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Abstract

Reduced-order models that are able to approximate output quantities of interest of
high-fidelity computational models over a wide range of input parameters play an
important role in making tractable large-scale optimal design, optimal control, and
inverse problem applications. We consider the problem of determining a reduced
model of an initial value problem that spans all important initial conditions, and
pose the task of determining appropriate training sets for reduced-basis construction
as a sequence of optimization problems.

We show that, under certain assumptions, these optimization problems have an
explicit solution in the form of an eigenvalue problem, yielding an efficient Hessian-
based model reduction algorithm that scales well to systems with states of high di-
mension. Furthermore, tight upper bounds are given for the error in the outputs of
the reduced models. The reduction methodology is demonstrated for several linear
systems, including a large-scale contaminant transport problem.

Models constructed with the Hessian-based approach are used to solve an initial-
condition inverse problem, and the resulting initial condition estimates compare fa-
vorably to those computed with high-fidelity models and low-rank approximations.
Initial condition estimates are then formed with limited observational data to demon-
strate that predictions of system state using reduced models are possible given rela-
tively short measurement time windows. We show that reduced state can be used to
approximate full state given an appropriate reduced basis, meaning that approximate
forward simulations of large-scale systems can be computed in reduced space.

Thesis Supervisor: Karen E. Willcox
Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Motivation

Reduced-order models that are able to approximate outputs of high-fidelity computa-

tional models over a wide range of input parameters have an important role to play in

making tractable large-scale optimal design, optimal control, and inverse problem ap-

plications. For example, consider a time-dependent inverse problem in which the goal

is to estimate the initial condition. The constraints are the state equations describing

the dynamics of the system, and the objective is the difference between the measured

state observations and observations predicted by the state equations starting from

the unknown initial condition.

When the physical system being simulated is governed by partial differential equa-

tions in three spatial dimensions and time, the forward problem alone (i.e. solution

of the PDEs for a given initial condition) may require many hours of supercomputer

time. The inverse problem, which requires repeated solution of the forward prob-

lem, may then be out of reach in situations where rapid assimilation of the data

is required. In particular, when the simulation is used as a basis for forecasting or

decision-making, a reduced model that can execute much more rapidly than the high-

fidelity PDE simulation is needed. A crucial requirement for the reduced model is

that it be able to replicate the output quantities of interest (i.e. the observables) of

the PDE simulation over a wide range of initial conditions, so that it may serve as a

15



surrogate of the high-fidelity PDE simulation during inversion.

One popular method for generating a reduced model is through a projection basis;

for example, by proper orthogonal decomposition (POD) in conjunction with the

method of snapshots. To build such a reduced order model, one typically constructs

a training set by sampling the space of (discretized) initial conditions. When this

space is high-dimensional, the problem of adequately sampling it quickly becomes

intractable. Fortunately, for many ill-posed inverse problems, many components of

the initial condition space have minimal or no effect on the output observables. This

is particularly true when the observations are sparse. In this case, it is likely that

an effective reduced model can be generated with few sample points. If appropriate

sample points can be located, it is possible to form a reduced model which can accept

a wide range of initial conditions while providing accurate outputs. The initial-

condition sampling issue is therefore the central theme of this thesis.

1.2 Objectives

The primary objectives of this thesis are:

• to present a model reduction approach that is capable of generating reduced

models that provide accurate output replication for a wide range of possible

initial conditions;

• to explain the sources of computational cost associated with the new approach;

• to evaluate the approach by forming reduced models of high-fidelity linear sys-

tems and subjecting both full and reduced models to a variety of test initial

conditons;

• to demonstrate that the resulting reduced models are well-suited for use in the

efficient solution of initial-condition inverse problems and in the state estimation

which often follows in practice.

16



1.3 Previous Work

Reduction techniques for large-scale systems have generally focused on a projection

framework that utilizes a reduced-space basis. Methods to compute the basis in the

large-scale setting include Krylov-subspace methods [18, 19, 24], approximate bal-

anced truncation [25, 32, 33, 36], and proper orthogonal decomposition [16, 29, 35].

Progress has been made in development and application of these methods to opti-

mization applications with a small number of input parameters, for example optimal

control [2, 5, 28, 30] and parametrized design of interconnect circuits [15]. In the

case of a high-dimensional input parameter space, the computational cost of deter-

mining the reduced basis by these techniques becomes prohibitive unless some sparse

sampling strategy is employed.

For initial-condition problems of moderate dimension, a reduction method has

been proposed that truncates a balanced representation of the finite-dimensional Han-

kel operator [17]. In [14], POD was used in a large-scale inverse problem setting to

define a reduced space for the initial condition in which to solve the data assimilation

problem. In that work, only a single initial condition was used to generate the state

solutions necessary to form the reduced basis: either the true initial condition, which

does contain the necessary information but would be unavailable in practice, or the

background estimate of the initial state, which defines a forecast trajectory that may

not be sufficiently rich in terms of state information.

For model reduction of linear time-invariant systems using multipoint rational

Krylov approximations, two methods have recently been proposed to choose sample

locations: an iterative method to choose an optimal set of interpolation points [26],

and a heuristic statistically-based resampling scheme to select sample points [34].

To address the more general challenge of sampling a high-dimensional parameter

space to build a reduced basis, the greedy algorithm was introduced in [38]. The

key premise of the greedy algorithm is to adaptively choose samples by finding the

location in parameter space where the error in the reduced model is maximal. In

[37], the greedy algorithm was applied to find reduced models for the parametrized

17



steady incompressible Navier-Stokes equations. In [22, 23], the greedy algorithm

was combined with a posteriori error estimators for parametrized parabolic partial

differential equations, and applied to several optimal control and inverse problems.

1.4 Overview

In this thesis, we present a new methodology that employs an efficient sampling

strategy to make tractable the task of determining reduced-order models for large-

scale linear initial value problems. Reduced models formed using the Hessian-based

methodology provide outputs which are similar to those computed with high-fidelity

models. This accurate output replication over a wide range of initial conditions allows

the reduced models to be used as surrogates for full-order models in initial-condition

inverse problems.

Chapter 2 describes the projection framework used to derive the reduced-order

dynamical system. It also provides details of the POD and proposes a new POD

variant. We present in Chapter 3 the theoretical approach, leading to the Hessian-

based reduction methodology. In Chapter 4, we first demonstrate the efficacy of

the approach via numerical experiments on a problem of 2-D convective-diffusive

transport. We also present an application to model reduction for 3-D contaminant

transport in an urban canyon. Chapter 5 contains a demonstration of reduced-order

inverse problem solution. It then illustrates the utility of reduced models for state

estimation and prediction. We conclude the thesis with Chapter 6.
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Chapter 2

Model Reduction Framework

This chapter first describes the reduced-order models intended for use in place of

high-fidelity or full-order systems. It then summarizes in Section 2.2 the details of

the proper orthogonal decomposition (POD) used throughout this work to generate

reduced basis vectors. Finally, a new, output-dependent variant of POD is presented

in Section 2.3.

2.1 Reduction via Projection

Consider the general linear discrete-time system

Ex(k + 1) = Ax(k) + Bu(k), k = 0, 1, . . . , T − 1, (2.1)

y(k) = Cx(k), k = 0, 1, . . . , T, (2.2)

with initial condition

x(0) = x0, (2.3)

where x(k) ∈ IRN is the system state at time tk, the vector x0 contains the specified

initial state, and we consider a time horizon from t = 0 to t = tf . The vectors

u(k) ∈ IRP and y(k) ∈ IRQ contain, respectively, the P system inputs and Q system

19



outputs at time tk. In general, we are interested in systems of the form (2.1)–(2.3) that

result from spatial and temporal discretization of PDEs. In this case, the dimension

of the system, N , is very large and the matrices E ∈ IRN×N , A ∈ IRN×N , B ∈ IRN×P ,

and C ∈ IRQ×N result from the chosen spatial and temporal discretization methods.

A reduced-order model of (2.1)–(2.3) can be derived by assuming that the state

x(k) is represented as a linear combination of n basis vectors,

x̂(k) = V xr(k), (2.4)

where x̂(k) ∈ IRN is the reduced model approximation of the state x(k) and n ≪ N .

The projection matrix V ∈ IRN×n contains as columns the orthonormal basis vectors

vi, i.e., V = [v1 v2 · · · vn], and the reduced-order state xr(k) ∈ IRn contains the

corresponding modal amplitudes for time tk. Using the representation (2.4) together

with a Galerkin projection of the discrete-time system (2.1)–(2.3) onto the space

spanned by the basis V yields the reduced-order model with state xr and output yr,

Erxr(k + 1) = Arxr(k) + Bru(k), k = 0, 1, . . . , T − 1, (2.5)

yr(k) = Crxr(k), k = 0, 1, . . . , T, (2.6)

xr(0) = V T x0, (2.7)

where Er = V T EV , Ar = V T AV , Br = V T B, and Cr = CV .

Since the system (2.1)–(2.3) is linear, the effects of inputs u and initial conditions

x0 can be considered separately. In this thesis, we focus on the initial-condition

problem and, without loss of generality, assume that u(k) = 0, k = 0, 1, . . . , T − 1.

For convenience of notation, we write the discrete-time system (2.1)–(2.3) in matrix

form as

Ax = Fx0, (2.8)

y = Cx, (2.9)
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where

x =











x(0)

x(1)
...

x(T )











, y =











y(0)

y(1)
...

y(T )











. (2.10)

The matrices A ∈ IRN(T+1)×N(T+1), F ∈ IRN(T+1)×N , and C ∈ IRQ(T+1)×N(T+1) in (2.8)

and (2.9) are given by

A =














E 0 · · · · · · 0

−A E 0

0 −A E
. . .

...
. . . . . . . . . 0

0 0 −A E














,F =














E

0

0
...

0














,C =














C 0 · · · · · · 0

0 C 0
... 0 C

. . .
...

. . . . . . 0

0 0 C














. (2.11)

Similarly, the reduced-order model (2.5)–(2.7) can be written in matrix form as

Arxr = Frx0, (2.12)

yr = Crxr, (2.13)

where xr and yr are defined analogously to x and y as

xr =











xr(0)

xr(1)
...

xr(T )











, yr =











yr(0)

yr(1)
...

yr(T )











. (2.14)

The matrices Ar ∈ IRn(T+1)×n(T+1), Fr ∈ IRn(T+1)×N , and Cr ∈ IRQ(T+1)×n(T+1) are
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given by

Ar =














Er 0 · · · · · · 0

−Ar Er 0

0 −Ar Er
. . .

...
. . . . . . . . . 0

0 0 −Ar Er














,Fr =














ErV
T

0

0
...

0














, (2.15)

Cr =














Cr 0 · · · · · · 0

0 Cr 0
... 0 Cr

. . .
...

. . . . . . 0

0 0 Cr














.

As an alternative to the discrete-time representation of a system (2.1)–(2.2), a

continuous representation of the form

Mẋ(k) = Ax(k) + Bu(k), (2.16)

y(k) = Cx(k), (2.17)

where ẋ is the vector of state derivatives with respect to time, may be available.

Here, M ∈ IRN×N , A ∈ IRN×N , and B ∈ IRN×P might come from a finite-element

discretization with mass matrix M and stiffness matrix A. We can arrive at the

matrix representation (2.8)–(2.9) in this case by choosing a temporal discretization

method and timestep ∆t, again assuming that u(k) = 0, k = 0, 1, . . . , T − 1 without

loss of generality. For example, if the Crank-Nicolson method is chosen, the matrices

in (2.11) with

E = M− 1

2
∆tA, (2.18)

A = M +
1

2
∆tA, (2.19)
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can be used in conjunction with (2.8)–(2.9) to solve for system state over time. Note

that C remains as given in (2.11) since the input-to-output mapping is unchanged.

To form the reduced-order system of equations in this continuous case, the Galerkin

projection is applied to M and A or, equivalently, to E and A:

Er = V T EV, (2.20)

Ar = V T AV. (2.21)

These matrices form the block entries in (2.15); the reduced state can be obtained by

solving (2.12).

In many cases, we are interested in rapid identification of initial conditions from

sparse measurements of the states over a time horizon; we thus require a reduced-

order model that will provide accurate outputs for any initial condition contained

in some set X0. Using the projection framework described above, the task therefore

becomes one of choosing an appropriate basis V so that the error between full-order

output y and the reduced-order output yr is small for all initial conditions of interest.

2.2 Proper Orthogonal Decomposition

To compute the basis V via POD, a sample set of initial conditions must first be cho-

sen. At each selected initial condition, a forward simulation is performed to generate

a set of states, commonly referred to as snapshots. The POD is then applied to the

snapshot set in order to form reduced basis vectors. Although the choice of sample

initial conditions is the focus of Chapter 3, we describe the process of forming basis

vectors using the method of snapshots [35] in this section.

Assume that we wish to construct a reduced basis with data from p forward solves

of the high-fidelity system with different initial conditions. The instantaneous state

solutions xj
i ∈ IRN×1, i = 0, 1, . . . , T , j = 1, 2, . . . , p are collected in the snapshot

matrix X ∈ IRN×p(T+1).

The POD basis vectors v1, v2, . . . , vn are chosen to be the orthonormal set that
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best represent the given snapshots in X [9]. This occurs when the n basis vectors are

taken to be the n most dominant eigenvectors of XXT or, equivalently, the first n

left singular vectors of X.

The POD minimizes the quantity

Ê =
T+1∑

i=0

p
∑

j=1

[
xj

i − V V T xj
i

]T [
xj

i − V V T xj
i

]
, (2.22)

for a fixed number of basis vectors. Ê represents the error between the original

snapshots and their representations in the reduced space. This error is also equal to

the sum of the squares of the singular values corresponding to the singular vectors

not included in the basis,

Ê =

p(T+1)
∑

k=n+1

σ2
k, (2.23)

where σk is the kth singular value of X.

2.3 Output-Weighted POD for Time-Dependent

Problems

In the classical POD described in Section 2.2, the basis vectors are chosen such that

they minimize the state error in a least-squares sense. However, the outputs do not

influence the basis construction as they do in the weighted POD method we describe

in this section.

The idea of weighting snapshots to improve basis quality has been explored before

[13]. It has been emphasized that weighting the snapshots can have a significant

impact on the selection of dominant modes [21]. One such implementation involves

an integer weighting scale such that multiple copies of strongly-weighted snapshots

are included in the data set before POD is applied [11].

Regardless of how the weights are calculated, we first summarize the approach

used to form POD basis vectors using these weights [13]. First, an ensemble average
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of the data x̄ ∈ IRN is computed using a linear combination of the snapshots x(i).

If, for simplicity, we are only interested in the T + 1 snapshots from a single forward

solve, then

x̄ =
T∑

i=0

ωix(i), (2.24)

where the snapshot weights ωi are chosen such that 0 < ωi < 1,
∑T

i=0 ωi = 1. A

modified snapshot matrix X̌ can then be computed using the ensemble average:

X̌ = [x(0) − x̄, x(1) − x̄, . . . , x(T ) − x̄] . (2.25)

If W is a defined as a diagonal matrix of weights ω0 to ωT , then the weighted POD

basis vectors are the eigenvectors v̌i in the eigenvalue problem

X̌WX̌T v̌i = σ̌iv̌i, i = 1, 2, . . . , N, (2.26)

where σ̌i are the eigenvalues of X̌WX̌T .

We propose a new choice of weights which takes into account the current and future

output response associated with each snapshot. The motivation behind this choice is

the assumption that the least valuable snapshots for reduced basis formation are those

which, when used as initial conditions, cause little or no output response. Those which

cause a relatively large output over time are considered the most important snapshots.

This distinction allows us to form a quantitative weighting method. Specifically, the

non-normalized weights ω̂i are given by

ω̂i =

∫ tf

ti

||y(t)||22 dt, i = 0, 1, . . . , T, (2.27)

where ti is the time corresponding to snapshot i, and tf is the final time at which

snapshots are collected. The output vector y(t) ∈ IRQ can be calculated via the

state-to-output mapping matrix C. To normalize the weights,

ωi =
ω̂i

ω̂max

, (2.28)
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where ω̂max is the maximum non-normalized weight in the snapshot set. Since the

algorithms presented in Chapter 3 require forward solves for many different initial

conditions, the snapshot sets for each of these initial conditions are kept separate so

that weights are calculated independently within each set; however, normalizing every

snapshot by the largest ω̂max across all snapshot sets may also be a valid approach.

The former method is used in this work.

Since all snapshots x are already collected before the calculation of weights, the

only additional costs involved in finding each weight are the single matrix-vector

multiplication y = Cx and a numerical integration to approximate the continuous-

time integral in (2.27). The intended benefit of the output-weighted POD is the

construction of bases which are similar in size to those created with classical POD

but which provide a higher degree of output accuracy when both are subjected to

test initial conditions. Alternatively, the method can be viewed as an attempt to

reduce the number of basis vectors needed to achieve a certain level of accuracy. The

performance of the method is discussed in Section 4.1.5.
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Chapter 3

Hessian-Based Construction of

Reduced-Order Models

In this chapter, a methodology to determine a basis that spans the space of important

initial conditions is presented. It has been shown that in the case of systems that

are linear in the state, POD is equivalent to balanced truncation if the snapshots are

computed for all possible initial conditions [31]. Since sampling all possible initial

conditions is not feasible for large-scale problems, we propose an adaptive approach

to identify important initial conditions that should be sampled. The approach is

motivated by the greedy algorithm of [38], which proposed an adaptive approach to

determine the parameter locations at which samples are drawn to form a reduced

basis. For the linear finite-time-horizon problem considered here, we show that the

greedy algorithm can be formulated as an optimization problem that has an explicit

solution in the form of an eigenvalue problem.

3.1 Theoretical Approach

Our task is to find an appropriate reduced basis and associated reduced model: one

that provides accurate outputs for all initial conditions of interest. We define an

optimal basis, V ∗, to be one that minimizes the maximal L2 error between the full-

order and reduced-order outputs of the fully discrete system over all admissible initial
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conditions,

V ∗ = arg min
V

max
x0∈X0

(y − yr)
T (y − yr) (3.1)

where Ax = Fx0, (3.2)

y = Cx, (3.3)

Arxr = Frx0, (3.4)

yr = Crxr. (3.5)

For this formulation, the only restriction that we place on the set X0 is that it con-

tain vectors of unit length. This prevents unboundedness in the optimization problem,

since otherwise the error in the reduced system could be made arbitrarily large. Natu-

rally, because the system is linear, the basis V ∗ will still be valid for initial conditions

of any finite norm.

A suboptimal but computationally efficient approach to solving the optimiza-

tion problem (3.1)–(3.5) is inspired by the greedy algorithm of [38]. Construction

of a reduced basis for a steady or unsteady problem with parameter dependence,

as considered in [37, 22], requires a set of snapshots, or state solutions, over the

parameter–time space. The greedy algorithm adaptively selects these snapshots by

finding the location in parameter–time space where the error between the full-order

and reduced-order models is maximal, updating the basis with information gathered

from this sample location, forming a new reduced model, and repeating the process.

In the case of the initial-condition problem (3.1)–(3.5), the greedy approach amounts

to sampling at the initial condition x∗
0 ∈ X0 that maximizes the error in (3.1).

The key step in the greedy algorithm is finding the worst-case initial condition x∗
0,

which we achieve by solving the modified optimization problem,

x∗

0 = arg max
x0∈X0

(y − yr)
T (y − yr) (3.6)
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where Ax = Fx0, (3.7)

y = Cx, (3.8)

Arxr = Frx0, (3.9)

yr = Crxr. (3.10)

Equations (3.6)–(3.10) define a large-scale optimization problem, which includes the

full-scale dynamics (3.7), (3.8) as constraints. The approach taken in [37, 22] is to

replace these constraints with error estimators, so that the full-scale model does not

need to be invoked during solution of the optimization problem. Further, in [37, 22],

the optimization problem (20)-(24) is solved by a grid-search technique that addresses

problems associated with non-convexity and non-availability of derivatives.

In this chapter, we exploit the linearity of the state equations to eliminate the full-

order and reduced-order states and yield an equivalent unconstrained optimization

problem. Eliminating the constraints (3.7)–(3.10) by solving for the full and reduced

states yields

x∗

0 = arg max
x0∈X0

xT
0 Hex0, (3.11)

where

He =
(
CA−1F − CrA

−1
r Fr

)T (
CA−1F − CrA

−1
r Fr

)
. (3.12)

It can be seen that (3.11) is a quadratic unconstrained optimization problem with

Hessian matrix He ∈ IRN×N . From (3.12), it can be seen that He is a symmetric

positive semi-definite matrix that does not depend upon the state or initial condition.

The eigenvalues of He are therefore non-negative. Since we are considering initial

conditions of unit norm, the solution x∗
0 maximizes the Rayleigh quotient; therefore,

the solution of (3.11) is given by the eigenvector ze
1 corresponding to the largest

eigenvalue λe
1 of He:

Heze
1 = λe

1z
e
1. (3.13)

The eigenvector ze
1 is the initial condition for which the error in reduced model output

prediction is largest.
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These ideas motivate the following basis-construction algorithm for the initial

condition problem.

Algorithm 1 Greedy Reduced Basis Construction

Initialize with V = 0, so that the initial reduced-order model is zero.

1. For the error Hessian matrix, He as defined in (3.12), find the eigenvector ze
1

with largest eigenvalue λe
1.

2. Set x0 = ze
1 and compute the corresponding solution x using (2.8).

3. Update the basis V by adding the new information from the snapshots x(k),

k = 0, 1, . . . , T .

4. Update the reduced model using the new basis and return to Step 1.

In Step 3 of Algorithm 1, the basis could be computed from the snapshots, using,

for example, the POD. A rigorous termination criterion for the algorithm is available

in the form of an error bound, which will be discussed below. It should be noted

that, while the specific form of Algorithm 1 applies only in the linear case, the greedy

sampling concept is applicable to nonlinear problems. In the general nonlinear case,

one would solve an optimization problem similar in form to (3.6)–(3.10), but with

the appropriate nonlinear governing equations appearing as constraints. In this case,

the explicit eigenvalue solution to the optimization problem would not hold; instead,

one would use a method that is appropriate for large-scale simulation-constrained

optimization (see [3]) to solve the resulting optimization problem.

Under certain assumptions, the form of He in (3.11) can be simplified, leading to

an algorithm that avoids construction of the reduced model at every greedy iteration.

We proceed by decomposing a general initial condition vector as

x0 = xV
0 + x⊥

0 , (3.14)
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where xV
0 is the component of x0 in the subspace spanned by the current basis V ,

and x⊥
0 is the component of x0 in the orthogonal complement of that subspace. Sub-

stituting (3.14) into the objective function (3.11), we recognize that Frx
⊥
0 = 0, using

the form of Fr given by (2.15) and that, by definition, V T x⊥
0 = 0. The unconstrained

optimization problem (3.11) can therefore be written as

x∗

0 = arg max
x0∈X0

(
CA−1FxV

0 + CA−1Fx⊥

0 − CrA
−1
r Frx

V
0

)T

(
CA−1FxV

0 + CA−1Fx⊥

0 − CrA
−1
r Frx

V
0

)
. (3.15)

The expression (3.15) can be approximated by assuming that

CA−1FxV
0 = CrA

−1
r Frx

V
0 , (3.16)

which means that for initial conditions xV
0 in the space spanned by the basis, we

assume that the reduced output exactly matches the full output, i.e. y = yr. An ap-

proach to satisfying this condition will be described shortly. Using the approximation

(3.16), we can rewrite (3.11) as

x∗

0 = arg max
x⊥
0
∈X0

(
x⊥

0

)T
Hx⊥

0 , (3.17)

where

H =
(
CA−1F

)T (
CA−1F

)
. (3.18)

H ∈ IRN×N is now the Hessian matrix of the full-scale system, and does not depend on

the reduced-order model. As before, H is a symmetric, positive semi-definite matrix

that does not depend upon the state or initial condition.

If we choose to initialize the greedy algorithm with an empty basis, V = 0, then

the maximizer of (3.17) on the first greedy iteration is given by the eigenvector of H

corresponding to the largest eigenvalue. We denote this initial condition by z1 and

note that z1 satisfies

Hz1 = λ1z1, (3.19)
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where λ1 is the largest eigenvalue of H. We then set V = z1. Under the assumption

that (3.16) holds, on the second greedy iteration we would therefore seek the initial

condition that maximizes (3.17). Clearly, this initial condition, which should be

orthogonal to z1, is given by z2, the eigenvector of H corresponding to the second

largest eigenvalue.

Returning to assumption (3.16), this condition can be satisfied if we include in the

basis not just the sequence of optimal initial conditions x∗
0 = {z1, z2, . . .}, but rather

the span of all snapshots (i.e. instantaneous state solutions contained in x) obtained

by solving (2.8) for each of the seed initial conditions z1, z2, . . .. The approximation

(3.16) will then be accurate, provided the final time tf is chosen so that the output

y(k) is small for k > T . If the output is not small for k > T , then a snapshot collected

at some time tk̄, where k̄ < T but k̄ is large, will be added to the basis; however, if

that state were then used as an initial condition in the resulting reduced-order model,

the resulting solution yr would not necessarily be an accurate representation of y.

This is because the basis would not contain information about system state evolution

after time tT−k̄. In that case, (3.16) would not hold. Further, by including both the

initial conditions, zi, and the corresponding snapshots, x, in the basis, the sequence

of eigenvectors zi will no longer satisfy the necessary orthogonality conditions; that

is, the second eigenvector z2 may no longer be orthogonal to the space spanned by

the basis comprising z1 and its corresponding state solutions. This is because setting

x0 = z1 and computing x will likely lead to some states that have components in the

direction of z2. We would therefore expect this simplification to be more accurate

for the first few eigenvectors, and become less accurate as the number of seed initial

conditions is increased.

These simplifications lead us to an alternate “one-shot” basis-construction algo-

rithm for the initial condition problem. This algorithm does not solve the optimiza-

tion problems (3.1)–(3.5) or (3.6)–(3.10) exactly, but provides a good approximate

solution to the problem (3.6)–(3.10) under the conditions discussed above. We use

the dominant eigenvectors of the Hessian matrix H to identify the initial-condition

vectors that have the most significant contributions to the outputs of interest. These
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vectors are in turn used to initialize the full-scale discrete-time system to generate a

set of state snapshots that are used to form the reduced basis.

Algorithm 2 One-Shot Hessian-Based Reduced Basis Construction

1. For the full-order Hessian matrix, H as defined in (3.18), find the p eigenvectors

z1, z2, . . . , zp with largest eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λp ≥ λp+1 ≥ . . . ≥ λN ≥
0.

2. For i = 1, . . . , p, set x0 = zi and compute the corresponding solution xi using

(2.8).

3. Form the reduced basis as the span of the snapshots xi(k), i = 1, 2, . . . , p, k =

0, 1, . . . , T .

Steps 2 and 3 in Algorithm 2 allow us to (approximately) satisfy the assumption

(3.16) by including not just the initial conditions z1, z2, . . . , zp in the basis but also

the span of all snapshots generated from those initial conditions. The basis could be

computed from the snapshots, using, for example, the POD.

3.2 Error Analysis

A direct measure of the quality of the reduced-order model is available using the

analysis framework described above. We define the error, ε, due to a particular initial

condition x0 as

ε = ||y − yr||2 =
∣
∣
∣
∣
(
CA−1F − CrA

−1
r Fr

)
x0

∣
∣
∣
∣
2
. (3.20)

For a given reduced model, the dominant eigenvector of He provides the worst-case

initial condition. Therefore, the value of the maximal error εmax (for an initial con-

dition of unit norm) is given by

εmax =
√

λe
1, (3.21)

33



where λe
1 is the largest eigenvalue of the error Hessian He, defined by (3.12). The value

εmax provides both a measure on the quality of the reduced model and a quantitative

termination criterion for the basis-construction algorithm.

In Algorithm 1, εmax is readily available, and thus can be used to determine how

many cycles of the algorithm to perform, i.e. the algorithm would be terminated when

the worst-case error is sufficiently small. In Algorithm 2, it is computationally more

efficient to select p, the number of seed initial conditions, based on the decay rate of

the full Hessian eigenvalues λ1, λ2, . . . and to compute all the necessary eigenvectors

z1, z2, . . . , zp at once. Once the reduced model has been created using Algorithm 2, the

error Hessian He can be formed and the error criterion (3.21) checked to determine if

further sampling is required. While Algorithm 1 is expected to reduce the worst-case

error more quickly, the one-shot Algorithm 2 is attractive since it depends only on

the large-scale system properties and thus does not require us to build the reduced

model on each cycle.

We also note that the eigenvectors of H = (CA−1F)
T

(CA−1F) are equivalent

to the (right) singular vectors of CA−1F. Since the latter quantity serves as an

input-output mapping, use of its singular vectors for basis formation is intuitively

attractive. It is also interesting to note that the Hessian H may be thought of as a

finite-time observability Gramian [4].

3.3 Large Scale Implementation

We first discuss the implementation of Algorithm 2 in the large-scale setting, and

then remark on the differences for Algorithm 1.

Algorithm 2 is a one-shot approach in which all of the eigenpairs can be computed

from the single Hessian matrix H in (3.18). This matrix can be formed explicitly by

first forming A−1F, which requires N “forward solves” (i.e. solutions of forward-

in-time dynamical systems with A as coefficient matrix), where N is the number

of initial condition parameters; or else by first forming A−TCT , which requires Q

“adjoint” solves (i.e. solutions of backward-in-time dynamical systems with AT as
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coefficient matrix), where Q is the number of outputs. For large-scale problems with

high-dimensional initial condition and output vectors, explicit formation and storage

of H is thus intractable. (A similar argument can be made for the intractability of

computing the singular value decomposition of CA−1F.) Even if H could be formed

and stored, computing its dominant spectrum would be prohibitive, since it is a dense

matrix of order N × N .

Instead, we use a matrix-free iterative method such as Lanczos to solve for the

dominant eigenpairs of H. Such methods require at each iteration a matrix–vector

product of the form Hwk for some wk, which is formed by successive multiplication

of vectors with the component matrices that make up the Hessian in (3.18). At each

iteration, this amounts to one forward and one adjoint solve involving the system A.

When the eigenvalues are well-separated, convergence to the largest eigenvalues of H

is rapid. Moreover, when the spectrum decays rapidly, only a handful of eigenvectors

are required by Algorithm 2. Many problems have Hessian matrices that are of low

rank and spectra that decay rapidly, stemming from the limited number of initial

conditions that have a significant effect on outputs of interest. For such problems the

number of Lanczos iterations required to extract the dominant part of the spectrum

is often independent of the problem size N .

Under this assumption, we can estimate the cost of Step 1 of Algorithm 2 (which

dominates the cost) in the case when the dynamical system (2.8)–(2.9) stems from

a discretized parabolic PDE. The cost of each implicit time step of a forward or

adjoint solve is usually linear or weakly superlinear in problem size, using modern

multilevel preconditioned linear solvers. Therefore for T time steps, overall work for

a forward or adjoint solve scales as TN1+α, with α usually very small. For a 3-D

spatial problem, a number of time steps on the order of the diameter of the grid,

and an optimal preconditioner, this gives O(N4/3) complexity per forward solve, and

hence per Lanczos iteration. Assuming the number of Lanczos iterations necessary to

extract the dominant part of the spectrum is independent of the grid size, the overall

complexity remains O(N4/3). (Compare this with straightforward formation of the

Hessian and computation of the eigenvalues with the QR algorithm, which requires
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O(N3) work.)

Algorithm 1 is implemented in much the same way. The main difference is that

the error Hessian He replaces the Hessian H, and we find the dominant eigenpair

of each of a sequence of eigenvalue problems, rather than finding p eigenpairs of the

single Hessian H. Each iteration of a Lanczos-type solver for the eigenvalue problem

in Algorithm 1 resembles that of Algorithm 2, and therefore the costs per iteration

are asymptotically the same. It is more difficult to characterize the number of greedy

iterations, and hence the number of eigenvector problems, that will be required using

Algorithm 1. However, to the extent that the assumptions outlined in Section 3.1 hold,

the number of greedy iterations will correspond roughly to the number of dominant

eigenvalues of the full Hessian matrix H. As reasoned above, the spectrum of H is

expected to decay rapidly for the problems of interest here; thus, convergence of the

greedy reduced basis construction algorithm is expected to be rapid.
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Chapter 4

Application: Convection-Diffusion

Transport Problem

In this chapter, the model reduction methodology described in Chapter 3 is assessed

for a contaminant transport problem. We first consider in Section 4.1 the case of a

simple two-dimensional domain, which leads to a system of the form (2.8) of moderate

dimension; in Section 4.2 a large-scale three-dimensional example will be presented.

4.1 Two-dimensional model problem

4.1.1 Problem description

The physical process is modeled by the convection-diffusion equation,

∂w

∂t
+ ~v · ∇w − κ∇2w = 0 in Ω × (0, tf ), (4.1)

w = 0 on ΓD × (0, tf ), (4.2)

∂w

∂n
= 0 on ΓN × (0, tf ), (4.3)

w = w0 in Ω for t = 0, (4.4)

where w is the contaminant concentration (which varies in time and over the domain

Ω), ~v is the velocity vector field, κ is the diffusivity, tf is the time horizon of interest,
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Figure 4-1: The computational domain and locations of sensor output nodes. Top:
two-sensor case, bottom: ten-sensor case.

and w0 is the given initial condition. Homogeneous Dirichlet boundary conditions

are applied on the inflow boundary ΓD, while homogeneous Neumann conditions are

applied on the other boundaries ΓN .

Figure 4-1 shows the computational domain for the two-dimensional contaminant

transport example. The velocity field is taken to be uniform, constant in time, and

directed in the positive x̄-direction as defined by Figure 4-1. The inflow boundary,

ΓD, is defined by x̄ = 0, 0 ≤ ȳ ≤ 0.4; the remaining boundaries comprise ΓN .

A Streamline Upwind Petrov-Galerkin (SUPG) [10] finite-element method is em-

ployed to discretize (4.1) in space using triangular elements. For the cases considered

here, the spatial mesh has N = 1860 nodes. The Crank-Nicolson method is used to

discretize the equations in time. This leads to a linear discrete-time system of the

form (2.8), where the state vector x(k) ∈ IR1860 contains the values of contaminant

concentration at spatial grid points at time tk. For all experiments, the timestep

used was ∆t = 0.02 and the time limit, set approximately by the maximum time of
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convection across the length of the domain, was tf = 1.4.

The matrix A in (2.8) depends on the velocity field and the Peclet number, Pe,

which is defined as

Pe =
vcℓc

κ
, (4.5)

where the characteristic velocity vc is taken to be the maximum velocity magnitude

in the domain, while the domain length is used as the characteristic length ℓc. The

uniform velocity field described above was used in all experiments, but Pe was varied.

Increasingly convective transport scenarios corresponding to Peclet numbers of 10,

100, and 1000 were used to generate different full-scale systems.

The outputs of interest are defined to be the values of concentration at selected

sensor locations in the computational domain. Figure 4-1 shows two different sensor

configurations that were employed in the results presented here.

The first step in creating a reduced model with Algorithm 2 is to compute p domi-

nant eigenvectors of the full-scale Hessian matrix H. Figure 4-2 shows the eigenvalue

spectra of H for the two-sensor case and the ten-sensor case. The relative decay rates

of these eigenvalues are used to determine p, the number of eigenvectors used as seed

initial conditions. We specify the parameter λ̄, and apply the criterion that the jth

eigenvector of H is included if λj/λ1 > λ̄.

Figure 4-2 demonstrates that the decay rate of the dominant eigenvalues is related

to the number and positioning of output sensors. For the two-output case, the two

dominant eigenvalues λ1 and λ2 are of almost equal magnitude; analogous behavior

can be seen for the first ten eigenvalues in the ten-output case. This is consistent

with the physical intuition that similarly important modes exist for each of the out-

put sensors. For instance, a mode with initial concentration localized around one

particular sensor is of similar importance as another mode with high concentration

near a different sensor.
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Figure 4-2: A comparison of the Hessian eigenvalue spectra of H for the two- and
ten-output cases. Pe = 100.

4.1.2 Reduced model performance

Once the p seed eigenvectors have been computed, the corresponding state solutions,

x1,x2, . . . ,xp, are computed from (2.8) using each eigenvector in turn as the initial

condition x0. The final step in Algorithm 2 requires the formation of the reduced

basis from the span of x1,x2, . . . ,xp. We achieve this by aggregating all state solutions

xi(k), i = 1, 2 . . . , p, k = 0, 1, . . . , T into a snapshot matrix X ∈ IRN×(T+1)p and using

the classical (non-weighted) POD to select the n basis vectors that most efficiently

span the column space of X. The number of POD basis vectors is chosen based on

the decay of the POD eigenvalues µ1 ≥ µ2 ≥ · · · ≥ µ(T+1)p ≥ 0. As above, we define

a parameter µ̄, and apply the criterion that the kth POD basis vector is retained if

µk/µ1 > µ̄.

The resulting reduced models given by (2.12), (2.13) can be used for any initial

condition x0; to demonstrate the methodology we choose to show results for initial

conditions comprising a superposition of Gaussian functions. Each Gaussian is defined

by

x0(x̄, ȳ) =
1

σ
√

2π
e−[(x̄−x̄c)2+(ȳ−ȳc)2]/2σ2

, (4.6)
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Case λ̄ µ̄ n ε εmax

1 .1 10−4 62 .0732 .1868
2 .1 10−6 90 .0716 .1843
3 .01 10−4 128 .0031 .0424
4 .01 10−6 200 .0014 .0297
5 .001 10−4 180 .00017 .0102
6 .001 10−6 282 .00014 .0059

Table 4.1: Properties of various reduced-order models of a full-scale system with
Pe=100 and two output sensors. The errors ε and εmax are defined in (3.20) and
(3.21), respectively; ε is evaluated when each reduced system (of dimension n) is
subjected to test initial condition (c).

where (x̄c, ȳc) defines the center of the Gaussian and σ is the standard deviation.

All test initial conditions are normalized such that ||x0||2 = 1. Three sample initial

condition functions that are used in the following analyses are shown in Figure 4-3

and are referred to by their provided labels (a), (b), and (c) throughout.

Tables 4.1 and 4.2 show sample reduced model results for various cases using

the two-sensor configuration shown in Figure 4-1. The error ε is defined in (3.20)

and computed for one of the sample initial conditions shown in Figure 4-3. It can

be seen from the tables that a substantial reduction in the number of states from

N = 1860 can be achieved with low levels of error in the concentration prediction at

the sensor locations. The tables also show that including more modes in the reduced

model, either by decreasing the Hessian eigenvalue decay tolerance λ̄ or by decreasing

the POD eigenvalue decay tolerance µ̄, leads to a reduction in the output error.

Furthermore, the worst case error in each case, εmax, is computed from (3.21) using

the maximal eigenvalue of the error Hessian, He. It can also be seen that inclusion

of more modes in the reduced model leads to a reduction in the worst-case error.

Figure 4-4 shows a comparison between reduced models computed using Algo-

rithm 1 and Algorithm 2. The model sizes n increase with the number p of eigen-

vectors of either H or He used as seed initial conditions. For both algorithms, the

maximum error εmax and the error resulting from a forward solve with initial condi-

tion (b) decrease as p increases. The most dominant eigenvectors are similar: z1 is
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Figure 4-3: Sample test initial conditions used to compare reduced model outputs to
full-scale outputs.
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Case λ̄ µ̄ n ε εmax

1 .1 10−4 28 .0344 .2572
2 .1 10−6 45 .0248 .2483
3 .01 10−4 43 .0072 .0457
4 .01 10−6 69 .0041 .0409
5 .001 10−4 79 .00062 .0098
6 .001 10−6 122 .00059 .0075

Table 4.2: Properties of various reduced-order models of a full-scale system with
Pe=1000 and two output sensors. The errors ε and εmax are defined in (3.20) and
(3.21), respectively; ε is evaluated when each reduced system (of dimension n) is
subjected to test initial condition (a).

identical to ze
1, and z2 ≈ ze

2. As p becomes large, though, the pth eigenvector of H

and the dominant eigenvector of He on the pth iteration become increasingly differ-

ent. This is evident when z5 and ze
5 are plotted, since both are similar in shape but

markedly different in their finer features. Despite this divergence, it can be seen that

models formed using the one-shot method provide a similar level of accuracy as do

the models formed with the iterative method, for the same reduced basis size n.

A representative comparison of full and reduced outputs, created by driving both

the full and reduced systems with test initial condition (b), is shown in Figure 4-5

for the case of Pe=1000. The values λ̄ = 0.01 and µ̄ = 10−4 are used, leading to

a reduced model of size n = 196. The figure demonstrates that a reduced model of

size n = 196 formed using Algorithm 2 can effectively replicate the outputs of the

full-scale system for this initial condition. The error for this case as defined in (3.20)

is ε = 0.0039.

In order to ensure that the results shown in Figure 4-5 are representative, one

thousand initial conditions are constructed randomly and tested using this reduced

model. Each initial condition consists of 10 superposed Gaussian functions with

random centers (x̄c, ȳc) and random standard deviations σ. This library of test initial

conditions was used to generate output comparisons between the full-scale model and

the reduced-order model. The averaged error across all 1000 trials, ε̄ = 0.0024, is

close to the error associated with the comparison shown in Figure 4-5. Furthermore,
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Figure 4-4: Top: Maximum error, εmax, for reduced models computed using Algo-
rithms 1 and 2. Bottom: Error for test initial condition (b), ε.
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Figure 4-5: A comparison of full (N = 1860) and reduced (n = 196) outputs for two-
sensor case using test initial condition (b). Pe=1000, λ̄ = 0.01, µ̄ = 10−4, ε = 0.0039.
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Figure 4-6: A comparison between full and reduced solutions at sensor location 1 for
two different values of µ̄. Test initial condition (a) was used to generate the data.
Pe=10, λ̄ = 0.01, two-sensor case. The output at the first sensor location is plotted
here.

the maximum error over all 1000 trials is found to be 0.0059, which is well below the

upper bound εmax = 0.0457 established by (3.21).

Effect of variations in µ̄. As discussed above, µ̄ is the parameter that controls

the number of POD vectors n chosen for inclusion in the reduced basis. If µ̄ is too

large, the reduced basis will not span the space of all initial conditions for which it is

desired that the reduced model be valid. Figure 4-6 illustrates the effect of changing

µ̄. The curve corresponding to a value of µ̄ = 10−6 shows a clear improvement over

the µ̄ = 10−4 case. This can also be seen by comparing the errors ε = 0.0229 and

0.0023 associated with the two reduced models seen in Figure 4-6. However, the

improvement comes at a price, since the number of basis vectors, and therefore the

size of the reduced model n, increases from 43 to 69 when µ̄ is decreased.

Effect of variations in λ̄. Another way to alter the size and quality of the reduced

model is to indirectly change p, the number of eigenvectors of H that are used as seed

initial conditions for basis creation. We accomplish this by choosing different values

of the eigenvalue decay ratio λ̄. The effect of doing so is illustrated in Figure 4-7. An
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Figure 4-7: Lowering λ̄ to increase p, the number of Hessian eigenvector initial con-
ditions used in basis formation, leads to more accurate reduced-order output. Test
initial condition (c) was used with two output sensors, Pe=100 and µ̄ = 10−4. The
output at the second sensor location is plotted here.

increase in reduced model quality clearly accompanies a decrease in λ̄. This can also

be seen by comparing rows 1 and 3 of Table 4.1, which correspond to the two reduced

models seen in Figure 4-7. The increase in n with lower values of λ̄ is expected,

since greater p implies more snapshot data with which to build the reduced basis,

effectively uncovering more full system modes and decreasing the relative importance

of the most dominant POD vectors. In general, for the same value of µ̄, more POD

vectors are included in the basis if λ̄ is reduced.

4.1.3 Ten-sensor case

To understand how the proposed method scales with the number of outputs in the

system, we repeat the experiments for systems with Q = 10 outputs corresponding to

sensors in the randomly-generated locations shown in Figure 4-1. A reduced model

was created for the case of Pe=100, with µ̄ = 10−4 and λ̄ = 0.1. The result was a

reduced system of size n = 245, which was able to effectively replicate all ten outputs

of the full system. Figure 4-8 shows a representative result of the full and reduced

46



0 0.5 1
0

0.02

0.04

0.06

y
1

0 0.5 1
0

0.02

0.04

0.06

y
2

 

 

0 0.5 1
0

0.02

0.04

0.06

y
3

0 0.5 1
0

0.02

0.04

0.06

y
4

0 0.5 1
0

0.02

0.04

0.06

y
5

0 0.5 1
0

0.02

0.04

0.06

y
6

0 0.5 1
0

0.02

0.04

0.06

y
7

0 0.5 1
0

0.02

0.04

0.06
y
8

0 0.5 1
0

0.02

0.04

0.06

y
9

Time
0 0.5 1

0

0.02

0.04

0.06

y
1
0

Time

Full Solution
Reduced Solution

Figure 4-8: A comparison of the full (N = 1860) and reduced (n = 245) outputs for
all Q = 10 locations of interest. Test initial condition (c) was used to generate these
data with Pe = 100, µ̄ = 10−4, λ̄ = 0.1.

model predictions at all ten sensor locations.

The size n = 245 of the reduced model in this case is considerably larger than

that in the corresponding two-output case (n = 62), which is shown in the first row

of Table 4.1, although both models were constructed with identical values of µ̄ and

λ̄. The difference between high- and low-Q experiments is related to the Hessian

eigenvalue spectrum. As demonstrated in Figure 4-2, the eigenvalue decay rate of the

Q = 10 case is less rapid than that of the Q = 2 case. This means that, for the same

value of λ̄, more seed initial conditions are generally required for systems with more

outputs. Since additional modes of the full system must be captured by the reduced

model if the number of sensors is increased, it is not surprising that the size of the

reduced basis increases.
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4.1.4 Observations and Recommendations

The results above for the 2-D model problem demonstrate that reduced models formed

by the proposed methods can be effective in replicating full-scale output quantities of

interest. Algorithm 2 has also been shown to produce models of similar quality and

size as models generated by Algorithm 1. Given also its straightforward implementa-

tion and lower offline cost (since we do not need to form the reduced model at each

greedy iteration), Algorithm 2 is generally preferred for the construction of reduced

bases. At this point, we can use the results to make recommendations about choosing

µ̄ and λ̄, the two parameters that control reduced-model construction.

In practice, one would like to choose these parameters such that both the reduced

model size n and the modeling error for a variety of test initial conditions are minimal.

The size of the reduced model is important because n is directly related to the online

computational cost; that is, n determines the time needed to compute reduced output

approximations, which is required to be minimal for real-time applications. The offline

cost of forming the reduced model is also a function of µ̄ and λ̄. When µ̄ is decreased,

the basis formation algorithm requires more POD basis vectors to be computed; thus,

decreasing µ increases the offline cost of model construction. In addition, the online

cost of solving the reduced system in (2.12) and (2.13), which is not sparse, scales

with n2T . While decreasing µ̄ might appreciably improve modeling accuracy, doing

so can only increase the time needed to compute reduced output approximations.

Changes in λ̄ affect the offline cost more strongly. Every additional eigenvector of H

to be calculated adds the cost of several additional large-scale system solves: several

forward and adjoint solves are needed to find an eigenvector using the matrix-free

Lanczos solver described earlier. In addition, the number of columns of the POD

snapshot matrix X grows by (T + 1) if p is incremented by one; computing the POD

basis thus becomes more expensive. If these increases in offline cost can be tolerated,

though, the results suggest a clear improvement in reduced-model accuracy for a

relatively small increase in online cost.

Figure 4-9 illustrates the dependence of reduced model size and quality on the
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Figure 4-9: A measure of the error in six different reduced models of the same system
plotted versus their sizes n for the ten-sensor case. The three plots were generated
with test initial conditions (a), (b), and (c), respectively. Pe=100, Q = 10 outputs.

parameters µ̄ and λ̄. For the case of ten output sensors with Pe=100, six different

reduced models were constructed with different combinations of µ̄ and λ̄. The three

plots in Figure 4-9 show the error ε versus the reduced-model size n for each of the

test initial conditions in Figure 4-3. Ideally, a reduced model should have both small

error and small n, so we prefer those models whose points reside closest to the origin.

Ignoring differences in offline model construction cost, decreasing λ̄ should be favored

over decreasing µ̄ if more accuracy is desired. This conclusion is reached by realizing

that for a comparable level of error, reduced models constructed with lower values of

λ̄ are much smaller. Maintaining a small size of the reduced model is important for

achieving real-time computations for large-scale problems of practical interest.
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4.1.5 Output-Weighted POD Results

To this point, this chapter has presented results computed with the classical POD

described in Section 2.2. In Section 2.3, though, we proposed a method to create

reduced models by weighting snapshots before applying POD. These weights are

dependent on the integral (2.27) of the output norm over time, beginning from the

instant at which each snapshot is taken. The intended result of the output-weighted

POD is the construction of reduced bases that require fewer basis vectors than do

classical POD bases to provide the same degree of output accuracy. Alternatively,

a basis formed with the weighted variant should provide greater accuracy with the

same number of basis vectors as a classical POD basis.

To test the weighted method, results were collected for the ten-sensor case with

Pe = 100 and λ̄ = 0.01. The parameter µ̄ was adjusted so that two reduced models

with 383 basis vectors were constructed: one via classical POD, and the other using

output-weighted POD. When the tight error bounds are compared, the results show a

slight advantage to using the output-weighted POD (εmax = 0.0241) over the classical

POD (εmax = 0.0253). In addition, when both reduced models are subjected to the

same 1000 test initial conditions constructed from 10 superposed Gaussian functions

with random centers and standard deviations, the results show that output-weighted

POD, ε̄ = 3.4699 × 10−4, leads to a lower average error than does classical POD,

ε̄ = 4.2230 × 10−4.

These small differences in maximal and average error can be explained by the low

Peclet number in the domain. Since the seed initial conditions or dominant eigenvec-

tors of the Hessian are generally localized in concentration about the sensor locations,

the snapshots taken several timesteps after time zero correspond to smoother states

in which the peaks in concentration have diffused outward. This means that those

snapshots considered unimportant by the output-weighted POD are associated with

low state energy as well as low output energy.

Even in this low-Pe case, though, the weighting scheme provides an added benefit.

It was found that disregarding those snapshots with weights ωi < 10−4 before applying
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non-weighted POD to the remaining snapshots produced the same reduced basis as

did the non-weighted POD method with all snapshots included. Out of a total 3337

snapshots, 1445 were deemed unimportant by the above criteria. Since the cost of

POD scales with the number of state solutions in the snapshot set, the exclusion led

to a reduction in POD computation time.

Note that since the output weighting de-emphasizes the least-squares state energy

optimization of classical POD, the weighted approach may not be advisable in a

setting which requires full-state approximation based on the reduced states. Thus,

the output-weighted POD is not used to construct the models used in Section 5.2.

4.2 Contaminant Transport in a 3-D Urban Canyon

We demonstrate our model reduction method by applying it to a three-dimensional

airborne contaminant transport problem for which a solution is needed in real time.

Intentional or unintentional chemical, biological, and radiological (CBR) contamina-

tion events are important security concerns. In particular, if contamination occurs

in or near a populated area, predictive tools are needed to rapidly and accurately

forecast the contaminant spread to provide decision support for emergency response

efforts. Urban areas are geometrically complex and require detailed spatial discretiza-

tion to resolve the relevant flow and transport, making prediction in real-time dif-

ficult. Reduced-order models can play an important role in facilitating real-time

turn-around, in particular on mobile workstations in the field. However, it is essen-

tial that these reduced models be accurate over a wide range of initial conditions, since

in principle any of these initial conditions can be realized. Once a suitable reduced-

order model has been generated, it can serve as a surrogate for the full model within

an inversion/data assimilation framework to identify the initial conditions given sen-

sor data. The solution of an inverse problem using a reduced model is studied in

Chapter 5.

To illustrate the generation of a reduced-order model that is accurate for high-

dimensional initial conditions, we consider a three-dimensional urban canyon geome-
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try occupying a (dimensionless) 15 × 15 × 15 domain. Figure 4-10 shows the domain

and buildings, along with the locations of six output nodes that represent sensor

locations of interest, all placed at a height of 1.5. The model used is again the

convection-diffusion equation, given by (4.1). The PDE is discretized in space using

an SUPG finite element method with linear tetrahedra, while the Crank-Nicolson

method is used to discretize in time. Homogeneous Dirichlet boundary conditions of

the form (4.2) are specified for the concentration on the inflow boundary, x̄ = 0, and

the ground, z̄ = 0. Homogeneous Neumann boundary conditions of the form (4.3)

are specified for the concentration on all other boundaries.

The velocity field, ~v, required in (4.1) is computed by solving the steady laminar

incompressible Navier-Stokes equations, also discretized with SUPG-stabilized linear

tetrahedra. No-slip conditions, i.e. ~v = 0, are imposed on the building faces and the

ground z̄ = 0 (thus there is no flow inside the buildings). The velocity at the inflow

boundary x̄ = 0 is taken as known and specified in the normal direction as

vx(z) = vmax

(
z

zmax

)0.5

,

with vmax = 3.0 and zmax = 15, and zero tangentially. On the outflow boundary

x̄ = 15, a traction-free (Neumann) condition is applied. On all other boundaries

(ȳ = 0, ȳ = 15, z̄ = 15), we impose a combination of no flow normal to the boundary

and traction-free tangent to the boundary. The spatial mesh for the full-scale system

contains 68,921 nodes and 64,000 tetrahedral elements. For both basis creation and

testing, a final non-dimensional time tf = 20.0 is used, and discretized over 200

timesteps. The Peclet number based on the maximum inflow velocity and domain

dimension is Pe=900. The PETSc library [7, 6, 8] is used for all implementation.

Figure 4-11 illustrates a sample forward solution. The test initial condition used

in this simulation, meant to represent the system state just after a contaminant

release event, was constructed using a Gaussian function with a peak magnitude of

100 centered at a height of 1.5.

For comparison with the full system, a reduced model was constructed using
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Figure 4-10: Building geometry and locations of outputs for the 3-D urban canyon
problem.

Algorithm 2 with the eigenvalue decay ratios λ̄ = 0.005 and µ̄ = 10−5, which led to

p = 31 eigenvector initial conditions and n = 137 reduced basis vectors. Eigenvectors

were computed using the Arnoldi eigensolver within the SLEPc package [27], which

is built on PETSc. Figure 4-12 shows a comparison of the full and reduced time

history of concentration at each output location. The figure demonstrates that a

reduced system of size n = 137, which is solved in a matter of seconds on a desktop,

can accurately replicate the outputs of the full-scale system of size N = 65, 600. We

emphasize that the (offline) construction of the reduced-order model targets only the

specified outputs, and otherwise has no knowledge of the initial conditions used in

the test of Figure 4-12 (or any other initial conditions).
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Figure 4-11: Transport of contaminant concentration through urban canyon at six
different instants in time, beginning with the initial condition shown in upper left.
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Figure 4-12: Full (65,600 states) and reduced (137 states) model contaminant con-
centration predictions at each of the six output nodes for the three-dimensional urban
canyon example.
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Chapter 5

Application: Measurement,

Inversion, and Prediction

One intended application of the Hessian-based model-order reduction methodology

is the efficient and accurate solution of time-dependent inverse problems. These

problems involve estimating the initial condition of a system based on observations

or measurements of system state later in time. For example, should a hazardous

contaminant release occur inside a domain, the data provided by sensors that mea-

sure contaminant concentration can be used to reconstruct the initial distribution of

material. Once this estimate of the initial condition is found, a prediction of state

evolution can be issued: the future path of the contaminant can be computed based

on the estimate.

The process of inversion based on measurements must take place in real time to be

useful. Efficient methods of solution which rely on parallel computing are discussed in

[3]; however, there has been no attempt to use reduced-order models as surrogates for

the high-fidelity models that are typically used to represent system dynamics. Sec-

tion 5.1 demonstrates that, since the Hessian-based methodology produces reduced

models which can replicate full-scale outputs for a wide range of possible initial con-

ditions, the reduced models are useful for solving inverse problems in real time.

The prediction of system state based on the estimate must also be performed in

real time, since the contaminant path should be understood as soon as possible during
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Size Description

xa
0 N Discrete representation of actual initial condition

xt
0 N Truth (full-order) initial condition estimate

xlr
0 N Low-rank initial condition estimate

xrom
r0 n Reduced-order initial condition estimate in reduced space

xrom
0 N Reduced-order initial condition estimate

Table 5.1: Summary of notation used to represent initial condition quantities.

a contaminant release event. The progression of full state can be found currently with

a forward solve of the high-fidelity system of equations. In Section 5.2, we discuss

the prospect of solving the reduced-order equations instead, using the reduced state

at a given time to approximate the full state at that instant. This allows us to

obtain approximately the same knowledge of state evolution, i.e. contaminant path,

at diminished computational cost.

5.1 Estimating the Initial Condition

We wish to solve for estimates of the actual initial condition, defined as the system

state at time t = 0, using various solution methods. Table 5.1 provides a summary

of the notation we will use to represent each of the initial condition quantities.

To estimate the actual initial condition in the domain, we make use of observations

such as sensor measurements from the initial time until the end of the data-collection

time window. The window is divided into Tobs discrete timesteps, and the Q obser-

vations at each instant are stored in the vector yobs ∈ IRQ(Tobs+1), which has the same

structure as shown in (2.10).

For simplicity, Tobs is chosen to be T , the maximum number of timesteps necessary

for system state to come to equilibrium, i.e. for all contaminant to convect out of the

domain after any initial distribution. In a situation requiring prediction, Tobs < T ,

and fewer timesteps are involved in the formation of the Hessian matrices and right-

hand sides in (5.2), (5.5), and (5.10) below. This prediction based on a limited time

horizon will be discussed in Section 5.3. However, the choice Tobs = T suffices for
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demonstration of the inversion methods.

Subject to the governing equations, we search for an initial condition xt
0 which,

when used to drive a forward solution of the system, produces outputs y that best

match the observations yobs:

xt
0 = arg min (y − yobs)

T (y − yobs) + βxT
0 x0 (5.1)

where Ax = Fx0,

y = Cx.

Here, xt
0 represents the “truth” initial condition: the motivation for this nomenclature

will become evident as approximate solutions to the inverse problem are explored.

The constant β determines the relative weighting given to the regularization term

xT
0 x0. Regularization is required since, in general, the entire system state cannot be

uniquely identified from sparse observations [39]. This means that the inverse problem

is ill-posed: many initial conditions x0 may lead to identical observations yobs. The

regularization term, as written, is a filter which helps us select only smooth initial

conditions by increasing the objective cost of states with sharp peaks and troughs.

Thus, regularization is a means to selecting a single initial condition estimate out of

many candidates which are consistent with observations.

The optimality conditions for (5.1) can be derived by first substituting the con-

straints into the objective function. The gradients of the objective function with

respect to x0 must be zero at the minimum, giving the following expression:

(H + βI) xt
0 = (CA−1F)Tyobs, (5.2)

which xt
0 must satisfy. The full-order or truth Hessian matrix H = (CA−1F)T (CA−1F)

was introduced in Chapter 3. The ill-posedness of the inverse problem is related to

the singularity of H, whose eigenvalue spectrum decays sharply to zero as shown in
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Figure 4-2.

Reducing the computational cost associated with solving (5.2) is desirable: be-

cause the formation of H ∈ IRN×N would require N forward and adjoint solves,

neither H nor (H + βI)−1 are formed explicitly. Matrix-free algorithms can be used

to solve for xt
0, but there are also ways to solve the inverse problem approximately.

In the two sections that follow, we present two practical solution methods for the

inverse problem described above. Section 5.1.4 compares the costs associated with

implementing each solution method.

5.1.1 Low-Rank Hessian Approximation

A common approximate solution method involves forming a low-rank approximation

[39] Hlr ∈ IRN×N of the Hessian and using the Sherman-Morrison-Woodbury formula

[20] to invert Hlr + βI. This method takes advantage of the compact eigenvalue

spectrum of the Hessian [1].

The first step in computing (Hlr + βI)−1 is the spectral decomposition of H =

UΛU−1. We define Up ∈ IRN×p as a matrix whose columns are the p most dominant

eigenvectors of H. Let Λp ∈ IRp×p be a diagonal matrix of the p largest eigenvalues

of H in descending order. The low-rank approximation of the Hessian can then be

expressed as

Hlr = UpΛpU
T
p . (5.3)

Given that (βI)−1 = 1
β
I, the Sherman-Morrison-Woodbury formula helps us calculate

(Hlr + βI)−1 without the need to invert an N × N matrix:

(Hlr + βI)−1 = (UpΛpU
T
p + βI)−1 =

1

β
I − 1

β
IUp

[

Λ−1
p + UT

p

1

β
IUp

]−1

UT
p

1

β
I. (5.4)

It is now possible to compute an estimate of the initial condition which relies on the

low-rank approximation of H. This estimate matches the truth solution xt
0 in the

limiting case p = N . We will refer to any inverse problem solution estimate derived
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from a low-rank Hessian approximation as xlr
0 :

(Hlr + βI)xlr
0 = (CA−1F)Tyobs. (5.5)

5.1.2 Reduced-Order Inverse Problem Solution

The low-rank approximation described in the previous section is an attempt to reduce

the full-scale Hessian after its construction from the high-fidelity system of equations.

Conversely, we propose in this section a means to solve the inverse problem approx-

imately by first reducing the high-fidelity system and then forming a reduced-order

analogue of (5.2).

This solution method is initiated with the use of the Hessian-based approach

described in Chapter 3 to construct a suitable reduced basis V . Recall that once

this basis is obtained, the block components Ar and Cr of the reduced-order system

of equations in (2.12)–(2.13) are defined. This allows us to write an optimization

problem similar to (5.1) to estimate the initial condition xr0 ∈ IRn in reduced space:

x∗

r0 = arg min (yr − yobs)
T (yr − yobs) + βxT

r0xr0 (5.6)

where Arxr = frxr0, (5.7)

yr = Crxr, (5.8)

and fr ∈ IRn(T+1)×n has replaced Fr in the description of the reduced-order system.

The matrix fr contains Er from (2.5) in its first n × n block and only zeros in the

subsequent T blocks:

fr =














Er

0

0
...

0














. (5.9)
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As seen in the first constraint (5.7), the use of fr in place of Fr means that the

reduced-order state equations are driven from an initial condition in reduced-space:

xr0 replaces x0. This substitution is made so that the reduced-order Hessian, Hr =

(frA
−1
r Cr)

T (frA
−1
r Cr), has dimension n × n as opposed to the N × N matrix which

would have resulted from the use of (2.12) and Fr. The two formulations are equiv-

alent since xr0 = V T x0.

Using the same reasoning as above to write a closed-form solution to the opti-

mization problem, the analogue to (5.2) in the reduced-order model case is given

by

(Hr + βI) xrom
r0 = (CrA

−1
r fr)

Tyobs, (5.10)

where xrom
r0 is the estimated initial condition in reduced space. To compute the

estimated initial condition xrom
0 in full-order space, we make use of the approximation

(2.4):

xrom
0 = V xrom

r0 . (5.11)

5.1.3 Inverse Problem Results

An experiment based on the 2-D contaminant transport problem described in Chap-

ter 4 was devised to compare the three methods – truth solution, low-rank approxi-

mation, and reduced-order solution – of estimating the initial condition. Figure 5-1

illustrates the actual initial condition which must be identified.

Although the actual initial condition is defined on a grid with 7320 finite ele-

ment nodes, the computations in this section are performed on a coarser grid with

N = 1860 nodes. This choice is made in an effort to avoid the “inverse crime” as ex-

plained by [12]. In practice, the actual initial condition is independent of any spatial

discretization and is never precisely known. In order to compare this actual initial

condition to estimates computed based on the coarse grid, we define xa
0 ∈ IR1860 as a

vector composed of samples of the distribution in Figure 5-1 at the (x̄, ȳ) locations of
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Figure 5-1: The actual initial condition used for the experiments; the goal of solving
the inverse problem is to find this distribution from sensor measurements. Formed by
superposing 10 Gaussian distributions with random centers and standard deviations.

the coarse grid nodes.

The domain contains Q = 10 sensors in the locations shown at the bottom of

Figure 4-1. From the actual initial condition, the high-fidelity system of equations

are solved forward in time on the fine grid for Tobs additional timesteps to provide the

outputs y ∈ IRQ(Tobs+1), or the concentrations over time at each of the sensor locations.

However, these output values are not directly used as observed measurements. It is

assumed that all sensor measurements are only accurate to within 5% of the true

concentration at each sensor location. We introduce noise at a certain time ti for a

given sensor q by incrementing the actual value yq(ti) by ηyq(ti), where η is chosen

randomly with a uniform probability distribution between −0.05 and 0.05. Thus, yobs

is y with noise introduced to each element, and each sensor is assumed to exhibit the

same potential for error at each timestep. The combination of using a fine grid and

adding noise to the computed data provides a more realistic setting in which to test

the methodology.
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The number of timesteps Tobs with length ∆t = 0.02 in the observation window is

chosen such that the time limit, set approximately by the maximum time of convection

across the length of the domain, is tf = 1.4. This is a poor choice for a practical setting

in which prediction is important, since the contaminant will have been transported

throughout the domain by the time all measurements are taken; however, this choice

ensures a fair comparison between the low-rank approximation and reduced-order

inverse solution methods.

To form the reduced-order models necessary for solving the inverse problem, we

use Algorithm 2. A model formed with parameters λ̄ = 0.1 and µ̄ = 10−4 and size

n = 245 will be referred to as the baseline model. We also define “strict” parameters

λ̄ = 0.01 and µ̄ = 10−6 which can be used in place of the baseline values to create

varied reduced-order models.

With the pre-existing set of full-order state evolution equations in the constraints

of (5.1) and the choice of Tobs, it is possible to construct the Hessian matrix H ∈
IR1860×1860 from (5.2). This matrix is necessary for both the truth solution and the

low-rank approximation. We can also use the baseline parameters to construct the

reduced-order Hessian Hr ∈ IR245×245 in (5.10) for use in finding the reduced estimate

of initial condition. In practice, H and Hr are not formed explicitly: we require

instead a function that provides the action of each matrix on a vector. However, the

relatively small number of full-scale unknowns N = 1860 in our model problem makes

their construction feasible. The partial eigenvalue spectra of H+βI and Hr+βI, with

and without regularization, are shown in Figure 5-2. The plot shows the eigenvalues

of H decay slightly less sharply than those of Hr; with a regularization constant of

β = 0.001, the spectra are similar. The choice of regularization constant for our

experiment was made empirically by solving for the truth initial condition in (5.2)

with different values of β. If the regularization constant is too small, both (5.2) and

(5.10) have multiple solutions. In the other extreme, the estimated initial condition

becomes infinitely smooth since the first terms in the objective functions of (5.1) and

(5.6) are negligible. The ideal value of β is as small as possible while still leading to

a unique solution.
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Figure 5-2: The first 150 eigenvalues in the spectra of H +βI and Hr +βI with β = 0
and β = 0.001. The reduced model used to construct Hr is the baseline model with
λ̄ = 0.1, µ̄ = 10−4, and n = 245. Pe = 100, Q = 10 outputs.
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The objective of the experiment is to compare the low-rank and reduced-order

initial conditions to both the truth initial condition and the actual initial condition.

Low-rank approximations computed with different numbers p of eigenpairs of H were

used to generate multiple estimates of the initial condition xlr
0 . In addition, reduced-

order models formed with different combinations of baseline and strict parameters

were used to compute varying estimates xrom
0 . Recall that λ̄ is the parameter which

controls how many eigenvectors of H are required to form a given reduced model. We

desire an accurate estimate of the initial condition which requires the fewest possible

eigenpairs of H, the computation of which is the primary source of offline cost.

A summary of the results is shown in Figure 5-3. When compared to either

the truth or the actual initial condition, the reduced-order estimates require fewer

eigenvectors of H than do the low-rank estimates to achieve the same level of accuracy.

Each low-rank approximation is of order p, while each reduced-order model is typically

associated with its size n. Despite this difference, we compare all errors versus p since

this quantity controls the offline cost in both cases.

On the bottom of the figure, the error with respect to the truth initial condition

xt
0 is plotted. It can be seen that reduced-order models formed with 47 eigenvectors of

H provide estimates which demonstrate the same accuracy as the low-rank estimate

with 80 modes. Low-rank estimates made based on increasingly smaller values of

p exhibit sharply increasing error. If the regularization constant is changed from

β = 0.001 to β = 0.01, the error does not grow as sharply, but the low-rank estimates

still demonstrate markedly larger error than do the reduced-order estimates. These

results show that the process of computing snapshots and applying POD in the course

of building a reduced model extracts more useful information from a given number

of eigenvectors of H than does simply using the p eigenvectors to form the low-rank

approximation.

The top of the figure shows the error with respect to the coarse grid representation

xa
0 of the actual initial condition. Here, we note that, although the low-rank error is

even greater than 1 for 50 eigenvectors of H or fewer, the errors associated with the

reduced estimates formed with only 21 eigenvectors are close to the error 0.18 associ-
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Figure 5-3: Error in low-rank and reduced-order initial condition versus actual initial
condition xa

0 (top) and versus truth initial condition xt
0 (bottom). Data from reduced

models formed with baseline values of λ̄ = 0.1 and µ̄ = 10−4 and with strict values
of λ̄ = 0.01 and µ̄ = 10−6 are shown. Unless otherwise stated, the regularization
constant for all trials is β = 0.001. Pe = 100, Q = 10 outputs.

ated with the truth initial condition. We conclude that the additional computational

effort needed to form reduced-order models with strict λ̄ may not be necessary: in this

case, the models formed with few eigenvectors provide sufficiently accurate estimates

of the actual initial condition.

Figure 5-4 illustrates both the truth initial condition and the baseline reduced-

order initial condition, demonstrating that the prominent features of xt
0 are replicated

in xrom
0 . Furthermore, Figure 5-5 shows the extent to which the reduced-order initial

condition, when used to drive a forward solve of the reduced-order equations, yields

outputs that match those associated with both the truth and actual cases.
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ȳ

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1

0

0.1

0.2

0.3

0.4

0

0.05

 

x̄

Truth initial condition estimate

ȳ
 

Figure 5-4: The truth initial condition estimate xt
0 (top) and the reduced-order esti-

mate xrom
0 . The reduced model used is the baseline model with λ̄ = 0.1, µ̄ = 10−4,

and n = 245. Pe = 100, Q = 10 outputs.
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reduced-order equations starting from reduced initial condition xrom

0 . Both initial
condition estimates are shown in Figure 5-4.
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5.1.4 Implementation Cost Comparison

As discussed above, two practical choices for initial condition estimation are the low-

rank approximation and reduced-order inversion. Both methods can be divided into

offline and online (real-time) phases: we discuss the cost of each phase in this section,

noting that the division between phases may differ in practice.

The terms (Hlr + βI)−1 and V (Hr + βI)−1 necessary for the solution of (5.5)

and (5.10)–(5.11), respectively, can be computed offline if the number of timesteps

in the observation window is chosen beforehand. We can take advantage of matrix-

free iterative methods such as Lanczos to find offline the p eigenpairs of H that are

required indirectly for both the low-rank and reduced-order inversion methods. The

previous section cites this process as the primary source of offline cost in both cases.

The additional steps of the low-rank process which involve significant offline cost

include the inversion of the p × p matrix Λ−1
p + UT

p
1
β
IUp. The quantity (Hlr + βI)−1

can then be formed via the series of matrix multiplications in (5.4). The reduced-

order method involves additional offline effort as well. Assuming that Algorithm 2 is

used to generate the reduced model, p forward solves of the high-fidelity equations

are necessary to generate snapshots. However, since iterative eigensolvers employ

repeated forward solutions, it may be possible to extract the required snapshots from

the final iteration used to find the p eigenvectors of H.

A major step in the reduced-order process which is absent in the low-rank approx-

imation is the POD: the singular value decomposition is applied to the N × p(T + 1)

snapshot matrix, where N is expected to be much greater than p(T + 1). (The full-

order Hessian matrix is of order N × N , so the computation of its eigenvectors still

dominates the offline cost of the reduced-order method.) Computing (Hr + βI)−1 in-

volves n forward and adjoint solves and the inversion of an n×n matrix if Hr is formed

explicitly. Finally, multiplying the basis matrix V ∈ IRN×n by (Hr + βI)−1 ∈ IRn×n

is required to form V (Hr + βI)−1.

The goal of the online phase is to compute xlr
0 or xrom

0 as quickly as possible in

real time after the measurements yobs become available. It involves solution of (5.5)
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given (Hlr + βI)−1 or solution of (5.10)-(5.11) given V (Hr + βI)−1. These low-rank

and reduced-order inversion equations are rewritten below in a convenient form:

xlr
0 = (Hlr + βI)−1

︸ ︷︷ ︸

N×N

(CA−1F)Tyobs, (5.12)

xrom
0 = V (Hr + βI)−1

︸ ︷︷ ︸

N×n

(CrA
−1
r fr)

Tyobs, (5.13)

where the highlighted quantities are computed offline. The matrices C, A, F, Cr,

A−1
r , and fr are known before the real-time phase as well. The three full-order quan-

tities are not explicitly formed since their sizes scale with multiples of NT ; however,

the reduced-order matrices, whose sizes scale with multiples of nT , can be computed

and stored inexpensively.

The first task once yobs is known is to compute (CA−1F)Tyobs in the low-rank case

or (CrA
−1
r fr)

Tyobs in the reduced-order case. Multiplication by A−T is equivalent to

performing an adjoint solve in the high-fidelity space, whereas multiplication by A−T
r

represents an adjoint solve in the reduced space. Consequently, performing this step

with the reduced-order method is advantageous in terms of computational cost. The

advantage is even greater if the quantity (CrA
−1
r fr)

T ∈ IRn×Q(T+1) is computed offline

and stored.

The remaining online cost is associated with evaluating xlr
0 or xrom

0 from previously-

computed quantities. This involves multiplying the matrix (Hlr + βI)−1 ∈ IRN×N or

V (Hr + βI)−1 ∈ IRN×n by the vector (CA−1F)Tyobs ∈ IRN or (CrA
−1
r fr)

Tyobs ∈ IRn,

respectively. The multiplication in the low-rank case requires O(N2) work while its

reduced-order counterpart requires O(Nn) work. The reduced-order method thus

involves less computational effort in both parts of the online phase.

In addition, having a reduced model available is useful in the forward solve which

many applications demand after the initial condition estimate is found. This added

benefit is discussed in Section 5.2.2.
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5.2 Using Reduced State to Approximate Full State

In Chapter 4, we demonstrated that reduced-order models constructed by the Hessian-

based approach can replicate full-scale outputs at lower computational cost. By

using only seed initial conditions which heavily influence the outputs of interest,

the Hessian-based algorithms place more emphasis on output information than state

information. It is still possible, though, to obtain an approximation x̂(k) of full state

from the reduced-order state xr(k) at time instant k. We do this by applying (2.4):

x̂(k) = V xr(k).

5.2.1 Comparison of Full State to its Approximation

The full-state approximation (2.4) is useful in the forward solution of large-scale

dynamical systems since the forward solve can be computed in reduced-space at lower

computational cost. If full-state information, i.e. a snapshot of contaminant in our

experimental domain, is required at a certain time instant, then one matrix-vector

multiplication can be computed to yield the snapshot approximation.

To evaluate the quality of this approximation, the same test initial condition was

used to drive both full and reduced systems, (2.8)–(2.9) and (2.12)–(2.13), respec-

tively. Figure 5-6 shows the result when three different reduced models with ten

outputs are used to solve forward in time, with a full-state approximation V xr ob-

tained at each timestep. The plot illustrates that, while each error curve decays with

time due to diffusion, the reduced model of size n = 383 formed with a strict value of

λ̄ maintains a smaller error norm over the time horizon than does the similarly sized

model (n = 361) constructed with strict µ̄. This is consistent with the expectation

that a more diverse set of seed initial conditions provides the reduced basis with more

state information than does simply adding more basis vectors after POD is applied to

an existing snapshot set. Thus, if more accurate full-state approximation is a priority,

reduced-order models with strict λ̄ should be considered. It should be noted that the

choice of outputs, i.e. number of sensors and their locations, controls the eigenvectors
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Figure 5-6: Full-state approximation error with three different reduced-order models
with identical initial conditions. Pe = 100, Q = 10 outputs.
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of H which are used as seed initial conditions for reduced basis construction. Fewer

sensors in the contaminant transport problem will, in general, lead to a basis which

is less capable of accurate full-state approximation.

Figure 5-7 illustrates the difference between x and xr at a given time instant during

the forward solve and also provides a plot of the error in the domain. The maximum

error, which is approximately 15% of the maximum concentration, is localized near

the edge of the domain.

5.2.2 State Approximation in the Inverse Problem Context

If the full-state approximation is to be used in conjunction with the reduced solu-

tion of the inverse problem, the reduced-order system must be solved forward in time

starting from initial condition xrom
0 : neither the actual nor the truth initial conditions

are available. Thus, in addition to the full-state approximation error discussed in the

previous section, the error in the initial condition estimate is important. We demon-

strate in this section that these errors do not prevent the reduced-order inversion and

state approximation from providing useful information.

The experimental approach here resembles that of the previous subsection; how-

ever, instead of using an identical initial condition for both full-order and reduced-

order forward solves, the truth initial condition xt
0 and the reduced-order initial con-

dition xrom
0 are used as starting points for their respective models. We compare the

reduced-order inversion and forward solve with the truth case as well as with the

actual evolution of system state.

Results were generated with the same three reduced-order models as in the previ-

ous section. Figure 5-8 contains both of these comparisons. As seen on the right, he

reduced model formed with strict λ̄ again demonstrates the smallest error in full-state

approximation with respect to the truth solution. Furthermore, when compared to

the actual states, the same reduced model produces errors over time that are close

to the errors in the truth states. This suggests that, as long as λ̄ and µ̄ are amply

strict, the accuracy losses resulting from the use of reduced-order inversion and state

approximation are minimal. Figure 5-9 shows a comparison at t = 0.2 of the actual
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Figure 5-8: At right, full-state approximation error with respect to high-fidelity for-
ward solve starting from the truth initial condition xt

0. The data are shown for three
different reduced-order models with their respective initial conditions xrom

0 . On the
left, the same data plotted against the actual state evolution in the domain, including
the truth case for comparison. Pe = 100, Q = 10 outputs.

state xa, the state xt as computed by the truth inverse solution and full-order solve,

and the state xrom as computed by the reduced-order processes including full-state

approximation.

5.3 State Prediction from Limited Observational

Data

The choice Tobs = T in Section 5.1 was made to simplify the demonstration of inversion

methods. When a prediction of system state is required, it is not feasible to wait T

timesteps (until the system reaches steady state) to finish collecting observational

data. This means that Tobs < T in such a setting: the observation time horizon must
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Figure 5-9: The actual state xa in the domain at t = 0.2 (top); the state xt as
calculated by the high-fidelity system of equations beginning from the truth initial
condition xt

0 (middle); and the state xrom as calculated by the reduced-order system
of equations beginning from the reduced-order initial condition xrom

0 (bottom). The
reduced model (n = 361) with strict µ̄ was used for this comparison. Note the fine
grid associated with the actual state. Pe = 100, Q = 10 outputs.
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be smaller than the reduced-order model formation time horizon. In this section, we

examine the relationship between Tobs (or tf , the length of the time window) and

the quality of the full and reduced inverse solutions. Prediction is viable if initial

condition estimates based on relatively short time horizons are adequately similar to

estimates based on full-length windows.

5.3.1 Time-Limited Estimates of the Initial Condition

We search for a truth initial condition x̃t
0 associated with outputs ỹ ∈ IRQ(Tobs+1) that

best match the observations ỹobs ∈ IRQ(Tobs+1) made during the Tobs timesteps in the

measurement window. The modified notation from that found in (5.1) is introduced

to differentiate those quantities based on a limited time horizon. Using these time-

limited quantities, the inverse optimization problem is given by

x̃t
0 = arg min (ỹ − ỹobs)

T (ỹ − ỹobs) + βxT
0 x0 (5.14)

where Ãx̃ = F̃x0,

ỹ = C̃x̃.

The matrices Ã ∈ IRN(Tobs+1)×N(Tobs+1), F̃ ∈ IRN(Tobs+1)×N , and C̃ ∈ IRQ(Tobs+1)×N

have the same form as A, F, and C in (2.11) except that sizes of the former are

defined in terms of Tobs instead of T . Similarly, x̃ and ỹ take the form

x̃ =











x(0)

x(1)
...

x(Tobs)











, ỹ =











y(0)

y(1)
...

y(Tobs)











. (5.15)

Following the same process as in Section 5.1, an expression to find the truth

initial condition can be written in terms of the full-order, time-limited Hessian matrix
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H̃ = (C̃Ã−1F̃)T (C̃Ã−1F̃) as

(

H̃ + βI
)

x̃t
0 = (C̃Ã−1F̃)T ỹobs. (5.16)

The reduced estimate of the initial condition under time-limited circumstances fol-

lows from the formulation of the truth estimate. The matrices Ãr ∈ IRn(Tobs+1)×n(Tobs+1)

and C̃r ∈ IRQ(Tobs+1)×n share the structure in (2.15); the matrix f̃r ∈ IRn(Tobs+1)×n has

the structure given by (5.7). The difference is that the number of block entries in

each matrix is determined by Tobs instead of T . Recall that all block entries in Ar and

Cr depend on the reduced basis V , formed with data from T + 1 timesteps. Thus,

while the time-limited quantities contain fewer blocks because Tobs < T , data from

the complete time horizon influences each block. This is possible because the reduced

basis is formed offline from T + 1 snapshots of system state.

Using H̃r = (C̃rÃ
−1
r f̃r)

T (C̃rÃ
−1
r f̃r) and a similar approach as found in Section 5.1.2,

we can write two expressions that provide the reduced-order, time-limited estimate

x̃rom
0 of the initial condition:

(

H̃r + βI
)

x̃rom
r0 = (C̃rÃ

−1
r f̃r)

T ỹobs, (5.17)

x̃rom
0 = V x̃rom

r0 . (5.18)

5.3.2 Time-Limited Inversion Results

In this section, the effect of using limited observational data is assessed. Specifically,

we use the contaminant release framework to demonstrate how the quality of the

initial condition estimate varies with the length of the measurement time window.

This analysis is done for both full-order and reduced-order models.

The length of the observational time window or time horizon tf = 1.4 has been

used throughout this work, both for snapshot generation and for demonstration of

inverse problem solution. It is roughly an upper bound to the time that contaminant
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Figure 5-10: Effect of varying the length of observation time on the error between es-
timated initial condition and actual initial condition. The baseline and strict reduced-
order models are described in Section 5.1.3. Pe = 100, Q = 10 outputs.

from any initial condition will spend inside the domain. If, as described in the pre-

vious section, the entire time window cannot be utilized for the collection of sensor

measurements, it is necessary to rely on a lower value of tf . With a fixed timestep

∆t = 0.02, we choose different observation window lengths to form time-limited es-

timates x̃t
0 and x̃rom

0 of the actual initial condition xa
0 in the domain. The initial

condition used for this experiment is the same as that shown in Figure 5-1, and we

follow the measurement and inversion process described in Section 5.1.3 except that

tf is varied here. The results are shown in Figure 5-10.

The error for all initial condition estimates becomes smaller as the time window is

lengthened and the sensors provide increasingly more data. Furthermore, the trends

for both full and reduced models are similar. Because Figure 5-5 shows that all con-
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taminant from the actual initial condition moves past the sensors by time t = 1.0, we

expect no added accuracy for tf > 1.0. In fact, we see in Figure 5-10 that increasing

the window length above tf = 0.5 does not appreciably change the error associated

with any of the models: time windows of length tf = 0.5 and tf = 1.4 provide ap-

proximately identical estimates of the initial condition. Although these observations

are dependent on the actual initial condition used in this experiment, they imply that

time windows which are substantially shorter than the theoretical maximum are ac-

ceptable for accurate inversion. See Figure 5-11, which shows estimates of the initial

condition made with tf = 0.2, a factor of 7 smaller than the time horizon used to

generate Figure 5-4. The results suggest that predictions of system state past the

time horizon tf can indeed be made accurately.

In addition, it may be practical to use smaller, less accurate reduced-order models

if the time window desired is relatively short. Figure 5-10 demonstrates that the

error associated with the baseline reduced model approaches the errors associated

with higher-fidelity models as tf is decreased. Thus, if the time window must be

short in a practical setting, the accuracy benefit of using larger reduced models for

inversion may not make up for the added computational cost of doing so.
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Figure 5-11: Full-order (truth) and reduced order estimates x̃t
0 and x̃rom

0 of the initial
condition given a time window of length tf = 0.2. Compare to Figure 5-4, which shows
inversion results using a much longer time horizon of tf = 1.4. The reduced-order
model used is the baseline model with λ̄ = 0.1, µ̄ = 10−4, and n = 245. Pe = 100,
Q = 10 outputs.
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Chapter 6

Conclusion

6.1 Summary

A new method has been proposed for constructing reduced-order models of linear sys-

tems that are parametrized by initial conditions of high dimension. Formulating the

greedy approach to sampling as a model-constrained optimization problem, we show

that the dominant eigenvectors of the resulting Hessian matrix provide an explicit

solution to the greedy optimization problems. This result leads to an algorithm to

construct the reduced basis in an efficient and systematic way, and further provides

quantification of the worst-case error in reduced model output prediction. Thus, the

resulting reduced models are guaranteed to provide accurate replication of full-scale

output quantities of interest for any possible initial condition. The worst-case error

for a given reduced model can be computed using an expression that involves the

dominant eigenvalue of the error Hessian matrix.

We demonstrate on a 2-D model problem that roughly a tenfold reduction in

number of states still allows for accurate output replication. In the majority of ex-

periments, the error associated with the reduced outputs is well below the computed

worst-case bound. A similar 3-D experiment shows more drastic results: full-order

outputs are accurately reproduced using a reduced model with 137 unknowns in

place of a high-fidelity model with 65,600 unknowns. The solution of inverse prob-

lems demonstrates that the reduced models can be used to efficiently estimate initial
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conditions, even when measurements of system state can only be collected during a

short time window. Furthermore, we show that once initial condition estimates are

found, forward simulations can be performed in reduced space. The full state at each

time can be approximated using the reduced state and the basis.

6.2 Future Work

The adaptive greedy sampling approach combined with the model-constrained op-

timization formulation provides a general framework that is applicable to nonlinear

problems, although the explicit solution and maximal error guarantees apply only

in the linear case. The application of the Hessian-based approach to build efficient

reduced-order models for nonlinear systems has yet to be demonstrated.

We note that the task of sampling system inputs (which here were taken to be zero)

to build a basis over the input space could also be formulated as a greedy optimization

problem. This would allow for the construction of reduced models capable of handling

inputs of high dimension.

The work presented in Chapter 4 assumes random sensor locations; however, it

may be possible to optimize the positions of the sensors. For example, there may exist

a sensor configuration which provides the most accurate prediction of contaminant

concentration over time at certain points of interest in the domain. The sensors might

also be placed in a manner that minimizes the uncertainty in the initial condition

estimate. The dynamic steering of sensors based on preliminary initial condition

estimates may be possible as well.
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[9] G. Berkooz, P. Holmes, and J.L. Lumley. The proper orthogonal decomposition

in the analysis of turbulent flows. Annual Review of Fluid Mechanics, 25:539–575,

1993.

[10] A.N. Brooks and T.J.R. Hughes. Streamline upwind/Petrov-Galerkin formula-

tions for convection dominated flows with particular emphasis on the incom-

pressible navier-stokes equations. Computer Methods in Applied Mechanics and

Engineering, pages 199–259, 1990.

[11] E.A. Christensen, M. Brøns, and J.N. Sørensen. Evaluation of proper orthogonal

decomposition-based decomposition techniques applied to parameter-dependent

nonturbulent flows. SIAM J. Sci. Comput., 21(4):1419–1434, 2000.

[12] D.L. Colton and R. Kress. Integral Equation Methods in Scattering Theory. Pure

and Applied Mathematics. John Wiley & Sons, New York, 1983.

[13] D.N. Daescu and I.M. Navon. A dual-weighted approach to order reduction in

4D-Var data assimilation. Monthly Weather Review, 2007. To appear.

[14] D.N. Daescu and I.M. Navon. Efficiency of a POD-based reduced second-order

adjoint model in 4D-Var data assimilation. International Journal for Numerical

Methods in Fluids, 53:985–1004, February 2007.

[15] L. Daniel, O.C. Siong, L.S. Chay, K.H. Lee, and J. White. Multiparameter

moment matching model reduction approach for generating geometrically pa-

rameterized interconnect performance models. Transactions on Computer Aided

Design of Integrated Circuits, 23(5):678–693, May 2004.

86



[16] A.E. Deane, I.G. Kevrekidis, G.E. Karniadakis, and S.A. Orszag. Low-

dimensional models for complex geometry flows: Application to grooved channels

and circular cylinders. Phys. Fluids, 3(10):2337–2354, 1991.

[17] B. Farrell and P. Ioannou. Accurate low-dimensional approximation of the lin-

ear dynamics of fluid flow. Journal of the Atmospheric Sciences, 58:2771–2789,

September 2001.

[18] P. Feldmann and R.W. Freund. Efficient Linear Circuit Analysis by Padé Ap-
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