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1 Introduction 

 

This thesis summarizes a study aimed to support BP in its multi-year, multi-billion 

dollar development effort to explore the best way to extract oil from a specific deep 

ocean reservoir. This reservoir imposes many technological difficulties due to the arctic 

and seismic nature of the environment. The unstable political environment, as well as the 

abundance of stakeholders, imposes additional difficulties. Those stakeholders besides 

having several attributes that define their value are often conflicted in how they estimate 

those attributes. In addition to profit, the different stakeholders could value political 

power, environmental friendliness, time, etc. For example, one stakeholder might aspire 

for political power on his side whereas the other would prefer increasing his own political 

power. Finding the right architecture is a delicate task of dealing with a complex system 

and turning it into a feasible structure while balancing among all the different 

stakeholders.  

The objective of the research was to support the BP team through the development 

of a system architecting tool and methodology.  This tool was produced with the 

intention of being generally applicable to BP’s oil exploration and production system 

architecture decisions.  Additionally, this function-based system-architecting tool was 

built in such a way that it could further aid the leading team in identifying creative, “out 

of the box” solutions. 

The research was based on a modeling approach to the development of systems 

that describe both their structure and behavior in a single model. That approach, called 

OPM (Object Process Methodology), was developed by Professor Dov Dori [4]. OPM 

uses a graphic tool, called OPD (Object–Process Diagrams), as a single model of the 

structural, functional, and dynamic system aspects. Furthermore, the dynamic 

architecting tasks were done using OPN (Object Process Network), a meta-language 

developed by Professor Edward Crawley and Professor Ben Koo [1], [7], that assisted in 

creating and evaluating the different architecture options. 

This thesis will focus on the first phase of the project, aimed at creating a working 

infrastructure. It will provide a summary of the issues that were raised during the 
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research, which are applicable to system architecture in general. Each issue will be 

accompanied by a specific example from the BP project. 

Chapter Two discusses the concepts, importance and different definitions of the 

terms systems and systems architecture. Additionally it elaborates on the importance of 

models in the system architecture context and focuses on the tools and approaches that 

will be used in this thesis. 

Chapters Three to Six discuss some of the issues that were raised when trying to 

structure BP’s exploration system into the OPD and OPN framework. The suggested 

solutions for those issues will usually have broader implications than for OPN per se. 

Thus, for each issue, I will describe the proposed solution and its application for the 

current research, and discuss possible implications for other aspects of System 

Architecture. 

Chapter Three discusses an algorithm that can significantly increase the ability of 

OPN to simulate real life decisions faced by an architect. It does this by allowing some 

flexibly to the model to decide on the best combination of forms that maximizes 

stakeholder’s value without being constrained by the architect. Thus, by utilizing that 

functionality correctly, a full gamut of solutions can be explored, answering questions 

like, should I build that system from small number of high capacity forms, a large 

number of low/mid capacity forms or a combination? 

Chapter Four proposes a method to generate out-of-the-box solutions. In our 

research we tried to generate out of the box solutions taking top-to-bottom approach. This 

method is both theoretical and practical, and thus can span an entire process from raising 

the problem to finding the right solution. Additionally, it is not limited by current 

practices and thus can offer new ways to deal with specific problems. 

Chapter Five deals with the possibility to change the system boundary as the 

system model is being built. Finding the best architecture to offer value to stakeholders 

can be affected by the definition of the system boundary. Often a lean system can offer 

greater value for the invested resources than a comprehensive one. This chapter proposes 

having an entity on the boundary layer, representing change of ownership. That entity 

will offer value to the system architect in the form of a possible formulation of the 

boundary and easier definition of interfaces. 
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Chapter Six presents four levels of possible connections between the 

stakeholder’s model and the process-object model. Those connections are needed in order 

to “measure” the value each architecture generates for the system’s stakeholders. It starts 

with two separate models, connected by human interface, and ends with a suggestion for 

fully coupled models. 

Finally, the thesis is concluded with a short summary and a discussion of further 

research. 
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2 Background 

2.1 System 

Definitions 

There are several definitions of a system. This section will briefly discuss some of 

the definitions, select the one to be used at the rest of the thesis, and describe the rationale 

behind that selection. 

 

Crawley [1] defines a system as: 

“A set of interrelated elements which perform a function, whose functionality is 

greater than the sum of the parts.” 

This definition is supported by Dori [4]: 

“A System is an object that carries out or supports a significant function.” 

According to those definitions, the connection between elements/objects and their 

cross-interfaces to function is in the heart of system. I find this connection very important 

since it creates the link between the systems and the system architect. The system 

architect can affect/control the elements/objects and sometimes their inter-relations and 

thus can affect the functionality of the system. It is important to note that the system 

architect can affect the type of functionality that will emerge from a system as well as the 

“goodness” of that functionality, by selecting one specific form over another. Of course 

“goodness” of functionality is a subjective matter. A discussion of how to measure it will 

appear later in this thesis. 

 

Maier and Rechtin [3] give another view of the definition of a system: 

“system is a collection of different things, which together produce results 

unachievable by the elements alone.” 

This definition enlarges the previous definition to include the context in which the 

system exists. Instead of viewing the system as a set of elements/objects that interlink 
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and perform functions, it is being perceived as a thing that achieves results. There are two 

differences from the previous definitions that should be emphasized. The first is that 

result is used instead of functionality, which brings the context of the system into the 

definition. The second difference is that a system is defined by Maier and Rechtin as a 

collection of different things, which is basically more comprehensive than objects as was 

defined earlier (wishes for example, can be categorized as a thing but not as an object). 

 

System definition used in this thesis 

In this thesis I will use Crawley’s definition of a system for two main reasons. 

The first is that although context and results are important parts of a system’s success, I 

believe that systems exist even before achieving results. It is more the potential to 

perform functions that define the system. In other words, a system that was never put into 

action is still a system. 

The second reason relates to the term “collection of different things” that was 

used by Maier and Rechtin [3] to define the embodiment of a system. I believe that this 

term is too broad. Some non-physical “elements” like feelings should not be part of the 

building blocks of a system, especially in the system-engineering context. 
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2.2 System architecture 

Definitions 

The term system architecture, like the word system, has many definitions. I will 

focus on two groups of definitions that differ in their view of the emergence of function 

and the importance of concept. The first group defines system in the context of the 

elements that build it. The second enlarges the definition to include the function the 

system achieves. 

 

I will use two definitions as representative of the first group. Frey [12] defines 

system architecture as: 

“The structure, arrangements or configuration of system elements and their 

internal relationships necessary to satisfy constraints and requirements.” 

Ulrich and Eppinger [13] support that definition while emphasizing the grouping 

of those elements. They define system architecture as: 

“The arrangement of the functional elements into physical blocks.” 

Both definitions focus on the physical1 layer as the essence of system architecture. A 

different view is proposed by a second group of definitions. Two complementary 

definitions are proposed by Crawley [1]: 

“The embodiment of concept, and the allocation of physical/informational 

function to elements of form, and definition of interfaces among the elements and 

with the surrounding context.” 

And: 

“architecture is the details of the assignment of function to form, and the 

definition of interfaces.” 

This definition emphasizes the embodiment of a concept through the usage of 

elements of form. System architecture is the art and science of the assignment of those 

elements to achieve the required functionality. 

 
                                                 
1 I use physical in its wider context to include flows and stocks like information that can be controlled by 

the system architect. 
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Again, Dori [4] supports that definition: 

“System architecture is the overall system’s structure-behavior combination, 

which enables it to attain its functions while embodying the architect’s concept.” 

Dori also suggests a more detailed view of concepts and function in the context of 

system architecture: 

“Concept is the system architect’s strategy for a system’s architecture.” 

And: 

“Function is an attribute of object that describes the rationale behinds its 

existence, the intent for which it was built, the purpose for which it exists, the goal 

it serves, or the set of phenomena or behaviors it exhibits.” 

 

System architecture definition used in this thesis 

In this thesis, I will use the second group of definitions. I believe that an 

important part of system architecture is the connection between the physical layer of 

objects and the layer of functions performed by the system. This connection is especially 

important to the system architect since it allows a constant check of the “goodness” of the 

system. 

 

2.3 System modeling 

Systems can be viewed from different aspects by different stakeholders. Clients 

are interested in the functionality of the system whereas the designers are more interested 

in the forms that build the system. A system architect needs to communicate with all 

related functions in order to be able to discuss their perspectives of the system. Models 

allow that kind of communication. According to Dori [4]: 

“a model is an abstraction of a system, aimed at understanding, communicating, 

explaining, or designing aspects of interest of that system.” 

Thus, models are a possible way to project the system through highlighting different 

aspects of it. 
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Maier and Rechtin [3] support this view: 

“Models are the primary means of communication with clients, builders, and users; 

models are the language of the architect.”  

Following those definitions, the roles of models in the system context include [3]: 

1. Communication with clients, users and builders. 

2. Maintain system integrity through coordination of design activities. 

3. Assisting design by providing templates and organizing and recording decisions. 

4. Explore and manipulate solution parameters and characteristics; guiding and 

recording aggregation and decomposition of system functions, components, and 

objects. 

5. Performance prediction and identification of critical system elements. 

6. Provide acceptance criteria for certification for use. 

 

A model presents a view of the system. A view is defined by Maier and Rechtin [3] as:  

“A view is a representation of a system from the perspective or related concerns or 

issues.” 

Models can be textual or visual representations of the system based on the context the 

model is being built for. There are six types of possible views [3]: 

 

TABLE 1: Types of model views 

Model view Description 

Purpose/objective What the client wants 

Form What the system is 

Behavioral or functional What the system does 

Performance objectives or requirements How effectively the system does it 

Data The information retained in the system and 

its interrelationships 

Managerial The process by which the system is 

constructed and managed 
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In this thesis I will elaborate about two model views that mainly deal with the 

form and functional views of a system, called OPM2 and OPN. 

 

2.4 Types of models used in this thesis 

This thesis will focus on two types of models: 

1) Object-Process model – Capturing all the different functions performed by the system 

as well as the possible forms to achieve those functions. As a whole, a complete 

model represents the entire gamut of forms and functions that can create the relevant 

system whereas a specific instance of that model represents a specific combination of 

forms and functions. That specific instance is regarded as a possible architecture. 

It is important to note that the completeness of a model is a subjective thing that 

depends on the viewpoint of the model builder and user. A complete model consists 

of all the function within the relevant system boundary including adequate level of 

decomposition. Additionally, this kind of model can also represent attributes 

associated with each form, function and their interrelations. These attributes can be 

used to estimate emergence of functions as well as expected value. 

 

2) Stakeholder’s model – Capturing the different stakeholders that are connected to the 

system, their relative weight, and interrelations as well as the value flow. There are 

many usages in the system architecture context for the stakeholder model. The first is 

to use that model to identify critical parameters that are important to system value 

creation. Those parameters can be used later to rank and evaluate the possible 

architectures. Other usages might be the ability to quantify the “power balance” 

between two adjacent stakeholders, or to identify which stakeholder has more effect 

over the other stakeholder value. A third usage might be finding those stakeholders 

that have more influence than others on the overall value. 

                                                 
2 As part of OPM I will also discuss OPD. 
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Both models can be static – capturing the relevant data or dynamic – capturing the 

relevant data and exploring the different permutations. 

 

2.5 Object Process Methodology (OPM) and Object–Pro cess 

Diagram (OPD) 

Definition 

Object Process Methodology (OPM) [2], [8] is a modeling approach to the 

development of systems that describes both their structure and behavior in a single model. 

The basic building blocks of OPM are two equally important classes of entities: objects 

and processes3, which are related through a variety of links among them by relationship. 

 

OPM uses a single graphic tool, the Object–Process Diagram (OPD) set, as a single 

model of the structural, functional, and dynamic system aspects.  

 

OPD Language 

OPD uses a set of symbols as a base for its modeling language. Those symbols are 

used to describe the objects and processes as well as the relations between them [1]. The 

basic symbols are used to describe objects and processes. 

 

 

FIGURE 1: OPD representation of objects, processes and their relationship [6]. 

 

Further, OPD uses a set of symbols to describe possible relations and links 

between those objects and processes [1]. Those relations can be found in appendix A 

along with an example of a model built in OPD. 

                                                 
3 Objects are things that exist, while processes are things that transform objects [4]. 
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2.6 Object-Process-Network (OPN) 

Definition 

I use for that section the OPN (Object-Process-Network) definition as it was 

defined by Crawley [1], [6]. 

“OPN is a visual and computable meta-language that assists with systems 

architecting tasks” 

And its aim is to: 

“Improve the thoroughness and efficiency of system architecting, by automating the 

mechanical tasks in architectural reasoning and model construction, using an 

executable meta-language.” 

Crawley [1] also defines the different usages of OPN. It can be used to describe 

and partition the space of architectural alternatives, allowing the system architect a 

clearer view of the system. Additionally it can be used to generate and enumerate the set 

of instances of feasible system models. That usage is very powerful since it allows the 

system architect to view a full range of possible architectures that are associated with the 

system in question. Once those possibilities are created, the architect can simulate and 

order the performance metrics of the generated models. 

OPN uses processes and objects as building blocks to represent systems [7]. 

Processes capture the transformational activities, whereas objects represent the states of 

the system. 
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Following is a screen shot of OPN [6]: 

 

FIGURE 2: OPN screen shot 

 

OPN context used in this thesis 

This thesis will focus on one of the benefits that OPN can offer to the system 

architect - exploring the gamut of possible architectures to build a system and suggest 

those architectures that offer the highest value to the stakeholders. In that context, OPN 

can be viewed as a framework that uses the Meta-Model created by the architect to 

generate the entire gamut of possibilities of architectures. This Meta-Model contains all 

the functions of the system (down to a certain level of decomposition) as well as all the 

different form possibilities to perform those functions (see FIGURE 1). While generating 

each of the possible architectures, the framework also calculates its expected value to the 

stakeholders. Value can come from the specific forms that are selected or from the 

interconnections between the forms. This value allows the architect to rank the generated 

architectures according to the value they create for the stakeholders. 

Meta-

Model 

Meta-

Model 

Meta-

Model 

Generated Model 

List  

Generated Model  

OPN View 

Generated 

Model  

Generated 

Model  
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Another OPN usage that will be used in this thesis is the generation and valuation 

of stakeholder’s maps. In that case the meta-model created by the architect represents the 

inner-relations between the stakeholders. The architect can use OPN to value each of the 

connections between the stakeholders, in search of those who have the highest influence 

on the overall value. Focusing on these will simplify the stakeholder’s model and allow 

the architect to explore effective connections between architecture and value. 

 

 

 

 

 

 

 



 27 

3 How can an iterative process be implemented in 

OPN?  

3.1 Introduction 

OPN and OPD are structured in such a way that one process and form follows the 

other until achieving the intent of the system. In OPN the execution of the Meta-

Language is done by following one process and object at a time. This section will deal 

with the issue of building a loop process into that structure. That will allow OPN to go 

upstream the object-process path. In particular it will focus on loops as a way to simulate 

an architecture where forms can repeat themselves an unpredicted number of times. That 

can be used to solve bottlenecks in the system, to increase the range of solutions tested or 

to allow the model ad-hoc adjustments. 

It is important to note that those issues can be addressed to a certain level without 

incorporating loops. The architect can “hard code” all the different repeats and 

possibilities into the model. That method, while supplying the above requirement, has 

some drawbacks. It reduces the “out-of-the-box” creativity embedded into OPN and there 

is a potential cost and increased computational time. 

This chapter will present a possible algorithm that, when implemented in OPN, 

will support an iterative process. This algorithm can be incorporated into OPN without 

any required changes at the software level. An example of an implementation will be 

presented at the end of the chapter. 

The algorithm is structured around a phase termed “exit criteria”, which is 

basically a binary decision – whether the part that was marked as repeatable should be 

repeated once more. Thus, the OPN structure will be iterative in the following way: 

 

Serial OPN part � Iterative OPN part � exit criteria � Serial OPN part 

 

 

The iterative OPN part will repeat itself, until the exit criteria are met. 
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3.2 The Problem 

 

OPN allows for maximum flexibility in selecting forms to increase stakeholder’s 

value. Any combination of forms is possible as long as the ratio of one form per function 

is maintained. The issue is that often that flexibility is bounded by bottlenecks 

somewhere along the flow of form selection. 

For example, in building an oil exploration system, the oil company is usually 

being given an access to the reservoir for a limited number of years. Since the oil 

company is interested in extracting as much oil as possible within that time period, the 

capacity of the exploration system is a very important attribute to consider in the 

architecture. For simplicity, we can assume that there are four basic functions to consider: 

extract, treat, move and store. The overall capacity of the system will be determined by 

the lowest capacity form associated with one of those functions. That means that this 

lowest capacity form becomes the bottleneck of the system. In real life, when reaching 

that capacity, an additional form might be added to the system (to perform the same 

function) in order to release the bottleneck. That way, there is more than one form 

associated with the specific function. 

Bottlenecks are not the only cases where multiple forms might be considered. 

Increased stakeholder’s value is another possible reason. Even in cases where one form 

can achieve the required capacity, the system architect should consider using other 

combinations to generate more value to the system stakeholders. For example, looking 

again at the oil exploration system, the system architect might consider the following 

trade-off for a treating sub-system: 

1. Use one big and expensive system that has the overall required capacity. 

2. Use two small and less expensive systems that together have the required capacity. 

 

The decision is not only price-related. Using two forms will probably increase the 

overall utilization of the subsystem but might have a negative effect on schedule and 

price. Making that kind of decision up front might be very complicated, especially in 

cases where there are more than two possibilities. 
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Another possible reason to use multiple forms is a desire for redundancy. The system 

architect might consider adding other forms to create redundancy for critical subsystems 

or for the entire system. 

As mentioned, the solution is basically to add additional forms under the existing 

function. The end result is that some functions will have more than one form targeted at 

achieving that function. That process can be implemented in OPN even without loops. 

The algorithm to do that would require some preparations by the system architect: 

1. Decide in advance which forms can be used more than once and how many times. 

2. Incorporate logic into the model at each intersection of possible additional form4 

that will support a decision whether that specific form should be added to the 

specific architecture. 

 

Each of those form selections will include all the possible forms plus a NULL 

selection. In that case, the OPN will choose the required number of forms, putting NULL 

in the rest. There are some problems associated with that process. First it substantially 

increases the complexity and implementation time of the OPN model. It includes not only 

the additional time required to repeat each form definition, but also the additional 

complexity associated with the selection criteria that appears in every form selection 

(answering the question – is that form really needed). Moreover, every change to one of 

the forms will have to be repeated for all similar forms. 

Another drawback is that the architect needs to decide in advance how many 

times each process/form can repeat itself and in which combinations, an act that can 

reduce the natural creativity embedded in OPN to present “out-of-the-box” solutions. The 

reason is that definition of possible number of repeats limits the model to that number 

and thus might affect the ability of the model to offer solutions that the architect did not 

think about. 

                                                 
4 The system architect can also incorporate the logic after the OPN finishes the architecture generation 

process. In that case the OPN will generate all the possible permutations. Those that violate the logic rules 

will be screened afterward. I believe that incorporating the logic into the OPN process is more common 

especially in highly complex systems since that reduces the total running time of the application. 
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The final drawback relates to increased computational time. Hard coding all the 

possibilities into the model significantly increases the computational time since there is 

no flexibility to reduce the model size in lighter cases. The process will consume the 

same resources even when applied to systems that require fewer repeats. 

The following section offers a possible algorithm that can solve these problems. 
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3.3 The Algorithm 

 

The proposed algorithm will deal with loop conditions at OPN. This algorithm 

will cover cases where a process gets redirected back by offering exit criteria. These 

criteria will block the redirection whenever the exit condition is met. 

 

This algorithm will act as follows: 

1. Perform the process of adding forms to functions in a serial way until getting to the 

exit criteria. 

2. Check iteration exit condition. This condition can be intent fulfillment level, physical 

feasibility, etc. 

3. In case the iteration exit condition was not met: 

1) The iteration process will start over. 

2) At each stage of the iterative part one of the following can be performed: 

i. Add additional form. 

ii.  Do nothing (which is implemented by adding a NULL form). 

The decision what to do will depend on the result of the iteration exit condition as 

well as the inner logic of the form selection process as was embedded in the OPN. 

4. In case the iteration exit condition was met, the OPN process will continue without 

performing additional iteration. 

 

Building the model requires a preparation phase: 

1. Define all the functions that might require additional forms and add them to a loop 

within OPN. 

2. Define the criteria that will dictate how many forms are required for each function. 
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FIGURE 3 shows the architecture creation phase: 

 

 

FIGURE 3: Algorithm for implementing loops in OPN 

 

 

There are some important points to emphasize about that algorithm. Each loop is 

associated with some forms. The criteria of the loop should appear right after the last 

form associated with that loop, because the iteration process consumes a lot of resources 

and thus should be kept to minimum number of forms selected. From that exact reason, 
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the loop dominated by the exit criteria should be kept as minimal as possible. Thus, in 

case the exit criteria were not met, the process should return the minimal number of steps 

that still includes all the relevant forms. 
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3.4 Example 

 

The problem 

For that example, I assume a simplified model of oil exploration system where the 

only important subsystems are those that perform extracting and treating. They determine 

the cost of the system as well as the capacity and the building duration. I further assume 

that there are three potential forms that can be associated with each of those subsystems. 

For simplicity I call them small, medium and large. Following is a summary of the input 

parameters to the problem: 

 

Possible Forms: 

 

Extracting Forms: 

TABLE 2: Extracting forms parameters 

Name Barrel capacity 

(M barrels/year) 

Building time 

(years) 

Building cost 

($M) 

Small Size 120 3 800 

Mid Size 160 4 1600 

Large Size 200 6 2000 

 

 

Treating Forms: 

TABLE 3: Treating forms parameters 

Name Barrel capacity 

(M barrels/year) 

Building time 

(years) 

Building cost 

($M) 

Small Size 140 4 1200 

Mid Size 200 5 1600 

Large Size 220 7 2200 
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Other Inputs: 

Field capacity: 3000M Barrels. 

Total leasing time: 20 years. 

Price per barrel: $155 

Discount rate: 7% year. 

 

The goal is to find the right portfolio of forms that will optimize the stakeholder’s 

profit. In that problem we will treat profit as the only parameter that determines 

stakeholder value and assume that all stakeholders are interested in as much profit as 

possible. 

The tradeoff for finding the right portfolio is building cost vs. expected profit. 

Thus adding treating systems for example will increase the expected oil production (and 

the expected profit) up to a certain level controlled by the extracting system capacity and 

maximum field capacity. On the other hand, the additional treating systems will cost 

additional money and will consume more building time. Another issue to consider is the 

total time of the lease that affects the total time the company has to extract oil from the 

field. 

 

I decided to use NPV (Net Present Value) to calculate the profit of the system. 

The formulation I used for that as well as the mathematical formulation of the entire 

problem can be seen in appendix C. 

As a matter of fact, this is a simplified version of a bigger optimization problem 

aimed at finding the right portfolio to maximize stakeholder’s value. There are actually 

several ways to solve that kind of optimization problem. One of the possibilities is to use 

an optimization algorithm. Since most of the problems are non linear in nature and most 

of the parameters are discrete, a genetic algorithm might be helpful. Another option 

might be to try to predict the connection between profit and the different parameters (in 

our case the portfolio of extracting and treating products) using methods like Design Of 

Experiments. 

                                                 
5 Assuming operational costs are negligible, price per barrel will be considered as profit per barrel. 
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This example will show an alternative way, using an iterative process at OPN to 

explore the entire gamut of possible solutions and find the best portfolio that maximizes 

the profit of the system. 

 

Exploring some possible solutions to the problem using spreadsheet 

 

There are several important facts to consider regarding the problem: 

1. There are several possible treating and extracting forms, each with its own cost, time 

and capacity characteristics. 

2. Each treating and extracting subsystem can be constructed of one or more of those 

possible products. 

3. In case more than one form was used for either the extracting or treating subsystems, 

the building of those forms is done in a serial way. Building one form will start only 

after the building of the previous one ends6. 

4. Both treating and extracting can start only after all the forms are ready. 

 

Following are three possible portfolios of Extracting and Treating7: 

 

TABLE 4: Portfolio of three possible solutions for a simplified oil exploration system 

Option 1 Option 2 Option 3
# of small extracting facilities 2
# of Medium extracting facilities 2
# of Large extracting facilities 1
# of small treating facilities 2
# of Medium treating facilities 2
# of Large treating facilities 1  

 

 

                                                 
6 A comparison to a model where forms can be built in parallel can be found at appendix E. 
7 Those are only some of the possible solutions, as will be demonstrated later 
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Based on that portfolio, following are the calculations of cost, building time, 

yearly capacity, yearly cost8 (during the years when the subsystems are built) and the 

yearly profit9. Furthermore, based on the field capacity, it is possible to calculate whether 

within the leasing time all the oil in the field will be extracted10: 

 

TABLE 5: Economic figures for the three possible solutions 

Option 1 Option 2 Option3
Total cost 4200 4000 6400
Years to Build 7 8 10
Total yearly capacity 200 240 320
Total leash time capacity 2600 2880 3200
Did it reach max capacity No No YES
Yearly cost 600.0 500.0 640.0
Yearly Profit 3000.0 3600.0 4500.0  

Incorporating those figures into an NPV table: 

TABLE 6: Discounted yearly income for the three possible solutions 

Year 
Option 1 - discounted 
cost (M$) 

Option 2 - discounted 
cost (M$) 

Option 3 - discounted 
cost (M$) 

1 -560.7 -467.3 -598.1 
2 -524.1 -436.7 -559.0 
3 -489.8 -408.1 -522.4 
4 -457.7 -381.4 -488.3 
5 -427.8 -356.5 -456.3 
6 -399.8 -333.2 -426.5 
7 -373.6 -311.4 -398.6 
8 1746.0 -291.0 -372.5 
9 1631.8 1958.2 -348.1 
10 1525.0 1830.1 -325.3 
11 1425.3 1710.3 2137.9 
12 1332.0 1598.4 1998.1 
13 1244.9 1493.9 1867.3 
14 1163.5 1396.1 1745.2 
15 1087.3 1304.8 1631.0 
16 1016.2 1219.4 1524.3 
17 949.7 1139.7 1424.6 
18 887.6 1065.1 1331.4 
19 829.5 995.4 1244.3 
20 775.3 930.3 1162.9 

                                                 
8 Yearly Cost = Total Cost / Years To Build. 
9 Yearly Profit = (Yearly Production X Price per barrel) / # of Production Years. 
10 The calculation formula to find the entire oil extraction potential is: 

NUMBER OF PRODUCTION YEARS X YEARLY CAPACITY 



 38 

 

Discounted inflow

-1000.0

-500.0

0.0

500.0

1000.0

1500.0

2000.0

2500.0

1 3 5 7 9 11 13 15 17 19

year

M
$

Option 1 Option 2 Option3
 

FIGURE 4: Cash flow for the three treating and extracting solutions 

 

As can be seen, option 1 reaches production fastest (after 8 years) but extracts the 

minimum amount of oil from the field11 within the leasing time, relative to the other 

options. Option 2 extract more on average but does it for fewer years. Option 3 reaches 

the maximum capacity of the field but it starts extracting only after 11 years. 

 

The anticipated profit of each of the options is: 

 

TABLE 7: Anticipated profit for the three treating and extracting solutions 

 Option 1 Option 2 Option3 

Anticipated discounted 
profit after 20 years ($M) 12,380.6 13,656.1 11,571.9 

                                                 
11 There is a direct relation between the positive cash inflow and the oil capacity 
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Thus, looking at profit alone, option 2 seems the preferred architecture. 

Incorporating other real-life consideration requires enlarging this range of solutions to 

include all possible forms portfolios and other considerations beside profit, such as Risk, 

technology readiness, preferred forms (as a means to gain political power, for example), 

etc. That might turn into a non-linear optimized problem, which is much more difficult to 

solve in the above method. 

 

Implementing in OPN 

 

The following OPN model will calculate the optimized portfolio of extracting and 

treating facilities after finding all the possible combinations. The value calculation will be 

based on NPV although any other consideration can be incorporated into the model. 

 

In order to build that mode an exit criterion should be defined. That will signal the 

process that there is no point in adding more extracting and/or treating forms. 

 

 

 

Exit criteria: 

Enough capacity was built to exceed the potential capacity of the field 

OR 

Building time exceeds the total leasing time (divided by some factor) 
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The OPN implementation looks as follows: 

 

FIGURE 5: OPN model with loops to optimize subsystem selection 

 

The implementation of the NPV function was done using the global script. The function 

is being called every time the program enters the Profit Calculator. The script used for 

that is: 

 

def NPVCalc(TotalCost,TotalBuildingTime,TotalCapacity,TotalProductionTime): 

    #declare constants 

        i=1; 

        interest = 1; 

    #calculate NPV 

        YearlyCost = TotalCost/TotalBuildingTime; 

        while (i <= TotalLeasingTime): 

            i=i+1; 

            interest = interest*(1+r); 

            if (i <= TotalBuildingTime+1): 

                NPV = NPV - YearlyCost/(interest); 

Exit criteria 
Extracting Form 

selection 

 

Treating Form 

selection 
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            else: 

                NPV = NPV + (TotalCapacity*PricePerBarrel)/(interest); 

        else: 

        return [NPV]; 

 

Result analysis 

Running the model reveals there are 149 possible different Extracting and 

Treating subsystems combinations. A complete list of the different combination can be 

found in appendix D. It is important to note that not all solutions actually extracted all the 

oil capacity. Some did not reach that capacity within the leasing time. Some of those 

solutions might still be valuable, since they reach production very fast and thus have a 

smaller effect of the interest rate on the overall profit. 

The following figure presents the total discounted profit of the 149 combinations 

found by OPN. The combinations are arranged from the highest expected profit to the 

lowest.  
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FIGURE 6: Anticipated profit for all possible architectures 

Solution 108 is the first to present 

negative NPV 
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As can be seen there are over $20B difference in the expected discounted profit 

between the most profitable to the lowest profitable combinations! The table and figure 

below shows the 20 most profitable combinations. It is hard to find a “golden role” that 

will connect the form selection to profit. Some solutions utilize extensive capacity built in 

long period of time (like solution number 15) whereas others build small capacity fast 

(like solution number 19). 

 

TABLE 8: Anticipated profit for top 20 architectures 

Solution #
# of Large 

Extracting forms
# of Medium 

Extracting Forms
# of Small 

Extracting Forms
# of Large 

Treating Forms
# of Medium 

Treating Forms
# of Small 

Treating Forms Profit (M$)
1 0 1 1 0 0 2 15837.63
2 1 0 1 0 1 1 15530.68
3 0 2 0 0 1 1 15244.01
4 0 2 0 0 0 2 15240.50
5 1 0 0 0 1 0 14627.50
6 1 1 0 0 2 0 14509.30
7 1 1 0 0 1 1 13719.11
8 0 0 2 0 0 2 13656.13
9 0 1 1 0 1 1 13376.60
10 0 1 0 0 1 0 12966.03
11 1 0 1 0 2 0 12928.93
12 0 1 0 0 0 1 12768.24
13 0 2 0 0 2 0 12647.98
14 1 0 0 1 0 0 12380.60
15 1 1 0 1 0 1 11950.68
16 1 0 2 0 0 3 11942.75
17 0 0 2 0 1 1 11509.18
18 0 1 2 0 0 3 11417.41
19 0 0 1 0 0 1 11283.64
20 2 0 0 0 2 0 11147.36
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FIGURE 7: Portfolio breakdown for 20 top architectures 
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Two of the three solutions that were calculated earlier actually appear in the top 

twenty solutions. Building one large extracting form and one large treating form appears 

as solution #14. Building two small size extracting forms and two small size treating 

forms appears as solution #8. Thus, by expanding the range of possible solutions, the 

OPN was able to generate higher NPV by finding a more profitable combination. 

 

3.5 Conclusion 

The suggested algorithm can significantly increase the ability of OPN to simulate 

real life decisions faced by the architect. It does so by allowing the model to flexibly 

adjust the number of forms associates with each function. By allowing that flexibility, the 

model can decide on the best combination of forms that maximizes stakeholder’s value 

without being constrained by the architect. Thus, by utilizing that functionality correctly 

a bigger range of solutions can be explored, answering questions like, should I build that 

system from small number of high capacity forms, large number of low/mid capacity 

forms or a combination? 
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4 Suggested framework that facilitate generation of  

“out-of-the-box” solutions to technical problems  

 

4.1 Introduction 

 

Generating “out of the box” solutions is a task usually associated with creativity. 

Several attempts have been made to create an “ordered creativity”. Some of these 

attempts have focused on creating better tools that encourage creativity while others have 

focused on capturing creativity. One of the interesting methodologists in that respect is 

TRIZ [10], [11]. Its underlying assumption is that all technological systems evolve along 

certain universal directions that are governed by laws of evolution. Thus, if a current 

system design is given, the future design can be repeatedly predicted. The law of 

increasing degree of ideality, for example, states that [10] “evolution of technological 

systems proceeds in the direction of increased degree of ideality” Using that method, 

“out-of-the-box” solutions can be generated by following those laws of evolution. 

 

Our research generated “out-of-the-box” solutions taking a “top-to-bottom” 

approach. This approach allows (in contrast to TRIZ) exploration of large range of 

solutions, not only the next step in evolution. We first answered the question: what are all 

the possible ways to address that issue in a domain and discipline neutral space? The 

second step was to apply that answer to a real problem. 

We believe that there are several advantages to this approach. First, it creates a 

framework that spans the entire gamut of possible solutions and is not limited to an 

existing one. It is also a good basis for a brainstorming process aimed at finding 

innovative solutions to the problem. Since it is discipline neutral, once the framework is 

created it can address any similar problem, thus increasing the efficiency of the future 

problem-solving process. 
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To demonstrate the proposed approach, I will present a real-life problem we tried to 

solve. As part of our research we were asked to give fresh and out-of-the-box suggestions 

how to solve problems inherent to that specific project. One of the biggest problems 

faced was how to deal with ice accumulation that causes a serious threat to the system 

productivity for about six months every year. We took this problem as a test case since it 

was among the most urgent problems in that project that had a possible huge effect on the 

profitability of the project (a shutdown of six months every year will significantly affect 

the overall project NPV). Additionally, our sponsoring company had a small amount of 

accumulated knowledge in that area, especially in deep water, which increased our room 

for maneuvers in searching for new solutions. 

 

The first step was to approach the question: What are all the possible ways to 

protect something from something else. 

We were able to summarize all those ways into four methods (that we translated into 

OPD diagrams), which in our view represent all the possible ways that a system can 

protect itself from another system/force: 

Those methods are: 

1. Resilience. 

2. Avoidance. 

3. Isolation. 

4. Redundancy. 

 

These options served as a basis for a brainstorming session to explore the entire 

gamut of possibilities of protection against ice. Additionally, these options can be 

incorporated into the OPN process and thus use the OPN’s inherent ability to generate all 

possible permutations. 

 

In this section, I will present those four methods as well as their OPD 

representation, discuss and demonstrate their applicability to other areas of engineering 

(like electronics) and dive into the specific ice protection issue. 
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4.2 Finding all the ways to protect something from 

something else 

 

When taking the specific domain and discipline out of the problem space, it seems 

there are only four basic theoretical ways to protect something from something else. 

Those four ways can be mapped into six practical methods of protection. This section 

will present these basic methods as well as their practical representation. 

4.2.1 Basic representation of interference 

 

Interferences are a result of cross relations between an instrument and its 

surrounding. For example, corrosion is the result of interaction between the certain kinds 

of form material and the surrounding oxygen. 

An OPD representation of interferences can be viewed in FIGURE 8. It is 

important to note that in a specific system, the interference is not a direct result of the 

different functions of the system but rather of the forms selected to perform those 

functions. Continuing with the corrosion example, if the corrosion occurred at the support 

of a bridge, it is not a result of the supporting system but rather an interface with the 

specific metal form that was selected to perform the supporting function. In that specific 

example, changing that form, for example to a stainless steel based structure, might solve 

that problem. 

Another important point is that the interference is caused by an environmental 

form of some kind. Corrosion needs oxygen, and electromagnetic interferences need 

electromagnetic wave in order to exist. Additionally, the interference itself is a function 

and sometimes a special form. The interference can be caused by an external form 

(collision) or from within the instrument (explosion). 
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FIGURE 8: OPD representation of interferences 

 

Following that understanding, we tried to identify groups of methods that mitigate 

or even eliminate interferences. The rationale is that finding those representations and 

defining them in a system-neutral way (through OPD) can be a good basis for a 

brainstorming process to generate out-of-the-box solutions to deal with specific 

interferences issues. 
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4.2.2 The four basic methods to protect something from so mething 

else 

 

In order to focus the research we altered the question to: “what are the basic ways 

to protect something from something else?” That question yielded four different system-

neutral possible solutions: 

1. Resilience 

 

This system-neutral method is targeted at increasing the resistant ability of the 

instrument. 

 

 

FIGURE 9: Resilience protection against interferences 

 

Looking at examples from a solution-specific domain reveals some different 

options for resilience. One is to increase the protection of the instrument against the 

interference in such a way that although the interference strength remains the same, the 

instrument is better equipped to withstand it, for example, altering the upper layer of a 

metal plate to protect it against corrosion or making a stronger structure to protect against 

side winds. Flexibility is another way to increase a form’s ability to resist interference. In 

nature we can see some evidence of that kind of solution. Many plants for example, are 

very flexible as a means to protect against wind. 

Another option for resilience is to change the form so the potential effect of the 

interference will be reduced, for example, changing the cross section of a structure to 

reduce the effect of side winds. 
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2. Avoidance 

 

Since interference is associated with some kind of form, another way to protect against 

interferences is simply to eliminate the hazard. 

 

 

FIGURE 10: Avoidance protection against interferences 

 

Avoidance can be done in several ways. One is to remove the hazard. For 

example, one of the problems in a deep ocean oil rig in an arctic environment is big ice 

blocks that collide (and sometimes cover) the oil rig system and thus potentially reduce 

its efficiency and operability window. Several methods can be applied that move the ice 

from the oil rig environment. Another option for avoidance is to move the instrument to a 

different environment with reduced level of interferences (or no interferences at all), for 

example, moving an iron system to an oxygen-free environment to protect it against 

corrosion.  
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3. Isolation 

 

Another protection option would be to attack and possibly eliminate the interface 

between the hazard and the instrument. While there is some resemblance between that 

method and resilience, the difference is very clear. In resilience the alleviation is 

achieved by altering the instrument, whereas in isolation the interface is altered. A good 

example would be the distinction between the two following methods of corrosion 

protection: 

1. Altering the upper layer of the metal that interacts with the surrounding oxygen 

(resilience). 

2. Applying coating to the metal that eliminate the interaction between the metal and 

oxygen (isolation). 

 

 

FIGURE 11: Isolation protection against interferences 

 

This kind of protection can be achieved in several ways. One can apply a 

boundary layer to protect against the interference, for example, a Faraday cage to exclude 

electrostatic influences. A different approach is to alter the environment, for example, 

surrounding the system with a water environment as a damping method against vibrations. 
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4. Redundancy 

Having additional instruments to perform the same function is another option for 

protection. In that regard there are actually several sub-options: 

1. Having the same type of instrument as a backup in case the first instrument fails. 

2. Having a different type of instrument as a backup. This kind of solution might be 

applicable in dealing with interferences that do not have accumulative nature but 

rather a threshold for causing malfunction. A redundant system in that case might 

be less adequate to perform the function but will be able to withstand the high 

level of interference, for example, a subsystem form that will stop working at 

certain radiation level. Having two of the same kind of that form will not increase 

the overall radiation resistance, since both forms will fail at the same time. A 

solution might be adding a different kind of form as backup that, although not as 

efficient as the first will be able to resist high levels of radiation.  Another case 

where having a different backup system might be the preferred solution is when 

the primary instrument is too expensive to duplicate. For example, in some cars 

the spare tire is of poor quality in order to reduce the overall cost while allowing 

redundancy in cases of flat tires. 

3. Having another instrument that works together with the first one in such a way 

that the effect of the interference on each of the instruments is reduced. Those 

kind of protections are applicable to interferences that can be divided using 

additional instruments. One example is of interferences that interact with the 

instrument through force or pressure (like colliding obstacles or friction). In that 

case, having an additional instrument (for example, an engine) will split the effect 

of the interface. 
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FIGURE 12: Redundancy protection against interferences 

 

Conclusion 

This section presented four general ways to protect something from something 

else. Those methods have an advantage of being system-neutral. That means they are 

general enough to be used as a base for a brainstorming session regardless of the actual 

system the solution is meant for. 

 

The following section will focus on a specific example of utilizing those methods 

generate a solution for a real-life engineering issue. 
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4.3 Implementation example - Ice protection 

 

This section will demonstrate how those four ways of protection are used in a real 

life problem –protecting an oil exploration system from ice. The specific oil exploration 

system consists of a group of supporting structures that interact with ice. Each of these 

structures supports a different subsystem (extracting, treating, etc.) that in turn is 

supposed to service a Deep Ocean oil field. The ice itself usually forms in large 

accumulations. This has two possible negative effects on those structures. The first is the 

impact of the floating accumulations that can cause the structures to fail. The second is 

that ice can accumulate on top of those structure (especially those that are close to the 

water surface) and thus harm the operability of the subsystem that is being supported by 

those structures. 

The process described in this section was developed to serve two goals. The first 

is to move from system-neutral solutions (as was mentioned in the previous section) to 

system-specific possible solutions, in order to give the architect a set of possible solutions 

to his specific system. The second goal is to allow the architect to use those possible 

solutions to tailor a specific solution for each of the oil exploration subsystems.  

Generally, the process can be split into the following stages: 

1. Translating the system-neutral solutions to a family of system-specific solutions. 

2. Using each family to generate a specific possible solution for a specific subsystem. 

This section will elaborate on that process, discuss some of the practical 

implementation issues and demonstrate a specific implementation in OPN. 
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Translating the system-neutral solutions into a family of system specific solutions 

 

The first stage in moving to system specific solutions is to understand the system 

in question. The OPD representation of each of the relevant structures looks as follows: 

 

FIGURE 13: Basic representation of a supporting structure and its interface with ice 

 

Additionally, we adjusted the list of the four basic methods to the specific problem. 

First, we realized that resilience can be extended to three generally possible solutions to 

protect against ice: absorbance, minimizing force and strengthening. Second, we decided 

to take into account two possible types of avoidance since it can be done at the 

interference level or at the instrument (structure) level. Additionally, we decided not to 

incorporate redundancy in the range of possible solutions. The cost of each of the 

subsystem is relatively very high and thus, we do not believe that redundancy is a feasible 

solution. 

Using these assumptions, the four system neutral ways of protection were enlarged 

into six different patterns to protect against ice: 

1. Eliminate source. 

2. Eliminate interaction at source. 

3. Eliminate interaction at support. 

4. Use intermediate object to minimize force; allow contact to support. 

5. Use intermediate object to absorb force; no contact to support. 

6. Withstand interaction. 
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The following figure shows the OPD representation of the six possible patterns: 

Eliminate source: 

 

 

 

Eliminate interaction at source: 
 

 

 

Eliminate interaction at support: 

 

 

 

Use intermediate object to allow contact, but minimal force: 

 

Use intermediate object to absorb force but not on support: 

 

Withstand interaction 

 

FIGURE 14: Patterns to protect against ice 
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Utilizing patterns to protect against ice to generate specific solutions 

Following a brainstorming process, we were able to extract those patterns into 

specific possible solutions. Those possibilities will be further investigated in order to 

choose the best one for each of the subsystem structures. The following table summarizes 

the solutions we were able to extract from each pattern: 

 

TABLE 9: Specific solutions to protect against ice 

Pattern name Specific solutions 

Eliminate source. Heat 

water 

Chemically 

treat 

water/ice 

Agitate 

water 

  

Eliminate interaction 

at source. 

Move Ice 

away 

Break Ice 

Naturally 

Break Ice 

artificially 

  

Eliminate interaction 

at support. 

Move 

support to 

land 

Move 

support to 

Ice free 

Water 

Move 

support 

underwater 

Skim 

support 

over 

ice 

Use Ice 

as 

support 

structure 

Use intermediate 

object to minimize 

force; allow contact 

to support. 

Fairing Shock 

observer 

Semi 

submerged 

  

Use intermediate 

object to absorb 

force; no contact to 

support. 

Shielding Bumpers Build 

artificial 

Island/Berm 

  

Withstand interaction. Strengthen 

structure 

Minimize 

cross-

section 
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The OPD representation of the entire suggested range looks like the following: 

 

 

 

FIGURE 15: Ice protection specific solutions – level 1 decomposition 
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FIGURE 16: Ice protection specific solutions – level 2 decomposition – 

Eliminate source 

 

 

FIGURE 17: Ice protection specific solutions – level 2 decomposition – 

Eliminate interaction at source 
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FIGURE 18: Ice protection specific solutions – level 2 decomposition – 

Eliminate interaction at support 

 

 

FIGURE 19: Ice protection specific solutions – level 2 decomposition – Use 

intermediate object to minimize force: allow contact to support 
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FIGURE 20: Ice protection specific solutions – level 2 decomposition – Use 

intermediate object to absorb force: no contact at support 

 

 

 

FIGURE 21: Ice protection specific solutions – level 2 decomposition – 

Withstand interaction 
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The next step was to use those specific possible solutions to tailor a specific 

solution for each of the structure subsystems mentioned earlier. We chose to do that using 

OPN due to its ability to span the entire gamut of solutions for each of those cases and 

find the one that offers the best value. 

 

Incorporating ice protection methods in OPN 

This phase is aimed at find all the possible permutations of ice protection 

solutions based on the specific possible solutions found earlier. The rationale is to use the 

specific solution list to generate all the different possible combinations that might give 

ice protection to the specific system. The architect will be able to use those permutations 

to tailor a specific solution for each of the structural subsystems. 

In order to perform that phase we made some assumptions. The first is that 

specific possible solutions can be merged. The underlying assumption is that often those 

solutions do not guarantee 100% protection against ice. In those cases a combination of 

solutions can increase the overall protection level of the subsystem structure. For 

example, breaking the ice and heating it might work well together. The ice could be 

heated and then broken or vice versa. Calculating the overall value of that combination of 

solutions can be difficult, since in many cases it is not a simple sum of the individual 

protection levels. For example, heating the ice before breaking it might cause the 

breaking activity to be more or less efficient than just breaking it as a stand-alone activity. 

The second assumption is that not all the possible solutions can be merged due to 

physical limitations; for example, the structure cannot be moved to land and at the same 

time move underwater. Furthermore, we assumed that intermediate objects can be used 

either to absorb force or to minimize it; thus “Use intermediate object to absorb force” 

and “Use intermediate object to minimize force” cannot coexist. Our last assumption was 

that there is no value in combining solutions that deteriorate (or even cancel) each other’s 

effect. For example, moving the structure underwater cancels the effect of breaking the 

ice. 
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The following figure illustrates the way these assumptions can be incorporated 

into the model. The selection of the protection method became a set of selections, each 

dealing with a different kind of protection. At each selection the options are to select the 

specific protection or not to select it. If the protection is selected it is added to a portfolio 

of solutions. Additionally, solutions that cannot work together are implemented in 

parallel (as in the case of “Use intermediate object to absorb force” and “Use 

intermediate object to minimize force”). 

 

 

FIGURE 22: Ice protection - multi solution selection 

 

The following table summarizes all the possibilities of those combinations. A ‘+’ 

sign at the intersection of two solutions means that the two solutions could be merged. 
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TABLE 10:  Possible combinations of ice protection solutions 

H
eat w

ater

C
hem

ically treat w
ater/ice

A
gitate w

ater

M
ove Ice aw

ay

B
reak Ice N

aturally

B
reak Ice artificially

M
ove support to land

M
ove support to Ice free W

ater

M
ove support underw

ater

S
kim

 support over ice

U
se Ice as support structure

H
orizontal F

airing

V
ertical F

airing

S
hock observer

S
em

i subm
erged

S
hielding

B
um

pers

A
lternative structure

B
uild artificial Island/B

erm

S
trengthen structure

M
inim

ize cross-section

Heat water
Chemically treat water/ice +
Agitate water + +
Move Ice away + + +
Break Ice Naturally + + + +
Break Ice artificially + + + + +
Move support to land       
Move support to Ice free Water  
Move support underwater  
Skim support over ice  
Use Ice as support structure  
Horizontal Fairing + + + + + +  + +
Vertical Fairing + + + + + +  + + +
Shock observer + + + + + +  + + + +
Semi submerged + + +  + + +
Shielding + + + + + +  + + + + + +
Bumpers + + + + + +  + + + + + + +
Alternative structure + + + + + +  + + + + + + + +
Build artificial Island/Berm + +  + + + + + +
Strengthen structure + + + + + +  + + + + + + + + +
Minimize cross-section + + + + + +  + + + + + + + + + +  

 

These combinations can be further extracted to include more than two possible 

solutions. The rationale is to cover all the possible cases where three or more solutions 

merged together will offer higher value than only one or two solutions merged. For 

example, breaking the ice might be combined with shielding and strengthening the 

structure to offer the highest protection and highest overall value. The general rule is that 

if solution A can be combined with Solution B and Solution B can be combined with 

Solution C, then a trio of solutions A, B and C is also possible. 

Following that, calculating the number of possible permutations reveals that there 

are over 10,000 possibilities, which is higher than the possible number we can analyze. In 

order to reduce that number without losing the integrity of the model, we made additional 

assumptions. We defined the maximum number of different solutions that can be 
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combined into one solution as 3 and we eliminated the solutions that had the lowest 

probability to be implemented (based on estimation of the technical feasibility). Those 

assumptions reduced the number of permutations for that model to 665, which is within 

the system analysis capabilities. 

 

The modified structure looks as follows (solution marked with Red indicates low 

probability solutions that where left out of the model): 

 

 

FIGURE 23: Incorporating multi-solution selection into a reduced model12 

 

                                                 
12 The OPN model incorporating that model can be seen at appendix B. 
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4.4 Conclusion 

This chapter presented a structured way to generate “out-of-the-box” solutions. It 

started from the highest generalization and dived into the specific problem. That 

approach offers the advantage of exploring the entire gamut of possible solutions to a 

problem while not being bounded by existing practices. The outcome of that process is a 

list of permutations – in our case, all the possible ways to protect the oil exploration 

system from ice. 

Having all those permutations at hand allows the architect to examine each in order 

to select the best solution for each of the subsystems. It can be done by defining the value 

formula for each of the structural subsystems and then running the model to find the best 

solution for each of the structural subsystems based on that formula. 
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5 How to deal with a non-fixed boundary 

 

5.1 Introduction 

Finding the best architecture to offer value to stakeholders can be affected by the 

definition of the system boundary. Often a lean system can offer greater value for the 

invested resources than a comprehensive one. One example is an oil exploration system 

where there are several ways to bound the system: 

1. Lean system - bounded very early right after the separating phase of the oil mix into 

its products. In that case an “outside the system” entity will take care of moving the 

products from the separating facility and passing it to storing/distribution centers as a 

mid-point to distributing it to customers. 

2. Comprehensive system - placing the boundary after moving the products to the final 

customer. That means the transportation and storing subsystems as well as 

distribution etc. become one of the processes the system needs to support. 

3. Mid size system– anywhere between a lean system and a comprehensive system. One 

possibility is to define the system boundary after transferring the separated oil 

products to a storing facility (thus incorporating storing within the system). Another 

possibility might be to define the system boundary after transferring the product to 

the distribution center etc. 

 

The decision where to put the system boundaries depends on several 

considerations. One is the strength of the relationship between the different subsystems. 

An architect should consider the number and complexity of interfaces between the system 

and the outside world. Changing the system boundary can increase or reduce both the 

total number of interfaces and their complexity. Another consideration is the value each 

subsystem creates for the stakeholders vs. the effort associated with incorporating it. For 

example, effort can be measured by cost and complexity, whereas value can be measured 

by political power. I selected political power to demonstrate that value is not determined 
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only by the technical relevance of the subsystem to the entire system (like steering 

subsystem to a transportation system). It could also create non-technical value. 

Having these two considerations in mind, the architect can decide which 

subsystems (and as a result of that, functionality) to incorporate within the system 

boundary. Often it becomes an iterative process: The architect needs a system and 

stakeholder model in order to check whether each subsystem should be within the system 

boundary, thus, an estimated model needs to be built in advance. The architect can then 

check if it has the best boundaries and, if needed, correct them. The process of finding the 

right boundaries can end up being a process of iteration between estimation and 

evaluation till finding the right system boundaries. 

 

That raises a fundamental question, relevant to both OPN and OPD, which is how 

to represent a changing system boundary, because in those methods a process can either 

be in or out of the model. It cannot dynamically move to the other side of the system 

boundary. The current practice is to put all the possible processes inside the OPN and 

OPD. Those who might move outside of the system boundary get an additional form 

beside those physically feasible, which is called Null. This form gets a value of zero for 

every relevant attribute or parameter. Picking this form simulates a situation of leaving 

the process outside of the system boundary. While this solution actually allows 

generation of architectures, it raises other problems. The system cannot be treated as a 

“black box” – since the system boundaries are not fixed, there is more than one function 

that can be the last. That creates a situation where an interfacing system needs to dive 

into the system (probably one level down) in order to understand what process (or sub-

system) it needs to connect with. Furthermore, when examining both the OPN and OPD, 

it is not clear which process can be the last one before the system boundary. This section 

will propose a way to deal with this issue in OPD and OPN and will discuss its 

advantages. 
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5.2 Proposed Solution for a non-fixed boundary – ch ange of 

ownership 

 

So far a “thing,” whether it is a form or a function, could be either within or 

outside the system boundary. The proposal is to have “things” on the boundary layer, 

representing change of ownership. That means the owner of the process changes from 

within the system to outside the system. There are some theoretical and practical 

advantages to this kind of implementation. That method causes the system boundary to be 

represented as an entity within OPN and OPD. That will allow the architect to “include” 

the system boundary in the mathematical modeling of the system and thus give him the 

mathematical framework to decide on the system boundary. Moreover, the proposed 

method makes the interfaces to the outside world much easier. The change of ownership 

entity gives one point of contact solution for the outside systems that try to interact with 

the specific system. The inside of the system can thus be considered as a “black box” for 

the outside systems. Interfaces from within the system will also become easier. Inside 

subsystems will have one point of contact to submit their products to regardless of the 

forms that will be selected to be part of the system. Another advantage is in visualization. 

It will be much easier for an outside viewer to distinguish where the system ends. The 

following section presents an example of implementing change of ownership in OPD and 

OPN. 
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5.3 Change of ownership – Specific example 

 

As was mentioned at the beginning of the chapter, there are different ways to bind an 

oil exploration system. Those different options are summarized in the figure below: 

 

 

FIGURE 24: The different ways to bound an oil exploration system 

 

As can be seen, different functions can be the last. It could be Treating, Moving or 

Storing. The way to deal with the floating boundary is by adding a function that 

represents the function of changing ownership. In our case, we called it Exporting: 
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FIGURE 25: System boundary using changing of ownership 
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The implementation in OPD looks as follows: 

 
FIGURE 26: Change of ownership – Solution-neutral level 1 OPD model 
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FIGURE 27: Change of ownership – Solution-neutral level 2 OPD model 

 

And the implementation in OPN looks as follows: 

 

FIGURE 28: Change of ownership – OPN model 

 

Process direction 
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5.4 Conclusion 

This chapter offers a possible solution to deal with floating boundary in OPD and 

OPN by incorporating the boundary into the system model. This is done by defining the 

system boundary as a “change of ownership” process. That definition will give 

subsystems within the system and interfacing system one point of contact for processes 

that cross the system boundary. Another advantage is the ability to model the system 

boundary and to incorporate it in the value calculation in OPN. 
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6 Coupling/decoupling possibilities between 

Stakeholder’s model and Object-Process model. 

 

6.1 Introduction 

As discussed, systems should be measured by the amount of overall value they 

create for all their stakeholders, taking into account the relative weight of the different 

stakeholders. A basic question is how to connect the stakeholder’s and functional models 

in order to find the best architecture (the best set of forms and the right context) that 

generates the highest value to stakeholders. 

This chapter presents four levels of possible connections, going from the easiest 

to implement to the hardest. The predicted ability of each to measure overall value will 

also increase as the implementation complexity increases. 

 

1. Two separate models: Stakeholders and Object-Process. These models will be 

minimally connected and only with human interpretation of analysis up to this point. 

The Stakeholder model will yield the most important factors to consider in evaluating 

the different architectures. Those factors will be used to rank and screen the different 

architecture permutations that the Object-Process model will yield after calculating all 

the possible permutations. 

 

2. Some coupling between the models. The Stakeholders model will be used (in addition 

to generating a selecting criteria) to generate a set of rules that represent value 

generated parameters. Those rules will then be incorporated into the Object-Process 

model. That way, the screening process of the architecture permutation will occur 

during the permutation-creation process. Additional value is that the permutation-

creation processes can be altered (before running it) to focus on process that generate 

more value (for example, performing treating twice). 
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3. Adding a stakeholder’s evaluation model at the end of the process. The result will 

look as follows: 

 

Stakeholders model 1 � Object-Process model � Stakeholders model 2 

 

The first Stakeholder model will calculate a set of rules that will be used to screen 

out non-valuable process permutations. The second stakeholder’s model will be used to 

calculate the actual value of each of the remaining permutations. The input for that 

model will be the permutations along with their important attributes (price, duration, 

etc.). The output will be the architecture/s that generates the highest amount of value 

(or a ranking of all the architectures). That value will be calculated by dynamically 

running the model on each of the architectures. 

 

4. A complete coupling of the Stakeholders and Object-Process models that may run as 

one model, calculating the best architecture (or ranking all the different permutations) 

“on the fly.” 

 

 

6.2 Two separate models 

At this level the Stakeholder and Object-Process model are physically disconnected. 

The system architect will be the one to make the connection in order to find the value in 

each of the architectures that the Object-Process model generates. The system architect 

will use the following algorithm: 

1. Build separate Stakeholder and Object-Process models. 

2. Use these models to find characteristics that affect the value gained by the 

stakeholders. There are several ways to utilize the model to get those characteristics. 

This topic is currently being studied by Professor Edward Crawley’s research group. 

In general the system architect should select those characteristics that he can easily 

alter utilizing the architecture. For example, there is usually a strong relation 

between selected forms and the overall cost of the system. On the other hand there 
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is usually a weaker connection between the forms of the system and the political 

power of the stakeholders. 

3. Use those characteristics to evaluate the different architectures permutations 

generated by the Object-Process model. This valuation occurs after running the 

Object-Process model and there are two possible ranking operations: 

i. Screening out the architecture that does not answer a threshold level – for 

example, screening out all the architectures that do not satisfy a minimal safety 

level. 

ii.  Ranking architectures by the value they create for a specific characteristic or for 

a collection of characteristics (for example weighted average). The following 

figure demonstrates such a ranking where the different architectures are ranked 

according to the overall NPV they are expected to generate. 
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FIGURE 29: Ranking architectures based on important characteristics 
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The following figure summarizes this possible connection between the Stakeholder’s 

model and the Object-Process model: 

 

FIGURE 30: Schematic of a two separate model processes 

 

6.3 Some coupling between the models 

In this option there will be a connection between the Stakeholder’s model and the 

Object-Process model while the Object-Process model is generating the architectures 

permutations. The Stakeholders model will be used (in addition to its role in defining a 

selecting criteria) to generate a set of rules that represent value-generated parameters. 

Those parameters will be incorporated into the Object-Process model as threshold 

parameters. That way, the screening process of the architecture permutation will partially 

occur during the permutation creation process. The immediate benefit is that some of the 

“bad” architectures will be screened out during the architecture generation process, which 

will increase the overall process efficiency (since the system will waste less resources on 

those “bad” architectures). 

There are two important points to consider. The first is that this option does not 

change the previously mentioned serial nature of the overall process. The Stakeholders 

model will have to be executed before the Object-Process model in order to identify the 
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be incorporated into the Object-Process model. The second point is that the connection 

between the models is still manual, because the connection is unpredictable. Neither the 

characteristics nor their desired threshold can be estimated prior to running the 

Stakeholder’s model. 

The following figure summarizes this possible connection between the 

Stakeholder’s model and the Object-Process model: 

 

FIGURE 31: Schematic of Some coupling between Stakeholders and process 

models 
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Additionally, sometimes defining a specific characteristic as the sole metric to 

evaluate architecture is not enough from several reasons. There could be a more 

complex connection between the architecture and value. For example, we can look at a 

system where schedule is a possible value characteristic. The stakeholders in that case 

do not value schedule linearly. One stakeholder will prefer a system that will be built in 

less than five years (he is indifferent to how much less than five years) whereas another 

stakeholders will value schedule exponentially (such that 50% reduction in building 

time will increase his value by 200%) and so on. Coming up with value formula in 

those cases can be difficult especially when there are many stakeholders and many 

possible characteristics. Moreover, in many cases the value characteristic is actually a 

weighted average of several characteristics. This is possible when the relative weight of 

each of those characteristics is fixed. There are also cases where it is not true (for 

example when schedule becomes extremely important when building time passes X 

years). 

 

In order to solve this problem, a new stakeholder model will be created. This new 

model will be used to value each of the permutations created by the Object-Process 

model.  The algorithm for utilizing that model will be as follows: 

1. The first Stakeholder model will calculate a set of rules that will be used to screen 

out non valuable process permutations and to find the value characteristics. 

2. The Object-Process model will generate all the possible architectures, screening 

out the non-valuable architectures on the fly. Additionally, it will calculate the 

value characteristics. 

3. The second Stakeholder’s model will be used to calculate the actual value of each 

of the remaining permutations. The input for that model will be the permutations 

along with their value characteristics (price, duration, etc.). The output will be the 

architecture/s that generates the highest amount of value (or a ranking of all the 

architectures). That value will be calculated by dynamically running the model on 

each of the architectures. 
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The following figure summarizes this possible connection between the Stakeholder’s 

model and the Object-Process model: 

 

FIGURE 32: Schematic of a process with two stakeholders models  
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architectures will be screened out on–the-fly (whereas earlier only part of the “bad” 

architectures were screened out). 

Moreover, a smart algorithm incorporated into the model will allow a smart 

search of the optimal architecture. Those algorithms will basically be optimization 

algorithms (due to the discrete nature of the architecture they will probably be based on 

genetic algorithms) that will search the optimal architecture without searching the entire 

range of architecture. There are several benefits to that approach First, it will increase the 

system architect’s ability to explore complex systems – the number of permutation is 

currently the main parameter that limits OPN, and thus complex systems with a large 

number of expected permutations are simplified in the translation to OPN. An 

optimization algorithm by nature reduces the number of permutations by focusing on 

those that lead to the highest value architectures. Second, it will allow a sensitivity 

analysis – a byproduct of the optimization process is the ability to easily generate a 

sensitivity analysis. This analysis can help in a cost-effective analysis or act as a base for 

an isoperformance analysis [14]. 

 

6.6 Conclusion 

This chapter presents four different options to connect Stakeholders and Object-

Process models. While most of the current models utilize the first two options, there is a 

lot of value to be gained by expending those models to the third and four options. The 

value is both in allowing a more complex model and in improving the way those models 

reflect reality and predict the architecture’s performance. 
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7 Conclusion  
Albert Einstein said, “Everything should be as simple as it is, but not simpler.” 

This thesis was aimed at allowing the system architect to simplify the complexity of the 

model while not decreasing the ability of those models to represent complexity and 

complex systems. It investigates existing modeling methods – OPD and OPN [1], [2] and 

proposes techniques to improve their ability to represent complex systems.  

Specifically, four topics are reviewed in the research part of this thesis. The first 

suggests an algorithm to implement an iterative process in OPN. That algorithm allows a 

dynamic examination of the possibility to use more than one form to perform a specific 

function. The second topic suggests a framework that uses a top-to-bottom approach to 

facilitate generation of “out-of-the-box” solutions to technical problems. The third topic 

suggests a method to deal with a non-fixed boundary in the architecting phase such that 

subsystems either within or outside the system keep interfacing with the same object 

regardless of the actual boundary of the system. The final topic deals with the coupling 

and decoupling possibilities between the stakeholder’s model and the Object-Process- 

model. 

 

These four topics, aside from being all related to OPN, are part of an overall 

solution that will allow OPN to explore a range of solutions much larger than was defined 

by the architect as an input. The “out-of-the-box” framework allows OPN to suggest 

solutions of forms that the architect did not think about or was not aware of, while the 

iterative process increases that capability by allowing OPN to explore all the possible 

combinations of those solutions. That will “break” the connection of one form to one 

function – checking the possibility to achieve a certain functionality using a set of forms 

instead of only one. 

The floating-boundary method in its turn will allow OPN to investigate the 

boundary of the system to find the best set that maximizes overall stakeholder’s value. 

That will generate a new set of possible solutions where some of the initial functionality 

could be left outside of the system boundary. 
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The final piece of this overall solution is to implement increased coupling 

between the Object-Process model and the Stakeholder’s model. The value of the 

previous topics will increase as it will become easier and faster to measure the overall 

value of each system, subsystem and form to the system stakeholders. 

 

I believe that this overall solution will allow OPN to increase its ability to deal 

with a bigger set of issues. An example for a use of that kind of implementation is in 

portfolio optimization – finding the best future strategy for a company by optimizing its 

future portfolio.  A possible future strategy for a specific company might be to build 

many new products (in OPN, it will be many new functions). Another option could be to 

heavily rely on a current product, creating few new ones (in OPN, that means few new 

functions) or anything in between. Beside this necessity to change the number of 

functions (that can be solved using the non-fixed boundary and loop methods) that kind 

of optimization will probably also require a strong connection between the two models of 

possible portfolios and stakeholders. 

Another possible implementation is in economic research looking for a preferred 

economic strategy. In this kind of research, there are many possible tools that the 

architect can use (like different monetary tools) by themselves or in combination with 

other tools to achieve the best results for a specific economy. Those results heavily rely 

on the behavior of other (basically their stakeholders). Using loops, changing boundaries 

and strong coupling of models, the architect can offer a great deal of value in that regard. 

Achieving that kind of functionality in OPN requires additional research. There is 

room for additional research at the topic level, for example I believe that the method to 

generate out-of-the-box solutions is still not robust enough. It can not offer automatic 

value to any kind of problem, and it still requires heavy human interaction. Another area 

for research is in finding ways to create models that better reflect reality. One example 

that was mentioned earlier was the ability to increase the OPN complexity by introducing 

optimization algorithms that will replace the creation of the entire set of permutations. 

Another possible area is incorporation of real-option analysis to evaluate future value of 

forms that are added to the system. 
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APPENDIX A: OPN symbols 
As mentioned, OPD uses a set of symbols to describe possible relations and links 

between objects and processes. This section presents those relations and an example of a 

model built in OPN. 

 

Decomposition/Aggregation - describes a relationship between a whole and its parts. 

The symbol used for that is:  

Skateboard

Deck
Suspension
Assembly

2 4

W heel
Assembly  

FIGURE 33: OPD example of Decomposition/Aggregation [1] 

 

Characterization/Exhibition – describes the relationship between an object and its 

features or attributes. It is important to note that some attributes can be states [1], which 

is a situation in which the object can exist for some positive duration of time. 

The combination of all the states describes the possible configuration of the system 

throughout the operational time. The symbol used for that is: 

 

FIGURE 34: OPD example of Characterization/Exhibition [1] 
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Specialization/Generalization – describes the relationship between a general object and 

its specialized forms. 

 The symbol used for that is:  

 

FIGURE 35: OPD example of Specialization/Generalization [1] 

Instantiation - describes the relationship between a class of things and instances of the 

class. 

 The symbol used for that is:  

 

FIGURE 36: OPD example of Instantiation [1] 

 

Another set of symbols is used to describe the possible links between the objects and 

processes: 

 

 

 

 

 

 

   

FIGURE 37: OPD symbols for links between objects and processes 

• P changes O (from state A to B).

• P affects O (affectee)

• P yields O (resultee)

• P consumes O (consumee)

• P is handled by O (agent)

• P requires O (instrument)

• P occurs if O is in state A

TransportingPerson
Here

There

TransportingPerson

TransportingEntropy

TransportingEnergy

TransportingOperator

TransportingSkateboard

PurchasingMoney
Enough

None
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Example of a model built in OPN 

Change 
Properties

Property 
Changer

Treating

Multi

one

# of cycles

Shallow water

On site

Location

The Shore

Further Inland

After ice belt

Placement

Sub-marine

Surface/ Land

Sea Floor

Change 
Pressure

Change 
Temperature

Change 
Chemistry

 

 

FIGURE 38: Example of a model built in OPD 

 

This example demonstrates how the treating process is represented in OPN. It can 

be specialized to Change Properties, which in turn can be specialized into Change 

Pressure, Change Temperature and Change Chemistry. A Property Changer is the 

instrument used to change property. It is characterized by its location (horizontal), 

placement (vertical) and number of treatment cycles. 
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APPENDIX B: An OPN representation of Ice 

Protection solution system 
 

This section presents the implementation of the ice protection model in OPN: 

 

 

 

 

 

FIGURE 39: An OPN representation of Ice Protection solution system 
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APPENDIX C: Formulation of the oil 

exploration system loop example 
 

Following is the set of equations that describe the system and the expected value. The 

legend that describes the used abbreviations appears at the end of this section. 

 

TTBSTLToductionofYears −=Pr
 

For TTBS we assume that the treating system and extracting system can be built in 

parallel. Thus: 

 

( )ESBTSBMaxTTBS ,=  

Furthermore, the possible production per year is the minimum between the treating and 

extracting capacity: 

 

( )EPYTPYMinPPY ,=  

The total cost is the sum of the treating and extracting system costs: 

 

ESBSTSBSCostTotal +=
 

And profit is defined as the NPV over the leasing period: 

 

( ) ( )

( ) ( )

( ) ( )∑∑

∑∑

+==

+==

+
×+

+
−=

+
+

+
−=

+=

TLT

TTBSn
n

TTBS

n
n

TLT

TTBSn
n

TTBS

n
n

r

PPBPPY

r
TTBS

tTotal

ofit

r

IncomeYearly

r

CostYearly
ofit

periodoilExtractingNPVpriodsysetmthebuildingNPVofit

10

10

11

cos

Pr

11
Pr

Pr

 



 94 

 

Legend: 
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APPENDIX D: List of possible solutions to the 

oil exploration loop problem 
Following is a list of all the possible combinations to build extracting and treating 

subsystems. For each solution there are the different numbers of forms selected as well as 

the expected discounted profit. The options are ordered from the most profitable to the 

lowest. 

S
olution #

# of Large E
xtracting form

s

# of M
edium

 E
xtracting F

orm
s

# of S
m

all E
xtracting F

orm
s

# of Large T
reating F

orm
s

# of M
edium

 T
reating F

orm
s

# of S
m

all T
reating F

orm
s

P
rofit (M

$)

S
olution #

# of Large E
xtracting form

s

# of M
edium

 E
xtracting F
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s
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m
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xtracting F
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s

# of Large T
reating F
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s

# of M
edium

 T
reating F
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s

# of S
m

all T
reating F

orm
s

P
rofit (M

$)

1 0 1 1 0 0 2 15837.63 31 0 1 0 1 0 0 9575.34
2 1 0 1 0 1 1 15530.68 32 0 0 2 0 2 0 9487.24
3 0 2 0 0 1 1 15244.01 33 1 1 0 1 1 0 9429.48
4 0 2 0 0 0 2 15240.50 34 0 1 1 1 0 1 9053.63
5 1 0 0 0 1 0 14627.50 35 2 0 0 0 1 1 9031.21
6 1 1 0 0 2 0 14509.30 36 1 1 1 0 0 3 8954.13
7 1 1 0 0 1 1 13719.11 37 0 1 2 0 1 2 8801.40
8 0 0 2 0 0 2 13661.13 38 1 0 1 1 1 0 8362.90
9 0 1 1 0 1 1 13376.60 39 0 2 0 1 1 0 8100.79

10 0 1 0 0 1 0 12966.03 40 0 0 3 0 1 2 7969.40
11 1 0 1 0 2 0 12928.93 41 1 1 1 0 2 1 7822.38
12 0 1 0 0 0 1 12768.24 42 0 0 2 1 0 1 7743.83
13 0 2 0 0 2 0 12647.98 43 1 2 0 0 1 2 7568.76
14 1 0 0 1 0 0 12385.60 44 1 0 2 0 2 1 7211.74
15 1 1 0 1 0 1 11950.68 45 0 0 1 1 0 0 7066.89
16 1 0 2 0 0 3 11942.75 46 0 1 1 1 1 0 7042.15
17 0 0 2 0 1 1 11509.18 47 0 2 1 0 2 1 6958.12
18 0 1 2 0 0 3 11417.41 48 2 0 0 0 0 2 6907.13
19 0 0 1 0 0 1 11283.64 49 0 1 2 0 2 1 6356.23
20 2 0 0 0 2 0 11147.36 50 1 2 0 0 0 3 6158.69
21 0 1 1 0 2 0 11067.61 51 2 0 1 0 2 1 6013.43
22 1 1 0 0 0 2 10786.67 52 0 0 2 1 1 0 5975.57
23 2 0 0 1 1 0 10750.22 53 2 0 0 2 0 0 5849.00
24 1 1 1 0 1 2 10707.77 54 0 0 3 0 2 1 5745.60
25 1 0 1 1 0 1 10640.88 55 2 0 1 1 0 2 5449.20
26 0 2 0 1 0 1 10363.43 56 2 0 1 0 1 2 5367.68
27 0 0 3 0 0 3 10350.83 57 1 1 1 1 0 2 5240.17
28 1 0 2 0 1 2 9884.13 58 1 2 0 1 0 2 5203.28
29 0 0 1 0 1 0 9725.78 59 1 1 1 0 3 0 5121.77
30 1 0 0 0 0 1 9702.13 60 0 3 0 1 0 2 5003.37  
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61 1 1 0 2 0 0 4993.49 91 2 1 0 0 0 3 1801.58
62 1 0 2 1 0 2 4840.34 92 1 1 2 0 1 3 1516.79
63 1 0 2 0 3 0 4712.83 93 1 0 3 0 1 3 1477.19
64 0 2 1 1 0 2 4594.43 94 1 2 1 0 1 3 1307.16
65 0 2 1 0 3 0 4476.02 95 0 2 2 0 1 3 1242.87
66 1 0 1 2 0 0 4382.85 96 0 1 3 0 1 3 1203.27
67 2 0 1 0 0 3 4267.00 97 0 0 4 0 1 3 1163.66
68 1 0 3 0 0 4 4211.05 98 1 2 1 0 0 4 784.00
69 0 1 2 1 0 2 4185.49 99 2 1 0 1 2 0 666.84
70 0 2 0 2 0 0 4137.98 100 2 0 1 1 2 0 627.24
71 0 1 2 0 3 0 4067.08 101 1 2 0 1 2 0 402.68
72 0 0 3 1 0 2 3785.65 102 1 1 1 1 2 0 363.08
73 0 1 3 0 0 4 3758.80 103 1 0 2 1 2 0 323.48
74 1 1 2 0 0 4 3738.72 104 0 3 0 1 2 0 128.76
75 0 0 3 0 3 0 3658.14 105 0 2 1 1 2 0 98.92
76 0 0 4 0 0 4 3542.71 106 0 1 2 1 2 0 59.32
77 0 1 1 2 0 0 3527.34 107 0 0 3 1 2 0 19.72
78 2 1 0 0 2 1 3394.51 108 0 2 1 2 0 1 -825.97
79 2 1 0 1 1 1 3389.19 109 0 0 4 0 2 2 -1052.36
80 2 0 1 1 1 1 3173.10 110 1 0 3 0 2 2 -1084.40
81 1 2 0 1 1 1 2936.94 111 0 1 3 0 2 2 -1184.06
82 0 0 2 2 0 0 2916.71 112 1 1 2 0 2 2 -1216.11
83 1 1 1 1 1 1 2720.85 113 0 2 2 0 2 2 -1305.70
84 2 1 0 0 1 2 2598.04 114 3 0 0 0 2 1 -1466.18
85 2 1 0 1 0 2 2592.73 115 0 0 3 2 0 1 -1572.63
86 1 0 2 1 1 1 2504.76 116 1 0 2 2 0 1 -1604.67
87 0 3 0 1 1 1 2484.68 117 2 0 1 2 0 1 -1626.66
88 0 2 1 1 1 1 2268.60 118 3 0 0 1 1 1 -1647.71
89 0 1 2 1 1 1 2052.51 119 0 1 2 2 0 1 -1694.27
90 0 0 3 1 1 1 1836.42 120 1 1 1 2 0 1 -1726.32  
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121 2 1 0 2 0 1 -1758.36
122 3 0 0 2 0 1 -1819.18
123 0 2 1 2 0 1 -1825.97
124 1 2 0 2 0 1 -1858.02
125 3 0 0 1 0 2 -1897.79
126 0 3 0 2 0 1 -1947.62
127 3 0 0 0 0 3 -1986.45
128 0 0 4 1 0 3 -3023.12
129 0 0 3 2 1 0 -3167.87
130 0 1 3 1 0 3 -3302.16
131 1 0 3 1 0 3 -3364.16
132 0 1 2 2 1 0 -3446.91
133 1 0 2 2 1 0 -3508.91
134 1 1 2 1 0 3 -3643.20
135 0 2 1 2 1 0 -3725.96
136 1 1 1 2 1 0 -3787.95
137 2 0 1 2 1 0 -3849.95
138 2 1 1 0 1 3 -3896.42
139 2 1 1 0 0 4 -3911.95
140 1 2 1 1 0 3 -3932.58
141 0 3 0 2 1 0 -4005.00
142 1 2 0 2 1 0 -4067.00
143 2 1 0 2 1 0 -4128.99
144 2 1 1 1 0 3 -4149.63
145 0 0 4 1 1 2 -4974.19
146 0 1 3 1 1 2 -5397.95
147 1 0 3 1 1 2 -5609.83
148 0 2 2 1 1 2 -5821.71
149 1 1 2 1 1 2 -6033.59  
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APPENDIX E: Comparing parallel and serial 

building models for oil extraction 

systems 
Chapter Three in this thesis refers to incorporating loops into OPN. This section 

will broaden the example in that chapter with the target of presenting the difference 

between parallel and serial building of forms. Parallel building means that if two or more 

forms are built to perform a certain function, they will be build in parallel, each starting 

to work as its building is complete. Serial building means that those forms are built one 

after the other and they all start to work at the same time – after the last form is ready.  

 

 

FIGURE 40: Difference between parallel and serial selection of forms 

 

time 

Form 1 

Form 2 

Form 3 

Form 3 starts to work 
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Form 1 starts to work 

Parallel building of forms 

Form 1 Form 2 Form 3 
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time 

Serial building of forms 
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When applying these approaches to the oil exploration example, presented in 

Chapter Three, each approach yields a different result and a total number of distinct 

solutions. The serial approach yields 149 distinct solutions whereas the parallel method 

only 80. The NPV difference is also significant. There is a difference of over $5B 

between the most profitable solutions of the two methods, as shown in the figure below. 
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FIGURE 41: Anticipated Discounted Profit - parallel and serial selection of 

forms 

Anticipated discounted profit - Serial building of Forms  
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FIGURE 42: Highest Solution Portfolio - parallel and serial selection of forms 

 

Discussion 

This problem imposes two possible constraints. The first is the total amount of oil 

in the field and the second the leasing time. The search for a possible solution (by adding 

new forms to fulfill a certain function) will be terminated if the existing forms reach the 

maximum possible field capacity or if there is no sense in creating new forms since 

reaching the end of the leasing period. 

In the parallel approach, the active constraint was the maximum oil capacity in 

each of the possible solutions, because there was no accumulation of building time (all 

the forms were built in parallel). Moreover the number of forms for treating and 

extracting is relatively constant at two forms for each. In the serial approach both 

Portfolio of 20 highest solutions - serial building of Forms 
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constraint were active, each for different solutions. When many smaller forms were used 

the active constraint was usually the limit due to the leasing time and when the bigger 

forms where used the active constraint was usually the maximum oil .That inconsistency 

in the active constraint is also partially responsible for the inconsistency in the number of 

forms used for each of the solutions. 

Generally, the right approach to the way more than one form should be 

incorporated into functions depends on the nature of the project. There are projects where 

most of the forms are built in serial (for example, due to the same resource being needed 

for all forms), whereas a parallel approach might be adequate in other cases where the 

start time of operability is important (for example, if the discount rate is high or the total 

project time is limited – as in the oil example). Additionally, there are cases where a 

combination of parallel and serial is the best reflection of reality. An example might be a 

bridge, where some forms (for example foundations) can be built only in a serial way 

onsite, whereas the other structural forms can be built in parallel offsite but assembled 

serially onsite. This ability to combine serial and parallel approaches was not 

implemented into OPN during this exercise. The complexity of that task is not only in the 

NPV formulation. Some of the parameters act differently in serial than in parallel. 

Building cost, for example, might be different since some of it is based on fixed costs (for 

example, the cost of buying the required equipment). Building several forms in serial 

might split that cost, whereas doing it in parallel will require each form to “pay” for the 

entire fixed cost. Incorporating that into an OPN model will increase the model’s 

complexity. 



 103 

8 Bibliography  
[1] E. F. Crawley (2006), System architecture - course notes, MIT 

[2] I. Reinhartz-Berger, D. Dori, “OPM/Web – Object-Process Methodology for 

Developing Web Applications”, Annals of Software Engineering 13 pp. 141–161, 

2002.  

[3] E. Rechtin, M. Maier, The art of systems architecting, CRC, 2002. 

[4] D. Dori, Object-Process Methodology, Springer, 2002. 

[5] M. J. Kinnunen, Complexity Measures for System Architecture Models, MIT 

Thesis. 2006. 

[6] E. F. Crawley, W. Simmons, Towards a Formalism for System Architecture - From 

Value to Architecture, MIT, October 2006. 

[7] W. Simmons, B. Koo, E. F. Crawley, Space Systems Architecting Using Meta-

Language, 56th International Astronautical Congress, 2005. 

[8] I. Reinhartz-Berger, D. Dori, Object-Process Methodology (OPM) vs. UML: A 

Code Generation Perspective, 4th CaiSE/IFIP8.1 International Workshop on 

Evaluation of Modeling in Systems Analysis And Design (EMMSAD04), Riga, 

Latvia, 2004. 

[9] W. Simmons, B. Koo, E. F. Crawley, Architecture Generation for Moon-Mars 

Exploration Using an Executable Meta-Language, AIAA space, CA, 2005. 

[10] D. Clausing, D. Frey, Effective Innovation, ASME Press, 2004. 

[11] V. Fey, E. Rivin, Innovation On Demand, Cambridge University Press, NY, NY, 

2005. 



 104 

[12] H. L. McManus, Space System Architecture - Final Report of SSPARC: the 

Space, Systems, Policy, and Architecture, Research Consortium (Thrust II and III), 

MIT Lean Aerospace Initiative, September 2004. 

[13] K. T. Ulrich, S. D. Eppinger, Product Design and Development, 2nd edition, New 

York, Irwin/McGraw-Hill, 2000. 

[14] O. L. de Weck, M. B. Jones, Isoperformance: Analysis and Design of Complex 

Systems with Known or Desired Outcomes, 14th Annual International Symposium 

of the International Council on Systems Engineering (INCOSE), 2004 

 


