
 1

Object-Process Networks & Object-Process Diagrams -

Implementation Issues for Oil Exploration Systems

by
Ziv Rozenblum

Submitted to the System Design and Management Program
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Engineering and Management

at the

Massachusetts Institute of Technology

May 2007

© 2007 Massachusetts Institute of Technology 2007. All rights reserved.

Signature of Author

Ziv Rozenblum

System Design and Management Program

February 2007

Certified by

 Edward Crawley

Thesis Supervisor

Engineering Systems Division

Certified by

 Patrick Hale

System Design and Management Program

Director

 2

 3

Object-Process Networks & Object-Process Diagrams -

Implementation Issues for Oil Exploration Systems

by
Ziv Rozenblum

Submitted to the System Design and Management Program
on May 2007, in partial fulfillment of the requirements for the degree of

Master of Science in Engineering and Management

Abstract

This thesis discusses different ways to increase the ability of OPN (Object-Process-

Network), a system-architecture meta-language, to model complex systems and identify

architectures to address those systems. It proposes ways to generate “out-of-the-box”

solutions to technical problems, to weight a portfolio of objects as a possible way to

achieve system functionality, to examine which of the possible subsystems should be

within the system boundary and to rank architectures based on the value they create for

the system stakeholders. The thesis also provides case studies to examine the practical

aspects of those proposals.

Thesis Supervisor: Edward Crawley

Title: Professor, Engineering Systems Division

 4

 5

Acknowledgements

I had many figures affecting my life and my work in the recent years. I feel grateful and

fortunate to get their advice and to listen to their wisdom.

A great inspiration and guidance was given to me in the past year and a half by Professor

Edward Crawley, my thesis advisor. He was able to influence me with his wisdom and

grace in many areas. He has truly been my mentor during this whole process. I also want

to thank my research partners, James T. Keller and Wen Feng, for sharing all those hours

of exploration and for making it such an enjoyable journey. My sincere gratitude goes to

Bob Robinson and Alastair Barr for shaping this remarkable cooperation.

I feel so lucky to have so many teachers who were kind enough to share their valuable

knowledge with me. I would like to thank Professors David Simchi-Levi and Don

Clausing as well as Professors Joseph Lassiter and Frank Cespedes from HBS. Special

thank to my teachers Professors Thomas Allen and Oliver de-Weck for listening,

advising and directing.

I owe a debt of gratitude to a unique group of friends, peers and cohort. Thank you for

being there for me, for challenging me and expanding my horizons. I learned from them

so many things that are much larger than this thesis.

Finally, I feel grateful to be the second half of my wife, Orit Beitler. Anyone who knows

us understands the effect she had over my life. Her endless support and advice played a

huge role in this journey. I owe her special thanks for encouraging me to pursue my

dream. Another special thanks to Mr. Uzi Beitler with his endless energy to run, arrange,

support, listen and advise. I would like to finish by thanking my parents, Sara and Yossi,

for planting and nurturing those seeds that bloomed to become what I am.

 6

 7

Contents
1 Introduction... 13

2 Background... 17

2.1 System.. 17

2.2 System architecture.. 19

2.3 System modeling.. 20

2.4 Types of models used in this thesis.. 22

2.5 Object Process Methodology (OPM) and Object–Process Diagram (OPD) 23

2.6 Object-Process-Network (OPN) .. 24

3 How can an iterative process be implemented in OPN?... 27

3.1 Introduction.. 27

3.2 The Problem... 28

3.3 The Algorithm.. 31

3.4 Example ... 34

3.5 Conclusion ... 43

4 Suggested framework that facilitate generation of “out-of-the-box” solutions to

technical problems .. 45

4.1 Introduction.. 45

4.2 Finding all the ways to protect something from something else 47

4.2.1 Basic representation of interference... 47

4.2.2 The four basic methods to protect something from something else 49

4.3 Implementation example - Ice protection .. 54

4.4 Conclusion ... 66

5 How to deal with a non-fixed boundary ... 67

5.1 Introduction.. 67

5.2 Proposed Solution for a non-fixed boundary – change of ownership...................... 69

5.3 Change of ownership – Specific example.. 70

5.4 Conclusion ... 73

6 Coupling/decoupling possibilities between Stakeholder’s model and Object-Process

model... 75

 8

6.1 Introduction.. 75

6.2 Two separate models.. 76

6.3 Some coupling between the models... 78

6.4 Adding a stakeholder’s evaluation model at the end of the process 79

6.5 A complete coupling of the Stakeholders and Object-Process models.................... 81

6.6 Conclusion ... 82

7 Conclusion .. 83

Appendices.. 85

8 Bibliography ... 103

 9

List of Figures

FIGURE 1: OPD representation of objects, processes and their relationship.............. 23

FIGURE 2: OPN screen shot.. 25

FIGURE 3: Algorithm for implementing loops in OPN .. 32

FIGURE 4: Cash flow for the three treating and extracting solutions 38

FIGURE 5: OPN model with loops to optimize subsystem selection.......................... 40

FIGURE 6: Anticipated profit for all possible architectures.. 41

FIGURE 7: Portfolio breakdown for 20 top architectures ... 42

FIGURE 8: OPD representation of interferences...48

FIGURE 9: Resilience protection against interferences... 49

FIGURE 10: Avoidance protection against interferences .. 50

FIGURE 11: Isolation protection against interferences ...51

FIGURE 12: Redundancy protection against interferences ... 53

FIGURE 13: Basic representation of a supporting structure and its interface with ice . 55

FIGURE 14: Patterns to protect against ice ... 56

FIGURE 15: Ice protection specific solutions – level 1 decomposition 58

FIGURE 16: Ice protection specific solutions – level 2 decomposition – Eliminate

source .. 59

FIGURE 17: Ice protection specific solutions – level 2 decomposition – Eliminate

interaction at source .. 59

FIGURE 18: Ice protection specific solutions – level 2 decomposition – Eliminate

interaction at support... 60

FIGURE 19: Ice protection specific solutions – level 2 decomposition – Use

intermediate object to minimize force: allow contact to support.............. 60

FIGURE 20: Ice protection specific solutions – level 2 decomposition – Use

intermediate object to absorb force: no contact at support 61

FIGURE 21: Ice protection specific solutions – level 2 decomposition – Withstand

interaction ... 61

FIGURE 22: Ice protection - multi solution selection.. 63

 10

FIGURE 23: Incorporating multi-solution selection into a reduced model 65

FIGURE 24: The different ways to bound an oil exploration system............................ 70

FIGURE 25: System boundary using changing of ownership 70

FIGURE 26: Change of ownership – Solution-neutral level 1 OPD model................... 71

FIGURE 27: Change of ownership – Solution-neutral level 2 OPD model................... 72

FIGURE 28: Change of ownership – OPN model ... 72

FIGURE 29: Ranking architectures based on important characteristics 77

FIGURE 30: Schematic of a two separate model processes .. 78

FIGURE 31: Schematic of Some coupling between Stakeholders and process models

 ... 79

FIGURE 32: Schematic of a process with two stakeholders models 81

FIGURE 33: OPD example of Decomposition/Aggregation... 87

FIGURE 34: OPD example of Characterization/Exhibition .. 87

FIGURE 35: OPD example of Specialization/Generalization 88

FIGURE 36: OPD example of Instantiation... 88

FIGURE 37: OPD symbols for links between objects and processes............................ 88

FIGURE 38: Example of a model built in OPD... 89

FIGURE 39: An OPN representation of Ice Protection solution system 91

FIGURE 40: Difference between parallel and serial selection of forms........................ 99

FIGURE 41: Anticipated Discounted Profit - parallel and serial selection of forms... 100

FIGURE 42: Highest Solution Portfolio - parallel and serial selection of forms......... 101

 11

List of Tables

TABLE 1: Types of model views ... 21

TABLE 2: Treating forms parameters .. 34

TABLE 3: Extracting forms parameters ... 34

TABLE 4: Portfolio of three possible solutions for a simplified oil exploration system

 ... 36

TABLE 5: Economic figures for the three possible solutions 37

TABLE 6: Discounted yearly income for the three possible solutions 37

TABLE 7: Anticipated profit for the three treating and extracting solutions............. 38

TABLE 8: Anticipated profit for top 20 architectures.. 42

TABLE 9: Specific solutions to protect against ice..57

TABLE 10: Possible combinations of ice protection solutions.................................... 64

 12

 13

1 Introduction

This thesis summarizes a study aimed to support BP in its multi-year, multi-billion

dollar development effort to explore the best way to extract oil from a specific deep

ocean reservoir. This reservoir imposes many technological difficulties due to the arctic

and seismic nature of the environment. The unstable political environment, as well as the

abundance of stakeholders, imposes additional difficulties. Those stakeholders besides

having several attributes that define their value are often conflicted in how they estimate

those attributes. In addition to profit, the different stakeholders could value political

power, environmental friendliness, time, etc. For example, one stakeholder might aspire

for political power on his side whereas the other would prefer increasing his own political

power. Finding the right architecture is a delicate task of dealing with a complex system

and turning it into a feasible structure while balancing among all the different

stakeholders.

The objective of the research was to support the BP team through the development

of a system architecting tool and methodology. This tool was produced with the

intention of being generally applicable to BP’s oil exploration and production system

architecture decisions. Additionally, this function-based system-architecting tool was

built in such a way that it could further aid the leading team in identifying creative, “out

of the box” solutions.

The research was based on a modeling approach to the development of systems

that describe both their structure and behavior in a single model. That approach, called

OPM (Object Process Methodology), was developed by Professor Dov Dori [4]. OPM

uses a graphic tool, called OPD (Object–Process Diagrams), as a single model of the

structural, functional, and dynamic system aspects. Furthermore, the dynamic

architecting tasks were done using OPN (Object Process Network), a meta-language

developed by Professor Edward Crawley and Professor Ben Koo [1], [7], that assisted in

creating and evaluating the different architecture options.

This thesis will focus on the first phase of the project, aimed at creating a working

infrastructure. It will provide a summary of the issues that were raised during the

 14

research, which are applicable to system architecture in general. Each issue will be

accompanied by a specific example from the BP project.

Chapter Two discusses the concepts, importance and different definitions of the

terms systems and systems architecture. Additionally it elaborates on the importance of

models in the system architecture context and focuses on the tools and approaches that

will be used in this thesis.

Chapters Three to Six discuss some of the issues that were raised when trying to

structure BP’s exploration system into the OPD and OPN framework. The suggested

solutions for those issues will usually have broader implications than for OPN per se.

Thus, for each issue, I will describe the proposed solution and its application for the

current research, and discuss possible implications for other aspects of System

Architecture.

Chapter Three discusses an algorithm that can significantly increase the ability of

OPN to simulate real life decisions faced by an architect. It does this by allowing some

flexibly to the model to decide on the best combination of forms that maximizes

stakeholder’s value without being constrained by the architect. Thus, by utilizing that

functionality correctly, a full gamut of solutions can be explored, answering questions

like, should I build that system from small number of high capacity forms, a large

number of low/mid capacity forms or a combination?

Chapter Four proposes a method to generate out-of-the-box solutions. In our

research we tried to generate out of the box solutions taking top-to-bottom approach. This

method is both theoretical and practical, and thus can span an entire process from raising

the problem to finding the right solution. Additionally, it is not limited by current

practices and thus can offer new ways to deal with specific problems.

Chapter Five deals with the possibility to change the system boundary as the

system model is being built. Finding the best architecture to offer value to stakeholders

can be affected by the definition of the system boundary. Often a lean system can offer

greater value for the invested resources than a comprehensive one. This chapter proposes

having an entity on the boundary layer, representing change of ownership. That entity

will offer value to the system architect in the form of a possible formulation of the

boundary and easier definition of interfaces.

 15

Chapter Six presents four levels of possible connections between the

stakeholder’s model and the process-object model. Those connections are needed in order

to “measure” the value each architecture generates for the system’s stakeholders. It starts

with two separate models, connected by human interface, and ends with a suggestion for

fully coupled models.

Finally, the thesis is concluded with a short summary and a discussion of further

research.

 16

 17

2 Background

2.1 System

Definitions

There are several definitions of a system. This section will briefly discuss some of

the definitions, select the one to be used at the rest of the thesis, and describe the rationale

behind that selection.

Crawley [1] defines a system as:

“A set of interrelated elements which perform a function, whose functionality is

greater than the sum of the parts.”

This definition is supported by Dori [4]:

“A System is an object that carries out or supports a significant function.”

According to those definitions, the connection between elements/objects and their

cross-interfaces to function is in the heart of system. I find this connection very important

since it creates the link between the systems and the system architect. The system

architect can affect/control the elements/objects and sometimes their inter-relations and

thus can affect the functionality of the system. It is important to note that the system

architect can affect the type of functionality that will emerge from a system as well as the

“goodness” of that functionality, by selecting one specific form over another. Of course

“goodness” of functionality is a subjective matter. A discussion of how to measure it will

appear later in this thesis.

Maier and Rechtin [3] give another view of the definition of a system:

“system is a collection of different things, which together produce results

unachievable by the elements alone.”

This definition enlarges the previous definition to include the context in which the

system exists. Instead of viewing the system as a set of elements/objects that interlink

 18

and perform functions, it is being perceived as a thing that achieves results. There are two

differences from the previous definitions that should be emphasized. The first is that

result is used instead of functionality, which brings the context of the system into the

definition. The second difference is that a system is defined by Maier and Rechtin as a

collection of different things, which is basically more comprehensive than objects as was

defined earlier (wishes for example, can be categorized as a thing but not as an object).

System definition used in this thesis

In this thesis I will use Crawley’s definition of a system for two main reasons.

The first is that although context and results are important parts of a system’s success, I

believe that systems exist even before achieving results. It is more the potential to

perform functions that define the system. In other words, a system that was never put into

action is still a system.

The second reason relates to the term “collection of different things” that was

used by Maier and Rechtin [3] to define the embodiment of a system. I believe that this

term is too broad. Some non-physical “elements” like feelings should not be part of the

building blocks of a system, especially in the system-engineering context.

 19

2.2 System architecture

Definitions

The term system architecture, like the word system, has many definitions. I will

focus on two groups of definitions that differ in their view of the emergence of function

and the importance of concept. The first group defines system in the context of the

elements that build it. The second enlarges the definition to include the function the

system achieves.

I will use two definitions as representative of the first group. Frey [12] defines

system architecture as:

“The structure, arrangements or configuration of system elements and their

internal relationships necessary to satisfy constraints and requirements.”

Ulrich and Eppinger [13] support that definition while emphasizing the grouping

of those elements. They define system architecture as:

“The arrangement of the functional elements into physical blocks.”

Both definitions focus on the physical1 layer as the essence of system architecture. A

different view is proposed by a second group of definitions. Two complementary

definitions are proposed by Crawley [1]:

“The embodiment of concept, and the allocation of physical/informational

function to elements of form, and definition of interfaces among the elements and

with the surrounding context.”

And:

“architecture is the details of the assignment of function to form, and the

definition of interfaces.”

This definition emphasizes the embodiment of a concept through the usage of

elements of form. System architecture is the art and science of the assignment of those

elements to achieve the required functionality.

1 I use physical in its wider context to include flows and stocks like information that can be controlled by

the system architect.

 20

Again, Dori [4] supports that definition:

“System architecture is the overall system’s structure-behavior combination,

which enables it to attain its functions while embodying the architect’s concept.”

Dori also suggests a more detailed view of concepts and function in the context of

system architecture:

“Concept is the system architect’s strategy for a system’s architecture.”

And:

“Function is an attribute of object that describes the rationale behinds its

existence, the intent for which it was built, the purpose for which it exists, the goal

it serves, or the set of phenomena or behaviors it exhibits.”

System architecture definition used in this thesis

In this thesis, I will use the second group of definitions. I believe that an

important part of system architecture is the connection between the physical layer of

objects and the layer of functions performed by the system. This connection is especially

important to the system architect since it allows a constant check of the “goodness” of the

system.

2.3 System modeling

Systems can be viewed from different aspects by different stakeholders. Clients

are interested in the functionality of the system whereas the designers are more interested

in the forms that build the system. A system architect needs to communicate with all

related functions in order to be able to discuss their perspectives of the system. Models

allow that kind of communication. According to Dori [4]:

“a model is an abstraction of a system, aimed at understanding, communicating,

explaining, or designing aspects of interest of that system.”

Thus, models are a possible way to project the system through highlighting different

aspects of it.

 21

Maier and Rechtin [3] support this view:

“Models are the primary means of communication with clients, builders, and users;

models are the language of the architect.”

Following those definitions, the roles of models in the system context include [3]:

1. Communication with clients, users and builders.

2. Maintain system integrity through coordination of design activities.

3. Assisting design by providing templates and organizing and recording decisions.

4. Explore and manipulate solution parameters and characteristics; guiding and

recording aggregation and decomposition of system functions, components, and

objects.

5. Performance prediction and identification of critical system elements.

6. Provide acceptance criteria for certification for use.

A model presents a view of the system. A view is defined by Maier and Rechtin [3] as:

“A view is a representation of a system from the perspective or related concerns or

issues.”

Models can be textual or visual representations of the system based on the context the

model is being built for. There are six types of possible views [3]:

TABLE 1: Types of model views

Model view Description

Purpose/objective What the client wants

Form What the system is

Behavioral or functional What the system does

Performance objectives or requirements How effectively the system does it

Data The information retained in the system and

its interrelationships

Managerial The process by which the system is

constructed and managed

 22

In this thesis I will elaborate about two model views that mainly deal with the

form and functional views of a system, called OPM2 and OPN.

2.4 Types of models used in this thesis

This thesis will focus on two types of models:

1) Object-Process model – Capturing all the different functions performed by the system

as well as the possible forms to achieve those functions. As a whole, a complete

model represents the entire gamut of forms and functions that can create the relevant

system whereas a specific instance of that model represents a specific combination of

forms and functions. That specific instance is regarded as a possible architecture.

It is important to note that the completeness of a model is a subjective thing that

depends on the viewpoint of the model builder and user. A complete model consists

of all the function within the relevant system boundary including adequate level of

decomposition. Additionally, this kind of model can also represent attributes

associated with each form, function and their interrelations. These attributes can be

used to estimate emergence of functions as well as expected value.

2) Stakeholder’s model – Capturing the different stakeholders that are connected to the

system, their relative weight, and interrelations as well as the value flow. There are

many usages in the system architecture context for the stakeholder model. The first is

to use that model to identify critical parameters that are important to system value

creation. Those parameters can be used later to rank and evaluate the possible

architectures. Other usages might be the ability to quantify the “power balance”

between two adjacent stakeholders, or to identify which stakeholder has more effect

over the other stakeholder value. A third usage might be finding those stakeholders

that have more influence than others on the overall value.

2 As part of OPM I will also discuss OPD.

 23

Both models can be static – capturing the relevant data or dynamic – capturing the

relevant data and exploring the different permutations.

2.5 Object Process Methodology (OPM) and Object–Pro cess

Diagram (OPD)

Definition

Object Process Methodology (OPM) [2], [8] is a modeling approach to the

development of systems that describes both their structure and behavior in a single model.

The basic building blocks of OPM are two equally important classes of entities: objects

and processes3, which are related through a variety of links among them by relationship.

OPM uses a single graphic tool, the Object–Process Diagram (OPD) set, as a single

model of the structural, functional, and dynamic system aspects.

OPD Language

OPD uses a set of symbols as a base for its modeling language. Those symbols are

used to describe the objects and processes as well as the relations between them [1]. The

basic symbols are used to describe objects and processes.

FIGURE 1: OPD representation of objects, processes and their relationship [6].

Further, OPD uses a set of symbols to describe possible relations and links

between those objects and processes [1]. Those relations can be found in appendix A

along with an example of a model built in OPD.

3 Objects are things that exist, while processes are things that transform objects [4].

 24

2.6 Object-Process-Network (OPN)

Definition

I use for that section the OPN (Object-Process-Network) definition as it was

defined by Crawley [1], [6].

“OPN is a visual and computable meta-language that assists with systems

architecting tasks”

And its aim is to:

“Improve the thoroughness and efficiency of system architecting, by automating the

mechanical tasks in architectural reasoning and model construction, using an

executable meta-language.”

Crawley [1] also defines the different usages of OPN. It can be used to describe

and partition the space of architectural alternatives, allowing the system architect a

clearer view of the system. Additionally it can be used to generate and enumerate the set

of instances of feasible system models. That usage is very powerful since it allows the

system architect to view a full range of possible architectures that are associated with the

system in question. Once those possibilities are created, the architect can simulate and

order the performance metrics of the generated models.

OPN uses processes and objects as building blocks to represent systems [7].

Processes capture the transformational activities, whereas objects represent the states of

the system.

 25

Following is a screen shot of OPN [6]:

FIGURE 2: OPN screen shot

OPN context used in this thesis

This thesis will focus on one of the benefits that OPN can offer to the system

architect - exploring the gamut of possible architectures to build a system and suggest

those architectures that offer the highest value to the stakeholders. In that context, OPN

can be viewed as a framework that uses the Meta-Model created by the architect to

generate the entire gamut of possibilities of architectures. This Meta-Model contains all

the functions of the system (down to a certain level of decomposition) as well as all the

different form possibilities to perform those functions (see FIGURE 1). While generating

each of the possible architectures, the framework also calculates its expected value to the

stakeholders. Value can come from the specific forms that are selected or from the

interconnections between the forms. This value allows the architect to rank the generated

architectures according to the value they create for the stakeholders.

Meta-

Model

Meta-

Model

Meta-

Model

Generated Model

List

Generated Model

OPN View

Generated

Model

Generated

Model

 26

Another OPN usage that will be used in this thesis is the generation and valuation

of stakeholder’s maps. In that case the meta-model created by the architect represents the

inner-relations between the stakeholders. The architect can use OPN to value each of the

connections between the stakeholders, in search of those who have the highest influence

on the overall value. Focusing on these will simplify the stakeholder’s model and allow

the architect to explore effective connections between architecture and value.

 27

3 How can an iterative process be implemented in

OPN?

3.1 Introduction

OPN and OPD are structured in such a way that one process and form follows the

other until achieving the intent of the system. In OPN the execution of the Meta-

Language is done by following one process and object at a time. This section will deal

with the issue of building a loop process into that structure. That will allow OPN to go

upstream the object-process path. In particular it will focus on loops as a way to simulate

an architecture where forms can repeat themselves an unpredicted number of times. That

can be used to solve bottlenecks in the system, to increase the range of solutions tested or

to allow the model ad-hoc adjustments.

It is important to note that those issues can be addressed to a certain level without

incorporating loops. The architect can “hard code” all the different repeats and

possibilities into the model. That method, while supplying the above requirement, has

some drawbacks. It reduces the “out-of-the-box” creativity embedded into OPN and there

is a potential cost and increased computational time.

This chapter will present a possible algorithm that, when implemented in OPN,

will support an iterative process. This algorithm can be incorporated into OPN without

any required changes at the software level. An example of an implementation will be

presented at the end of the chapter.

The algorithm is structured around a phase termed “exit criteria”, which is

basically a binary decision – whether the part that was marked as repeatable should be

repeated once more. Thus, the OPN structure will be iterative in the following way:

Serial OPN part � Iterative OPN part � exit criteria � Serial OPN part

The iterative OPN part will repeat itself, until the exit criteria are met.

 28

3.2 The Problem

OPN allows for maximum flexibility in selecting forms to increase stakeholder’s

value. Any combination of forms is possible as long as the ratio of one form per function

is maintained. The issue is that often that flexibility is bounded by bottlenecks

somewhere along the flow of form selection.

For example, in building an oil exploration system, the oil company is usually

being given an access to the reservoir for a limited number of years. Since the oil

company is interested in extracting as much oil as possible within that time period, the

capacity of the exploration system is a very important attribute to consider in the

architecture. For simplicity, we can assume that there are four basic functions to consider:

extract, treat, move and store. The overall capacity of the system will be determined by

the lowest capacity form associated with one of those functions. That means that this

lowest capacity form becomes the bottleneck of the system. In real life, when reaching

that capacity, an additional form might be added to the system (to perform the same

function) in order to release the bottleneck. That way, there is more than one form

associated with the specific function.

Bottlenecks are not the only cases where multiple forms might be considered.

Increased stakeholder’s value is another possible reason. Even in cases where one form

can achieve the required capacity, the system architect should consider using other

combinations to generate more value to the system stakeholders. For example, looking

again at the oil exploration system, the system architect might consider the following

trade-off for a treating sub-system:

1. Use one big and expensive system that has the overall required capacity.

2. Use two small and less expensive systems that together have the required capacity.

The decision is not only price-related. Using two forms will probably increase the

overall utilization of the subsystem but might have a negative effect on schedule and

price. Making that kind of decision up front might be very complicated, especially in

cases where there are more than two possibilities.

 29

Another possible reason to use multiple forms is a desire for redundancy. The system

architect might consider adding other forms to create redundancy for critical subsystems

or for the entire system.

As mentioned, the solution is basically to add additional forms under the existing

function. The end result is that some functions will have more than one form targeted at

achieving that function. That process can be implemented in OPN even without loops.

The algorithm to do that would require some preparations by the system architect:

1. Decide in advance which forms can be used more than once and how many times.

2. Incorporate logic into the model at each intersection of possible additional form4

that will support a decision whether that specific form should be added to the

specific architecture.

Each of those form selections will include all the possible forms plus a NULL

selection. In that case, the OPN will choose the required number of forms, putting NULL

in the rest. There are some problems associated with that process. First it substantially

increases the complexity and implementation time of the OPN model. It includes not only

the additional time required to repeat each form definition, but also the additional

complexity associated with the selection criteria that appears in every form selection

(answering the question – is that form really needed). Moreover, every change to one of

the forms will have to be repeated for all similar forms.

Another drawback is that the architect needs to decide in advance how many

times each process/form can repeat itself and in which combinations, an act that can

reduce the natural creativity embedded in OPN to present “out-of-the-box” solutions. The

reason is that definition of possible number of repeats limits the model to that number

and thus might affect the ability of the model to offer solutions that the architect did not

think about.

4 The system architect can also incorporate the logic after the OPN finishes the architecture generation

process. In that case the OPN will generate all the possible permutations. Those that violate the logic rules

will be screened afterward. I believe that incorporating the logic into the OPN process is more common

especially in highly complex systems since that reduces the total running time of the application.

 30

The final drawback relates to increased computational time. Hard coding all the

possibilities into the model significantly increases the computational time since there is

no flexibility to reduce the model size in lighter cases. The process will consume the

same resources even when applied to systems that require fewer repeats.

The following section offers a possible algorithm that can solve these problems.

 31

3.3 The Algorithm

The proposed algorithm will deal with loop conditions at OPN. This algorithm

will cover cases where a process gets redirected back by offering exit criteria. These

criteria will block the redirection whenever the exit condition is met.

This algorithm will act as follows:

1. Perform the process of adding forms to functions in a serial way until getting to the

exit criteria.

2. Check iteration exit condition. This condition can be intent fulfillment level, physical

feasibility, etc.

3. In case the iteration exit condition was not met:

1) The iteration process will start over.

2) At each stage of the iterative part one of the following can be performed:

i. Add additional form.

ii. Do nothing (which is implemented by adding a NULL form).

The decision what to do will depend on the result of the iteration exit condition as

well as the inner logic of the form selection process as was embedded in the OPN.

4. In case the iteration exit condition was met, the OPN process will continue without

performing additional iteration.

Building the model requires a preparation phase:

1. Define all the functions that might require additional forms and add them to a loop

within OPN.

2. Define the criteria that will dictate how many forms are required for each function.

 32

FIGURE 3 shows the architecture creation phase:

FIGURE 3: Algorithm for implementing loops in OPN

There are some important points to emphasize about that algorithm. Each loop is

associated with some forms. The criteria of the loop should appear right after the last

form associated with that loop, because the iteration process consumes a lot of resources

and thus should be kept to minimum number of forms selected. From that exact reason,

Select one set of forms

until reaching exit

criteria

Was the exit

criteria met?

Continue with

the OPN process

Go back to the point

designated by the exit

criteria

For each form until getting back to the

exit criteria perform one of the

following:

1. Add additional form.

2. Do nothing.

Yes

No

 33

the loop dominated by the exit criteria should be kept as minimal as possible. Thus, in

case the exit criteria were not met, the process should return the minimal number of steps

that still includes all the relevant forms.

 34

3.4 Example

The problem

For that example, I assume a simplified model of oil exploration system where the

only important subsystems are those that perform extracting and treating. They determine

the cost of the system as well as the capacity and the building duration. I further assume

that there are three potential forms that can be associated with each of those subsystems.

For simplicity I call them small, medium and large. Following is a summary of the input

parameters to the problem:

Possible Forms:

Extracting Forms:

TABLE 2: Extracting forms parameters

Name Barrel capacity

(M barrels/year)

Building time

(years)

Building cost

($M)

Small Size 120 3 800

Mid Size 160 4 1600

Large Size 200 6 2000

Treating Forms:

TABLE 3: Treating forms parameters

Name Barrel capacity

(M barrels/year)

Building time

(years)

Building cost

($M)

Small Size 140 4 1200

Mid Size 200 5 1600

Large Size 220 7 2200

 35

Other Inputs:

Field capacity: 3000M Barrels.

Total leasing time: 20 years.

Price per barrel: $155

Discount rate: 7% year.

The goal is to find the right portfolio of forms that will optimize the stakeholder’s

profit. In that problem we will treat profit as the only parameter that determines

stakeholder value and assume that all stakeholders are interested in as much profit as

possible.

The tradeoff for finding the right portfolio is building cost vs. expected profit.

Thus adding treating systems for example will increase the expected oil production (and

the expected profit) up to a certain level controlled by the extracting system capacity and

maximum field capacity. On the other hand, the additional treating systems will cost

additional money and will consume more building time. Another issue to consider is the

total time of the lease that affects the total time the company has to extract oil from the

field.

I decided to use NPV (Net Present Value) to calculate the profit of the system.

The formulation I used for that as well as the mathematical formulation of the entire

problem can be seen in appendix C.

As a matter of fact, this is a simplified version of a bigger optimization problem

aimed at finding the right portfolio to maximize stakeholder’s value. There are actually

several ways to solve that kind of optimization problem. One of the possibilities is to use

an optimization algorithm. Since most of the problems are non linear in nature and most

of the parameters are discrete, a genetic algorithm might be helpful. Another option

might be to try to predict the connection between profit and the different parameters (in

our case the portfolio of extracting and treating products) using methods like Design Of

Experiments.

5 Assuming operational costs are negligible, price per barrel will be considered as profit per barrel.

 36

This example will show an alternative way, using an iterative process at OPN to

explore the entire gamut of possible solutions and find the best portfolio that maximizes

the profit of the system.

Exploring some possible solutions to the problem using spreadsheet

There are several important facts to consider regarding the problem:

1. There are several possible treating and extracting forms, each with its own cost, time

and capacity characteristics.

2. Each treating and extracting subsystem can be constructed of one or more of those

possible products.

3. In case more than one form was used for either the extracting or treating subsystems,

the building of those forms is done in a serial way. Building one form will start only

after the building of the previous one ends6.

4. Both treating and extracting can start only after all the forms are ready.

Following are three possible portfolios of Extracting and Treating7:

TABLE 4: Portfolio of three possible solutions for a simplified oil exploration system

Option 1 Option 2 Option 3
of small extracting facilities 2
of Medium extracting facilities 2
of Large extracting facilities 1
of small treating facilities 2
of Medium treating facilities 2
of Large treating facilities 1

6 A comparison to a model where forms can be built in parallel can be found at appendix E.
7 Those are only some of the possible solutions, as will be demonstrated later

 37

Based on that portfolio, following are the calculations of cost, building time,

yearly capacity, yearly cost8 (during the years when the subsystems are built) and the

yearly profit9. Furthermore, based on the field capacity, it is possible to calculate whether

within the leasing time all the oil in the field will be extracted10:

TABLE 5: Economic figures for the three possible solutions

Option 1 Option 2 Option3
Total cost 4200 4000 6400
Years to Build 7 8 10
Total yearly capacity 200 240 320
Total leash time capacity 2600 2880 3200
Did it reach max capacity No No YES
Yearly cost 600.0 500.0 640.0
Yearly Profit 3000.0 3600.0 4500.0

Incorporating those figures into an NPV table:

TABLE 6: Discounted yearly income for the three possible solutions

Year
Option 1 - discounted
cost (M$)

Option 2 - discounted
cost (M$)

Option 3 - discounted
cost (M$)

1 -560.7 -467.3 -598.1
2 -524.1 -436.7 -559.0
3 -489.8 -408.1 -522.4
4 -457.7 -381.4 -488.3
5 -427.8 -356.5 -456.3
6 -399.8 -333.2 -426.5
7 -373.6 -311.4 -398.6
8 1746.0 -291.0 -372.5
9 1631.8 1958.2 -348.1
10 1525.0 1830.1 -325.3
11 1425.3 1710.3 2137.9
12 1332.0 1598.4 1998.1
13 1244.9 1493.9 1867.3
14 1163.5 1396.1 1745.2
15 1087.3 1304.8 1631.0
16 1016.2 1219.4 1524.3
17 949.7 1139.7 1424.6
18 887.6 1065.1 1331.4
19 829.5 995.4 1244.3
20 775.3 930.3 1162.9

8 Yearly Cost = Total Cost / Years To Build.
9 Yearly Profit = (Yearly Production X Price per barrel) / # of Production Years.
10 The calculation formula to find the entire oil extraction potential is:

NUMBER OF PRODUCTION YEARS X YEARLY CAPACITY

 38

Discounted inflow

-1000.0

-500.0

0.0

500.0

1000.0

1500.0

2000.0

2500.0

1 3 5 7 9 11 13 15 17 19

year

M
$

Option 1 Option 2 Option3

FIGURE 4: Cash flow for the three treating and extracting solutions

As can be seen, option 1 reaches production fastest (after 8 years) but extracts the

minimum amount of oil from the field11 within the leasing time, relative to the other

options. Option 2 extract more on average but does it for fewer years. Option 3 reaches

the maximum capacity of the field but it starts extracting only after 11 years.

The anticipated profit of each of the options is:

TABLE 7: Anticipated profit for the three treating and extracting solutions

 Option 1 Option 2 Option3

Anticipated discounted
profit after 20 years ($M) 12,380.6 13,656.1 11,571.9

11 There is a direct relation between the positive cash inflow and the oil capacity

 39

Thus, looking at profit alone, option 2 seems the preferred architecture.

Incorporating other real-life consideration requires enlarging this range of solutions to

include all possible forms portfolios and other considerations beside profit, such as Risk,

technology readiness, preferred forms (as a means to gain political power, for example),

etc. That might turn into a non-linear optimized problem, which is much more difficult to

solve in the above method.

Implementing in OPN

The following OPN model will calculate the optimized portfolio of extracting and

treating facilities after finding all the possible combinations. The value calculation will be

based on NPV although any other consideration can be incorporated into the model.

In order to build that mode an exit criterion should be defined. That will signal the

process that there is no point in adding more extracting and/or treating forms.

Exit criteria:

Enough capacity was built to exceed the potential capacity of the field

OR

Building time exceeds the total leasing time (divided by some factor)

 40

The OPN implementation looks as follows:

FIGURE 5: OPN model with loops to optimize subsystem selection

The implementation of the NPV function was done using the global script. The function

is being called every time the program enters the Profit Calculator. The script used for

that is:

def NPVCalc(TotalCost,TotalBuildingTime,TotalCapacity,TotalProductionTime):

 #declare constants

 i=1;

 interest = 1;

 #calculate NPV

 YearlyCost = TotalCost/TotalBuildingTime;

 while (i <= TotalLeasingTime):

 i=i+1;

 interest = interest*(1+r);

 if (i <= TotalBuildingTime+1):

 NPV = NPV - YearlyCost/(interest);

Exit criteria
Extracting Form

selection

Treating Form

selection

 41

 else:

 NPV = NPV + (TotalCapacity*PricePerBarrel)/(interest);

 else:

 return [NPV];

Result analysis

Running the model reveals there are 149 possible different Extracting and

Treating subsystems combinations. A complete list of the different combination can be

found in appendix D. It is important to note that not all solutions actually extracted all the

oil capacity. Some did not reach that capacity within the leasing time. Some of those

solutions might still be valuable, since they reach production very fast and thus have a

smaller effect of the interest rate on the overall profit.

The following figure presents the total discounted profit of the 149 combinations

found by OPN. The combinations are arranged from the highest expected profit to the

lowest.

Anticipated discounted Profit

-10000

-5000

0

5000

10000

15000

20000

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141

Architecture #

N
P

V
 (
M

$)

FIGURE 6: Anticipated profit for all possible architectures

Solution 108 is the first to present

negative NPV

 42

As can be seen there are over $20B difference in the expected discounted profit

between the most profitable to the lowest profitable combinations! The table and figure

below shows the 20 most profitable combinations. It is hard to find a “golden role” that

will connect the form selection to profit. Some solutions utilize extensive capacity built in

long period of time (like solution number 15) whereas others build small capacity fast

(like solution number 19).

TABLE 8: Anticipated profit for top 20 architectures

Solution #
of Large

Extracting forms
of Medium

Extracting Forms
of Small

Extracting Forms
of Large

Treating Forms
of Medium

Treating Forms
of Small

Treating Forms Profit (M$)
1 0 1 1 0 0 2 15837.63
2 1 0 1 0 1 1 15530.68
3 0 2 0 0 1 1 15244.01
4 0 2 0 0 0 2 15240.50
5 1 0 0 0 1 0 14627.50
6 1 1 0 0 2 0 14509.30
7 1 1 0 0 1 1 13719.11
8 0 0 2 0 0 2 13656.13
9 0 1 1 0 1 1 13376.60
10 0 1 0 0 1 0 12966.03
11 1 0 1 0 2 0 12928.93
12 0 1 0 0 0 1 12768.24
13 0 2 0 0 2 0 12647.98
14 1 0 0 1 0 0 12380.60
15 1 1 0 1 0 1 11950.68
16 1 0 2 0 0 3 11942.75
17 0 0 2 0 1 1 11509.18
18 0 1 2 0 0 3 11417.41
19 0 0 1 0 0 1 11283.64
20 2 0 0 0 2 0 11147.36

Portfolio of 20 highest solutions

0

1

2

3

4

5

6

7

1 3 5 7 9 11 13 15 17 19

Solution #

of Small Treating
Forms

of Medium Treating
Forms

of Large Treating
Forms

of Small Extracting
Forms

of Medium Extracting
Forms

of Large Extracting
forms

FIGURE 7: Portfolio breakdown for 20 top architectures

 43

Two of the three solutions that were calculated earlier actually appear in the top

twenty solutions. Building one large extracting form and one large treating form appears

as solution #14. Building two small size extracting forms and two small size treating

forms appears as solution #8. Thus, by expanding the range of possible solutions, the

OPN was able to generate higher NPV by finding a more profitable combination.

3.5 Conclusion

The suggested algorithm can significantly increase the ability of OPN to simulate

real life decisions faced by the architect. It does so by allowing the model to flexibly

adjust the number of forms associates with each function. By allowing that flexibility, the

model can decide on the best combination of forms that maximizes stakeholder’s value

without being constrained by the architect. Thus, by utilizing that functionality correctly

a bigger range of solutions can be explored, answering questions like, should I build that

system from small number of high capacity forms, large number of low/mid capacity

forms or a combination?

 44

 45

4 Suggested framework that facilitate generation of

“out-of-the-box” solutions to technical problems

4.1 Introduction

Generating “out of the box” solutions is a task usually associated with creativity.

Several attempts have been made to create an “ordered creativity”. Some of these

attempts have focused on creating better tools that encourage creativity while others have

focused on capturing creativity. One of the interesting methodologists in that respect is

TRIZ [10], [11]. Its underlying assumption is that all technological systems evolve along

certain universal directions that are governed by laws of evolution. Thus, if a current

system design is given, the future design can be repeatedly predicted. The law of

increasing degree of ideality, for example, states that [10] “evolution of technological

systems proceeds in the direction of increased degree of ideality” Using that method,

“out-of-the-box” solutions can be generated by following those laws of evolution.

Our research generated “out-of-the-box” solutions taking a “top-to-bottom”

approach. This approach allows (in contrast to TRIZ) exploration of large range of

solutions, not only the next step in evolution. We first answered the question: what are all

the possible ways to address that issue in a domain and discipline neutral space? The

second step was to apply that answer to a real problem.

We believe that there are several advantages to this approach. First, it creates a

framework that spans the entire gamut of possible solutions and is not limited to an

existing one. It is also a good basis for a brainstorming process aimed at finding

innovative solutions to the problem. Since it is discipline neutral, once the framework is

created it can address any similar problem, thus increasing the efficiency of the future

problem-solving process.

 46

To demonstrate the proposed approach, I will present a real-life problem we tried to

solve. As part of our research we were asked to give fresh and out-of-the-box suggestions

how to solve problems inherent to that specific project. One of the biggest problems

faced was how to deal with ice accumulation that causes a serious threat to the system

productivity for about six months every year. We took this problem as a test case since it

was among the most urgent problems in that project that had a possible huge effect on the

profitability of the project (a shutdown of six months every year will significantly affect

the overall project NPV). Additionally, our sponsoring company had a small amount of

accumulated knowledge in that area, especially in deep water, which increased our room

for maneuvers in searching for new solutions.

The first step was to approach the question: What are all the possible ways to

protect something from something else.

We were able to summarize all those ways into four methods (that we translated into

OPD diagrams), which in our view represent all the possible ways that a system can

protect itself from another system/force:

Those methods are:

1. Resilience.

2. Avoidance.

3. Isolation.

4. Redundancy.

These options served as a basis for a brainstorming session to explore the entire

gamut of possibilities of protection against ice. Additionally, these options can be

incorporated into the OPN process and thus use the OPN’s inherent ability to generate all

possible permutations.

In this section, I will present those four methods as well as their OPD

representation, discuss and demonstrate their applicability to other areas of engineering

(like electronics) and dive into the specific ice protection issue.

 47

4.2 Finding all the ways to protect something from

something else

When taking the specific domain and discipline out of the problem space, it seems

there are only four basic theoretical ways to protect something from something else.

Those four ways can be mapped into six practical methods of protection. This section

will present these basic methods as well as their practical representation.

4.2.1 Basic representation of interference

Interferences are a result of cross relations between an instrument and its

surrounding. For example, corrosion is the result of interaction between the certain kinds

of form material and the surrounding oxygen.

An OPD representation of interferences can be viewed in FIGURE 8. It is

important to note that in a specific system, the interference is not a direct result of the

different functions of the system but rather of the forms selected to perform those

functions. Continuing with the corrosion example, if the corrosion occurred at the support

of a bridge, it is not a result of the supporting system but rather an interface with the

specific metal form that was selected to perform the supporting function. In that specific

example, changing that form, for example to a stainless steel based structure, might solve

that problem.

Another important point is that the interference is caused by an environmental

form of some kind. Corrosion needs oxygen, and electromagnetic interferences need

electromagnetic wave in order to exist. Additionally, the interference itself is a function

and sometimes a special form. The interference can be caused by an external form

(collision) or from within the instrument (explosion).

 48

FIGURE 8: OPD representation of interferences

Following that understanding, we tried to identify groups of methods that mitigate

or even eliminate interferences. The rationale is that finding those representations and

defining them in a system-neutral way (through OPD) can be a good basis for a

brainstorming process to generate out-of-the-box solutions to deal with specific

interferences issues.

Object

Process Instrument

Hazard

Hazard

Object

 49

4.2.2 The four basic methods to protect something from so mething

else

In order to focus the research we altered the question to: “what are the basic ways

to protect something from something else?” That question yielded four different system-

neutral possible solutions:

1. Resilience

This system-neutral method is targeted at increasing the resistant ability of the

instrument.

FIGURE 9: Resilience protection against interferences

Looking at examples from a solution-specific domain reveals some different

options for resilience. One is to increase the protection of the instrument against the

interference in such a way that although the interference strength remains the same, the

instrument is better equipped to withstand it, for example, altering the upper layer of a

metal plate to protect it against corrosion or making a stronger structure to protect against

side winds. Flexibility is another way to increase a form’s ability to resist interference. In

nature we can see some evidence of that kind of solution. Many plants for example, are

very flexible as a means to protect against wind.

Another option for resilience is to change the form so the potential effect of the

interference will be reduced, for example, changing the cross section of a structure to

reduce the effect of side winds.

Object

Process Instrument

Hazard

Hazard

Object

 50

2. Avoidance

Since interference is associated with some kind of form, another way to protect against

interferences is simply to eliminate the hazard.

FIGURE 10: Avoidance protection against interferences

Avoidance can be done in several ways. One is to remove the hazard. For

example, one of the problems in a deep ocean oil rig in an arctic environment is big ice

blocks that collide (and sometimes cover) the oil rig system and thus potentially reduce

its efficiency and operability window. Several methods can be applied that move the ice

from the oil rig environment. Another option for avoidance is to move the instrument to a

different environment with reduced level of interferences (or no interferences at all), for

example, moving an iron system to an oxygen-free environment to protect it against

corrosion.

Object

Process Instrument

Hazard

Hazard

Object

 51

3. Isolation

Another protection option would be to attack and possibly eliminate the interface

between the hazard and the instrument. While there is some resemblance between that

method and resilience, the difference is very clear. In resilience the alleviation is

achieved by altering the instrument, whereas in isolation the interface is altered. A good

example would be the distinction between the two following methods of corrosion

protection:

1. Altering the upper layer of the metal that interacts with the surrounding oxygen

(resilience).

2. Applying coating to the metal that eliminate the interaction between the metal and

oxygen (isolation).

FIGURE 11: Isolation protection against interferences

This kind of protection can be achieved in several ways. One can apply a

boundary layer to protect against the interference, for example, a Faraday cage to exclude

electrostatic influences. A different approach is to alter the environment, for example,

surrounding the system with a water environment as a damping method against vibrations.

Object

Process Instrument

Hazard

Hazard

Object

 52

4. Redundancy

Having additional instruments to perform the same function is another option for

protection. In that regard there are actually several sub-options:

1. Having the same type of instrument as a backup in case the first instrument fails.

2. Having a different type of instrument as a backup. This kind of solution might be

applicable in dealing with interferences that do not have accumulative nature but

rather a threshold for causing malfunction. A redundant system in that case might

be less adequate to perform the function but will be able to withstand the high

level of interference, for example, a subsystem form that will stop working at

certain radiation level. Having two of the same kind of that form will not increase

the overall radiation resistance, since both forms will fail at the same time. A

solution might be adding a different kind of form as backup that, although not as

efficient as the first will be able to resist high levels of radiation. Another case

where having a different backup system might be the preferred solution is when

the primary instrument is too expensive to duplicate. For example, in some cars

the spare tire is of poor quality in order to reduce the overall cost while allowing

redundancy in cases of flat tires.

3. Having another instrument that works together with the first one in such a way

that the effect of the interference on each of the instruments is reduced. Those

kind of protections are applicable to interferences that can be divided using

additional instruments. One example is of interferences that interact with the

instrument through force or pressure (like colliding obstacles or friction). In that

case, having an additional instrument (for example, an engine) will split the effect

of the interface.

 53

FIGURE 12: Redundancy protection against interferences

Conclusion

This section presented four general ways to protect something from something

else. Those methods have an advantage of being system-neutral. That means they are

general enough to be used as a base for a brainstorming session regardless of the actual

system the solution is meant for.

The following section will focus on a specific example of utilizing those methods

generate a solution for a real-life engineering issue.

Object

Process Instrument1

Hazard

Instrument2
Hazard

Object

 54

4.3 Implementation example - Ice protection

This section will demonstrate how those four ways of protection are used in a real

life problem –protecting an oil exploration system from ice. The specific oil exploration

system consists of a group of supporting structures that interact with ice. Each of these

structures supports a different subsystem (extracting, treating, etc.) that in turn is

supposed to service a Deep Ocean oil field. The ice itself usually forms in large

accumulations. This has two possible negative effects on those structures. The first is the

impact of the floating accumulations that can cause the structures to fail. The second is

that ice can accumulate on top of those structure (especially those that are close to the

water surface) and thus harm the operability of the subsystem that is being supported by

those structures.

The process described in this section was developed to serve two goals. The first

is to move from system-neutral solutions (as was mentioned in the previous section) to

system-specific possible solutions, in order to give the architect a set of possible solutions

to his specific system. The second goal is to allow the architect to use those possible

solutions to tailor a specific solution for each of the oil exploration subsystems.

Generally, the process can be split into the following stages:

1. Translating the system-neutral solutions to a family of system-specific solutions.

2. Using each family to generate a specific possible solution for a specific subsystem.

This section will elaborate on that process, discuss some of the practical

implementation issues and demonstrate a specific implementation in OPN.

 55

Translating the system-neutral solutions into a family of system specific solutions

The first stage in moving to system specific solutions is to understand the system

in question. The OPD representation of each of the relevant structures looks as follows:

FIGURE 13: Basic representation of a supporting structure and its interface with ice

Additionally, we adjusted the list of the four basic methods to the specific problem.

First, we realized that resilience can be extended to three generally possible solutions to

protect against ice: absorbance, minimizing force and strengthening. Second, we decided

to take into account two possible types of avoidance since it can be done at the

interference level or at the instrument (structure) level. Additionally, we decided not to

incorporate redundancy in the range of possible solutions. The cost of each of the

subsystem is relatively very high and thus, we do not believe that redundancy is a feasible

solution.

Using these assumptions, the four system neutral ways of protection were enlarged

into six different patterns to protect against ice:

1. Eliminate source.

2. Eliminate interaction at source.

3. Eliminate interaction at support.

4. Use intermediate object to minimize force; allow contact to support.

5. Use intermediate object to absorb force; no contact to support.

6. Withstand interaction.

Object Supporting Object
Contacting

Forcing

Interacting

Disturbance

Location Design

.

 56

Disturbance

Object Supporting Object

Contacting

Forcing

Interacting

Location Design

.

Object Supporting Object
Contacting

Forcing

Interacting

Disturbance

Location Design

.

Object Supporting Object
Contacting

Forcing

Interacting

Disturbance

Location Design

.

The following figure shows the OPD representation of the six possible patterns:

Eliminate source:

Eliminate interaction at source:

Eliminate interaction at support:

Use intermediate object to allow contact, but minimal force:

Use intermediate object to absorb force but not on support:

Withstand interaction

FIGURE 14: Patterns to protect against ice

Contacti

Forcing

Interacting

Object Supporting Object Disturbance

Location Design

Object Supporting Object
Contacti

Forcing

Interacting

Disturbance

Location Design

.
Intermediate

a

Contacti

Forcin g

Interacting

Intermediate

Object Supporting Object Disturbance

Location

.
Design

 57

Utilizing patterns to protect against ice to generate specific solutions

Following a brainstorming process, we were able to extract those patterns into

specific possible solutions. Those possibilities will be further investigated in order to

choose the best one for each of the subsystem structures. The following table summarizes

the solutions we were able to extract from each pattern:

TABLE 9: Specific solutions to protect against ice

Pattern name Specific solutions

Eliminate source. Heat

water

Chemically

treat

water/ice

Agitate

water

Eliminate interaction

at source.

Move Ice

away

Break Ice

Naturally

Break Ice

artificially

Eliminate interaction

at support.

Move

support to

land

Move

support to

Ice free

Water

Move

support

underwater

Skim

support

over

ice

Use Ice

as

support

structure

Use intermediate

object to minimize

force; allow contact

to support.

Fairing Shock

observer

Semi

submerged

Use intermediate

object to absorb

force; no contact to

support.

Shielding Bumpers Build

artificial

Island/Berm

Withstand interaction. Strengthen

structure

Minimize

cross-

section

 58

The OPD representation of the entire suggested range looks like the following:

FIGURE 15: Ice protection specific solutions – level 1 decomposition

 59

FIGURE 16: Ice protection specific solutions – level 2 decomposition –

Eliminate source

FIGURE 17: Ice protection specific solutions – level 2 decomposition –

Eliminate interaction at source

 60

FIGURE 18: Ice protection specific solutions – level 2 decomposition –

Eliminate interaction at support

FIGURE 19: Ice protection specific solutions – level 2 decomposition – Use

intermediate object to minimize force: allow contact to support

 61

FIGURE 20: Ice protection specific solutions – level 2 decomposition – Use

intermediate object to absorb force: no contact at support

FIGURE 21: Ice protection specific solutions – level 2 decomposition –

Withstand interaction

 62

The next step was to use those specific possible solutions to tailor a specific

solution for each of the structure subsystems mentioned earlier. We chose to do that using

OPN due to its ability to span the entire gamut of solutions for each of those cases and

find the one that offers the best value.

Incorporating ice protection methods in OPN

This phase is aimed at find all the possible permutations of ice protection

solutions based on the specific possible solutions found earlier. The rationale is to use the

specific solution list to generate all the different possible combinations that might give

ice protection to the specific system. The architect will be able to use those permutations

to tailor a specific solution for each of the structural subsystems.

In order to perform that phase we made some assumptions. The first is that

specific possible solutions can be merged. The underlying assumption is that often those

solutions do not guarantee 100% protection against ice. In those cases a combination of

solutions can increase the overall protection level of the subsystem structure. For

example, breaking the ice and heating it might work well together. The ice could be

heated and then broken or vice versa. Calculating the overall value of that combination of

solutions can be difficult, since in many cases it is not a simple sum of the individual

protection levels. For example, heating the ice before breaking it might cause the

breaking activity to be more or less efficient than just breaking it as a stand-alone activity.

The second assumption is that not all the possible solutions can be merged due to

physical limitations; for example, the structure cannot be moved to land and at the same

time move underwater. Furthermore, we assumed that intermediate objects can be used

either to absorb force or to minimize it; thus “Use intermediate object to absorb force”

and “Use intermediate object to minimize force” cannot coexist. Our last assumption was

that there is no value in combining solutions that deteriorate (or even cancel) each other’s

effect. For example, moving the structure underwater cancels the effect of breaking the

ice.

 63

The following figure illustrates the way these assumptions can be incorporated

into the model. The selection of the protection method became a set of selections, each

dealing with a different kind of protection. At each selection the options are to select the

specific protection or not to select it. If the protection is selected it is added to a portfolio

of solutions. Additionally, solutions that cannot work together are implemented in

parallel (as in the case of “Use intermediate object to absorb force” and “Use

intermediate object to minimize force”).

FIGURE 22: Ice protection - multi solution selection

The following table summarizes all the possibilities of those combinations. A ‘+’

sign at the intersection of two solutions means that the two solutions could be merged.

 64

TABLE 10: Possible combinations of ice protection solutions

H
eat w

ater

C
hem

ically treat w
ater/ice

A
gitate w

ater

M
ove Ice aw

ay

B
reak Ice N

aturally

B
reak Ice artificially

M
ove support to land

M
ove support to Ice free W

ater

M
ove support underw

ater

S
kim

 support over ice

U
se Ice as support structure

H
orizontal F

airing

V
ertical F

airing

S
hock observer

S
em

i subm
erged

S
hielding

B
um

pers

A
lternative structure

B
uild artificial Island/B

erm

S
trengthen structure

M
inim

ize cross-section

Heat water
Chemically treat water/ice +
Agitate water + +
Move Ice away + + +
Break Ice Naturally + + + +
Break Ice artificially + + + + +
Move support to land
Move support to Ice free Water
Move support underwater
Skim support over ice
Use Ice as support structure
Horizontal Fairing + + + + + + + +
Vertical Fairing + + + + + + + + +
Shock observer + + + + + + + + + +
Semi submerged + + + + + +
Shielding + + + + + + + + + + + +
Bumpers + + + + + + + + + + + + +
Alternative structure + + + + + + + + + + + + + +
Build artificial Island/Berm + + + + + + + +
Strengthen structure + + + + + + + + + + + + + + +
Minimize cross-section + + + + + + + + + + + + + + + +

These combinations can be further extracted to include more than two possible

solutions. The rationale is to cover all the possible cases where three or more solutions

merged together will offer higher value than only one or two solutions merged. For

example, breaking the ice might be combined with shielding and strengthening the

structure to offer the highest protection and highest overall value. The general rule is that

if solution A can be combined with Solution B and Solution B can be combined with

Solution C, then a trio of solutions A, B and C is also possible.

Following that, calculating the number of possible permutations reveals that there

are over 10,000 possibilities, which is higher than the possible number we can analyze. In

order to reduce that number without losing the integrity of the model, we made additional

assumptions. We defined the maximum number of different solutions that can be

 65

combined into one solution as 3 and we eliminated the solutions that had the lowest

probability to be implemented (based on estimation of the technical feasibility). Those

assumptions reduced the number of permutations for that model to 665, which is within

the system analysis capabilities.

The modified structure looks as follows (solution marked with Red indicates low

probability solutions that where left out of the model):

FIGURE 23: Incorporating multi-solution selection into a reduced model12

12 The OPN model incorporating that model can be seen at appendix B.

 66

4.4 Conclusion

This chapter presented a structured way to generate “out-of-the-box” solutions. It

started from the highest generalization and dived into the specific problem. That

approach offers the advantage of exploring the entire gamut of possible solutions to a

problem while not being bounded by existing practices. The outcome of that process is a

list of permutations – in our case, all the possible ways to protect the oil exploration

system from ice.

Having all those permutations at hand allows the architect to examine each in order

to select the best solution for each of the subsystems. It can be done by defining the value

formula for each of the structural subsystems and then running the model to find the best

solution for each of the structural subsystems based on that formula.

 67

5 How to deal with a non-fixed boundary

5.1 Introduction

Finding the best architecture to offer value to stakeholders can be affected by the

definition of the system boundary. Often a lean system can offer greater value for the

invested resources than a comprehensive one. One example is an oil exploration system

where there are several ways to bound the system:

1. Lean system - bounded very early right after the separating phase of the oil mix into

its products. In that case an “outside the system” entity will take care of moving the

products from the separating facility and passing it to storing/distribution centers as a

mid-point to distributing it to customers.

2. Comprehensive system - placing the boundary after moving the products to the final

customer. That means the transportation and storing subsystems as well as

distribution etc. become one of the processes the system needs to support.

3. Mid size system– anywhere between a lean system and a comprehensive system. One

possibility is to define the system boundary after transferring the separated oil

products to a storing facility (thus incorporating storing within the system). Another

possibility might be to define the system boundary after transferring the product to

the distribution center etc.

The decision where to put the system boundaries depends on several

considerations. One is the strength of the relationship between the different subsystems.

An architect should consider the number and complexity of interfaces between the system

and the outside world. Changing the system boundary can increase or reduce both the

total number of interfaces and their complexity. Another consideration is the value each

subsystem creates for the stakeholders vs. the effort associated with incorporating it. For

example, effort can be measured by cost and complexity, whereas value can be measured

by political power. I selected political power to demonstrate that value is not determined

 68

only by the technical relevance of the subsystem to the entire system (like steering

subsystem to a transportation system). It could also create non-technical value.

Having these two considerations in mind, the architect can decide which

subsystems (and as a result of that, functionality) to incorporate within the system

boundary. Often it becomes an iterative process: The architect needs a system and

stakeholder model in order to check whether each subsystem should be within the system

boundary, thus, an estimated model needs to be built in advance. The architect can then

check if it has the best boundaries and, if needed, correct them. The process of finding the

right boundaries can end up being a process of iteration between estimation and

evaluation till finding the right system boundaries.

That raises a fundamental question, relevant to both OPN and OPD, which is how

to represent a changing system boundary, because in those methods a process can either

be in or out of the model. It cannot dynamically move to the other side of the system

boundary. The current practice is to put all the possible processes inside the OPN and

OPD. Those who might move outside of the system boundary get an additional form

beside those physically feasible, which is called Null. This form gets a value of zero for

every relevant attribute or parameter. Picking this form simulates a situation of leaving

the process outside of the system boundary. While this solution actually allows

generation of architectures, it raises other problems. The system cannot be treated as a

“black box” – since the system boundaries are not fixed, there is more than one function

that can be the last. That creates a situation where an interfacing system needs to dive

into the system (probably one level down) in order to understand what process (or sub-

system) it needs to connect with. Furthermore, when examining both the OPN and OPD,

it is not clear which process can be the last one before the system boundary. This section

will propose a way to deal with this issue in OPD and OPN and will discuss its

advantages.

 69

5.2 Proposed Solution for a non-fixed boundary – ch ange of

ownership

So far a “thing,” whether it is a form or a function, could be either within or

outside the system boundary. The proposal is to have “things” on the boundary layer,

representing change of ownership. That means the owner of the process changes from

within the system to outside the system. There are some theoretical and practical

advantages to this kind of implementation. That method causes the system boundary to be

represented as an entity within OPN and OPD. That will allow the architect to “include”

the system boundary in the mathematical modeling of the system and thus give him the

mathematical framework to decide on the system boundary. Moreover, the proposed

method makes the interfaces to the outside world much easier. The change of ownership

entity gives one point of contact solution for the outside systems that try to interact with

the specific system. The inside of the system can thus be considered as a “black box” for

the outside systems. Interfaces from within the system will also become easier. Inside

subsystems will have one point of contact to submit their products to regardless of the

forms that will be selected to be part of the system. Another advantage is in visualization.

It will be much easier for an outside viewer to distinguish where the system ends. The

following section presents an example of implementing change of ownership in OPD and

OPN.

 70

5.3 Change of ownership – Specific example

As was mentioned at the beginning of the chapter, there are different ways to bind an

oil exploration system. Those different options are summarized in the figure below:

FIGURE 24: The different ways to bound an oil exploration system

As can be seen, different functions can be the last. It could be Treating, Moving or

Storing. The way to deal with the floating boundary is by adding a function that

represents the function of changing ownership. In our case, we called it Exporting:

Extract E
Treat T
Store S
Move M

Exporting X

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
E E
T T T T T T M M M M M M T T T T T T M M M M M M
X M S S M M T T T T T T M M M M M M T T T T T T

X X M S S X M S S M M T T T T T T M M M M M M
X X M X X M S S X M S S M M T T T T T T

X X X M X X M S S X M S S M M
X X X M X X M S S

X X X M
X

Getting oil above ground
Separating and changing properties
Contain temporarily
Transport from to here to there inside system (further than within the same facility)
Changing ownership

FIGURE 25: System boundary using changing of ownership

Extract E
Treat T
Store S
Move M

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
E E
T T T T T T M M M M M M T T T T T T M M M M M M

M S S M M T T T T T T M M M M M M T T T T T T
M S S M S S M M T T T T T T M M M M M M

M M S S M S S M M T T T T T T
M M S S M S S M M

M M S S
M

Getting oil above ground
Separating and changing properties
Contain temporarily
Transport from to here to there inside system (further than within the same facility)

 71

The implementation in OPD looks as follows:

FIGURE 26: Change of ownership – Solution-neutral level 1 OPD model

Reservoir fluids
Ocean, Land, Ocean Floor and

Sub Sea Geography

MetOcean

Seismic

Ice

 Producing

Exported Oil & Gas

Producing

Facility
Disturbing

Exporting

 Extracting Treating

Storing Moving

 Disposing

Reusing Gravity

Change of

ownership

 72

Exporting

Reservoir fluids

Extracting

Treating

Storing

Moving

Water Sandgas

Mover

Depository
Oil

Extractor

Treater

MetOcean

Seismic

Ice

Disturbing

t1

t2

tp

tq

Disposing

Reusing

Gravity

Exported Oil & Gas
FIGURE 27: Change of ownership – Solution-neutral level 2 OPD model

And the implementation in OPN looks as follows:

FIGURE 28: Change of ownership – OPN model

Process direction

 73

5.4 Conclusion

This chapter offers a possible solution to deal with floating boundary in OPD and

OPN by incorporating the boundary into the system model. This is done by defining the

system boundary as a “change of ownership” process. That definition will give

subsystems within the system and interfacing system one point of contact for processes

that cross the system boundary. Another advantage is the ability to model the system

boundary and to incorporate it in the value calculation in OPN.

 74

 75

6 Coupling/decoupling possibilities between

Stakeholder’s model and Object-Process model.

6.1 Introduction

As discussed, systems should be measured by the amount of overall value they

create for all their stakeholders, taking into account the relative weight of the different

stakeholders. A basic question is how to connect the stakeholder’s and functional models

in order to find the best architecture (the best set of forms and the right context) that

generates the highest value to stakeholders.

This chapter presents four levels of possible connections, going from the easiest

to implement to the hardest. The predicted ability of each to measure overall value will

also increase as the implementation complexity increases.

1. Two separate models: Stakeholders and Object-Process. These models will be

minimally connected and only with human interpretation of analysis up to this point.

The Stakeholder model will yield the most important factors to consider in evaluating

the different architectures. Those factors will be used to rank and screen the different

architecture permutations that the Object-Process model will yield after calculating all

the possible permutations.

2. Some coupling between the models. The Stakeholders model will be used (in addition

to generating a selecting criteria) to generate a set of rules that represent value

generated parameters. Those rules will then be incorporated into the Object-Process

model. That way, the screening process of the architecture permutation will occur

during the permutation-creation process. Additional value is that the permutation-

creation processes can be altered (before running it) to focus on process that generate

more value (for example, performing treating twice).

 76

3. Adding a stakeholder’s evaluation model at the end of the process. The result will

look as follows:

Stakeholders model 1 � Object-Process model � Stakeholders model 2

The first Stakeholder model will calculate a set of rules that will be used to screen

out non-valuable process permutations. The second stakeholder’s model will be used to

calculate the actual value of each of the remaining permutations. The input for that

model will be the permutations along with their important attributes (price, duration,

etc.). The output will be the architecture/s that generates the highest amount of value

(or a ranking of all the architectures). That value will be calculated by dynamically

running the model on each of the architectures.

4. A complete coupling of the Stakeholders and Object-Process models that may run as

one model, calculating the best architecture (or ranking all the different permutations)

“on the fly.”

6.2 Two separate models

At this level the Stakeholder and Object-Process model are physically disconnected.

The system architect will be the one to make the connection in order to find the value in

each of the architectures that the Object-Process model generates. The system architect

will use the following algorithm:

1. Build separate Stakeholder and Object-Process models.

2. Use these models to find characteristics that affect the value gained by the

stakeholders. There are several ways to utilize the model to get those characteristics.

This topic is currently being studied by Professor Edward Crawley’s research group.

In general the system architect should select those characteristics that he can easily

alter utilizing the architecture. For example, there is usually a strong relation

between selected forms and the overall cost of the system. On the other hand there

 77

is usually a weaker connection between the forms of the system and the political

power of the stakeholders.

3. Use those characteristics to evaluate the different architectures permutations

generated by the Object-Process model. This valuation occurs after running the

Object-Process model and there are two possible ranking operations:

i. Screening out the architecture that does not answer a threshold level – for

example, screening out all the architectures that do not satisfy a minimal safety

level.

ii. Ranking architectures by the value they create for a specific characteristic or for

a collection of characteristics (for example weighted average). The following

figure demonstrates such a ranking where the different architectures are ranked

according to the overall NPV they are expected to generate.

Anticipated discounted Profit

-10000

-5000

0

5000

10000

15000

20000

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141

Architecture #

N
P

V
 (
M

$)

FIGURE 29: Ranking architectures based on important characteristics

 78

The following figure summarizes this possible connection between the Stakeholder’s

model and the Object-Process model:

FIGURE 30: Schematic of a two separate model processes

6.3 Some coupling between the models

In this option there will be a connection between the Stakeholder’s model and the

Object-Process model while the Object-Process model is generating the architectures

permutations. The Stakeholders model will be used (in addition to its role in defining a

selecting criteria) to generate a set of rules that represent value-generated parameters.

Those parameters will be incorporated into the Object-Process model as threshold

parameters. That way, the screening process of the architecture permutation will partially

occur during the permutation creation process. The immediate benefit is that some of the

“bad” architectures will be screened out during the architecture generation process, which

will increase the overall process efficiency (since the system will waste less resources on

those “bad” architectures).

There are two important points to consider. The first is that this option does not

change the previously mentioned serial nature of the overall process. The Stakeholders

model will have to be executed before the Object-Process model in order to identify the

important characteristics. The change is in the time stamp where those characteristics will

Building and

running

Stakeholders

model

Building &

running an

object-

Process

Analyzing Stakeholders

model to find important

characteristics affected

by the architecture

Threshold characteristics

Value estimation characteristics

Architecture

permutations

Ranked architectures

 79

be incorporated into the Object-Process model. The second point is that the connection

between the models is still manual, because the connection is unpredictable. Neither the

characteristics nor their desired threshold can be estimated prior to running the

Stakeholder’s model.

The following figure summarizes this possible connection between the

Stakeholder’s model and the Object-Process model:

FIGURE 31: Schematic of Some coupling between Stakeholders and process

models

6.4 Adding a stakeholder’s evaluation model at the end of

the process

This option will allow a better estimation of the “goodness” of each of the

architectures generated by the Object-Process model. The problems in that regard in the

previous options were that often it is not easy to find the value-creating characteristics,

either because of the high complexity of the Stakeholder’s model or because different

stakeholders perceive those characteristics differently (subsystem supplier and

integrating company will probably associate opposite value to the subsystem’s cost).

Building and

running

Stakeholders

model

Building

an Object-

Process

Analyzing Stakeholders

model to find important

characteristics affected

by the architecture

Threshold
characteristi

• Threshold

characteristics

• Value estimation

characteristics

Architecture

permutations

Running the model

and screening out

“bad” architectures

Ranked architectures

 80

Additionally, sometimes defining a specific characteristic as the sole metric to

evaluate architecture is not enough from several reasons. There could be a more

complex connection between the architecture and value. For example, we can look at a

system where schedule is a possible value characteristic. The stakeholders in that case

do not value schedule linearly. One stakeholder will prefer a system that will be built in

less than five years (he is indifferent to how much less than five years) whereas another

stakeholders will value schedule exponentially (such that 50% reduction in building

time will increase his value by 200%) and so on. Coming up with value formula in

those cases can be difficult especially when there are many stakeholders and many

possible characteristics. Moreover, in many cases the value characteristic is actually a

weighted average of several characteristics. This is possible when the relative weight of

each of those characteristics is fixed. There are also cases where it is not true (for

example when schedule becomes extremely important when building time passes X

years).

In order to solve this problem, a new stakeholder model will be created. This new

model will be used to value each of the permutations created by the Object-Process

model. The algorithm for utilizing that model will be as follows:

1. The first Stakeholder model will calculate a set of rules that will be used to screen

out non valuable process permutations and to find the value characteristics.

2. The Object-Process model will generate all the possible architectures, screening

out the non-valuable architectures on the fly. Additionally, it will calculate the

value characteristics.

3. The second Stakeholder’s model will be used to calculate the actual value of each

of the remaining permutations. The input for that model will be the permutations

along with their value characteristics (price, duration, etc.). The output will be the

architecture/s that generates the highest amount of value (or a ranking of all the

architectures). That value will be calculated by dynamically running the model on

each of the architectures.

 81

The following figure summarizes this possible connection between the Stakeholder’s

model and the Object-Process model:

FIGURE 32: Schematic of a process with two stakeholders models

6.5 A complete coupling of the Stakeholders and Obj ect-

Process models

In this option, both the stakeholder’s and Object-Process models will run together

as one model. It is hard to describe the exact characteristics of this option before learning

about the practical limitations of the previous options but I can still discuss the issues that

this option will address as well as the new options it will enable.

First it will allow a dynamic creation of architectures. Each stage of the

architecture creation will be valued against the Stakeholder’s model on–the-fly. That will

allow the system to make ad-hoc decisions. For example, if a particular form appears to

generate high value, the architecture generating system might decide to alter the possible

permutation path and to further explore different options associated with that form (for

example the use of two forms for each function).

A major problem that option will solve is the high computational time of complex

models. This model will reduce the number of permutations generated since all the “bad”

Building and

running

Stakeholders

model

Building

an Object-

Process

First stakeholder’s model

- finding important

characteristics affected by

the architecture

Architecture

permutations

Running the model

and screening out

“bad” architectures

Second stakeholder’s

model – Calculating

the value of each of

the architectures

Threshold characteristics

Value estimation characteristics

Ranked architectures

 82

architectures will be screened out on–the-fly (whereas earlier only part of the “bad”

architectures were screened out).

Moreover, a smart algorithm incorporated into the model will allow a smart

search of the optimal architecture. Those algorithms will basically be optimization

algorithms (due to the discrete nature of the architecture they will probably be based on

genetic algorithms) that will search the optimal architecture without searching the entire

range of architecture. There are several benefits to that approach First, it will increase the

system architect’s ability to explore complex systems – the number of permutation is

currently the main parameter that limits OPN, and thus complex systems with a large

number of expected permutations are simplified in the translation to OPN. An

optimization algorithm by nature reduces the number of permutations by focusing on

those that lead to the highest value architectures. Second, it will allow a sensitivity

analysis – a byproduct of the optimization process is the ability to easily generate a

sensitivity analysis. This analysis can help in a cost-effective analysis or act as a base for

an isoperformance analysis [14].

6.6 Conclusion

This chapter presents four different options to connect Stakeholders and Object-

Process models. While most of the current models utilize the first two options, there is a

lot of value to be gained by expending those models to the third and four options. The

value is both in allowing a more complex model and in improving the way those models

reflect reality and predict the architecture’s performance.

 83

7 Conclusion
Albert Einstein said, “Everything should be as simple as it is, but not simpler.”

This thesis was aimed at allowing the system architect to simplify the complexity of the

model while not decreasing the ability of those models to represent complexity and

complex systems. It investigates existing modeling methods – OPD and OPN [1], [2] and

proposes techniques to improve their ability to represent complex systems.

Specifically, four topics are reviewed in the research part of this thesis. The first

suggests an algorithm to implement an iterative process in OPN. That algorithm allows a

dynamic examination of the possibility to use more than one form to perform a specific

function. The second topic suggests a framework that uses a top-to-bottom approach to

facilitate generation of “out-of-the-box” solutions to technical problems. The third topic

suggests a method to deal with a non-fixed boundary in the architecting phase such that

subsystems either within or outside the system keep interfacing with the same object

regardless of the actual boundary of the system. The final topic deals with the coupling

and decoupling possibilities between the stakeholder’s model and the Object-Process-

model.

These four topics, aside from being all related to OPN, are part of an overall

solution that will allow OPN to explore a range of solutions much larger than was defined

by the architect as an input. The “out-of-the-box” framework allows OPN to suggest

solutions of forms that the architect did not think about or was not aware of, while the

iterative process increases that capability by allowing OPN to explore all the possible

combinations of those solutions. That will “break” the connection of one form to one

function – checking the possibility to achieve a certain functionality using a set of forms

instead of only one.

The floating-boundary method in its turn will allow OPN to investigate the

boundary of the system to find the best set that maximizes overall stakeholder’s value.

That will generate a new set of possible solutions where some of the initial functionality

could be left outside of the system boundary.

 84

The final piece of this overall solution is to implement increased coupling

between the Object-Process model and the Stakeholder’s model. The value of the

previous topics will increase as it will become easier and faster to measure the overall

value of each system, subsystem and form to the system stakeholders.

I believe that this overall solution will allow OPN to increase its ability to deal

with a bigger set of issues. An example for a use of that kind of implementation is in

portfolio optimization – finding the best future strategy for a company by optimizing its

future portfolio. A possible future strategy for a specific company might be to build

many new products (in OPN, it will be many new functions). Another option could be to

heavily rely on a current product, creating few new ones (in OPN, that means few new

functions) or anything in between. Beside this necessity to change the number of

functions (that can be solved using the non-fixed boundary and loop methods) that kind

of optimization will probably also require a strong connection between the two models of

possible portfolios and stakeholders.

Another possible implementation is in economic research looking for a preferred

economic strategy. In this kind of research, there are many possible tools that the

architect can use (like different monetary tools) by themselves or in combination with

other tools to achieve the best results for a specific economy. Those results heavily rely

on the behavior of other (basically their stakeholders). Using loops, changing boundaries

and strong coupling of models, the architect can offer a great deal of value in that regard.

Achieving that kind of functionality in OPN requires additional research. There is

room for additional research at the topic level, for example I believe that the method to

generate out-of-the-box solutions is still not robust enough. It can not offer automatic

value to any kind of problem, and it still requires heavy human interaction. Another area

for research is in finding ways to create models that better reflect reality. One example

that was mentioned earlier was the ability to increase the OPN complexity by introducing

optimization algorithms that will replace the creation of the entire set of permutations.

Another possible area is incorporation of real-option analysis to evaluate future value of

forms that are added to the system.

 85

Appendices

 86

 87

APPENDIX A: OPN symbols
As mentioned, OPD uses a set of symbols to describe possible relations and links

between objects and processes. This section presents those relations and an example of a

model built in OPN.

Decomposition/Aggregation - describes a relationship between a whole and its parts.

The symbol used for that is:

Skateboard

Deck
Suspension
Assembly

2 4

W heel
Assembly

FIGURE 33: OPD example of Decomposition/Aggregation [1]

Characterization/Exhibition – describes the relationship between an object and its

features or attributes. It is important to note that some attributes can be states [1], which

is a situation in which the object can exist for some positive duration of time.

The combination of all the states describes the possible configuration of the system

throughout the operational time. The symbol used for that is:

FIGURE 34: OPD example of Characterization/Exhibition [1]

 88

Specialization/Generalization – describes the relationship between a general object and

its specialized forms.

 The symbol used for that is:

FIGURE 35: OPD example of Specialization/Generalization [1]

Instantiation - describes the relationship between a class of things and instances of the

class.

 The symbol used for that is:

FIGURE 36: OPD example of Instantiation [1]

Another set of symbols is used to describe the possible links between the objects and

processes:

FIGURE 37: OPD symbols for links between objects and processes

• P changes O (from state A to B).

• P affects O (affectee)

• P yields O (resultee)

• P consumes O (consumee)

• P is handled by O (agent)

• P requires O (instrument)

• P occurs if O is in state A

TransportingPerson
Here

There

TransportingPerson

TransportingEntropy

TransportingEnergy

TransportingOperator

TransportingSkateboard

PurchasingMoney
Enough

None

 89

Example of a model built in OPN

Change
Properties

Property
Changer

Treating

Multi

one

of cycles

Shallow water

On site

Location

The Shore

Further Inland

After ice belt

Placement

Sub-marine

Surface/ Land

Sea Floor

Change
Pressure

Change
Temperature

Change
Chemistry

FIGURE 38: Example of a model built in OPD

This example demonstrates how the treating process is represented in OPN. It can

be specialized to Change Properties, which in turn can be specialized into Change

Pressure, Change Temperature and Change Chemistry. A Property Changer is the

instrument used to change property. It is characterized by its location (horizontal),

placement (vertical) and number of treatment cycles.

 90

 91

APPENDIX B: An OPN representation of Ice

Protection solution system

This section presents the implementation of the ice protection model in OPN:

FIGURE 39: An OPN representation of Ice Protection solution system

 92

 93

APPENDIX C: Formulation of the oil

exploration system loop example

Following is the set of equations that describe the system and the expected value. The

legend that describes the used abbreviations appears at the end of this section.

TTBSTLToductionofYears −=Pr

For TTBS we assume that the treating system and extracting system can be built in

parallel. Thus:

()ESBTSBMaxTTBS ,=

Furthermore, the possible production per year is the minimum between the treating and

extracting capacity:

()EPYTPYMinPPY ,=

The total cost is the sum of the treating and extracting system costs:

ESBSTSBSCostTotal +=

And profit is defined as the NPV over the leasing period:

() ()

() ()

() ()∑∑

∑∑

+==

+==

+
×+

+
−=

+
+

+
−=

+=

TLT

TTBSn
n

TTBS

n
n

TLT

TTBSn
n

TTBS

n
n

r

PPBPPY

r
TTBS

tTotal

ofit

r

IncomeYearly

r

CostYearly
ofit

periodoilExtractingNPVpriodsysetmthebuildingNPVofit

10

10

11

cos

Pr

11
Pr

Pr

 94

Legend:

ratediscountr

BarrelPericePPB

CostBuildingSystemExtractingESBS

CostBuildingSystemTreatingTSBS

oductionYearPerExtractingEPY

oductionYearPerTreatingTPY

YearPeroductionPPY

TimeBuildingSystemTreatingESB

TimeBuildingSystemTreatingTSB

SystemTheBuildingfortimeTotalTTBS

TimegLeaTotalTLT

−
−
−
−

−
−
−
−
−

−
−

Pr

Pr

Pr

Pr

sin

 95

APPENDIX D: List of possible solutions to the

oil exploration loop problem
Following is a list of all the possible combinations to build extracting and treating

subsystems. For each solution there are the different numbers of forms selected as well as

the expected discounted profit. The options are ordered from the most profitable to the

lowest.

S
olution #

of Large E
xtracting form

s

of M
edium

 E
xtracting F

orm
s

of S
m

all E
xtracting F

orm
s

of Large T
reating F

orm
s

of M
edium

 T
reating F

orm
s

of S
m

all T
reating F

orm
s

P
rofit (M

$)

S
olution #

of Large E
xtracting form

s

of M
edium

 E
xtracting F

orm
s

of S
m

all E
xtracting F

orm
s

of Large T
reating F

orm
s

of M
edium

 T
reating F

orm
s

of S
m

all T
reating F

orm
s

P
rofit (M

$)

1 0 1 1 0 0 2 15837.63 31 0 1 0 1 0 0 9575.34
2 1 0 1 0 1 1 15530.68 32 0 0 2 0 2 0 9487.24
3 0 2 0 0 1 1 15244.01 33 1 1 0 1 1 0 9429.48
4 0 2 0 0 0 2 15240.50 34 0 1 1 1 0 1 9053.63
5 1 0 0 0 1 0 14627.50 35 2 0 0 0 1 1 9031.21
6 1 1 0 0 2 0 14509.30 36 1 1 1 0 0 3 8954.13
7 1 1 0 0 1 1 13719.11 37 0 1 2 0 1 2 8801.40
8 0 0 2 0 0 2 13661.13 38 1 0 1 1 1 0 8362.90
9 0 1 1 0 1 1 13376.60 39 0 2 0 1 1 0 8100.79

10 0 1 0 0 1 0 12966.03 40 0 0 3 0 1 2 7969.40
11 1 0 1 0 2 0 12928.93 41 1 1 1 0 2 1 7822.38
12 0 1 0 0 0 1 12768.24 42 0 0 2 1 0 1 7743.83
13 0 2 0 0 2 0 12647.98 43 1 2 0 0 1 2 7568.76
14 1 0 0 1 0 0 12385.60 44 1 0 2 0 2 1 7211.74
15 1 1 0 1 0 1 11950.68 45 0 0 1 1 0 0 7066.89
16 1 0 2 0 0 3 11942.75 46 0 1 1 1 1 0 7042.15
17 0 0 2 0 1 1 11509.18 47 0 2 1 0 2 1 6958.12
18 0 1 2 0 0 3 11417.41 48 2 0 0 0 0 2 6907.13
19 0 0 1 0 0 1 11283.64 49 0 1 2 0 2 1 6356.23
20 2 0 0 0 2 0 11147.36 50 1 2 0 0 0 3 6158.69
21 0 1 1 0 2 0 11067.61 51 2 0 1 0 2 1 6013.43
22 1 1 0 0 0 2 10786.67 52 0 0 2 1 1 0 5975.57
23 2 0 0 1 1 0 10750.22 53 2 0 0 2 0 0 5849.00
24 1 1 1 0 1 2 10707.77 54 0 0 3 0 2 1 5745.60
25 1 0 1 1 0 1 10640.88 55 2 0 1 1 0 2 5449.20
26 0 2 0 1 0 1 10363.43 56 2 0 1 0 1 2 5367.68
27 0 0 3 0 0 3 10350.83 57 1 1 1 1 0 2 5240.17
28 1 0 2 0 1 2 9884.13 58 1 2 0 1 0 2 5203.28
29 0 0 1 0 1 0 9725.78 59 1 1 1 0 3 0 5121.77
30 1 0 0 0 0 1 9702.13 60 0 3 0 1 0 2 5003.37

 96

S
olution #

of Large E
xtracting form

s

of M
edium

 E
xtracting F

orm
s

of S
m

all E
xtracting F

orm
s

of Large T
reating F

orm
s

of M
edium

 T
reating F

orm
s

of S
m

all T
reating F

orm
s

P
rofit (M

$)

S
olution #

of Large E
xtracting form

s

of M
edium

 E
xtracting F

orm
s

of S
m

all E
xtracting F

orm
s

of Large T
reating F

orm
s

of M
edium

 T
reating F

orm
s

of S
m

all T
reating F

orm
s

P
rofit (M

$)

61 1 1 0 2 0 0 4993.49 91 2 1 0 0 0 3 1801.58
62 1 0 2 1 0 2 4840.34 92 1 1 2 0 1 3 1516.79
63 1 0 2 0 3 0 4712.83 93 1 0 3 0 1 3 1477.19
64 0 2 1 1 0 2 4594.43 94 1 2 1 0 1 3 1307.16
65 0 2 1 0 3 0 4476.02 95 0 2 2 0 1 3 1242.87
66 1 0 1 2 0 0 4382.85 96 0 1 3 0 1 3 1203.27
67 2 0 1 0 0 3 4267.00 97 0 0 4 0 1 3 1163.66
68 1 0 3 0 0 4 4211.05 98 1 2 1 0 0 4 784.00
69 0 1 2 1 0 2 4185.49 99 2 1 0 1 2 0 666.84
70 0 2 0 2 0 0 4137.98 100 2 0 1 1 2 0 627.24
71 0 1 2 0 3 0 4067.08 101 1 2 0 1 2 0 402.68
72 0 0 3 1 0 2 3785.65 102 1 1 1 1 2 0 363.08
73 0 1 3 0 0 4 3758.80 103 1 0 2 1 2 0 323.48
74 1 1 2 0 0 4 3738.72 104 0 3 0 1 2 0 128.76
75 0 0 3 0 3 0 3658.14 105 0 2 1 1 2 0 98.92
76 0 0 4 0 0 4 3542.71 106 0 1 2 1 2 0 59.32
77 0 1 1 2 0 0 3527.34 107 0 0 3 1 2 0 19.72
78 2 1 0 0 2 1 3394.51 108 0 2 1 2 0 1 -825.97
79 2 1 0 1 1 1 3389.19 109 0 0 4 0 2 2 -1052.36
80 2 0 1 1 1 1 3173.10 110 1 0 3 0 2 2 -1084.40
81 1 2 0 1 1 1 2936.94 111 0 1 3 0 2 2 -1184.06
82 0 0 2 2 0 0 2916.71 112 1 1 2 0 2 2 -1216.11
83 1 1 1 1 1 1 2720.85 113 0 2 2 0 2 2 -1305.70
84 2 1 0 0 1 2 2598.04 114 3 0 0 0 2 1 -1466.18
85 2 1 0 1 0 2 2592.73 115 0 0 3 2 0 1 -1572.63
86 1 0 2 1 1 1 2504.76 116 1 0 2 2 0 1 -1604.67
87 0 3 0 1 1 1 2484.68 117 2 0 1 2 0 1 -1626.66
88 0 2 1 1 1 1 2268.60 118 3 0 0 1 1 1 -1647.71
89 0 1 2 1 1 1 2052.51 119 0 1 2 2 0 1 -1694.27
90 0 0 3 1 1 1 1836.42 120 1 1 1 2 0 1 -1726.32

 97

S
olution #

of Large E
xtracting form

s

of M
edium

 E
xtracting F

orm
s

of S
m

all E
xtracting F

orm
s

of Large T
reating F

orm
s

of M
edium

 T
reating F

orm
s

of S
m

all T
reating F

orm
s

P
rofit (M

$)

121 2 1 0 2 0 1 -1758.36
122 3 0 0 2 0 1 -1819.18
123 0 2 1 2 0 1 -1825.97
124 1 2 0 2 0 1 -1858.02
125 3 0 0 1 0 2 -1897.79
126 0 3 0 2 0 1 -1947.62
127 3 0 0 0 0 3 -1986.45
128 0 0 4 1 0 3 -3023.12
129 0 0 3 2 1 0 -3167.87
130 0 1 3 1 0 3 -3302.16
131 1 0 3 1 0 3 -3364.16
132 0 1 2 2 1 0 -3446.91
133 1 0 2 2 1 0 -3508.91
134 1 1 2 1 0 3 -3643.20
135 0 2 1 2 1 0 -3725.96
136 1 1 1 2 1 0 -3787.95
137 2 0 1 2 1 0 -3849.95
138 2 1 1 0 1 3 -3896.42
139 2 1 1 0 0 4 -3911.95
140 1 2 1 1 0 3 -3932.58
141 0 3 0 2 1 0 -4005.00
142 1 2 0 2 1 0 -4067.00
143 2 1 0 2 1 0 -4128.99
144 2 1 1 1 0 3 -4149.63
145 0 0 4 1 1 2 -4974.19
146 0 1 3 1 1 2 -5397.95
147 1 0 3 1 1 2 -5609.83
148 0 2 2 1 1 2 -5821.71
149 1 1 2 1 1 2 -6033.59

 98

 99

APPENDIX E: Comparing parallel and serial

building models for oil extraction

systems
Chapter Three in this thesis refers to incorporating loops into OPN. This section

will broaden the example in that chapter with the target of presenting the difference

between parallel and serial building of forms. Parallel building means that if two or more

forms are built to perform a certain function, they will be build in parallel, each starting

to work as its building is complete. Serial building means that those forms are built one

after the other and they all start to work at the same time – after the last form is ready.

FIGURE 40: Difference between parallel and serial selection of forms

time

Form 1

Form 2

Form 3

Form 3 starts to work

Form 2 starts to work

Form 1 starts to work

Parallel building of forms

Form 1 Form 2 Form 3

All forms start to work together here

time

Serial building of forms

 100

When applying these approaches to the oil exploration example, presented in

Chapter Three, each approach yields a different result and a total number of distinct

solutions. The serial approach yields 149 distinct solutions whereas the parallel method

only 80. The NPV difference is also significant. There is a difference of over $5B

between the most profitable solutions of the two methods, as shown in the figure below.

Anticipated discounted Profit

-10000

-5000

0

5000

10000

15000

20000

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141

Architecture #

N
P
V
 (
M

$)

Anticipated discounted profit - parallel building of Forms

0

5000

10000

15000

20000

25000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

Architecture #

N
P

V
 (

$M
)

FIGURE 41: Anticipated Discounted Profit - parallel and serial selection of

forms

Anticipated discounted profit - Serial building of Forms

 101

Portfolio of 20 highest solutions - parallel buildi ng of Forms

0

1

2

3

4

5

6

7

1 3 5 7 9 11 13 15 17 19

Solution #

of Small Treating
Forms
of Medium
Treating Forms
of Large Treating
Forms
of Small Extracting
Forms
of Medium
Extracting Forms
of Large Extracting
Forms

Portfolio of 20 highest solutions

0

1

2

3

4

5

6

7

1 3 5 7 9 11 13 15 17 19

Solution #

of Small Treating
Forms

of Medium Treating
Forms

of Large Treating
Forms

of Small Extracting
Forms

of Medium Extracting
Forms

of Large Extracting
forms

FIGURE 42: Highest Solution Portfolio - parallel and serial selection of forms

Discussion

This problem imposes two possible constraints. The first is the total amount of oil

in the field and the second the leasing time. The search for a possible solution (by adding

new forms to fulfill a certain function) will be terminated if the existing forms reach the

maximum possible field capacity or if there is no sense in creating new forms since

reaching the end of the leasing period.

In the parallel approach, the active constraint was the maximum oil capacity in

each of the possible solutions, because there was no accumulation of building time (all

the forms were built in parallel). Moreover the number of forms for treating and

extracting is relatively constant at two forms for each. In the serial approach both

Portfolio of 20 highest solutions - serial building of Forms

 102

constraint were active, each for different solutions. When many smaller forms were used

the active constraint was usually the limit due to the leasing time and when the bigger

forms where used the active constraint was usually the maximum oil .That inconsistency

in the active constraint is also partially responsible for the inconsistency in the number of

forms used for each of the solutions.

Generally, the right approach to the way more than one form should be

incorporated into functions depends on the nature of the project. There are projects where

most of the forms are built in serial (for example, due to the same resource being needed

for all forms), whereas a parallel approach might be adequate in other cases where the

start time of operability is important (for example, if the discount rate is high or the total

project time is limited – as in the oil example). Additionally, there are cases where a

combination of parallel and serial is the best reflection of reality. An example might be a

bridge, where some forms (for example foundations) can be built only in a serial way

onsite, whereas the other structural forms can be built in parallel offsite but assembled

serially onsite. This ability to combine serial and parallel approaches was not

implemented into OPN during this exercise. The complexity of that task is not only in the

NPV formulation. Some of the parameters act differently in serial than in parallel.

Building cost, for example, might be different since some of it is based on fixed costs (for

example, the cost of buying the required equipment). Building several forms in serial

might split that cost, whereas doing it in parallel will require each form to “pay” for the

entire fixed cost. Incorporating that into an OPN model will increase the model’s

complexity.

 103

8 Bibliography
[1] E. F. Crawley (2006), System architecture - course notes, MIT

[2] I. Reinhartz-Berger, D. Dori, “OPM/Web – Object-Process Methodology for

Developing Web Applications”, Annals of Software Engineering 13 pp. 141–161,

2002.

[3] E. Rechtin, M. Maier, The art of systems architecting, CRC, 2002.

[4] D. Dori, Object-Process Methodology, Springer, 2002.

[5] M. J. Kinnunen, Complexity Measures for System Architecture Models, MIT

Thesis. 2006.

[6] E. F. Crawley, W. Simmons, Towards a Formalism for System Architecture - From

Value to Architecture, MIT, October 2006.

[7] W. Simmons, B. Koo, E. F. Crawley, Space Systems Architecting Using Meta-

Language, 56th International Astronautical Congress, 2005.

[8] I. Reinhartz-Berger, D. Dori, Object-Process Methodology (OPM) vs. UML: A

Code Generation Perspective, 4th CaiSE/IFIP8.1 International Workshop on

Evaluation of Modeling in Systems Analysis And Design (EMMSAD04), Riga,

Latvia, 2004.

[9] W. Simmons, B. Koo, E. F. Crawley, Architecture Generation for Moon-Mars

Exploration Using an Executable Meta-Language, AIAA space, CA, 2005.

[10] D. Clausing, D. Frey, Effective Innovation, ASME Press, 2004.

[11] V. Fey, E. Rivin, Innovation On Demand, Cambridge University Press, NY, NY,

2005.

 104

[12] H. L. McManus, Space System Architecture - Final Report of SSPARC: the

Space, Systems, Policy, and Architecture, Research Consortium (Thrust II and III),

MIT Lean Aerospace Initiative, September 2004.

[13] K. T. Ulrich, S. D. Eppinger, Product Design and Development, 2nd edition, New

York, Irwin/McGraw-Hill, 2000.

[14] O. L. de Weck, M. B. Jones, Isoperformance: Analysis and Design of Complex

Systems with Known or Desired Outcomes, 14th Annual International Symposium

of the International Council on Systems Engineering (INCOSE), 2004

