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Abstract

In this thesis, we focus on oligopolistic markets for a single perishable product, where
firms compete by setting prices (Bertrand competition) or by allocating quantities
(Cournot competition) dynamically over a finite selling horizon. The price-demand
relationship is modeled as a parametric function, whose parameters are unknown, but
learned through a data driven approach. The market can be either in disequilibrium
or in equilibrium.
In disequilibrium, we consider simultaneously two forms of learning for the firm: (i)
learning of its optimal pricing (resp. allocation) strategy, given its belief regarding
its competitors’ strategy; (ii) learning the parameters in the price-demand relation-
ship. In equilibrium, each firm seeks to learn the parameters in the price-demand
relationship for itself and its competitors, given that prices (resp. quantities) are in
equilibrium.
In this thesis, we first study the dynamic pricing (resp. allocation) problem when
the parameters in the price-demand relationship are known. We then address the
dynamic pricing (resp. allocation) problem with learning of the parameters in the
price-demand relationship. We show that the problem can be formulated as a bilevel
program in disequilibrium and as a Mathematical Program with Equilibrium Con-
straints (MPECs) in equilibrium.
Using results from variational inequalities, bilevel programming and MPECs, we prove
that learning the optimal strategies as well as the parameters, is achieved. Further-
more, we design a solution method for efficiently solving the problem. We prove
convergence of this method analytically and discuss various insights through a com-
putational study.
Finally, we consider closed-loop strategies in a duopoly market when demand is
stochastic. Unlike open-loop policies (such policies are computed once and for all
at the beginning of the time horizon), closed loop policies are computed at each time
period, so that the firm can take advantage of having observed the past random dis-
turbances in the market. In a closed-loop setting, subgame perfect equilibrium is
the relevant notion of equilibrium. We investigate the existence and uniqueness of
a subgame perfect equilibrium strategy, as well as approximations of the problem in
order to be able to compute such policies more efficiently.
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Chapter 1

Introduction

1.1 Motivation: Challenges of Real-Life Problems

In recent years, dynamic pricing and inventory control have drawn increased interest
from both practitioners and researchers. A study by McKinsey and Company on the
cost structure of Fortune 1000 companies conducted annually shows that implement-
ing good pricing policies yields bigger revenue gains than reductions of variable costs,
fixed costs or an increase in sales volumes:

“Pricing right is the fastest and most effective way for managers to increase
profits.”

Determining the right price to charge customers, or the right quantity to sell to cus-
tomers, requires a company to have a wealth of information and data. In particular,
the company needs information about customer behavior, its own cost structure, as
well as information concerning the competition and the market itself. Furthermore, it
requires that prices or quantities can be adjusted in a timely fashion at minimal cost.
Until recently, neither was possible. As a result, traditional pricing and inventory
control techniques were often static.
The fast development of information technology and the Internet had a dramatic
impact on pricing/ replenishment velocity. Thanks to these tools, firms can gather
information about customers and competitors; they can also update prices and inven-
tories dynamically at low cost and hence, they allow the sellers to implement dynamic
price optimization.
Controlling pricing and inventory control mechanisms has therefore become a crucial
tool. This is even more the case in settings where supply is hard to adjust, due to the
perishable nature of the products, short selling seasons or long lead times. Early ap-
plications of dynamic pricing/ inventory control include industries where short-term
supply is hard to change: airlines, cruise boats, hotels, electricity markets. Other in-
dustries then realized the benefits of dynamic pricing strategies including retailers in
brick-and-mortar stores as well as online. Pricing has become so complex that some
industries now outsource their entire pricing and revenue management functions to
specialized companies such as Sabre Airlines Solutions for airlines. A number of spe-
cialized consultants providing dynamic price optimization solutions were also born,
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such as DemandTec, Khimetrics (recently acquired by SAP), Manugistics, ProfitLogic
(acquired by Oracle), PROS Revenue Management and Vendavo.
The wealth of information available to sellers has created tremendous opportunities
to exploit this data in order to improve decision-making and eventually increase the
bottom line. Hence, more and more companies rely on techniques from the fields of
data-mining, decision analysis or even artificial intelligence to make predictions and
decisions based on the data that is available to them. In particular, it is key for
companies to learn the impact of their pricing or inventory strategies on customers.
Furthermore, it is crucial for companies to learn the impact of their competitors’
strategies on customers, and to incorporate it into their decision process.
Indeed, very few markets are monopolistic. In fact, most developed economies pro-
hibit monopolistic behaviors since they are hurtful to consumers. For instance, the
United States adopted the Antitrust Act which legislates against monopolies. On the
other hand, models of perfect competition, where neither sellers nor buyers have the
power to influence prices, is not a realistic model. Indeed, the assumptions required
for a market to be perfectly competitive - atomicity of the buyers and sellers, homo-
geneity of the products, perfect and complete information, equal access of the firms
to technology and resources, absence of barriers to entry - are hard to encounter in
real-life settings. Imperfect competition, such as oligopolistic competition, is a model
which can be applied to a lot of industries. An oligopolistic market consists of a few
firms with a large number of customers, and the firms have the power to influence the
price-demand relationship. Due to the Antitrust Act, many industries in developed
economies are oligopolistic, e.g consumer goods, cars, airline tickets, wireless commu-
nications, power.
The field which studies competitive markets is that of Game Theory, with a focus
on equilibrium analysis. In particular, the most polular notion of equilibrium that
is studied is that developed by John Nash. A Nash equilibrium is characterized by
the fact that no firm has any incentive to unilaterally deviate from the equilibrium
strategy. However, Game Theory focusses on agents who exhibit a fully rational be-
havior. This assumption is generally not met in most real-life applications, especially
those involving human interactions and decisions. Furthermore, other critiques of the
concept of Nash equilibrium have arisen. For instance, it is not clear how such equi-
librium may be reached, or what happens in the case where multiple equilibria exist.
As a result of this, there is a need to study markets not only in states of equilibrium,
but also in disequilibrium.

1.2 Literature Review

The literature which was useful in the elaboration of this thesis pertains to vari-
ous fields of Operations Research: the Revenue Management and Pricing literature
and the Theory of Learning inspired much of the research. Furthermore, the study
of tools from the optimization literature such as variational inequalities and quasi
variational inequalities, bilevel programming and Mathematical Programs with Equi-
librium Constraints were key to getting insights and making the computational study
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possible.

1.2.1 Revenue Management and Pricing Literature

There is an extensive literature on the topic of revenue management and pricing,
which has gained a lot of interest from academics and researchers in the last several
decades. Below, we only list some review papers and books. The recent book by
Talluri and van Ryzin [84] provides a review of the theory and practice of Revenue
Management from its inception to its latest developments. Review papers include
McGill and van Ryzin [65], Bitran and Caldentey [16]. They provide an overview of
pricing models in Revenue Management, whereas the survey paper of Weatherford
and Bodily [17] concentrates on Revenue Management in the airline industry. We
refer the reader to these reviews. In what follows we focus more on the pricing and
learning literature.
Elmaghraby and Keskinocak [32] provide a research overview of dynamic pricing.
They observe that three main characteristics of the market environment influence the
pricing problem: first, whether replenishment of inventory is allowed; second, whether
demand arrivals are independent over time; third, whether customers act myopically
or strategically.
Dynamic Pricing models with no replenishment, and independent demands over time
rely on common assumptions : a market with imperfect competition (e.g monopoly),
a finite selling horizon with finite stock and no replenishment. The demand is typ-
ically decreasing in price. The goal of the firm in these settings is to maximize the
expected profits over the selling horizon.
Gallego and van Ryzin [46] and Feng and Gallego [38] model the demand as a Poisson
process with a rate that is decreasing in price. Bitran, Caldentey and Mondschein [14]
as well as Bitran and Mondschein [15] consider a demand rate which depends on time
and has a known distribution. Lazear [57], Elmaghraby et al. [31] model the demand
using reference prices; Lazear’s demand model is deterministic whereas Elmaghraby
et al. [31] assume that demand is stochastic with a known distribution. Smith and
Achabal [80] model demand as depending on price, time and inventory level. Maglaras
and Meissner [60] examine two problems: dynamic pricing in a monopoly with im-
perfect competition and dynamic capacity control with exogenous prices. They show
that these problems have a common formulation as a single-resource, single-product
pricing problem. In all these papers except for Elmaghraby et al. [31], the customers
are assumed to act myopically. Another difference among the aforementioned papers
is whether the pricing policy is a discrete-time or a continuous-time policy. Lazear
[57] and Elmaghraby et al. [31] study periodic pricing policies where prices are up-
dated at discrete time intervals, whereas Gallego and Van Ryzin [47] and Bitran and
Mondschein [15] study continuous-time pricing policies. Some models allow to choose
prices in a continuous range, whereas others restrict themselves to a fixed number of
price changes, as in Bitran and Mondschein [15], Feng and Gallego [39] and Feng and
Xiao [40].

For models of dynamic pricing with inventory replenishment, independent demand
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and myopic customers, most of the research focusses on a monopoly market, in a single
or multi-product setting. Whereas typical Inventory Management research considers
price to be static, and exogenous, the following papers consider joint inventory man-
agement and pricing. Federgruen and Heching [37], Zabel [88], and Thowsen [85]
address the optimal inventory and pricing of a seller who faces uncertain demand and
changes its prices periodically. They find that a base stock list price policy is optimal
in a wide range of settings. Rajan et al. [75] focus on changes that occur within an
order cycle for a firm selling perishable products. Popescu and Wu [74] study dy-
namic pricing for customers with repeated interactions: in this setting, customers are
sensitive to the pricing history through a reference price. They show that the pricing
strategy has long-term implications, in that promotions which increase short-term
profits, may decrease future profits. Adida and Perakis [1] propose a nonlinear fluid
model for joint dynamic pricing and inventory control with no backorders.

Competition was studied extensively in the traditional Economics literature. The
book by Friedman [42] presents the theory of oligopoly, and Vives [87] provides a
modern theory of oligopoly using the new tools of Game Theory. Fudenberg and
Tirole [43], as well as Maskin and Tirole ([62], [63], [61]) study dynamic oligopoly.
Sweezy [83] conjectures a kinked-demand curve in competitive oligopoly. Stigler [82]
also focusses on the kinky demand curve and shows the stickiness of prices in an
oligopoly. Farahat and Perakis [35] compare total system but also individual seller
profits in Cournot and Bertrand oligopoly market settings when demand is an affine
function of prices and products are substitutes.

1.2.2 Dynamic Pricing under Competition

Recent work in dynamic pricing considers competitive settings: Dockner and Jørgensen
[29] consider optimal pricing strategies in an oligopoly market, but from a market-
ing perspective. Bernstein and Federgruen [11] built an inventory model for supply
chains in an oligopoly, where the decision variables include prices, service levels and
inventory control. Kachani and Perakis [51] propose a deterministic fluid model for
dynamic pricing in a capacitated, make-to-stock manufacturing system. Perakis and
Sood [72] propose a dynamic pricing model and study Nash equilibria in an oligopoly
of a single perishable product, while Nguyen and Perakis [69] consider multiple per-
ishable products with shared capacity.
In closed-loop, competitive settings, the notion of Nash equilibrium may be too weak.
For instance, the ultimatum game is well-known to have Nash equilibria which rely on
incredible threats (see for instance Fudenberg and Tirole [43]). As a result, the anal-
ysis of dynamic games focusses on a refinement of the concept of Nash equilibrium,
called subgame-perfect equilibrium. For dynamic games with a Markovian property,
subgame-perfect equilibria are called Markov-perfect equilibria. Maskin and Tirole
[64] review the concept of Markov-Perfect equilibrium in the context of games with
observable actions. Dynamic games and subgame-perfect equilibria in the context
of market dynamics have been studied in the Economics literature. Several papers
address the problem of industry dynamics using subgame perfect equilibria. In par-
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ticular, the paper by Ericson and Pakes [33] and its model have been the subject of
numerous papers and extensions. Dynamic games have been much less studied in
the Revenue Management and Dynamic Pricing literature. Some models of dynamic
games, such as in [27] still focus on Nash equilibrium strategies. The paper by Gal-
lego and Hu [45] models the problem presented in Gallego and Van Ryzin [46] in
an oligopolistic setting. They investigate a special type of closed-loop policies, and
state that a Markov-Perfect equilibrium can be found in principle by solving the sys-
tem of Hamilton-Jacobi-Bellman equations. However, they do not establish existence
of Markov-perfect equilibrium strategies, and do not attempt to characterize them.
Krawczyk and Tidball [55] model a dynamic game in seasonal water allocation, and
consider open-loop feedback Nash equilibrium strategies. This is the strategies arising
in equilibrium, when firms use open-loop feedback strategies. Finally, Jun and Vives
[50] study a dynamic infinite-horizon duopoly model with costs of adjustments. Their
focus is on stationary policies. They compare open-loop and Markov-perfect equilib-
rium strategies. Finally, in a recent working paper, Levin, McGill and Nediak [58]
prove existence and uniqueness of the subgame-perfect equilibrium in oligopolistic
market facing strategic consumers.

1.2.3 Dynamic Pricing with Learning

Traditionally, most publications in revenue management used to postulate a demand
model a priori. Hoever, recently, researchers have become more interested in the
problem of learning demand. There are two main types of approaches. The bulk of
the literature on dynamic pricing with learning takes a Bayesian approach to learning:
demand is modeled as a stochastic function, for which the firm is assumed to know
the distribution. Only the parameters of this distribution need to be learned. The
second approach is a nonparametric, data-driven approach.
Papers considering a Bayesian approach to learning are the following: In their pa-
per [20], Carvahlo and Puterman consider a loglinear demand model with unknown
regression coefficients, whereas in [21], they consider a binomial model of demand.
Aviv and Pazgal [5] propose a Markov-modulated demand model. The demand is
given by a partially observed Markov process, with Bayesian adjustment of the pa-
rameters. Aviv and Pazgal [6], and more recently, Araman and Caldentey [3], as
well as Farias and van Roy [36], consider a continuous-time model, where demand
has an a prior known distribution but the market size parameter is unknown. They
show that there is a trade-off between a low price, which yields a loss in revenue, and
a high price which lowers the probability of purchase, and slows learning. Petruzzi
and Dada [73] consider a model with joint pricing and restocking decisions. Demand
has an additive or multiplicative stochastic component, whose distribution is peri-
odically updated through Bayesian updating. Lobo and Boyd [18] present a model
with linear demand with additive gaussian stochasticity, and unknown demand pa-
rameters who undergo Bayesian learning. They justify price variations in the market
by the rational learning behavior of the firms. Balvers and Cosimano [8] focus on
a monopoly with stochastic linear demand with unknown intercept and slope. The
slope is assumed to have a persistent effect, and thus prompts learning. They define
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the speed of learning, which is controlled by the firm since it depends on the price
and show that learning implies muted responses to changes in demand or market
price. Rustichini and Wolinski [79] study a monopoly which faces an uncertain de-
mand, and learns about it through its pricing experience. The demand curve facing
the monopoly is not constant and differs from the informed monopoly’s policy. They
show that even when the rate at which the demand varies is negligible, the stationary
probability that the monopoly’s policy deviates from the full information counterpart
is non negligible. Mirman, Samuelson and Urbano [66] examine a Cournot monopoly
in a two-period horizon, facing a stochastic price curve with unknown parameter.
They develop conditions under which the firm will find it optimal to adjust its initial
price or quantity away from their myopic level in order to increase informativeness
of observed market outcomes and thus increase future expected profits. Afeche and
Ata [2] propose a Bayesian learning approach to revenue management in a queueing
system. Finally Bertsimas and Perakis [24] address dynamic pricing in a monopoly
and a duopoly, where demand is modeled by a parametric function whose parameters
are a priori unknown, but learned over time through least squares estimation. It is
to our knowledge the only paper addressing dynamic pricing with learning in a non
monopolistic environment.

The following papers address learning in a nonparametric way. Larson, Olson and
Sharma [56] analyze a stochastic inventory control problem where the demand dis-
tribution is not known, but learned through a Bayesian approach. But unlike other
Baeysian approach, theirs is nonparametric: prior information is given by a Dirichlet
process. Besbes and Zeevi [13] propose a blind nonparametric approach to learning
where the firm relies on price experimentation to obtain an empirical distribution for
the demand function.
Finally, learning is also addressed in the statistics and decision theory literatures:
Kalyanam [52] proposes a model that draws on Bayesian estimation, inference and
decision theory to learn uncertain demand. Sutton and Barto [9] provide an intro-
duction to reinforcement learning, with wide application areas. Learning also arises
in stochastic processes when the parameters are unknown, as in Easley and Kiefer
[30].

1.2.4 Variational Inequalities, Quasi Variational Inequalities,

Bilevel Programming and MPECs

In this paper, we use variational inequalities (VIs) and quasi variational inequali-
ties (QVIs) to model market equilibria. The monograph by Facchinei and Pang [34]
contains the most recent developments concerning VIs. For an introduction to varia-
tional inequalities and their applications, we refer the interested reader to the book by
Kinderlehrer and Stampacchia [53], which has become a classic in the field. Harker
and Pang review the theory, algorithms and applications of finite-dimensional VIs
together with complementary problems [49]. Nagurney [68] provides background on
VIs and some applications in Economics and Transportation. Bensoussan and Lions
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[10] apply variational inequalities to stochastic control.
QVIs are more general than VIs because instead of considering a feasible space, it
considers a point-to-set mapping of feasible solutions. This is, for instance, the case in
generalized games where the strategy space of each player depends on the other play-
ers’ strategies. Unlike variational inequalities which have been studied extensively,
and for which numerous results have been established concerning existence, unique-
ness of solutions, sensitivity analysis, and efficient solutions algorithms, research on
QVIs is still in its infancy. From the theoretical standpoint, Chan and Pang [22],
Baiocchi and Capelo [7], Tian and Zhou [86], Cubiotti [26] have made the most re-
cent contributions to the field. Harker [48] relates QVIs to generalized Nash games.
In oligopolistic competition, QVIs have been introduced by Cardell, Hitt and Hogan
[19], by Fukushima and Pang [44] in power markets, by Perakis and Sood [72] and
finally by Nguyen and Perakis [69] in a dynamic pricing setting.
Mathematical Problems with Equilibrium Constraints (MPECs) are optimization
problems with constraints resulting from an equilibrium problem. They are a general-
ization of the concept of bilevel problems, where instead of a lower-level optimization
problem, there is a lower-level equilibrium problem, possibly formulated as a VI or
QVI. MPECs are difficult, non-convex and non-smooth optimization problems. The
monograph by Luo, Pang and Ralph [59] provides a good review of the main results
concerning MPECs. Bilevel programs were originally developed to model Stackelberg
games: the lower-level optimization problem corresponds to the follower’s problem,
and the upper-level to the leader. Hence, they are useful in the study of oligopoly,
as in Murphy, Sherali, Soyster[67], or in problems with staged decisions such as op-
timal product design in Choi, Desarbo and Harker [23] where the agent decides the
product positioning and the optimal price, as well as quality control in services as in
Armstrong [4]. The recent survey by Marcotte, Colson and Savard [25] provides an
overview of the field of bilevel programming. Just like bilevel problems, MPECs have
benefited from advances in nonlinear programming, sensitivity analysis and implicit
programming. Fiacco and McCormick [41] use the implicit function theorem to ob-
tain existence of a locally unique Frechet-differentiable solution function to the lower
level. Robinson ([76] and [77]) uses generalized equations and fixed-point theorems
to study parametric VIs and nonlinear programs. Kojima [54] uses degree theory
to establish strong stability of stationary points of parametric nonlinear programs.
Finally, in their book dedicated to MPECs, Luo, Pang and Ralph [59] relax some of
the conditions under which earlier results were established. Due to their wide appli-
cability, solutions methods and algorithms for MPECs have received a lot of coverage.
Nonetheless the computation of global solutions remains elusive, if not impossible.

1.3 Goals and Contributions of the Thesis

The main goal of this thesis is to study learning in competitive markets, using past
price or inventory data. Firms may use historical market data to learn the price-
demand relationship and learn their optimal pricing or allocation strategy. In stable
environments, firms may rely on historical data from prior selling horizons. However,
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this historical data may not capture fluctuations in the market, as often occurs in real
life. Markets are directly affected by exogenous factors such as prices of commodities,
oil prices, changes in interest rates and exchange rates. For instance, transportation
industries such as airlines or trucking companies are directly affected by variations in
oil prices; consumer goods industries such as packaged foods companies are affected
by variations in commodity prices, whereas multinational companies carrying out
business abroad must hedge against variations in foreign exchange rates. Furthermore,
many markets have a seasonal component. Hence, selling horizons are not identical
repetitions of the same game, but have features which make them unique. That is
why firms need to incorporate the most up-to-date information, as soon as it becomes
available.
We consider two types of learning that occur in the market:

• When pricing (resp. allocation) strategies are at equilibrium in the market, then
we isolate the learning of the price-demand relationship, using both historical
data from past selling horizons, as well as data from the current selling horizon
that becomes available as time goes by. The market is said to be in equilibrium
when firms have full knowledge of their competitors’ strategy. All the firms act
rationally, hence, set their prices (resp. allocations) as best response to their
competitors’ prices (resp. allocations). Therefore, the strategies used by all
firms are the Nash equilibrium strategies.

• When the market has not reached the state of equilibrium, two types of learning
take place concurrently: firms not only seek to learn the price-demand relation-
ship, but also the optimal pricing (resp. allocation) strategies for themselves
and their competitors. When the market is not in equilibrium, the firms have
not learned their competitors’ strategies yet. They form a belief regarding their
competitors’ strategies based on observing their past behaviors, and set their
prices (resp. allocation) to be the best response to their belief.

Furthermore, we study learning in two types of markets. In a Bertrand competitive
setting, firms compete via prices, that is, at each time period, all firms set prices for
the next time period simultaneously. In a Cournot competitive setting, firms compete
via allocations, that is, at each time period, all firms set the quantities they allocate
to the next time period simultaneously.
It is important to emphasize that Bertrand and Cournot competition are not equiv-
alent. They indeed yield different outcomes. Vives [87] proved that in oligopoly
markets for non-differentiated products, the Nash equilibrium prices under Cournot
competition are higher than under Bertrand competition. Nothing can be said con-
cerning the equilibrium quantities, unless the firms are identical: in this case, the
Nash equilibrium quantities in the Cournot oligopoly are higher than the Bertrand
equilibrium quantity. Hence, these two models are not equivalent. They also find
applications in different kinds of markets: for instance, the Bertrand model is more
relevant in markets where capacity can be changed easily. This is, for instance, the
case in consumer goods industries. Farahat and Perakis [35] generalize the analysis
of the differences between Bertrand and Cournot oligopolies to the comparisons of
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the profits. They prove that when the demand function is affine, Cournot profits are
almost always higher than Bertrand profits and characterize when this relationship
does not hold. Hence, there is a clear need to study the two types of competition
separately.
A further difference between the Cournot and Bertrand model is their application.
The Cournot model of competition is well adapted to industries where capacity is diffi-
cult to adjust, such as power markets, the airlines, hotel, equipment rentals and cruise
lines industries. In the power industry, storage of capacity is impossible, whereas in
the travel and rental industries, capacity is considered to be fixed and a sunk cost
once the capacity investment (e.g. planes, cars and ships) is made.
However, the bulk of the literature on revenue management in competitive environ-
ment focusses on the study of the state of equilibrium. One of the criticisms of game
theory and the notion of Nash equilibrium is that it assumes full rationality of the
agents whose behavior is modeled. This implies that all agents have the same capa-
bility to analyze the game and compute equilibria. However, if only one of the agents
does not follow the equilibrium strategy, then the other players are not guaranteed
superior payoffs by using the Nash equilibrium strategies. In this thesis, we tackle
bounded rationality of firms, by considering competitive markets in disequilibrium,
as well as in equilibrium.
Another contribution of this thesis is to model time-varying consumer behavior. In-
deed, in many industries for perishable products, such as consumer goods, fashion
items, travel or entertainment, different types of customers buy at different instants
in the selling horizon. For instance, in goods that perish due to obsolescence, early
adopters who are generally not price sensitive, purchase early. On the other hand,
followers wait for the technology to become more obsolete and take advantage of
cheaper prices. Similarly, fashion-sensitive consumers purchase at the beginning of
the season, whereas price-sensitive customers look for promotional sales and bargains
that mostly occur towards the end of the season. In the travel or entertainment in-
dustries, the opposite behavior is observed: price-sensitive customers tend to book
early, before the inventory of lower-priced fares or tickets is depleted, whereas less
price-sensitive customers can afford to wait. In this work, the parametric model of
price-demand relationship allows for time-varying sensitivities.
However, unlike most models in the literature, our model does not assume that the
price-demand relationship is known to the firms a priori. We only assume that we
know the parametric family it belongs to. Indeed, only recently has the problem of
learning the price-demand relationship started to be addressed by researchers. We
propose in our research a data-driven approach to learning the price-demand relation-
ship. The firms use historical data, as well as the most recent market information, in
order to update its estimation of the price-demand relationship. The firms do so in
an online manner: the dynamic pricing (resp. allocation) problem and the learning
of the price-demand relationship are performed concurrently. As a result of this, the
problem has a bilevel programming or MPEC (Mathematical Problem with Equilib-
rium Constraints) formulation.
In summary, in this thesis, we make the following contributions:
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• Capacitated markets: we study markets in which firms have a limited capac-
ity which they must allocate over the selling horizon, with no replenishment
or back orders. Capacity constrained problems are usually harder to analyze
than non-capacitated ones. In particular, under Bertrand competition, capacity
constraints make the problem significantly harder, since they turn the market
equilibrium into a generalized Nash equilibrium problem.

• Competitive markets: we explicitly incorporate the impact of competitors’ ac-
tions in our revenue management model. However, we do not assume that all
the firms are necessarily fully rational and that the market is operating in a state
of equilibrium. Indeed, we study both the state of disequilibrium where a firm’s
strategy is the best response to its belief regarding its competitors’ strategy,
and the state of equilibrium, where all firms use Nash equilibrium strategies.

• Unknown price-demand relationship: we assume that only the parametric form
of the price-demand relationship is known, but model how firms learn the pa-
rameters over time, using an online data-driven approach. Online learning is
required when the firms operate in the fluctuating market environments. Our
approach can be applied with various forms of demand functions, and is there-
fore fairly general. Furthermore, it captures time-varying customer behavior by
allowing the parameters in the model to vary with time.

• Joint pricing (resp. allocation) and learning: we address the two problems
jointly, and towards this end, we use concepts from the areas of bilevel pro-
gramming and MPECs. Furthermore, our approach is the first one to the best
of our knowledge which addresses two types of learning concomitantly, that is,
learning the equilibrium strategies, while learning the price-demand relation-
ship. We prove that in the long run, the two types of learning are achieved.

1.4 Outline of the Thesis

The thesis is organized as follows: In Chapter 1, we give the motivation behind
the problem and review the literature that is relevant to the thesis. In Chapter 2,
we introduce the problem of dynamic pricing with demand learning under Bertrand
competition, and dynamic allocation with learning under Cournot competition. In
each case, we introduce the problem in both disequilibrium and equilibrium state.
In Chapter 3, we focus on the dynamic pricing (resp. allocation) problem for known
price-demand relationship, i.e when the parameters of the demand (resp. price) func-
tion are known, both in disequilibrium and equilibrium. We show existence and
uniqueness of solution to the best response and equilibrium problems, and perform
sensitivity analysis on the solutions, when the value of the parameters changes. In
Chapter 4, we focus on the joint dynamic pricing (resp. allocation) with learning, and
show how the joint problem can be formulated: as a bilevel problem, or equivalently
a mixed integer program in disequilibrium, and as an MPEC, or equivalently a mixed
integer program in equilibrium. In Chapter 5, we establish a key result in the thesis
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and prove it: learning of the price-demand relationship and of the equilibrium strate-
gies occurs in the long run. Chapter 6 is the algorithmic and computational part
of the thesis. It addresses the problem of finding algorithms to solve the problem,
and implements the method on data. Chapter 7 investigates closed-loop policies in a
stochastic setting. It establishes existence and uniqueness of Markov-perfect strate-
gies, and approximate solutions. Finally, in Chapter 8, we present our conclusions
on this research, and elaborate on further avenues of research related to this thesis.
Appendix A contains the notation used throughout the thesis, whereas Appendix B
contains all figures and graphs. The bibliography of the thesis is a list of the literature
referred to in this thesis.
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Chapter 2

Model Formulation

In this chapter, we introduce the notation and terminology that will be used through-
out the thesis. We present the dynamic control with learning model for the Bertrand
and for the Cournot competitive markets in two steps. First, we model the price-
demand relationship as a parametric function.
Under Bertrand competition, we model demand for each firm, at each time period as
a parametric function of the prices of all the firms in the market. The parameters
aim at quantifying the impact of the firm’s quality, as well as the impact of its own
and its competitors’ prices on its own demand. The latter parameters are therefore
called price sensitivities. Under Cournot competition, we model a firm’s price at each
time period as a parametric function of the quantities of all the firms in the market.
The parameters quantify the impact of the firm’s quality, and of its own and its com-
petitors’ quantities on its own price.
Second, we present the dynamic control problem for known price-demand relationship.
Under Bertrand competition, we formulate the dynamic pricing problem for known
demand function. Each firm aims at maximizing its total revenue over the selling
horizon, given its competitors’ pricing strategy. This problem is called the Bertrand
best-response problem, and the optimal prices are called best-response prices. We
formulate the best-response problem as a nonlinear optimization problem. Under
Cournot competition, we formulate the dynamic allocation problem for known price
function. The Cournot best-response problem is that of each firm maximizing its
total revenue over the selling horizon, given its competitors’ allocation strategy. The
solution to this problem are the best-response quantities or allocations.
We then focus on the market as a whole and address questions regarding the state of
the market, i.e whether the market is in a state of equilibrium or disequilibrium. The
notion of equilibrium used here is that of Nash equilibrium, whereby no one firm has
incentive to unilaterally deviate from the equilibrium strategy.
In disequilibrium, each firm’s strategy is the best-response to its belief regarding its
competitors’ strategy. This is motivated by the game theoretical concept of ratio-
nalizable strategies. In game theory, a strategy is called rationalizable if it is the
best-response to some belief regarding competitors’ strategies. Rationalizable strate-
gies are related to strictly dominated strategies, in the sense that a rational firm will
never use a strictly dominated strategy. Hence, the set of rationalizable strategies is
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contained in the set of strategies which survive iterated strict dominance In fact, the
two notions are equivalent in duopolies.
In equilibrium, each firm, on top of acting optimally, knows that its competitors
also act optimally, therefore each firm’s strategy is the best-response to the optimal
strategy of their competitors. Hence, the Nash equilibrium is the set of strategies
simultaneously solving the best-response problems of each firm. We model the mar-
ket equilibrium via a quasi-variational inequality in the Bertrand market, and as a
variational inequality in the Cournot market. In subsequent chapters, we address the
issues of existence and uniqueness of equilibrium in more details.

2.1 Notation and Terminology

Throughout this thesis, we use the following notation:

• N : number of firms competing in the market;

• T : selling horizon after which all unused capacity is lost;

• h = −H, . . . , 0: superscript indicating the selling horizon: h = 0 denotes the
current selling horizon, and h < 0 denote historical selling horizons.

• Ci, i = 1, . . . , N : finite inventory of each firm over the selling horizon; we call
this inventory the total capacity of the firm.

• For a vector x with components xt
i, i = 1, . . . , N, t = 1, . . . , T , we denote by

xi = (xi(1), . . . , xi(T )) the subvector corresponding to firm i, and by x(t) =
(x1(t), . . . , xN(t)) the subvector corresponding to time period t.

• p̂i
0(t): price set by firm i at period t in the current selling horizon; p̂i

h(t):
historical price of firm i for period t.

• q̂i
0(t): quantity set by firm i at period t in the current selling horizon; q̂i

h(t):
historical quantity of firm i for period t.

• p−i: price vector corresponding to firm i’s belief at time t regarding its com-
petitors’ pricing strategy.

• q−i: allocation vector corresponding to firm i’s belief at time t regarding its
competitors’ allocation strategy.

2.2 Problem in Bertrand Competition

Under Bertrand competition, firms compete by setting prices. At each time period
of the selling horizon, each firm updates its pricing decision for future periods. The
quantities sold at each time period by each firm are functions of their own and their
competitors’ prices, as prescribed by the demand function.
We make the following informational assumptions:
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• At each time period t in the selling horizon, each firm has observed all the past
prices in the market, that is the prices that were set by all the firms in the
selling horizon, in periods 1 to t− 1. For instance, at time t = 10 of the selling
horizon, firms have observed prices for periods 1 to 9.

• Additionally, the firms have collected historical prices, i.e prices that were used
in past selling horizons. For instance, consider a New-York- San Francisco flight
departing Monday, November 27, 2006. Then historical prices are prices for New
York - San Francisco flights departing on Mondays in Fall 2006.

• Firms know the total capacity of their competitors, however, they cannot ob-
serve the remaining capacity of their competitors within the selling horizon. In
other words, they do not know how much their competitors sell at each period
in the selling horizon.

In disequilibrium state, each firm wants to set its prices optimally, given its belief
concerning its competitors’ pricing policy. This belief is based on the historical data
collected by each firm concerning their competitors. In other words, each firm wants
to find the vector of prices which maximize its total revenue over the selling horizon,
and such that the total quantity sold over the horizon does not exceed capacity. Two
forms of learning occur in this state:

• Learning of the demand function, or in other words, learning of the price sen-
sitivities: the parameters of the demand function are initially unknown to the
firm, which would like to learn them over the selling horizon. Indeed, as time
elapses, the firm observes more information which can be used to achieve more
accurate knowledge of the demand function. In particular, at each time period
of the horizon, each firm observes the prices set by itself and its competitors
in the previous period, and can incorporate this additional piece of information
into its estimation of the price sensitivities.

• Learning of the market equilibrium strategies: when the market is in disequi-
librium, each firm’s strategy consists in setting prices that are best-response to
its belief regarding its competitors’ strategy. The firms form a belief of their
competitors’ strategy by observing past prices. Hence, after each additional
price observed, firms update their belief, and compute their best-response to
this new belief. This strategy is very much akin to learning strategies in Game
Theory such as fictitious play or tatonnement. Eventually, through this dy-
namic strategic updating process, the firms’ strategies converge to equilibrium
strategies.

In what follows, we first specify the demand model. Then we focus on the dynamic
pricing with learning in disequilibrium state. Finally, we address the dynamic pricing
with learning in equilibrium.
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2.2.1 The Demand Model

Demand is modeled as a parametric function of prices. For instance, demand may
be a linear, loglinear, exponential function of prices. Let qi(pi(t), p−i(t), βi(t)) be the
demand of firm i at time t. We assume that demands are independent over time,
that is, demand in period t solely depends on the prices set in that period. For each
time period t, we can write the price-demand relationship for all the companies as a
mapping q(p(t), β(t)).
We discuss the demand function in further details in Chapter 3, where we analyze the
best-response problem. In particular, we define the feasible set of parameters, such
that the demand function satisfies certain properties.
For now, we denote by Bi the set of feasible parameters for firm i.

2.2.2 The Dynamic Pricing Problem in Disequilibrium

In this section, we focus on the problem faced by the firm at the beginning of selling
period t ∈ {2, . . . , T} when the market is in disequilibrium. In this state, each seller
computes its best-response to its beliefs concerning its competitors’ strategy.
To provide a better understanding of the process each firm may follow to determine its
optimal pricing strategy and learn the form of the demand function, we decompose
the problem facing each firm at each time period of the horizon into three steps.
However, in reality, these three steps are performed simultaneously by the firm. In
Step 1, assuming the price sensitivities are known, each firm would like to find the
best-response prices, for its belief of its competitors’ strategy. In Step 2, each firm
would like to estimate the price sensitivities. Finally, in Step 3, each firm seeks to
determine its optimal pricing strategy for future periods.

Step 1: Computation of the Best-Response Prices

In Step 1, we assume that the price sensitivities β are known. In particular, in the
disequilibrium state, we assume that each firm knows its own price sensitivities βi.
Each firm i seeks to find its best-response prices. As each firm is a revenue maximizer,
then for fixed prices of its competitors p−i, its best-response prices are those which
maximize its total expected revenue πi(pi,p−i, βi) over the selling horizon. Each firm
therefore solves a best-response problem BRi(p−i, βi):

max
pi

πi(pi,p−i, βi) =
∑T

t=1 pi(t)qi(pi(t), p−i(t), βi(t)) (2.1)

s.t
∑T

t=1 qi(pi(t), p−i(t), βi(t)) ≤ Ci (2.2)

0 ≤ pi(t) ≤ pmax
i (2.3)

The objective function (2.1) is the total expected revenue of the firm over the selling
horizon for fixed pricing strategy p−i of i’s competitors. Constraint (2.2) incorporates
the fact that the problem we are addressing is capacitated, that is, the total quantity
sold by the firm cannot exceed its overall capacity. Constraint (2.3) is the set of
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feasible prices.
The solution to the best-response problem is the best-response policy of firm i as a
function of its competitors’ strategy, denoted Pi(p−i, βi).

Notice that two cases may arise concerning the capacity constraint:

• The constraint is active or binding: in other words, capacity is a scarce re-
source. Since the capacity constraint links the demand in different time periods
together, the best-response price in any period t will depend in this case on the
parameters of all time periods βi(1), . . . , βi(T ).

• The constraint is inactive or non binding: in other words, capacity is abundant.
In this case, the best-response problem is separable into T instantaneous non ca-
pacitated best-response problems, one for each time period. The best-response
price in each period t then depends only on the parameters at time t,

In reality, firm i solves its best-response problem for its belief regarding its competi-
tors’ strategy. Hence, p−i is firm i’s belief concerning its competitors’s strategies. A
firm might form its belief regarding its competitors’ strategy by observing its com-
petitors’ historical prices in previous selling horizons, as well as its competitors past
prices in previous time period of the current selling horizon. At time t in the selling
horizon, a firm has observed prices that were set by its competitors in past periods of
the current horizon, and may use these as its belief regarding competitors’ past prices.
However, it has not observed future prices, and must therefore rely on historical prices
from previous selling horizon. Examples of such beliefs are as follows:

1. p−i(s) =

{
p̂−i

0(s) if s ≤ t− 1
1
H

∑−1
h=−H p̂−i

h(s) if s ≥ t

In other words, at time t, firm i’s belief of its competitors’ prices for a past
period s < t is equal to the price set at s by the competitors, whereas its belief
for a future period s ≥ t, is the arithmetic average of the historical prices set
at s by its competitors in previous selling horizons h = −H, . . . ,−1.

2. Let (ωh)h=−H,...,0 and (τh)h=−H,...,−1 be series of nonnegative weights such that∑0
h=−H ω

h = 1 and
∑−1

h=H τ
h = 1:

p−i(s) =

{ ∑0
h=−H ω

hp̂−i
h(s) if s ≤ t− 1∑−1

h=−H τ
hp̂−i

h(s) if s ≥ t

In other words, at time t, firm i’s belief of its competitors’ prices for a past
period s < t is equal to the weighted average of the prices set at s by the
competitors in the current horizon and in past horizons, whereas its belief for a
future period s ≥ t, is the weighted average of the historical prices set at s by
its competitors in previous selling horizons h = −H, . . . ,−1.
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Step 2: Estimation of the Price Sensitivities

In this section, we address the estimation problem that each firm solves at each time
period t of the selling horizon. At time t, each firm wants to update its estimate
of the price sensitivities, based on the market information gathered up to t − 1. As
the sellers are assumed to be revenue maximizers, then the best-response prices that
were found in Step 1 should be good estimates of the prices observed on the market.
Therefore, the price sensitivities βi ought to be such that the best-response prices
Pi(s,p−i, βi) match the observed market prices. In other words, the parameters βi

should minimize the error between the observed market prices, and the price estimate
given by the solution to each firm’s best-response problem. By error, we mean the
distance between the two prices, i.e either the absolute value error if the L1 norm is
used, or the squared error is the L2 norm is used.
Note that since the best-response price in any period s, Pi(s,p−i, βi), depends in
general on the parameters of all time periods, it follows that at time t, the firm must
estimate the parameters of all time periods. Two cases arise, depending on whether
the firm compares prices in past periods s < t, or in future periods s ≥ t. Indeed, the
information sets for s < t and s ≥ t differ.

1. For s < t, the information set of firm i consists of the prices set in the current
horizon at period s, and the prices set in historical horizons in period s. Hence,
the estimation problem consists of minimizing the following errors:

• For prices set in the current horizon the absolute value error |p̂i
0(s) −

Pi(s,p−i, βi)| (resp. the squared error
(
p̂i

0(s)− Pi(s,p−i, βi)
)2

) where p−i

is firm i’s belief at time t regarding its competitors’ strategy;

• For prices set in the historical horizons h, the absolute value errors |p̂i
h(s)−

Pi(s,p−i(h), βi)| (resp. the squared error
(
p̂i

h(s)− Pi(s,p−i(h), βi)
)2

).

2. For s ≥ t, the information set of firm i consists only of the prices set in historical
horizons in period s. Hence, the estimation problem consists of minimizing the
error between historical prices and the best-response prices in absolute value

|p̂i
h(s)− Pi(s,p−i(h), βi)| (resp. the squared

(
p̂i

h(s)−Pi(s,p−i(h), βi)
)2

).

The estimation problem at time t can therefore be written in absolute value terms as:

min
βi∈Bi

−1∑

h=−H

{
T∑

s=1

|p̂i
h(s)− Pi(s,p−i(h), βi)|}+

T∑

s=1

|p̂i
0(s)− Pi(s,p−i, βi)| (2.4)

Alternatively, the estimation problem at time t in squared error is:

min
βi∈Bi

−1∑

h=−H

{
T∑

s=1

(
p̂i

h(s)− Pi(s,p−i(h), βi)
)2

}+
T∑

s=1

(
p̂i

0(s)− Pi(s,p−i, βi)
)2

(2.5)

We denote by β̂i

t
the vector of optimal parameters computed given the information

available at time t.
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Step 3: Optimal Pricing Policy

In summary, at each period t of the selling horizon, firm i finds its best-response
prices Pi(p−i, βi), as a function of the unknown price sensitivities βi and competitors’
strategy in Step 1, and in Step 2, it finds the optimal estimates of the price sensitivities

β̂i

t
given the information available at that time. Combining the results of both steps,

we obtain that the vector Pi(p−i, β̂i

t
) is the optimal pricing strategy at time t for the

selling horizon.

2.2.3 The Dynamic Pricing Problem in Equilibrium

In this section, we investigate the dynamic pricing problem in the ideal case where
the market has reached equilibrium. This means that for known price sensitivities
β, learning of the optimal pricing strategy has been achieved. Indeed, recall that
at each time period t and for known parameters β, each firm i selects its strategy
as the best-response to its belief concerning its competitors’ strategy. Firms’ beliefs
are updated at each period to incorporate the most current information. A similar
iterative learning process was introduced for instance in Perakis and Sood [72]. They
proved its convergence in a robust setting, i.e when the parameters βi are unknown,
but belong to an uncertainty set, and the firms are conservative and maximize their
worst-case revenue. The intuition is that, if in the long run, the strategies converge
to some P∗(β), then we have:

P∗
i (β) ∈ BRi(P

∗
−i, βi) ∀ i

Hence, P∗(β) is a fixed point of the best-response mapping and is therefore a Nash
equilibrium: assuming firm i’s competitors set prices equal to the Nash equilibrium
prices P∗

−i(β), then it is optimal for i to price at P∗
i (β), and it cannot gain from

unilaterally deviating from the Nash policy.
As learning of the pricing strategies has already occurred in the equilibrium state,
we can isolate the learning of the demand function. In equilibrium, the three-step
problem which faces each firm at each time period is the following: in step 1, each
firm aims at finding the Nash equilibrium prices in the market, assuming the price
sensitivities are known. In step 2, each firm estimates its own as well as its competi-
tors’ price sensitivities. Finally, using the solutions of steps 1 and 2, each firm finds
its optimal pricing policy.
As we will see shortly, all firms’ problems at equilibrium are coupled, thus each firm
has to solve simultaneously the problem for itself and its competitors. This makes
the equilibrium problem more complex than its transient counterpart.

Step 1: Computation of the Nash Equilibrium Prices

When the market is in equilibrium, the firms’ prices are fixed points of the best-
response mapping. In other words, the prices simultaneously solve the N best-
response problems. Let GNE(α) denote the generalized Nash equilibrium in the
market, when price sensitivities are equal to β:
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A vector P(β) of prices solves the generalized Nash equilibrium iff Pi(β) solves
BRi(P−i(β)) for all i = 1, . . . , N .
Such an equilibrium is called a generalized equilibrium since each firm’s strategy space
depends on its competitors’ strategy: indeed, the set of feasible prices for each firm
depends on its competitors’ prices through the capacity constraint:

T∑

t=1

qi(pi(t), p−i(t), βi(t)) ≤ Ci

This is to be distinguished from the usual notion of Nash equilibrium, which cor-
responds to games for which each player’s strategy space does not depend on its
competitors’ strategy.
In Chapter 4, we cover in more details the generalized Nash equilibrium. In particu-
lar, we investigate conditions for existence and uniqueness of the equilibrium.
Remarks:

1. Notice that since the Nash equilibrium prices simultaneously solve all firms’
best-response problems, then the equilibrium prices of firm i depend not only
on its own price sensitivities βi, but also on its competitors’ sensitivities β−i.
As a result, the problem of estimating firm i’s prices is non-separable from firm
j’s estimation problem.

2. Notice also, that the Nash equilibrium prices for period s depend in general on
the price sensitivities of all time periods, since the time periods are coupled by
the capacity constraint.

Step 2: Estimation of the Price Sensitivities

Due to remarks 1 and 2, it appears that, contrary to the disequilibrium state, firm i
cannot estimate its own price sensitivities independently of firm j. As a result, each
firm has to jointly estimate the price sensitivities of all the firms in the market.
One possibility is to write the joint estimation as the simultaneous solution to the N
individual estimation problems of each firm. The optimal vector of parameters for all
firms and all time periods, denoted by β̂t is the simultaneous solution to:

min
βi∈Bi

−1∑

h=−H

{
T∑

s=1

(
p̂i

h(s)− Pi(s, βi, β̂−i)
)2

}+

T∑

s=1

(
p̂i

0(s)−Pi(s, βi, β̂−i)
)2

(2.6)

However, another way to perform joint estimation, which renders the problem simpler
from a mathematical perspective, is to choose as estimates the parameters which
minimize the sum, for all firms and all periods, of all the errors between observed prices
and equilibrium prices. Hence, the equilibrium estimation problem is formulated as:

min
β∈B1×...×BN

N∑

i=1

{
−1∑

h=−H

{
T∑

s=1

(p̂i
h(s)−Pi(s, βi, β−i))

2}+
T∑

s=1

(p̂i
0(s)− Pi(s, βi, β−i))

2

}
(2.7)
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The above estimation problem differs from the transient case in two ways: first,
the objective function corresponds to the sum of each firm’s objective function in the
transient case. Moreover, the prices as functions of the unknown sensitivities are Nash
equilibrium prices, instead of best-response prices for a given competitors’ strategy.
The solution to the estimation problem are the optimal time-t estimators β̂t (in the
least square sense) of the price sensitivities for all firms and all time periods.

Step 3: Optimal Pricing Policy

In summary, at each period t in the selling horizon, each firm finds the Nash equilib-
rium prices, as a function of the unknown price sensitivities β in step 1, and finds the
optimal estimates of the price sensitivities β̂t in step 2. Similarly to the disequilibrium
state, the solutions to steps 1 and 2 yield each firm’s optimal pricing strategy at time
t.

2.2.4 Reformulations of Steps 1 and 2

In Chapter 4, we show that Steps 1 and 2 under Bertrand competition can be refor-
mulated as one problem. Indeed, we show that the Bertrand best-response problem
with learning can be reformulated as a bilevel problem, or equivalently as a mixed
integer program. The Bertrand equilibrium problem can be reformulated as a Math-
ematical Program with Equilibrium Constraints (MPEC) or equivalently as a mixed
integer program.
To achieve this, we will first focus on Step 1 in Chapter 3. We will then use the
insights gained on Step 1 to consider Steps 1 and 2 together in Chapter 4.

2.3 Problem in Cournot Competition

In a Cournot competitive environment, firms compete via allocations, and not prices:
each firm’s price at each time period is determined as a function of its own, and its
competitors’ allocation decisions, as prescribed by the inverse demand function, also
called price function.
The information observed by the firms at each time period are the quantities set by
themselves and their competitors in past time periods of the current selling horizon,
supplemented by historical quantities from past selling horizons.
In disequilibrium state, each firm wants to set its quantities optimally, given its belief
concerning its competitors’ allocation policy. This belief is based on the historical
data collected by each firm concerning their competitors. In other words, each firm
wants to find the vector of allocations which maximizes its total revenue over the
selling horizon, and such that the total quantity sold over the horizon does not exceed
capacity. Two forms of learning occur in this state:

• Learning of the price function through the allocation sensitivities. At each time
period of the horizon, each firm observes the prices resulting from the allocation
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decisions in the previous period, and can incorporate this additional piece of
information into its estimation of the price sensitivities.

• Learning of the market equilibrium: when the market is in disequilibrium, each
firm’s strategy consists of setting quantities that are the best-response to its
belief regarding its competitors’ strategy. The firms form a belief of their com-
petitors’ strategy by observing historical prices. Hence, at each additional price
observed, firms update their belief, and compute their best-response to this new
belief. This strategy is very much akin to learning strategies in Game Theory
such as fictitious play or tatonnement. Eventually, through this dynamic strate-
gic update process, the firms’ strategies converge to equilibrium strategies.

In what follows, we first specify the price-demand relationship. Then we focus on
the dynamic allocation with learning in disequilibrium state. Finally, we address the
dynamic allocation with learning in equilibrium.

2.3.1 The Price-Demand Relationship

In this framework, the price-demand relationship is expressed though an inverse de-
mand function, or price function: pi(qi(t), q−i(t), αi(t)). The parameters of the price
function are called allocation sensitivities, since they specify how the price varies
when the allocation policy varies.
We discuss the inverse demand function in further details in Chapter 3, where we
analyze the best-response problem. In particular, we define the feasible set of param-
eters, such that the inverse demand function satisfies certain properties.
For now, we denote by Ai the set of feasible parameters for firm i.

2.3.2 The Dynamic Allocation Problem in Disequilibrium

In this section, we focus on the dynamic allocation problem that each firm faces at
each time period t = 2, . . . , T of the selling horizon, when the market is in disequilib-
rium.
Firms seek to find their optimal allocation strategy, given their belief concerning their
competitors’ strategy. This implies that they have formed beliefs concerning the al-
locations of their competitors: using the historical allocations data from past selling
horizons, as well as the market allocations observed in the current horizon so far,
each firm infers its competitors’ allocation policy. Each firm aims at achieving two
types of learning: it seeks to learn the optimal allocation policies for itself and it
competitors, as well as to learn the price-demand relationship by learning the allo-
cation sensitivities of the price functions. At each period t, firm i’s problem can be
decomposed in three steps: in step 1, firm i determines its best-response quantities to
its beliefs concerning its competitors’ quantities, assuming its allocation sensitivities
are known. In step 2, it estimates its allocation sensitivities, and finally, in step 3, it
sets its optimal policy for future periods.
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Step 1: Computations of the Best-Response Quantities

We assume that the allocation sensitivities α are known. Each firm i seeks to find
its best-response quantities to its competitors’ allocation policy q−i: firm i’s best-
response allocations are those which maximize its total expected revenue πi(qi,q−i, αi)
over the selling horizon. Each firm therefore solves a best-response problem BRi(q−i, αi):

max
qi

πi(qi,q−i, αi) =
∑T

t=1 qi(t)pi(qi(t), q−i(t), αi(t)) (2.8)

s.t
∑T

t=1 qi(t) ≤ Ci (2.9)

0 ≤ qi(t) (2.10)

The objective function is the total expected revenue over the selling horizon, for
fixed strategy of its competitors. Constraint (2.9) is the capacity constraint, which
prescribes that the total quantity sold over the selling horizon should not exceed the
capacity. Finally, constraint (2.10) restricts the allocations to be nonnegative. In
Chapter 3, we will establish conditions under which this formulation is sufficient to
ensure nonnegativity of the prices without introducing further constraints.
We denote by Qi(q−i, αi) the best-response quantities of firm i, for fixed competitors’
strategy q−i.
Two cases may arise when solving the best-response problem:

• The capacity constraint is active or binding, i.e capacity is scarce. In this case,
the best-response quantity in any period depends on the parameters in all time
periods;

• The capacity constraint is inactive, i.e capacity is abundant. In this case, the
problem is equivalent to a non-capacitated problem, and is separable in time.
Hence, the best-response quantity in any period only depends on the parameters
in that period.

In practice, each firm solves its best-response problem, for its belief regarding its
competitors’ allocation strategy, based on historical allocations from previous selling
horizons, as well as the observed market allocations in the previous periods of the
current horizon. Examples of such beliefs are as follows:

1. q−i(s) =

{
q̂−i

0(s) if s ≤ t− 1∑−1
h=−H

1
H
q̂−i

h(s) if s ≥ t

In other words, at time t, firm i’s belief of its competitors’ quantities for a past
period s < t is equal to the price set at s by the competitors, whereas its belief
for a future period s ≥ t, is the arithmetic average of the historical quantities
set at s by its competitors in previous selling horizons h = −H, . . . ,−1.

2. Let (ωh)h=−H,...,0 and (τh)h=−H,...,−1 be series of nonnegative weights such that∑0
h=−H ω

h = 1 and
∑−1

h=H τ
h = 1:

q−i(s) =

{ ∑0
h=−H ω

hq̂−i
h(s) if s ≤ t− 1∑−1

h=−H τ
hq̂−i

h(s) if s ≥ t
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Step 2: Estimation of the Allocation Sensitivities

In this section, we address the estimation problem that each firm solves at each time
period t of the selling horizon. At time t, each firm wants to update its estimate of
the allocation sensitivities, based on the market information gathered up to t−1. As
the sellers are assumed to be revenue maximizers, then the best-response allocations
which were computed in Step 1 should be good estimates of the quantities observed on
the market. Therefore, the allocation sensitivities αi ought to be such that the best-
response allocations Qi(s,q−i, αi) match the observed market quantities. In other
words, the parameters αi should minimize the error between the observed market
allocations, and the price estimate given by the solution to each firm’s best-response
problem, in terms of absolute value error or squared error.
Hence, the estimation problem under Cournot competition is similar to that under
Bertrand competition, where quantities are substituted for prices. The estimation
problem at time t can therefore be written in absolute value terms as:

min
αi∈Ai

−1∑

h=−H

{
T∑

s=1

|q̂i
h(s)−Qi(s,q−i(h), αi)|}+

T∑

s=1

|q̂i
0(s)−Qi(s,q−i, αi)| (2.11)

Alternatively, the estimation problem at time t in squared error is:

min
αi∈Ai

−1∑

h=−H

{
T∑

s=1

(
q̂i

h(s)−Qi(s,q−i(h), αi)
)2

}+

T∑

s=1

(
q̂i

0(s)−Qi(s,q−i, αi)
)2
(2.12)

Alternatively, the square operator in the objective function can be replaced by the
absolute value operator, to yield the estimation problem in absolute value error.
We denote by α̂i

t the vector of optimal parameters computed given the information
available at time t.

Step 3: Optimal Allocation Policy

In summary, at each period t of the selling horizon, firm i finds its best-response
quantities Qi(q−i, αi), as a function of the unknown allocation sensitivities αi and
competitors’ strategy in Step 1, and in Step 2, it finds the optimal estimates of the
allocation sensitivities α̂i

t given the information available at that time. Combining the
results of both steps, we obtain that the vector Qi(q−i, α̂i

t) is the optimal allocation
strategy at time t for the selling horizon.

2.3.3 The Dynamic Allocation Problem in Equilibrium

In this section, we focus on the problem, faced by each firm at the beginning of
period t ∈ {2, . . . , T} when the market has already reached equilibrium. In other
words, learning of the optimal allocation policies has been achieved. Hence, we can
isolate learning of the price-demand relationship through the allocation sensitivities.
The problem faced by each firm at each time period t of the selling horizon can
be decomposed as follows: in step 1, each firm determines the Nash equilibrium
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quantities, assuming the allocation sensitivities are known; in step 2, it estimates
the allocation sensitivities, and finally in step 3, it sets its optimal policy for future
periods, and guesses its competitors’s optimal strategy.

Step 1: Computation of the Nash Equilibrium Quantities

We assume that the allocation sensitivities α are known. Each firm i seeks to find
the Nash equilibrium quantities that emerge in the market, i.e the quantities that
simultaneously solve the N best-response problems:
Qi(α) solve BRi(Q−i(α), αi), for all i = 1, . . . , N . We denote by NE(α) the set of
Nash equilibrium quantities.
Remarks:

1. The Nash equilibrium quantities are such that the optimal quantities for time t
depend in general on the allocation sensitivities of all time periods. This is due
to the capacity constraint which links the quantities in different periods with one
another. Moreover, firm i’s Nash quantities depend on all the firms’ allocation
sensitivities since the Nash quantities simultaneously solve the best-response
problem of all the firms.

2. Recall that under Bertrand competition, the equilibrium is a generalized Nash
equilibrium, since each firm’ strategy space depends on its competitors’ strategy.
This is not the case under Cournot competition, since the capacity constraint
involves the decision variables themselves, and not the parameters. We will elab-
orate more on the differences between generalized equilibrium and equilibrium
in Chapter 3 of the thesis.

Step 2: Estimation of the Allocation Sensitivities

In this section, we address the estimation problem faced by each firm at each time t,
when the market is in equilibrium. The firm aim at updating its own, and its com-
petitors’s estimate of the allocation sensitivities, based on the market data up to time
t− 1. Since the Nash equilibrium quantities depend on the allocation sensitivities of
all the firms, then firm i’s estimation problem is coupled with its competitors’ estima-
tion problems, and each firm needs to jointly estimate all the firms’ sensitivities. For
computational tractability, instead of solving N simultaneous estimation problems,
we solve a single estimation problem, minimizing the sum of the estimation errors for
all periods and all firms.

min
α∈A1×...×AN

N∑

i=1

{
−1∑

h=−H

{
T∑

s=1

(q̂i
h(s)−Qi(s, αi, α−i))

2}+
T∑

s=1

(q̂i
0(s)−Qi(s, αi, α−i))

2

}
(2.13)

The objective function is the sum of the objective functions of each firm’s estima-
tion problem in the transient regime. The solution to the estimation problem is the
set of optimal time-t estimators in the least squares sense of the allocation sensitivities
α̂t, for all firms and all time periods.
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Step 3: Optimal Allocation Policy

In Step 1, we computed the Nash equilibrium allocations for given parameters and
in step 2, we computed the optimal parameters, for allocations equal to the Nash
equilibrium allocations. Hence, both steps together yield the optimal vector allocation
policy at time t, for all firms.

2.3.4 Reformulations of Steps 1 and 2

In Chapter 4, we show that Steps 1 and 2 under Cournot competition can be reformu-
lated as one problem. Indeed, we show that the Cournot best-response problem with
learning can be reformulated as a bilevel problem, or equivalently as a mixed integer
program. The Cournot equilibrium problem can be reformulated as a Mathematical
Program with Equilibrium Constraints (MPEC), which is also equivalent to a mixed
integer program.
To achieve this, in Chapter 3, we will first focus on Step 1. We will then use the
insights gained on Step 1 in Chapter 4 to consider Steps 1 and 2 jointly.
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Chapter 3

Dynamic Policies When the

Price-Demand Relationship

Parameters Are Known

In this chapter, we assume that parameters of the price-demand relationship are
known. That is, we assume that the price (resp. allocation) sensitivities of the
parametric demand (resp. price) function are known under Bertrand (resp. Cournot)
competition. Under each model of competition, we analyze the best-response and the
equilibrium problems. We establish properties of the demand (resp. price) function
under which there is existence and uniqueness of the best-response strategy and of
the Nash equilibrium.

3.1 Study of the Best-Response Problem

In this section, we analyze the best-response problem when the parameters of the
price-demand relationship are known. We focus on firm i, and fixed competitors’
strategy. Since firms are assumed to be rational, then for known price-demand rela-
tionship, and given its competitors’ strategy, firm i’s optimal strategy is that which
maximizes its total revenue over the selling horizon, while satisfying the feasibility
and capacity constraints.
Under Bertrand (resp. Cournot) competition, we formulate the demand (resp. price)
model. We then give alternative formulations of the best-response optimization
probems as system of equalities and inequalities, using the Karush-Kuhn-Tucker con-
ditions, and as variational inequality. We finally perform sensitivity analysis on the
best-response solution. Indeed, sensitivity analysis is a key risk analysis to be car-
ried out by companies, particularly in non robust settings. In disequilibrium, this
analysis is twofold: firms seek to know how their best-response strategy changes for
changes in the price-demand parameters. Furthermore, firms seek to know how their
best-response strategy changes when their belief regarding their competitors’ behav-
ior changes. In equilibrium, firms want to keep track of the equilibrium strategy’s
sensitivity to changes in the price-demand parameters.
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In equilibrium, we formulate the Nash equilibrium under Bertrand and Cournot com-
petition as a system of equalities and inequalities, as a quasi variational inequality in
the Bertrand case, and as a variational inequality in the Cournot case. Finally, we
perform sensitivity analysis to quantify the effects of changes in parameters on the
equilibrium.

3.1.1 The Bertrand Best-Response Problem

In Chapter 2, we defined as qi(pi(t),p−i(t), βi(t)) the demand function, for parame-
ters βi(t), as well as the best-response optimization problem:

max
pi

πi(pi,p−i, βi) =
∑T

t=1 pi(t)qi(pi(t), p−i(t), βi(t))

s.t
∑T

t=1 qi(pi(t), p−i(t), βi(t)) ≤ Ci

0 ≤ pi(t) ≤ pmax
i

For fixed parameter value βi and fixed competitors’ strategy p−i, we denote by
Pi(p−i, βi) the feasible set of the best-response problem, in other words:

Pi(p−i, βi) = {pi :

T∑

t=1

qi(pi(t), p−i(t), βi(t)) ≤ Ci, 0 ≤ pi(t) ≤ pmax
i }

The feasible set of parameters was denoted Bi. We now state the Assumptions on the
demand function that we consider in this Chapter. We then give examples of widely
used demand functions in the revenue management and pricing literature for which
these assumptions hold.

Assumptions on the Demand Function

Assumption 3.1. We assume continuity and differentiability of the demand function
qi w.r.t pi(t).

Assumption 3.2. The market is for ordinary goods. This means that the demand
function is increasing in the firm’s own price, or equivalently: ∂qi

∂pi(t)
< 0.

Assumption 3.3. We focus on a market for substitutable products. This means that
firm i’s demand function is nondecreasing in firm j’s price, for all j 6= i: in other
words: ∂qi

∂pj(t)
≥ 0, ∀j 6= i.

Assumption 3.4. We assume strict concavity of the revenue rate pi(t)qi(pi(t), p−i(t))
in pi(t). A weaker assumption is to assume strict pseudo-concavity of the revenue
function πi(pi,p−i) in pi.

Assumption 3.5. We assume convexity of the demand function qi in pi(t). A weaker
assumption is to assume quasi-convexity of the intertemporal sum of the demand
functions

∑T
t=1 qi(pi(t), p−i(t), βi) in pi.
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Assumption 3.6. We assume the existence of a maximum price pmax
i that each firm

can set, and such that infp−i
qi(p

max
i , p−i(t), βi(t)) ≥ 0.

Assumption 3.7. We assume that infp−i(t) qi(0, p−i(t), βi(t)) > Ci.

Assumption 3.1 guarantees that the best-response problem is a smooth optimization
problem. Assumption 3.2 means that the demand for the good decreases when the
price of the good increases, ceteris paribus. This is the case for most goods. A notable
exception is luxury goods for which the demand may increase as the price increases.
Assumption 3.3 implies that if firm j decreases its price, then some customers will
likely substitute product j for product i, hence, firm i’s demand may decrease. Strict
pseudo-concavity in Assumption 3.4 means that the revenue function is differentiable
and that the following holds: for all pi 6= p̃i:

∇iπi(pi,p−i)
′(p̃i,pi) < 0 ⇒ πi(p̃i,p−i) < πi(pi,p−i)

Quasi-convexity in Assumption 3.5 means that the level sets

{pi :

T∑

t=1

qi(pi(t), p−i(t), βi(t)) ≤M}

are convex. Assumption 3.6 enables us essentially to reduce the set of feasible prices
to a compact set. This is not restrictive in practice, since prices are always finite. The
maximum allowable price is such that it generates a nonnegative demand, regardless
of competitors’ prices. Assumption 3.7 implies that if firm i prices at zero, then the
demand generated, regardless of its competitors’ pricing strategy, exceeds its capacity.
It basically prevents a firm from posting a price of zero while still participating in the
market.

Examples of Suitable Demand Functions

The following demand functions, which are widely used in the revenue management
literature satisfy the above assumptions:

• Linear demand function:

qi(pi(t), p−i(t), βi(t)) = βi0(t)− βii(t)pi(t) +
∑

j 6=i

βij(t)pj(t)

For βii(t) > 0 and βij(t) ≥ 0 ∀ j 6= i, then it is easy to verify that the linear
demand function verifies assumptions 3.1 to 3.5.
Assumption 3.7 prescribes that βi0(t) +

∑
j 6=i βij(t)pj(t) > Ci for all i, t. It is

sufficient that βi0(t) ≥ Ci for all i, t.
Hence, the set Bi of feasible parameters is:

Bi = {β : ∀ t, i, βii(t) ≥ ε

∀ i, t, ∀ j 6= i, βij(t) ≥ 0

∀ i, t, βi0(t) ≥ Ci}
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where ε > 0.

• Loglinear demand function:

qi(pi(t), p−i(t), βi(t)) = exp

(
βi0(t)− βii(t)pi(t) +

∑

j 6=i

βij(t)pj(t)

)

The loglinear demand function verifies assumptions 3.1 to 3.5 for 0 < βii(t) <
2

pmax
i

and βij(t) ≥ 0 for all j 6= i.

Assumption 3.7 states that βi0(t)+
∑

j 6=i βij(t)pj(t) > ln(Ci), hence, a sufficient
condition for 3.7 to be satisfied for all p−i(t) is βi0(t) > ln(Ci) for all i, t.
The corresponding feasible set of parameters is therefore:

Bi = {β : ∀ t, i, ε ≤ βii(t) ≤
2

pmax
i

− ε

∀ i, t, ∀ j 6= i, βij(t) ≥ 0

∀ i, t, βi0(t) ≥ ln(Ci)}

where ε > 0.

• Constant elasticity demand function:

qi(pi(t), p−i(t), βi(t)) = βi0(t)

∏
j 6=i(pj(t))

βij(t)

(pi(t))βii(t)

Assumptions 3.1 to 3.5 are satisfied when 0 < βij(t) < 1 and βij(t) ≥ 0 for all
j 6= i.
Hence, the feasible set of parameters:

Bi = {β : ∀ t, i, ε ≤ βii(t) ≤ 1− ε

∀ i, t, ∀ j 6= i, βij(t) ≥ 0}

where ε > 0.
Since the constant elasticity demand function is not defined for prices equal to
zero, we have to choose a positive lower bound pmin

i for the prices. Assumption
3.7 then becomes:

inf
p−i(t)

qi(p
min
i , p−i(t), βi(t)) > Ci

Changing the lower bound from 0 to a positive amount does not change the rest
of the analysis.
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Existence and Uniqueness of the Best-Response Solution

Given the above assumptions we establish the following properties concerning the
best-response problem:

Proposition 3.1. The best-response problem under Bertrand competition has a unique
solution, denoted Pi(p−i, βi).

Proof. • Existence of the best-response solution:
The revenue function is continuous in pi and the feasible set is compact: indeed,
it is a closed subset of the cube: [0, pmax

i ]N . Hence, by Weierstrass’ s theorem,
there exists a solution to the best-response problem.

• Uniqueness of the best-response solution:
Assume that the best-response problem has two solutions p̂i and p̌i such that
p̂i(t) 6= p̌i(t) for some t.
By convexity and continuity of qi, the feasible set Pi(p−i, βi) is closed convex,
and πi is continuously differentiable in pi. Hence, p̂i and p̌i verify: for all
pi ∈ Pi(p−i, βi):

−∇iπi(p̂i,p−i, βi)′(pi − p̂i) ≥ 0

We apply the inequality to pi = p̌i and get:

−∇iπi(p̂i,p−i, βi)′(p̌i − p̂i) ≥ 0

Hence, by strict pseudo-concavity of πi w.r.t pi, the above inequality implies
that

πi(p̂i,p−i, βi) < πi(p̌i,p−i, βi)

This contradicts the optimality of p̂i.
Therefore, the solution to the best-response problem is unique.

Equivalence of the Best-Response Problem to a Variational Inequality

Here, we prove that the best-response optimization problem is equivalent to a vari-
ational inequality. A finite-dimensional variational inequality formulation is particu-
larly convenient to study equilibrium problems, as shall be seen in the section cor-
responding to the analysis of the Nash equilibrium problem. It allows for a unified
treatment of optimization problems and equilibrium problems. We now establish the
equivalence of the best-response problem to a variational inequality.
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Proposition 3.2. The best response problem BRi(p−i, βi) is equivalent to a varia-
tional inequality in the following sense:
pi = Pi(p−i, βi) solves the best-response problem iff it solves the following variational
inequality denoted V I(−∇iπi(.,p−i, βi),Pi(p−i, βi)):

−∇iπi(pi,p−i, βi)′(p̃i − pi) ≥ 0

for all p̃i ∈ Pi(p−i, βi).

Proof. • Let φ(t) = πi(t.p̃i + (1 − t)Pi(p−i, βi),p−i, βi). By convexity of the
feasible set, then for all p̃i ∈ Pi(p−i, βi) and for all t ∈ [0, 1], the point t.p̃i +
(1 − t)Pi(p−i, βi),p−i, βi is in the feasible set. Since Pi(p−i, βi) is the best-
response solution, then φ(t) achieves its maximum at t = 0.
Since πi is continuously differentiable in pi, then φ is continuously differentiable
in t. Thus dφ

dt
(0) ≥ 0. This is equivalent to the variational inequality.

• By pseudo-concavity of −πi, the variational inequality implies:

πi(Pi(p−i, βi),p−i, βi) ≥ πi(p̃i,p−i, βi)

for all feasible p̃i. Hence, Pi(p−i, βi) is the best-response solution.

The variational inequality formulation states that the vector−∇iπi(Pi(p−i, βi),p−i, βi)
makes an ”acute” angle with any feasible vector emanating from Pi(p−i, βi).

First Order Optimality Conditions

In what follows, we introduce a reformulation of the best-response problem based on
the Karush-Kuhn-Tucker optimality conditions (hereafter called KKT conditions).
We prove that under the assumptions made in Section 1, the KKT conditions are
necessary and sufficient for optimality.
In what follows, we denote by gi(pi,p−i, βi) =

∑T
t=1 qi(pi(t), p−i(t), βi(t)) − Ci the

capacity constraint.

Proposition 3.3. Assume that if capacity is tight at Pi(p−i, βi), then at least one of
the best-response prices is interior to the compact [0, pmax

i ].
Then Pi(p−i, βi) is the best-response solution iff there is a scalar λi ≥ 0, and two
vectors in RT µ

i
, µi ≥ 0 such that the following system holds at pi = Pi(p−i, βi):

−∇iπi(pi,p−i, βi) + λi∇igi(pi,p−i, βi) +
T∑

t=1

(µi(t)− µi
(t))e(t) = 0 (3.1)

λigi(pi,p−i, βi) = 0 (3.2)

µi
′(pi − pi

max) = 0 (3.3)

µ
i

′pi = 0 (3.4)

gi(pi,p−i, βi) ≤ 0 (3.5)

0 ≤ pi ≤ pmax
i (3.6)
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λi, µi
, µi are called KKT multipliers corresponding to the constraints gi(pi,p−i, βi) ≤

0, pi ≥ 0 and pi ≤ pmax
i respectively.

In order to prove this, let us first introduce some notation. Let us fix pi,p−i, βi.
We denote by Ii(pi) = {t : pt

i = 0} the set of periods for which the price is zero,
Īi(pi) = {t : pt

i = pmax
i } the set of periods for which the price is pmax

i , so that
I i(pi)

⋃
Īi(pi) is the set of periods of active price constraints.

Proof. Let pi = Pi(p−i, βi).

• The KKT conditions are necessary to optimality if the set of gradients of the
tight constraints is linearly independent.
Let t̄ ∈ Īi(pi) and Let t ∈ I i(pi). The gradient of pi(t̄) is e(̄t), the vector with
all components zero except for component t̄ equal to 1, and that of pi(t) is e(t).
Notice that I i(pi)

⋂
Īi(pi) = ∅. Hence, if the capacity is not tight, the gradients

of tight constraints are indeed linearly independent.
Assume that capacity is tight. The gradient ∇igi(pi,p−i, βi) is the vector of
components ∂gi

∂pi(t)
(pi,p−i, βi) = ∂qi

∂pi(t)
(pi,p−i, βi).

Assume that there exist a scalar γi and two vectors γ̄i and γi not all equal to
zero such that:

γi∇igi(pi,p−i, βi)−
∑

t∈Ii(pi)

γ
i
(t)e(t) +

∑

t∈Īi(pi)

γ̄i(t)e(t) = 0

Notice that since there exists t0 such that 0 < pi(t0) < pmax
i , then Ii(pi)

⋃
Īi(pi)  

{1, . . . , T}.
Component t0 of the above linear combination is: γi

∂gi

∂pi(t0)
= 0. Since ∂gi

∂pi(t0)
< 0

by Assumption 3.2, then this yields γi = 0. Since I i(pi)
⋂
Īi(pi) = ∅, then we

must have: γ
i
(t) = γ̄i(t

′) = 0 for all t ∈ I i(pi) and t′ ∈ Īi(pi).
This contradicts our initial assumption. Therefore, the gradient of active con-
straints are linearly independent.

• The KKT conditions are sufficient for optimality if the objective function πi is
pseudo concave and gi is quasi-convex in pi, which is ensured by Assumptions
3.4 and 3.5.

The complementary slackness conditions (3.2), (3.3) and (3.4) are special cases of
disjunctive constraints. This implies that the system of KKT conditions has an
inherent combinatorial nature. As a result, the best-response problem is NP-hard.
In mathematical programming theory, a problem is said to be NP (nondeterministic
polynomial) if it is solvable in polynomial time by a nondeterministic Turing machine.
A problem is said to be NP-hard if an algorithm for solving it can be translated into
an algorithm to solve any NP problem. In other words, it is ”at least as hard” as an
NP problem, although it might, in fact, be harder.
Furthermore, we prove that the KKT multipliers are unique.
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Proposition 3.4. Let Pi(p−i, βi) be the solution to the best-response problem BRi(p−i, βi).
Assume that it is also solution to the KKT conditions. Then there is a unique scalar
λi(p−i, βi), and unique vectors µ̄i(p−i, βi) and µ(p−i, βi) solving the KKT conditions
at pi = Pi(p−i, βi)

Proof. The proof is in two parts:

1. Assume that capacity is not tight at Pi(p−i, βi):
Then λi = 0 and thus the KKT conditions become:

−∇iπi(pi,p−i, βi) +
T∑

t=1

(µi(t)− µi
(t))e(t) = 0

For t ∈ Ii(pi), we have µ̄i(t) = 0, and hence, µ
i
(t) = − ∂πi

∂pi(t)
(pi,p−i, βi).

For t ∈ Īi(pi), then µ
i
(t) = 0, thus µ̄i(t) = − ∂πi

∂pi(t)
(pi,p−i, βi).

For t /∈ Ii(pi)
⋃
Īi(pi), we have µ

i
(t) = µ̄i(t) = 0.

Hence, the multipliers are uniquely defined.

2. Assume capacity is tight at Pi(p−i, βi). Then we have the following:

• For t /∈ I i(pi)
⋃
Īi(pi), we have µ

i
(t) = µ̄i(t) = 0, hence, the KKT condi-

tions are:

−
∂πi

∂pi(t)
(pi,p−i, βi) + λi

∂qi
∂pi(t)

(pi(t), p−i(t), βi) = 0

T∑

t=1

qi(pi,p−i, βi) = Ci

This means that for all t ∈ Ii(pi)
⋃
Īi(pi), the ratio of the derivative of

the profit function w.r.t pi(t) and the derivative of the demand function
w.r.t pi(t) is constant equal to λi.

• We can now replace λi by its value, and solve for µ
i
(t) for all t ∈ I i(pi),

and µ̄i(t) for all t ∈ Īi(pi):

µ
i
(t) = λi

∂qi
∂pi(t)

(pi,p−i, βi)−
∂πi

∂pi(t)
(pi,p−i, βi) ∀ t ∈ Ii(pi)

µ̄i(t) = λi
∂qi
∂pi(t)

(pi,p−i, βi)−
∂πi

∂pi(t)
(pi,p−i, βi) ∀ t ∈ Īi(pi)

Hence, the multipliers are uniquely defined.
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Sensitivity Analysis with respect to Parameters

We aim at quantifying how changes in parameters affects the best-response solution.
We prove that under some additional assumptions, the best response as a function
of the parameters βi is a well defined function which is piecewise continuously differ-
entiable (PC1), whose directional derivative in any direction is given as the unique
solution to a quadratic program.
Toward that end, we denote by Mi = (λi, µ̄i, µi

) the set of KKT multipliers, and we
define the Lagrangian function Li(pi,p−i, βi,Mi) of the best-response problem:

Li(pi,p−i, βi,Mi) = −πi(pi,p−i, βi) + λigi(pi,p−i, βi) + (µi − µi
)pi

Then notice that the first equation of the KKT conditions is simply:

∇iLi(pi,p−i, βi,Mi) = 0

To establish the differentiability property of the best-response solution, we introduce
the following additional assumption:

Assumption 3.8. Let Mi = (λi, µ̄i, µi
) be the KKT multipliers at Pi(p−i, βi). For

all xi 6= 0 such that ∇igi(pi,p−i, βi)
′xi = 0 if λi > 0, we have:

xi
′∇2

iiLi(pi,p−i, βi,Mi)xi > 0

Assumption ?? says that the Hessian matrix of the Lagrangian function is positive
definite on the set of feasible directions. For an unconstrained optimization problem,
this condition would simplify to: the hessian matrix of the objective function is
positive definite, which is a condition sufficient for optimality for an unconstrained
optimization problem.
We can now establish the first result of this section, which can be found in [28]. Let
us fix competitors’ strategy at p−i and thus drop it from the notation. Let us fix
β̄i ∈ Bi.

Proposition 3.5. Let P̄i = Pi(β̄i) be the best response solution for parameters β̄i.
Assume that KKT conditions are necessary and sufficient at Pi(β̄i), and let λi, µ̄i, µi

be the corresponding KKT multipliers. Under Assumptions 3.1 to 3.8, there exist
open neighborhoods U of β̄i and V of Pi(β̄i) such that:

1. Pi(.) is continuous in U , such that Pi(βi) is best-response solution for all βi ∈ U ;

2. The function Pi(.) is directionally differentiable, and for all directions di, the
directional derivative xi = P ′

i(β̄i;di) is the unique solution to the following
convex quadratic problem, denoted QP(β̄i;di):

min
xi∈C(β̄i;di)

1

2
xi

′∇2
iiLi(P̄i, β̄i,Mi(β̄i))xi + di

′∇2
iβi
Li(P̄i, β̄i,Mi(β̄i))xi (3.7)

where C(β̄i;di) is the critical cone at Pi(β̄i) in direction di.
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Let us denote by Ī0
i (βi) = {t : µ̄i(t) = 0}, I0

i (βi) = {t : µ
i
(t) = 0} the sets of periods

with zero multipliers, Ī+
i (βi) = {t : µ̄i(t) > 0}, I+

i (βi) = {t : µ
i
(t) > 0}, the sets of

periods of positive multipliers. The critical cone at Pi(β̄i) in direction d is defined as
follows:

• If gi(P̄i,p−i, β̄i) < 0, then C(β̄i;di) = C0(β̄i;di), where C0(β̄i;di) is defined as:

C0(β̄i;di) = {xi ∈ R
(N+1)T : ∀t ∈ Ī0

i (βi), xi(t) ≤ 0

∀t ∈ I0
i (βi), xi(t) ≥ 0

∀t ∈ Ī+
i (βi)

⋃
I+

i (βi), xi(t) = 0}

• If gi(P̄i,p−i, β̄i) = 0 and λi > 0, then:

C(β̄i;di)

= C0(β̄i;di)
⋃
{xi ∈ R

(N+1)T : ∇igi(P̄i,p−i, β̄i)
′xi +∇βi

gi(P̄i,p−i, β̄i)
′di = 0}

• If gi(P̄i,p−i, β̄i) = 0 and λi = 0, then:

C(β̄i;di)

= C0(β̄i;di)
⋃
{xi ∈ R

(N+1)T : ∇igi(P̄i,p−i, β̄i)
′xi +∇βi

gi(P̄i,p−i, β̄i)
′di ≤ 0}

The critical cone has the following interpretation. Consider a constraint of the
form hi(pi) ≤ 0, and best-response solution P̄i at β̄i. Consider the following in-
dex sets: I+

i (β̄i) = {t : ht
i(P̄i) = 0 and µt

i > 0} is the set of strongly active
constraints, i.e active constraints for which the lagrangian multiplier is positive.
I0

i (β̄i) = {t : ht
i(P̄i)) = 0 and µt

i = 0} is the set of weakly active constraints, i.e active
constraints for which the lagrangian multiplier is zero. Let Ii(β̄i) = I+

i (β̄i)
⋃
I0

i (β̄i)
the set of indices of active constraints.
First of all, the set of directions {w ∈ RT : ∀t ∈ Ii(β̄i) ∇h

t
i(Pi(β̄i))

′w ≤ 0} con-
tains the set of feasible directions at P̄i, i.e the directions for which there is ǭ > 0
such that for all 0 < ǫ < ǭ, hi(P̄i + ǫw) ≤ 0. In the Bertrand best-response
problem, since the inequality constraints independent of βi are linear, then the set
{w ∈ RT : ∀t ∈ Ii(β̄i) ∇ht

i(P̄i)
′w ≤ 0} is actually equal to the set of feasible direc-

tions at P̄i.
Consider now a constraint of the form hi(pi, β̄i) ≤ 0, best-response solution P̄i at β̄i,
and a direction di. Since the gradient of ht

i is: ∇ht
i(pi, βi) = [∇pi

ht
i(pi, βi),∇βi

ht
i(pi, βi)]

′.
The set of feasible directions now writes:

{(w1,w2) ∈ RT ×R(N+1)T : ∀t ∈ Ii(β̄i), ∇h
t
i(P̄i, β̄i)

′[w1,w2]′ ≤ 0}

If we fix direction w2 = di, we get the set of feasible directions {w ∈ RT : ∀t ∈
Ii(β̄i), ∇h

t
i(P̄i, β̄i)

′[w,di]
′ ≤ 0}.

Furthermore, the critical cone also differentiates between weakly and strongly active
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constraints. The critical cone also appears in KKT second order sufficient conditions
for nonlinear problems: indeed, if the Hessian of the Lagrangian function is positive
definite on the critical cone at a point x̄, then x̄ is an optimal solution to the problem.
We now state the second result of this section:

Proposition 3.6. Let β̄i a vector of parameters, and P̄i the corresponding best-
response solution. Assume Assumptions 3.1 to 3.8 hold. Then the best-response
function Pi(.) whose existence was established in Proposition 3.5 is piecewise con-
tinuously differentiable, and the directional derivative P ′

i(β̄i;di) is a piecewise linear
function which is unique solution to the convex quadratic program QP(β̄i;di).

Proof. The proof is to be found in [28] under the Constant Rank Constraint Quali-
fication: Any subset of the gradients of active constraints has the same rank for all
points in a neighborhood of the optimal solution Pi(β̄i).
Since linear independence is a special case of the Constant Rank assumption and was
proved above, then the proposition holds.

Definition 3.1. Pi(.) is said to be piecewise continuously differentiable function
(PC1) near β̄i if it is a continuous function, and there is a finite family of con-
tinuously differentiable functions {φ1(βi), . . . , φK(βi)} defined in a neighborhood of
β̄i, such that for some k, Pi(βi) = φk(βi) fir each βi in that neighborhood.

PC1 functions are not differentiable, but they have a directional derivative. They
are also Bouligand-differentiable. That is, the directional derivative gives a first order
approximation of the function:

Pi(β̄i + di) = Pi(β̄i) + P ′
i(β̄i;di) + o‖di‖→0(‖di‖)

where o(.) is such that lim‖x‖→0
o(‖x‖)
‖x‖

= 0. We will the use B-differentiability property
of the directional derivative in the design of an algorithm in Chapter 6.
Furthermore, since P ′

i(β̄i; .) is a piecewise linear function, then if Pi(βi) = φk(βi) for
some k, we have:

P ′
i(βi;di) = ∇φk(βi)

′di

We can therefore define the generalized Jacobian ∂Pi(.) of Pi(.):

∂Pi(βi) = {∇φk(βi) ∀k s.t Pi(βi) = φk(βi)}

Example:
In two dimensions, consider the following simple piecewise continuously differentiable
function: f(x, y) = |x − y|. It is made of two pieces f(x, y) = y − x = f−(x, y), for
all x ≤ y, and f(x, y) = x − y = f+(x, y), for all x ≥ y. It is not differentiable at
x = y, but for x < y, it is differentiable, with gradient equal to ∇f−(x, y) = (−1, 1)′,
and for x > y, it is differentiable, with gradient equal to ∇f+(x, y) = (1,−1)′.
On the plane {(x, y) : x = y}, the generalized jacobian is the set: ∂f(x, y) =
{(−1, 1)′; (1,−1)′}.
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Sensitivity Analysis w.r.t Competitors’ Strategy

Another sensitivity feature of importance to firms is how sensitive their best response
strategy is to changes in their competitors’ behaviors. In particular, since the best-
response strategies are computed using a firm’s belief on its competitors, and that
this belief might be inaccurate, firms should keep track of how their strategy would
differ, should their competitors behave differently than they believed.
A similar theorem to that regarding sensitivity analysis w.r.t the parameters states
that the best-response as a function of competitors’ strategy is directionally differen-
tiable and that the directional derivative is the unique solution to a convex quadratic
program. In what follows, we consider the best-response for fixed parameters βi, and
therefore drop the dependence on βi from the notation.

Proposition 3.7. Let Pi(p−i) be the best-response solution for competitors’ strategy
p−i. Assume that KKT conditions are necessary and sufficient at Pi(p−i), and let
λi, µ̄i, µi

be the corresponding KKT multipliers. Under Assumptions 3.1 to 3.8, there
exist open neighborhoods U of p−i and V of Pi(p−i) such that:

1. Pi(.) is continuous in U , such that Pi(p−i) is best-response solution for all
p−i ∈ U ;

2. The function Pi(.) is directionally differentiable, and for all directions d−i ∈
R(N−1)T , the directional derivative yi = P ′

i(p−i;d−i) is the unique solution to
the following convex quadratic problem, denoted QP(p−i;d−i):

min
yi∈C(p−i;d−i)

1

2
yi

′∇2
iiLi(P̄i,p−i,Mi)yi + d−i

′∇2
i,−iLi(P̄i,p−i,Mi)yi (3.8)

where C(p−i;d−i) is the critical cone at Pi(p−i) in direction d−i

3. Furthermore, Pi(.) is piecewise continuously differentiable and P ′
i(p−i; .) is piece-

wise linear.

3.1.2 The Cournot Best-Response Problem

In Chapter 2, we defined as pi(qi(t),q−i(t), αi(t)) the inverse demand function, also
called price function, for parameters αi(t), as well as the best-response optimization
problem:

max
qi

πi(qi,q−i, αi) =
∑T

t=1 qi(t)pi(qi(t), q−i(t), αi(t))

s.t
∑T

t=1 qi(t) ≤ Ci

0 ≤ qi(t)

For fixed parameter value αi and fixed competitors’ strategy q−i, we denote by Qi)
the feasible set of the best-response problem, in other words:

Qi = {qi :
T∑

t=1

qi(t) ≤ Ci, 0 ≤ qi(t) ≤ qmax
i }
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Notice that unlike the Bertrand feasible set, the Cournot feasible set is independent
of competitors’ strategy and of the price-demand parameters.
The feasible set of parameters was denoted Ai. We now state the assumptions on
the price function that we consider in this Chapter. We then give examples of widely
used inverse demand functions in the revenue management and pricing literature for
which these assumptions hold.

Assumptions on the Price Function

Assumption 3.9. First, we assume continuity and differentiability of the price func-
tion pi w.r.t qi(t).

Assumption 3.10. The market is for ordinary goods, which means that the price
function is increasing in the firm’s own quantity, or equivalently: ∂pi

∂qi(t)
< 0.

Assumption 3.11. We focus on a market for substitutable products. In other words:
∂pi

∂qj(t)
≤ 0, ∀j 6= i.

Assumption 3.12. We assume strict concavity of the revenue rate qi(t)pi(qi(t), q−i(t))
in qi(t). A weaker assumption is to assume strict pseudo-concavity of the revenue
function πi(qi,q−i) in qi.

Assumption 3.9 guarantees that the best-response problem is a smooth optimization
problem. Assumption 3.10 implies that the demand for the good decreases when the
price of the good increases, ceteris paribus. Assumption 3.11 means that firm i’s price
function is non increasing in firm j’s quantity, for all j 6= i.Strict pseudo concavity in
Assumption 3.12 has the same meaning as in Assumption 3.4.
Remarks:

• Recall that in the case of the Bertrand best-response problem, we assumed
convexity of the demand function. This guarantees that the feasible set of the
Bertrand best-response problem be a convex set. In the Cournot best-response
problem, the feasible set is polyhedral, hence, convexity of the price function is
not necessary. Furthermore, we assumed existence of a maximum price in order
to guarantee compactness of the feasible set. In the Cournot best-response
problem, qi(t) ≥ 0 and

∑T
t=1 qi(t) ≤ Ci imply that each component qi(t) is at

most Ci. Thus compactness holds without requiring existence of a maximum
quantity. This difference is essentially technical and does not have an impact in
real applications. Finally, we made the technical assumption that a firm cannot
participate in the market while posting a zero price. This technical assumption
finds its main applicability in the second bullet point below.

• We can obtain a formulation of the Bertrand best-response problem with a
polyhedral feasible set, provided the following assumption holds:

Assumption 3.13. The demand function qi(., q−i(t), βi(t)) is invertible w.r.t
pi, and we denote by p̆i(., q−i(t), βi(t)) its inverse. In other words:

qi(t) = qi(pi(t), q−i(t), βi(t))⇔ pi(t) = p̆i(qi(t), q−i(t), βi(t))
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Let π̆i(qi,p−i, βi) =
∑T

t=1 qi(t)p̆i(qi(t), q−i(t), βi(t)).

Proposition 3.8. The Bertrand best-response problem can be reformulated as
follows:

max
qi

π̆i(qi,p−i, βi) (3.9)

s.t
∑T

t=1 qi(t) ≤ Ci (3.10)

0 ≤ qi(t) (3.11)

Proof. Let pi be a feasible price vector for the Bertrand best response

problem. Let us denote by q̆i(t) = qi(pi(t), p−i(t), βi(t)). Constraint (3.9) follows
by substitution of qi(pi(t), p−i(t), βi(t)) by qi(t) in Constraint (2.2). Let us
consider Constraint (2.3), i.e 0 ≤ pi(t) ≤ pmax

i of the Bertrand best-response
problem. Applying function qi which is decreasing in pi(t) yields:

qi(p
max
i , p−i(t), βi(t)) ≤ qi(pi(t), p−i(t), βi(t)) ≤ qi(0, p−i(t), βi(t))

By Assumption 3.6, the left hand side term is nonnegative, and by Assumption
3.7, the right hand side term is strictly greater than Ci. But since Constraint
(3.9) implies that qi(t) ≤ Ci, then under our assumptions, Constraint (2.3) is
equivalent to: 0 ≤ qi(t).

Examples of Suitable Inverse Demand Functions

Among the demand functions which are widely used in the Revenue Management and
Pricing literature, which ones have inverse demand functions that satisfy the above
assumptions?

• Inverse linear demand function:

pi(qi(t), q−i(t), αi(t)) = αi0(t)−
N∑

j=1

αij(t)qj(t)

Assumptions 3.9 to 3.12 are satisfied for αii(t) > 0, αij(t) ≥ 0, ∀ j 6= i.
Hence, the feasible set Ai is:

Ai = {αi : αii(t) ≥ ε ∀ i, t

αij(t) ≥ 0 ∀ i, t ∀ j 6= i}

where ε > 0.

• Inverse loglinear demand function:

pi(qi(t), q−i(t), αi(t)) = αi0(t)−
N∑

j=1

αij(t) ln(qj(t))
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Assumptions 3.9 to 3.12 are satisfied for αt
ii > 0 and αt

ij ≥ 0 ∀ j 6= i.
Hence, the feasible set Ai is:

Ai = {αi : αii(t) ≥ ε ∀ i, t

αij(t) ≥ 0 ∀ i, t ∀ j 6= i}

where ε > 0.

• Inverse constant elasticity demand function:

pi(qi(t), q−i(t), αi(t)) = exp

(
αi0(t)−

N∑

j=1

αij(t) ln(qj(t))

)

Assumptions 3.9 to 3.12 are satisfied for 0 < αt
ii < 1 and αt

ij ≥ 0 for i 6= j.
Hence, the feasible set Ai is:

Ai = {αi : ε ≤ αii(t) ≤ 1− ε ∀ i, t

αij(t) ≥ 0 ∀ i, t ∀ j 6= i}

where ε > 0.

Existence and Uniqueness of the Best-Response Solution

Given the above assumptions we establish the following properties concerning the
best-response problem:

Proposition 3.9. The best-response problem under Cournot competition has a unique
solution, denoted Qi(q−i, αi).

Proof. • Existence of the best-response solution:
The revenue function is continuous in qi and the feasible set is compact: it is
a polyhedron included in the cube [0, Ci]

N . Hence, by Weierstrass’ s theorem,
there exists a solution to the best-response problem.

• Uniqueness of the best-response

solution:
The proof of uniqueness is similar to that of the Bertrand best-response problem.

Equivalence of the best-response problem to a variational inequality

We now establish the equivalence of the best-response problem to a variational in-
equality.
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Proposition 3.10. The best-response problem BRi(q−i, αi) is equivalent to a varia-
tional inequality in the following sense:
qi = Qi(q−i, αi) solves the best-response problem iff it solves the following variational
inequality, denoted V I(−∇iπi(.,q−i, αi),Qi):

−∇iπi(qi,q−i, αi)′(q̃i − qi) ≥ 0

for all q̃i ∈ Qi.

We omit the proof, since it is similar to that for the Bertrand best-response prob-
lem.

First Order Optimality Conditions

In what follows, we show that the Cournot best-response problem is equivalent to its
KKT conditions.

Proposition 3.11. Assume that there is a feasible quantity vector qi for which
πi(qi,q−i, αi) > 0.
Then Qi(q−i, αi) is the best-response solution iff there is a scalar λi ≥ 0, and a vector
in RT µi ≥ 0 such that the following system holds at qi = Qi(q−i, αi):

−∇iπi(qi,q−i, αi) + λi∇igi(qi)−
T∑

t=1

µi(t)e(t) = 0 (3.12)

λigi(qi) = 0 (3.13)

µi
′qi = 0 (3.14)

gi(qi) ≤ 0 (3.15)

0 ≤ qi (3.16)

λi, µi are called KKT multipliers corresponding to the constraints gi(qi) ≤ 0, qi ≥ 0.

Proof. Let us fix competitors’ strategy q−i and parameters αi.
Let qi = Qi(q−i, αi). Let Ii(qi) = {t : qi(t) = 0} be the set of active nonnegativity
constraints.

• The KKT conditions are necessary to optimality if the set of gradients of the
tight constraints is linearly independent. Since there exists a feasible quantity
for which the revenue is strictly positive, then the optimal quantity cannot be
zero. Hence, Ii(qi)  {1, . . . , T}.
Assume that capacity is not tight: then the set of gradients of active constraints
is {e(t), t ∈ Ii(qi)}. And since Ii(qi)  {1, . . . , T}, then the set is linearly
independent.
Assume that capacity is tight. The gradient ∇igi(qi) = e =

∑T
t=1 e(t). But

since Ii(qi)  {1, . . . , T}, it follows that the gradients of active constraints are
linearly independent.
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• The KKT conditions are sufficient for optimality if the objective function πi

is pseudo-concave and gi is quasi-convex in pi. Pseudo-concavity follows from
Assumption 3.12, and quasi-convexity follows by linearity of gi.

The fact that the best-response problem is equivalent to the KKT system of equations
proves that the problem is NP-hard.
Furthermore, we prove that the KKT multipliers are unique.

Proposition 3.12. Let Qi(q−i, αi) be the solution to best-response problem BRi(q−i, αi).
Assume that it is also solution to the KKT conditions. Then there is a unique
scalar λi(q−i, αi), and a unique vector µi(q−i, αi) solving the KKT conditions at
qi = Qi(q−i, αi)

Proof. The proof is in two parts:

1. Assume that capacity is not tight at Qi(q−i, αi):
Then λi = 0 and thus the KKT conditions become:

−∇iπi(qi,q−i, αi)−
T∑

t=1

µi(t)e(t) = 0

For t ∈ Ii(qi), we have µi(t) = 0, else for t /∈ Ii(qi), we have µi(t) =
− ∂πi

∂qi(t)
(qi,q−i, αi).

Hence, the multipliers are uniquely defined.

2. Assume capacity is tight at Qi(q−i, αi). Then we have the following:

• For t /∈ Ii(qi), we have µi(t) = 0. Therefore the KKT conditions are:

−
∂πi

∂qi(t)
(qi,q−i, αi) + λi = 0

T∑

t=1

qi(t) = Ci

Hence,, λi = ∂πi

∂qi(t)
(qi,q−i, αi), for all t /∈ Ii(qi).

• We can now replace λi by its value, and solve for µi(t) for all t ∈ Ii(qi):

µi(t) = λi −
∂πi

∂qi(t)
(qi,q−i, αi)

Therefore the multipliers are uniquely defined.
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Sensitivity Analysis w.r.t Parameters

In this section, we aim at quantifying how much the best-response
quantity varies when the value of the parameters changes. We prove that under

some additional assumptions, the best-response as a function of the parameters αi is
a well defined function which is piecewise continuously differentiable (PC1), whose
directional derivative in any direction is given as the unique solution to a quadratic
program.
We are able to leverage a key difference between the Bertrand and Cournot competi-
tive settings. Indeed, under Cournot competition, the feasible set of the best-response
problem, i.e Qi = {q ≥ 0 :

∑T
t=1 qi(t) ≤ Ci} is a polyhedral set, independent on

the value of the parameter α. Sensitivity analysis results in the polyhedral case take
a somewhat simpler form.
Let us fix a vector of parameters ᾱi. Q̄i = Qi(q−i, ᾱi) is the corresponding best-
response solution for competitors’ strategy equal to p−i. We define the following
polyhedral cone:

• If the capacity constraint is tight, i.e
∑T

s=1 Q̄i(s) = Ci:

Qi⊥(ᾱi) = {xi ∈ R
T : ∇iπi(Q̄i,q−i, ᾱi)

′xi = 0

xi(t) ≥ 0 ∀ t ∈ Ii(Q̄i)
T∑

s=1

xi(s) ≤ 0}

• If the capacity constraint is not tight, i.e
∑T

s=1 Q̄i(s) < Ci:

Qi⊥(ᾱi) = {xi ∈ R
T : ∇iπi(Q̄i,q−i, ᾱi)

′xi = 0

xi(t) ≥ 0 ∀ t ∈ Ii(Q̄i)}

To gain intuition on the meaning of the cone, assume that Qi is differentiable. Notice
that ifQi(αi) ∈ Qi is the best-response quantity for parameter value αi, then direction
Qi(αi)−Q̄i belongs to {xi : xi(t) ≥ 0 ∀ t ∈ Ii(Q̄i)} if capacity is not tight at Q̄i, and
{xi : xi(t) ≥ 0 ∀ t ∈ Ii(Q̄i),

∑T
s=1 xi(s) ≤ 0} otherwise.

Furthermore, we have the following fist order approximation for πi:

πi(Qi(αi),q−i, αi)− πi(Q̄i,q−i, ᾱi)

≈ ∇iπi(Q̄i,q−i, ᾱi)
′Q′

i(q−i;di) +∇iπi(Q̄i,q−i, ᾱi)
′di

Since Qi(αi) − Q̄i ≈ Q′
i(ᾱi;di) where di = αi − ᾱi, then the first term of the right

hand side of the equation vanishes.
We introduce the following assumption, under which the differentiability result holds:

Assumption 3.14. The matrix ∇2
i,iπi(qi,q−i, αi) is negative definite on the linear

subspace Qi −Qi⊥(ᾱi) = {qi : ∃di ∈ Qi⊥(ᾱi) | qi + di ∈ Qi}.
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Note that, without the restriction on the linear subspace, the above assumption would
be the negative definiteness of the Hessian matrix of the revenue function, which is
equivalent to the concavity of the revenue function.

Proposition 3.13. Under differentiability of ∇iπi w.r.t qi and αi in a neighborhood
of (Q̄i, ᾱi), and under Assumption 3.14, there exist neighborhoods U of ᾱi and V of
Q̄i, and a Lipschitz continuous function Qi(.) : U 7→ V such that:

1. for all αi ∈ U , Qi(αi) is the solution to the best-response problem at parameter
αi;

2. for all αi ∈ U , Qi(αi)− Q̄i ∈ Qi⊥(ᾱi);

3. Qi(.) is piecewise continuously differentiable at ᾱi and the directional derivative
in any direction di, denoted Q′

i(ᾱi;di) is the unique solution to the following
convex quadratic optimization problem QP(ᾱi;d):

min
xi

−1
2
xi

′∇2
i,iπi(Q̄i,p−i, ᾱi)xi + xi

′∇2
i,αi
πi(Q̄i,p−i, ᾱi)di

s.t xi ∈ Qi⊥(ᾱi)

Proof. The proof is to be found in [71].

Since Qi(.) is PC1, there is a finite family of continuously differentiable func-
tions {ψ1(αi), . . . , ψK(αi)} such that Qi(αi) = ψk(αi) for some k. As a result, the
directional derivative is such that:

Q′
i(αi;di) = ∇ψk(αi)

′di

so that the generalized jacobian of Qi(.) is:

∂Qi(αi) = {∇ψk(αi) ∀ k s.t Qi(αi) = ψk(αi)}

Furthermore, Qi(.) is Bouligand differentiable, which means that the directional
derivative is a first order approximation of the function:

Qi(αi + di) = Qi(αi) +Q′
i(αi;di) + odi→0(‖di‖)

We will use this property in Chapter 6.

Sensitivity Analysis w.r.t Competitors’ Strategy

It is also important for companies to track how sensitive their best-response quantity
is to changes in their competitors’ strategy. We can establish a similar result to the
sensibility to parameters.
We fix parameters to αi and drop the dependence on parameters from the notation.

Proposition 3.14. Let q−i and Q̄i = Qi(q−i) be the corresponding best-response
solution. Under differentiability of ∇iπi w.r.t qi and αi in a neighborhood of (Q̄i, ᾱi),
and under Assumption 3.14, there exist a neighborhood U of q−i and V of Q̄i, and a
Lipschitz continuous function Qi(.) : U 7→ V such that:
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1. for all q−i ∈ U , Qi(p−i) is the solution to the best-response problem at parameter
p−i;

2. for all p−i ∈ U , Qi(p−i)−Qi(q−i) ∈ Qi⊥(αi);

3. Qi(.) is piecewise continuously differentiable at q−i and the directional derivative
in any direction d−i, denoted Q′

i(q−i;d−i) is the unique solution to the following
convex quadratic optimization problem QP(q−i;d−i):

min
yi

−1
2
yi

′∇2
i,iπi(Q̄i,p−i)yi + yi

′∇2
i,−iπi(Q̄i,p−i)d−i

s.t yi ∈ Qi⊥(αi)

3.2 Study of the Equilibrium Problem

In this section, we study the equilibrium problem for known price-demand relation-
ship. The problem was introduced in Section 2.2.3 under Bertrand competition, and
in Section 2.3.3 under Cournot competition. We reformulate the equilibrium prob-
lem under Bertrand competition as a quasi variational inequality, and under Cournot
competition as a variational inequality. Using tools from variational inequalities and
quasi variational inequalities, we establish existence and uniqueness of the Nash equi-
librium. We then perform sensitivity analysis on the Nash equilibrium, in order to
quantify how changes in parameters affects the equilibrium.

3.2.1 The Bertrand Equilibrium Problem

In Section 2.2.3, we formulated the equilibrium problem as a fixed point of the best-
response mappings of the firms:

Pi(β) = Pi(P−i(β), βi) ∀ i = 1, . . . , N

In other words, the set of Nash equilibrium prices (Pi(β))i=1,...,N is the simultaneous
solution to the N best-response problems of the firms.
Recall that the Bertrand equilibrium problem is a generalized equilibrium, in the
sense that each firm’s set of feasible prices depends on its competitors’ strategy. As
a result of this special feature of the Bertrand equilibrium problem, we need specific
tools to analyze the problem. In what follows, we establish that the generalized Nash
equilibrium is equivalent to a quasi variational inequality. We then prove existence
of the equilibrium solution, and its uniqueness under additional assumptions.

Equivalence of the Generalized Nash Equilibrium to a Quasi Variational

Inequality

A quasi variational inequality formulation is more general than a variational inequality
formulation in the sense that instead of being solved over a set of feasible solutions,
it is solved over a point-to-set mapping of feasible solutions:
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Definition 3.2. Let X ⊆ Rn, and f : X → Rm a function. Let K : X → 2R
n

be a
point-to-set mapping, i.e if x ∈ X, then K(x) is a subset of Rn. We define the quasi
variational inequality, denoted QV I(f,K) as follows: x∗ ∈ K(x∗) solves QV I(f,K)
if for all x ∈ K(x∗), we have:

f(x∗)′(x− x∗) ≥ 0

In what follows we define as P(p, β) = {p̃ : p̃i ∈ Pi(p−i, βi)} the point-to-set
mapping of the Bertrand generalized equilibrium. We now establish the equivalence
result.

Proposition 3.15. The generalized Nash equilibrium GNE(β) is equivalent to a quasi
variational inequality in the following sense:
P(β) is the generalized Nash equilibrium iff it solves the following QVI: for all p =
(p1, . . . ,pN) such that for all p ∈ P(p, β):

N∑

i=1

−∇iπi(Pi(β),P−i(β), βi)
′(pi − Pi(β)) ≥ 0

Proof. The result was established by Perakis and Sood [72].

Existence of a Generalized Nash Equilibrium

To establish a solution to the generalized Nash equilibrium problem, we cannot use
traditional results from the game theoretic literature. Indeed, the traditional game
theoretic framework assumes that the strategy set of each participant in the game is
independent of the strategy used by its competitors. As mentioned in Chapter 2, this
assumption is violated under Bertrand competition, due to the capacity constraint
which involves competitors’ strategy.
The literature on generalized Nash games is much more scarce than that on proper
Nash games, and existence and uniqueness results are harder to obtain.
Existence of a generalized Nash equilibrium was established by Rosen [78] for concave
games.

Proposition 3.16. There exists a generalized Nash equilibrium solution.

Proof. See Rosen [78].

Here we outline the idea of the proof. The proof relies on the application of Kaku-
tani’s fixed point theorem to a particular function. Rosen proves that a general-
ized Nash equilibrium solution is a fixed point of the mapping Γ such that Γ(p) =
arg maxp̃ ϕ(p̃,p), where the function ϕ is defined on the set P = {p : pi = Pi(p−i)}
as:

ϕ(p̂, p̌) =

N∑

i=1

πi(p̂i, p̌−i)
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Uniqueness of the Generalized Nash Equilibrium

In general, as documented by Sood [81], the generalized Nash equilibrium is not
unique. In this case, the Nash equilibrium has little predictive power as far as the
behavior of the firms in the market is concerned. Indeed, suppose that there exist
two distinct Nash equilibria p∗ and p∗∗. Then firm i may use p∗

i as pricing strategy,
whereas firm j uses p∗∗

j . But p∗
i is a best-response to p∗

−i, not to p∗∗
−i, and p∗∗

j is
best-response to p∗∗

−j, not to p∗
−j.

Rosen [78] establishes a condition on the pseudo gradient of the revenue function,
under which the generalized Nash equilibrium is guaranteed to have a unique solution.
We first introduce the notion of pseudo-gradient and of diagonal strict concavity of
the revenue function, and then state the uniqueness result.

Definition 3.3. Let σ(p, r) =
∑N

i=1 riπi(pi,p−i).
The pseudo-gradient of σ denoted h(p, r) is the N dimensional vector with components
ri∇iπi(pi,p−i).

Definition 3.4. Let σ(p, r) =
∑N

i=1 riπi(pi,p−i) with pseudo-gradient h(p, r).
Let P = {p : ∀i, pi ∈ Pi(p−i)}.
σ is said to be diagonally strictly concave if ∀ p1,p2 ∈ P with p1 6= p2, and for all
r ≥ 0, we have:

(p1 − p2)′h(p2, r) + (p2 − p1)′h(p1, r) > 0

In other words, σ is diagonally strictly concave if:

(−h(p1, r) + h(p2, r))′(p1 − p2) > 0

Hence, strict pseudo-concavity of σ is equivalent to strict monotonicity of −h.
Note that diagonally strict concavity implies for ri = 1 for all i that:

N∑

i=1

(
−∇iπi(p

1
i ,p

1
−i) +∇iπi(p

2
i ,p

2
−i)
)′

(p1
i − p2

i )

Hence, diagonally strict concavity is more stringent than strict monotonicity of−∇iπi(pi,p−i).
For instance, for the linear demand function, diagonal strict concavity is equivalent
to: for all r ≥ 0,

2riβii(t) > ri

∑

j 6=i

βij(t)

2riβii(t) >
∑

j 6=i

rjβji(t)

We now establish the uniqueness result due to Rosen [78]:

Proposition 3.17. Assume that the interior of P = {p : pi ∈ Pi(p−i)} is
nonempty.
Assume furthermore that σ(p, r) =

∑N
i=1 riπi(pi,p−i) is strictly pseudo concave.

Then the generalized Nash equilibrium is unique.
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First Order Optimality Conditions

We prove that the generalized equilibrium is equivalent to a system of equalities and
inequalities obtained from the KKT conditions for each best-response problem.

Proposition 3.18. Assume that if capacity is tight at Pi(β), then at least one of the
best-response prices is interior to the compact [0, pmax

i ].
Then P(β) is the generalized Nash equilibrium iff there are scalars λ1, . . . , λN ≥ 0,
and 2N vectors in RT µ

1
, . . . , µ

N
and µ1, . . . , µN ≥ 0 such that the following system

holds at p = P(β):
for all i = 1, . . . , N :

−∇iπi(pi,p−i, βi) + λi∇igi(pi,p−i, βi) +

T∑

t=1

(µi(t)− µi
(t))e(t) = 0 (3.17)

λigi(pi,p−i, βi) = 0 (3.18)

µi
′pi = 0 (3.19)

µ
i

′pi = 0 (3.20)

gi(pi,p−i, βi) ≤ 0 (3.21)

0 ≤ pi ≤ pmax
i (3.22)

Proof. • Assume that P(β) is the generalized Nash equilibrium. Then for all i,
Pi(β) solves the best-response problem BRi(P−i(β), βi). Hence, by Proposition
3.3, Pi(β) solves the KKT conditions with p−i = P−i(β). Since this is true for
all i, then the above system holds at p = P(β).

• Assume that the above system holds at p = P(β). Then in particular the KKT
conditions hold for each i for p−i = P−i(β). Hence, by virtue of Proposition
3.3, Pi(β) solves the best-response problem BRi(P−i(β), βi) for each i. By
definition, P(β) is therefore the generalized Nash equilibrium.

Sensitivity Analysis

We focus on quantifying how much the generalized Nash equilibrium changes, as
the parameters change. We state that the generalized Nash equilibrium solution is
directionally differentiable. The result is due to Outrata [70] and relies on the quasi
variational inequality formulation of the generalized Nash equilibrium. Toward this
end, we introduce some notation.
Let p, β be a set of prices and parameters. For ease of notation, we denote the
constraints of the Nash equilibrium by hk(p,p

′, β), for k = 1, . . . , (2T + 1)N :

hk(p,p
′, β) =

T∑

t=1

qi(pi(t), p
′
−i(t), βi(t))− Ci, k = 1, . . . , N

hk(p,p
′, β) = pi(t)− p

max
i , k = N + 1, . . . , N(T + 1)

hk(p,p
′, β) = −pi(t), k = N(T + 1) + 1, . . . , N(2T + 1)
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Hence, the feasible mapping of the QVI writes:

P(p, β) = {p′ : hk(p,p
′, β) ≤ 0 ∀ i = 1, . . . , N}

We denote by F(p, β) its objective function, i.e:

Fi(p, β) = −∇iπi(pi, ,p−i, βi)

The QVI writes: find p ∈ P(p, β) such that the following holds for all p′ ∈ P(p, β):

F(p, β)′(p′ − p) ≥ 0

It is well-known that the QVI is equivalent to finding the fixed point of the projection:

p = ProjP(p,β)(p− F(p, β))

We denote by Z(p, β) the projection operator, and by W (p, β) = p− Z(p, β).
For ease of notation, we drop the dependence in β and simply denote by P the
generalized Nash equilibrium when the parameters are equal to β.
Let I(P, β) = {k : hk(P,P, β) = 0}, I+(P, β) = {k ∈ I(P, β) : λk > 0} where λk is
the multiplier corresponding to constraint k, and I0(P, β) = {k ∈ I(P, β) : λk = 0}.
We denote by H(p,p′, β) the vector with components hk(p,p

′, β), k = 1, . . . , N(2T +
1).
We define the Lagrangian function of the projection operator as:

LZ(p,p′, β, λ) = p′ − p + F(p, β) +∇p′H(p,p′, β)′λ

The Lagrangian function associated with the QVI is:

L(p, β, λ) = F(p, β) +∇p′H(p,p, β)′λ

In particular, we have: L(p, β, λ) = LZ(p,p, β, λ).
If I is an index set, then MI denotes the submatrix of row vectors Mi, i ∈ I and vI

denotes the subvector of components vi i ∈ I.
We introduce the following additional assumption, in terms of the Lagrangian of the
projection operator Z, under which directional differentiability holds:

Assumption 3.15. For all i ∈ I0(P, β), there exist matrices Ai,Bi,Ci,Di solving
the following equations:

−∇p′LZ(p,p′, β, λ)Ai +∇p′HI+
S

{i}(p,p
′, β)′Bi = −∇βLZ(p,p′, β, λ)

∇p′HI+
S

{i}(p,p
′, β)Ai = ∇βHI+

S

{i}(p,p
′, β)

∇p′LZ(p,p′, β, λ)(E−Ci) +∇p′HI+
S

{i}(p,p
′, β)′Di = −∇pLZ(p,p′, β, λ)

−∇p′HI+
S

{i}(p,p
′, β)(E−Ci) = ∇pHI+

S

{i}(p,p
′, β)

where E is the matrix of coefficients equal to 1.
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Proposition 3.19. Under Assumptions 3.1 through 3.15, the generalized Nash equi-
librium solution P(β) is directionally differentiable, and its directional derivative in
any direction d ∈ RNT , denoted P ′(β;d) is solution to the following linear quasi
variational inequality: x = P ′(β;d) solves for all y ∈ C′(x):

(∇pL(p, β, λ)x +∇βL(p, β, λ)d)′ (y − x)) ≥ 0

where C′(.) is the point-to-set mapping:

C′(x) = {y : ∇βhk(p,p, β)′d +∇phk(p,p, β)′x +∇p′hk(p,p, β)′y = 0 ∀ k ∈ I+(p, β)

∇βhk(p,p, β)′d +∇phk(p,p, β)′p +∇p′hk(p,p, β)′y = 0 ∀ k ∈ I0(p, β)}

3.2.2 The Cournot Equilibrium Problem

In section 2.3.3, we formulated the market equilibrium problem under Cournot com-
petition as fixed point of the best-response mappings of all the firms:

Qi(α) = Qi(Q−i(α), αi) ∀i = 1, . . . , N

In other words, the set of Nash equilibrium quantities (Qi(α))i=1,...,N is the simulta-
neous solution to the N best-response problems of the firms.
Unlike its Bertrand counterpart, the Cournot equilibrium problem is a proper Nash
equilibrium. In what follows, we prove equivalence of the Cournot Nash equilibrium
to a variational inequality, existence of its solution, and uniqueness under additional
assumption. We then perform sensitivity analysis on the Nash equilibrium, quantify-
ing how much the equilibrium is affected by changes in the parameters.

Equivalence of the Nash Equilibrium to a Variational Inequality

The feasible set of the Cournot Nash equilibrium is denoted Q = Qi×QN , where Qi

are the feasible set of the best-response problems.

Proposition 3.20. The Cournot Nash equilibrium Q(α) is equivalent to a variational
inequality in the following sense:
Q(α) is the Nash equilibrium iff it solves the following variational inequality: for all
q ∈ Q, we have:

N∑

i=1

−∇iπi(Qi(α),Q−i(α), αi)
′(qi −Qi(α)) ≥ 0

Proof. • Assume Q(α) is solution to the Nash equilibrium, i.e for all i, Qi(α) is
solution to the best-response problem BRi(Q−i(α), αi). Thus for all i, Qi(α)
solves the variational inequality of Proposition 3.10.
Summing up the VIs yields: For all q = (q1, . . . ,qN), such that for all i, qi ∈ Qi:

N∑

i=1

−∇iπi(Qi(α),Q−i(α), αi)
′(qi −Qi(α)) ≥ 0
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• Assume that Q(α) solves the above variational inequality. Pick i ∈ {1, . . . , N}.
Let qi ∈ Qi. Let q = (Q1(α), . . . ,Qi−1(α),qi,Qi+1(α), . . . ,QN(α)) and apply
the variational inequality to q: all the terms j 6= i cancel and there remains:

−∇iπi(Qi(α),Q−i(α), αi)
′(qi −Qi(α)) ≥ 0

Hence, by Proposition 3.10, Qi(α) solves BRi(Q−i(α), αi). Since this holds for
all i, then Q(α) is the Nash equilibrium.

Uniqueness of the Nash Equilibrium

Without any additional assumption, the Cournot Nash equilibrium might not be
unique. To see this, consider the linear allocation model, with the following set of
parameters:

αii(t) = α ∀ i, t

αij(t) = 2α ∀ j 6= i, t

αi0(t) = α0 ∀ i

Assume that Ci >
α0

4α
T for all i, and that Ci = Cj = C for all i, j 6= i.

Then the first order optimality conditions yield: for all i:

α0 − 2α(qi(t)−
1

N − 1

∑

j 6=i

qj(t)) = 0

Hence, in matrix notation, the first order optimality conditions are:




1 · · · 1
...

. . .
...

1 · · · 1


q(t) =

α0

2α
e

Since the matrix is not invertible, several solutions exist.
We therefore introduce an additional assumptions sufficient for uniqueness of the
equilibrium.
Let F(q, α) the function such that for all i, Fi(q, α) = −∇iπi(qi,q−i, αi).
We also denote by Q = {q : Aq ≤ b} the polyhedral feasible set of the Cournot
Nash equilibrium.

Assumption 3.16. F(q, α) is strictly monotone on Q = Q1 × . . .×QN .
In other words, ∀ q̂, q̌ ∈ Q such that q̂ 6= q̌, we have:

(F(q̂, α)− F(q̌, α))′(q̂− q̌) > 0

Proposition 3.21. Under Assumption 3.16, The Nash equilibrium is unique.
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Proof. The Nash equilibrium is equivalent to the following variational inequality:
∀ q ∈ Q:

F(Q(α), α)′(q−Q(α)) ≥ 0

It is a well-known result that a variational inequality with strictly monotone function
over a convex and compact set has a unique solution (see for instance Nagurney
[68]).

First Order Optimality Conditions

We prove that the Nash equilibrium is equivalent to a system of equalities and in-
equalities obtained from the KKT conditions of the firms’ best-response problems.

Proposition 3.22. Assume that there is a feasible vector q for which πi(qi,q−i, αi) >
0 for all i = 1, . . . , N .
Then Q(α) is the Nash equilibrium solution iff there are scalars λ1, . . . , λN ≥ 0, and
N vectors in RT µ1, . . . , µN ≥ 0 such that the following system holds at q = Q(α):
for all i = 1, . . . , N :

−∇iπi(qi,q−i, αi) + λi∇igi(qi)−
T∑

t=1

µi(t)e(t) = 0 (3.23)

λigi(qi) = 0 (3.24)

µi
′qi = 0 (3.25)

gi(qi) ≤ 0 (3.26)

0 ≤ qi (3.27)

The proof is very similar to the Bertrand case and is therefore omitted.

Sensitivity Analysis

We focus on quantifying changes in the Nash equilibrium as the parameters change.
We now prove that the Nash equilibrium is directionally differentiable, and that the
directional derivative is obtained as the solution to an affine variational inequality.
We utilize results from sensitivity analysis for variational inequalities, making explicit
use of the fact that the feasible set of the variational inequality corresponding to the
Cournot Nash equilibrium is polyhedral.
Let us fix ᾱ ∈ A. We define the following polyhedral cone at Q(α) denoted Q⊥:

Q⊥ = {d : F(Q(ᾱ), α)′d = 0

AIq ≤ 0}

where AI denotes the rows of the matrix A corresponding to the active constraints
of Aq ≤ b, and bI is the corresponding subvector, so that AIq = bI .
With this notation at hand, we introduce the following assumption sufficient for the
differentiability result to hold.
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Assumption 3.17. The matrix ∇qF(P(ᾱ), ᾱ) is positive definite on the span of Q⊥.

Proposition 3.23. Under differentiability assumption of F w.r.t q and α, and under
Assumption 3.17, then there exist neighborhoods U of ᾱ and V of Q̄ and a Lipschitz
continuous function Q(.) : U 7→ V such that:

1. for all α ∈ U , Q(α) is the solution to the best-response problem at parameter α;

2. for all α ∈ U , Q(α)−Q(ᾱ) ∈ Q⊥;

3. Q(.) is piecewise continuously differentiable at ᾱ and the directional derivative
in any direction d, denoted Q′(ᾱ;d) is the unique solution to the following affine
variational inequality: x = Q′(ᾱ;d) solves for all x′ ∈ Q⊥:

(
∇qF(Q̄, α)x +∇αF(Q̄, α)d

)′
(x′ − x) ≥ 0
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Chapter 4

Dynamic Policies with Learning

In this chapter, we consider the joint dynamic control policies with learning. That is,
unlike Chapter 3, where the parameters of the price-demand relationship were known,
here we consider that the parametric form of the price-demand relationship is known,
but the value of its parameters are unknown and thus need to be learned. The goal of
the firms in this setting is therefore twofold. First, the firms seek to learn the price-
demand relationship. For this purpose, they use a data-driven approach, dynamically
updating their estimates of the parameters of the price-demand relationship with the
most up-to-date market information. The firms also seek to find the optimal pricing
or allocation policies.
The content of this chapter is as follows. We first study the market in disequilibrium,
i.e when learning of the equilibrium strategies and of the price-demand relationship
occur concomitantly. Under Bertrand and Cournot competition, we give two alter-
native formulations of the joint dynamic control with learning: as a mixed integer
program and as a bilevel problem. We then study the market in equilibrium, i.e when
learning of the equilibrium strategies has occurred and the firms seek to learn the
price-demand relationship. Under Bertrand and Cournot competition, we give two
alternative formulations of the joint dynamic control with learning: as a mixed integer
program, and as a Mathematical Program with Equilibrium Constraints (MPEC).

4.1 Dynamic Policies with Learning in Disequilib-

rium

In this section, we consider the problem faced by each firm at each period in the
selling horizon when the market is in disequilibrium. In Chapter 2, we have seen
that each firm wants to achieve two goals: learn the price-demand relationship, and
find its optimal strategy, given its belief regarding its competitors’ behavior. We
formulated the problem as a two-step problem: first, each firm determines its best-
response strategy, assuming the parameters governing the price-demand relationship
are known. Then each firm updates its estimate of those parameters, integrating the
most up-to-date market information.
We show that these two steps can be performed jointly and formulate them as a single

71



problem. They are indeed equivalent to a bilevel problem, and also to a mixed integer
program.

4.1.1 Dynamic Pricing with Learning in Disequilibrium

We focus on the problem under Bertrand competition. At period t, if firm i believes
its competitors use pricing strategy p−i, then the first two steps of the dynamic pricing
with learning problem are as follows:

1. Computation of the best-response strategy, assuming the price sensitivities βi

are known:

max
pi

πi(pi,p−i, βi) =
∑T

t=1 pi(t)qi(pi(t), p−i(t), βi(t))

s.t
∑T

t=1 qi(pi(t), p−i(t), βi(t)) ≤ Ci

0 ≤ pi(t) ≤ pmax
i

2. Estimation of the price sensitivities, assuming that the best-response of firm i
is known:

min
βi∈Bi

−1∑

h=−H

{
T∑

s=1

(
p̂i

h(s)− Pi(s,p−i(h), βi)
)2

}+

T∑

s=1

(
p̂i

0(s)− Pi(s,p−i, βi)
)2

We show using the reformulations of the best-response problem given in Chapter 3
that the two steps can be formulated as a single problem in two ways: as a bilevel
problem, or as a mixed integer program.

Formulation as a Bilevel Problem

Step 2 takes as input the solution of Step 1. Thus Steps 1 and 2 can be seen as the
leader and follower of a Stackelberg game:

• Step 1 is the follower: its strategic variable is the price pi, which is chosen once
the parameter βi is known.

• Step 2 represents the leader: its strategic variable is βi, and is chosen knowing
the strategy of the follower.

As a result Steps 1 and 2 together can be formulated as a bilevel problem: the objec-
tive of the leader forms the upper level optimization problem, whereas the objective
of the follower is the lower level:

min
βi∈Bi,pi

∑−1
h=−H{

∑T
s=1

(
p̂i

h(s)− pi(s)
)2

}+
∑T

s=1

(
p̂i

0(s)− pi(s)
)2

(4.1)

s.t max
pi

πi(pi,p−i, βi) =
∑T

t=1 pi(t)qi(pi(t), p−i(t), βi(t)) (4.2)
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∑T
t=1 qi(pi(t), p−i(t), βi(t)) ≤ Ci (4.3)

0 ≤ pi(t) ≤ pmax
i (4.4)

Formulation as a Mixed Integer Program

In 3.1.1, we proved that the best-response problem for known price sensitivities is
equivalent to the system of equalities and inequalities formed by its KKT conditions.
Hence, in the above bilevel problem, the lower level best-response problem can be
replaced by the system of KKT conditions. This yields the following single-level
optimization problem:

min
βi,pi,µi,µi

,λi

∑−1
h=−H{

∑T
s=1

(
p̂i

h(s)− pi(s)
)2

}+
∑T

s=1

(
p̂i

0(s)− pi(s)
)2

s.t −∇iπi(pi,p−i, βi) + λi∇igi(pi,p−i, βi) +
∑T

t=1(µi(t)− µi
(t))e(t) = 0

λigi(pi,p−i, βi) = 0

µi
′(pi − pi

max) = 0

µ
i

′pi = 0

βi ∈ Bi

gi(pi,p−i, βi) ≤ 0

0 ≤ pi ≤ pmax
i

λi ≥ 0, µi, µi
≥ 0

As noted in 3.1.1, the KKT conditions contain the disjunctive constraints:

λigi(pi,p−i, βi) = 0

µi
′(pi − pi

max) = 0

µ
i

′pi = 0

A disjunctive constraint of the form x.y = 0 can be reformulated as a mixed integer
constraint by introducing two auxiliary binary variables x′, y′ ∈ {0, 1} and replacing
constraint x.y = 0 by:

x ≤Mx′

y ≤ My′

x′ + y′ ≤ 1

where M is taken large enough so that x, y ≤M .
Consider now a disjunctive constraint of the form x′y = 0. We introduce two vectors
of binary variables x′,y′ and replace the former constraint by:

x ≤Mx′

y ≤My′
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x′ + y′ ≤ e

As a result, we can rewrite the bilevel problem as a single level mixed integer program.

min
∑−1

h=−H{
∑T

s=1

(
p̂i

h(s)− pi(s)
)2

}+
∑T

s=1

(
p̂i

0(s)− pi(s)
)2

s.t −∇iπi(pi,p−i, βi) + λi∇igi(pi,p−i, βi) +
∑T

t=1(µi(t)− µi
(t))e(t) = 0

λi ≤Mxi

gi(pi,p−i, βi) ≤Mx′i
xi + x′i ≥ 1

µi ≤ M ȳi

pi − pi
max ≤M ȳ′

i

ȳi + ȳ′
i ≥Me

µ
i
≤My

i

pi ≤ My′
i

y
i
+ y′

i
≥ e

gi(pi,p−i, βi) ≤ 0

0 ≤ pi ≤ pmax
i

λi ≥ 0, µi, µi
≥ 0

xi, x
′
i ∈ {0, 1}, µi, µ

′
i, µi

, µ′
i
∈ {0, 1}T

βi ∈ Bi

4.1.2 Dynamic Allocation with Learning in Disequilibrium

We focus on the problem under Cournot competition. At period t, if firm i believes
its competitors use allocation strategy p−i, then the first two steps of the dynamic
allocation with learning problem are as follows:

1. Computation of the best-response allocation strategy, assuming the allocation
sensitivities αi are known:

max
qi

πi(qi,q−i, αi) =
∑T

t=1 qi(t)pi(qi(t), q−i(t), αi(t))

s.t
∑T

t=1 qi(t) ≤ Ci

0 ≤ qi(t)

2. Estimation of the allocation sensitivities, assuming that the best-response of
firm i is known:

min
αi∈Ai

−1∑

h=−H

{
T∑

s=1

(
q̂i

h(s)−Qi(s,p−i(h), αi)
)2

}+

T∑

s=1

(
q̂i

0(s)−Qi(s,q−i, αi)
)2
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We show using the reformulations of the best-response problem given in Chapter 3
that the two steps can be formulated as a bilevel problem, or as a mixed integer
program.

Formulation as a Bilevel Problem

Similarly to the Bertrand case, Step 2 of the Cournot case can be considered as the
leader, and Step 1 of the Cournot case as the follower of a Stackelberg game. As
a result, Step 2 is the upper level objective of a bilevel problem with Step 1 as the
lower-level objective:

min
αi∈Ai,qi

∑−1
h=−H{

∑T
s=1

(
q̂i

h(s)−Qi(s,q−i(h), αi)
)2

}+
∑T

s=1

(
q̂i

0(s)−Qi(s,q−i, αi)
)2

s.t maxqi
πi(qi,q−i, αi) =

∑T
t=1 qi(t)pi(qi(t), q−i(t), αi(t))∑T

t=1 qi(t) ≤ Ci

0 ≤ qi(t)

Formulation as a Mixed Integer Program

In 3.2.1, we proved that the Cournot best-response problem for known allocation
sensitivities is equivalent to the system of equalities and inequalities formed by its
KKT conditions. Hence, in the above bilevel problem, the lower level best-response
problem can be replaced by the system of KKT conditions. This yields the following
single-level optimization problem:

min
αi∈Ai,qiλi,µi

∑−1
h=−H{

∑T
s=1

(
q̂i

h(s)−Qi(s,q−i(h), αi)
)2

}+
∑T

s=1

(
q̂i

0(s)−Qi(s,q−i, αi)
)2

s.t −∇iπi(qi,q−i, αi) + λi∇igi(qi)−
∑T

t=1 µi(t)e(t) = 0

λigi(qi) = 0

µi
′qi = 0

gi(qi) ≤ 0

0 ≤ qi

The disjunctive complementary slackness constraints can be reformulated by introduc-
ing binary variables. As a result, the above optimization problem can be reformulated
as a mixed integer program as follows:

min
∑−1

h=−H{
∑T

s=1

(
q̂i

h(s)−Qi(s,q−i(h), αi)
)2

}+
∑T

s=1

(
q̂i

0(s)−Qi(s,q−i, αi)
)2

s.t −∇iπi(qi,q−i, αi) + λi∇igi(qi)−
∑T

t=1 µi(t)e(t) = 0

λi ≤Mxi

gi(qi) ≤ Mx′i
xi + x′i ≤ 1
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µi ≤Myi

qi ≤My′
i

yi + y′
i ≤ e

gi(qi) ≤ 0

0 ≤ qi

xi, x
′
i ∈ {0, 1},yi,y

′
i ∈ {0, 1}

T

αi ∈ Ai

4.2 Dynamic Policies with Learning in Equilibrium

In this section, we consider the problem faced by each firm at each period in the sell-
ing horizon when the market has achieved equilibrium. In Chapter 2, we have seen
that each firm wants to achieve two goals: learn the price-demand relationship for
itself and its competitors, and find the Nash equilibrium strategies. We formulated
the problem as a two-step problem: first, each firm determines the Nash equilib-
rium strategies, assuming the parameters governing the price-demand relationship
are known. Then each firm updates its estimate of the parameters for itself and its
competitors, integrating the most up-to-date market information.
We show that these two steps can be performed jointly and formulated as a single
problem. They are indeed equivalent to a Mathematical Program with Equilibrium
Constraints (MPEC), and also to a mixed integer program.

4.2.1 Dynamic Pricing with Learning in Equilibrium

We focus on the problem under Bertrand competition. At time t, the two steps of
the dynamic pricing with learning are as follows:

1. Computation of the Nash equilibrium strategies, assuming the price sensitivities
β are known:

Pi(β) = Pi(P−i(β), βi) ∀ i = 1, . . . , N

2. Computation of the price sensitivities, assuming the Nash equilibrium strategies
are known:

min
β∈B

N∑

i=1

{
−1∑

h=−H

{
T∑

s=1

(p̂i
h(s)−Pi(s, βi, β−i))

2}+

T∑

s=1

(p̂i
0(s)− Pi(s, βi, β−i))

2

}

Using the reformulations of the generalized Nash equilibrium given in Chapter 3, we
show that the two steps can be formulated as a single problem in two ways: as an
MPEC, or as a mixed integer program.
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Formulation as an MPEC

First, we showed in Proposition 3.15, that the generalized Nash equilibrium is equiv-
alent to a quasi variational inequality. Since Step 2 takes the optimal solution of Step
1 as input, then Step 1 is the lower level equilibrium constraint, of an MPEC whose
upper level objective is Step 1. Hence, Step 1 and 2 taken together form the following
MPEC:

min
β∈B,p∈P(p)

∑N
i=1

{∑−1
h=−H{

∑T
s=1(p̂i

h(s)− pi(s))
2}+

∑T
s=1(p̂i

0(s)− pi(s))
2
}

(4.5)

s.t ∀ p̃ ∈ P(p)
∑N

i=1−∇iπi(pi,p−i, βi)
′(p̃i − pi) ≥ 0 (4.6)

Formulation as a Mixed Integer Program

In Proposition 3.17, we showed that the generalized Nash equilibrium is equivalent
to a system of equalities and inequalities. Hence, if we replace the quasi variational
inequality of the lower level in the above MPEC, we can reformulate the dynamic
pricing with learning in equilibrium as a single level optimization problem.

min
β,p,λ,µ̄,µ

∑N
i=1

{∑−1
h=−H{

∑T
s=1(p̂i

h(s)− pi(s))
2}+

∑T
s=1(p̂i

0(s)− pi(s))
2
}

s.t −∇iπi(pi,p−i, βi) + λi∇igi(pi,p−i, βi) +
∑T

t=1(µi(t)− µi
(t))e(t) = 0 ∀ i

λigi(pi,p−i, βi) = 0 ∀ i

µi
′(pi − pi

max) = 0 ∀ i

µ
i

′pi = 0 ∀ i

βi ∈ Bi ∀ i

gi(pi,p−i, βi) ≤ 0 ∀ i

0 ≤ pi ≤ pmax
i ∀ i

We can reformulate the complementary slackness constraints by introducing binary
variables. This enables us to rewrite the above problem as a mixed integer program:

min
∑N

i=1

{∑−1
h=−H{

∑T
s=1(p̂i

h(s)− pi(s))
2}+

∑T
s=1(p̂i

0(s)− pi(s))
2
}

s.t −∇iπi(pi,p−i, βi) + λi∇igi(pi,p−i, βi) +
∑T

t=1(µi(t)− µi
(t))e(t) = 0 ∀ i

λi ≤ Mxi

gi(pi,p−i, βi) ≤Mx′i ∀ i

xi + x′i ≤ 1 ∀ i

µ̄i ≤ M ȳi ∀ i

pi ≤M ȳ′
i ∀ i

ȳi + ȳ′
i ≤ e ∀ i

µ
i
≤My

i
∀ i

pi ≤My′
i
∀ i
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y
i
+ y′

i
≤ e ∀ i

βi ∈ Bi ∀ i

gi(pi,p−i, βi) ≤ 0 ∀ i

0 ≤ pi ≤ pmax
i ∀ i

λi ≥ 0, µ
i
, µ̄i ≥ 0 ∀ i

xi, x
′
i ∈ {0, 1}, ȳi, ȳ

′
i,yi

,y′
i
∈ {0, 1}T ∀ i

4.2.2 Dynamic Allocation with Learning in Equilibrium

For the Cournot market in Equilibrium, the problem at time t has the following two
steps:

1. Computation of the Nash equilibrium strategies, assuming the allocation sensi-
tivities α are known:

Qi(α)Qi(Q−i(α)) ∀ i = 1, . . . , N

2. Computation of the price sensitivities, assuming the Nash equilibrium strategies
are known:

min
α∈A

N∑

i=1

{
−1∑

h=−H

{
T∑

s=1

(q̂i
h(s)−Qi(s, αi, α−i))

2}+

T∑

s=1

(q̂i
0(s)−Qi(s, αi, α−i))

2

}

We show using the reformulations of the Nash equilibrium given in Chapter 3 that
the two steps can be formulated as a single problem in two ways: as an MPEC, or as
a mixed integer program.

Formulation as an MPEC

First, we showed in Proposition 3.20, that the Cournot Nash equilibrium is equivalent
to a variational inequality. Since Step 2 takes the optimal solution of Step 1 as input,
then Step 1 is the lower level equilibrium constraint of an MPEC whose upper level
objective is Step 1. Hence, Step 1 and 2 taken together form the following MPEC:

min
α∈A,q∈Q

{∑−1
h=−H{

∑T
s=1(q̂i

h(s)−Qi(s, αi, α−i))
2}+

∑T
s=1(q̂i

0(s)−Qi(s, αi, α−i))
2
}

s.t ∀ q̃ ∈ Q
∑N

i=1−∇iπi(Qi(α),Q−i(α), αi)
′(qi −Qi(α)) ≥ 0

Formulation as a Mixed Integer Program

By replacing the lower level Nash equilibrium by its equivalent system of equalities
and inequalities derived in Proposition 3.21, we can transform the above MPEC into
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a single-level optimization problem:

min
α,q,λ,µ

{∑−1
h=−H{

∑T
s=1(q̂i

h(s)−Qi(s, αi, α−i))
2}+

∑T
s=1(q̂i

0(s)−Qi(s, αi, α−i))
2
}

s.t −∇iπi(qi,q−i, αi) + λi∇igi(qi)−
∑T

t=1 µi(t)e(t) = 0 ∀ i

λigi(qi) = 0 ∀ i

µi
′qi = 0 ∀ i

gi(qi) ≤ 0 ∀ i

0 ≤ qi ∀ i

λi ≥ 0, µi ≥ 0 ∀ i

We can reformulate the disjunctive complementary slackness constraints using binary
variables. Thus the MPEC is equivalent to a mixed integer program:

min
α,q,λ,µ

{∑−1
h=−H{

∑T
s=1(q̂i

h(s)−Qi(s, αi, α−i))
2}+

∑T
s=1(q̂i

0(s)−Qi(s, αi, α−i))
2
}

s.t −∇iπi(qi,q−i, αi) + λi∇igi(qi)−
∑T

t=1 µi(t)e(t) = 0 ∀ i

λi ≤Mxi ∀ i

gi(qi) ≤Mx′i ∀ i

xi + x′i ≤ 1 ∀ i

µi ≤Myi ∀ i

qi ≤My′
i ∀ i

yi + y′
i ≤ e ∀ i

gi(qi) ≤ 0 ∀ i

0 ≤ qi ∀ i

λi ≥ 0, µi ≥ 0 ∀ i

xi, x
′
i ∈ {0, 1},yi,y

′
i ∈ {0, 1}

T ∀ i
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Chapter 5

Key Learning Result

In this chapter, we prove that the dynamic pricing (resp. allocation) problem with
learning in disequilibrium converges. By that, we mean that the two types of learning
are achieved in the long run: learning of the price-demand relationship and learning
of the equilibrium strategies. The result holds when all firms in the market apply the
dynamic pricing (resp. allocation) with learning procedure. Furthermore, the result
holds for a variety of estimation schemes such that the optimal vector of price-demand
parameters does not vary too much from one period to the next.
In Section 1, we address the dynamic pricing with learning problem. We introduce
the assumptions under which the learning result holds. We then state the result, and
proceed to prove it. Section 2 focuses on the dynamic allocation with learning, and
contains the assumptions, the result and its proof.

5.1 Learning under Bertrand Competition

In this section, we review the learning approach under Bertrand competition. We then
study the convergence of the approach First of all, we introduce the assumptions under
which the dynamic pricing with learning approach converges. The result relies on the
reformulation of the Bertrand best-response problem of Proposition 3.8. Indeed, the
Bertrand best-response problem is hard to analyse due to the fact that the strategy
set of the best-response problem of one firm depends both on its competitors’ strategy
and on its price sensitivities. We then state and prove the learning result.

5.1.1 The Learning Approach

The learning approach is an iterative process whereby firms update their best-response
strategy and the estimate regarding their price sensitivities at each period. All the
firms in the market are assumed to use the learning approach.
The approach can be described by the following algorithm: at each period m, given
competitors’ vector of prices for the previous period p−i

(m−1), each firm computes
its best-response price as a function of price sensitivities, i.e Pi(p−i

(m−1), βi). Each
firm then uses the best-response price function in the estimation problem, in order
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to update its estimate of the price sensitivities. The new price sensitivities at m are
denoted βi

(m). Hence, firm i’s vector of best-response prices at period m is pi
(m) =

Pi(p−i
(m−1), βi

(m)).
Learning of the equilibrium strategies is said to be achieved when the difference
between the vectors of best-response prices at period m and at period m− 1 do not
differ by more than a small constant η > 0, in other words:

‖p(m−1) − p(m)‖ ≤ η

Constant η is the precision of learning. Similarly, learning of the price sensitivities is
achieved in precision η if:

‖β(m−1) − β(m)‖ ≤ η

Thus the learning approach under Bertrand competition can be described by the
below algorithm.

Algorithm 1: Learning approach under Bertrand competition
Input: A set of initial values for the prices and price sensitivities
Output: The equilibrium prices and optimal price sensitivities
(1) for i = 1 to N
(2) Initialize pi ← pi

(0)

(3) Initialize βi ← βi
(0)

(4) Initialize m = 1
(5) repeat

(6) for i = 1 to N
(7) Compute Pi(p−i

(m−1), βi)
(8) Compute βi

(m)

(9) Set pi
(m) ← Pi(p−i

(m−1), βi
(m))

(10) m← m+ 1
(11) until ‖p(m−1) − p(m)‖ ≤ η and ‖β(m−1) − β(m)‖ ≤ η

Note that in this chapter, we do not explain how the best-response prices and esti-
mated parameters are computed practically. Their computation will be discussed in
depth in Chapter 6.

5.1.2 Assumptions

We first restate the assumption needed to transform the Bertrand best-response prob-
lem into a problem with a polyhedral feasible set that does not depend on parameters
and competitors’ strategy.

Assumption 3.13. The demand function qi(., q−i(t), βi(t)) is invertible w.r.t pi, and
we denote by p̆i(., q−i(t), βi(t)) its inverse. In other words:

qi(t) = qi(pi(t), q−i(t), βi(t))⇔ pi(t) = p̆i(qi(t), q−i(t), βi(t))
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Let π̆i(qi,p−i, βi) =
∑T

t=1 qi(t)p̆i(qi(t), p−i(t), βi(t)).

Proposition 3.8. The Bertrand best-response problem can be reformulated as follows:

max
qi

π̆i(qi,p−i, βi) (5.1)

s.t
∑T

t=1 qi(t) ≤ Ci (5.2)

0 ≤ qi(t) (5.3)

The following assumptions are made on the modified price and revenue function:

Assumptions 5.1. 1. ∇π̆i is Lipschitz continuous w.r.t p−i with constant Lπi,p−i
(βi)

2. ∇π̆i is Lipschitz continuous w.r.t βi with constant Lπi,βi
(qi,p−i)

3. −∇π̆i is strongly monotone w.r.t qi with constant Mπi,qi
(βi)

4. p̆i is Lipschitz continuous w.r.t qi with constant Lp̆i,qi
(βi);

5. p̆i is Lipschitz continuous w.r.t p−i with constant Lp̆i,p−i
(βi)

6. p̆i is Lipschitz continuous w.r.t βi with constant Lp̆i,βi
(qi,p−i)

In other words, we assume the following behavior concerning the modified price and
revenue functions:

1. For all q−i ∈ Qi, for all p̂−i, p̌−i ∈ [0,p−i
max], for all βi ∈ Bi:

‖∇π̆i(qi, p̂−i, βi)−∇π̆i(qi, p̌−i, βi)‖ ≤ Lπi,p−i
(βi)‖p̂−i − p̌−i‖

2. For all q−i ∈ Qi, for all p−i ∈ [0,p−i
max], for all β̂i, β̌i ∈ Bi:

‖∇π̆i(qi,p−i, β̂i)−∇π̆i(qi,p−i, β̌i)‖ ≤ Lπi,βi
(qi,p−i)‖β̂i − β̌i‖

3. For all q̂−i, q̌−i ∈ Qi, for all p−i ∈ [0,p−i
max], for all βi ∈ Bi:

(−∇π̆i(q̂i,p−i, βi) +∇π̆i(q̌i,p−i, βi))
′ (q̂i − q̌i) ≥Mπi,qi

(βi)‖q̂i − q̌i‖
2

4. For all q̂−i, q̌−i ∈ Qi, for all p−i ∈ [0,p−i
max], for all βi ∈ Bi:

‖p̆i(q̂i,p−i, βi − p̆i(q̌i,p−i, βi‖ ≤ Lp̆i,qi
(βi)‖q̂i − q̌i‖

5. For all q−i ∈ Qi, for all p̂−i, p̌−i ∈ [0,p−i
max], for all βi ∈ Bi:

‖p̆i(qi, p̂−i, βi)− p̆i(qi, p̌−i, βi)‖ ≤ Lp̆i,p−i
(βi)‖p̂−i − p̌−i‖

6. For all q−i ∈ Qi, for all p−i ∈ [0,p−i
max], for all β̂i, β̌i ∈ Bi:

‖p̆i(qi,p−i, β̂i − p̆i(qi,p−i, β̌i‖ ≤ Lp̆i,βi
(qi,p−i)‖β̂i − β̌i‖
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Lipschitz continuity intuitively means that the function behaves smoothly. In par-
ticular, Lipschitz continuity implies differentiability. Furthermore, it implies that the
derivative is bounded by a constant. Hence, ∇iπ̆i has bounded variations in p−i, and
p̆i has bounded variations in its three variables.
Strong monotonicity is the generalization of the strictly increasing property to a func-
tion in a topological vector space.
Before we introduce the second set of assumptions, let us define the following con-
stants:

Ki(βi) =

(
Lπi,p−i

(βi)Lp̆i,qi
(βi)

Mπi,qi
(βi)

+ Lp̆i,p−i
(βi)

)

K′
i(qi,p−i, βi, βi

′) =

(
Lp̆i,βi

(qi,p−i) +
Lp̆i,qi

(βi
′)Lπi,βi

(qi,p−i)

Mπi,qi
(βi)

)

Assumptions 5.2. • At each period m of the approach, we define B(m)
i = {βi ∈

Bi : ‖βi − βi
(m−1)‖ ≤ K′′

i ‖p−i
(m−1) − p−i

(m−2)‖, ‖βi‖ ≤ M}. The estimation

step is performed on the reduced feasible set B(m)
i .

• We define the following constants:

Ki = max
βi

K(βi)

s.t ‖βi‖ ≤M

K′
i = max

qi,p−i,βi,βi
′

K′(qi,p−i, βi, βi
′)

s.t 0 ≤ qi ≤ Cie

0 ≤ p−i ≤ p−i
max

‖βi‖, ‖βi
′‖ ≤M

There exists a constant η > 0 such that:

Ki +K′
iK

′′
i ≤

1− η

N − 1

The first bullet of Assumption 5.2 basically reduces the choice of bounded parameters
to a set of parameters which shrinks at least as fast as the best-response prices shrink.
The second bullet of Assumption 5.2 ensures that the mapping corresponding to the
algorithm is a contraction.

5.1.3 Statement and Proof

Theorem 5.1. Let (β(0),p(0)) be some starting values. under Assumptions 5.1 and
5.2, the sequence of iterates {β(m),p(m)} generated by the approach converges as m
goes to infinity to (β∗,p∗) such that p∗ is the set of Nash equilibrium policies corre-
sponding to parameters β∗.
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In what follows, we denote by Q(m)
i (βi) the best-response quantity, when competitors’

prices are p−i
(m−1), and qi

(m) = Q(m)
i (βi

(m)). The corresponding prices are P(m)
i (βi)

and pi
(m) respectively.

The proof relies on a contraction argument. We indeed prove that under the Lipschitz
continuity, strong monotonicity assumptions, and when the estimation is performed
on the reduced set of parameters, the mapping corresponding to the approach is a
contraction. Hence, the sequence of prices and parameters converge.

Proof. We use the variational inequality formulation of the best-response problem
BRi(p−i

(m−1), βi) applied at qi = Q(m+1)
i (βi) and that of BRi(p−i

(m), βi) applied at

qi = Q(m)
i (βi):

−∇iπ̆i(Q
(m)
i (βi),p−i

(m−1), βi)
′(Q(m+1)

i (βi)−Q
(m)
i (βi)) ≥ 0 (5.4)

−∇iπ̆i(Q
(m+1)
i (βi),p−i

(m), βi)
′(Q(m)

i (βi)−Q
(m+1)
i (βi)) ≥ 0 (5.5)

We sum both variational inequalities and get:
(
−∇iπ̆i(Q

(m)
i (βi),p−i

(m−1), βi) +∇iπ̆i(Q
(m+1)
i (βi),p−i

(m), βi)
)′

(Q(m+1)
i (βi)−Q

(m)
i (βi)) ≥ 0 (5.6)

We add and subtract π̆i(Q
(m)
i (βi),p−i

(m), βi) in the left hand side of the inequality,
and rearrange terms to obtain:

(
−∇iπ̆i(Q

(m)
i (βi),p−i

(m−1), βi) +∇iπ̆i(Q
(m)
i (βi),p−i

(m), βi)
)′

(Q(m+1)
i (βi)−Q

(m)
i (βi)) ≥

(
−∇iπ̆i(Q

(m+1)
i (βi),p−i

(m), βi) +∇iπ̆i(Q
(m)
i (βi),p−i

(m), βi)
)′

(Q(m+1)
i (βi)−Q

(m)
i (βi))(5.7)

By strong monotonicity of −∇iπ̆i w.r.t qi, the right hand side of the inequality is
bounded below by:

Mπi,qi
(βi)‖Q

(m+1)
i (βi)−Q

(m)
i (βi)‖

2

Hence, it is nonnegative, and the left hand side of the inequality is equal to its absolute
value. Using Cauchy-Schwartz inequality, it is bounded above by:

‖ −∇iπ̆i(Q
(m)
i (βi),p−i

(m−1), βi) +∇iπ̆i(Q
(m)
i (βi),p−i

(m), βi)‖.‖Q
(m+1)
i (βi)−Q

(m)
i (βi)‖

By Lipschitz continuity of −∇π̆i w.r.t p−i, the above term is itself bounded above by:

Lπi,p−i
(βi)‖p−i

(m) − p−i
(m−1)‖.‖Q(m+1)

i (βi)−Q
(m)
i (βi)‖

Putting things together yields the following inequality:

Mπi,qi
(βi)‖Q

(m+1)
i (βi)−Q

(m)
i (βi)‖ ≤ Lπi,p−i

(βi)‖p−i
(m) − p−i

(m−1)‖ (5.8)

The next step is to establish an inequality between ‖P(m+1)
i (βi) − P

(m)
i (βi)‖ and

‖Q(m+1)
i (βi)−Q

(m)
i (βi)‖.

‖P(m+1)
i (βi)−P

(m)
i (βi)‖

≤ ‖p̆i(Q
(m+1)
i (βi),p−i

(m), βi)− p̆i(Q
(m)
i (βi),p−i

(m−1), βi)‖

≤ ‖p̆i(Q
(m+1)
i (βi),p−i

(m), βi)− p̆i(Q
(m)
i (βi),p−i

(m), βi)‖
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+ ‖p̆i(Q
(m)
i (βi),p−i

(m), βi)− p̆i(Q
(m)
i (βi),p−i

(m−1), βi)‖

≤ Lp̆i,qi
(βi)‖Q

(m+1)
i (βi)−Q

(m)
i (βi)‖+ Lp̆i,p−i

(βi)‖p−i
(m) − p−i

(m−1)‖

The last inequality follows from Lipschitz continuity of p̆i w.r.t qi and w.r.t p−i.
Using the inequality we established 5.8, we obtain:

‖P(m+1)
i (βi)−P

(m)
i (βi)‖ ≤

(
Lπi,p−i

(βi)Lp̆i,qi
(βi)

Mπi,qi
(βi)

+ Lp̆i,p−i
(βi)

)
‖p−i

(m) − p−i
(m−1)‖(5.9)

Since Q(m)
i (βi) is the solution to best-response problem BRi(p−i

(m−1), βi), and qi
(m)

to best-response problem BRi(p−i
(m−1), βi

(m)), we have:

−∇iπ̆i(Q
(m)
i (βi),p−i

(m−1), βi)
′(qi

(m) −Q(m)
i (βi)) ≥ 0

−∇iπ̆i(qi
(m),p−i

(m−1), βi
(m))′(Q(m)

i (βi)− qi
(m)) ≥ 0

Summing both inequalities, adding and subtracting ∇iπ̆i(qi
(m),p−i

(m−1), βi), and re-
arranging terms, we get:

(
−∇iπ̆i(qi

(m),p−i
(m−1), βi

(m)) +∇iπ̆i(qi
(m),p−i

(m−1), βi)
)′

(Q(m)
i (βi)− qi

(m)) ≥
(
−∇iπ̆i(qi

(m),p−i
(m−1), βi) +∇iπ̆i(qi

(m),p−i
(m−1), βi

(m))
)′

(dQ(m)
i (βi)− qi

(m))

Using Lipschitz continuity of −∇iπ̆i w.r.t βi, and strong monotonicity w.r.t qi, as was
done for Inequality 5.8, we get:

Mπi,qi
(βi

(m))‖qi
(m) −Q(m)

i (βi)‖ ≤ Lπi,βi
(qi

(m),p−i
(m−1))‖βi − βi

(m)‖

As a result, we have:

‖qi
(m) −Q(m)

i (βi)‖ ≤
Lπi,βi

(qi
(m),p−i

(m−1))

Mπi,qi
(βi

(m))
‖βi − βi

(m)‖ (5.10)

Similarly, we have:

‖qi
(m+1) −Q(m+1)

i (βi)‖ ≤
Lπi,βi

(qi
(m+1),p−i

(m))

Mπi,qi
(βi

(m+1))
‖βi − βi

(m+1)‖ (5.11)

We use the above two inequalities towards deriving two inequalities, between ‖pi
(m)−

P(m)
i (βi)‖ and ‖βi − βi

(m)‖, and between ‖pi
(m+1) −P(m+1)

i (βi)‖ and ‖βi − βi
(m+1)‖:

‖pi
(m) − P(m)

i (βi)‖

= ‖p̆i(qi
(m),p−i

(m−1), βi
(m))− p̆i(Q

(m)
i (βi),p−i

(m−1), βi)‖

≤ ‖p̆i(qi
(m),p−i

(m−1), βi
(m))− p̆i(qi

(m),p−i
(m−1), βi)‖

+ ‖p̆i(qi
(m),p−i

(m−1), βi)− p̆i(Q
(m)
i (βi),p−i

(m−1), βi)‖

≤ Lp̆i,βi
(qi

(m),p−i
(m−1))‖βi

(m) − βi‖+ Lp̆i,qi
(βi)‖Qi(βi)− qi

(m)‖

The third inequality comes from Lipschitz continuity of p̆i w.r.t βi and qi. Now, using
Inequality 5.10 above, the second term in the last inequality is bounded above by :

Lp̆i,qi
(βi)Lπi,βi

(qi
(m),p−i

(m−1))

Mπi,qi
(βi

(m))
‖βi

(m) − βi‖
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Putting things together, we get the following inequality:

‖pi
(m) − P(m)

i (βi)‖ (5.12)

≤

(
Lp̆i,βi

(qi
(m),p−i

(m−1)) +
Lp̆i,qi

(βi)Lπi,βi
(qi

(m),p−i
(m−1))

Mπi,qi
(βi

(m))

)
(5.13)

. ‖βi − βi
(m)‖ (5.14)

Similarly, using Inequality 5.11, we get the following inequality:

‖pi
(m+1) − P(m+1)

i (βi)‖ (5.15)

≤

(
Lp̆i,βi

(qi
(m+1),p−i

(m)) +
Lp̆i,qi

(βi)Lπi,βi
(qi

(m+1),p−i
(m))

Mπi,qi
(βi

(m+1))

)
(5.16)

. ‖βi − βi
(m+1)‖ (5.17)

Using the above inequalities, we establish:

‖pi
(m+1) − pi

(m)‖

≤ ‖pi
(m+1) − P(m+1)

i (βi)‖+ ‖P(m+1)
i (βi)− P

(m)
i (βi)‖+ ‖pi

(m) −P(m)
i (βi)‖

The first term in the right hand side of the inequality can be bounded above using
Inequality 5.13; the third term can be bounded above using Inequality 5.12; the
second term can be bounded above using Inequality 5.9.

‖pi
(m+1) − pi

(m)‖

≤

(
Lp̆i,βi

(qi
(m+1),p−i

(m)) +
Lp̆i,qi

(βi)Lπi,βi
(qi

(m+1),p−i
(m))

Mπi,qi
(βi

(m+1))

)
‖βi − βi

(m+1)‖

+

(
Lπi,p−i

(βi)Lp̆i,qi
(βi)

Mπi,qi
(βi)

+ Lp̆i,p−i
(βi)

)
‖p−i

(m) − p−i
(m−1)‖

+

(
Lp̆i,βi

(qi
(m),p−i

(m−1)) +
Lp̆i,qi

(βi)Lπi,βi
(qi

(m),p−i
(m−1))

Mπi,qi
(βi

(m))

)
‖βi − βi

(m)‖

Rewriting the inequality for βi = βi
(m+1), we get:

‖pi
(m+1) − pi

(m)‖

≤

(
Lπi,p−i

(βi
(m+1))Lp̆i,qi

(βi
(m+1))

Mπi,qi
(βi

(m+1))
+ Lp̆i,p−i

(βi
(m+1))

)
‖p−i

(m) − p−i
(m−1)‖

+

(
Lp̆i,βi

(qi
(m),p−i

(m−1)) +
Lp̆i,qi

(βi
(m+1))Lπi,βi

(qi
(m),p−i

(m−1))

Mπi,qi
(βi

(m))

)
‖βi

(m+1) − βi
(m)‖

As a result, we have the following:

‖pi
(m+1) − pi

(m)‖ ≤ Ki‖p−i
(m) − p−i

(m−1)‖+K′
i‖βi

(m+1) − βi
(m)‖

Now, using the fact that ‖βi
(m+1) − βi

(m)‖ ≤ K′′
i ‖p−i

(m) − p−i
(m−1)‖, we get:

‖pi
(m+1) − pi

(m)‖ ≤ (Ki +K′
iK

′′
i ) ‖p−i

(m) − p−i
(m−1)‖
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From Assumption 5.2, we have Ki +K′
iK

′′
i ≤

1−η
N−1

. Hence:

‖pi
(m+1) − pi

(m)‖ ≤
1− η

N − 1
‖p−i

(m) − p−i
(m−1)‖

Summing over all i, we get:

‖p(m+1) − p(m)‖ ≤ (1− η)‖p(m) − p(m−1)‖

Hence, the mapping of the approach is a contraction. As a result, the prices converge
to a vector of prices denoted p∗.
Since ‖βi

(m+1) − βi
(m)‖ ≤ K′′

i ‖p−i
(m) − p−i

(m−1)‖, the coefficients also converge to a
value denoted β∗.
For all i, p∗

i solves BRi(p
∗
−i, β

∗
i ). Hence, p∗ is the Nash equilibrium corresponding to

price sensitivities β∗.

5.2 Learning under Cournot Competition

In this section, we review the learning approach under Cournot competition. We then
study the convergence of the approach. First, we introduce the assumptions under
which the dynamic allocation with learning approach converges. Then we state and
prove the learning result.

5.2.1 The Learning Approach

The learning approach is an iterative process whereby firms update their best-response
strategy and the estimate regarding their allocation sensitivities at each period. All
the firms in the market are assumed to use the learning approach.
The approach can be described by the following algorithm: at each period m, given
competitors’ vector of quantities for the previous period q−i

(m−1), each firm computes
its best-response quantity as a function of allocation sensitivities, i.e Qi(q−i

(m−1), αi).
Each firm then uses the best-response price function in the estimation problem, in
order to update its estimate of the price sensitivities. The new sensitivities at m
are denoted αi

(m). Hence, firm i’s vector of best-response quantities at period m is
qi

(m) = Qi(q−i
(m−1), αi

(m)).
Learning of the equilibrium strategies is said to be achieved when the difference
between the vectors of best-response quantities at period m and at period m− 1 do
not differ by more than a small constant η > 0, in other words:

‖q(m−1) − q(m)‖ ≤ η

Constant η is the precision of learning. Similarly, learning of the price sensitivities is
achieved in precision η if:

‖α(m−1) − α(m)‖ ≤ η
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Algorithm 2: Learning approach under Cournot competition
Input: A set of initial values for the quantities and sensitivities
Output: The equilibrium quantities and optimal sensitivities
(1) for i = 1 to N
(2) Initialize qi ← qi

(0)

(3) Initialize αi ← αi
(0)

(4) Initialize m = 1
(5) repeat

(6) for i = 1 to N
(7) Compute Qi(q−i

(m−1), αi)
(8) Compute αi

(m)

(9) Set qi
(m) ← Qi(q−i

(m−1), αi
(m))

(10) m← m+ 1
(11) until ‖q(m−1) − q(m)‖ ≤ η and ‖α(m−1) − α(m)‖ ≤ η

Note that in this chapter, we do not explain how the best-response quantities and
estimated parameters are computed in practice. Their computation will be discussed
in depth in Chapter 6.

5.2.2 Assumptions

We make the following assumptions on the gradient of the revenue function:

Assumptions 5.3. • −∇iπi is Lipschitz continuous w.r.t q−i with constant Lπi,q−i
(αi)

• −∇iπi is strongly monotone w.r.t qi with constantM(πi, qi)(αi)

• −∇iπi is Lipschitz continuous w.r.t αi with constant Lπ,αi
(qi,q−i)

We introduce the following constants:

Ki(αi) =
Lπi,q−i

(αi)

Mπi,qi
(αi)

K′
i(qi,q−i, αi) =

Lπi,αi
(qi,q−i)

Mπi,qi
(αi)

We make the following assumptions regarding the above constants:

Assumptions 5.4. • At each period (m) of the approach, we define A(m)
i = {αi ∈

Ai : ‖αi − αi
(m)‖ ≤ K′′

i ‖qi
(m) − qi

(m−1), ‖qi‖ ≤M}.

The estimation step is performed on the reduced feasible set A(m)
i
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• We define the following constants:

Ki = maxαi
Ki(αi)

s.t ‖αi‖ ≤M

K′
i = maxqi,q−i,αi

K′
i(qi,q−i, αi)

s.t 0 ≤ qi ≤ Cie

0 ≤ q−i ≤ C−i

‖αi‖ ≤M

Let A = maxi,αi
Ai(αi) and B = maxi,αi

Bi(αi).
There exists η > 0 such that AK + B(N − 1) ≤ 1− η

5.2.3 Statement and Proof

Theorem 5.2. Under Assumptions 5.3 and 5.4, the sequence of iterates {α(m),q(m)}
generated by the approach converges as m goes to infinity to (α∗,q∗) such that q∗ is
the set of Nash equilibrium policies corresponding to parameters α∗.

In what follows, we denote by Q(m)
i (αi) the best-response quantity, when competitors’

prices are q−i
(m−1), and qi

(m) = Q(m)
i (αi

(m)). The corresponding prices are Q(m)
i (αi)

and qi
(m) respectively.

The proof relies on a contraction argument. We indeed prove that under the above
assumptions, the mapping corresponding to the approach is a contraction. Hence,
the sequence of quantities and parameters converge.

Proof. The variational inequality corresponding to BRi(q
(m−1)
−i , αi) is:

−∇iπi(Q
(m)
i (αi), q

(m−1)
−i , αi)

′(qi −Q
(m)
i (αi)) ≥ 0 ∀ αi ∈ Ai, ∀ qi ∈ Qi

Similarly, the variational inequality corresponding to BRi(q
(m)
−i , αi) is:

−∇iπi(qi
(m+1)(αi),q−i

(m), αi)
′

(qi − qi
(m+1)(αi)) ≥ 0 ∀ αi ∈ Ai, ∀ qi ∈ Qi

Applying qi = Q(m+1)
i (αi) to the former, and qi = Q(m)

i (αi) to the latter and summing
them up yields:

(
−∇iπi(Q

(m)
i (αi),q−i

(m−1), αi) +∇iπi(Q
(m+1)
i (αi),q−i

(m), αi)
)′

. (Q(m+1)
i (αi)−Q

(m)
i (αi)) ≥ 0

Adding and subtracting ∇iπi(Q
(m)
i (αi),q−i

(m), αi) and rearranging terms, the above
inequality becomes:

(
−∇iπi(Q

(m)
i (αi),q−i

(m−1), αi) +∇iπi(q
(m)
i (αi), q

(m)
−i , αi)

)′
(q

(m+1)
i (αi)− q

(m)
i (αi)) ≥

(
−∇iπi(Q

(m+1)
i (αi),q−i

(m), αi) +∇iπi(Q
(m)
i (αi),q−i

(m), αi)
)′

(Q(m+1)
i (αi)−Q

(m)
i (αi))
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By strong monotonicity of −∇iπi w.r.t qi, the right hand side is nonnegative, hence
the left hand side is equal to its absolute value, to which we can apply Cauchy-
Schwartz inequality:

|
(
−∇iπi(Q

(m)
i (αi),q−i

(m−1), αi) +∇iπi(Q
(m)
i (αi),q−i

(m), αi)
)′

(Q(m+1)
i (αi)−Q

(m)
i (αi))|

≤ ‖ − ∇iπi(Q
(m)
i (αi),q−i

(m−1), αi) +∇iπi(Q
(m)
i (αi),q−i

(m), αi)‖‖∐
(m+1)
i (αi)−∐

(m)
i (αi)‖

Hence, by Lipschitz continuity of−∇iπi w.r.t q−i, is bounded above by Lπi,q−i
(αi)‖q−i

(m)−
q−i

(m−1)‖‖qi
(m+1)(αi) − qi

(m)(αi)‖. By strong monotonicity, the right hand side is
bounded below byMπi,qi

(αi)‖qi
(m+1)(αi)− qi

(m)(αi)‖2.
Hence, the above inequality becomes:

Mπi,qi
(αi)‖Q

(m+1)
i (αi)−Q

(m)
i (αi)‖ ≤ Lπi,q−i

(αi)‖q−i
(m) − q−i

(m−1)‖ (5.18)

Furthermore, the best-response problem BRi(q−i
(m−1), αi

(m)) is equivalent to the fol-
lowing variational inequality:

−∇iπi(qi
(m),q−i

(m−1), αi
(m))′(qi − qi

(m)) ≥ 0 , ∀ qi ∈ Qi

We apply it to qi = Q(m)
i (αi), we obtain:

−∇iπi(qi
(m),q−i

(m−1), αi
(m))′(Q(m)

i (αi)− qi
(m)) ≥ 0 ∀ qi ∈ Qi

The variational inequality corresponding to best-response problem BRi(q−i
(m−1), αi),

applied at qi = qi
(m) is:

−∇iπi(Q
(m)
i (αi),q−i

(m−1), αi)
′(qi

(m) −Q(m)
i (αi)) ≥ 0 ∀ αi, ∀ qi ∈ Qi

Summing the two inequalities, adding and subtracting ∇iπi(qi
(m),q−i

(m−1), αi) and
rearranging terms gives:

(
−∇iπi(qi

(m),q−i
(m−1), αi

(m)) +∇iπi(qi
(m),q−i

(m−1), αi)
)′

(qi
(m)(αi)− qi

(m)) ≥
(
−∇iπi(Q

(m)
i (αi),q−i

(m−1), αi) +∇iπi(qi
(m),q−i

(m−1), αi)
)′

(Q(m)
i (αi)− qi

(m))

Using Lipschitz continuity of −∇iπi w.r.t αi and strong monotonicity of −∇iπi w.r.t
qi in a similar manner as above yields:

Mπi,qi
(αi)‖Q

(m)
i (αi)− qi

(m)‖ ≤ Lπi,αi
(qi

(m),q−i
(m−1))‖αi

(m) − αi‖ (5.19)

Reiterating the process for step m+ 1 instead of m yields:

Mπi,qi
(αi)‖Q

(m+1)
i (αi)− qi

(m+1)‖ ≤ Lπi,αi
(qi

(m+1),q−i
(m))‖αi

(m+1) − αi‖ (5.20)

We have the following:

‖qi
(m+1) − qi

(m)‖ ≤ ‖qi
(m+1) −Q(m+1)

i (αi)‖+ ‖Q(m+1)
i (αi)−Q

(m)
i (αi)‖+ ‖Q(m)

i (αi)− qi
(m)‖

Hence, using Inequalities (5.14), (5.15) and (5.16) we have:

‖qi
(m+1) − qi

(m)‖

≤
Lπi,αi

(qi
(m+1),q−i

(m))

Mπi,qi
(αi)

‖αi
(m+1) − αi‖
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+
Lπi,q−i

(αi)

Mπi,qi
(αi)
‖q−i

(m) − q−i
(m−1)‖

+
Lπi,αi

(qi
(m),q−i

(m−1))

Mπi,qi
(αi)

‖αi
(m) − αi‖

Using the constants we introduced, we get:

‖qi
(m+1) − qi

(m)‖

≤ K′
i(qi

(m+1),q−i
(m), αi)‖αi

(m+1) − αi‖

+ Ki(αi)‖q−i
(m) − q−i

(m−1)‖

+ K′
i(qi

(m),q−i
(m−1), αi)‖αi

(m) − αi‖

The above inequality holds for every feasible αi, in particular for αi = αi
(m+1):

‖qi
(m+1) − qi

(m)‖

≤ Ki(αi
(m+1))‖q−i

(m) − q−i
(m−1)‖+K′

i(qi
(m),q−i

(m−1), αi
(m+1))‖αi

(m) − αi
(m+1)‖

Since Ki(αi
(m+1)) ≤ Ki and K′

i(qi
(m),q−i

(m−1), αi
(m+1)) ≤ K′

i, we have:

‖qi
(m+1) − qi

(m)‖ ≤ Ki‖q−i
(m) − q−i

(m−1)‖+K′
i‖αi

(m) − αi
(m+1)‖

According to Assumption 5.4, ‖αi
(m) − αi

(m+1)‖ ≤ K′′
i ‖p−i

(m−1) − p−i
(m)‖, hence we

have:

‖qi
(m+1) − qi

(m)‖ ≤ (Ki +K′
iK

′′
i )‖q−i

(m) − q−i
(m−1)‖

According to 5.4, we also have:

Ki +K′
iK

′′
i ≤

1− η

N − 1

Summing the inequality over all i yields:

‖q(m+1) − q(m)‖ ≤ (1− η)‖q(m) − q(m−1)‖

Hence, the map of the learning process is contracting. As a result, the process con-
verges.
Denote by q∗, α∗ the limits of the learning process. By definition, for all i, q∗

i is
the best-response to strategy q∗

−i, when parameters are α∗
i . Hence, q∗ are the Nash

equilibrium quantities, corresponding to sensitivities α∗.
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Chapter 6

Computational Results

In this chapter, we address the implementation of the approach. We first focus on
the best-response problem and Nash equilibrium problem when the parameters of the
price-demand relationship are known. The best-response problems under Bertrand
and Cournot competition are convex optimization problems which can be solved using
traditional convex optimization algorithms. Furthermore, we proved in Chapter 3,
Proposition 3.20 that the Cournot equilibrium problem is equivalent to a variational
inequality, for which efficient computation methods exist. We discuss relaxation al-
gorithms, which provide efficient ways to compute variational inequality solutions,
and their applications to solving the Cournot equilibrium problem. We then discuss
computation of the solution to the Bertrand equilibrium. We showed in Chapter 3
Proposition 3.15 that the Bertrand generalized equilibrium problem is equivalent to
a quasi-variational inequality. In this Chapter, we show that the quasi-variational
inequality can be approximated by a sequence of penalized variational inequalities,
which converge to the quasi-variational inequality.
We then turn to the joint dynamic pricing (resp. allocation) with learning problem.
We propose an iterative solution method based on the Gauss-Newton method for non-
linear least squares problem. This method takes advantage of the special structure
of the upper-level estimation problem to efficiently compute solutions to the bilevel
program under Cournot competition, and to the MPEC under Bertrand competition.

6.1 Algorithms When the Parameters of the Price-

Demand Relationship Are Known

In this section, we assume that the parameters in the price-demand relationship are
known and we therefore focus on the lower-level problem, i.e the best-response prob-
lem of a firm in the disequilibrium state, and the market equilibrium in the equilibrium
state. In disequilibrium, the best-response problem under Bertrand or Cournot com-
petition is a concave maximization problem. Hence, its solution does not present any
particular issue.
Under Bertrand competition, the equilibrium problem was formulated as a quasi vari-
ational inequality (QVI) in Chapter 3 Proposition 3.15. The difficulty of solving such
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a QVI resides in the fact that it is defined on a feasible mapping, which depends on
the solution to the QVI. This is due to the fact that the capacity constraint of each
firm involves competitors’ capacity. To address the issue, we approximate the QVI in
Section 6.1.1 as a variational inequality by penalizing the capacity constraint. More
precisely, we move the capacity constraint into the objective in the form of a penalty.
We show that the sequence of penalized variational inequalities converges to the QVI.
Under Cournot competition, the equilibrium problem was shown to be equivalent to
a variational inequality in Chapter 3, Proposition 3.20, which can be solved efficiently
using relaxation algorithms. We describe these algorithms in Section 6.1.2. These al-
gorithms can also be used to solve the penalized variational inequality under Bertrand
competition. Relaxation algorithms solve the variational inequality as a sequence of
subproblems which are in general nonlinear optimization problems. In particular,
since the variational inequality corresponding to the Nash equilibrium decomposes
into N coupled variational inequalities corresponding to the firms’ best-response prob-
lems, we can use decomposition methods, which are specialized relaxation methods
for this type of problems. Another feature that can be exploited is the special network
structure of the Nash equilibrium problem. Indeed, the problem can be considered
as a traffic equilibrium problem in a network, as explained in this section.

6.1.1 Penalty Method for the Bertrand Equilibrium

We focus on solving the lower-level problem under Bertrand competition when the
market is in equilibrium. By Proposition 3.15, the generalized Nash equilibrium under
Bertrand competition is equivalent to the following quasi variational inequality: find
p ∈ P(p, β) such that for all p′ ∈ P(p, β), we have:

f(p′, β)′(p′ − p) ≥ 0

where we defined:

• f(p, β) is the vector-valued function with components fi(p, β) = −∇iπi(pi,p−i, βi);

• P(p, β) = {0 ≤ p′ ≤ pmax : gi(pi,p
′
−i, βi ∀ i = 1, . . . , N) ≤ 0} is the feasible

mapping;

• gi(pi,p
′
−i, βi) =

∑T
t=1 qi(pi(t), p−i(t), βi(t))− Ci is the capacity constraint.

Let us define by g(p,p′, β) the vector-valued function with components gi(pi,p
′
−i, βi),

and denote [0,pmax] = [0, pmax
i ]NT . We now introduce the penalized variational in-

equality:

Definition 6.1. Let {ρk} be a nonnegative increasing sequence of scalars such that
limk→∞ ρk = ∞ and uk

i be a bounded sequence of scalars. The penalized variational
inequality is: find pk ∈ [0,pmax] such that for all p ∈ [0,pmax]:

fk(pk, β)′(p− pk) ≥ 0

where fk(p, β) = f(p, β) + max{0,uk + ρkg(p,p, β)}∇g(p,p, β)
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We now establish our result.

Theorem 6.1. Any limit point of the sequence of prices generated by the sequential
penalty method converges to the solution of the generalized Nash equilibrium.

The proof was established in Fukushima and Pang [44] under the Mangasarian-
Fromovitz constraint qualification for the penalized variational inequality and an
additional assumption that we verify below.

Proof. Let pk be the solution to the penalized variational inequality k.
Let us check that the two assumptions under which the result from Fukushima and
Pang [44] was proved, hold for the Bertrand equilibrium problem:

• Mangasarian-Fromovitz constraint qualification for the penalized variational in-
equality: if the following equality holds for some µ̄, µ ≥ 0:

−
N∑

i=1

∑

t∈Ik
i

µ
i
(t)e(t) +

N∑

i=1

∑

t∈Īk
i

µ̄i(t)e(t) = 0

then µ̄, µ = 0, where Ik
i = {t : pi(t) = 0}, and Īk

i = {t : pi(t) = pmax
i }.

Since Ik
i

⋂
Īk

i = ∅, we have:

−
N∑

i=1

∑

t∈Ik
i

µ
i
(t)e(t) +

N∑

i=1

∑

t∈Īk
i

µ̄i(t)e(t) =

{
−µ

i
(t) ∀ t ∈ Ik

i

µ̄i(t) ∀ t ∈ Īk
i

Hence, the vector is equal to zero iff µ
i
(t) = 0 for all t ∈ Ik

i and µ̄i(t) = 0 for

all t ∈ Īk
i . Therefore, the constraint qualification holds.

• Let p∞ be a limit point of the sequence pk. Let J∞ = {i : gi(pi
∞,p−i

∞, βi ≥
0)} be the set of indices for which the capacity constraint is violated. We need
to check that if the following equality holds for some λ, µ, µ̄ ≥ 0:

∑

i∈J∞

λi∇p′gi(pi
∞,p−i

∞, βi)−
N∑

i=1

∑

I∞

i

µ
i
(t)ei(t) +

N∑

i=1

∑

Ī∞

i

µ̄i(t)ei(t) = 0

then λ, µ, µ̄ = 0.
∇p′gi(pi,p−i, βi) is the vector of components:

∂gi

∂p′j(t)
=

{
0 if j 6= i

∂qi

∂pi(t)
s.t j = i
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We have:

∑

i∈J∞

λi∇p′gi(pi
∞,p−i

∞, βi)−
N∑

i=1

∑

I∞

i

µ
i
(t)ei(t) +

N∑

i=1

∑

Ī∞

i

µ̄i(t)ei(t) =






λi
∂qi

∂pi(t)
− µ

i
(t) ∀ i ∈ J∞, ∀ t ∈ I∞i

λi
∂qi

∂pi(t)
+ µ̄i(t) ∀ i ∈ J∞, ∀ t ∈ Ī∞i

λi
∂qi

∂pi(t)
∀ i ∈ J∞, ∀ t /∈ I∞i

⋃
Ī∞i

Since ∂qi

∂pi(t)
< 0, and λi, µi

(t) ≥ 0, the first type of components above is equal

to zero implies λi = µ
i
(t) = 0. Since λi = 0, the second type of components

is equal to zero iff µ
i
(t) = 0. The third type of components is equal to zero iff

λi = 0. Therefore, the assumption holds.

Note that the penalized variational inequality can also be written as:

N∑

i=1

(
−∇iπi(pi

k,p−i
k, βi) + max{0,uk

i + ρkgi(pi
k,p−i

k, βi)}∇pgi(pi
k,p−i

k, βi)
)′

(pi − pi
k) ≥ 0

Similarly to Chapter 3, it is easy to prove that the above penalized variational in-
equality is equivalent to N penalized variational inequalities, one for each firm:

(
−∇iπi(pi

k,p−i
k, βi) + max{0,uk

i + ρkgi(pi
k,p−i

k, βi)}∇pgi(pi
k,p−i

k, βi)
)′

(pi − pi
k) ≥ 0

Furthermore, we can prove as in Chapter 3 that the above penalized variational
inequality is equivalent to the following optimization problem:

max
pi

πi(pi,p
k
−i, βi)−

1
2ρk max

{
0, uk

i + ρkgi(pi,p−i
k, βi)

}2

s.t 0 ≤ pi ≤ pi
max

Hence, the penalized variational inequality has the interpretation of each firm solving
a penalized revenue maximization problem, where the revenue function is penalized
when the capacity constraint is violated.
In summary, the penalty method applied to the generalied Nash equilibrium yields
the following algorithm:
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Algorithm 3: Penalty algorithm

Input: Initial prices p0, sequence of scalars {ρk}, and {uk
i }

Output: The equilibrium prices p∗
(1) for i = 1 to N
(2) Initialize qi ← qi

(0)

(3) Initialize k = 1
(4) repeat

(5) Compute pk solution to VI with objective function fk

(6) k ← k + 1
(7) until ‖pk−1 − pk‖ ≤ η

In this section, we do not enter into details about how to solve the variational
inequality. Section 6.1.2 below is dedicated to algorithms for solving variational in-
equalities.

6.1.2 Decomposition Methods for Variational Inequalities

Decomposition methods are particularly adapted to problems where the variational
inequality is defined over a set that is a cartesian product. In that case, the variational
inequality decomposes into N coupled variational inequality, one for each component
of the cartesian product. In Chapter 3, we saw that the Cournot Nash equilibrium
corresponds to such a problem, and we proved in the above Section that the penalized
Bertrand Nash equilibrium is such a problem as well.
In what follows, we focus on the Cournot Nash equilibrium for the sake of brevity.
The results apply readily to the penalized Nash equilibrium. We present the Gauss-
Seidel method of decomposition. This method serially updates the value of the iterate
for each firm, and the Jacobi decomposition, which simultaneously updates the value
of the iterate for all the firms.
Both methods rely on the equivalence between the following:

• Variational inequality V I(F,Q):
find q∗ ∈ Q with Q = Q1 × . . .×QN such that for all q ∈ Q:

F(q∗)′(q− q∗) ≥ 0

• N coupled variational inequalities V I(Fi,Qi): find q∗i ∈ Qi such that for all
qi ∈ Qi:

Fi(qi∗)
′(qi − qi∗) ≥ 0

A Serial Decomposition Algorithm

The serial decomposition algorithm works the following way: at each iteration k,
V I(Fi,Qi) is solved for each firm i, where competitors’ quantities are fixed at their
current value, i.e q1

k, . . . ,qi−1
k and qi+1

k−1, . . . ,qN
k−1; the value of the iterate qi

k
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is updated to its new value, and the next variational inequality V I(Fi+1,Qi+1) is
solved for qi+1. When all N variational inequalities are solved, the algorithm moves
to the next iteration k+1. The algorithm terminates when the convergence criterion
‖qk−1 − qk‖ ≤ η is met.

Algorithm 4: Serial algorithm
Input: A set of initial values for the quantities p0

Output: The equilibrium quantities q∗
(1) for i = 1 to N
(2) Initialize qi ← qi

(0)

(3) Initialize k = 1
(4) repeat

(5) for i = 1 to N
(6) Fix qj ← qj

k, j < i and qj ← qj
k−1, j > i

(7) Compute qi
k solution of V I(Fi,Qi)

(8) If i = N then k ← k + 1
(9) until ‖qk−1 − qk‖ ≤ η

A Parallel Decomposition Algorithm

The parallel decomposition algorithm works as follows: at each iteration k, V I(Fi,Qi)
is solved for each firm i, where competitors’ quantities are fixed at q−i

k−1. The solu-
tion to this variational inequality is denoted qi

k and is set aside until the N variational
inequalities of iteration k are solved. Then the algorithm moves to iteration k + 1.
Hence, the update of the quantities is done simultaneously for all firms. Notice that
contrary to the serial method, at iteration k, the variational inequality corresponding
to firm i is solved, without quantities q1, . . . ,qi−1 being updated to their new value
q1

k, . . . ,qi−1
k. The update is performed once and for all at the end of iteration k,

once the N variational inequalities have been solved. As a result, the N variational
inequalities can be solved in parallel. The algorithm stops when the convergence
criterion ‖qk−1 − qk‖ ≤ η is reached.

Algorithm 5: Parallel algorithm
Input: A set of initial values for the quantities p0

Output: The equilibrium quantities q∗
(1) for i = 1 to N
(2) Initialize qi ← qi

(0)

(3) Initialize k = 1
(4) repeat

(5) for i = 1 to N
(6) Fix quantities q−i ← q−i

k−1

(7) Compute qi
k solution of V I(Fi,Qi)

(8) If i = N then k ← k + 1
(9) until ‖qk−1 − qk‖ ≤ η
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Convergence of the Relaxation Algorithms

For the sake of brevity, we focus on the parallel version of the algorithm. The proof
for the serial version uses similar ideas. We prove that under Assumptions 5.3 bullets
1 and 2, the algorithm map is a contraction.
Recall the following constants:

• Lπi,q−i
(αi): Lipschitz continuity constant;

• Mπ,qi
(αi): strong monotonicity constant

• Ki(αi) =
Lπi,q

−i
(αi)

Mπ,qi
(αi)

Theorem 6.2. Assume Assumptions 5.3 bullets 1 and 2 hold.
Assume the constants are such that there exists η > 0:

max
i
Ki(αi) ≤

1− η

N − 1

Then the relaxation algorithm converges.

We prove the theorem for the parallel relaxation algorithm, since the proofs for the
serial and parallel versions are almost identical.

Proof. At iteration k, for each firm i, the following variational inequality is solved:

Fi(qi
k,q−i

k−1)′(qi − qi
k) ≥ 0 (6.1)

Similarly, at iteration k + 1, we have:

Fi(qi
k+1,q−i

k)′(qi − qi
k+1) ≥ 0 (6.2)

We apply the former inequality to qi = qi
k+1 and the latter to qi = qi

k, and sum
them:

(
Fi(qi

k,q−i
k−1)− Fi(qi

k+1,q−i
k)
)′

(qi
k+1 − qi

k) ≥ 0

We add and subtract Fi(qi
k,q−i

k−1), and get:
(
Fi(qi

k,q−i
k−1)− Fi(qi

k,q−i
k)
)′

(qi
k+1 − qi

k)

≥
(
Fi(qi

k+1,q−i
k)− Fi(qi

k,q−i
k)
)′

(qi
k+1 − qi

k)

By strong monotonicity, the right hand side is bounded below by:

Mπ,qi
(αi)‖qi

k+1 − qi
k‖2

Hence, the left hand side is nonnegative, and is equal to its absolute value. By Cauchy-
Schwartz inequality, it is bounded above by ‖Fi(qi

k,q−i
k−1)−Fi(qi

k,q−i
k)‖.‖qi

k+1−
qi

k‖. By Lipschitz continuity, it is therefore bounded above by:

Lπi,q−i
(αi)‖q−i

k − q−i
k−1‖.‖qi

k+1 − qi
k‖

As a result, we have the following inequality:

‖qi
k+1 − qi

k‖ ≤
Lπi,q−i

(αi)

Mπ,qi
(αi)
‖q−i

k − q−i
k−1‖
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Summing over all i, we get:

‖qk+1 − qk‖ ≤ (N − 1) max
i
Ki(αi)‖q

k − qk−1‖

where Ki(αi) =
Lπi,q

−i
(αi)

Mπ,qi
(αi)

Since maxiKi(αi) ≤
1−η
N−1

, we conclude that:

‖qk+1 − qk‖ ≤ (1− η)‖qk − qk−1‖

Hence, the mapping of the algorithm is a contraction, and the algorithm converges.

6.2 Algorithms When the Parameters of the Price-

Demand Relationship Are Unknown

In this section, we discuss a solution method for solving the bilevel problem in dise-
quilibrium, and the MPEC in equilibrium. Since the upper level estimation problem
corresponds to the minimization of the squared norm of a vector-valued function, we
choose to adapt the Gauss-Newton to the problem. This method takes advantage of
the special form of the upper level. It transforms the bilevel problem into a series of
simpler bilevel problems, and the MPEC into a series of simpler MPECs. We first
discuss why a more simple and intuitive procedure fails to solve the problem, and
then turn to the study of the Gauss-Newton based method. In this section, we focus
on the Cournot problem in disequilibrium, and show how the results can be applied
to the Cournot problem in equilibrium, as well as the Bertrand disequilibrium and
equilibrium problems.

6.2.1 A Simple Iterative Method with a Counterexample

An intuitive way to solve the joint dynamic control with learning problem for one
firm is to iterate the following steps:

Algorithm 6: Iterative algorithm
Input: A set of initial values for the parameters α0

Output: The equilibrium quantities q∗ and true parameters α∗

(1) Initialize αi ← αi
(0)

(2) Initialize k = 1
(3) repeat

(4) Fix parameters αi ← αi
k−1

(5) Compute qi
k solution of V I(Fi(., αi

k−1),Qi)
(6) Compute αi

k solution to the estimation problem for qi ← qi
k

(7) until ‖qi
k−1 − qi

k‖ ≤ η and ‖αi
k−1 − αi

k‖ ≤ η

However, it turns out that the above procedure does not converge to the solution of
the bilevel problem. Consider indeed the following counterexample:
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• Upper level problem:
Upper level variable α ∈ [−1, 1]; objective function F (α, d) = (α− d)2.

• Lower level problem:
Lower level variable d ∈ [−2, 2]; objective function f(α, d) = −(α− d)2

Hence, the bilevel problem is:

min
α∈[−1,1]

F (α, d)

s.t mind∈[−2,2] f(α, d)

The bilevel problem has two optimal solutions: (α∗, d∗) = (−1, 2) and (α∗∗, d∗∗) =
(1,−2).
However, when one applies the iterative procedure to the above bilevel problem, it
converges to (1, 2) or (−1,−2). Note that these are the solutions to the following
bilevel problem:

min
d∈[−2,2]

f(α, d)

s.t minα∈[−1,1] F (α, d)

6.2.2 Adaptation of the Gauss-Newton method to the Cournot

problem in disequilibrium

In this section, we investigate how to adapt the Gauss-Newton method to the bilevel
problem and the MPEC under Cournot competition. The Gauss Newton method
for a smooth optimization problem solves a series of approximations of the problem,
relying on first order information on the objective function. It is especially well suited
for problems whose objective is the squared norm of a vector, as is the case in the
estimation problem. For the Cournot problem in disequilibrium and equilibrium, the
objective function is directionally differentiable only, since the best-response (resp.
Nash equilibrium) function is directionally differentiable in the parameter. Hence,
each approximated problem requires the computation of the directional derivative
of the best-response (resp. equilibrium) function. As a result, the approximated
problem is a bilevel problem (resp. MPEC) in disequilibrium (resp. in equilibrium)
where the upper level objective is the approximation based on first order information
of the estimation function, and the lower level problem is the computation of the
directional derivative of the best-response (resp. Nash equilibrium) function.

Overview of the Gauss-Newton Method for Nonlinear Programs

The Gauss-Newton method is designed to solve problems of the form:

min
x∈X

1

2
‖f(x)‖2

where f is a continuously differentiable vector-valued function. It is an iterative
procedure, which works as follows: at iteration k, we start with the current value
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of the iterate xk, and solve an approximation of the original problem, called the
direction finding problem, to find a direction dk. We then compute the next iterate
xk+1 = xk + tkdk, where tk is some step size. The iteration is repeated until a
convergence criterion is reached.
The approximation of the original problem is the following. At iteration k, let us take
the first order Taylor expansion of f around xk:

f(x)

= f(xk) +∇f(xk)(x− xk) + o(‖x− xk‖)

where o(x) is a function such that limx→0
o(x)
x

= 0 and ∇f(xk) is the jacobian matrix
of f .
Hence, the squared norm ‖f(x)‖2 is approximated by:

1

2
‖f(x)‖2

=
1

2
‖f(xk)‖2 + f(xk)′∇f(xk)(x− xk)

+
1

2
(x− xk)′[∇f(xk)′∇f(xk)](x− xk) +

1

2
o(‖x− xk‖)2

The Gauss-Newton method at iteration k tries to find the feasible direction dk which
minimizes the function:

min
d

f(xk)′∇f(xk)d + 1
2
d′[∇f(xk)′∇f(xk)]d

s.t xk + d ∈ X

The above problem has a convex quadratic objective function (the matrix in the
quadratic term is indeed positive semi definite) and is therefore easily solvable. For
instance, when X = Rn is the euclidian space, and when the matrix [∇f(xk)′∇f(xk)]
is positive definite, the closed form solution of the above problem is:

dk = −[∇f(xk)′∇f(xk)]−1∇f(xk)′f(xk)

Then, after choosing a step size tk, the next iterate is:

xk+1 = xk + tkdk

The method does not usually converge in a finite number of iterations. Therefore,
a convergence criterion is used to terminate the method. Typically, the method
terminates when:

‖∇f(xk)‖ ≤ η

In summary, the Gauss-Newton method works as follows:
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Algorithm 7: Gauss-Newton method
Input: Initial value x0

Output: Optimal value x∗ = arg min ‖f(x)‖2

(1) Initialize x← x(0)

(2) Initialize k = 0
(3) repeat

(4) Find direction dk = arg min f(xk)′∇f(xk)d +
1
2
d′[∇f(xk)′∇f(xk)]d

(5) Find step size tk

(6) x̃k ← xk + tkdk

(7) if ‖∇f(xk)‖ ≤ η
(8) return x̃k

(9) else

(10) xk ← x̃k, k ← k + 1, and go to (4)

The Gauss-Newton method is known to converge geometrically. See for instance
Bertsekas [12] for a proof under the Armijo step size rule.

Adaptation of the Gauss-Newton Method to the Cournot Bilevel Program

Recall that the estimation problem corresponding to the joint allocation policy with
learning in disequilibrium has the following objective:

−1∑

h=−H

{
T∑

s=1

(
q̂i

h(s)−Qi(s,p−i(h), αi)
)2

}+

T∑

s=1

(
q̂i

0(s)−Qi(s,q−i, αi)
)2

It is therefore the squared norm of a vector with components q̂i
h(s)−Qi(s,p−i(h), αi)

and q̂i
0(s) − Qi(s,q−i, αi). Let us denote by Fi(αi,qi) the vector with components

q̂i
h(s) − qi(s) and q̂i

0(s) − qi(s). Hence, the estimation function is the minimization
of the squared norm of the vector:

Fi(αi,Qi(q−i, αi))

Let us denote by F̃i(αi) = Fi(αi,Qi(q−i, αi)). Since Qi(q−i, αi) is a Bouligand dif-
ferentiable function of αi, so is F̃i. As a result, it is directionally differentiable, the
directional derivative being:

F̃′
i(αi;di) = ∇αi

Fi(αi,Qi(q−i, αi))di +∇qi
Fi(αi,Qi(q−i, αi))Q

′
i(q−i, αi;di)

where Q′
i(q−i, αi;di) is the directional derivative of the best-response function.

As seen in Chapter 3, the directional derivative of the best-response function is solu-
tion to the convex quadratic optimization problem QP(αi;di).
Therefore, each iteration k of the Gauss-Newton method applied to the joint dynamic
allocation with learning problem can be decomposed into the following two steps:

1. Assuming the direction di
k is given, find the directional derivative of the best-

response function by solving QP(αi
k;di

k);
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2. Find the direction di
k by solving the direction finding problem:

min
di

F̃i(αi
k)′F̃′

i(αi
k;di) +

1

2
[F̃′

i(αi
k;di)

′F̃′
i(αi

k;di)]

F̃′
i(αi

k;di) is given by:

F̃′
i(αi

k;di) = ∇αi
Fi(αi

k,Qk
i )di +∇qi

Fi(αi
k,Qk

i )Q
′
i(q−i, αi

k;di)

where Q′
i(q−i, αi

k;di) is the result of Step 1 and Qk
i = Qi(q−i, αi

k).

We see that Step 2 takes the result of Step 1 as input. Consequently, Step 2 is the
upper level of a bilevel problem, whose lower level is Step 1. Since both the upper
and lower level problem are convex quadratic problems, each iteration of the Gauss-
Newton method applied to the joint dynamic allocation with learning problem is a
quadratic bilevel problem.

min
di

F̃i(αi
k)′F̃′

i(αi
k;di) + 1

2
[F̃′

i(αi
k;di)

′F̃′
i(αi

k;di)] (6.3)

s.t F̃′
i(αi;di) = ∇αi

Fi(αi
k,Qk

i )di +∇qi
Fi(αi

k,Qk
i )Q

′
i(q−i, αi

k;di)

Q′
i(q−i, αi

k;di) = arg minxi
−1

2
xi

′∇2
i,iπi(Qk

i ,p−i, αi
k)xi + xi

′∇2
i,αi
πi(Qk

i ,p−i, αi
k)di

s.t xi ∈ Qi⊥

where Qi⊥ is the following polyhedral cone (T k = {t : Qk
i (t) = 0}):

• If the capacity constraint is tight, i.e
∑T

t=1Q
k
i (t) = Ci:

Qi⊥ = {xi ∈ R
T : ∇iπi(Q

k
i ,q−i, αi

k)′xi = 0
T∑

t=1

xi(t) ≤ 0

∀ t ∈ T k, xi(t) ≥ 0}

• If the capacity constraint is not tight, i.e
∑T

t=1Q
k
i (t) < Ci:

Qi⊥ = {xi ∈ R
T : ∇iπi(Q

k
i ,q−i, αi

k)′xi = 0

∀ t ∈ T k, xi(t) ≥ 0}

Hence, the lower level quadratic problem can be replaced by its equivalent KKT
conditions:

• If the capacity constraint is tight at Qk
i , the lower level quadratic problem is

equivalent to the following KKT conditions:

−∇2
i,iπi(Q

k
i ,p−i, αi

k)xi +∇2
i,αi
πi(Q

k
i ,p−i, αi

k)di + λie−
∑

t∈T k

µi(t)e(t) = 0
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∇iπi(Q
k
i ,q−i, αi

k)′xi = 0

λi(

T∑

t=1

xi(t)) = 0

µi(t)xi(t) = 0 ∀ t ∈ T k

T∑

t=1

xi(t) ≤ 0, xi(t) ≥ 0 ∀ t ∈ T k

• If the capacity constraint is tight at Qk
i , the lower level quadratic problem is

equivalent to the following KKT conditions:

−∇2
i,iπi(Q

k
i ,p−i, αi

k)xi +∇2
i,αi
πi(Q

k
i ,p−i, αi

k)di −
∑

t∈T k

µi(t)e(t) = 0

∇iπi(Q
k
i ,q−i, αi

k)′xi = 0

µi(t)xi(t) = 0 ∀ t ∈ T k

xi(t) ≥ 0 ∀ t ∈ T k

The constraints are linear, except for the complementary constraints. Since there are
at most N such constraints, one can easily enumerate all the cases.
As a result, each Gauss-Newton iteration is equivalent to solving a series of single-level
optimization problems with quadratic objective function and linear constraints.

Convergence of the Gauss-Newton Method Applied to the Cournot Bilevel

Problem

For the sake of brevity, we make some simplifying assumptions which are without loss
of generality.

Assumptions 6.1. • We assume that the capacity constraint in the Cournot
best-response problem is an equality constraint:

∑T
t=1 qi(t) = Ci;

• We assume that the set of feasible parameters is the whole euclidian space:
Ai = R(N+1)T .

Under these assumptions, the direction-finding problem is an unconstrained problem
and can therefore be solved in closed-form. Convergence of the method is proved in
two steps. We first prove that the direction computed at each iteration of the Gauss-
Newton method by the direction finding problem is a direction of descent, i.e of cost
decrease. We then prove that the sequence of iterates computed by the Gauss-Newton
method converges to a stationary point.
Without Assumptions 6.1, the direction-finding problem becomes a constrained opti-
mization problem. It can easily be shown that the problem is equivalent to its KKT
conditions. Hence, the Gauss-Newton direction is the solution to the KKT system of
equalities and inequalities. Convergence of the method is proved in two steps: first,
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we prove that the Gauss-Newton direction which solves the KKT conditions induces
a cost decrease, and second that the sequence of iterates generated by the method
converges to a stationary point.
We now state the convergence result of the Gauss-Newton method under Assumptions
6.1.

Proposition 1. Let αi
k be the current iterate of the Gauss-Newton method. Let di

k

be the Gauss-Newton direction. If di
k 6= 0 then di

k is a direction of cost decrease, i.e
there is τ̄ > 0 such that for all 0 ≤ τ ≤ τ̄ :

‖F̃i(αi
k + τdi

k)‖2 < ‖F̃i(αi
k)‖2

Proof. Since Qi is PC1, recall that for each αi, there is m such that Qi(αi) = ψm(αi),
where ψm is continuously differentiable. Under Assumption 6.1, m is the same for all
αi.
As a result, F̃i(.) is continuously differentiable, and we have:

F̃′
i(αi;di)

= ∇F̃i(αi)di)

= ∇αi
Fi(αi,Qi(q−i, αi))di +∇qi

Fi(αi,Qi(q−i, αi))∇ψm(q−i, αi)di

In other words, the Gauss-Newton direction is:

di
k = −[Dk]−1∇F̃i(αi

k)′F̃i(αi
k)

where the matrix [Dk] is defined as follows. Let [Hk] = [∇F̃i(αi
k)′∇F̃i(αi

k)]:

[Dk] =

{
[Hk] if it is invertible

Hk] + [△k] + [△k] otherwise

[△k] is a diagonal matrix such that [∇F̃i(αi
k)′∇F̃i(αi

k)] + [△k] is invertible.
In what follows, we assume without loss of generality that [∇F̃i(αi

k)′∇F̃i(αi
k)] is

invertible.
Let τ > 0:

1

2
‖F̃i(αi

k + τdi
k)‖2

=
1

2
‖F̃i(αi

k) + τ∇F̃i(αi
k)di

k + τo(‖di
k‖)‖2

=
1

2
‖F̃i(αi

k)‖2 + τ F̃i(αi
k)′∇F̃i(αi

k)di
k + τo(‖di

k‖)

=
1

2
‖F̃i(αi

k)‖2 − τ
(
F̃i(αi

k)′∇F̃i(αi
k)
)

[∇F̃i(αi
k)′∇F̃i(αi

k)]−1
(
∇F̃i(αi

k)′F̃i(αi
k)
)

+ τo(‖di
k‖)

The first equality uses the first order Taylor series expansion of F̃i. The second equal-
ity uses bilinearity of the norm operator. In the third equality, di

k was replaced by
its value.
The matrix [∇F̃i(αi

k)′∇F̃i(αi
k)] is positive semi definite, and is assumed invertible

without loss of generality. Hence, [∇F̃i(αi
k)′∇F̃i(αi

k)]−1 is positive definite. Thus for
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any non zero vector x, x′[∇F̃i(αi
k)′∇F̃i(αi

k)]−1x > 0 and it is equal to zero iff x = 0.

As a result,
(
F̃i(αi

k)′∇F̃i(αi
k)
)

[∇F̃i(αi
k)′∇F̃i(αi

k)]−1
(
∇F̃i(αi

k)′F̃i(αi
k)
)
> 0 un-

less the vector ∇F̃i(αi
k)′F̃i(αi

k) = 0. But this would imply that di
k = 0. Hence, if

di
k 6= 0, then there is τ̄ > 0 such that for all 0 ≤ τ ≤ τ̄ , we have:

1

2
‖F̃i(αi

k + τdi
k)‖2 <

1

2
‖F̃i(αi

k)‖2

In conclusion, if the Gauss-Newton direction di
k is non zero, then it is a direction of

cost decrease.

Theorem 6.3. Assume that the feasible set Ai is closed bounded.
Let {αi

k} be the sequence of iterates generated by the Gauss-Newton method, and
{di

k} the corresponding sequence of Gauss-Newton directions.
The sequence {αi

k} converges to a stationary point, i.e any limit point ᾱi of the
sequence is such that:

∇F̃i(ᾱi)
′F̃i(ᾱi) = 0

Proof. Since Ai is compact, then by Weierstrass’ s theorem, {αi
k} has at least one

converging subsequence. Without loss of generality, we assume that the entire se-
quence {αi

k} converges. Let us denote by ᾱi its limit and d̄i the corresponding
Gauss-Newton direction, i.e:

d̄i = −[∇F̃i(ᾱi)
′∇F̃i(ᾱi)]

−1∇F̃i(ᾱi)
′F̃i(ᾱi)

Suppose that the limit is not a stationary point, i.e ∇F̃i(ᾱi)
′F̃i(ᾱi) 6= 0.

Since the matrix [∇F̃i(ᾱi)
′∇F̃i(ᾱi)]

−1 is positive definite, then:
(
∇F̃i(ᾱi)

′F̃i(ᾱi)
)′

[∇F̃i(ᾱi)
′∇F̃i(ᾱi)]

−1∇F̃i(ᾱi)
′F̃i(ᾱi) > 0

As a result, similarly to the proof of Proposition .., there is a τ̄ > 0 such that for all
0 ≤ τ ≤ τ̄ , we have ᾱi + τ d̄i ∈ Ai and:

ξ = ‖F̃i(ᾱi)‖
2 − ‖F̃i(ᾱi + τ d̄i)‖

2 > 0

Since limk→∞(αi
k + τdi

k) = ᾱi + τ d̄i and F̃i is continuous, then we have:

lim
k→∞
‖F̃i(αi

k + τdi
k)‖2 = ‖F̃i(ᾱi + τ d̄i)‖

2

As a result, for k sufficiently large, we have:

‖F̃i(αi
k + τdi

k)‖2 ≤ ‖F̃i(ᾱi + τ d̄i)‖
2 +

ξ

2
= ‖F̃i(ᾱi)‖

2 −
ξ

2

By definition of the optimal step size tk, we have αi
k + tkdi

k = αi
k+1, we therefore

have:

‖F̃i(ᾱi)‖
2

< ‖F̃i(αi
k + tkdi

k)‖2

≤ ‖F̃i(αi
k + τdi

k)‖2

≤ ‖F̃i(ᾱi)‖
2 −

ξ

2
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This contradicts the optimality of ᾱi.

6.2.3 Discussion of the Gauss-Newton Method for the Cournot

and Bertrand Equilibrium Problems

We now discuss briefly how the above method can be adapted to solve the Cournot
and Bertrand equilibrium problems.

Gauss-Newton method for the Cournot Equilibrium Problem

In the Cournot equilibrium problem, the lower level problem is the variational in-
equality equivalent to the Nash equilibrium problem. The upper level takes the form
of the squared norm of a vector-valued function:

N∑

i=1

{
−1∑

h=−H

{
T∑

s=1

(q̂i
h(s)−Qi(s, αi, α−i))

2}+
T∑

s=1

(q̂i
0(s)−Qi(s, αi, α−i))

2

}

Let us denote by F(α,Q(α)) the vector-valued function with components (q̂i
h(s) −

Qi(s, αi, α−i)) and (q̂i
0(s)−Qi(s, αi, α−i)). Hence, the estimation problem in equilib-

rium state is:

min
α∈α

1

2
‖F(α,Q(α))‖2

Let us denote by F̃(α) = F(α,Q(α)).
As a result, we may apply the Gauss-Newton method, provided that we can compute
directional derivatives for the Nash equilibrium quantity function. We have estab-
lished in Proposition 3.23 that the Nash equilibrium quantities as functions of the
parameters are Bouligand differentiable and the directional derivative Q′(α;d) are
solutions to the affine variational inequality given in 3.23.
Therefore, each iteration k of the Gauss-Newton method applied to the joint dynamic
allocation with learning problem can be decomposed into the following two steps:

1. Assuming the direction dk is given, find the directional derivative of the best-
response function by solving the affine VI 3.23;

2. Find the direction dk by solving the direction finding problem:

min
d

F̃(αk)′F̃′(αk;d) +
1

2
[F̃′(αk;d)′F̃′(αk;d)]

F̃′(αk;d) is given by:

F̃′(αk;d) = ∇αF(αk,Qk)d +∇qF(αk,Qk)Q′(αk;d)

where Q′(αk;d) is the result of Step 1 and Qk = Q(αk).
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Since Step 2 takes the result of Step 1 as input, we conclude that Steps 1 and 2
together form an MPEC, with a convex quadratic upper level problem, and a linear
lower level VI.

min
d

F̃(αk)′F̃′(αk;d) + 1
2
[F̃′(αk;d)′F̃′(αk;d)]

s.t F̃′(αk;d) = ∇αF(αk,Qk)d +∇qF(αk,Qk)Q′(αk;d)

∀ x ∈ Q⊥ :(
∇qF(Q̄, α)Q′(αk;d) +∇αF(Q̄, α)d

)′
(x−Q′(αk;d)) ≥ 0

Similarly to Chapter 4, we can reformulate the above MPEC by replacing the lower-
level variational inequalities by their equivalent first order optimality conditions.
Then, by reformulating the complementary constraints using binary variables, we
obtain an equivalent mixed integer program with convex quadratic upper-level and
linear lower-level.
As a result, we need to solve at each Gauss-Newton iteration mixed integer program
with convex quadratic upper-level and linear lower-level.This class of problems is
known as Mixed Integer Quadratic Programs (MIQP) and has been the subject to a
lot of research.

Gauss-Newton Method for the Bertrand Equilibrium Problem

The estimation problem in the Bertrand equilibrium problem is also the minimization
of the squared norm of a vector-valued function that we can denote by F(β,P(β)),
where P(β) is the generalized equilibrium price. Hence, provided that this function
has some differentiability properties, the Gauss-Newton method can be applied to the
Bertrand problem in equilibrium. The difficulty stems from the fact that that to our
knowledge, there are no known sensitivity results concerning generalized equilibria.
We have nevertheless established in Section 1 above that the generalized Nash equi-
librium can be obtained as the limit of a sequence of equilibria corresponding to a
penalized version of the generalized Nash equilibrium. We can establish as in Chapter
3 for the Cournot equilibrium, that each penalized equilibrium is Bouligand differ-
entiable, with directional derivative obtained as the solution to an affine variational
inequality.
As a result, it appears that if used together, the Gauss-Newton method and the
penalty scheme can be applied to the Bertrand problem in equilibrium in order to
solve the corresponding MPEC.

6.3 Implementation of the Approach

We have implemented the approach on an IBM Thinkpad, with a processor of 1.6 GHz,
and 256MB or RAM, using Matlab 7.0. In order for the method to be implemented
on a computer, several technical issues must be addressed. We review these technical
issues in Subsection 6.3.1. Subsection 6.3.2 discusses the results obtained on various
examples.

109



6.3.1 Challenges of the Implementation

Evaluation of the Learning

In Chapter 4, we showed that the learning approach is a contraction mapping, i.e the
norm of the difference between two parameter vectors at consecutive time periods
‖β(m) − β(m−1)‖ (resp. ‖α(m) − α(m−1)‖) in the approach shrinks as time increases.
In order to evaluate the learning of the parameters, we can track the evolution of the
norm differences ‖β(m) − β(m−1)‖ (resp. ‖α(m) − α(m−1)‖) as the number of iterations
m increases: learning of the parameters of the price-demand relationship is achieved
if the norm differences decrease throughout the approach and converge to 0 at the
end of the approach.
Similarly, the approach is a contraction mapping for the prices (resp. quantities):
the norm differences ‖p(m) − p(m−1)‖ (resp. ‖q(m) − q(m−1)‖) shrink throughout the
approach, and converge to 0. Hence, in order to evaluate the learning of the equilib-
rium prices (resp. quantities), one can track the evolution of ‖p(m) − p(m−1)‖ (resp.
‖q(m) − q(m−1)‖) as the number m of iterations increases.

Historical Data

In disequilibrium stage, each firm computes its best-response to its belief concerning
its competitors’s pricing policy. More precisely, we have made the realistic assumption
that firms form beliefs regarding their competitors’ strategy using historical data from
past selling horizons.
Furthermore, since the parameters of the price-demand relationship differ at each
time period of the approach, one must address the issue of potential over-fitting in
the estimation problem. Indeed, one must ensure that there are enough data available
at each period for each firm to compute the parameters of its demand (resp. price)
function. For instance, in the linear, loglinear, and constant elasticity demand (resp.
inverse demand) functions, the price-demand relationship at each period and for each
firm is determined by N+1 parameters. As a result, we must ensure that the database
of historical prices contains at least prices from N + 1 past selling horizons.
The historical prices are generated according to the parametric model that we infer
demand to follow. For instance, if we assume a linear demand model for the market,

we generate historical prices as follows: let di
h
(s), i = 1, . . . , N , s = 1, . . . , T be a

random sequence of demands such that di(s) ≥ 0 and
∑T

s=1 d̂i(s) ≤ Ci. Let β̄ =
(βij(s)), i = 1, . . . , N , j = 0, . . . , N , s = 1, . . . , T be a fixed vector of price-demand
parameters. We first generate prices pi(s) verifying:

di(s) = βi0(s)− βii(s)pi(s) +
∑

j 6=i

βij(s)pj(s)

In other words, in vector notation:

d(s) = β0(s)− [β(s)]p(s)
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where [βi(s)] is the matrix such that:



β11(s) . . . −β1N (s)
...

. . .
...

−βN1(s) . . . βNN(s)




Hence, we generate prices such that:

pi(s) = [β(s)]−1(β0(s)− d(s))

The historical prices are then generated according to the stochastic model:

p̂i
h(s) = pi(s) + ǫi(s)

where ǫi(s) are independent, identically distributed and follow the normal distribution
with mean 0 and standard deviation σi.

6.3.2 Results of the Computations

The figures referred to below are to be found in part B of the appendix.

Computations in disequilibrium stage

• An Airline Example:
Consider N = 2 airlines competing for a single leg. Market demand is het-
erogeneous: the leisure travelers tend to purchase early and are more sensitive
to price, whereas business travelers tend to purchase closer to departure of the
flight and are less sensitive to price. Since price sensitivity is decreasing over
time, the parameter value decreases with time. Figure B-1 displays the values
of the parameters as a function of time. Figures B-2, B-3, B-4 show respectively
the norm differences ‖β(m) − β(m−1)‖, ‖p(m) − p(m−1)‖ and ‖p(m) − p(m−1)‖ as
functions of m for a selling horizon T = 10. We observe that the norm differ-
ences decrease as the end of the selling horizon approaches. Figures B-5, B-6,
B-7 are the norm differences when the selling horizon is T = 20. They exhibit
the same decreasing trend as the T = 10 case.
Hence, the numerical results in disequilibrium state confirm the predictions of
the mathematical analysis.

• A Fashion Retail Example

Consider now N = 2 fashion retailers who dynamically price their inventory
over a selling season of T = 10 time periods. Market demand is heterogeneous:
customers who purchase early in the season tend to be less price sensitive than
shoppers who wait until the end of the season for discounts. Here, the price
sensitivity increases with time, and hence, so do the parameters. Figure B-8
shows the evolution of the parameters as a function of time. Figures B-9, B-10,
B-11 show respectively the norm differences ‖β(m) − β(m−1)‖, ‖p(m) − p(m−1)‖
and ‖p(m) − p(m−1)‖ as functions of m.
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The results in the case of increasing price sensitivities over time are similar to
those obtained in the airline example above, and corroborate the predictions of
the mathematical analysis.

Computations in Equilibrium Setting

Here we investigate the airline example in equilibrium setting. The parameters are still
those of Figure B-1. Figures B-12, B-13 and B-14 in appendix display the logarithm
of the norm differences : log ‖β(m) − β(m−1)‖ and log ‖p(m) − p(m−1)‖. We show
logarithmic differences because the convergence speed in equilibrium is much faster
than in disequilibrium.

Evaluation of the Learning

As suggested by theory and supported by computational results, the following behav-
ior was observed:

• In disequilibrium, learning is achieved for both the parameters and the pricing
strategies in a relatively small number of time periods.

• Learning speed, as measured by the number of iterations required to satisfy
the convergence criterion, is much faster in equilibrium than disequilibrium:
it is achieved after just a few time periods. This is due to the fact that in
equilibrium, only the parameters need to be learned.

• The learning speed is affected by the choice of historical prices. More precisely,
the larger the standard deviation σi of the distribution according to which the
prices were generated, the longer it takes to learn the parameters.

• The learning speed decreases as the number of firms in the market increases,
all else being equal, as shown in Figure B-15: this is to be expected, since the
more firms there are in the market, the more parameters there are to estimate
at each time period.

• The learning speed decreases as the length of the horizon increases, all else
being equal, as shown in Figure B-16: this is because the longer the horizon,
the more parameters need to be estimated.

Behavior of the Algorithm

Numerical experience led us to the following conclusions regarding the practical con-
vergence of the algorithm:

• At each time period of the approach, the number of iterations it takes for the
Gauss-Newton method to converge increases as the size of the problem increases,
i.e as the number of firms N , or the selling horizon T increases.
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• The convergence of the algorithm is greatly affected by the choice of the starting
point. This is because the problem at hand is highly non convex, and the method
used only finds local solutions. Hence, to guarantee convergence, the method
randomizes the starting point within the feasible region.

• At each time period of the approach, the algorithm takes much longer to
converge in equilibrium than disequilibrium. This is because the lower level
which needs to be solved repeatedly at each iteration is a variational inequality,
whereas in disequilibrium, the lower level best-response problem can be solved
in closed form.

• At each time period of the approach, the algorithm converges much faster when
capacity is scarce. Indeed, in that case, firms can maximize each period’s rev-
enue independently of other periods, rendering the lower-level problem separable
and much easier to solve, and the upper-level problem becomes separable as a
result.
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Chapter 7

Closed-Loop Dynamic Pricing

In previous chapters, we have considered open-loop policies: the policy is computed
once and for all for the entire horizon. We now consider closed-loop policies. In a
closed-loop setting, the firm postpones the decision of its optimal price or quantity
for period t until the last possible moment, i.e at t. It can therefore take advantage of
the information gathered up to time t, i.e the prices or quantities set by the firm and
its competitors in past periods. In a deterministic setting, closed-loop and open-loop
policies are equivalent. This means that there is no extra value in the additional in-
formation that can be gathered. Indeed, in deterministic problems, where no random
disturbances can affect the market, the future behavior of the market is completely
determined by its initial state. In the Bertrand and Cournot oligopoly models that
were considered in previous chapters, the market is totally determined at equilibrium,
once we know the total capacities of all the firms.
In this chapter, we introduce a stochastic component to the model. Therefore, the
capacity available to the firm at each period is not known deterministically, and there
is value in postponing the decision until additional information is available.
The model we present is the competitive counterpart to the model in Gallego and
Van Ryzin [46]. They focus on a monopolistic market for a single perishable product,
for which demand is a Poisson process with price dependent rate. For the exponential
intensity function, they establish a closed-form solution for the optimal pricing policy
and the corresponding revenue-to-go. They also study the structural properties of
the optimal policy and revenue-to-go function, such as monotonicity and convexity
properties. A similar model to ours was also introduced in Gallego and Hu [45], but
the authors focused in their paper on open-loop strategies related to the model.
In this Chapter, we establish existence and uniqueness of Markov-perfect equilibrium
strategies and establish closed-form solutions in the case of an exponential intensity
function. We prove that unlike the monopoly model, monotonicity of the equilibrium
policies does not hold. We then study approximations of the problem. We investigate
a one-step look-ahead equilibrium policy with approximation of the revenue-to-go as
a linear or quadratic function of the firms’ capacities. We carry out computational
experiment in order to compare the revenues and policies generated by the optimal
policies, by the one-step look-ahead equilibrium policies, and by the open-loop feed-
back equilibrium policies. Finally, we investigate an iterative approach to converge
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to the Markov-perfect equilibrium. This approach is of the best-response dynamics
nature. We study its convergence computationally.

7.1 The Demand Model

We consider an oligopoly market, for single, perishable, substitutable products. The
demand of a firm is modeled as a stochastic point process with Markovian intensity.
In particular, we consider demand to be a nonhomogeneous Poisson process, with
price-dependent intensity. Let λi(pi(s), p−i(s), αi(s)) denote the intensity function of
firm i at time s. It depends on the prices of the firms at time s, and is parameterized
by a vector of parameters denoted αi(s).
We make the following assumptions on the intensities:

Assumptions 7.1. 1. The function λi is continuous in p = (pi,p−i)
′ and twice

differentiable in pi;

2. The vector-valued function λ(p) is an invertible function of p;

3. λi is strictly decreasing in pi, and non increasing in pj, for j 6= i;

4. The instantaneous revenue function ri(λi,λ−i) = λipi(λi,λ−i) is strictly con-
cave in λi and bounded.

5. For all λ−i, there exists a bounded maximizer λ∗i (λ−i) = arg maxλi
ri(λi,λ−i).

6. There is a null price p∞i ∈ R+

⋃
{∞} such that, for all p−i:

lim
pi→p∞i

λi(pi,p−i) = 0

The set of feasible prices is defined as:

Pi = [0, p∞i ]

Assumption (7.1.2) states that λ(p) is an invertible function of p. Indeed, as is cus-
tomary in revenue management (see for instance Gallego and Van Ryzin [46]), we
will work with the inverse demand function p(λ). That is, we will formulate the
problem as a competitive intensity control problem, and we will seek policies in terms
of intensities. Assumption (7.1.3) restricts the problem to normal goods which are
gross substitutes: the demand of firm i decreases when it increases its price, ceteris
paribus, and the demand of firm i increases or stays the same when its competitor
−i increases its price. Assumption (7.1.4) states that the instantaneous revenue func-
tion is strictly concave in λi, i.e there are strictly diminishing returns. Assumption
(7.1.5) guarantees the existence of a maximizer for the revenue function. As a result
of Assumption (7.1.4) and Assumption (7.1.5), the revenue function is increasing in
λi for λi ≤ λ∗i (λ−i), and decreasing for λi ≥ λ∗i (λ−i). Since p∞i is in the set of feasi-
ble prices, then Assumption (7.1.6) implies that 0 is in the set of feasible intensities,
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when the problem is expressed in variable λi, using the inverse rate function. This
guarantees that the firm can set its intensity to 0 when it does not have any capacity
left.
We denote by Li the set of allowable intensities. Since pi ∈ [0, p∞i ] for all i, and by As-
sumption (7.1.2), we have that limpi→p∞i

λi(pi, 0) ≤ λi(pi,p−i) ≤ limp
−i→p∞

−i
λi(0,p−i).

By Assumption (7.1.6), we know that the left hand side limit is equal to 0. As a re-
sult, 0 ∈ Li.
We check that the above assumptions are realistic, by checking that they are satisfied
by some of the intensity functions most used in the literature.

• Cobb-Douglas rate:

λi(pi,p−i) = θi

N∏

j=1

p
−βij

j

Let [B] be the matrix with coefficients βij . Let [A] be the inverse of [B] with
coefficients αij. The inverse rate function is:

pi(λi,λ−i) =
N∏

j=1

(
λj

θj

)−αij

Assumptions (7.1) are satisfied iff: [B] is invertible, βii > 0, βij ≤ 0 for j 6= i,
αii > 0. p∞i =∞.

• Exponential rate:

λi(pi,p−i) = θi exp{−
N∑

j=1

βijpj}

Let [B] be the matrix with coefficients βij . Let [A] be the inverse of [B] with
coefficients αij. The inverse intensity function is:

pi(λi,λ−i) = −
N∑

j=1

αij ln(
λj

θj
)

Assumptions (7.1) are satisfied iff: [B] is invertible, βii > 0, βij ≤ 0 for j 6= i,
αii > 0. p∞i =∞.

• Linear rate:

λi(pi,p−i) = βi0 −
N∑

j=1

βijpj
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Let [B] be the matrix with coefficients βij . Let [A] be the inverse of [B] with
coefficients αij . Let β0 the vector of coefficients βi0, and let α0 = [B]−1β0.
The inverse intensity function is:

pi(λi,λ−i) = αi0 −
N∑

j=1

αijλj

Assumptions (7.1) are satisfied iff: [B] is invertible, βii > 0, βij ≤ 0 for j 6= i,
αii > 0. However, there does not exist a p∞i satisfying Assumption (7.1.6).

7.2 The Continuous-Time Problem

Each firm i has initial capacity denoted Ci(0) ∈ N at time 0. The selling horizon
has length denoted t. Let Ni(s) be the stochastic process corresponding to the num-
ber of units of demand for firm i up to time s. A unit of demand is realized at
time s if dNi(s) = 1. We denote by P(C) (resp. L(C)) the space of allowable
Markovian pricing (resp. intensity) policies for the firms, when initial capacities are
C = (C1, . . . , CN):

∀ i,

∫ t

0

dNi(s) ≤ Ci a.s

p(s) ∈ P ⇔ λ(s) ∈ L

We denote by Pi(p−i, Ci) (resp. Li(λ−i, Ci)) be the space of allowable Markovian
pricing (resp. intensity) policies for firm i, when its competitors use policy p−i

(resp. λ−i) and when its initial capacity is Ci. We consider closed-loop intensity
strategies, that is, functions prescribing the optimal intensity the firm should set at
any time s, as a function of the history of the process. The history should summa-
rize all past information relevant to the decision making of the firm. The history
at any time s is the set of all past intensities set by the firm and its competitors:
{(λ̄1(s

′), . . . , λ̄N(s′)), s′ < s}.
In game theoretical terms, a policy is a mapping from histories to intensities, i.e:

Λi(s, {λi(s
′),λ−i(s

′)}s′<s) = λi(s)

Due to the Markovian property of the Poisson demand process, a policy does not
depend on the entire history of the process, it only depends on the current capacity
level of the firms, i.e (C1−N1(s), . . . , CN −NN (s)). We denote the current inventory
level of each firm i by Ci(s). Hence, in a Markovian system, the intensity policies at
each time s are mappings from the current capacity levels to intensities:

Λi(s, Ci(s),C−i(s)) = λi(s)

The goal of each firm is to maximize its expected revenue over the selling horizon [0, t].
For feasible policies (λ1, . . . , λN), and initial capacities C1, . . . , CN , firm i’s expected
revenue over the selling horizon is Ri(t, λi,λ−i, Ci,C−i):

Ri(t, λi,λ−i, Ci,C−i) = E

{∫ t

0

pi(s)dNi(s)

}
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In other words, the total expected revenue of firm i can be written as:

Ri(t, λi,λ−i, Ci,C−i) =

∫ t

0

λi(s)pi(λi(s),λ−i(s))ds

Hence, firm i’s best-response problem, for fixed competitors’s strategy λ̄−i is:

R∗
i (t, λi, λ̄−i, Ci,C−i) = sup

λi∈Li(λ̄−i ,Ci)

Ri(t, λi, λ̄−i, Ci,C−i)

A Markov-perfect equilibrium policy, is a set of policies for the firms, which are Nash
equilibrium policies in every subgame. In other words, for any time s, and any current
capacity levels C(s) = (C1(s), . . . , CN(s)), the policies Λ∗

1(s,C(s)), . . . ,Λ∗
N(s,C(s))

are Nash equilibrium policies for the game consisting of the firms maximizing their
expected revenue from 0 to s ≤ t. Let Ri(s, λi,λ−i, Ci,C−i) denote the expected
revenue-to-go from 0 to s, when intensities λi,λ−i are used. As a result, we have:

Ri(t, λi,λ−i, Ci,C−i) = Πi(t, λi,λ−i, Ci,C−i)

We define below the notion of Markov-perfect equilibrium formally.

Definition 1. Policies Λ∗
1(.), . . . ,Λ

∗
N(.) are Markov-perfect equilibrium policies iff for

all i = 1, . . . , N , for all C1, . . . , CN , and for all 0 ≤ s ≤ t:

Ri(s,Λ
∗
i ,Λ

∗

−i, Ci,C−i) ≥ Ri(s, λi,Λ
∗

−i, Ci,C−i) ∀λi

Note that the state space had dimension N , i.e the number of firms in the market.

7.2.1 Best-Response Problem

Let us focus on firm i, and let us fix its competitors’ intensity policy to λ̄−i. Given its
competitors’ policy, firm i seeks to maximize its total expected revenue over the selling
horizon. As done in Gallego and van Ryzin [46], one can establish the Hamilton-Jacobi
Bellman equation for the expected revenue-to-go.

Proposition 1. Let I0((C1, . . . , C0) = {i : Ci = 0}, and I+((C1, . . . , C0) = {i : Ci ≥
1}. The best-response revenue-to-go of firm i, for fixed competitor’ intensity policy
λ̄−i is given by the Hamilton-Jacobi-Bellman (HJB) equation below.

• if i ∈ I+((C1, . . . , C0):

∂Ri(s, Ci,C−i)

∂s
= (7.1)

max
λi

λi

(
pi(λi, λ̄−i) +Ri(s, Ci − 1,C−i)−Ri(s, Ci,C−i)

)

+
∑

j 6=i,j∈I+

λ̄j (Ri(s, Ci,C−i − ej)− Ri(s, Ci,C−i))

with boundary conditions Ri(0, Ci,C−i) = 0.
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• if i ∈ I0((C1, . . . , C0): Ri(0,C−i) = 0

By convention, we set: Λi(s, 0,C−i) = 0.

The proof relies on a discrete-time approximation of the problem.

Proof. Let δt be a time interval, such that at most one unit of demand occurs within
δt. Let t = Kδt. For any 0 ≤ k ≤ K, we call period n−k the interval [kδt, (k+1)δt).
Let (Ck

1 , . . . , C
k
N) be the state at period k. The index sets Ik

+, I
k
0 form a partition

of {1, . . . , N}. We denote by Ck
+ the subvector of capacities Ck

i ≥ 1, and Ck
0 the

subvector of capacities Ck
i = 0. The state (Ck

1 , . . . , C
k
N) = (Ck

+,C
k
0). Hence, the

state evolution equation is:

(Ck+1
+ ,Ck

0) =

{
∀ i ∈ IK

+ : (Ck
+ − ei,C

k
0 ) w.p λk

i δt
(Ck

+,C
k
0 ) w.p 1−

∑
j∈Ik

+
λk

j δt

where ei is the vector of components all zero except for component i which is equal to
1. Let us assume that Ck

i ≥ 1. The backward induction equation for the revenue-to-go
of firm i is therefore:

Ri(kδt, C
k
i ,C

k
−i, λ̄−i) =

max
λk

i

λk
i δt
(
pk

i (λ
k
i , λ̄

k
−i) +Ri((k + 1)δt, Ck

i − 1, Ck
−i|λ̄−i)

)

+
∑

j 6=i,j∈Ik
+

λ̄k
j δtRi((k + 1)δt, Ck

i ,C
k
−i − ej, λ̄−i)

+ (1− (λk
i +

∑

j 6=i,j∈Ik
+

λ̄k
j )δt)Ri((k + 1)δt, Ck

i ,C
k
−i, λ̄−i)

By rearranging the terms in the above equation, we get:

Ri(kδt, C
k
i ,C

k
−i, λ̄−i)− Ri((k + 1)δt, Ck

i ,C
k
−i, λ̄−i) =

max
λk

i

λk
i δt
(
pk

i (λ
k
i , λ̄

k
−i) +Ri((k + 1)δt, Ck

i − 1,Ck
−i, λ̄−i)−Ri((k + 1)δt, Ck

i ,C
k
−i, λ̄−i)

)

+
∑

j 6=i,j∈Ik
+

λ̄k
j δt
(
Ri((k + 1)δt, Ck

i ,C
k
−i − ej, λ̄−i)−Ri((k + 1)δt, Ck

i ,C
k
−i, λ̄−i)

)

Dividing by δt and letting δt→ 0, we get the above HJB equation.

One shortcoming of the above formulation is that it implies firm i knows its com-
petitor’s policy in terms of intensity. It is more realistic to assume that it knows its
competitor’s policy in terms of prices. The major advantage of this formulation, over
a formulation using competitor’s price policy is its simplicity, which makes it easier
to study. If one assumes that the function pj(λj,λ−j) is invertible in λi for fixed
λ−j, then we can write the intensity policy λ̄j as: λ̄j = λj(λi, p̄−i), where p̄−i is the
competitor’s price policy.
We now prove existence and uniqueness of the best-response policy.

Proposition 2. Assume that there exists a function Ri solving the partial differential
equation: for all feasible intensities λi, λ−i:
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• if i ∈ I+((C1, . . . , C0):

∂Ri(s, Ci,C−i, λi,λ−i)

∂s
=

λi

(
pi(λi, λ̄−i) +Ri(s, Ci − 1,C−i, λi,λ−i)−Ri(s, Ci,C−i, λi,λ−i)

)

+
∑

j 6=i,j∈I+

λ̄j (Ri(s, Ci,C−i − ej, λi,λ−i)− Ri(s, Ci,C−i, λi,λ−i))

with boundary conditions Ri(t, Ci,C−i, λi,λ−i) = 0.

• if i ∈ I0((C1, . . . , C0): Ri(0,C−i, λi,λ−i) = 0

Then, there exists a unique best-response intensity policy Λi(Ci, C−i, λ̄−i).

Note that we cannot in general prove existence of a function solving the HJB
equation, and can only prove existence of the best-response policy, provided such a
function exists.
Note, furthermore, that the state space has dimension N , the number of firms in the
market, and hence, computations are mired by the curse of dimensionality.

Proof. By Assumptions (7.1.4), the instantaneous revenue function is strictly concave
in λi. The function to maximize is the sum of the instantaneous revenue ri(λi, λ−i)
and a linear function in λi. Therefore, it is strictly concave in λi Furthermore, due
to Assumptions (7.1.4) and (7.1.5), we can restrict the problem to intensities λi ∈
[0, λ∗i (λ̄−i)]. Thus, the problem is that of maximizing a strictly concave function over
a compact set, and by Weierstrass’s theorem, it has a solution which is unique.

The following holds regarding the best-response policy:

Proposition 3. For all λ̄−i, the best-response policy Λi(Ci, C−i, λ̄−i) verifies:

Λi(Ci, C−i, λ̄−i) ≤ λ∗i (λ̄−i)

Proof. Let λi > λ∗i (λ̄−i). By definition, we have:

ri(λi, λ̄−i) < ri(λ
∗
i (λ̄−i), λ̄−i)

Since Ri is nondecreasing in Ci, then we get:

ri(λi, λ̄−i) + λi

(
Ri(Ci − 1, C−i, λ̄−i)− Ri(Ci, C−i, λ̄−i)

)

≤ ri(λ
∗
i (λ̄−i), λ̄−i) + λ∗i (λ̄−i)

(
Ri(Ci − 1, C−i, λ̄−i)− Ri(Ci, C−i, λ̄−i)

)

As a result, no λi > λ∗i (λ̄−i) is optimal, therefore Λi(Ci, C−i, λ̄−i) ≤ λ∗i (λ̄−i).

Furthermore, we can establish the following properties regarding the best-response
revenue-to-go function:

Proposition 4. The best-response revenue-to-go Ri(s, Ci, C−i, λ̄−i) is strictly in-
creasing in Ci, for fixed C−i, and strictly increasing in s for fixed C−i, λ̄−i.
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Proof. • We first prove that Ri is nondecreasing in Ci, ceteris paribus. Indeed,

Ri(s, Ci, C−i, λ̄−i) = sup
λi∈Li(λ̄−i)

E

{∫ s

0

}

where Li(λ̄−i, Ci) is the space of allowable intensities for i, such that:

∫ s

0

dNi(s) ≤ Ci

Any policy in Li(λ̄−i, Ci) is allowable in Li(λ̄−i, Ci+1). Hence, the policy which
is optimal for capacity Ci + 1 yields a revenue from 0 to s which is no smaller
than the optimal revenue for capacity Ci. This means that the best-response
revenue-to-go is nondecreasing in Ci.

• Let s < s′: we have:

Ri(s
′, Ci, C−i, λ̄−i)− Ri(s, Ci, C−i, λ̄−i) =

Eλi

{∫ s′

s

pi(s)dNi(s)

}

The above quantity is positive, hence Ri(s
′, Ci, C−i, λ̄−i)−Ri(s, Ci, C−i, λ̄−i) >

0 for s < s′.

However, we cannot establish monotonicity of the policy or of the revenue-to-go
w.r.t the firm’s own capacity.

7.2.2 Markov-Perfect equilibrium

A Markov-perfect equilibrium Λ∗
1, . . . ,Λ

∗
N exists if the system of HJB equations for

the firms has a solution:

Proposition 5. Assume that there exist R∗
1, . . . , R

∗
N : [0, t]×NN → R+, continuously

differentiable, and Λ∗
1, . . . ,Λ

∗
N : [0, t]×NN → R+, such that for all i:

∂R∗
i (s, Ci,C−i)

∂s
= (7.2)

max
λi

λi

(
pi(λi,Λ

∗
−i(C−i, Ci)) +R∗

i (s, Ci − 1,C−i)− R
∗
i (s, Ci,C−i)

)

+
∑

j∈I+,j 6=i

Λ∗
j(Cj ,C−j) (R∗

i (s, Ci,C−i − ej)−R
∗
i (s, Ci,C−i))

with boundary conditions R∗
i (0, Ci, C−i) = 0 and R∗

i (s, 0, C−i) = 0 for all s ≤ t.
Then Λ∗

1, . . . ,Λ
∗
N are the Markov-perfect equilibrium policies for the firms.
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Hence, computing the MPE policies requires solving the system of N HJB equa-
tions simultaneously, each of them having a state space of dimension N . As a re-
sult of this, the problem is not computationally tractable, except for monopolies or
duopolies. For this reason, we will explore in Section 3 some approximations of the
problem which aim at reducing the complexity of the best-response and MPE prob-
lems.
Using standard tools from Game Theory, it is possible to establish existence of
Markov-perfect equilibrium policies.

Proposition 6. Assume that there exist functions R1, . . . , RN simultaneously solving
the partial differential equations: for all i, for all feasible intensities λi,λ−i:

• if i ∈ I+((C1, . . . , C0):

∂Ri(s, Ci,C−i, λi,λ−i)

∂s
=

λi

(
pi(λi, λ̄−i) +Ri(s, Ci − 1,C−i, λi,λ−i)−Ri(s, Ci,C−i, λi,λ−i)

)

+
∑

j 6=i,j∈I+

λ̄j (Ri(s, Ci,C−i − ej, λi,λ−i)− Ri(s, Ci,C−i, λi,λ−i))

with boundary conditions Ri(t, Ci,C−i, λi,λ−i) = 0.

• if i ∈ I0((C1, . . . , C0): Ri(0,C−i, λi,λ−i) = 0

There exists a set of Markov-perfect equilibrium policies.

Proof. Let us fix Ci,C−i. Let s ∈ [0, t]. The MPE policies are those maximizing the
following objectives: for all i, we have:

max
λi

ri(λi,λ−i) + λi(R
∗
i (s, Ci − 1,C−i)−R

∗
i (s, Ci,C−i))

Since ri is strictly concave in λi and the second term in the objective is linear in λi,
then the objective is strictly concave in λi. It is furthermore continuous in λ. By
consequence of Assumptions (7.1.6), we have seen that the set of feasible intensities
in compact.
Therefore, we can use Arrow-Debreu-Glicksberg theorem to prove existence of a Nash
equilibrium.

However, even for simple intensity functions, the MPE policies are not available
in closed form.
Uniqueness of the MPE policies requires an additional assumption.

Assumption 7.2.

|
∂2ri

∂λ2
i

| >
∑

j 6=i

|
∂2ri

∂λiλj
|

|
∂2ri

∂λ2
i

| >
∑

j 6=i

|
∂2rj

∂λiλj
|
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Proposition 7. Assume that there exist functions R1, . . . , RN simultaneously solving
the partial differential equations: for all i, for all feasible intensities λi, bmλ−i:

• if i ∈ I+((C1, . . . , C0):

−
∂Ri(s, Ci,C−i, λi,λ−i)

∂s
=

λi

(
pi(λi, λ̄−i) +Ri(s, Ci − 1,C−i, λi,λ−i)−Ri(s, Ci,C−i, λi,λ−i)

)

+
∑

j 6=i,j∈I+

λ̄j (Ri(s, Ci,C−i − ej, λi,λ−i)− Ri(s, Ci,C−i, λi,λ−i))

with boundary conditions Ri(t, Ci,C−i, λi,λ−i) = 0.

• if i ∈ I0((C1, . . . , C0): Ri(0,C−i, λi,λ−i) = 0

Under Assumption 7.2, the MPE policies are unique.

Proof. Assumption 7.2 implies that the mapping:

F (λ) =

(
−
∂r1
∂λ1

, . . . ,−
∂rN

∂λN

)′

is strictly monotone. As a result, the MPE policies are unique.

Furthermore, the monotonicity property w.r.t time that we established for the
best-response problem can be extended to the equilibrium problem.

Proposition 8. The MPE revenue-to-go is strictly increasing in s.

The proof is similar to that for the best-response problem, and is thus omitted.
However, we cannot establish monotonicity of the equilibrium policy or revenue w.r.t
the firm’s own capacity.

7.3 The Discrete-Time Problem

In this section, we consider an approximation of the above model in discrete-time.
Continuous-time pricing policies have many detractors. Indeed, as discussed in Bitran
and Mondschein [15], they give rise to ”saw-toothed” policies, where the price drops
after every sales. Their implementation is unrealistic, and they tend to raise issues
regarding fairness to the consumer. In a discrete-time model, the firms price their
product at each time period simultaneously.

Stochastic Dynamic Pricing Problem

We consider a discretization of the interval [0, t], where the time period δt is chosen
so that at most one unit of demand can occur during one period. The finite horizon
t is thus divided into n = t/δt time periods of length δt. Furthermore, we make the
following assumption on δt.
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Assumption 7.3. δt is such that there is at most one unit of demand occurring in
any interval [kδt, (k + 1)δt).

We use superscript k to denote the time period [(n − k − 1)δt, (n − k)δt). Let dk
i

denote demand at time k. Let Ik
+ be the set of indices of firms with positive capacity

in period k, and Ik
0 the set of indices of firms with zero capacity in period k. By

Assumption 7.3, the Poisson purchasing process is approximated by the following
Bernoulli process:

(dk
+,d

k
0) =

{
(ei, 0) w.p λk

i δt ∀ i ∈ I
k
+

(0, 0) w.p 1−
∑

i∈Ik
+
λk

i δt

7.3.1 Best-Response Problem

Let us fix competitors’ strategy to λ̄1
−i, . . . , λ̄

n
−i, and consider the revenue manage-

ment problem of firm i. At each period k, firm i aims at maximizing its expected
revenue for the remainder of the horizon, given its belief λ̄−i regarding its competi-
tors’ intensities. The best-response policy and best-response revenue-to-go of firm i
can be computed by backwards induction: if i ∈ Ik

+:

Rk
i (C

k
i ,C

k
−i, λ̄−i) (7.3)

= max
λk

i

λk
i δt
(
pk

i (λ
k
i , λ̄

k
−i) +Rk+1

i (Ck
i − 1,Ck

−i, λ̄−i)
)

+
∑

j∈Ik
+,j 6=i

λ̄k
j δtR

k+1
i (Ck

i ,C
k
−i − ej, λ̄−i) + (1− (λk

i +
∑

j∈Ik
+,j 6=i

λ̄k
j )δt)R

k+1
i (Ck

i ,C
k
−i, λ̄−i)

Furthermore, the boundary conditions are:

Rn
i (Cn

i ,C
n
−i, λ̄−i) = 0 (7.4)

Rk
i (0,C

t
−i, λ̄−i) = 0 (7.5)

The best-response policy Λk
i (C

k
i ,C

k
−i,λ−i) maximizes the right hand side of the back-

ward induction equation:

λk
i (C

k
i ,C

k
−i, λ̄−i) (7.6)

= arg max
λk

i

λk
i δt
(
pk

i (λ
k
i , λ̄

k
−i) +Rk+1

i (Ck
i − 1,Ck

−i, λ̄−i)−R
k+1
i (Ck

i ,C
k
−i, λ̄−i)

)

Notice that the discretization transforms the HJB equation into a backward induction
equation. The only reduction in complexity is therefore to avoid the partial derivative
and its integration. However, the dimension of the state space is still N , and thus
the discrete-time problem is still subject to the curse of dimensionality.
We now establish existence and uniqueness of the best-response policy, and best-
response revenue-to-go.

Proposition 9. There exist unique best-response intensity policy and best-response
revenue-to-go.
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Proof. The proof is by induction. For k = n−1, the best-response policy for firm i is
obtained by maximizing the instantaneous revenue function ri(λ

n
i ,λ

n
−i). By Assump-

tion (7.1.5), the instantaneous revenue has a bounded maximizer. By strict concavity,
this maximizer is unique. Hence the best-response policy for period n exists and is
unique. The best-response revenue to go in period n− 1 exists and is therefore:

Rn−1
i (Ci,C−i,λ−i) = ri(Λ

n−1
i (Ci,C−i,λ−i),λ

n−1
−i )δt

Let us assume that the best-response policy and best-response revenue-to-go exist for
periods n− 1 to k + 1. The best-response problem in period k is that of maximizing
the following function:

hk
i (λ

k
i ) = rk

i (λ
k
i , λ̄

k
−i)δt

+ λiδt
(
Rk+1

i (Ck
i − 1,Ck

−i, λ̄−i)− R
k+1
i (Ck

i ,C
k
−i, λ̄−i)

)

where Rk+1
i (Ck

i − 1,Ck
−i, λ̄−i) is the best response revenue-to-go in period k + 1.

By Assumptions (7.1.4) and (7.1.5), the problem can be restricted to intensities λk
i ∈

[0, λ∗i (λ̄−i)]. By strict concavity of hi (sum of ri which is strictly concave, and a linear
function), we conclude that there is a unique maximizer. Hence, the best-response
policy for period k exits and is unique. By plugging the best-response policy into
the right-hand side of the backward induction equation, we obtain the best-response
revenue-to-go for period k.
Therefore, by induction principle, existence and uniqueness of the best-response policy
and best-response revenue-to-go holds for all 0 ≤ k ≤ n− 1.

Furthermore, similarly to the continuous-time problem, we state the following
result:

Proposition 10. The best-response revenue-to-go is decreasing in k.

The proof is similar to that of the continuous-time problem (note that s increases
corresponds to k decreases and vice-versa).

7.3.2 Markov-Perfect Equilibrium

In equilibrium, all firms want to find their closed-loop optimal policies, knowing that
their competitors are doing the same. Hence, the Markov-perfect equilibrium policies
solve the backward induction equations for all firms simultaneously. Let R∗k

i (Ck
i ,C

k
−i)

be the MPE revenue-to-go and Λ∗
i the MPE policy. For all i, Λ∗k

i (Ck
i ,C

k
−i) solves the

following:

R∗k
i (Ck

i ,C
k
−i) (7.7)

= max
λk

i

λk
i δt
(
pk

i (λ
k
i ,Λ

∗k
−i(C

k
−i, C

k
i )) +R∗k+1

i (Ck
i − 1,Ck

−i)
)

+
∑

j∈Ik
+

,j 6=i

Λ∗k
j δtR

∗k+1
i (Ck

i ,C
k
−i − ej) + (1− (λk

i +
∑

j∈Ik
+

,j 6=i

Λ∗k
j (Ck

j ,C
k
−j))δt)R

k+1
i (Ck

i ,C
k
−i)

Hence the MPE problem in discrete time is the system of N N -dimensional backward
induction equations above. As its continuous-time counterpart, this problem is thus
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not computationally tractable in general.
We now state the first result of this subsection:

Proposition 11. There exists a Markov-perfect equilibrium policy.

The proof relies on the same arguments as the proof of Proposition 6 and is
therefore omitted.

Uniqueness can be obtained under Assumption 7.2.

Proposition 12. Under Assumption 7.2, the Markov-perfect equilibrium policies are
unique.

The proof is similar to the continuous-time case, and is therefore omitted.

7.3.3 Properties of the Best-response and Equilibrium Prob-

lems

We establish the following properties regarding the best-response and MPE revenue-
to-go functions and policies:

Proposition 13. • If Ck
i ≥ n − k, then the best-response policy Λk

i (C
k
i , C

k
−i, λ̄i)

and revenue-to-go function Rk
i (C

k
i , C

k
−i, λ̄i) are independent of Ck

i ;

• Let j ∈ Ik
+, j 6= i. If Ck

j ≥ n− k, then the best-response policy Λk
i (C

k
i , C

k
−i, λ̄i)

and revenue-to-go function Rk
i (C

k
i , C

k
−i, λ̄i) are independent of Ck

j ;

• If for all j ∈ Ik
+, Ck

j ≥ n − k, then the Markov-perfect policies (Λ∗k
i (Ck

i ,C
k
−i)

and the Markov-perfect equilibrium revenue-to-go functions (R∗k
i (Ck

i ,C
k
−i) are

independent of {Ck
j }j∈Ik

+
.

We prove the proposition for the best-response problem, since the proof is very
similar in equilibrium.

Proof. Let i ∈ In−1
+ . Let k = n − 1. The best-response policy and revenue-to-go

function of firm i are such that:

R∗n−1
i (Cn−1

i ,Cn−1
−i , λ̄−i)

= max
λn−1

i

λn−1
i δtpn−1

i (λn−1
i , λ̄−i)

Hence firm i’s best-response policy does not depend on its capacity and neither does
its best-response revenue-to-go function. Assume that the property holds for k+1, i.e
Λk+1

i (Ck+1
i ,Ck+1

−i , λ̄−i) and Rk+1
i (Ck+1

i , Ck+1
−i , λ̄−i) is independent of Ck+1

i ≥ n−k−1.

Let Ck
i ≥ n−k. Since Ck

i −1, Ck
i ,≥ n−k−1, then the revenue-to-go functions in the

right-hand side of Equation (3) are independent of i’s capacity. As a result, the best-
response policy, and hence, the best-response revenue-to-go function, are independent
of i’s capacity.
By induction, we conclude that the property holds for all k.
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Furthermore, we establish the following property for the best-response policy and
revenue-to-go:

Proposition 14. The best-response policy and revenue-to-go functions for firm i are
independent of competitors’ capacity C−i.

Proof. The proof is by induction.
For k = n − 1, the result holds trivially. Let us assume that the best-response
policy λk+1

i (Ci, c−i, λ̄−i) and the best-response revenue-to-go Rk+1
i (Ci,C−i, λ̄−i) are

independent of C−i.
The best-response policy solves the maximization problem:

λk
i (C

k
i ,C

k
−i, λ̄−i)

= arg max
λk

i

λk
i δt
(
pk

i (λ
k
i , λ̄

k
−i) +Rk+1

i (Ck
i − 1,Ck

−i, λ̄−i)−R
k+1
i (Ck

i ,C
k
−i, λ̄−i)

)

Hence, the policy is independent of competitors’ capacity. Furthermore, Rk+1
i (Ci,C−i−

1, λ̄−i) − R
k+1
i (Ci,C−i, λ̄−i) = 0. Therefore, the revenue-to-go at period k is inde-

pendent of C−i.

Next, we would like to establish some monotonicity properties on the policies and
revenue-to-go functions in general. Indeed, such properties exist for the monopoly
problem, as established in Gallego and van Ryzin [46]. However, as the counterex-
ample below suggests, we cannot establish a monotonic behavior of the equilibrium
policies as a function of capacity.

Counterexample 1. Consider the duopoly market with exponential rate function:

λi(p− i, p−i) = θi exp{−αipi − βip−i}

Assume Cn−3
−i ≥ 3. Then the following holds: for all λ̄−i,

Λn−3
i (3, C−i, λ̄−i) ≥ Λn−3

i (2, C−i, λ̄−i)

But for λ̄n−1
−i ≤ θ−i

(
e ln(2)
θiδt

)α−i/βi

, we have:

Λn−3
i (2, C−i, λ̄−i) ≤ Λn−3

i (1, C−i, λ̄−i)

Furthermore, we have for all λ̄−i,

Rn−3
i (3, C−i, λ̄−i) ≥ Rn−3

i (2, C−i, λ̄−i)

But if the two conditions below are satisfied:

θiδt

2e

(
λ̄n−2
−i

θ−i

)βi/α−i

≤
βi

α−i
ln

(
λ̄n−3
−i

θ−i

)
+ ln(θiδt)− 1

θi

e
δt
( )

we have:

Rn−3
i (2, C−i, λ̄−i) ≤ Rn−3

i (1, C−i, λ̄−i)
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Proof. We first notice that if Ck
−i ≥ n− k, since the best-response revenue-to-go does

not depend on capacity, the problem becomes:

Rk
i (C

k
i , C

k
−i, λ̄−i) =

max
λk

i

λk
i δt
(
pi(λ

k
i , λ̄

k
−i) +Rk

i (C
k
i − 1, Ck

−i, λ̄−i)− R
k
i (C

k
i , C

k
−i, λ̄−i)

)

Furthermore, for the exponential rate function, the first order optimality condition
is:

pi(λ
k
i , λ̄

k
−i) +Rk

i (C
k
i − 1, Ck

−i, λ̄−i)− R
k
i (C

k
i , C

k
−i, λ̄−i) =

α−i

∆

where ∆ = αiα−i − βiβ−i.
Hence, the best-response revenue-to-go can be written as:

Rk
i (C

k
i , C

k
−i, λ̄−i) =

α−i

∆
δtΛi(C

k
i , C

k
−i, λ̄−i) +Rk+1

i (Ck
i , C

k
−i, λ̄−i)

At period n− 1, the best-response policy solves: for Cn−1
i ≥ 1:

max
λn−1

i

λn−1
i δtpi(λi, λ̄

n−1
−i )

Hence,

Λn−1
i (Cn−1

i , Cn−1
−i , λ̄n−1

−i ) =

{
θi

e

(
λ̄n−1

−i

θ−i

)βi/α−i

Cn−1
i ≥ 1

0 Cn−1
i = 0

and the best-response revenue-to-go at n− 1 is:

Rn−1
i (Cn−1

i , Cn−1
−i , λ̄n−1

−i ) =
α−i

∆
δtΛn−1

i (Cn−1
i , Cn−1

−i , λ̄n−1
−i )

At period n− 2, the best-response policy solves:

• If Cn−2
i ≥ 2:

max
λn−2

i

λn−2
i δtpi(λ

n−2
i , λ̄n−2

−i )

• If Cn−2
i = 1:

max
λn−2

i

λn−2
i δt

(
pi(λ

n−2
i , λ̄n−2

−i )− Rn−1
i (1, Cn−2

−i , λ̄n−1
−i

)

• If Cn−2
i = 0: then Λn−2

i (0, Cn−2
−i , λ̄n−2

−i ) = 0.

We thus obtain the closed-form solutions for the best-response policy at period n−2:

Λn−2
i (Cn−2

i , Cn−2
−i , λ̄−i) =





θi

e

(
λ̄n−2

−i

θ−i

)βi/α−i

Cn−2
i ≥ 2

θi

e

(
λ̄n−2

−i

θ−i

)βi/α−i

exp{−δtθi

e

(
λ̄n−1

−i

θ−i

)βi/α−i

} Cn−2
i = 1

0 Cn−2
i = 0
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As a result, the best-response revenue-to-go function is:

Rn−2
i (Cn−2

i , Cn−2
−i , λ̄−i) =

α−i

∆
δtΛn−2

i (Cn−2
i , Cn−2

−i , λ̄−i) +Rn−1
i (Cn−2

i , Cn−2
−i , λ̄−i)

Finally, for period n− 3:

• If Cn−3
i ≥ 3:

max
λn−3

i

λn−3
i δtpi(λ

n−3
i , λ̄n−3

−i )

• If Cn−2
i = 2:

max
λn−3

i

λn−3
i δtpi(λ

n−3
i , λ̄n−3

−i ) +

λn−3
i δt

(
Rn−2

i (1, Cn−3
−i , λ̄n−2

−i )−Rn−2
i (2, Cn−3

−i , λ̄n−2
−i )

)

• If Cn−3
i = 1:

max
λn−3

i

λn−3
i δt

(
pi(λ

n−3
i , λ̄n−3

−i )− Rn−2
i (1, Cn−3

−i , λ̄n−2
−i

)

• If Cn−3
i = 0: then Λn−3

i (0, Cn−3
−i , λ̄n−3

−i ) = 0.

We thus obtain the closed-form solutions:

Λn−3
i (Cn−3

i , Cn−3
−i , λ̄−i) =






θi

e

(
λ̄n−3

−i

θ−i

)βi/α−i

θi

e

(
λ̄n−3

−i

θ−i

)βi/α−i

exp

{
−δtθi

e

(
λ̄n−2

−i

θ−i

)βi/α−i
(

1− exp{−δtθi

e

(
λ̄n−1

−i

θ−i

)βi/α−i

θi

e

(
λ̄n−3

−i

θ−i

)βi/α−i

exp

{
−δtθi

e

(
λ̄n−2

−i

θ−i

)βi/α−i

exp{−δtθi

e

(
λ̄n−1

−i

θ−i

)βi/α−i

}

}

0

We now compute the ratio:

ln

(
Λn−3

i (2, Cn−3
−i , λ̄−i)

Λn−3
i (1, Cn−3

−i , λ̄−i)

)
=

θi

e

(
λ̄n−2
−i

θ−i

)βi/α−i
(

1− 2 exp{−δt
θi

e

(
λ̄n−1
−i

θ−i

)βi/α−i

}

)

Hence, if λ̄n−1
−i ≤ θ−i

(
e ln(2)
θiδt

)α−i/βi

, the above is non positive, and Λn−3
i (2, Cn−3

−i , λ̄−i) ≤

Λn−3
i (1, Cn−3

−i , λ̄−i).
Furthermore, for the revenue-to-go functions at period n− 3, we have:

Rn−3
i (3, Cn−3

−i , λ̄−i)− R
n−3
i (2, Cn−3

−i , λ̄−i) =
α−i

∆
δt
(
Λn−3

i (3, Cn−3
−i , λ̄−i)− Λn−3

i (2, Cn−3
−i , λ̄−i)

)
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+
(
Rn−2

i (3, Cn−3
−i , λ̄−i)−R

n−2
i (2, Cn−3

−i , λ̄−i)
)

The last term in the above equation is equal to zero, and the first term was just
proved to be nonnegative. Hence, the above quantity is nonnegative.

Rn−3
i (2, Cn−3

−i , λ̄−i)− R
n−3
i (1, Cn−3

−i , λ̄−i) =
α−i

∆
δt
(
Λn−3

i (2, Cn−3
−i , λ̄−i)− Λn−3

i (1, Cn−3
−i , λ̄−i)

)

+
(
Rn−2

i (2, Cn−3
−i , λ̄−i)−R

n−2
i (1, Cn−3

−i , λ̄−i)
)

Let us define the following:

xn−k
−i =

θi

e

(
λ̄k
−i

θ−i

)βi/α−i

yn−k
−i = exp{−δtxk

−i}

We have:

Rn−3
i (2, Cn−3

−i , λ̄−i)− R
n−3
i (1, Cn−3

−i , λ̄−i) =
α−i

∆

(
x3
−iδt( exp{−x2

−iδt(1− y
1
−i)} − exp{x2

−iδty
1
−i}) + x2

−iδt(1− y
1
−i)
)

Let f(y) = x3
−iδt( exp{−x2

−iδt(1− y)} − exp{x2
−iδty}) + x2

−iδt(1− y). We have:

f ′(y) = x3
−iδtx

2
−iδt( exp{−x2

−iδt(1− y
1
−i)}+ exp{x2

−iδty
1
−i})− x

2
−iδt

x3
−iδt(x

2
−iδt)

2( exp{−x2
−iδt(1− y

1
−i)} − exp{x2

−iδty
1
−i})

f ′′ is negative for y < 1/2 and positive for y > 1/2. Hence, f ′ is decreasing for
y ∈ [0, 1/2) and increasing for y ∈ (1/2,∞). Its minimum is attained at y = 1/2, and
we have:

f ′(1/2) = 2x3
−iδtx

2
−iδt exp{−x2

−iδt/2} − x
2
−iδt

As a result, if δt/2x2
−i ≥ ln

(
x3
−iδt

)
, then f ′(1/2) ≤ 0.

In that case, since f ′ is decreasing for y < 1/2 and increasing for y > 1/2, there exist
unique y < 1/2 and ȳ > 1/2 such that f ′(y) = f ′(ȳ) = 0.
Therefore, f ′ is positive for y < y or y > ȳ and negative for y ∈ (y, ȳ).
Furthermore, if the second condition in the Proposition is satisfied, then f(0) ≤ 0,
therefore guaranteeing the existence of a range of values y for which f(y) ≤ 0. This
implies that: Rn−3

i (2, Cn−3
−i , λ̄−i) ≤ Rn−3

i (1, Cn−3
−i , λ̄−i).

This is unlike the monopoly case, for which Gallego, Van Ryzin [46] proved that the
optimal revenue-to-go function and the optimal intensity policy are monotonically
increasing in the firm’s capacity.

7.4 Suboptimal Policies

In this section, we investigate approximations of the above problem that enable us to
break the curse of dimensionality. Indeed, we have seen in Section 1 and 2 that both
the continuous-time and discrete=time problems are in general ont computationally
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tractable. First, we consider the one-step look-ahead policy. The one-step look-ahead
policy is such that next period’s revenue-to-go in the backward induction equation is
replaced by an approximation. We explore different approximation architectures, in
particular the linear architecture and the quadratic architecture. Second, we consider
the open-loop feedback policy. At each time period k, it solves the deterministic
open-loop problem for the firm from k to n. It then applies the first component of
the vector of optimal intensities as policy for time k. We investigate the approximate
best-response problem, when one player applies the open-loop feedback policy and his
competitors’ policy are fixed. In equilibrium, we consider the case where all players
are using the open-loop feedback policy, as well as the case where only some players
use open-loop feedback, and the other use the optimal problem.

7.4.1 One-Step Look-Ahead Policy

In a one-step look-ahead policy, the backward induction equation corresponding to
the best-response problem of the firm is solved, where next period’s revenue-to-go is
an approximation. Let R̃k

i (C
k
i ,C

k
−i, λ̄−i). Let Λ̂i(C

k
i , C

k
−i, λ̄−i). It solves the following

backward induction equation:

Λ̂k
i (C

k
i ,C

k
−i, λ̄−i) (7.8)

= arg max
λk

i

λk
i δt
(
pk

i (λ
k
i , λ̄

k
−i) + R̃k+1

i (Ck
i − 1,Ck

−i, λ̄−i)− R̃
k+1
i (Ck

i ,C
k
−i, λ̄−i)

)

In order to choose the approximating function for the revenue-to-go, we exploit ideas
from neuro-dynamic programming. We choose approximations which are functions of
the state space. In particular, we investigate the linear and quadratic approximations:

R̃k
i (C

k
i ,C

k
−i, λ̄−i) = ak

iC
k
i

R̃k
i (C

k
i ,C

k
−i, λ̄−i) = ak

iC
k
i +

1

2
bkii(C

k
−i)

2 +
∑

j 6=i

bkijC
k
i C

k
j

We choose the approximations so that they satisfy the boundary conditions R̃n
i (Cn

i ,C
n
−i, λ̄−i) =

0 (the coefficients at time n are thus zero) and R̃k
i (0,C

k
−i, λ̄−i) = 0.

The revenue-to-go corresponding to the implementation of the one-step look-ahead
policy is:

R̂k
i (C

k
i ,C

k
−i, λ̄−i) (7.9)

= λ̂k
i δt
(
pk

i (λ̂
k
i , λ̄

k
−i) + R̂k+1

i (Ck
i − 1,Ck

−i, λ̄−i)− R̂
k+1
i (Ck

i ,C
k
−i, λ̄−i)

)

+ λ̄k
−iδt

(
R̂k+1

i (Ck
i ,C

k
−i − 1, λ̄−i)− R̂

k+1
i (Ck

i ,C
k
−i, λ̄−i)

)
(7.10)

Best-Response Look-Ahead Policy with Linear Approximation

The linear approximation for the revenue-to-go function is:

R̃k
i (C

k
i ,C

k
−i, λ̄−i) = ak

iC
k
i
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Hence, the corresponding one-step look-ahead policy solves:

Λ̂k
i (C

k
i ,C

k
−i, λ̄−i) (7.11)

= arg max
λk

i

λk
i δt
(
pk

i (λ
k
i , λ̄

k
−i)− a

k+1
i

)

It therefore maximizes the following:

rk
i (λ

k
i , λ̄

k
−i)− a

k+1
i λk

i

We can establish the following properties regarding the one-step look-ahead policy:

Proposition 15. The one-step look-ahead policy Λ̂k
i (C

k
i ,C

k
−i, λ̄−i) is independent of

the firms’ capacity levels.
Furthermore, it verifies the following:

• ak+1
i ≥ 0, iff Λ̂k

i (C
k
i ,C

k
−i, λ̄−i) ≤ λ∗i (λ̄−i), where λ∗i (λ̄−i) denotes the uncon-

strained maximizer of the instantaneous revenue rk
i (λ

k
i , λ̄

k
−i).

• ak+1
i ≤ Rk+1

i (Ck
i ,C−i, λ̄−i) − Rk+1

i (Ck
i − 1,C−i, λ̄−i) iff Λ̂k

i (C
k
i ,C

k
−i, λ̄−i) ≥

Λk
i (C

k
i ,C

k
−i, λ̄−i).

Proof. • In the linear approximation, the maximand of the one-step look-ahead
policy is independent of the state space. Hence, the policy is independent of
the capacity levels.
The first-order optimality condition is:

∂rk
i

∂λk
i

(λk
i , λ̄

k
−i) = ak+1

i

whereas λ∗i (λ̄−i) verifies the following:

∂rk
i

∂λk
i

(λk
i , λ̄

k
−i) = 0

Hence, if ak+1
i ≥ 0, i.e

∂rk
i

∂λk
i

(Λ̂k
i (C

k
i ,C

k
−i, λ̄−i), λ̄

k
−i) ≥

∂rk
i

∂λk
i

(λ∗i (λ̄−i), λ̄
k
−i).

By strict concavity of rk
i in λk

i , the above derivative is strictly decreasing in λk
i .

As a result, the above inequality implies:

Λ̂k
i (C

k
i ,C

k
−i, λ̄−i) ≤ λ∗i (λ̄−i)

• The first-order optimality condition for the approximation is:

∂rk
i

∂λk
i

(λk
i , λ̄

k
−i) = ak+1

i
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whereas for the optimal problem, it is:

∂rk
i

∂λk
i

(λk
i , λ̄

k
−i) = Rk+1

i (Ck
i ,C−i, λ̄−i)−R

k+1
i (Ck

i − 1,C−i, λ̄−i)

Hence, if ak+1
i ≤ Rk+1

i (Ck
i ,C−i, λ̄−i) − Rk+1

i (Ck
i − 1,C−i, λ̄−i), due to strict

concavity of ri in λi, its first derivative is strictly decreasing in λi, and hence,
Λ̂k

i (C
k
i ,C

k
−i, λ̄−i) ≥ Λk

i (C
k
i ,C

k
−i, λ̄−i).

In other words, by choice of coefficient ak
i , we can predict whether the approximate

policy is underestimating, or overestimating the optimal policy.

Best-Response Look-Ahead Policy with Quadratic Approximation

The approximating revenue-to-go function in the quadratic case is:

R̃k
i (C

k
i ,C

k
−i, λ̄−i) = ak

iC
k
i +

1

2
bkii(C

k
−i)

2 +
∑

j 6=i

bkijC
k
i C

k
j

The look-ahead policy thus solves the following optimization problem:

Λ̂k
i (C

k
i ,C

k
−i, λ̄−i) (7.12)

= arg max
λk

i

λk
i δt

(
pk

i (λ
k
i , λ̄

k
−i)− a

k+1
i −

∑

j 6=i

bk+1
ij Ck

j − b
k+1
ii (Ck

i −
1

2
)

)

The first-order optimality condition is thus:

∂ri

∂λi
(λk

i , λ̄
k
−i) = ak+1

i −
1

2
bk+1
ii +

∑

j 6=i

bk+1
ij Ck

j + bk+1
ii Ck

i

As a result, we can establish the following property:

Proposition 16. • bk+1
ij ≥ 0 iff λ̂i is non increasing in Cj;

• bk+1
ii ≥ 0 iff λ̂i is non increasing in Ci.

• (Ck
i ,C

k
−i) verifies:

bk+1
ii Ck

i +
∑

j 6=i

bk+1
ij Ck

j ≥
1

2
bk+1
ii − ak+1

i

iff Λ̂k
i (C

k
i ,C

k
−i, λ̄−i) ≤ λ∗i (λ̄−i).
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Proof. By strict concavity of ri, the derivative ∂ri

∂λi
is strictly decreasing in λi. If

bk+1
ij ≥ 0, the right-hand side of the first order optimality condition is non decreasing

in Ck
j . Hence, λ̂i is non increasing in Ck

j .
Furthermore, if (Ck

i ,C
k
−i) verifies:

bk+1
ii Ck

i +
∑

j 6=i

bk+1
ij Ck

j ≥
1

2
bk+1
ii − ak+1

i

then, the right-hand side of the first order optimality condition is nonnegative, and
as a result, Λ̂k

i (C
k
i ,C

k
−i, λ̄−i) is at most equal to the unconstrained maximum.

7.4.2 Open-Loop Feedback Policy

The open-loop feedback problem consists of solving at each period k the deterministic
open-loop revenue-to-go problem from k to n. This is the problem of maximizing the
total expected revenue from k to n, subject to the constraint of the expected demand
not exceeding the remaining capacity.

max
λk

i ,...,λn
i

∑n
m=k λ

m
i p

m
i (λm

i , λ̄
m
−i)

s.t
∑n

m=k λ
m
i ≤

Ck
i

δt

Let us denote by (λk
i )

o(λ̄−i), . . . , (λ
n
i )

o(λ̄−i) the solution to the above problem. At
period k, the open-loop feedback policy consists of using the first of the above set of
controls:

λ̂i

k
(Ck

i ,C
k
−i, λ̄−i) = (λk

i )
o(λ̄−i)

7.5 Computational Performance Analysis on the

Approximations

We perform computations in a duopoly market, in disequilibrium. We compare the
revenue-to-go functions for the one-step look-ahead policy with linear and quadratic
architectures, for various values of the parameters characterizing the policy, for the
open-loop feedback policy, and for the optimal policy.

7.5.1 The Data

We perform computations, on a monopoly model with n = 10 periods, and the
following rate function: λi(pi, p−i) = e−pi+1/2p−i .
We fix competitor’s policy, and implement the optimal best-response policy, as well
as the open-loop feedback policy, and the one-step look ahead policy with linear and
quadratic architectures for various values of the coefficients of the approximations. For
simplicity of implementation, we choose look-ahead policies with coefficients which
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are constant over time.
In order to compare the methods, we track the percentage gap in the revenue-to-
go between the suboptimal policies and the optimal policy: if R∗k(C) denotes the
revenue-to-go of the optimal policy, and R̃k(C) the revenue-to-go of a suboptimal
policy, we compute the following ratio:

(R∗k(C)− R̃k(C))

R∗k(C)

We plot the ratio as a function of the time period k, for various values of the capacity,
and various values of the coefficients of the one-step look-ahead policy. Recall that
the approximation for the one-step look-ahead policy is: a.C + b.C2 in the quadratic
case, and a.C in the linear case. We also compute the gap between the suboptimal
policies and the optimal policy for the total revenue:

(R∗0(C)− R̃0(C))

R∗0(C)

We plot the gap in total revenue as a function of capacity, for various values of the
coefficients of the approximation.
Since the values we plot are percentage gaps, the smaller the gap in revenue, the
better the performance of the policy as compared to the optimal policy. As far as the
gap in intensity, if the gap is negative, then the suboptimal intensity is larger than
the optimal intensity, hence the suboptimal policy tends to sell at a rate that is too
high. If the gap in intensity is positive, then the suboptimal policy sells at a rate that
is too low. Similarly, if the gap in prices is negative, the suboptimal policy overprices
as compared to the optimal policy; if it is positive, then it underprices. The larger
the gap in absolute value, the larger the difference between the policy or price of the
suboptimal policy, compared to the optimal one.
The figures we refer to in this section are to be found in appendix.

7.5.2 The Results

Linear Look-Ahead Policy

Figures B-17 through B-28 are the relevant figures for the comparison of the linear
look-ahead policies, as well as the open-loop feedback policies. Figures B-17 through
B-25 display the percentage gap in revenue-to-go, intensity, and price as a function
of the time period: k = 1 represents the first time period, hence the corresponding
revenue-to-go is equal to the total revenue for the selling horizon, whereas k = 10 is
the last period for which there needs to be made a decision. In each plot, the capacity
level has been fixed. Each colored line in the graphs represent the value of the gap
for a specific value of the coefficient a of the linear approximation, and the value of
the gap for the open-loop feedback policy. Finally, Figures B-26 to B-28 correspond
to the percentage gap for a fixed time period, as a function of capacity.
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• Let us first focus on the gap in revenue-to-go, for fixed capacity, as a function
of the time period. In Figures B-17 to B-19, we see that the open-loop feedback
revenue-to-go is worse than the linear one-step lookahead revenue-to-go, for
all capacity levels and all time periods. For medium and high capacity levels
(Figures B-18 and B-19), the open-loop feedback revenue-to-go is far worse.
Furthermore, there is no improvement in the performance of the policy over
time. For small capacity (Figure B-17), there is an improvement from k = 10
to k = 1 for the open-loop feedback policy and the one-step lookahead policy
for large (a = 1) value of the coefficient. For smaller values of the coefficient,
the one-step lookahead policy gets worse from k = 10 to k = 1. The value
of the coefficient for which the policy performs best seems to depend both on
the time period and the capacity level. Figure B-20 displays the total revenue,
as a function of capacity, for the various approximations. The performance of
the open-loop feedback, as well as the one-step lookahead policies with a = 0.6
and a = 1 gets worse for higher capacities. The performance of the one-step
lookahead policies with a = 0.1, 0.2, 0.4 improves with capacity.

• As far as the comparison of the intensities is concerned, the open-loop feedback
intensity is always larger than the optimal one. For small capacity (Figure B-
21), the one-step lookahead intensity overestimates the optimal intensity for k
high, and is smaller for k low. For medium capacity (Figure B-22), the one-step
lookahead intensities with small value of a underestimate the optimal ones for
small k, for small values of a only. For large values of a (Figure B-23), the
one-step lookahead and open-loop feedback intensities always overestimate the
optimal ones. The behavior with respect to capacity is best observed in Figure
B-24.

• As far as prices are concerned, the behavior is the opposite as that of intensities:
the suboptimal policies tend to underestimate the optimal ones (Figures B-25
to B-28).

Quadratic Look-Ahead Policy:

Figures B-29 to B-40 display the revenue-to-go, intensity and price gaps between the
optimal policy and the approximate policies, when the parameter b of the quadratic
term of the one-step lookahead policy is fixed at b = 0.5, and the parameter a of the
linear term varies.

• In Figures B-29 and B-30, we display the gap in revenue-to-go, as a function of
time. For small capacity (Figure B-29), the open-loop feedback policy performs
worse than the one-step lookahead policies except when the coefficient a is high
(a = 1). The smaller the value of a, the better the performance of the lookahead
policy. Furthermore, the quality of the policy improves from k = 10 to k = 1.
For high capacity (Figure B-30), all policies perform as poorly. The policies
perform better for small capacities than large capacities (Figure B-31).
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• Figures B-32 to B-35 show the gap in intensities. The suboptimal policies all
underestimate the optimal intensity. For small capacity (Figure B-32), the gap
with the optimal intensity decreases from k = 10 to k = 1, but it remains
constant for medium and large capacities (Figures B-33 and B-34). All policies
perform equally poorly for high capacities. The gap in policies improves a lot
as capacity decreases, as exhibited in Figure B-35.

• Finally,the behavior of the pricing policy is displayed in Figures B-36 to B-39.
The suboptimal policies underestimate the prices, as compared to the optimal
policies, for all time periods, and all capacity levels. For small capacity (Figure
B-36), the gap improves from k = 10 to k = 1, but remains constant for medium
and high capacities (Figures B-37 and B-38). The price gap gets worse as the
capacity increases, as seen on Figure B-39.

Let us now fix a = 0.5 and display the gap in revenue-to-go, intensity, price between
the optimal policy on the one hand, and either the open-loop feedback policy, or
the one-step lookahead policy with quadratic architecture, for various values of the
quadratic coefficient b. The results are displayed in Figures B-40 through B-51.

• Let us first focus on the gap in revenue-to-go. The first noticeable element is
that the gap increases as the value of b increases. Furthermore, the open-loop
feedback policy performs worse than all the one-step lookahead policies. The
behavior is roughly the same for all capacity levels, as shown in Figures B-41
to B-43. Figure B-44 shows the gap in total revenue as a function of capacity.
We observe that all policies perform better for small capacity,except for b = 0,
which corresponds to a linear architecture.

• As far as the gap in intensity is concerned, all suboptimal policies overestimate
the optimal intensity, with open-loop feedback and one-step lookahead with
high values of a overestimating it most (Figures B-45 to B-47). In Figure B-48,
we see that the performance of the policies decreases as the capacity increases.

• Finally, the suboptimal prices underestimate the optimal prices, with the worst
performance for the open-loop feedback policy and the one-step lookahead poli-
cies with high values of a, the performance being worse for high capacities.
These behaviors can be observed in Figures B-49 to B-52.

7.5.3 Conclusions Regarding Approximate Policies

The computations have shown that the open-loop feedback policy is consistently out-
performed by the one-step lookahead policies. The best results are actually obtained
by the linear look-ahead policy. Indeed, whatever the capacity level, the worst gap in
revenue achieved by the linear one-step lookahead policy is of 30%, whereas for high
values of b, the quadratic lookahead policy can perform as poorly as the open-loop
feedback policy (gap of 100% for large capacities).
Furthermore, the performance of the suboptimal policies depends on the capacity
level, as well as on the time period. This suggests that better performances of the
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one-step lookahead policy can be obtained by choosing different values of the coeffi-
cients for different time periods.

7.6 Closed-Loop Best-response Dynamics

We implement a closed-loop version of a best-response dynamics approach. In evolu-
tionary game theory, best response dynamics represents a class of strategy updating
rules, where players strategies in the next round are determined by their best-response
to a belief regarding their competitors’ strategies, which depends on their strategies
in previous rounds. The best-response dynamics scheme that we implement solves
at each iteration the closed-loop best-response problem for each firm, for a value of
the competitors’ strategy equal to last iteration’s strategy. We show computationally
that the best-response dynamics scheme converges to the Markov-perfect equilibrium.

7.6.1 Description of the Best-Response Dynamics

The best-response dynamics scheme that we consider in this paper takes the following
form: at each iteration (k), each firm i solves its closed-loop best-response problem,

for competitors’ strategy fixed at last iteration’s value (k)λ
1

−i, . . . ,
(k)λ

T

−i for all time
periods t = 1, . . . , n. Each firm’s policy is then updated to its new value: ∀ t =
1, . . . , n, ∀ i = 1, . . . , N :

(k+1)λi
t
= Λt

i(Ci,C−i,
(k)λ−i)

We terminate the approach when the gap between two consecutive policy iterates
crosses a convergence threshold ǫ:

‖(k+1)λ− (k)λ‖ ≤ ǫ

Below is the algorithm for the best-response dynamics, written for N = 2 for simplic-
ity.
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Algorithm 8: Best-Response Dynamics

Input: A set of initial values for the policies (0)λ

Output: The closed-loop equilibrium policies Λ∗

(1) for i = 1 to N

(2) Initialize (λ1
i , . . . , λ

n
i )← ((0)λ

1

i , . . . ,
(0)λ

n

i )
(3) Initialize k = 1
(4) repeat

(5) for i = 1 to 2
(6) foreach Ci, C−i

(7) Fix:

(λ1
−i(Ci, C−i), . . . , λ

n
−i(Ci, C−i))← ((k+1)λ

1

i (Ci, C−i), . . . ,
(k+1)λn

i (Ci, C−i)) if − i < i

(λ1
j(C), . . . , λn

j (C))← ((k)λ1

j (C), . . . , (k)λn

j (C)) if − i > i

(8) for t = 1 to n

(9) Compute (k+1)λ
t

i(Ci, C−i) solution of:

max
λt

i

λt
iδt
(
pt

i(λ
t
i,

(k)λ−i(Ci, C−i)) + (k+1)R
t+1

i (Ci − 1, C−i)−
(k+1)R

t+1

i (Ci − 1, C−i)
)

where (k+1)R
t

i(Ci, C−i) solves the backward induc-
tion equation:

(k+1)R
t

i(Ci, C−i) = (k+1)R
t+1

i (Ci, C−i − 1)

+ (k+1)λ
t

i(Ci, C−i)δtp
t
i(

(k+1)λ
t

i(Ci, C−i),
(k)λ

t

−i(Ci, C−i))

+ (k+1)λ
t

i(Ci, C−i)δt
(

(k+1)R
t+1

i (Ci − 1, C−i)−
(k+1)R

t+1

i (Ci, C−i)
)

+ (k)λ
t

i(Ci, C−i)
(

(k+1)R
t+1

i (Ci, C−i − 1)− (k+1)R
t+1

i (Ci, C−i)
)

(10) If i = 2 then k ← k + 1
(11) until

∑2
i=1 ‖

(k+1)λi − (k)λi‖ ≤ ǫ

7.6.2 Computational Results

We implement the approach on a duopoly, for selling horizons of up to n = 9, for
various values of the initial capacity. We also study the convergence, as the accuracy
level ǫ is increased. The results are displayed on Figures B-52 through B-55.
Figures B-52 and B-53 show the gap (i.e

∑2
i=1 ‖

(k+1)λi− (k)λi‖) as a function of the
iteration, for two horizon lengths: n = 6 and n = 8. What is striking is the fact that
for n = 8, the gap first surges, and then subsides. Hence, it is not monotonically
decreasing. Were the algorithm to stop after a fixed number of iterations, it might
stop very far from equilibrium.
Figure B-54 shows the number of iterations needed to reach convergence, as a function
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of the horizon length n. The number of iteration seems to grow exponentially with
the horizon length. This is corroborated by the fact that the algorithm takes very
long to converge for n = 10, whereas convergence requires only 63 iterations for n = 9.
Finally, Figure B-55 shows the number of iterations required for convergence, as a
function of the accuracy level: the dependence is logarithmic in the accuracy ǫ.

7.7 Conclusions on Closed-Loop Policies

In this Chapter, we modeled an oligopolistic market for perishable products under
Bertrand (price) competition, where demand for each firm is modeled as a nonhomo-
geneous Poisson process whose rate depends on the prices of all firms in the market.
The price sensitivities of the demand are time-dependent. Due to the difficulties,
both theoretical and practical, pertaining to the continuous-time model, we focus on
a discrete-time version of the model. For the discrete-time version of the model, we
prove existence and uniqueness of Markov-perfect equilibrium strategies, and study
properties of the equilibrium.
Furthermore, we investigate approximate policies. We consider the open-loop feed-
back policy, and one-step lookahead policies, with linear and quadratic architectures.
In our computational section, we compare performance of the above policies. We es-
tablish that the one-step lookahead policy with linear architecture outperforms both
the one-step lookahead policy with quadratic architecture, and the open-loop feed-
back policy. Our analysis suggests that, to achieve better performance for the one-step
lookahead policy, one should choose coefficients with different values in different time
periods.
Finally, we propose a closed-loop best-response dynamics approach to compute the
subgame-perfect equilibrium policies, and study computationally its convergence.
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Chapter 8

Conclusions and Future Research

Directions

In this thesis, we studied oligopolistic markets for single, perishable products, oper-
ating under Bertrand or Cournot competition. We proposed a data-driven approach
to joint dynamic pricing or allocation and learning of the price-demand relationship.
We studied this problem in two states of the market: a state of disequilibrium, where
firms’ strategies are best-response to their belief regarding competitors’ strategies,
and a state of equilibrium, where firms’ strategies are the Nash equilibrium strate-
gies. Extending the results to multiple perishable products does not seem to present
much issues from the theoretical perspective, but would make the problem more
complex and computationally intensive. Such an extension could be an area of future
research.
For the problem of dynamic pricing or allocation without learning, we proved exis-
tence and uniqueness of best-response strategies. We also proved existence of equi-
librium strategies, as well as their uniqueness under additional assumptions. We also
performed sensitivity analysis on the solutions, and proved that the solutions are
Bouligand differentiable, and that the directional derivative is the unique solution to
a convex quadratic problem, or a linear variational inequality. Such an analysis is
useful, not only from a practical point of view - it is key for the sellers to know how
their strategies would change, would their estimation of the price-demand relation-
ship differ - but also from a theoretical point of view: we utilize these results in the
design of solution methods.
For the problem with learning, we showed that we can reformulate the joint dynamic
pricing (resp. allocation) with learning problem as a bilevel problem in equilibrium,
and as an MPEC in equilibrium. We gave alternative formulations as a mixed integer
problem. Furthermore, we proved that learning of the price-demand relationship and
of the equilibrium strategies is achieved in the long run. To achieve this result, we
imposed an additional constraint on the choice of the parameters: we impose that
the estimated vector of parameters for the horizon does not vary from one period to
the next more than the vector of prices vary from one period to the next. This makes
the map of the approach a contraction. It would be interesting to investigate ways to
relax this assumption, while still guaranteeing convergence of the learning approach.
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We investigated solution methods for the approach. For the equilibrium problem un-
der Bertrand competition, which turns out to be a generalized equilibrium problem,
we proposed a penalization method to compute the generalized Nash equilibrium.
For the joint dynamic pricing (or allocation) with learning problem, we proposed a
method based on the Gauss-Newton method, which takes advantage of the fact that
the estimation problem is a sum of squares. As future research, it would be interest-
ing to investigate other solution methods, and compare their performance.
Finally, we looked into closed loop strategies in the framework of a duopoly with
stochastic demand. We established existence and uniqueness of Markov perfect poli-
cies. We proposed approximations of the problem based on limited look-ahead poli-
cies. Extensions of this work would include looking at demand models which are more
general than the Poisson demand model we consider here. It would also be important
to establish bounds on the performance of approximate policies, and perform more
in-depth computational study.
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Appendix A

Notations of the Thesis

Table A.1: General Notations

N number of firms in the market
T number of periods in the selling horizon
h = −H, . . . , 0 superscript indicating the selling horizon
h = 0 current selling horizon
h < 0 historical selling horizons
Ci total capacity of firm i
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Table A.2: Notations pertaining to the Bertrand model

p̂i
0(t) price set by firm i at period t in the current selling horizon

p̂i
h(t) historical price set by firm i at period t in past horizon h

p−i firm i’s belief regarding its competitors’ pricing strategy.
BRi(p−i, βi) best response problem of firm i, for for belief p−i

regarding its competitors, and when parameters are βi

Pi(p−i, βi) best response price vector of firm i, for belief p−i

regarding its competitors, and when parameters are βi

P(β) Nash equilibrium price when parameters are β
Pi(p−i, βi) (resp. P) Feasible set of the best response (resp. equilibrium) problem
Bi (resp. B Feasible set of firm i’s (the equilibrium) estimation problem
Ii(pi) (resp. Īi(pi)) {t : pi(t) = 0} (resp. {t : pi(t) = pmax

i })
I0

i (βi) (resp. Ī0
i (βi)) {t ∈ Ii(βi) : µ

i
(t) = 0} (resp. {t ∈ Īi(βi) : µ̄i(t) = 0})

I+
i (βi) (resp. Ī+

i (βi)) {t ∈ Ii(βi) : µ
i
(t) > 0} (resp. {t ∈ Īi(βi) : µ̄i(t) > 0})

Li(pi,p−i, βi,Mi) Lagrangian function of the best response problem
C(β̄i;di) critical cone at Pi(β̄i) in direction di
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Table A.3: Notations pertaining to the Cournot model

q̂i
0(t) quantity set by firm i at period t in the current selling horizon

q̂i
h(t) historical quantity set by firm i at period t in past horizon h

q−i firm i’s belief regarding its competitors’ allocation strategy.
BRi(q−i, αi) best response problem of firm i, for for belief q−i

regarding its competitors, and when parameters are αi

Qi(q−i, αi) best response quantity vector of firm i, for belief q−i

regarding its competitors, and when parameters are αi

Q(α) Nash equilibrium quantity when parameters are α
Qi(αi) (resp. Q) feasible set of the best response (resp. equilibrium) problem
Ai (resp. A) feasible set of firm i’s (resp. the equilibrium) estimation problem
Ii(qi) index set of active nonnegativity constraints at qi

Li(qi,q−i, αi,Mi) Lagrangian function of the best response problem
Qi⊥(ᾱi) Polyhedral cone at ᾱi
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Appendix B

Figures
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Figure B-1: Price Sensitivities for the Airline Example
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Figure B-2: Evolution of the Change in Parameters for the Airline Example (T = 10)
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Figure B-3: Evolution of the Change in Prices for the Airline Example (T = 10)
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Figure B-4: Evolution of the Change in Demands for the Airline Example (T = 10)
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Figure B-5: Evolution of the Change in Parameters for the Airline Example (T = 20)
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Figure B-6: Evolution of the Change in Prices for the Airline Example (T = 20)
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Figure B-7: Evolution of the Change in Demands for the Airline Example (T = 20)
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Figure B-8: Price Sensitivities for the Retail Example
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Figure B-9: Evolution of the Change in Parameters for the Retail Example (T = 10)

2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

time period

ch
an

ge
 (

%
)

evolution of the change in β throughout the approach

change β

Figure B-10: Evolution of the Change in Prices for the Retail Example (T = 10)
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Figure B-11: Evolution of the Change in Demands for the Retail Example (T = 10)
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Figure B-12: Evolution of the Change in Parameters in Equilibrium
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Figure B-13: Evolution of the Change in Prices in Equilibrium
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Figure B-14: Evolution of the Change in Demands in Equilibrium
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Figure B-15: Comparison of the Learning Speeds as a Function of the Number of
Firms
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Figure B-16: Comparison of the Learning Speeds as a Function of the Time Horizon
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Figure B-17: Gap in Revenue-To-Go for Low Capacity for Linear One-step Lookahead
Policy
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Figure B-18: Gap in Revenue-To-Go for Medium Capacity for Linear One-step Looka-
head Policy
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Figure B-19: Gap in Revenue-To-Go for High Capacity for Linear One-step Lookahead
Policy
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Figure B-20: Gap in Total Revenue as Function of Capacity for Linear One-step
Lookahead Policy
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Figure B-21: Gap in Intensity for Low Capacity for Linear One-step Lookahead Policy
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Figure B-22: Gap in Intensity for Medium Capacity for Linear One-step Lookahead
Policy
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Figure B-23: Gap in Intensity for High Capacity for Linear One-step Lookahead
Policy
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Figure B-24: Gap in Intensity at t = 5 as Function of Capacity for Linear One-step
Lookahead Policy
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Figure B-25: Gap in Price for Low Capacity for Linear One-step Lookahead Policy
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Figure B-26: Gap in Price for Medium Capacity for Linear One-step Lookahead Policy
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Figure B-27: Gap in Price for High Capacity for Linear One-step Lookahead Policy
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Figure B-28: Gap in Price at t = 5 as Function of Capacity for Linear One-step
Lookahead Policy
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Figure B-29: Gap in Revenue-To-Go for Low Capacity for Quadratic One-step Looka-
head Policy with b fixed
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Figure B-30: Gap in Revenue-To-Go for Medium Capacity for Quadratic One-step
Lookahead Policy with b fixed
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Figure B-31: Gap in Total Revenue as Function of Capacity for Quadratic One-step
Lookahead Policy with b fixed
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Figure B-32: Gap in Intensity for Low Capacity for Quadratic One-step Lookahead
Policy with b fixed
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Figure B-33: Gap in Intensity for Medium Capacity for Quadratic One-step Looka-
head Policy with b fixed
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Figure B-34: Gap in Intensity for High Capacity for Quadratic One-step Lookahead
Policy with b fixed
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Figure B-35: Gap in Intensity at t = 5 as Function of Capacity for Quadratic One-step
Lookahead Policy with b fixed
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Figure B-36: Gap in Price for Low Capacity for Quadratic One-step Lookahead Policy
with b fixed

gap in prices capacity=2
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Figure B-37: Gap in Price for Medium Capacity for Quadratic One-step Lookahead
Policy with b fixed

gap in prices capacity=4
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Figure B-38: Gap in Price for High Capacity for Quadratic One-step Lookahead
Policy with b fixed

gap in prices capacity=12
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Figure B-39: Gap in Price at t = 5 as Function of Capacity for Quadratic One-step
Lookahead Policy with b fixed
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Figure B-40: Gap in Revenue-To-Go for Low Capacity for Quadratic One-step Looka-
head Policy with a fixed

gap in revenue-to-go capacity=2
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Figure B-41: Gap in Revenue-To-Go for Medium Capacity for Quadratic One-step
Lookahead Policy with a fixed

gap in revenue-to-go capacity=4
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Figure B-42: Gap in Revenue-To-Go for High Capacity for Quadratic One-step Looka-
head Policy with a fixed

gap in revenue-to-go capacity=12
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Figure B-43: Gap in Total Revenue as Function of Capacity for Quadratic One-step
Lookahead Policy with a fixed

gap in total revenue
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Figure B-44: Gap in Intensity for Low Capacity for Quadratic One-step Lookahead
Policy with a fixed

gap in intensity capacity=2
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Figure B-45: Gap in Intensity for Medium Capacity for Quadratic One-step Looka-
head Policy with a fixed

gap in intensity capacity=4
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Figure B-46: Gap in Intensity for High Capacity for Quadratic One-step Lookahead
Policy with a fixed

gap in intensity capacity=12
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Figure B-47: Gap in Intensity at t = 5 as Function of Low Capacity for Quadratic
One-step Lookahead Policy with a fixed

gap in policy t=5
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Figure B-48: Gap in Price for Low Capacity for Quadratic One-step Lookahead Policy
with a fixed

gap in prices capacity=2
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Figure B-49: Gap in Price for Medium Capacity for Quadratic One-step Lookahead
Policy with a fixed

gap in price capacity=4
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Figure B-50: Gap in Price for High Capacity for Quadratic One-step Lookahead
Policy with a fixed

gap in prices capacity=12
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Figure B-51: Gap in Price at t = 5 as Function of Capacity for Quadratic One-step
Lookahead Policy with a fixed

gap in prices t=5
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Figure B-52: Gap as Function of the Iteration Number for Horizon of Length 6
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Figure B-53: Gap as Function of the Iteration Number for Horizon of Length 8

gap as function of iteration horizon=8
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Figure B-54: Number of Iterations as Function of the Length of the Horizon
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Figure B-55: Number of Iterations as Function of the Accuracy Level
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