2.40)

This equation implies that the density ratio across a shock wave traveling in an ideal

gas is finite regardless of the shock strength. Figure 2-4 shows the variation of the

density ratio ρ2/ρ1 for air (γ = 1.4) as a function of the overpressure ps. In this

case, the limiting density ratio is 6, i.e. sup(ρ2/ρ1) = 6. This is another manifes-

tation of the hypersonic Mach number independence principle [2] which states that

at sufficiently high Mach numbers certain aspects of the flow become independent

of the Mach number M1. Real gas effects significantly modify the perfect gas rela-

tionships derived above [52]. Figure 2-5(a) shows that when the effects of vibrational

excitation, dissociation, ionization and electronic excitation are taken into account,

the density ratio ρ2/ρ1 can be as high as 14. The calculations of Kamel et al. [52]

considered nitrogen for simplicity, but the results for air are qualitatively similar as
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air comprises 78% nitrogen N2 [110]. Real gas effects become significant only for very

strong explosions: Mach number M1 = 10 corresponds to pressure ratio p2/p1 = 116.5

and Mach number M1 = 30 to pressure ratio p2/p1 = 1050. The real gas effects on

the temperature jumps are shown in Figure 2-5(b).

In the case of water, the system of equations (2.25-2.27) is closed through the

isentrope approximation (2.18) which renders the energy equation unnecessary. As-

suming that the fluid to the left of the shock is stationary u1 = 0 m·s−1 and at the

reference state, p1 = p0, ρ1 = ρ0, the system is simplified to

ρ2(u2 + Us) = ρ1Us (2.41)

B

((
ρ2

ρ1

)Γ0+1

− 1

)

= −ρ1Usu2 (2.42)

from which the shock speed is found to be

U2
s =

B

ρ1

ρ2

ρ1

(
ρ2

ρ1

)Γ0+1

− 1

ρ2

ρ1
− 1

. (2.43)

Setting ρ2/ρ1 = 1 + x and assuming that x is small (as it would be for most liquids

satisfying Tait’s equation of state (2.18)), a first order approximation for U 2
s may be

obtained1:

U2
s ≈ B

ρ1
(1 + x)

(Γ0 + 1)x + Γ0(Γ0+1)
2

x2

x
≈ B(Γ0 + 1)

ρ1

(

1 +

(

1 +
Γ0

2

)

x

)

. (2.44)

Using
√

1 + ε ≈ 1 + 1
2
ε we arrive at

Us ≈
√

B(Γ0 + 1)

ρ1

(

1 +
Γ0 + 2

4
x

)

. (2.45)

This result implies that the reference sound speed in the liquid is a0 =
√

B(Γ0+1)
ρ1

.

Using the values of the parameters quoted in Section 2.1.2, the sound speed is found

1For liquids satisfying Tait’s equation of state, it is more convenient to use the density ratio ρ2/ρ1

as the independent variable characterizing the shock (as opposed to the pressure ratio p2/p1).
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Table 2.1: Properties of shock waves with density ratio ρ2/ρ1 = 1.05 advancing into
a stationary fluid at pressure p1 = 1.048 × 105 Pa.

fluid ρ2/ρ1 ps/p1 p2/p1 Us [m·s−1] a1 [m·s−1]
air 1.05 0.0707 1.0707 360.46 340.42

water 1.05 1252.3 1253.3 1633.0 1474.8

to be a0 = 1474.8 m·s−1 which is within the typical range of 1450-1500 m·s−1 quoted

in the literature for water at room temperature [121].

The particle velocity u2 behind the shock is found to be

u2 = −B

ρ1

(
ρ2

ρ1

)Γ0+1

− 1

Us
, (2.46)

which can be approximated up to second order in x as

u2 ≈ −
√

B(Γ0 + 1)

ρ1
x

(

1 +
Γ0 − 2

4
x

)

. (2.47)

The second order expression for the pressure p2 follows directly from (2.18)

p2 ≈ p1 + B(Γ0 + 1)x

(

1 +
Γ0

2
x

)

. (2.48)

Anderson [2] suggests that a fluid flow should be considered compressible if the

density of the fluid changes by more than 5%. Using equations (2.18) and (2.40)

we conclude that compressibility effects cannot be neglected for shock waves with

overpressure ratios ps/p1 larger than 0.0707 and 1252.3 for air and water, respectively.

A list of properties of interest of shock waves at these pressure ratios is given in Table

2.1. The table shows that conventional explosions generate strong shock waves in air

and acoustic waves in water implying that the wave propagation processes in water

and air are not only quantitatively, but also qualitatively different.
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2.1.4 The Acoustic Limit

Many of the developments in this thesis have the acoustic case as the limit of small

amplitude waves because, as it was shown in the previous section, this limit is appli-

cable to water up to very high overpressures ps and provides the basis onto which the

compressible theory builds up. For completeness the acoustic theory is summarized

in this section.

The mass (2.1) and momentum (2.2) conservation equation for one dimensional

inviscid flow take the form

∂ρ

∂t
+ u

∂ρ

∂x
= −ρ

∂u

∂x
, (2.49)

∂u

∂t
+ u

∂u

∂x
= −1

ρ

∂p

∂x
. (2.50)

In the acoustic theory it is assumed that the density, pressure and velocity fields

experience small perturbations ρ̃, p̃ and ũ around an initial state ρ̄, p̄ and ū = 0

m·s−1:

ρ = ρ̄ + ρ̃, (2.51)

p = p̄ + p̃, (2.52)

u = ū + ũ (2.53)

and the governing equations take the form

∂ρ̃

∂t
+ ρ̄

∂ũ

∂x
= 0 (2.54)

ρ̄
∂ũ

∂t
= −∂p̃

∂x
. (2.55)

Differentiating (2.54) with respect to t and (2.55) with respect to x and cross substi-

tuting gives
∂2ρ̃

∂t2
− ∂2p̃

∂x2
= 0. (2.56)
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The sound speed (2.31) can be obtained as :

a2 =
∂p

∂ρ

∣
∣
∣
∣
s=const.

=
p̃

ρ̃
, (2.57)

and upon substitution in (2.56) gives

∂2p̃

∂t2
− a2 ∂2p̃

∂x2
= 0, (2.58)

∂2ρ̃

∂t2
− a2 ∂2ρ̃

∂x2
= 0. (2.59)

These expressions indicate that the propagation of weak pressure and density dis-

turbances in an acoustic medium is governed by the linear wave equation with wave

propagation speed a. The general solution of equation (2.58) was given by D’Alambert

[133] in the form p̃ = f(x−at)+g(x+at) where f and g are arbitrary functions which

can be determined from the initial conditions. The corresponding expressions for the

velocity ũ and density ρ̃ are obtained from equations (2.55) and (2.57), respectively,

as

ũ =
1

aρ̄
(f(x − at) − g(x + at)) , (2.60)

ρ̃ =
1

a2
(f(x − at) + g(x + at)) . (2.61)

2.2 Wave Reflections

2.2.1 Wave Reflection from Rigid Boundaries

Consider an acoustic wave g(x + at) traveling to the left which meets a rigid wall

at x = 0 m. The boundary condition is ũ(x = 0, t) = 0 m·s−1 and the rigid wall

acts as the source of a wave traveling in the positive x direction. Substitution of

the boundary condition in equation (2.60) implies that f(−at) = g(at) for all times

t and therefore the pressure at the wall is twice the pressure of the incoming wave,

p̃(x = 0, t) = 2g(at). It is customary to express this fact by saying that the reflection
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Figure 2-6: Reflection of a normal shock wave from a rigid wall.

Table 2.2: Reflection coefficient CR = pr/ps for air and water as a function of the
incident overpressure ratio ps/p1 as obtained from equations (2.62) and (2.76), re-
spectively.

ps/p1 0.01 1.0 3.0 10 30 100 1000 10000
air CR 2.0086 2.7500 3.8000 5.5294 6.8649 7.6075 7.9583 7.9958

water CR 2.0000 2.0002 2.0006 2.0019 2.0057 2.0187 2.1672 2.9142

coefficient for the acoustic wave is equal to 2.

The reflection of finite amplitude waves in air from rigid boundary departs sig-

nificantly from acoustic theory even for overpressures as small as 1 atm and can be

explained with the help of Figure 2-6. An incident wave of overpressure ps = p2 − p1

approaches with speed Us the fixed wall on the left, reflects from it and creates a re-

flected wave of overpressure pr = p3 − p1 moving to the right at velocity Ur. Utilizing

the Rankine-Hugoniot relations for a perfect gas, the reflection coefficient CR = pr/ps

is found to be

CR =
pr

ps
=

(3γ − 1) ps

p1
+ 4γ

(γ − 1) ps

p1
+ 2γ

. (2.62)

The minimum value of the reflection coefficient is 2 for ps/p1 → 0 and its maximum

value is 3γ−1
γ−1

for ps/p1 → ∞ (for air with γ = 1.4, sup CR = 8). The behavior of

equation (2.62) is shown in Figure 2-7 and some representative values of CR are given

in Table 2.2. The effects of compressibility become appreciable even for low incident

overpressure ratios ps/p1 (for ps/p1 = 1.0 the reflection coefficient CR = pr/ps equals
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Figure 2-7: Variation of the reflection coefficient CR = pr/ps for air and water as
a function of the incident overpressure ratio ps/p1. The circles represent the values
reported by Cole [19].

2.75).

The density ratio ρ3/ρ1 of the reflected shock wave may also be expressed as a

function of the incoming overpressure ratio ps/p1. More specifically, it is

ρ3

ρ1
=

γ ps

p1
+ γ

(γ − 1) ps

p1
+ γ

(γ + 1) ps

p1
+ 2γ

(γ − 1) ps

p1
+ 2γ

, (2.63)

with sup(ρ3/ρ1) = 21. The variation of the density ratio ρ3/ρ1 with the overpressure

ratio ps/p1, equation (2.63), is shown in Figure 2-4.

Similarly to the results for air presented above, relationships between the incident

and reflected waves may also be derived for water. Tait’s equation of state (2.18)

makes it more convenient to use the density ratio ρ2/ρ1 as the independent variable

and describe all parameters of the reflected shock in terms of it. The mass conserva-

tion, momentum conservation and the equation of state characterizing the incident
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shock wave are:

ρ2(u2 − Us) = −ρ1Us, (2.64)

p2 − p1 = ρ1Usu2, (2.65)

p2 − p1 = B

((
ρ2

ρ1

)Γ0+1

− 1

)

. (2.66)

The governing equations for the reflected wave are

ρ2(u2 + Ur) = ρ3Ur, (2.67)

p3 − p2 = ρ3Uru2, (2.68)

p3 − p1 = B

((
ρ3

ρ1

)Γ0+1

− 1

)

. (2.69)

Subtracting (2.66) from (2.69) gives

p3 − p2 = B

((
ρ3

ρ1

)Γ0+1

−
(

ρ2

ρ1

)Γ0+1
)

. (2.70)

The shock velocities Us and Ur can be expressed from (2.64) and (2.67)

Us =
ρ2u2

ρ2 − ρ1
, (2.71)

Ur =
ρ2u2

ρ3 − ρ1
. (2.72)

Substituting these expressions into the momentum conservation equations (2.65) and

(2.68) gives

B

((
ρ2

ρ1

)Γ0+1

− 1

)

=
ρ1ρ2u

2
2

ρ2 − ρ1

, (2.73)

B

((
ρ3

ρ1

)Γ0+1

−
(

ρ2

ρ1

)Γ0+1
)

=
ρ2ρ3u

2
2

ρ3 − ρ2
. (2.74)

Division of the last two equations eliminates the unknown velocity u2 and gives a
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relationship between the density ratios ρ2/ρ1 and ρ3/ρ1

(
ρ3

ρ1

)Γ0+1

−
(

ρ2

ρ1

)Γ0+1

(
ρ2

ρ1

)Γ0+1

− 1
=

ρ3

ρ1

(
ρ2

ρ1
− 1
)

ρ3

ρ1
− ρ2

ρ1

. (2.75)

This equation cannot be solved explicitly for ρ3/ρ1, but its numerical evaluation is

straightforward. Once the density ratio is obtained, the reflection coefficient CR

follows from

CR =
pr

ps
=

p3 − p1

p2 − p1
=

(
ρ3

ρ1

)Γ0+1

− 1
(

ρ2

ρ1

)Γ0+1

− 1
=

ρ2

ρ1

(
ρ3

ρ1
− 1
)

ρ3

ρ1
− ρ2

ρ1

. (2.76)

The variation of CR for water is shown in Figure 2-7 and compared with the data of

Cole [19]. In clear contrast with the case of air, the reflection coefficient CR for water

remains close to the acoustic value of 2. Series expansion analysis of CR sheds light

into the nature of this behavior.

Equation (2.75) can be rewritten as

(
ρ2

ρ1

)Γ0+2

− ρ2

ρ1

(
ρ3

ρ1

)Γ0+1

+

(
ρ3

ρ1

)Γ0+2

−
(

ρ2

ρ1

)Γ0+2
ρ3

ρ1
+

ρ2

ρ1

ρ3

ρ1
− ρ3

ρ1
= 0. (2.77)

Let ρ2/ρ1 = 1 + x and ρ3/ρ1 = 1 + ax + bx2 + cx3 + ... be the Taylor expansion of the

reflected density ratio in terms of x. The terms in equation (2.77) can be expressed

as

(
ρ2

ρ1

)Γ0+2

=1 + (Γ0 + 2)x +
(Γ0 + 2)(Γ0 + 1)

2
x2 +

(Γ0 + 2)(Γ0 + 1)Γ0

6
x3 + ...

(2.78)

ρ2

ρ1

(
ρ3

ρ1

)Γ0+1

=1 + ((Γ0 + 1)a + 1)x + (Γ0 + 1)

(

a + b +
Γ0 + 2

2
a2

)

x2+

(Γ0 + 1)

(

b + c + Γ0ab +
Γ0 + 2

2
a2 +

Γ0(Γ0 − 1)

6
a3

)

x3 + ... (2.79)

(
ρ3

ρ1

)Γ0+2

=1 + (Γ0 + 2)ax + (Γ0 + 2)

(

b +
Γ0 + 1

2
a2

)

x2+
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(Γ0 + 2)

(

c + (Γ0 + 1)ab +
(Γ0 + 1)Γ0

6
a3

)

x3 + ... (2.80)

(
ρ2

ρ1

)Γ0+2
ρ3

ρ1
=1 + (Γ0 + 2 + a)x +

(
(Γ0 + 1)(Γ0 + 2)

2
+ (Γ0 + 2)a + b

)

x2+

(
(Γ0 + 2)(Γ0 + 1)Γ0

6
+

(Γ0 + 2)(Γ0 + 1)

2
a + (Γ0 + 2)b + c

)

x3 + ...

(2.81)

ρ2

ρ1

ρ3

ρ1

=1 + (1 + a)x + (a + b)x2 + (b + c)x3 + ... (2.82)

The zeroth and first order terms provide no specific information about a, b and c while

the second order term leads to a = 2 and the third order term to b = 2. Substitution

of the expansions of ρ2/ρ1 and ρ3/ρ1 in equation (2.76) gives the reflection coefficient

up to first order:

Cr =
a

a − 1
+

a2 − a − b

(a − 1)2
x + O(x2) = 2 + O

((
ρ2

ρ1
− 1

)2
)

. (2.83)

The reflection coefficient CR is 2 up to first order in the density of the incoming wave

explaining why CR remains close to 2 up to very large pressure in Figure 2-7.

2.2.2 Wave Reflection from Free Boundaries

Consider an acoustic wave g(x+at) traveling to the left which reaches a free boundary

at x = 0 m. The condition at the free boundary is p̃(x = 0, t) = 0 Pa. Similarly to

the reflection from a rigid wall a right going wave is created. Substituting the general

solution into the boundary condition gives f(−at) = −g(at) implying the reflected

wave is equal in magnitude and opposite in sign to the incoming wave. For a free

boundary the reflection coefficient is 0, but the boundary point acquires a negative

velocity ũ(x = 0, t) = − 2g(at)
aρ̄

(see equation (2.60)) implying that the free end moves

to the left. Its displacement is first order within the acoustic theory, but can become

quite large when the acoustic approximation breaks [51].

Wave reflection of finite amplitude waves from free boundaries is deferred to Chap-

ter 4 where it will be considered in details.
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Chapter 3

Solutions of Acoustic Blast Waves

Interacting with Point Masses

This chapter contains the applications of the linear wave propagation theory for the

analysis of the interaction of blast waves with point masses. The well established two

wave solution method [133] is modified to account for the motion of the point masses

and a level of generality sufficient for application to the problems of free-standing,

supported and actively deployed masses is kept.

3.1 The General Solution Method

Consider an acoustic wave f(x − at) traveling in the positive x direction towards a

plate of mass per unit area mp (Figure 3-1). At time t the plate is located at position

ξ(t) and has a reaction force per unit area r(t, ξ, ξ̇, ...) acting on it in the negative

x direction. The reaction force r is the excess pressure (possibly negative) over the

ambient pressure and represents the reaction of the plate supports, e.g. springs,

dampers, fluids, etc. The ambient pressure in the fluid domain x ≤ 0 is assumed to

be exactly balanced by an additional force (not shown in the figure) on the plate’s

right hand side leaving it motionless until the arrival of the wave. For simplicity it will

be assumed that ξ(t = 0) = 0 m and that the wave reaches the plate at time t = 0

s. Similarly to the wave reflections from rigid walls and free boundaries, once the
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r(t, ξ, ξ̇, ...)

mp

x

Approaching Wave

f(x − at)

0

ξ

Figure 3-1: An acoustic wave f of arbitrary shape approaching a plate of mass per
unit area mp.

wave reaches the plate a reflected wave g(x+ at) traveling in the negative x direction

is created making the total pressure perturbation on the left hand side of the plate

p̃ = f(x − at) + g(x + at). The motion of the plate is governed by Newton’s Second

Law,

mpξ̈ = f(ξ − at) + g(ξ + at) − r(t, ξ, ξ̇, ...). (3.1)

The motion of the fluid particle on the left side of the plate is governed by the

conservation equations (2.1-2.3). In particular the momentum conservation equation

(2.2) takes the form

ρ
d2ξ

dt2
= ρ

(
∂u

∂t
+ u

∂u

∂x

)

= −∂p

∂x
= −f ′(ξ − at) − g′(ξ + at). (3.2)

The reflected wave g(x + at) is unknown and can be eliminated by differentiating

(3.1) with respect to t, multiplying (3.2) with ξ̇+a and adding the resulting equations.

The final differential equation for ξ is

mp

...
ξ + (ξ̇ + a)ρξ̈ = −2af ′(ξ − at) − d

dt
(r(t, ξ, ξ̇, ...)). (3.3)

This equation is not an equation for ξ as it still contains the density of the particle next
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to the plate ρ = ρ(t, ξ). Within the acoustic approximation, a first order perturbation

of the density ρ = ρ̄ + ρ̃(t, ξ) can be assumed, where ρ̄ is the background ambient

density and ρ̃(t, ξ) is the perturbation over the ambient state. The displacement ξ(t)

is also assumed to be small as well as are its derivatives, ξ̇(t) and ξ̈(t). Ignoring the

second order term containing ρ̃ and realizing that ξ̇ � a implies f ′(ξ−at) ≈ f ′(−at),

(3.3) simplifies to:

mp

...
ξ + aρ̄ξ̈ = −2af ′(−at) − d

dt
(r(t, ξ, ξ̇, ...)). (3.4)

When f and r are specified together with an appropriate set of initial conditions,

equation (3.4) can be solved for the displacement ξ. From the solution all quantities

of interest such as impulse and energy transmitted to the plate can be determined.

The reflected wave g can be found from the first order approximation of equation

(3.1)

g(at) = mpξ̈ − f(−at) + r(t, ξ, ξ̇, ...), (3.5)

from which the pressure field

p̃(x, t) = f(x − at) + g(x + at) (3.6)

in the fluid domain can be obtained.

3.2 Response of Free-Standing Plates

In this section the general solution approach described above is used to derive a

number of relevant cases of acoustic waves interacting with free-standing structures.
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3.2.1 Uniform Wave Profile

One of the simplest cases to solve arises when there is no excess force applied on the

right hand side r(t) = 0 Pa, ∀t and the incident wave is uniform

f(x − at) =







0, x ≥ at

ps, x < at
. (3.7)

The governing equation (3.4) becomes

mp

...
ξ + aρ̄ξ̈ = 0 (3.8)

with initial conditions

ξ(t = 0) = 0, (3.9)

ξ̇(t = 0) = 0, (3.10)

ξ̈(t = 0) =
2ps

mp
. (3.11)

The factor of 2 is present in the condition for the acceleration because the initially sta-

tionary plate behaves instantaneously as a rigid wall and the wave reflects completely.

The solution for the displacement ξ is found to be

ξ =
2ps

ρ̄2a2

(

e
− ρ̄a

mp
t − 1

)

+
2ps

ρ̄a
t (3.12)

with

ξ̇ = −2ps

ρ̄a
e
− ρ̄a

mp
t
+

2ps

ρ̄a
, (3.13)

ξ̈ =
2ps

mp

e
− ρ̄a

mp
t
. (3.14)

The solution clearly reveals that the fluid-structure interaction is governed by the

time scale t∗ = mp/ρ̄a.

A quantity of interest is the maximum impulse acquired by the plate as a fraction
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Figure 3-2: Transmitted impulse and energy as given by equations (3.15) and (3.16).

of the impulse available in the incident wave Ii =
∫ ti
0

p̃dt = psti. The available impulse

Ii can be interpreted as the impulse carried by the incident pressure wave through

the point x = 0 from t = 0 up to the moment of interest t = ti which can be chosen

arbitrarily. The maximum impulse is

Ip

Ii

=
max
0≤t≤ti

(

mpξ̇(t)
)

psti
= 2

1 − e−β0

β0

, (3.15)

where the non-dimensional parameter β0 describes the fluid-structure interaction.

This non-dimensional parameter β0 = ti/t
∗ compares the relative time scales of the

fluid structure interaction t∗ and the incident wave ti. It was first identified by Taylor

[119] in the context of exponentially decaying pressure waves and plays an important

role in the description of the interactions between blast waves and plates. A plot

of the dependence of the transmitted impulse Ip/Ii on β0 on log-log scale is shown

in Figure 3-2. The transmitted impulse is a monotonically decreasing function of β0

implying that less impulse is transmitted to lighter plates. As it can be seen in the

figure, the function Ip/Ii asymptotes to a constant value of 2 for small β0 and 2/β0
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for large β0. These asymptotes will be used as a basis for extending (3.15) to the

compressible range in Chapter 4.

Similarly to the impulse, the maximum kinetic energy transmitted to the plate is

found to be

Ep

Ei

=
max
t≥0

(
mpξ̇2(t)

2

)

p2
sti
ρ̄a

= 2

(
1 − e−β0

)2

β0

, (3.16)

where Ei = p2
sti/ρ̄a is a non-dimentionalization constant1. The dependence of the

transmitted energy on the fluid-structure interaction parameter β0 is also shown in

Figure 3-2. The transmitted energy achieves its maximum at β0 = 1.2564 which is

the positive solution of e−β0(2β0 + 1) = 1. There is a resonance-like behavior around

β0 = 1.2564 and unlike the momentum, the energy transmitted to the plate can be

reduced with either very light plates or with very heavy plates. The energy ratio

Ep/Ei asymptotes to 2β0 for small β0 and 2/β0 for large β0.

The reflected wave is g(at) = ps

(

2e
− ρ̄a

mp
t − 1

)

and the pressure field within the

fluid domain is

p̃(x, t ≥ 0) =







2pse
− ρ̄

mp
(x+at)

, x + at ≥ 0

ps, x + at < 0
. (3.17)

In water if the pressure p̃(x, t) becomes negative the fluid cavitates and the analysis

ceases to be valid [119]. Methods extending the solutions beyond the cavitation time

have been proposed, but in this work the interaction between the blast waves and

the plates will be considered only until the point of cavitation [53, 70]. According to

equation (3.17) the pressure remains positive at all times and therefore no cavitation

occurs when uniform waves interact with free-standing rigid plates.

3.2.2 Exponential Wave Profile

This problem was studied by G. I. Taylor [119] during the Second World War in

connection with underwater explosion damage to ship hulls. For completeness, we

provide a derivation of Taylor’s solution and give some additional details about the

transmitted energy.

1Ei can be interpreted as the “pressure” energy carried by the wave.
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An exponential pressure wave of the form

f(x − at) =







pse
x−at
ati , x − at ≤ 0

0, x − at > 0
(3.18)

is considered. Equation (3.4) takes the form

mp

...
ξ + aρ̄ξ̈ = −2

ps

ti
e
− t

ti (3.19)

with initial conditions (3.9-3.11). Equation (3.19) can be rewritten in the non-

dimensional form
d3ζ

dτ 3
+ β0

d2ζ

dτ 2
= −2β0e

−τ (3.20)

with the initial conditions becoming

ζ(τ = 0) = 0, (3.21)

dζ

dτ
(τ = 0) = 0, (3.22)

d2ζ

dτ 2
(τ = 0) = 2β0, (3.23)

where the non-dimensional displacement ζ = aρ̄ξ
psti

and time τ = t/ti have been intro-

duced. In these equations, the single fluid-structure interaction parameter is defined

as β0 = ti/t
∗ where t∗ = mp/ρ̄a represents the characteristic time of the fluid-structure

interaction. Physically, β0 may also be interpreted as the relative inertia of the volume

of compressed gas ρ̄ati and the plate mp:

β0 =
aρ̄ti
mp

. (3.24)

The solution of equation (3.20) is

ζ = 2 +
2β0

1 − β0
e−τ − 2

1 − β0
e−β0τ (3.25)
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Figure 3-3: Transmitted impulse and energy for an exponential incident wave profile

with

dζ

dτ
=

2β0

1 − β0

(
e−β0τ − e−τ

)
, (3.26)

d2ζ

dτ 2
=

2β0

1 − β0

(
e−τ − β0e

−β0τ
)
. (3.27)

The maximum transmitted impulse

Ip

Ii
= max

τ≥0

(
1

β0

dζ

dτ

)

= 2β
β0

1−β0
0 (3.28)

and energy

Ep

Ei
= max

τ≥0

(

1

β0

(
dζ

dτ

)2
)

= 4β
1+β0
1−β0
0 (3.29)

are achieved simultaneously at time

τm =
log β0

β0 − 1
(3.30)

which is a decreasing function of β0. Figure 3-3 shows plots of Ip/Ii and Ep/Ei versus
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β0. The overall shape of these curves is found to be similar to those obtained for

uniform wave profiles in Section 3.2.1. The non-dimensionalization of the impulse

curve is accomplished through division by Ii =
∫∞
0

p̃dt = ti
∫∞
0

pse
−τdτ = psti. The

function Ip/Ii asymptotes to 2 for small β0 and to 2/β0 for large β0. Similarly to the

case of uniform wave profiles, Figure 3-3 indicates that the impulse transmitted to

lighter plates is less. The dependence of the energy transmission on β0 is inversion

invariant, i.e. it has the property f(β0) = f(1/β0), and is symmetric with respect to

β0 = 1 where it attains its maximum value Ep/Ei = 4/e2 < 1. The asymptotes are

Ep/Ei = 4β0 for small β0 and Ep/Ei = 4/β0 for large β0.

The advantage of sandwich over solid plates of the same mass can be explained

in terms of the impulse and energy curves as follows. Consider a sandwich plate with

mass of the front face sheet mp such that the corresponding fluid-structure interaction

parameter β0 is greater than 1, β0 > 1. If the front face sheet thickness is reduced by a

factor of 2, its mass reduces by a factor of 2 to mp/2, and the effective fluid-structure

interaction parameter doubles to 2β0. Approximating the impulse and energy curves

in Figure 3-3 by their asymptotes in the region β0 > 1, one can immediately conclude

that both the transmitted impulse Ip/Ii and the transmitted energy Ep/Ei are reduced

by a factor of 2 for the face sheet with the reduced mass. This reduction effect

is responsible for the advantageous response of sandwich plates with thinner face

sheets to blast waves. Similar parallel can be drawn when comparing a sandwich

and monolithic plates of the same mass as the front face sheet of the sandwich is

necessarily lighter than the monolithic plate itself.

It should be noted that reducing the plate mass in the region β0 < 0.5 is detri-

mental for the blast performance. Consider a sandwich plate with front face sheet

mass mp such that β0 < 0.5. If the thickness of the face sheet is reduced by a factor

of 2, the mass of the face sheet again becomes mp/2 and the effective fluid-structure

interaction parameter is again doubled to 2β0 < 1. However in the region β0 < 1, the

momentum transmission curve can be approximated by a constant asymptote imply-

ing no reduction in the transmitted impulse. Using similar asymptotic approximation

for the energy transmission Ep/Ei we observe that it actually doubles. This implies
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loss rather than increase in performance for the sandwich plate with the lighter face

sheet in the region β0 < 1, hence care must be exercised when trying to utilize sand-

wich plates for blast protection as having a light front face sheet is not necessarily

always beneficent. The transition between the asymptotes happens in a vicinity of

β0 = 1 and potential advantages or disadvantages of the use of sandwich plates with

values of the fluid-structure interaction parameter in that region must be evaluated

using more precise approaches.

For water, it is important to evaluate the range of validity of this analysis by

identifying the cavitation point. Utilizing the non-dimensional reflected wave g

g(τ)

ps
=

1 + β0

1 − β0
e−τ − 2β0

1 − β0
e−β0τ (3.31)

the pressure in the fluid domain is found to be

p̃(χ, τ)

ps
=







1+β0

1−β0
e−χ−τ − 2β0

1−β0
e−β0(χ+τ) + eχ−τ , χ + τ ≥ 0

eχ−τ , χ + τ < 0
, (3.32)

where the non-dimensional location χ = x/ati has been introduced. It can be assumed

that cavitation occurs when the minimum pressure becomes 0, i.e. when p̃(χc, τc) = 0

and ∂p̃
∂χ

(χc, τc) = 0 [70]. Both conditions are satisfied only when χc = 0 and τc = τm.

Thus cavitation occurs at the front face of the plate at the instant when the plate has

achieved its maximum velocity. The location of the plate at the time of cavitation,

which is also the time of maximum plate velocity, can be obtained from equation

(3.25) as

ζ(τm) = 2 − 2(1 + β0)β
β0

1−β0
0 (3.33)

and achieves a maximum for β0 = 1. For water, the dimensional displacement ξ(τm)

remains small (less than 0.04m for blast overpressure of 1 GPa) due to the large speed

of sound and density of water, but for air this displacement can become large (on the

order of 1 meter) and intolerable [51].
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3.3 Response of Supported Plates

In this section the general solution approach described in Section 3.1 is used to derive

a number of relevant cases of acoustic waves interacting with supported structures.

3.3.1 Perfectly Plastic Support

The interaction between an exponential blast wave and a plate on a perfectly plastic

support was considered by Hutchinson and Xue [46]. Their analysis has been extended

to sandwich plates with perfectly plastic cores by Deshpande and Fleck [29] who

included the effect of plastic wave propagation within the core. In this section the

model of Hutchinson and Xue will be reviewed and some new insights into the impulse

and energy transmission will be provided.

For the case of a perfectly plastic support the reaction force is a discontinuous

function of the plate velocity ξ̇. If the plate is moving to the right, the reaction

force is r(ξ̇ > 0) = σc. If the plate is stationary, ξ̇ = 0 the reaction force can take

any value between 0 and σc necessary to keep the plate stationary. Definition of the

reaction force for ξ̇ < 0 is not required as the solution derived in this section ceases

to be valid before the velocity ξ̇ becomes negative. In the follow up analysis it will be

assumed that σc < 2ps so that the support undergoes plastic deformation. Otherwise

the problem degenerates to reflection from a rigid wall.

The governing equation for the displacement until the moment at which the veloc-

ity ζ̇ becomes zero is the same as in the case of no support, namely equation (3.20).

Its initial conditions are slightly modified and become

ζ(τ = 0) = 0, (3.34)

dζ

dτ
(τ = 0) = 0, (3.35)

d2ζ

dτ 2
(τ = 0) =

(

2 − σc

ps

)

β0. (3.36)
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The solution for the non-dimensional displacement is

ζ = 2 +
σc

ps

(
1

β0
− τ

)

−
(

1

β0

σc

ps
+

2

1 − β0

)

e−β0τ +
2β0

1 − β0
e−τ (3.37)

with

dζ

dτ
= −σc

ps
+

(
σc

ps
+

2β0

1 − β0

)

e−β0τ − 2β0

1 − β0
e−τ , (3.38)

d2ζ

dτ 2
= −

(

β0
σc

ps
+

2β2
0

1 − β0

)

e−β0τ +
2β0

1 − β0
e−τ . (3.39)

For no resistance force, σc = 0 Pa, these expressions simplify to Taylor’s solution.

The maximum transmitted impulse

Ip

Ii
= max

τ≥0

(
1

β0

dζ

dτ

)

=
2

β0

(

β0 +
σc

ps

1 − β0

2

) 1
1−β0

− 1

β0

σc

ps
(3.40)

and energy

Ep

Ei
= max

τ≥0

(

1

β0

(
dζ

dτ

)2
)

=
1

β0

(

2

(

β0 +
σc

ps

1 − β0

2

) 1
1−β0

− σc

ps

)2

, (3.41)

are achieved simultaneously at τm = (β0 − 1)−1 log
(

β0 + σc

ps

1−β0

2

)

. Their dependence

on the resistance force σc is shown in Figure 3-4. In addition to the expected behavior

that a larger resistance force leads to a larger reduction in the impulse and the energy,

it can be seen that heavier plates benefit more from presence of the plastic supports.

The effect is due to the longer time period τm (see Figure 3-5) during which the resis-

tance force σc acts on the plate canceling a larger fraction of the transmitted impulse.

The larger benefits occurring for heavier plates form a recurring pattern which ap-

pears again in later developments including the analysis of viscoelastic supports and

active protection concepts.

The results above are valid only until the onset of cavitation. The expressions for
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Figure 3-4: Maximum transmitted impulse Ip/Ii and energy Ep/Ei versus β0 for
different relative strengths of the plate support σc/ps.
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Figure 3-5: The cavitation time τc is always larger than the maximum velocity time
τm. The difference between τc and τm is especially large for heavy plates (small β0).

the reflected wave g and the pressure p̃ are

g(τ)

ps
=

σc

ps
−
(

σc

ps
+

2β0

1 − β0

)

e−β0τ +
1 + β0

1 − β0
e−τ (3.42)

and

p̃(χ, τ)

ps
=

σc

ps
−
(

σc

ps
+

2β0

1 − β0

)

e−β0(χ+τ) +
1 + β0

1 − β0
e−χ−τ + eχ−τ , (3.43)

respectively. Cavitation occurs at location χc and time τc for which the conditions

p̃(χc, τc) = 0 and ∂p̃
∂χ

(χc, τc) = 0 are satisfied. It was shown in Section 3.2.2 that for the

case of a free-standing plate cavitation occurs when the plate achieves its maximum

velocity. In contrast, in the case of a plastic support cavitation occurs later while the

plate is slowing down (see Figure 3-5). The difference between τc and τm is largest

for small values of β0 and becomes negligible at values of β0 ≥ 1. Additionally a

difference in the trends of τc and τm with σc/ps can be seen. Increases in the relative
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Figure 3-6: The relationship between β0 and the parameter rw characterizing the
mass of water between the plate and the cavitation point is close to linear and can
be approximated as rw = 0.71β0σc/ps [46].

strength of the support σc/ps reduce the time when the plate acquires its maximum

velocity, but increase τc delaying cavitation further in time. These observations are

consistent with the results for a rigid wall (σc/ps ≥ 2) for which τm = 0 and τc = +∞.

Hutchinson and Xue [46] suggest a modification of the maximum transmitted im-

pulse that accounts for the effect of cavitation by taking into account the momentum

of the mass of fluid between the cavitation point χc = xc/ati and the plate. The

quantity of water can be characterized by the non-dimensional number

rw =
|xc|ρ̄
mp

= β0|χc|. (3.44)

The dependence of this number on β0 is shown in Figure 3-6. Hutchinson and Xue

approximate the dependence as rw = 0.71β0σc/ps [46]. This formula provides a

practical way for estimating rw even though it tends to overestimate rw for small

σc/ps and underestimate it for large σc/ps.
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Figure 3-7: The approximation method of Hutchinson and Xue [46] tends to overes-
timate the exact value of the impulse contained within the liquid layer.

Assuming uniform fluid velocity between χ = χc and χ = 0 at time τ = τc and

utilizing the parameter rw, Hutchinson and Xue [46] propose the following formula

for the momentum of the fluid:

Inint

Ii
=

|xc|ρ̄ξ̇

psti
=

rw

β0

aρ̄ξ̇

ps
=

rw

β0

(
σc

ps

(
e−β0τc − 1

)
+

2β0

1 − β0

(
e−β0τc − e−τc

)
)

. (3.45)

The total momentum Itotal = Ip + Inint of the water layer and the plate is

Itotal

Ii
=

1 + rw

β0

(
σc

ps

(
e−β0τc − 1

)
+

2β0

1 − β0

(
e−β0τc − e−τc

)
)

, (3.46)

which after the substitution of the empirical expression for rw becomes

Itotal

Ii
≈
(

2 − 4.91
σc

ps

)

β
β0

1−β0
0 + 1.27

σc

ps
. (3.47)

The exact method to find the impulse of the fluid layer would be to integrate the
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momentum of each material particle between χ = χc and χ = 0 at time τ = τc:

Iint

Ii
=

∫ 0

xc
ũρ̄dx

psti
=

∫ 0

χc
aρ̄ũdχ

ps
=

2

1 − β0
e−τc +

σc

ps
χc − eχc−τc

+

(
σc

psβ0

+
2

1 − β0

)
(
e−β0(χc+τc) − e−β0τc

)
− 1 + β0

1 − β0

e−χc−τc.

(3.48)

The approximate method of Hutchinson and Xue [46] tends to overestimate the im-

pulse contained within the liquid layer by a few percent when compared to the exact

formula above. The error of the approximate method becomes larger for larger σc/ps

(see Figure 3-7 ).

The impulse given by the formula of Hutchinson and Xue (3.46) is compared to

the transmitted impulse from Taylor’s analysis (3.28) in Figure 3-8 for two different

values of σc/ps. The difference between the two curves is on the order of 10% except

for very small values of β0 for which it can be as large as 100%. The figure also

shows the results of two alternative methods to estimate the transmitted impulse.

If the fluid layer is considered to be part of the plate then the formulas for the

maximum impulse can be applied to this equivalent plate. The effective fluid-structure

interaction parameter accounting for both the plate and the cavitated water is

βeff =
aρ̄ti

mp + |xc|ρ̄
=

β0

1 + rw
(3.49)

and can be substituted either in equation (3.28), or in equation (3.40). All four

alternative methods for estimation of the transmitted impulse coincide with each

other for σc/ps = 0 and slowly diverge from each other as σc/ps increases (see Figure

3-8). Within the range of practical interest for blasts in water the best approximation

to the result of Hutchinson and Xue, equation (3.46), is given by using βeff in equation

(3.40): βeff takes into account the added fluid layer and the use of equation (3.40)

takes into account the resistance force σc.
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Figure 3-8: A comparison of different approximations of the transmitted impulse for
a perfectly plastic resistance force.

72



k

c

mp

ps, ti

ρ̄, a

Blast Wave

Figure 3-9: A plate of mp supported by a spring-dashpot system.

3.3.2 Viscoelastic Support

Another case in which an exact solution can be obtained and which may be of practical

interest comprises a plate of mass mp supported by a spring-dashpot system (see

Figure 3-9). The need to include the influence of viscoelastic supports in the modeling

of idealized blast experiments in a laboratory facility has been recently demonstrated

[132].

The resistance force r(t, ξ, ξ̇, . . . ) of a viscoelastic support is given by

r(t, ξ, ξ̇, . . . ) = kξ + cξ̇, (3.50)

where k and c are the distributed stiffness and the distributed viscosity per unit area,

respectively. For an exponential incident wave, the governing equation (3.4) becomes

mp

...
ξ + (aρ̄ + c)ξ̈ + kξ̇ = −2

ps

ti
e
− t

ti (3.51)

and its initial conditions are given by (3.9-3.11). This equation can be rewritten in

non-dimensional form as

d3ζ

dτ 3
+ β0(1 + α)

d2ζ

dτ 2
+ β0γ

dζ

dτ
= −2β0e

−τ , (3.52)

where the stiffness and viscous parts of the resistance force are characterized by the

non-dimensional parameters γ = kti/aρ̄ and α = c/aρ̄, respectively. The initial con-

ditions are given by (3.21-3.23). After one integration this non-dimensional equation
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is transformed into
d2ζ

dτ 2
+ β0(1 + α)

dζ

dτ
+ β0γζ = 2β0e

−τ (3.53)

with zero initial conditions ζ(τ = 0) = 0 and dζ
dτ

(τ = 0) = 0. This is the equation of a

harmonic oscillator with forcing 2β0e
−τ . As it can be seen from the coefficient in front

of dζ
dτ

, there are two contributions to the damping of the oscillator: the contribution

of the damper β0α and the contribution of the fluid-structure interaction β0. The

damping ratio η = (1+α)
√

β0

2
√

γ
of the system is an increasing function of β0 implying

that larger values of β0 lead to faster decay of the response, but it is premature to

conclude that larger values of β0 are desirable as the forcing 2β0e
−τ also increases

with β0. The explicit solution of equation (3.53) is

ζ =
2β0

1 − β0(1 + α − γ)

(

e−τ +
1 + λ2

λ1 − λ2
eλ1τ − 1 + λ1

λ1 − λ2
eλ2τ

)

(3.54)

where λ1 and λ2 are the roots of the characteristic equation

λ2
j + β0(1 + α)λj + β0γ = 0, j = 1, 2. (3.55)

Some quantities of interest which follow from the explicit solution (3.54) are:

• the impulse Ip transmitted to the plate

Ip

Ii
=

mpξ̇

psti
=

2

1 − β0(1 + α − γ)

(
λ1(1 + λ2)

λ1 − λ2
eλ1τ − λ2(1 + λ1)

λ1 − λ2
eλ2τ − e−τ

)

(3.56)

• the energy Ep transmitted to the plate

Ep

Ei

=
mp ξ̇2

2
p2

sti
2aρ̄

=
4β0

(1 − β0(1 + α − γ))2

(
λ1(1 + λ2)

λ1 − λ2

eλ1τ − λ2(1 + λ1)

λ1 − λ2

eλ2τ − e−τ

)2

(3.57)
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Figure 3-10: Maximum impulse transmitted to the plate as given by equation (3.60)
for different values of the parameter α.

• the force r(t, ξ, ξ̇, . . . ) exerted on the support

r

ps

=
kξ + cξ̇

ps

=
2β0

1 − β0(1 + α − γ)

(

(γ − α)e−τ +
(γ + αλ1)(1 + λ2)

λ1 − λ2

eλ1τ

− (γ + αλ2)(1 + λ1)

λ1 − λ2
eλ2τ

)

.

(3.58)

• the total energy Ed dissipated by the damper

Ed

Ei
=

∫∞
0

cξ̇2dt
p2

sti
2aρ̄

=
4αβ0

(1 + α)(1 + β0(1 + α + γ))
≤ 1. (3.59)

For viscoelastic supports, two additional performance metrics are of interest: the

total reaction force on the supports and the maximum displacement of the plate. The

case of a purely viscous support will be considered first because it allows for explicit

expressions for the maxima to be derived. In this case γ = 0 and one of the two

characteristic roots λ1 and λ2 becomes 0. The maximum impulse transmitted to the
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Figure 3-11: Maximum energy transmitted to a plate with purely viscous support.

plate
Ip

Ii
= 2[β0(1 + α)]

β0(1+α)
1−β0(1+α) (3.60)

is achieved at τm = log((1+α)β0)
(1+α)β0−1

. This result collapses to the well known result of

Taylor [119], equation (3.28), for the case of α = 0, as expected. Equation (3.60)

can be obtained from Taylor’s result by replacing β0 with β0(1+α) and therefore the

effect of large β0 reducing the transmitted impulse can also be obtained by increasing

α. This is illustrated in Figure 3-10 which shows that as α increases the momentum

transmission curves shift to the left. A similar shift can be observed for the energy

transmission curves in Figure 3-11. The shift to the left of the energy transmission

curves is accompanied with a simultaneous shift down because larger values of α lead

to larger dissipation in the dashpot and increased energy return into the fluid by the

reflected wave.

This maximum force is given by

r

ps
= 2β0α[β0(1 + α)]

β0(1+α)
1−β0(1+α) , (3.61)
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Figure 3-12: Maximum force transmitted to supporting structure as given by equation
(3.61) for different values of the parameter α.

and its dependence on β0 for four different values of α is shown in Figure 3-12. Two

conclusions can be drawn from this figure. First, larger values of α lead to larger

maximal forces on the supporting structure as the plate moves less and the wave

reflection becomes closer to reflection from a rigid wall. Second, for a fixed value of

α heavier plates reduce the maximum force by acting as a buffer which first absorbs

the impulse of the wave and then slowly transmits it to the supports. These two

observations can be better understood after computing the total impulse transmitted

to the back wall ∫∞
0

rdt

psti
=

∫ ∞

0

αζ̇dτ =
2α

1 + α
(3.62)

which is an increasing function of α and independent of the fluid-structure interaction

parameter β0. As expected, there is no impulse transmitted to the supports for α = 0

and the non-dimensional impulse transmitted to the supporting structure equals 2

for α = ∞.

In equations (3.60) and (3.61) the non-dimensional parameter α = c/ρ̄a quantifies

the relative strength of the damping due to the dashpot c and the damping due to
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Figure 3-13: Total energy dissipated by the damper c for a purely viscous support as
given equation (3.59) for different values of the parameter α.

the fluid ρ̄a. Both types of damping have the same effect on the motion of the plate,

but their overall effect is different because there is force on the supporting structure

due to c, but not due to ρ̄a.

The maximum non-dimensional displacement is achieved for τ = +∞:

ζ =
2

1 + α
. (3.63)

For α = 1 and a blast with ps = 100 MPa and ti = 0.1 ms in water (ρ̄ = 1000

kg·m−3 and a = 1475 m·s−1) this implies that the distance between the plate and

the rigid wall must be at least ξ = 0.0068 m. The displacement of only 7 mm is an

underestimate because, as it will be shown later, cavitation occurs and the damping

effect of the water term aρ̄ is lost.

Figure 3-13 displays the energy Ed dissipated by the damper in the case of purely

viscous support. The rest of the energy of the incident wave is returned into the fluid

by the reflected wave. The figure shows that the dissipated energy fraction Ed/Ei is
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largest for large values of β0 irrespective of the values of the damper constant α. This

is consistent with the physical intuition that heavy plates behave similarly to fixed

walls for which all of the incoming energy is returned into the fluid by the reflected

wave and that light plates absorb significant fraction of the incoming energy returning

only a small portion of it into the fluid. It can be observed in Figure 3-13 that the

dissipated energy Ed/Ei is not a monotonic function of α for any fixed value of β0.

For a given β0 the energy dissipation Ed is maximized for α =
√

1
β0

+ 1. The envelope

line

max
α≥0

(
Ed

Ei

)

=
4β0

1 + 2β0 + 2
√

β0(1 + β0)
(3.64)

bounding the level of dissipation achievable for each value of β0 is also shown in the

figure. Dissipation levels above this line cannot be achieved even for non-zero values

of the parameter γ because according to (3.59) Ed/Ei is a decreasing function of γ .

In the general case of non-zero spring parameter γ, the maximum values of ex-

pressions (3.54) and (3.56-3.58) cannot be found in a closed form and have to be

obtained numerically. The behavior of the maximum impulse Ip transmitted to the

plate is shown in Figure 3-14. The symbols represent values obtained with a non-

linear optimization code in MATLAB which has been verified against the analytical

expression (3.60) represented by the solid line. Two important conclusions can be

drawn from this figure. First, as the spring becomes stronger and γ increases, the

maximum impulse transmitted to the plate decreases consistent with the stronger

constraint imposed on the plate. Second, as the damper becomes stronger and α

increases, the curves for the same levels of γ become closer to each other implying a

reduction of the effect of γ. In physical terms this means that as the damper becomes

stronger the additional effect of the spring becomes less important. For both levels of

α shown, the values of the maximum impulse transmitted to the plate are practically

independent of γ for γ < 0.2. Based on Figures 3-10 and 3-14 one can conclude

that Taylor’s original curve for unsupported plates is a good approximation even for

supported plates with α < 0.1 and γ < 0.2 or equivalently c < 1.475 × 105 Pa s·m−1

and k < 2.950 × 108 Pa·m−1 for underwater blasts.
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Figure 3-14: Maximum impulse Ip/Ii transmitted to the plate for two different values
of the damper parameter α and various values of γ between 0 and 20. A nonlinear
optimization algorithm is used to obtain values represented by the symbols.
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(b) α = 10

Figure 3-15: Maximum force r/ps applied to the supporting structure for two different
values of the damper parameter α and various values of γ between 0 and 20. A
nonlinear optimization algorithm is used to obtain values represented by the symbols.
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The maximum force experienced by the back wall is shown in Figure 3-15 for two

different values of the damper constant α. A departure from the typical behavior

when a spring is not present is evident in Figure 3-15(a). The curves for large values

of the parameter γ cease to be monotonically increasing in β0, but exhibit a local

maximum instead. As the curve for γ = 20.0 demonstrates, this maximum can

exceed the value of 2 corresponding to reflection on a rigid wall. As this maximum

lies in the range of β0 achievable for typical water blasts, it needs to be taken into

consideration for structures exploiting the fluid structure interaction effect reducing

the momentum transferred to the plate facing the blast. If the structural damping

represented by α is increased for constant values of γ the increase in the maximal

force transmission disappears because the system becomes overdamped as shown in

Figure 3-15(b). For α = 10 and the practically achievable range of γ < 2.0 the curves

in the figure coincide for all practical purposes and the maximum force can be well

approximated by equation (3.61).

The resonance-like behavior of the system for some values of β0 is also visible in

Figure 3-16 which shows the maximum displacement of the plate. The amplification

of the response is present for both α = 0.0001 and α = 10.0. An important difference

between this case and the purely viscous support is that the displacement is dependent

on β0 with it being smaller for smaller values of β0. A typical dimensional value of

the required displacement for underwater blast with ps = 100 MPa, ti = 1.0× 10−3 s

and a structure with c = 140 Pa·s·m−1, k = 2.8 × 107 Pa·m−1 is ξ = 0.132 m.

There are two additional differences between the systems with purely viscous and

viscoelastic supports. First, due to the action of the spring, a viscoelastic support

always returns the plate to its original position at ξ = 0 m, while the deformation

is permanent for a purely viscous support. Second, the integral of the force (3.58)

transmitted to the supporting structure by a viscoelastic support is always the same:

∫∞
0

fdt

psti
=

∫ ∞

0

αζ̇dτ = 2, (3.65)

while for a purely viscous support it equals 2α/(1 + α) as given by equation (3.62).
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Figure 3-16: Maximum displacement ζ of the plate for two different values of the
damper parameter α and various values of γ between 0.02 and 20.
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Equation (3.65) implies that for viscoelastic support the back wall always absorbs the

same total impulse independently of the value of β0.

3.3.3 Supporting Acoustic Medium

There are applications of practical interest such as tankers and petroleum products

storage facilities which involve a second fluid behind the plate. The fluid is a wave

transmitting medium and the resistance force r it exerts on the plate is wave depen-

dent and therefore unknown. In spite of that, the problem remains tractable because

a new equation is available.

Let the plate have thickness D and the transmitted pressure wave into the second

fluid be ȟ(x − art) where ar is the speed of sound in the second fluid whose density

is ρr. The equation of motion of the plate becomes

mpξ̈ = f(ξ − at) + g(ξ + at) − ȟ(D + ξ − art). (3.66)

The momentum conservation equation for the particle to the right of the plate is

ρr
d2ξ

dt2
= −∂p

∂x
= −ȟ′(D + ξ − art), (3.67)

while the momentum conservation equation (3.2) for the particle to the left of the

plate remains unchanged. These expressions can be simplified by the introduction of

h(x) = ȟ(x + D) eliminating the thickness D from the equations. Differentiation of

(3.66) with follow-up elimination of the two unknown waves g and h leads to

m
...
ξ + (aρ + arρr)ξ̈ + (ρ − ρr)ξ̈ξ̇ = −2af ′(ξ − at). (3.68)

Elimination of the second order terms leads to a solvable linear equation for ξ

mp

...
ξ + (aρ̄ + arρ̄r)ξ̈ = −2af ′(−at). (3.69)

The difference between equations (3.4) for r = 0 Pa and (3.69) is a minor one: the
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coefficient aρ̄ is replaced by aρ̄ + arρ̄r. Due to this, the solutions of equation (3.69)

are the same as those of equation (3.4) for r = 0 Pa with the only difference being in

the definition of the fluid-structure interaction parameter β0, which becomes

β0 =
(aρ̄ + arρ̄r)ti

mp
. (3.70)

With this new β0 the non-dimensional governing equation in the case of an exponential

incident wave is equation (3.20) with the initial conditions being (3.21-3.23). The non-

dimensional displacement has been redefined to ζ = (aρ̄ + arρ̄r)ξ/psti. There is no

modification in the initial conditions because, due to the screening effect of the plate,

the transmitted wave satisfies the property h(0) = 0. Using the non-dimensional

solution (3.25) and its derivatives, the transmitted and reflected waves can be found

to be
h(τ)

ps
=

arρ̄r

aρ̄ + arρ̄r

dζ

dτ
(−τ) =

z

1 + z

2β0

1 − β0

(
eβ0τ − eτ

)
, τ ≤ 0 (3.71)

and
g(τ)

ps
=

1

1 − β0

((

1 + β0
1 − z

1 + z

)

e−τ − 2β0

1 + z
e−β0τ

)

, τ ≥ 0 (3.72)

respectively, where z = arρ̄r/aρ̄ is the impedance ratio.

The maximum

max
τ≤0

(
h(τ)

ps

)

=
2z

1 + z
β

1
1−β0
0 (3.73)

of the transmitted wave achieved at τ = (1− β−1
0 ) log β0 might be of interest in some

applications. Its dependence on β0 is shown in Figure 3-17 for three different values

of the impedances ratio z. For very light plates (β0 � 1) the behavior becomes very

similar to the behavior of acoustic wave transmission between two different media

[133]: for large z the maximum is amplified twice, while for small z the maximum is

attenuated by a factor 2z. The behavior for very heavy plates (β0 � 1) is significantly

different and the maximum is attenuated regardless of the value of z. Heavy plates

accelerate slowly regardless of the value of z, store significant fraction of the incoming

momentum and then decelerate releasing the momentum into the fluid on the right

over long periods of time and at low pressures. This observation can be substantiated
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Figure 3-17: Maximum transmitted pressure h/ps as a function of β0. Heavy plates
(small values of β0) attenuate the wave regardless of the impedances ratio z.

Table 3.1: Reduction of the maximum transmitted pressure for water medium on
both sides (z = 1) and steel plates. The assumed density of steel is 7800 kg·m−3.

plate thickness [in] 0.2 0.5 1.0 2.0 5.0 10.0
β0 7.4450 2.9780 1.4890 0.7445 0.2978 0.1489

max
τ≤0

h(τ)
ps

0.7324 0.5760 0.4430 0.3151 0.1782 0.1067

by the fact that the total impulse transmitted into the second fluid is independent of

the mass of the plate: ∫∞
0

h(−τ)dτ

ps

=
2z

1 + z
, (3.74)

and therefore if it is rejected over a longer time period, the process is necessarily

completed at lower pressures.

Table 3.1 is an illustration of the achievable reductions in maximum transmitted

pressure. The values in the table are computed under the assumption that the liquid

on both sides of the plate is water. While the thickest plates provide the largest

reductions in the maximum pressure, even relatively thin plates experience some

benefits. For example, the one fifth inch thick plate reduces the maximum by 27%
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Figure 3-18: Maximum impulse transmitted to the plate versus the original Taylor’s
fluid-structure interaction parameter aρ̄ti/mp. The effect of the second fluid is to
shift the curves to the left.

while the ten inch thick plate reduces the maximum by more than 90%.

Even though the governing equation is the same as in the case of a single fluid

and the maximum impulse transmitted to the plate is again given by equation (3.28),

it is incorrect to conclude that the second fluid has no effect. Figure 3-18 plots the

maximum transmitted impulse to the plate against Taylor’s original fluid-structure

interaction parameter aρ̄ti/mp. It can be observed that as the impedance ratio z

increases the curves shift to the left, thus reducing the maximum impulse for a fixed

value of the original fluid-structure interaction parameter. This trend is caused by

the supporting medium which exerts a larger resistance force on the plate and reduces

acceleration and velocity of the plate.

The energies contained in the transmitted and reflected waves can also be com-

puted from the exact solution. They are found to be

Eh

Ei
=

1
ar ρ̄r

∫∞
0

h2(−τ)dτ

p2
sti

2aρ̄

=
1

1 + β0

4β0z

(1 + z)2
(3.75)
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and
Eg

Ei

=

1
ar ρ̄r

∫∞
0

g2(τ)dτ

p2
sti

2aρ̄

=
1

1 + β0

(

1 + β0

(
1 − z

1 + z

)2
)

, (3.76)

respectively. The expression for the transmitted energy Eh/Ei, equation (3.75), is an

increasing function of β0 implying that the heavier the plate is, the lower the trans-

mitted energy is. This is an important observation because if the energy transmitted

into the second fluid has to be dissipated, then heavier plates would reduce the total

amount of energy to be dissipated. This reduction in the energy to be dissipated

for small β0 comes together with the similar reduction in the maximum pressure il-

lustrating that there are some benefits to heavier plates, especially given that the

total impulse transmitted into the second medium (3.74), as well as the maximum

displacement of the plate
aρ̄ξ

psti
=

2

1 + z
(3.77)

are independent of the fluid-structure interaction parameter β0.

Additional insight into the wave reflection and transmission processes can be ob-

tained by looking at the time evolution and the frequency content of the waves. The

time history of the three waves, f , g and h, for the case of z = 1 and β0 = 0.5 is

shown in Figure 3-19(a). The curve for the transmitted wave h reveals that the wave

amplitude is reduced at the expense of the increased time duration of the wave. The

reflected wave pressure g becomes negative shortly after τ = 1 indicating that cav-

itation does occur in water opening the possibility of significant differences between

the real flow and the acoustic solution.

The frequency content of the waves can be found through the application of the

Fourier transform, which is defined as [85]

f̂

psti
(Ω) =

∫ ∞

−∞

f(τ)

ps

e−iΩτdτ, (3.78)

with its inverse being
f(τ)

ps
=

∫ ∞

−∞

f̂(τ)

psti
eiτΩdΩ. (3.79)
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Figure 3-19: Time evolution and frequency content of the incident f , reflected g and
transmitted h waves for z = 1 and β0 = 0.5.
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The Fourier transforms of the three waves are found to be

f̂(Ω)

psti
=

1

1 + iΩ
, (3.80)

ĝ(Ω)

psti
=

1

1 + iΩ

β0
1−z
1+z

+ iΩ

β0 + iΩ
, (3.81)

and

ĥ(Ω)

psti
=

1

1 + iΩ

2

1 + z

β0

β0 + iΩ
. (3.82)

The energy density spectrum of the wave f is defined as

Sf(Ω) = |f̂(Ω)|2 = f̂(Ω)f̂ ∗(Ω), (3.83)

where the star ∗ denotes complex conjugate. The non-dimensional energy densities

of the waves are

Ef(Ω) = Sf(Ω) =
1

1 + Ω2
, (3.84)

Eg(Ω) = Sg(Ω) =
1

1 + Ω2

β2
0

(
1−z
1+z

)2
+ Ω2

β2
0 + Ω2

(3.85)

and

Eh(Ω) = zSh(Ω) =
1

1 + Ω2

4z

(1 + z)2

β2
0

β2
0 + Ω2

. (3.86)

The last equation has a factor of z in order to make the non-dimensionalization

the same for the fluids on both sides. A plot of the frequency content is shown in

Figure 3-19(b). It can be observed that the plate acts as a low pass filter significantly

attenuating the high frequencies contained in the incident wave which are present

at very low levels in the transmitted wave. The last factor in equation (3.86) (1 +

Ω2/β2
0)

−1 exhibits quadratic decay in respect to the frequency Ω and reveals that,

ceteris paribus, heavier plates cause more attenuation of the transmitted wave because
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for a wave of a fixed frequency Ω this factor is an increasing function of β0.

3.4 Response of Actively Deployed Plates

In this section the general solution approach described in Section 3.1 is used to derive

a number of relevant cases of acoustic waves interacting with deployable structures.

3.4.1 Active Protection without Detection

Taylor’s fluid-structure interaction problem considered in Section 3.2.2 can be ex-

tended to the case of a plate moving with velocity −V against the blast wave. As

a first approximation, the process by which the plate acquired this velocity and the

pressure wave generated by it within the fluid up to the time of impact of the blast

wave will be ignored. This may be a good approximation when the impulse −mpV

is imparted to the plate in a time much shorter than the decay time of the incoming

wave or the pressure wave generated by the plate motion within the fluid is much

weaker than the incident wave.

The motion is still governed by equation (3.20), but the initial conditions are

modified and take the form

ζ(τ = 0) = 0, (3.87)

dζ

dτ
(τ = 0) = −δ, (3.88)

|ζ(τ = +∞)| < +∞, (3.89)

where δ = aV ρ̄/ps is an additional non-dimensional parameter of the problem. The

last condition arises from the physical requirement that the displacement remains

bounded. A similar condition could have been applied to Taylor’s original problem

which corresponds to δ = 0. The solution of the governing equation is

ζ =

(
δ

β0

− 2

1 − β0

)

e−β0τ +
2β0

1 − β0

e−τ + 2 − δ

β0

(3.90)
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with the velocity and acceleration given by

dζ

dτ
=

(
2β0

1 − β0
− δ

)

e−β0τ − 2β0

1 − β0
e−τ (3.91)

and

d2ζ

dτ 2
= β0

(

δ − 2β0

1 − β0

)

e−β0τ +
2β0

1 − β0

e−τ , (3.92)

respectively. Figure 3-20 shows the evolution of the velocity of the plate in the case

of small and large values of β0 for different values of the non-dimensional velocity δ.

The effect of the initial plate velocity is to reduce and delay the maximum positive

velocity that the plate achieves. This effect is especially strong for heavy plates whose

velocity may never become positive for large enough δ. The maximum value of the

impulse is achieved when

τm =
1

β0 − 1
log

(

β0 −
1 − β0

2
δ

)

(3.93)

and is given by

Ip

Ii
=

1

β0

dζ

dτ
(τ = τm) = 2β

β0
1−β0
0

︸ ︷︷ ︸

Taylor′s Solution

(

1 − δ
1 − β0

2β0

) 1
1−β0

︸ ︷︷ ︸

Reduction Factor

. (3.94)

This extended fluid-structure interaction formula indicates that the maximum mo-

mentum transmitted to the plate can be reduced by imparting to the plate an initial

momentum toward the blast, i.e. δ > 0. For β0 > 1 the maximum impulse is always

achieved, whereas for β0 < 1 it exists only if δ is small enough, i.e. δ < 2β0

1−β0
; if β0 < 1

and δ ≥ 2β0

1−β0
the plate never acquires a positive velocity. This is shown in Figure

3-20(b) where for the three cases shown the plate loses its negative velocity within

one fifth of the decay time of the incoming wave. For light plates this is not the case

because the plate is stopped by the resistance of the fluid to compression rather than

by the blast wave and the desired impulse cancellation does not occur. The resistance
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Figure 3-20: Velocity evolution for plates with small and large β0 and different values
of the initial non-dimensional velocity δ = aV ρ̄/ps.
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Figure 3-21: Maximum momentum transmitted to the plate according to equation
(3.94) for different values of the parameter δ = aV ρ̄/ps.
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Table 3.2: Maximum impulse transmitted to a steel plate with density ρp = 8, 000
kg·m−3 for a blast with peak overpressure ps = 20 MPa and decay time ti = 0.1 ms
in water (ρ̄ = 1, 000 k·m−3 and a = 1, 475 m·s−1).

hp = 2.0 in hp = 1.0 in hp = 0.1 in
V [m·s−1] δ Red. Fact. Ip/Ii Red. Fact. Ip/Ii Red. Fact. Ip/Ii

0.000 0.00 1.0000 1.1424 1.0000 0.8762 1.0000 0.2092
0.429 0.03 0.9568 1.0930 0.9784 0.8573 0.9978 0.2087
4.296 0.30 0.5989 0.6841 0.7982 0.6994 0.9797 0.2050
8.592 0.60 0.2751 0.3142 0.6263 0.5488 0.9620 0.2013

of the fluid to compression also causes the velocity of the plate to decay to zero (see

Figure 3-20(a)).

Figure 3-21(a) shows a plot of the momentum reduction relative to Taylor’s so-

lution as given by Equation (3.94) achieved for different values of δ. Heavy plates

experience large benefits while light plates register no significant improvement over

Taylor’s solution because for the same δ the heaver plates have significantly larger

momenta going against the blast compared to the lighter plates (the proportionality

goes as the plate mass for a fixed δ). The maximum impulse transmitted to the

plate as a function of the fluid-structure interaction parameter β0 is shown in Figure

3-21(b) where Taylor’s solution (δ = 0) is shown for comparison. As an actual ex-

ample of the benefits of the initial velocity V for heavy plates, consider three plates

of thicknesses hp = 2 in, hp = 1 in and hp = 0.1 in exposed to a blast with peak

overpressure ps = 20 MPa and decay time ti = 0.1 ms. The assumed density of

steel is ρp = 8, 000 kg·m−3 giving fluid-structure interaction parameters β0 = 0.3445,

β0 = 0.6890 and β0 = 6.8898, respectively. The values of the reduction factors and

the maximum transmitted impulses are given in Table 3.2 for four different values

of the imparted velocity V . Velocities V larger than 10 m·s−1 were not considered

because of the significant practical difficulties in imparting such high velocities to

plates in water. For all values of V , the light plate outperforms the two heavier plates

significantly in terms of the maximum impulse absorbed by the plate, but the reduc-

tion factor ranging from 0.96 to 1.0 reveals that this out-performance is due to the

fluid-structure interaction effect, not to the initial velocity V . A very different effect

can be seen when the two heavy plates are compared to each other. For an initial
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velocity V = 4.296 m·s−1 the 2 inch plate outperforms the 1 inch plate in terms of

Ip/Ii by a small margin and by more than 40% for V = 8.592 m·s−1. The superior

performance of the heavier plate is solely due to the initial velocity V because for

V = 0.0 m·s−1 1 inch plate would outperform the 2 inch plate with Ip/Ii = 0.8762

versus Ip/Ii = 1.1424.

Additional insight into the factors influencing the momentum transmission can be

obtained if the performance for the same total forward momentum

η =
If

Ii
=

V mp

psti
=

δ

β0
(3.95)

carried by the plate is considered. For the same forward momentum η heavier plates

(lower δ) will move slower than lighter plates which will move faster (higher δ). Heav-

ier plates perform better because their lower velocities imply smaller amplitude waves

generated into the fluid and less dissipation of the momentum η with a larger fraction

of it available for the momentum cancellation taking place within the plate. The

variation of the maximum impulse of the plate Ip/Ii with η is shown in Figure 3-22.

While all plates benefit from the availability of the forward momentum η, it should

be emphasized that the heavy plates benefit the most, Figure 3-22(a).

The reflected wave g is given by

g(τ)

ps
=

(

δ − 2β0

1 − β0

)

e−β0τ +
1 + β0

1 − β0
e−τ , (3.96)

and the expression for the pressure within the fluid domain is

p̃(χ, τ)

ps
= eχ−τ +

(

δ − 2β0

1 − β0

)

e−β0(χ+τ) +
1 + β0

1 − β0
e−χ−τ . (3.97)

The cavitation point follows from the conditions p̃(χc, τc) = 0 and ∂p̃(χc,τc)
∂χ

= 0 which

lead to:

(β0 − δ
1 − β0

2
) = e(β0−1)(χc+τc). (3.98)

If β0 ≥ 1 this equation always has a solution for χc +τc, but if β0 < 1 it has a solution
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Figure 3-22: Maximum momentum Ip/Ii versus the parameter η
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only when δ < 2β0

1−β0
. It can be shown that cavitation occurs at χc = 0 and τ = τm

just as in Taylor’s case. In other words cavitation occurs at the front face of the plate

at the instant when the plate has acquired its maximum velocity.

3.4.2 Active Protection with Detection

This section considers the case of the interaction of blast waves with plates deployed

by constant actuation pressure. This scenario has been proposed as better model of

actively deployable armor than the one considered in the previous section [128]. The

deployment must be initiated before the blast wave has reached the plate. The first

step of the analysis is to describe the interaction between the actively deployed plate

and stationary medium in the absence of blast waves.

Consider the motion of a plate subject to a constant pressure r(t, ξ, ξ̇, . . . ) =

−σc < 0 acting in the negative x-direction and the pressure wave g(x + at) ensuing

in the fluid. The flow can be described by the governing equation (3.8) with initial

conditions

ξ(t = 0) = 0, (3.99)

ξ̇(t = 0) = 0, (3.100)

and

ξ̈ = − σc

mp

. (3.101)

The solution of the system is:

ξ = −σcmp

a2ρ̄2
e
− aρ̄t

mp − σc

aρ̄
t +

σcmp

a2ρ̄2
, (3.102)

with

ξ̇ =
σc

aρ̄
e
− aρ̄t

mp − σc

aρ̄
, (3.103)
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ξ̈ = − σc

mp

e
− aρ̄t

mp , (3.104)

respectively. It is convenient to non-dimensionalize the solution using the parameters

ps and ti of the blast wave even though this solution is for a problem in which no

blast wave is present:

ζ =
σc

ps

(

− 1

β0
e−β0τ − τ +

1

β0

)

. (3.105)

Equation (3.103) implies that the velocity imparted to the plate cannot be made

arbitrary large by detecting the blast wave earlier. The maximum momentum Id

available for impulse cancellation is

Id

Ii
=

σc

ps

1

β0
. (3.106)

Usually ps � σc implying that the impulse cancellation fraction Id/Ii is strongly

dependent on β0. More specifically, the cancellation fraction is a decreasing function

of β0 implying that heavier plates achieve better impulse cancellation than lighter

ones. However equation (3.106) is only an upper bound of the impulse cancellation

and a more precise estimate can be obtained if the time evolution of the momentum

of the plate
Ip(τ)

Ii

=
|ξ̇|mp

psti
=

σc

ps

1

β0

(1 − e−β0τ ) (3.107)

is considered. If σc, ps, ti and the detection time τ = τd are fixed, expression (3.107) is

a decreasing function of β0 once again implying better impulse cancellation potential

for heavier plates2.

As an indication of the achievable cancellation momentum Id/Ii for problem pa-

rameters representative of air blast, consider a blast of peak overpressure ps = 1 MPa

2The derivative with respect to β0 is

1

Ii

∂Ip(t)

∂β0

=
σc

ps

e

β2

0

[(
t

ti
β0 + 1

)

e
−β0

t
ti

−1 − e−1

]

.

The function ψ(x) = xe−x − e−1 has a zero at x = 1. Its derivative equals to (1 − x)e−x which is
smaller than 0 for x > 1 implying that ψ(x) is decreasing in (1,+∞). This is enough to conclude
that ψ(x) has a maximum at x = 1 in [1,∞). The maximum equals ψ(1) = 0 and the derivative
∂Ip(t)/∂β0 is always negative implying that the impulse fraction is a decreasing function of β0.
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and decay time ti = 1 ms which is representative of the blasts generated by impro-

vised explosive devices [106]. A reasonable threshold value of σc for human protection

is p̄ = 0.3 MPa and a reasonable value of mp for body armor in the order of mp = 1

kg·m−2 [128]. In air with β0 = 0.4165 (ρ̄ = 1.225 kg·m−3, a ≈ 340 m·s−1 and ti = 1.0

ms) equation (3.106) gives Id/Ii = 0.7203 suggesting significant potential for impulse

cancellation. It should be carefully noted that this result ignores the very significant

compressibility effects in air considered in Chapter 4.

The solution presented above is now used to solve the coupled fluid-structure

interaction problem. The solution approach is based on the superposition of the two

acoustic solutions (3.25) and (3.105). Assuming that the blast wave reaches the plate

at time τ = 0 and that the deployment mechanism was activated at −τd = −td/ti,

the velocity of the plate is found to be

vp =
2psti
mp

1

1 − β0
(−e

− t
ti + e

−β0
t
ti )

︸ ︷︷ ︸

Taylor′s Solution

+
σcti
mpβ0

(e
−β0

t+td
ti − 1)

︸ ︷︷ ︸

Deployment Contribution

(3.108)

and its acquired momentum expressed in non-dimensional quantities follows as

Ip(τ)

Ii
= − 2

1 − β0
e−τ + e−β0τ

(
2

1 − β0
+

σc

ps

1

β0
e−β0τd

)

− σc

ps

1

β0
. (3.109)

This function reaches a maximum

Ip

Ii
= β

β0
1−β0
0 2

− β0
1−β0

(

2 +
σc

ps

1 − β0

β0
e−β0τd

) 1
1−β0

− σc

ps

1

β0
(3.110)

at time

τm =
1

β0 − 1
log

(

β0 +
σc

ps

1 − β0

2
e−β0τd

)

. (3.111)

If σc/ps = 0 the result collapses to the well known result of Taylor (Section 3.2.2).

Figure 3-23 shows the effect of σc/ps and td/ti on the maximum transmitted impulse.

For a fixed detection time, an increase in the deployment pressure causes a reduction

of the transmitted impulse, as shown in Figure 3-23(a). This decrease is significant

for heavy plates and negligibly small for light plates. A similar trend is obtained
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Figure 3-23: Effect of the deployment pressure σc (fixed detection time td) and the
detection time td (fixed deployment pressure σc) on the maximum transmitted impulse
Ip/Id.
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Figure 3-24: Comparison between estimates of the cancellation impulse available at
time t = 0: the simple one given by Id = σctd and the one given by equation (3.109)

when the pressure ratio σc/ps is kept constant and the detection time is varied, as

shown in Figure 3-23(b). Significant benefits are observed only for heavy plates. The

curves have a peak around β0 = 1 suggesting that such values should be avoided. The

largest benefits of the active mitigation concept are obtained for heavy plates as it

was found in the case with imparted forward velocity; the fluid-structure interaction

advantages of light plates are so substantial that they render any additional impulse

reduction mechanism irrelevant.

The results of this section can be compared with the work of Wadley et al. [128]

in which it is assumed that the cancellation impulse at time t = 0 is Id = σctd. This

assumption is compared to equation (3.109) in Figure 3-24 in which the cancellation

impulse is shown as a function of β0. The assumption closely agrees with the exact

solution for small values of β0, but significantly differs from it for large values of β0.

The constant deployment pressure σc accelerates the plate only up to the point at

which the same pressure develops in the fluid on the other side of the plate limiting

the plate velocity to the fluid particle velocity given by the shock jump relationships.
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Figure 3-25: Time histories of the displacement for the two different values of td

(corresponding to 3 m and 6 m explosions of 10 kg of TNT).

Therefore the momentum of the plate becomes proportional to its mass and inversely

proportional to β0. The large difference between the two lines in the figure can lead

to serious errors if the simple formula of Wadley et al. [128] is used and cancellation

is just assumed to occur.

A stringent metric of the effectiveness of the active deployment concept is to

require that the plate remain at ξ(t) < 0 m for all times [128]. To investigate the

difference of the simplified analysis proposed in [128] with the complete solution above,

the non-dimensional displacement

ζ =







2β0

1−β0
e−τ − 2

1−β0
e−β0τ + 2 + σc

ps

(
1
β0

− τ − τd − 1
β0

e−β0(τ+τd)
)

, τ ≥ 0

σc

ps

(
1
β0

− τ − τd − 1
β0

e−β0(τ+τd)
)

, −τd ≤ τ ≤ 0

(3.112)

is needed.

Wadley et al. [128] consider explosions of 10 kg of TNT at 3 m and 6 m from the

plate and assumed ti = 0.1 ms. Using the simplified formula Id = σctd they conclude

that an actively deployed plate with σc = 0.3 MPa offers sufficient protection in both
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cases because it never returns to its original location. As it can be seen from Figure

3-25 the displacement (3.112) in the first case (td ≈ 2 ms for distance of 3 m) becomes

zero at τ = 5.306 and therefore the desired protection is not achieved. For the case of

td = 7 ms (6 m) the displacement never becomes positive confirming the conclusion

of Wadley et al. that the plate successfully defeats the blast in this case [128].

There are two compressibility effects which have been ignored in the derivation of

the results above. First, the wave generated by the forward motion is not acoustic.

It can be shown to be stronger and reduces the total impulse which can be imparted

onto the plate before it interacts with the blast wave. Second, the reflection and

interaction of the incident blast wave is not acoustic. Due to the compressibility, the

pressure amplification is stronger than acoustic (with a factor CR > 2) leading to

more momentum being transfered to the plate in the direction of the blast. Theories

which account correctly for either of these two effects of compressibility will show

reduction in the efficiency of the active protection system.
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Chapter 4

Compressibility Effects on Blast

Structure Interactions

4.1 The General Solution Method

The analyses in the previous chapter provide significant insights into the interaction

of blast waves and structures. However, those analyses were limited to blast waves

propagating in fluids in which the effects of compressibility can be ignored, e.g. water.

When the blast wave propagates in a highly compressible medium such as air, the

analysis must consider the non-linear effects of compressibility, as discussed in Section

2.2.1. It was seen in this discussion that there is a significant departure from the

acoustic approximation even for very low intensity waves in air. The purpose of

this chapter is to derive basic results of blast-structure interaction incorporating the

effects of fluid compressibility, with focus on the impulse transmission from the blast

wave to the structure.

The major focus of this chapter is the derivation of practical formulae describing

the transmission of impulse from the blast wave to the structure motivated by the need

to extend Taylor’s basic fluid-structure interaction result into the compressible range.

It is expected that due to non-linearities caused by fluid compressibility such formu-

lae will depend on the intensity of the blast in addition to Taylor’s fluid-structure

interaction parameter representing the relative inertias. Towards this end three cases
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are considered. The interaction of uniform shocks with structures is of interest for

comparison with shock tube experiments in which blast wave profiling is difficult to

achieve. The interaction of exponentially decaying pressure profiles, representative of

real blast waves, with structures is analyzed afterwards. The last case considered is

a generalization of the formulas for actively deployed plates to compressible media.

The three problems are tackled by a four step approach:

1. Exact asymptotic limits for very light plates are derived.

2. Exact or approximate asymptotic limits for very heavy plates are derived.

3. Numerical simulations for intermediate plate masses are performed.

4. Empirical formulae, matching the two asymptotic limits for light and heavy

plates, agreeing closely with the numerical results and collapsing to the acoustic

limits for weak pressure waves are proposed.

It will be shown that in the extremely light plate case the only pressure experienced

by the plate is the pressure at the blast front and thus is independent of the blast

profile. The analysis of the light plate limit is based on the corresponding limit of

Taylor’s acoustic solution for exponential wave profiles which predicts that as β0 → ∞,

the limiting plate velocity (equation (3.26))

lim
β0→∞

dζ

dτ
= 2e−τ (4.1)

attains its maximum at τ = 0+. A similar result is obtained in the acoustic fluid-

structure interaction solution for uniform wave profiles in which case the limiting

plate velocity (equation (3.13))is

lim
β0−→∞

dζ

dτ
= 2 (4.2)

for all times including τ = 0+. In both cases the maximum impulse transmitted to

the plate is
Ip

Ii
=

2

β0
. (4.3)
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An important implication of these results is that the specific shape of the incident

wave does not affect the response of the plate. Based on this observation, it is sensible

to assume that in the non-linear regime the maximum plate velocity is also achieved

instantaneously at τ = 0+. The plate velocity up as well as the impulse transmitted

to the plate may then be derived by considering the expansion wave produced by a

fluid initially compressed at a pressure CRps on a free surface which is initially at

rest. Instantaneously upon reflection, the fluid state is characterized by the normal

shock reflection on a fixed boundary (up = 0 m·s−1, ur = 0 m·s−1), independently

of the mass of the plate. The reflected state may be expressed in terms of the peak

intensity of the blast ps/p1 as:

pr = CRps (4.4)

ρr = ρs
2γ(ps + p1) + (γ + 1)(pr − ps)

2γ(ps + p1) + (γ − 1)(pr − ps)
,

= ρ1

(2γ + (γ + 1) ps

p1
)

(2γ + (γ − 1) ps

p1
)

(

2γ + (γ − 1 + (γ + 1)CR) ps

p1

)

(

2γ + (γ + 1 + (γ − 1)CR) ps

p1

) . (4.5)

Due to its negligible mass, the plate’s motion corresponds to a free surface acted upon

by fluid in the reflected state on one side and subject to atmospheric pressure on the

other side. This results in an expansion wave (pe = 0 Pa) propagating at speed Ue in

which the plate velocity matches the fluid particle velocity up = ue. These quantities

are determined from mass and momentum conservation:

ρr (−Ue) = ρe (up − Ue) , (4.6)

pe − pr = ρr (−Ue)
2 − ρe (up − Ue)

2 , (4.7)

resulting in:

u2
p =

(
ρr

ρe
− 1

)
pr

ρr
=

pr

ρr

2pr

p1

2γ + (γ − 1)pr

p1

(4.8)

where the density in the expansion state ρe has been expressed in terms of the re-

flected density ρr using the jump condition (2.40) between the reflected state and
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the expansion again. After expressing the reflected properties in terms of their corre-

sponding incident values using (4.4) and (4.5), the following expression of the plate

velocity is obtained:

up = CRps

√
√
√
√

2

p1ρs

2γ + (γ + 1 + (γ − 1)CR) ps

p1
[

2γ + (γ − 1 + (γ + 1)CR) ps

p1

] [

2γ + (γ − 1)CR
ps

p1

] . (4.9)

The relative momentum acquired by the plate is:

lim
mp→0

Ip

Ii

=
mpCR

ti

√
√
√
√

2

p1ρs

2γ + (γ + 1 + (γ − 1)CR) ps

p1
[

2γ + (γ − 1 + (γ + 1)CR) ps

p1

] [

2γ + (γ − 1)CR
ps

p1

] . (4.10)

It is instructive to express the factor
√

2
p1ρs

in terms of the blast propagation speed

using (2.40) and (2.38):

√
2

p1ρs
=

1

ρsUs

(γ + 1) ps

p1
+ 2γ

√

(γ − 1) ps

p1
+ 2γ

(4.11)

in which case (4.10) may be expressed as:

lim
mp→0

Ip

Ii

=
mpCRfR

ρsUsti
(4.12)

where:

fR =

[

(γ + 1)
ps

p1

+ 2γ

]

×
√
√
√
√

2γ + [γ + 1 + (γ − 1)CR] ps

p1
[

(γ − 1) ps

p1
+ 2γ

]{

2γ + [γ − 1 + (γ + 1)CR] ps

p1

} [

2γ + (γ − 1)CR
ps

p1

] .

(4.13)

Equation (4.12) reveals the important role played by the non-dimensional parameter

βs =
ti
t∗s

, (4.14)
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where t∗s =
mp

ρsUs

, (4.15)

in the fluid-structure interaction response of light plates to intense shocks. The param-

eters t∗s and βs are respectively analogous to the acoustic fluid-strcuture interaction

time scale t∗ and non-dimensional parameter β0, but represent values affected by the

state of compressibility and, thus, by the intensity of the blast. When expressed in

terms of βs, (4.12) reduces to

lim
mp→0

Ip

Ii

=
CRfR

βs

(4.16)

which is the final form of the impulse transmitted to the plate in the limit of a very

light plate regardless of the specific shape of the pressure profile. It bears emphasis

that both βs and the asymptotic expressions for the transmitted impulse reduce to

their corresponding acoustic values for blast intensities of negligible strength, i.e.,

ps → 0 ⇒ (CR → 2; fR → 1; Us → a0; ρs → ρ0; t∗s → mpρ1a = t∗0; βs → β0 and

Ip/Ii → 2/β0), as expected.

The factor fR in equation (4.16) is specific to air and remains close to one for any

value of the overpressure. Its maximum value is 1.26 and occurs for ps

p1
' 3.5, while

its limiting value for high overpressures (ps/p1 → ∞) is
√

9/7 = 1.13

4.2 Response of Unsupported Plates

4.2.1 Uniform Shock Waves in Air

The interaction of uniform shock waves with structures is of interest for comparison

with shock tube experiments. The analysis continues with the second step of the four

step approach outlines earlier.

The reflection of the uniform shock from a very heavy plate is immediately avail-

able from gas dynamics theory. In this case the plate acts as a rigid stationary wall

and the pressure on such wall remains constant at all times. The impulse transmitted

to the plate is

lim
mp−→∞

Ip

Ii

=

∫ ti
0

prdt
∫ ti
0

psdt
=

prti
psti

= CR, (4.17)
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where the incident impulse Ii has been defined as in Section 3.2.1.

It is useful for the purpose of practical application to devise an expression for the

maximum momentum transmission coefficient for arbitrary plate weights and shock

intensities. As discussed in [49], the resulting expression should reduce to:

• the acoustic result (3.15) for weak pressure waves,

• the heavy plate response (4.17) for small βs and arbitrary shock overpressures

ps,

• the light plate response (4.16) for large βs and arbitrary shock overpressures ps.

A possible expression satisfying these requirements is

Ip

CRIi

=
1 − e−βs/fR

βs/fR

. (4.18)

This formula represents the ratio of momentum acquired by the plate for an arbitrary

plate weight and shock intensity and the impulse that would otherwise be transmitted

to the plate, should fluid-structure interaction effects be ignored by assuming a rigid

wall. It is interesting that in the case of a uniform incident shock, the resulting

expression (4.18) collapses into a single curve as a function of the parameter βs/fR.

The main difference between equation (4.18) and the result presented in Section 4.2.2

is that the expression proposed here is exact in the heavy plate limit, while the

expression in the same limit for the exponential profiles is approximate.

Numerical simulations have been used for the purposes of verifying the various

results of this analysis as well as the accuracy of the empirical formula (4.18) in the

intermediate range of plate masses where exact solutions are not available. A descrip-

tion of the numerical method employed can be found in Appendix B. These consisted

of generating uniform shocks of varying intensity by applying a piston velocity at one

end of the computational grid, followed by computations of the propagation of the

shocks and their reflections on plates of different masses which were modeled as con-

centrated masses at the opposite end of the computational domain. The transmitted

110



100 10510−4

10−3

10−2

10−1

100

101

βs/fR

I p
/
(C

R
I i

)

 

 

Equation (4.18)
Num. Simulation ps/p1 = 0.04
Num. Simulation ps/p1 = 4.49
Num. Simulation ps/p1 = 21.7

Figure 4-1: Impulse transmission as function of the compressible parameter βs for different values of the incident overpressure
ps/p1.
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impulse Ip was extracted from the simulations and compared with the predictions of

equation (4.18).

The numerical results as well as the comparisons with the theory are shown in

Figure 4-1 where the normalized transmitted impulse Ip/CRIi versus the combination

of parameters βs/fR. As it can be seen in this figure, an excellent agreement is found

between the numerical results and the theory. Specifically, for βs → 0 the curve

becomes horizontal supporting the correctness of the assumption that heavy plates

behave as fixed walls and therefore absorb the same impulse independently of the plate

mass. For βs → ∞ the curve has slope −1 which is consistent with the assumption

that all plates acquire the same maximum velocity (specifically Ip/Ii ∝ mp while

βs ∝ 1/mp, so that Ip/Ii ∝ 1/βs). In addition and most importantly, the numerical

results support the predictions of the proposed formula (4.18) for the intermediate

range of plate masses.

4.2.2 Exponential Shock Waves in Air

The interaction of exponential pressure profiles, representative of blast waves in air,

with structures is considered in this section extending Taylor’s acoustic results into

the compressible range.

In the limit of very heavy plates, β0 → 0, the blast reflection approaches the

conditions found for reflection on a fixed wall, i.e., the reflected fluid particle velocity

ur = 0 and the instantaneous reflected value of the blast peak overpressure pr is given

by the Rankine-Hugoniot conditions (2.62). Although the solution for the problem

of the normal reflection of a blast wave of a general exponential profile,

p(t) = pse
− t

ti , (4.19)

escapes an exact analytic treatment, a working approximation may be obtained by

assuming that the reflected pressure profile corresponds to

pr(t) ≈ CR

(
p(t)

p1

)

p(t) = CR

(
ps

p1

e
− t

ti

)

pse
− t

ti . (4.20)
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Figure 4-2: Comparison of the reflected pressure profile obtained in the limit of very
heavy plates between numerical results and the approximations given by equations
(4.20) and (4.21) for ps/p1 = 3.29

The accuracy of this approximation may be ascertained by comparison with nu-

merical results. In Figures 4-2 and 4-3 the comparison is done for two different blast

intensities. In addition, the figures show the pressure profiles obtained by magnifying

the incident profile p(t) by a constant reflection coefficient corresponding to the peak

incident overpressure, i.e.

pr(t) = CR

(
ps

p1

)

ps(t) (4.21)

It can be concluded from the figures that equation (4.20) provides a more accurate

representation of the pressure profiles reflecting from fixed rigid walls, especially at

higher blast intensities and at short times after the blast impact. However, it should

also be carefully noted that this approximation is a lower bound of the pressure and,

thus, of the transmitted impulse.

The approximate impulse acquired by the plate can be computed by time inte-
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Figure 4-3: Comparison of the reflected pressure profile obtained in the limit of very
heavy plates between numerical results and the approximations given by equations
(4.20) and (4.21) for ps/p1 = 10.85

gration of (4.20):

γR = lim
mp→∞

Ip

Ii

=
1

ti

∫ ∞

0

CRe
− t

ti dt (4.22)

in which γR has been defined as the relative transmitted impulse in the heavy plate

limit. In the case of air, the reflection coefficient is defined by equation (2.62) and

the value of γR can be obtained explicitly as a function of the blast intensity:

γR =
2

ti

∫ ∞

0

e
− t

ti

4γ + (3γ − 1) ps

p1
e
− t

ti

2γ + (γ − 1) ps

p1
e
− t

ti

dt =
3γ − 1

γ − 1
− 2γ(γ + 1)

(γ − 1)2

p1

ps
ln

(

1 +
γ − 1

2γ

ps

p1

)

.

(4.23)

It follows from this expression that 2 ≤ γR ≤ CR ≤ 8 for air (γ = 1.4). In the

limit of heavy plates the blast pulse delivers all the available momentum (4.23) to the

plate and reflects in approximately the same way independently of the plate mass. A

comparison between γR and CR is shown in Figure 4-4.

An approximate practical expression of transmitted momentum for arbitrary blast
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Figure 4-4: The impulse reflection coefficient γR, equation (4.23), is an increasing
function of ps/p1 and has the same limits, but always remains smaller than CR.
Values shown are for air with γ = 1.4.

intensity and plate mass may be obtained satisfying the following conditions: the ex-

act acoustic result of Taylor (3.28) is recovered for low-intensity blast waves, and the

exact asymptotic limits (4.16) and (4.23) are respectively recovered for very light and

very heavy plates for arbitrary blast intensities. An expression satisfying these re-

quirements is given in terms of the compressible fluid-structure interaction parameter

βs (4.14), CR (2.62), γR (4.23) and fR (4.13) by:

Ip

Ii
= E(βs,

ps

p1
) = γR

(
CRfR

γR

) βs
1+βs

β
βs

1−βs
s . (4.24)

Plots of this expression versus βs in log-log scale are shown in Figure 4-5 for different

blast intensities from very low ps/p1 = 0.0167 to very high ps/p1 = 250 peak overpres-

sures. Higher overpressure curves almost overlap with the highest overpressure curve

shown, as in this case γR ' CR ' 8. In practice, all possible air blast fluid-structure

interaction curves will lie between the limiting curves shown.
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Figure 4-5: Transmitted impulse versus compressible fluid-structure interaction parameter for different blast intensities. Symbols
represent numerical results; lines correspond to formula (4.24).
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Figure 4-6: Transmitted impulse normalized with that one obtained neglecting
fluid-structure interaction effects versus compressible fluid-structure interaction non-
dimensional parameter βs for different blast intensities

Numerical results for blast intensities 0.02, 3.29 and 10.85 and the corresponding

curves using equation (4.24) have been added to the figure for the purpose of com-

parison and verification of the proposed approximate formula. It can be observed

that the approximate formula (4.24) accurately matches the numerical results not

only in the asymptotic limits but also in the intermediate fluid-structure interaction

range where an analytical approximation is not available. These results provide an

additional indication that βs is more relevant than β0 as a non-dimensional parameter

describing fluid-structure interaction in the non-linear range.

Additional insights into the implications of the fluid-structure interaction formula

(4.24) may be obtained by normalizing each curve in Figure 4-5 with γR, as shown

in Figures 4-6 and 4-7. These plots represent the reductions in transmitted impulse

relative to the values obtained if fluid-structure interaction effects are neglected. As

expected from this study, the reductions are strongly dependent on—and an increasing

function of—the blast intensity. It is important to emphasize that impulse reduction

for stronger blast waves is achieved not only because the corresponding curve in
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Figure 4-7: Detail of normalized transmitted impulse versus compressible fluid-
structure interaction non-dimensional parameter βs for different blast intensities and
small values of βs

Figure 4-6 will shift to the left, but also because the value of βs (4.14) will increase.

In particular, even in the limit of very high intensities in which both CR and γR

tend to the value 8 and a limiting curve is obtained, a further increase of the blast

intensity will lead to additional impulse reduction due to βs which is a monotonically

increasing function of the blast front velocity Us and, thus, of the blast intensity. It

may therefore be concluded that the beneficial effects of fluid-structure interaction in

the acoustic regime, are exacerbated in the non-linear case.

In order to illustrate the importance of non-linear fluid-structure interaction effects

in practical situations, numerical values of representative cases are given in Table 4.1.

The examples correspond to 25.4 and 6.35 mm-thick steel plates (ρp = 7800 kg ·m−3)

subject to three different peak blast intensities of 0.01, 100 and 1000 atm, respectively.

The decay time ti is taken equal to 1ms. This value is in accordance with values

obtained from experiments [16]. For example, 100 kg of TNT generate an overpressure

peak of about 10 atm at a distance of 4.2 m from the source, while the positive

overpressure duration is about 1.9 ms. Since the ratio between the decay time and
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Table 4.1: Comparison of momentum transmitted by blast waves of different intensi-
ties to plates with two different thicknesses according to the proposed fluid-structure
interaction formula (4.24) .

Thickness [mm] ps/p1 Ip/Ii Ip/γRIi Ip [Pa·s]
25.4 0.01 1.98 0.99 2
6.35 0.01 1.92 0.96 1.95
25.4 100 5.33 0.78 54051
6.35 100 3.86 0.56 39088
25.4 1000 4.53 0.58 459128
6.35 1000 2.55 0.33 258313

the positive duration is between 1 and 10 [107], one can conclude that a typical decay

time is in the range [1ms; 100ms]. The table reports values of Ip/Ii, Ip/ (γRIi) and

also Ip which give an idea of the absolute magnitude of the transmitted impulse.

The low-intensity blast results are shown for the purpose of discouraging an acoustic

treatment of fluid-structure interaction effects for intense blasts in air, which predicts

unrealistically marginal benefits. In particular, the first two lines of the table show

that the reductions for the thick and thin plates are only 1% and 4%, respectively.

For a blast intensity of 100 atm, the impulse reduction is 22% for the thick plate

and 46% for the thin one. For even stronger intensities of 1000 atm, the reduction

is 42% for the thick plate and 67% for the thin one. This suggests that sandwich

plate constructions with thin front face sheets may also provide opportunities for

blast mitigation in the case of strong air blasts, which somehow clarifies previous

understanding [33, 37, 46].

4.2.3 Transmission of “Total” Momentum

In the previous sections it was assumed that the incident wave is characterized by

its incident impulse Ii equal to the integral of the wave overpressure. This is a

standard assumption which has found a wide spread acceptance amongst the research

community [6, 8, 19, 54] because the pressure profile can be easily measured. However,

Ii is not the total momentum crossing a fixed location in space because there is

additional momentum flux due to the mass flux through that point. For a uniform
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Figure 4-8: Comparison between the reflection coefficient CR and the momentum
transmission for flat profiles. Values given are computed for air with γ = 1.4.

shock wave, the total momentum crossing a fixed location in space is

Ĩi = (ps + ρsu
2
s)ti. (4.25)

The ρsu
2
s term is due to the mass flux ρsus which carries us units of momentum per

unit mass (compare to the integral form of the momentum conservation equation

(2.10)).

The relationship between the dynamic pressure and the static overpressure is

ρsu
2
s

ps

=
2 ps

p1

(γ − 1) ps

p1
+ 2γ

, (4.26)

giving the impulse Ip transmitted to a fixed rigid wall

Ip

Ĩi

=
(3γ − 1) ps

p1
+ 4γ

(γ + 1) ps

p1
+ 2γ

< CR (4.27)

relative to Ĩi smaller than the pressure reflection coefficient CR, equation (2.62). The
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asymptotic limits for Ip/Ĩi are 2 for acoustic waves and 3γ−1
γ+1

for very strong waves

(4/3 for air with γ = 1.4). A comparison between equation (4.27) and CR is shown

in Figure 4-8.

Expression (4.27) can be interpreted as follows. The speed of the reflected shock

wave Ur satisfies
Ur

us
=

(γ − 1) ps

p1
+ γ

ps

p1

. (4.28)

The following relationship can be obtained from equations (2.38), (2.39) and (4.28):

Ur + Us

Us

=
(3γ − 1) ps

p1
+ 4γ

(γ + 1) ps

p1
+ 2γ

=
Ip

Ĩi

. (4.29)

For a uniform shock the speed of momentum propagation is shock velocity Us, there-

fore the momentum flux across a given location in space is UsÎ = Usρsus = ps + ρsu
2
s.

The volume between the reflected shock and the plate is increasing with time, but

the total momentum in it remains equal to zero at all times. The momentum flux

in this volume is (Us + Ur)Î where the term containing Ur must be added because

the boundary of the volume is advancing against the incoming momentum flux with

speed Ur. Given that the total momentum in the volume is zero at all times, all the

incoming momentum has to be transmitted to the right boundary of the volume and

therefore equals to the momentum transmitted to the plate Ip.

If the expression for the impulse in (4.24) is non-dimensionalized with Ĩi instead

of Ii, a somewhat simpler expression for the correction factor fR can be obtained.

Using the alternative expression for the instantaneous plate velocity in the light plate

limit

up =
CRps

ρsUs

√

(γ + 1) ps

p1
+ 2γ

(γ − 1)pr

p1
+ 2γ

√

(γ + 1) ps

p1
+ 2γ

(γ − 1) ps

p1
+ 2γ

√

(γ − 1) ps

p1
+ γ

γ ps

p1
+ γ

, (4.30)

the impulse transmitted to the plate becomes

Ip

Ĩi

=
mp

ρsUsti
CR

√

(γ − 1) ps

p1
+ 2γ

(γ − 1)pr

p1
+ 2γ

√

(γ − 1) ps

p1
+ γ

γ ps

p1
+ γ

, (4.31)
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which can be rewritten as

Ip

Ĩi

=
mp√

ρsρrUsti
︸ ︷︷ ︸

new βs

CR

√

(γ − 1) ps

p1
+ 2γ

(γ − 1)pr

p1
+ 2γ

︸ ︷︷ ︸

new fR

. (4.32)

Equations (4.18) and (4.24) can be renormalized with respect to the “total” im-

pulse Ĩi. The renormalization can be accomplished either by following the approach

of Sections 4.2.1 and 4.2.2, or by establishing the relationship between Ii and Ĩi. In

what follows the latter approach will be utilized.

For the uniform shock, it can be shown by combining equations (4.25) and (4.26)

that
Ĩi

Ii
=

(γ + 1) ps

p1
+ 2γ

(γ − 1) ps

p1
+ 2γ

, (4.33)

which is enough to obtain a formula for Ip/Ĩi in the uniform shock case from (4.18).

For the exponential wave profile equation (4.33) can be rewritten as

Ĩi =
(γ + 1) ps

p1
+ 2γ

(γ − 1) ps

p1
+ 2γ

psti, (4.34)

which upon taking differentials in time becomes

dĨ =
(γ + 1) p

p1
+ 2γ

(γ − 1) p
p1

+ 2γ
pdt. (4.35)

For an exponential pressure profile p(t) = pse
− t

ti , the relationship above can be

integrated
Ĩi

Ii

=
γ + 1

γ − 1
− 1

ps/p1

4γ

(γ − 1)2
ln

(
γ − 1

2γ

ps

p1

+ 1

)

(4.36)

under the assumption that each overpressure contributes to the impulse according to

the Rankine-Hugoniot relations (compare to the heavy plate limit in Section 4.2.2).

For air with γ = 1.4, this equation simplifies to

Ĩi

Ii

= 6 − 35

ps/p1

ln

(
1

7

ps

p1

+ 1

)

. (4.37)
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Ĩ i
/
I i

Figure 4-9: The dependence of Ĩi/Ii on the peak overpressure ratio ps/p1 for expo-
nentially decaying pressure profiles.

The dependence of Ĩi/Ii on the overpressure ps/p1, equation (4.37), is shown in Figure

4-9, with the very small and very high overpressure limits being 1 and 6, respectively.

The very high overpressure limit indicates that the dynamic momentum contribution

ρsu
2
s can be up to five times larger than the static overpressure pressure ps.

Utilizing equation (4.37) the figures from Section 4.2.2 can be replotted for im-

pulses non-dimensionalized relative to Ĩi. The dependence of Ip/Ĩi on βs is shown

in Figure 4-10. The shape of the curves does not change, but they become closer

to each other. Nevertheless they do not collapse onto a single line indicating that

improvements in the estimation of Ĩi for exponential profiles might be desirable and

possible.

4.3 Active Protection from Air Blasts

The results from Section 3.4.1 on active protection without detection can be extended

to the compressible range by utilizing the results of the previous section.
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Figure 4-10: Ip/Ĩi as a function of βs for exponentially decaying pressure profiles.

The acoustic formula (3.94)

Ip

Ii
= 2β

β0
1−β0
0

︸ ︷︷ ︸

Taylor′s Solution

(

1 − δ
1 − β0

2β0

) 1
1−β0

︸ ︷︷ ︸

Correction Factor

(4.38)

consists of two parts: Taylor’s solution and a correction factor due to the imparted ini-

tial velocity. A heuristic extension of this acoustic formula to the compressible range

can be obtained by simply replacing the basic Taylor solution with the corresponding

empirical formula (4.24) proposed in Section 4.2.2

Ip

Ii
= γR

(
CRfR

γR

) βs
1+βs

β
βs

1−βs
s

︸ ︷︷ ︸

Compressible Solution

(

1 − η
1 − β0

2

) 1
1−β0

︸ ︷︷ ︸

Correction Factor

, (4.39)

where the active correction factor has been rewritten in terms of the non-dimension-

al impulse η for later convenience. It is also reasonable to replace the remaining

acoustic quantities with their compressible counterparts. This implies replacing β0
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with βs leading to

Ip

Ii

= γR

(
CRfR

γR

) βs
1+βs

β
βs

1−βs
s

︸ ︷︷ ︸

Compressible Solution

(

1 − η
1 − βs

2

) 1
1−βs

︸ ︷︷ ︸

Correction Factor

. (4.40)

However, it can be shown that the limit of this expression for βs → 0

lim
βs−→0

Ip

Ii

= γR − η
γR

2
(4.41)

is incorrect. The correct limit is obtained by considering that in the heavy plate

limit the plate acts as a rigid wall with negligible motion. Therefore the transmitted

impulse is still γRIi, but the total impulse of the plate is (γR − η)Ii due to the initial

momentum −ηIi carried by the plate. This suggest that the 2 in the equations above

should be replaced by γR giving the final formula:

Ip

Ii

= γR

(
CRfR

γR

) βs
1+βs

β
βs

1−βs
s

︸ ︷︷ ︸

Compressible Solution

(

1 − η
1 − βs

γR

) 1
1−βs

︸ ︷︷ ︸

Correction Factor

. (4.42)

This formula not only has the correct heavy plate limit of γR −η, but also the correct

light plate asymptote:

lim
βs−→∞

Ip

Ii
βs = (CRfR)

︸ ︷︷ ︸

Compressible Solution

× 1
︸︷︷︸

Correction Factor

= CRfR. (4.43)

The formula (4.42) also degenerates to the acoustic expression (3.94) for small ampli-

tude waves because in this case the compressible solution becomes Taylor’s solution,

the compressible fluid-structure interaction parameter βs becomes the acoustic fluid-

structure interaction parameter β0 and the heavy plate transmission coefficient γR

becomes 2. Therefore the proposed compressible formula for impulse transmission to

actively deployable plates satisfies the expected limiting behavior for heavy and light

plates and arbitrary blast intensity as well as arbitrary plate mass for acoustic waves.

In order to verify this formula, a series of numerical simulations has been con-
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Figure 4-11: Maximum transmitted impulse Ip/Ii versus initially applied impulse η
for ps/p0 = 0.77. The symbols and lines are obtained from numerical simulation and
equation (4.42), respectively, with the following correspondence: × to the solid line,
♦ to the dashed line and � to the dashed-dotted line.
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Figure 4-12: Maximum transmitted impulse Ip/Ii versus initially applied impulse η
for ps/p0 = 4.16. The symbols and lines are obtained from numerical simulation and
equation (4.42), respectively, with the following correspondence: × to the solid line,
♦ to the dashed line and � to the dashed-dotted line.
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Figure 4-13: Maximum transmitted impulse Ip/Ii versus initially applied impulse η
for ps/p0 = 8.29. The symbols and lines are obtained from numerical simulation and
equation (4.42), respectively, with the following correspondence: × to the solid line,
♦ to the dashed line and � to the dashed-dotted line.
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ducted using the algorithm described in Appendix B. The simulations consisted

of blast waves of various amplitudes traveling towards stationary plates of different

weights similarly to the simulations presented in Section 4.2.2, but in addition the ini-

tial deployment conditions were accounted for by simply imparting an initial velocity

V to the plate towards the incoming blast. The results of the numerical simulations

are shown in Figures 4-11, 4-12 and 4-13 which display the dependence of the trans-

mitted impulse Ip/Ii on η for three different overpressures1. The proposed formula

(4.42) captures the qualitative behavior with η and β0: the higher η is, the lower the

transmitted impulse Ip/Ii is and the lower β0 is, the higher the transmitted impulse

Ip/Ii is. The lack of precise quantitative agreement is due mostly to the error inher-

ited from the compressible formula (4.24) and the approximation for the heavy plate

limit incorporated in it through γR.

4.4 Reflection of Von Neumann Profiles

The developments of the previous sections completely ignore the source of the blast

wave – the blast wave shape and magnitude are assumed. Even though the blast wave

shape and magnitude can be determined from empirical relationships [8] or numeri-

cal simulations [15] a more natural description of the problem of the blast-structure

interaction is based on the released explosive energy and the distance between the

explosion and the structure. This latter approach was taken by Taylor [117, 118]

and von Neumann [126] who considered the propagation of blast waves from strong

explosions in air. Based on purely dimensional considerations, Taylor derived the

scaling laws relating the pressure at the blast front with the distance from the explo-

sion and the elapsed time. He also found numerically the shape of the resulting wave.

Von Neumann was able to obtain the exact similarity solution explicitly. A gener-

alized version of von Neumann’s solution valid for spherical, cylindrical and planar

explosions is given in Appendix A.

In this section we describe the interaction of planar explosions with free-standing

1The lines in the figures are labeled with β0 rather than βs for convenience.
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plates. Following von Neumann [126], the explosion can be described by its energy

release per unit area E0, the ambient density ρ0 and pressure p0. The unsupported

structure is described by its mass per unit area mp and its distance from the explosion

center L. The output quantity of interest is the impulse Ip imparted to the structure.

The dimensional analysis that follows applies to the maximum impulse acquired

by the structure as well as to any other characteristic impulse that can be defined

independently of time. In one dimension, the dimensions of these parameters are as

follows:

[E0] = kg · s−2, (4.44)

[ρ0] = kg · m−3, (4.45)

[p0] = kg · m−1 · s−2, (4.46)

[mp] = kg · m−2, (4.47)

[L] = m, (4.48)

[Ip] = kg · m−1 · s−1. (4.49)

The governing non-dimensional groups are

Π1 =
E0ρ0

p0mp
, (4.50)

Π2 =
ρ0L

mp
, (4.51)

and the non-dimensional impulse of interest is

Ip√
ρ0E0L

. (4.52)

This implies that the functional dependence of the impulse is

Ip√
ρ0E0L

= F
(

E0ρ0

p0mp
,
ρ0L

mp
, γ

)

, (4.53)

where γ is a property of the fluid medium. The relationship (4.53) is inconvenient to
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work with because the energy, the distance and the structure mass appear on both

sides of the equation. However it can be rewritten as

vp

√
ρ0

p0

√
p0mp

E0ρ0

√
mp

ρ0L
= F

(
E0ρ0

p0mp

,
ρ0L

mp

, γ

)

, (4.54)

where vp is the velocity of the structure. Introducing the speed of sound a0 =
√

γ p0

ρ0
,

the last equation can be rewritten as

vp

a0
= G

(
E0

a2
0mp

,
ρ0L

mp
, γ

)

, (4.55)

for some other function G. From this equation it can be concluded that the velocity of

the structure is not modified if the explosion energy E0, the distance to the explosion

L and the mass of the structure mp are all scaled up or down by the same constant.

Equation (4.55) deserves additional physical interpretation. The term ρ0L/mp is

the ratio of the mass of air between the explosion and the structure to the mass of the

structure. The term E0/a
2
0mp is the ratio of the energy released in the explosion to

the energy of the structure were it to be moving at the speed of sound a0. The term on

the left hand side can be rewritten as vp/a0 = Ip/a0mp and represents the ratio of two

impulses, the first one being the impulse of the plate Ip and the second one being the

impulse of the plate were it moving at the speed of sound a0. Equation (4.55) states

that the impulse transmitted to the structure is dependent on the energy released by

the explosion and the mass of fluid between the explosion and the structure.

It is interesting to revisit the analysis of impulse transmission in the previous

sections in the context of the dimensional arguments presented in this section. To
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Table 4.2: Correspondence between the exponential wave fluid-structure interaction
theory of Section 4.2.2 and the planar wave interaction theory of this section.

Equation (4.24) Equation (4.56)
Ii = psti Ii =

√
ρ0E0L

βs = Ustiρ0/mp Π1 = (E0/p0)ρ0/mp
Ip

Ii
= E(βs,

ps

p0
) Ip

Ii
= H(Π1,

ps

p0
)

this end (1.2)2 can be substituted in (4.55) to obtain

Ip√
ρ0E0L

= H
(

E0ρ0

p0mp

,
ps

p0

, γ

)

. (4.56)

with the second non-dimensional parameter

Π2 =
ps

p0

(4.57)

involving the maximum overpressure ps at the time the wave reaches the structure.

Equation (4.56) states that the impulse Ip transmitted to the structure is a function

of a parameter governing the fluid-structure interaction E0ρ0/p0mp and the strength

of the explosion ps/p0. There is significant similarity (see Table 4.2) between the

functional dependence (4.56) and the formula for the transmitted impulse derived in

Section 4.2.2, equation (4.24).

Figure 4-14 shows the dependence of the impulse3 Ip on the non-dimensional

parameter Π1 = E0ρ0/p0mp. The functional dependence H is similar to the functional

dependence E shown in Figure 4-5.

2Equations (1.1) and (1.2) can be written in the form

L = CL(γ)

(
E0t

2

ρ0

) 1
ν+2

ps = Cp(γ)

(
E2

0
ρν
0

t2ν

) 1
ν+2

= C̃p(γ)
E0

Lν
,

which for ν = 1, 2 and 3 gives the proper scaling for planar, cylindrical and spherical explosions,
respectively.

3This is the impulse transmitted to the plate up to the arrival at the plate of the secondary
wave. The secondary reflected wave is caused by the singularity at the explosion center which
causes the primary reflected wave to reflect back towards the plate. The secondary wave is a purely
one-dimensional effect.
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Figure 4-14: A set of simulation results describing the general behavior of the function
H from equation (4.56).

A major difference between the results for the exponentially decaying profiles

and the ones presented in Figure 4-14 is the very weak dependence on the second

non-dimensional parameter ps/p0. This can be explained by the way the impulse

Ip is non-dimensionalized. The ratio Ip/
√

ρ0E0L varies with the energy E0 and the

distance L in a manner that scales the impulse correctly for all values of ps/p0.

Indeed, this suggests that a better non-dimensionalization for Ip in equation (4.24)

for the exponentially decaying profiles may exist. This was shown to be the case

for uniform profiles where it was found that βs/fR was a single non-dimensional

parameter describing the problem.
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Chapter 5

Conclusions

In this thesis a number of extensions to a classic solution of blast-structure interaction

by G. I. Taylor [119] has been proposed. Full solutions are obtained in the acoustic

limit for a variety of blast and structure conditions including uniform and exponential

wave profiles, structures with viscoelastic or wave transmitting supports and actively

deployed plates. These solutions complement the previously existing solutions for

unsupported plates and plates on perfectly plastic supports. Despite the limitations of

the acoustic approximation the solutions provide insights and improved fundamental

understanding of blast-structure interaction.

Regardless of the wave form and the support type, it is found that light plates

over-perform heavy plates by a large margin. Light plates acquire significantly less

momentum and energy while interacting with blast waves. However, active deploy-

ment provides significant benefits only to heavy plates and adds no further advantages

to light plates. Explicit formulas for the energy transmitted to the plates are given.

The energy dissipating requirements on the structures behind the plate can be deter-

mined from these formulas.

A significant part of this thesis is devoted to the analysis of the influence of

fluid compressibility on the fluid-structure interaction response as compressibility is

relevant in air blasts. Taylor’s fundamental result for exponentially decaying pressure

waves is extended to non-linear compressible media such as air. A generalized fluid-

structure interaction parameter is proposed and a practical empirical formula for the
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transmitted impulse is developed. The formula for exponentially decaying profiles can

be used in the design of blast resistant structures. A similar compressible formula for

uniform shock waves is also proposed. It is useful for the design and interpretation

of shock tube experiments.

A new relevant measure of the incident impulse, the “total” impulse, is proposed.

The “total” impulse properly takes into account the dynamic pressure allowing the

almost complete collapse of the impulse transmission coefficient curves onto a single

line.

The thesis concludes with an extension of the non-dimensional analysis of Taylor

for strong point source explosions. The non-dimensional parameters relevant for the

interaction of a point source explosion with a free-standing plate are given. The

analogy between these parameters and the parameters governing the fluid-structure

interaction for exponentially decaying pressure waves is discussed and the connections

to the parameters of the explosion are given. The collapse of the numerical results

for planar explosions onto a single line indicates that it might be possible to find a

similarity solution to this problem.

The non-linear fluid-structure interaction theory developed in this work represents

an improvement in the understanding of the interaction of blast waves with structures

and can be utilized in designs of sandwich plates for protection against air blasts.

The author envisions continuation and extension of the work on impulse and

energy transmission presented in this thesis in the following directions:

• Extension of the plastic support theory to the compressible range,

• Extension of the actively deployed theory for the applied pressure case to the

compressible range,

• Extension of the viscoelastic supports theory to more complex support condi-

tions,

• Exploration of the viability of wave decouplers consisting of layers of very soft

and very stiff materials,
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• Investigation of the possibility of finding a renormalization for the impulse trans-

mission formula for the exponential profiles based on the “total” incident im-

pulse and expressed in terms of a single non-dimensional parameter,

• Improvement of the heavy plate asymptotic limit for exponentially decaying

profiles,

• Finding the optimal resistance force function to minimize structural deflection

while keeping the reaction forces on the support below a design threshold,

• Investigate the possibility of deriving a similarity solution for the interaction of

planar explosions with plates.

The future design challenges in the area of blast protection are to:

• Design of advanced (possibly nano-engineered) materials with very high energy

dissipating capabilities over very small thicknesses,

• Design of practical sandwich panels to be used for retrofitting buildings and

vehicles determined to be in danger of terrorist attacks,

• Incorporate blast mitigation considerations in the design of personal armor.
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Appendix A

The Point Source Solution of Von

Neumann

A.1 Exact Solution for a Point, Line and Plane

Sources

A.1.1 Derivation of the Analytical Solution

This section shall follow closely the derivation presented by von Neumann in [126].

The important physical parameters in this problem are the energy E0 released by

the source, the ambient density ρ0 and the ambient pressure p0. The other variables

which are part of the solution are the pressure p, the density ρ, the distance r from

the source and the time t elapsed since the energy release. We shall attempt a general

derivation for all three cases, the point, the line and the plane sources, and for that

reason we introduce ν as the number of dimensions of the problem under consideration

with ν = 3, ν = 2, or ν = 1, respectively. The dimensions of the parameters are:

[E0] = kg · mν−1 · s−2, (A.1)

[ρ0] = kg · m−3, (A.2)

[p0] = kg · m−1 · s−2, (A.3)
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and therefore there are two independent non-dimensional parameters

Π =
E0t

2

ρ0rν+2
, (A.4)

Π2 =
E0

p0rν
. (A.5)

Similarity solutions cannot be obtained in the presence of two significant non-dimensional

parameters, but for strong explosions (such as nuclear ones) the second parameter Π2

can be ignored as the pressure p0 is much smaller than the pressures developed in the

blast wave. In this case the only important non-dimensinal parameter is Π implying

the following proportionality for all distances:

lenght ∝ t
2

2+ν . (A.6)

A strong blast wave generates a strong discontinuous shock which separates the “fire-

ball” from the undisturbed air at p0. Let the location of this shock is L, x and X stand

for the Eulerian and Lagrangian coordinates of any particle, respectively. Therefore

we have

L = K1t
2

2+ν (A.7)

x

t
2

2+ν

= f

(
X

t
2

2+ν

)

. (A.8)

In the interest of computational convenience we shall modify the last relation to

x

K1t
2

2+ν

= f

(
X

K1t
2

2+ν

)

. (A.9)

The density ρ, particle velocity u and shock velocity U are given by

ρ = ρ0
∂(Xν)

∂(xν)

∣
∣
∣
∣
t

= ρ0
Xν−1

xν−1

∂X

∂x
= ρ0

zν−1

f ν−1(z)

1

f ′(z)
(A.10)

u =
∂x

∂t

∣
∣
∣
∣
X

= K1
2

2 + ν
t−

ν
2+ν (f(z) − zf ′(z)) (A.11)

U =
∂L

∂t
= K1

2

2 + ν
t−

ν
2+ν , (A.12)
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where z = X
K1t2/(2+ν) . The relations for the discontinuous jumps of the flow variables

at a shock can be found in any standard aerodynamics textbook (for example, [2]).

The ones of interest here are:

ρs

ρ0
=

(γ + 1)ps + (γ − 1)p0

(γ − 1)ps + (γ + 1)p0
(A.13)

us =
(γ + 1)2ps − (γ2 + 1)p0

2(γ + 1)(ps − p0)
U (A.14)

and can be derived from the equations in section 2.1.3. The subscript s is used to

denote the conditions immediately behind the shock front. As discussed earlier setting

strong explosions are equivalent to setting p0 = 0 and hence the shock conditions

simplify to

ρs

ρ0

=
γ + 1

γ − 1
(A.15)

us

U
=

γ + 1

2
. (A.16)

Displacements are continuous even at the shock, therefore x = X and from the

definition (A.9) it follows that:

f(1) = 1 @ z = 1. (A.17)

Symmetry considerations imply

f(0) = 0 @ z = 0. (A.18)

Equations (A.15) and (A.16) both imply the same condition on f

f ′(1) =
γ − 1

γ + 1
@ z = 1. (A.19)

There are no other restrictions imposed on f by the discontinuous jumps of the flow

variables at the shock.

The change of entropy of an ideal gas going from state A to state B is given by
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[110]

∆s = Cv ln(
pB

pA

) + Cp ln(
vB

vA

), (A.20)

or after some manipulation taking into account that γ = Cp/Cv for an ideal gas

e
∆s
Cv =

pBρ−γ
B

pAρ−γ
A

. (A.21)

After the shock passage the process is adiabatic and therefore entropy is conserved

following the fluid particles (∆s = 0):

p = ps

(
ρ

ρs

)γ

. (A.22)

Sedov [104] refers to this equation as the adiabatic integral. With the appropriate

extensions this adiabatic integral remains true in other cases of interest, such as flame

propagation, detonation, implosions and others. Once again using the equations from

section 2.1.3. The pressure behind the shock ps can be expressed as

ps =
2

γ + 1
ρ0U

2
1 +

γ − 1

γ + 1
p0, (A.23)

or when p0 = 0

ps =
2

γ + 1
ρ0U

2
1 . (A.24)

The Lagrangian position of a particle is given by X = K1t
2/(2+ν)z. It t̃ is the time

when the shock crosses a particle of interest then its Lagrangian position is also given

by K1t̃
2/(2+ν) (because at that instant z = 1) and therefore t̃ = t z(2+ν)/2. Eliminating

the shock values ps and ρs from (A.22) we obtain

p = ργ2
(γ − 1)γ

(γ + 1)γ+1
ρ1−γ

0 U2. (A.25)

Eliminating ρ, U and t̃ leads to

p =
8

(ν + 2)2

(γ − 1)γ

(γ + 1)γ+1
ρ0K

2
1 t

− 2ν
2+ν

z(ν−1)γ−ν

f (ν−1)γ(z)

1

f ′γ(z)
. (A.26)

142



The total energy e of the gas is given by

e =
1

γ − 1

p

ρ
+

1

2
u2. (A.27)

The total energy in a sphere with Lagrangian radius X is given by

E =

∫ X

0

σρ0eX
ν−1dX, (A.28)

where σ = 2(ν − 1)π + 1
2
(ν − 2)(ν − 3). Substituting the expressions for the density

ρ, pressure p and the velocity u and simplifying we obtain:

E = σρ0

∫ z

0

[
8

(ν + 2)2

(γ − 1)γ−1

(γ + 1)γ+1
K2

1 t
− 2ν

2+ν
z(ν−1)γ−2ν+1

f (ν−1)(γ−1)(z)f ′γ−1(z)
(A.29)

+
1

2
K2

1

4

(ν + 2)2
t−

2ν
2+ν (f(z) − zf ′(z))2

]

Kν
1 t

2ν
2+ν zν−1dz

= σ
2

(ν + 2)2
ρ0K

2+ν
1

∫ z

0

[

4
(γ − 1)(γ−1)

(γ + 1)(γ+1)

z(ν−1)γ−2ν+1

f (ν−1)(γ−1)(z)f ′γ−1(z)
(A.30)

+(f(z) − zf ′(z))2
]
zν−1dz.

The expression above is true for any z, but in particular for the upper limit z = 1

and therefore equal to the initial energy release E0. The constant K1 can be found

from that particular equality. As von Neumann pointed out ([126]), the fact that

the expression is true for any z has important consequences, in particular, it allows

for the explicit integration of the equations of motion (or their equivalent from the

energy conservation which happens to be easier to work with). Stated in words the

equation above states that the amount of energy flowing into the z sphere is exactly

balanced by the amount of work done by the z sphere on the surroundings. Note

that a constant z implies neither constant Lagrangian coordinate X, nor constant

Eulerian coordinate x. Mathematically this statement can be expressed as follows:

σρ0X
ν−1 (dX)t e = σpxν−1udt, (A.31)

where the left hand side equals to the energy of the material entering the z sphere
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in in time dt and the right hand side equals to the work done by the same sphere on

the surroundings (power equals force times velocity). Substitution in equation (A.31)

leads to

σρ0

(
8

(ν + 2)2

(γ − 1)γ−1

(γ + 1)γ+1
K2

1 t
− 2ν

ν+2
z(ν−1)γ−2γ+1

f (ν−1)(γ−1)(z)f ′γ−1(z)

+
1

2
K2

1

4

(ν + 2)2
t−

2ν
ν+2 (f(z) − zf ′(z))2

)

Kν
1 zνt

ν−2
ν+2 dt

= σ
8

(ν + 2)2

(γ − 1)γ

(γ + 1)γ+1
ρ0K

2
1 t

− 2ν
ν+2

z(ν−1)γ−ν

f (ν−1)γ(z)f ′γ(z)
K1

× 2

2 + ν
t−

ν
ν+2 (f(z) − zf ′(z))Kν−1

1 t
2(ν−1)

ν+2 f ν−1(z), (A.32)

which simplifies to

4
(γ − 1)γ−1

(γ + 1)γ+1

z(ν−1)γ−ν+1

f (ν−1)(γ−1)(z)f ′γ−1(z)
+ zν(f(z) − zf(z))2

= 4
(γ − 1)γ

(γ + 1)γ+1

z(ν−1)γ−ν

f (ν−1)(γ−1)(z)f ′γ(z)
(f(z) − zf ′(z)). (A.33)

Let’s temporary introduce

D =
γ − 1

γ + 1
. (A.34)

One can easily check that

1 − D =
2

γ + 1
(A.35)

and

(1 − D)2Dγ−1 z(ν−1)γ−ν+1

f (ν−1)(γ−1)(z)f ′γ−1(z)
+ zν(f(z) − zf(z))2

= 2(1 − D)Dγ z(ν−1)γ−ν

f (ν−1)(γ−1)(z)f ′γ(z)
(f(z) − zf ′(z)). (A.36)

To solve this equation explicitly we introduce

z = ew (A.37)

f(z) = eαwφ(w), (A.38)
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where α is to be determined later. The derivative f ′(z) is given by

f ′(z) = e(α−1)w(φ′(w) + αφ(w)). (A.39)

Making the substitution in equation (A.36)

(1 − D)2Dγ−1 ew((ν−1)γ−ν+1)−αw(ν−1)(γ−1)−(α−1)w(γ−1)

φ(ν−1)(γ−1)(w)(φ′(w) + αφ(w))′γ−1

+ eνw+2αw(φ(w) − φ′(w) − αφ(w))2

= 2(1 − D)Dγ ew((ν−1)γ−ν)−αw(ν−1)(γ−1)−(α−1)wγ+αw

φ(ν−1)(γ−1)(w)(φ(w) + αφ(w))γ

× (φ(w) − φ′(w) − αφ(w)), (A.40)

the explicit occurrence of w can be eliminated if all exponentials are the same, i.e. if

α =
ν(γ − 2)

νγ − ν + 2
(A.41)

with the equation becoming

(1 − D)2Dγ−1

φ(ν−1)(γ−1)(w)(φ′(w) + αφ(w))′γ−1
+ (φ(w) − φ′(w) − αφ(w))2

=
2(1 − D)Dγ

φ(ν−1)(γ−1)(w)(φ(w) + αφ(w))γ
(φ(w) − φ′(w) − αφ(w)). (A.42)

Setting Ψ = φ′(w) + αφ we perform the following algebraic manipulations:

(1 − D)2Dγ−1

φ(ν−1)(γ−1)(w)Ψγ−1(w)
+

(
φ(w)

Ψ(w)
− 1

)2

+ 2(1 − D)Dγ 1 − φ(w)/Ψ(w)

φ(ν−1)(γ−1)(w)Ψγ+1(w)
= 0, (A.43)

(
φ/Ψ − 1

1/D − 1

)2

− 2

(
φ/Ψ − 1

1/D − 1

)
1

φ(ν−1)(γ−1)(Ψ/D)γ+1

+
1

φ(ν−1)(γ−1)(Ψ/D)γ+1
= 0. (A.44)
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To help clarify the solution process we introduce

ξ =
φ/Ψ − 1

1/D − 1
(A.45)

η = φ(ν−1)(γ−1)

(
Ψ

D

)γ+1

. (A.46)

Equation (A.44) simply states that

η =
2ξ − 1

ξ2
. (A.47)

Defining yet another quantity θ such that

ξ =
1 + θ

2
(A.48)

gives η as

η =
4θ

(1 + θ)2
. (A.49)

Solving simultaneously the definitions of ξ and η gives

φ = η
1

(ν−1)(γ−1)+γ+1 ((1 − D)ξ + D)
γ+1

(ν−1)(γ−1)+γ+1 (A.50)

Ψ = Dη
1

(ν−1)(γ−1)+γ+1 ((1 − D)ξ + D)
− (ν−1)(γ−1)

(ν−1)(γ−1)+γ+1 (A.51)

or upon substitution with θ

φ = θ
1

(ν−1)(γ−1)+γ+1

(
1 + θ

2

)− 2
(ν−1)(γ−1)+γ+1

(
γ + θ

γ + 1

) γ+1
(ν−1)(γ−1)+γ+1

(A.52)

Ψ =
γ − 1

γ + 1
θ

1
(ν−1)(γ−1)+γ+1

(
1 + θ

2

)− 2
(ν−1)(γ−1)+γ+1

(
γ + θ

γ + 1

)− (ν−1)(γ−1)
(ν−1)(γ−1)+γ+1

. (A.53)

Note that θ > 0 because the positivity of η follows from the positivity of φ and Ψ

which is a direct consequence of the positivity of f and f ′ (expression (A.10) for the

density). We now proceed to find w in terms of θ:

dφ

dw
= Ψ − αφ (A.54)
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w =

∫
dφ/φ

Ψ/φ − α
+ c1, (A.55)

where c1 is an integration constant to be determined later from the boundary condi-

tions. One can easily verify that

dφ/φ =
1

νγ − ν + 2

dθ

θ
− 2

νγ − ν + 2

dθ

1 + θ
+

γ + 1

νγ − ν + 2

dθ

γ + θ
(A.56)

Ψ/φ =
γ − 1

γ + θ
. (A.57)

The integral to be evaluated becomes

∫ (
γ + θ

θ(ν + 2γ − 2 − ν(γ − 2)θ)
− 2(γ + θ)

(1 + θ)(ν + 2γ − 2 − ν(γ − 2)θ)

+
γ + 1

ν + 2γ − 2 − ν(γ − 2)θ

)

dθ (A.58)

with the final result for w being

w = c1 +
γ

ν + 2γ − 2
ln θ − 2

ν + 2
ln(θ + 1)

+
(ν2 + 4)γ2 + (8ν − 3ν2 − 4)γ + 4ν2 − 8ν

ν(ν + 2)(2 − γ)(2γ + ν − 2)
ln(θ +

ν + 2γ − 2

ν(2 − γ)
). (A.59)

In terms of the newly introduced variables and notation the boundary conditions are

found to be φ(0) = 1 and Ψ(0) = γ−1
γ+1

. Noting that the expressions for φ and Ψ in

terms of θ imply that θ = 1 whenever w = 0, the final result for w becomes

w =
γ

ν + 2γ − 2
ln θ − 2

ν + 2
ln

θ + 1

2

+
(ν2 + 4)γ2 + (8ν − 3ν2 − 4)γ + 4ν2 − 8ν

ν(ν + 2)(2 − γ)(2γ + ν − 2)
ln

ν(2 − γ)θ + ν + 2γ − 2

3ν − νγ + 2γ − 2
. (A.60)

The original variable z equals

z = θ
γ

ν+2γ−2

(
θ + 1

2

)− 2
ν+2
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×
(

ν(2 − γ)θ + ν + 2γ − 2

3ν − νγ + 2γ − 2

) (ν2+4)γ2+(8ν−3ν2
−4)γ+4ν2

−8ν
ν(ν+2)(2−γ)(2γ+ν−2)

. (A.61)

The expressions for f and f ′ are found to be

f(z) = θ
γ−1

ν+2γ−2

(
θ + 1

2

)− 2
ν+2
(

γ + θ

γ + 1

) γ+1
νγ−ν+2

×
(

ν(2 − γ)θ + ν + 2γ − 2

3ν − νγ + 2γ − 2

)− (ν2+4)γ2+(8ν−3ν2
−4)γ+4ν2

−8ν
(ν+2)(2γ+ν−2)(νγ−ν+2)

, (A.62)

f ′(z) =
γ − 1

γ + 1
θ−

1
ν+2γ−2

(
γ + θ

γ + 1

)− (ν−1)(γ−1)
νγ−ν+2

×
(

ν(2 − γ)θ + ν + 2γ − 2

3ν − νγ + 2γ − 2

)− (ν2+4)γ2+(8ν−3ν2
−4)γ+4ν2

−8ν
ν(2−γ)(2γ+ν−2)(νγ−ν+2)

, (A.63)

respectively. To find an expression for f(z) − zf ′(z) we note that

f(z)

zf ′(z)
=

φ

Ψ
=

γ + θ

γ − 1
, (A.64)

and therefore

f(z) − zf ′(z) =
2

γ − 1

θ + 1

2
zf ′(z) =

2

γ + 1
θ

γ−1
ν+2γ−2

(
θ + 1

2

) ν
ν+2

×

(
γ + θ

γ + 1

)− (ν−1)(γ−1)
νγ−ν+2

(
ν(2 − γ)θ + ν + 2γ − 2

3ν − νγ + 2γ − 2

)− (ν2+4)γ2+(8ν−3ν2
−4)γ+4ν2

−8ν
(ν+2)(2γ+ν−2)(νγ−ν+2)

. (A.65)

With the help of the previous expressions the fundamental quantities in the prob-

lem can be written in terms of θ:

X = K1t
2

2+ν θ
γ

ν+2γ−2

(
θ + 1

2

)− 2
ν+2

×
(

ν(2 − γ)θ + ν + 2γ − 2

3ν − νγ + 2γ − 2

) (ν2+4)γ2+(8ν−3ν2
−4)γ+4ν2

−8ν
ν(ν+2)(2−γ)(2γ+ν−2)

, (A.66)

x = K1t
2

2+ν θ
γ−1

ν+2γ−2

(
θ + 1

2

)− 2
ν+2
(

γ + θ

γ + 1

) γ+1
νγ−ν+2

×
(

ν(2 − γ)θ + ν + 2γ − 2

3ν − νγ + 2γ − 2

)− (ν2+4)γ2+(8ν−3ν2
−4)γ+4ν2

−8ν
(ν+2)(2γ+ν−2)(νγ−ν+2)

, (A.67)
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ρ =
γ + 1

γ − 1
ρ0θ

ν
ν+2γ−2

(
γ + θ

γ + 1

)− 2(ν−1)
νγ−ν+2

×
(

ν(2 − γ)θ + ν + 2γ − 2

3ν − νγ + 2γ − 2

) (ν2+4)γ2+(8ν−3ν2
−4)γ+4ν2

−8ν
(2−γ)(2γ+ν−2)(νγ−ν+2)

, (A.68)

u =
4

(2 + ν)(γ + 1)
K1t

− ν
ν+2 θ

γ−1
ν+2γ−2

(
θ + 1

2

) ν
ν+2
(

γ + θ

γ + 1

)− (ν−1)(γ−1)
νγ−ν+2

×
(

ν(2 − γ)θ + ν + 2γ − 2

3ν − νγ + 2γ − 2

)− (ν2+4)γ2+(8ν−3ν2
−4)γ+4ν2

−8ν
(ν+2)(2γ+ν−2)(νγ−ν+2)

, (A.69)

p =
8

(ν + 2)2(γ + 1)
ρ0K

2
1 t

− 2ν
ν+2

(
θ + 1

2

) 2ν
ν+2
(

γ + θ

γ + 1

)− 2(ν−1)γ
νγ−γ+2

×
(

ν(2 − γ)θ + ν + 2γ − 2

3ν − νγ + 2γ − 2

) (ν2+4)γ2+(8ν−3ν2
−4)γ+4ν2

−8ν
(ν+2)(2−γ)(νγ−ν+2)

. (A.70)

An useful physical interpretation of the parameter θ can be obtained if the internal

and kinetic energy per unit mass are compared:

eint =
1

γ − 1

p

ρ
=

8

(2 + ν)2(γ + 1)2
K2

1 t
− 2ν

ν+2 θ−
ν

ν+2γ−2

(
θ + 1

2

) 2ν
ν+2
(

γ + θ

γ + 1

)− 2(ν−1)(γ−1)
νγ−ν+2

×
(

ν(2 − γ)θ + ν + 2γ − 2

3ν − νγ + 2γ − 2

)− 2((ν2+4)γ2+(8ν−3ν2
−4)γ+4ν2

−8ν)
(ν+2)(2γ+ν−2)(νγ−ν+2)

, (A.71)

ekin =
1

2
u2 =

8

(2 + ν)2(γ + 1)2
K2

1 t
− 2ν

ν+2 θ
2(γ−1)

ν+2γ−2

(
θ + 1

2

) 2ν
ν+2
(

γ + θ

γ + 1

)− 2(ν−1)(γ−1)
νγ−ν+2

×
(

ν(2 − γ)θ + ν + 2γ − 2

3ν − νγ + 2γ − 2

)− 2((ν2+4)γ2+(8ν−3ν2
−4)γ+4ν2

−8ν)
(ν+2)(2γ+ν−2)(νγ−ν+2)

, (A.72)

hence
ekin

eint
= θ. (A.73)

Equation (A.73) remains true if we consider the energies per unit volume ẽkin and

ẽint:
ẽkin

ẽint
= θ. (A.74)

Noting that ẽint = eintρ = p/(γ−1) the constant K1 can be obtained from the energy
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Figure A-1: Density distribution within the blast sphere

integral:

E0 =

∫ L

0

(ẽint + ẽkin)σxν−1dx = 2σLν

∫ 1

0

(
θ + 1

2

)

ẽintf
ν−1df

=
2σ

ν(γ − 1)
Kν

1 t
2ν

2+ν

∫ 1

0

θ + 1

2
pd(f ν) = ρ0C2K

ν+2
1 , (A.75)

where

C2 =
16σ

ν(ν + 2)2(γ2 − 1)

∫ 1

0

(
θ + 1

2

) 3ν+2
ν+2

(
γ + θ

γ + 1

)− 2(ν−1)γ
νγ−ν+2

×
(

ν(2 − γ)θ + ν + 2γ − 2

3ν − νγ + 2γ − 2

) (ν2+4)γ2+(8ν−3ν2
−4)γ+4ν2

−8ν
(ν+2)(2−γ)(νγ−ν+2)

d(f ν). (A.76)

Von Neumann gives C2 = 0.8510 for γ = 1.4 and ν = 3 [126]. Simpler formulae

which approximates the exact solution presented above can be found in [117]. Dis-

cussion about the effects of different values of γ is available in [104]. Noting that for

0 ≤ z ≤ 1 one needs 0 ≤ θ ≤ 1 we can plot the dependence of the density, velocity
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Figure A-2: Velocity distribution within the blast sphere

and pressure on z (see Figures A-1,A-2 and A-3).

A.1.2 Jump Conditions at the Blast Front

At the blast front (θ = 1) the following relationships hold:

L = K1t
2

2+ν , (A.77)

ρ =
γ + 1

γ − 1
ρ0, (A.78)

u =
4

(2 + ν)(γ + 1)
K1t

− ν
ν+2 , (A.79)

p =
8

(ν + 2)2(γ + 1)
ρ0K

2
1 t

− 2ν
ν+2 . (A.80)

The second equation is direct result of p/p0 = +∞. The shock jump conditions (2.38)

and (2.39) can be rewritten as:

U =

√
γ + 1

2

p

ρ0
, (A.81)
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Figure A-3: Pressure distribution within the blast sphere

us =

√
2

γ + 1

p

ρ0
. (A.82)

because p0 = 0 assumption for the similarity solution. For verification of (A.81), one

needs to take into account that ∂L
∂t

= U , while the second one verifies directly.

A.1.3 Numerical Results

To test the implementation of the numerical code, the exact solution of von Neumann

was implemented. The resulting spatial pressure profiles at different instances of

time are shown in Figure A-4. It should be noted that due to the singularity at

the explosion center the numerical solution may deviate significantly from the exact

solution in vicinity of the origin. Specifically, the element in the explosion center is

initially disproportionally larger than the other elements and this disproportionality

grows with time. In principle there is the possibility of the whole numerical solution

deteriorating very quickly in the center, but such deterioration was not observed

outside of a small neighborhood of the center.
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Figure A-4: Evolution of the spatial pressure profiles with time for planar source
explosion (1-D)

In the numerical simulations the energy released was E0 = 5 × 108 J/m2, with

the initial radius being L = 5 m. Figures A-5 and A-6 show a comparison of the

profile obtained by the numerical simulation at explosion radius L ≈ 43.0 m and the

analytical solution at the same radius. The agreement between both is quite good,

with the large central element introducing some differences and slight deviations in

the peak overpressure and the density ratio. This deviation is caused by the finite

ratio of the peak overpressure to the ambient pressure which was assumed to be

infinite in the analytical solution and is not indicative of the quality of the numerical

approximation.

It should be emphasized that the one dimensional explosion does not cause nega-

tive overpressures typical of real three dimensional explosions. This is demonstrated

in Figure A-7. The energy released in the explosion is E0 = 4 × 107 J/m2 and the

snapshot shown is at time t = 2.061 s. The peak overpressure has decayed to under

1 atm, but still there is no location in the domain where the overpressure is nega-

tive. This is a peculiar property of the one dimensional explosions and is in a direct

contrast with the three dimensional experimental data.
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(a) Comparison of pressure profiles

(b) Comparison of internal energy profiles

Figure A-5: Comparisons of pressure and internal energy profiles obtained from the
exact solution and the numerical simulation.
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(a) Comparison of density profiles

(b) Comparison of velocity profiles

Figure A-6: Comparisons of density and velocity profiles obtained from the exact
solution and the numerical simulation.
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(a) Pressure and internal energy profiles at t = 2.061 s

(b) Velocity and density profiles at t = 2.061 s

Figure A-7: Profiles very long time after a planar explosion.

156



Appendix B

The Finite Difference Numerical

Method

B.1 Coupled Problem Statement

The problem of interest consists of a non-linear wave traveling in a compressible

inviscid fluid interacting with a plate at the end of the domain under consideration.

The equations governing the motion of the fluid are expressed in the Lagrangian

framework and consist of:

• Kinematic relations for the material velocity and acceleration

V =
∂x

∂t
,

A =
∂V

∂t
,

where x is the spatial coordinate of each fluid particle X which is tracked

throughout the flow, V and A are the particle velocity and acceleration, respec-

tively, and t is the time.

• Momentum conservation

ρiA = − ∂p

∂X
, (B.1)
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where ρi is the initial density of the particle with Lagrangian coordinate X and

p is its pressure.

• Equation of state

p = ρRT − Q = (γ − 1)ρi
e

F
− Q, (B.2)

where R is the ideal gas constant, T is the temperature, γ = cp

cv
is the ratio of the

specific heats of the gas, e = cvT is the internal energy, cp and cv are the specific

heats at constant pressure and volume respectively, F = ∂x
∂X

is the deformation

gradient and Q is an artificial viscous dissipation term required to stabilize the

numerical solution. This term Q consists of two contributions: a quadratic term

in the deformation rate D = 1
F

∂F
∂t

, as originally proposed by von Neumann and

Richtmyer [127], and a linear term in D proposed by Kuropatenko [56]. The

quadratic term damps the oscillations close to the discontinuities, while the

linear term stabilizes unstable weak sound waves. The resulting expression for

the artificial viscosity is:

Q =







−ρi(K1D ∆)2 − ρiK2a|D|∆, D < 0

0, D ≥ 0
, (B.3)

where K1 and K2 are the artificial viscosity coefficients, ∆ is the width of the

smeared shock which needs to be of the order of the grid spacing to avoid

numerical instabilities and a =
√

γRT =
√

γ(γ − 1)e is the local speed of

sound.

• Energy conservation
∂e

∂t
=

[

(1 − γ)e +
Q

ρ

]

D, (B.4)

where ρ is the current density of the particle.

The choice of the Lagrangian framework leads to a natural description of the dy-

namics of the plate as the positions of the material fluid points, including the material

fluid-plate interface become the primary unknowns of the problem. Following Taylor,

we focus on the dynamic response of the plate as a rigid body and ignore the effects
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of deformation and stress-wave propagation inside it on the grounds that the time

scales involved in the elastic vibrations are typically at least three orders of magni-

tude smaller than in the coupled fluid-structure dynamics and that the amplitudes

are small and do not affect the flow. Thus, the equation of motion of the plate is

given by Newton’s second law

Ap =
pp

ρphp

, (B.5)

where Ap is the acceleration of the plate. The acceleration is defined in terms of the

overpressure, so that the plate is in equilibrium under atmospheric conditions. This

equation constitutes the boundary condition on the right end of the fluid domain.

The boundary condition on the left end depends on the particular problem. The

initial conditions are also problem dependent but in all cases include the condition

that material and spatial coordinates coincide at t = 0: x(X, t = 0) = X.

The numerical formulation corresponds to the original method proposed by von

Neumann-Richtmyer method [127] based on a finite difference discretization of the

governing equations. The implementation follows closely the guidelines described in

[34] with appropriate extensions to account for the coupling with the dynamics of

the plate.. The computer implementation of the algorithm was verified by computing

the normal reflection of shocks at a rigid boundary and by comparing the pressure

reflection coefficients with the exact values. As a second test of the correctness of

the numerical method, simulations of very low-intensity blast waves interacting with

plates of different mass are conducted in order to verify that Taylor’s acoustic solution

is reproduced by the numerical results, see also Section 4.2.2.

B.2 Numerical Formulation

A finite difference spatial discretization of the governing equations in section B.1 is

adopted. The domain of interest is discretized into a uniform grid of N + 1 points

equally spaced in the undeformed configuration. The coordinates of the grid points

are x
(n)
0 = X(n) = n∆X where n = 0, 1, ..., N is the point number and ∆X is the grid

spacing. The time interval of interest is discretized in variable time steps ∆tj, j =
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1, 2, ..., such that the solution is sampled at discrete times t0, · · · , tj−1, tj = tj−1 +

∆tj, · · · . The temporal discretization is based on the finite difference approximation

for the velocity

V
(n)

j+ 1
2

=
x

(n)
j+1 − x

(n)
j

∆tj+1

,

leading to

x
(n)
j+1 = x

(n)
j + ∆tj+1V

(n)

j+ 1
2

. (B.6)

From the finite difference approximation of the acceleration one obtains

V
(n)

j+ 1
2

= V
(n)

j− 1
2

+
1

2
(∆tj+1 + ∆tj)A

(n)
j , (B.7)

where the time step is averaged over the current and previous time step and the veloc-

ity is defined only in the middle of the time steps. The acceleration is be determined

from the momentum conservation equation (B.1)

A
(n)
j = − 1

ρ
(n)
0

p
(n+ 1

2
)

j − p
(n− 1

2
)

j

∆X
. (B.8)

The discretized equations are as follows:

p
(n+ 1

2
)

j+1 = (γ − 1)ρi

e
(n+ 1

2
)

j+1

F
(n+ 1

2
)

j+1

− Q
(n+ 1

2
)

j+ 1
2

, (B.9)

Q
(n+ 1

2
)

j+ 1
2

= −ρi

(

K1∆x
(n+ 1

2
)

j+ 1
2

D
(n+ 1

2
)

j+ 1
2

)2

− ρiK2a
(n+ 1

2
)

j ∆x
(n+ 1

2
)

j+ 1
2

|D(n+ 1
2
)

j+ 1
2

|, (B.10)

a
(n+ 1

2
)

j =

√

γ(γ − 1)e
(n+ 1

2
)

j (B.11)

D
(n+ 1

2
)

j+ 1
2

=
2

∆tj+1

F
(n+ 1

2
)

j+1 − F
(n+ 1

2
)

j

F
(n+ 1

2
)

j+1 + F
(n+ 1

2
)

j

, (B.12)

∆x
(n+ 1

2
)

j+ 1
2

=
1

2

(

x
(n+1)
j+1 − x

(n)
j+1 + x

(n+1)
j − x

(n)
j

)

, (B.13)
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e
(n+ 1

2
)

j+1 =

e
(n+ 1

2
)

j +



1−γ
2

e
(n+ 1

2
)

j +
Q

(n+1
2 )

j+1
2

ρ
(n+1

2 )

j+1
2



∆tj+1D
(n+ 1

2
)

j+ 1
2

1 + γ−1
2

∆tj+1D
(n+ 1

2
)

j+ 1
2

, (B.14)

ρ
(n+ 1

2
)

j+ 1
2

=
ρ

(n+ 1
2
)

i

2




1

F
(n+ 1

2
)

j+1

+
1

F
(n+ 1

2
)

j



 , (B.15)

ρ
(n+ 1

2
)

i =
ρ

(n+1)
i + ρ

(n)
i

2
, (B.16)

where the deformation gradient F is given by

F
(n+ 1

2
)

j =
x

(n+1)
j − x

(n)
j

∆X
. (B.17)

A typical step forward of the algorithm for an interior point proceeds first by

computing the time step ∆tj = αmin

(
x
(n)
j−1−x

(n−1)
j−1

a
(n−1)
j−1

)

where the minimum is taken over

all possible values of n and α is a time factor. The deformation gradient F
(n+ 1

2
)

j can

be computed from (B.17) followed by evaluation of D
(n+ 1

2
)

j+ 1
2

and ∆x
(n+ 1

2
)

j+ 1
2

. Immediately

afterwards Q
(n+ 1

2
)

j+ 1
2

and e
(n+ 1

2
)

j+1 can be obtained from (B.10) and (B.14). Now, equation

(B.9) gives the pressure which can be substituted in (B.8) to obtain the acceleration

A
(n)
j . Next, (B.7) and (B.6) lead to x

(n)
j+1 closing the loop as now the next deformation

gradient can be computed. In the first step, the previous values of the Eulerian

coordinates x
(n)
−1 are unknown and therefore assumed to be equal to the Eulerian

coordinates x
(n)
0 at time t = 0. The overpressure pp required for the computation of

the acceleration of the plate is obtained from the pressure of the neighboring interior

point.
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