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Abstract 
 
Mechanical stimulation of 3-D chondrocyte cultures increases extracellular matrix (ECM) 
production and mechanical stiffness in regenerating cartilage. The goal of this study was to 
examine the progression of chondrocyte signaling responses to mechanical stimulation in 3-D 
culture during tissue regeneration. 
 
To investigate the role of integrins in chondrocyte mechanotransduction, function-blocking 
antibodies and small-molecule antagonists were used to disrupt integrin-matrix interactions 
during dynamic compression of chondrocytes in 3-D agarose culture. At early days in culture, 
blocking αvβ3 integrin abolished dynamic compression stimulation of proteoglycan synthesis, 
independent of effects in free-swell culture, while blocking α5β1 integrins abolished the effect of 
compression only when blocking in free-swell increased proteoglycan synthesis. This suggests 
that disrupting αvβ3 and α5β1 interactions with the ECM influences proteoglycan synthesis in 
distinct pathways and that αvβ3 more directly influences the mechanical response. 
 
To further distinguish individual mechanotransduction pathways, we investigated the temporal 
gene transcription response of chondrocytes to ramp-and-hold compression on Days 1, 10, and 
28 in 3-D agarose culture. Clustered and individual gene expression profiles changed temporally 
and in magnitude over time in culture. Day 1 cultures differed from Days 10 and 28, reflecting 
changes in cell microenvironment with development of pericellular and extracellular matrices. 
Comparisons with the response of intact tissue to compression suggested similar regulatory 
mechanisms. We further investigated MAPkinase (ERK1/2, p38, JNK) and Akt activation on 
Days 1 and 28 in agarose culture through phosphorylation state-specific Western blotting. 
Compression induced transient ERK1/2 phosphorylation on both days, with Day 28 levels 
similar to intact tissue. Unique from tissue behavior, only slight transient p38 phosphorylation 
was observed on Day 28, and SEK phosphorylation was undetected. Akt was uniquely regulated 
in intact cartilage compared to MAPks, with decreased total Akt levels over time under static 
compression. In contrast, compression transiently decreased pAkt levels in agarose cultures, with 
no changes in total Akt. 
 
Changes in the chondrocyte responses to compression with time in agarose culture suggest that 
cells sense different forces and respond differently with time; further studies may help optimize 
mechanical loading for tissue-engineering purposes. These studies provide a basis for further 
examination of mechanotransduction in cartilage. 
 
Thesis Supervisor: Alan J. Grodzinsky, Prof. of Biological, Electrical, Mechanical Engineering 
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Chapter 1   

Introduction 

 

1.1 Cartilage Biology and Osteoarthritis  

Articular cartilage provides a lubricated, wear-resistant, weight-bearing surface which distributes 

and transmits stresses in joints.  In vivo, cartilage experiences a variety of mechanical stresses, 

including dynamic and static compressive, tensile, and shear forces.  Peak dynamic stresses of 

15-20 MPa result in low strains of 1-3%, while sustained forces of approximately 3.5 MPa result 

in peak strains up to 40-45% [1, 2]. The composition and structure of the hydrated extracellular 

matrix (ECM) of cartilage determines its ability to withstand these forces, and these forces help 

regulate the composition and maintenance of tissue structure. 

The main ECM components are a network of cross-linked collagen II fibrils and 

aggregates of sulfated proteoglycans (aggrecan).  The densely packed, negatively charged 

aggrecan gives the tissue compressive stiffness and promotes osmotic swelling, while the 

collagen fibrils provide tensile resistance, resists osmotic swelling and maintains tissue structure. 

The equilibrium compressive modulus of adult articular cartilage, as measured in uniaxial 

confined and unconfined compression, is on the order of 1 MPa; the dynamic compressive 

stiffness is approximately 10 times higher; the equilibrium shear modulus ranges from 0.2 to 0.5 

MPa; and the equilibrium tensile modulus ranges from 10 to 50 MPa [3]. Other proteins and 

small glycoproteins make up the rest of the tissue. 
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Articular cartilage is an avascular, aneural, and alymphatic tissue with little capacity for 

regeneration. Chondrocytes, the main cell type in cartilage, are responsible for remodeling the 

ECM and maintaining tissue homeostasis, in part through regulating matrix production and 

secretion and activation of catabolic enzymes such as aggrecanases ADAMTS-4 and 5 and 

matrix metalloproteinases. Osteoarthritis (OA) is a degenerative joint disease predominantly in 

weight-bearing joints such as the knees and hips [4] . Risk factors include age, joint trauma, 

repetitive joint use, obesity, and gender [4]. Osteoarthritic cartilage is characterized by reduced 

mechanical properties and increased matrix degradation, including loss of aggrecan, damage to 

the collagen network, increased tissue swelling, and, ultimately, loss of normal chondrocyte 

phenotype [5]. 

 Increased force transmission to cells due to loss of matrix integrity and alterations in 

mechanical responsiveness may play a role in the development and progression OA [6]. 

Expression of pericellular matrix proteins and the cell surface receptors with which they interact 

are altered with OA progression [7-11], which can result in altered responses to applied forces. 

In addition, isolated OA chondrocytes respond to direct mechanical stimulation differently than 

normal chondrocytes. While cyclic stretching of chondrocytes isolated from normal tissue caused 

membrane hyperpolarization and increased aggrecan and decreased MMP-3 transcription, OA 

chondrocyte membranes depolarized and mRNA levels remained unaltered [12].  

1.2 Mechanical Fields and Forces in Cartilage Compression 

Studies suggest that mechanical forces play a major role in regulating chondrocyte behavior (see 

recent reviews [13, 14]). However, the mechanotransduction pathways by which chondrocytes 

respond to mechanical forces are not well understood and may depend greatly on the specific 

mechanical stimuli (e.g., fluid flow, deformation) transmitted to the cells. A detailed breakdown 
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of normal forces experiences by cartilage is reviewed in Grodzinsky et al., 2000 [15].  Cartilage 

is a non-homogeneous, anisotropic, poroelastic material. The alignment of collagen fibers in the 

matrix changes with depth, resulting in depth-dependent mechanical properties. 

In vitro models of cartilage compression have been used to study and isolate specific 

mechanical stimuli. In general, cartilage compression can be broken into a time-varying dynamic 

component and a slowly evolving, time-averaged static component. Static compression of tissue 

explants results in high strains, characterized by fluid loss and compaction of the solid matrix.  

This compaction increases the negative fixed charge density, which attracts and concentrates 

positively charged ions (including H+, Na+, and K+), causing a decrease in intratissue pH and 

increased osmotic pressure of the intratissue fluid, which can have effects on tissue maintenance 

[16-18]. Local tissue strain and cell deformation under static compression have been shown to be 

inhomogeneous and depth-dependent, with higher local strains in the superficial zone of cartilage 

and lower strains in the middle and deep zones [19, 20]. However, Choi et al. found that in the 

superficial zone, cell strain was consistently less than tissue strain, while in middle or deep 

zones, cell strains were amplified when tissue strain was under 25% but protected when tissue 

strain was over 25% [20]. This suggests that the pericellular matrix serves as a mechanical filter, 

causing cell deformation in response to static compression to be more homogeneous throughout 

the tissue depth than local tissue strain [20]. During the transient phase of low-strain 

compression, cell strain has also been observed to be amplified above tissue strains, suggesting 

that the pericellular matrix is transducing the mechanical deformation by propagating the strains 

to the cells [21]. Similar to the transient phase of ramp-and-hold (or static) compression, 

dynamic compression of cartilage induces hydrostatic pressure gradients, macroscopic fluid 

flow, streaming potentials and currents within the tissue [22-24], while shear deformation of 
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cartilage explants results in deformation of cells and matrix [25], but relatively little fluid flow 

[26].  

Studies have also used hydrostatic pressure, fluid flow, and mechanical stretch in isolation on 

monolayers of chondrocytes [27-29]. In 3-D gel culture, the mechanical stimuli experienced by 

the encapsulated cells change with time in culture. Over 28 days in a 3-D agarose culture system 

similar to that used in this thesis research, the equilibrium stiffness of the tissue increased with 

matrix development, reaching approximately 1/5 of “parent” tissue stiffness by Day 28 [30]. The 

accumulation of fixed charges associated with glycosaminoglycans also resulted in streaming 

potentials under compression of approximately 1/5 of parent cartilage [30]. Finally, the 

permeability decreased to about twice that of cartilage [30]. The accumulation of 

glycosaminoglycans (GAGs) in agarose gel chondrocyte cultures correlated with decreased 

diffusivity of macromolecules, as measured by FRAP, through the construct, but were still 2-3 

times greater than diffusivity in intact tissue after 28 days in culture [31, 32]. In static 

compression, cell strain reflected gel strain on Day 1 of culture, when little matrix has 

accumulated, but by Day 6 in culture, the developed pericellular matrix protected the cell from 

deformation [33]. Cell deformation was only partially restored by hyaluronidase treatment, 

suggesting that matrix components other than sulfated-GAGs were present [33]. 

1.3 Biosynthetic Effects of Mechanical Loading of Cartilage 

1.3.1 Responses of cartilage tissue to mechanical loading The effects of mechanical stresses 

and strains on chondrocyte biosynthesis and homeostasis have been studied in vivo and in in 

vitro explant models. Static immobilization or reduced joint-loading leads to a loss of 

glycosaminoglycan (GAG) content and decreased proteoglycan synthesis in vivo [34-36], with 

only partial restoration of biomechanical properties after remobilization [35]. Large-
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displacement static compression results in a decrease in biosynthesis in tissue explants [18, 37], 

and can lead to cell death [38]. In vivo and in vitro injurious loading, generally characterized by 

high strain rate and high stress, results in cell apoptosis [39, 40], loss of matrix integrity and 

mechanical properties [41-43], and increased degradation and decreased synthesis of matrix 

components [40, 42, 44]. In contrast, radially unconfined dynamic compression at frequencies 

greater than 0.001 Hz has been shown to increase proteoglycan and protein synthesis [17, 37]. At 

amplitudes up to 10% and stresses up to 0.5 MPa, these changes were related to fluid flow and/or 

changes in cell shape, but not hydrostatic pressure [37, 45], while tissue shear loading models 

show mechanical forces in absence of fluid flow can stimulate protein and proteoglycan 

synthesis by 50% and 25%, respectively [25]. 

 Studies have also examined the effects of normal and injurious mechanical load on gene 

expression in cartilage [46-53]. These effects were highly dependent on loading methods and 

duration. While Chan et al. found little MMP upregulation 3 hours after traumatic injury [52], 

Lee et al. found large increases in MMP and aggrecanase expression over 24 hours post-

injurious compression [51]. While Fehrenbacher et al. found short-term dynamic mechanical 

loading suppressed collagen mRNA expression but had little effect on matrix metalloproteinases 

or their inhibitors [50],  Fitzgerald et al. found that different loading methods (static 

compression, dynamic compression, and dynamic shear) resulted in distinct temporal gene 

expression responses of many matrix proteins, proteases, protease inhibitors, transcription factors 

and signaling molecules, as well as cytokines and growth factors [46, 47]. Matrix genes were 

similarly upregulated by dynamic compression and dynamic shear, suggesting the importance of 

deformation. Also, many matrix proteases showed maximal stimulation at later timepoints in 

compression [47]. These studies highlight the need to study changes in gene expression over 
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time, instead of at specific timepoints, to fully characterize cartilage response to mechanical 

stimulation. Furthermore, by examining groups of co-expressed genes hypotheses about gene 

regulation and signaling pathways can be formed. 

1.3.2 Mechanical loading in tissue engineered constructs Tissue engineered cartilage as a 

treatment for cartilage defects and injuries is of particular interest because of the lack of donor 

site morbidity and potential for maintaining chondrocyte growth and phenotype at the site of the 

defect.  3-D cultures of chondrocytes have been shown to respond to mechanical stimulation in a 

qualitatively similar manner as intact cartilage tissue. Static compression inhibits ECM 

biosynthesis [30, 54]. Dynamic compression has been shown to increase matrix synthesis and 

accumulation [30, 55-57], increase mechanical properties [30, 57, 58], counteract catabolic 

processes [59-61], and regulate ECM gene transcription [62-64]. However, the overall response 

of chondrocytes in 3-D culture is dependent on loading protocol and duration [57, 60] and can 

change with time in culture and ECM accumulation [30, 56]. Kisiday et al. found that continuous 

dynamic compression of chondrocytes in self-assembling peptide hydrogels inhibited matrix 

accumulation, while intermittent loading stimulated matrix accumulation [57]. Buschmann et al. 

found that 3-D agarose cultures of chondrocytes showed greater biosynthetic responses to 

dynamic and static compression after 28 days in culture, than on day 1 in culture, suggesting the 

importance of ECM accumulation in influencing chondrocyte response [30]. In addition, given 

the changing mechanical properties during 3-D agarose culture, “physiological” stresses and 

strains may be injurious to tissue engineered constructs, especially at early stages in gel culture. 

A clearer understanding of what mechanical stimuli are necessary for promoting regeneration of 

cartilage and how these signals are interpreted during tissue regeneration would aid in optimizing 

tissue engineering of cartilage. 
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1.4 Mechanotransduction Pathways  

Much research has focused on investigating the signaling pathways that transduce mechanical 

stimuli in cartilage. In intact tissue, deformation of the rough endoplasmic reticulum and the 

Golgi apparatus can affect proteoglycan synthesis, GAG chain length, and sulfation observed 

during compression [65, 66]. Pericellular matrix deformation can also change the 

physicochemical environment of cells, altering transport of soluble factors to cell-surface 

receptors [67, 68]. Dynamic shear and static compression of cartilage explants stimulate 

phosphorylation of ERK1/2, p38 MAPK, and SAPK/ERK kinase-1 (SEK-1) of the JNK pathway 

with distinct time-varying responses [53, 69]. Akt phosphorylation has also been shown to be 

regulated by mechanical compression in a quasi-in vivo model [70]. Blocking MAPkinase 

signaling, cAMP, and intracellular calcium altered specific, but overlapping, gene expression 

responses of cartilage to mechanical compression [46, 47, 53]. These studies suggest that 

multiple, interacting pathways may be responsible for cartilage response to mechanical 

compression. Biochemical signals may also be involved in cartilage response to mechanical 

stimulation. Interleukin-1 (IL-1) signaling has been shown to play a role in static compression 

suppression of proteoglycan synthesis [71]. Other studies have suggested that extracellular stores 

of bFGF or FGF-2 bound to perlecan are involved in cartilage response to dynamic loading [72, 

73]. 

Due to the complexities of studying mechanotransduction in intact cartilage, many 

studies have focused on monolayer or 3-D gel culture models. At the cellular level, chondrocytes 

have been shown to respond to mechanical stimulation with changes in cAMP levels, membrane 

potential, actin re-organization, and expression of genes that regulate cartilage content and 

turnover including aggrecan and matrix metalloproteases [28, 74-76]. Studies have also 
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identified many potential surface receptors, including stretch-activated ion channels [77, 78]; 

CD44, a hyaluronan (HA) receptor shown to participate in HA internalization [79]; annexin V 

(anchorin CII), a collagen binding protein with some calcium channel activity found to play a 

role in matrix vesicle-initiated cartilage calcification [80]; and integrins [77, 79, 81]. 

Several recent studies have focused on the role of integrin receptors in chondrocyte 

mechanotransduction [reviewed in [81]].  Integrins are heterodimeric transmembrane proteins 

with an α- and β- subunit. Their extracellular domain binds to various ECM components, such as 

collagen, fibronectin, laminin, vitronectin, and osteopontin.  The intracellular domains can 

associate with a variety of cytoskeletal and signaling proteins, such as paxillin, tensin, and focal 

adhesion kinase (FAK). Chondrocytes express α1β1, α3β1, α5β1, α10β1, αVβ3, and αVβ5 integrins 

[82, 83].  Integrin expression is affected by ECM composition and mechanical stresses [84, 85], 

and have been shown to mediate human chondrocyte adhesion to cartilage surfaces [82, 86], 

survival signaling [87, 88], and regulate matrix production and degradation [8, 12, 89]. 

Monolayer studies have also begun to elucidate downstream signaling events involving PKCα 

[90], membrane hyperpolarization and autocrine/paracrine IL-4 signaling [12], and MAPkinase 

pathway activation [91].  

While these studies have provided insights into possible mechanotransduction 

mechanisms, it is important to note that subtle changes in chondrocytes due to monolayer culture 

may influence signaling pathways [92], and some studies have shown differences in gene 

expression and mechanotransduction events between monolayer and explant models [93], and 

even between monolayer and 3-D culture models [78]. In 3-D agarose culture, the roles of ion 

channel signaling in response to static and dynamic loading were more complicated than those 

identified in monolayer [78]. Additionally, while 3-D suspension cultures help maintain 
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chondrocyte phenotypes, the extracellular matrix is still developing in culture, and responses to 

mechanical stimuli may change with time [30, 87].  

The goals of this project are therefore to study the progression of chondrocyte signaling 

responses to mechanical stimulation in 3-D agarose gel culture with ECM accumulation over 

time in culture and compare to responses in intact cartilage. By investigating similarities and 

differences in behavior, we can provide a basis for further examination of mechanotransduction 

of chondrocytes using a 3-D culture model as well as aid in optimizing loading for tissue 

engineering purposes. 

1.5 Objectives 

The objectives of this thesis were to investigate the role of integrin receptors in chondrocyte 

response to mechanical stimulation in a 3-D in vitro culture model, and to characterize 

chondrocyte signaling responses to mechanical stimulation in agarose culture and its evolution 

with culture duration. 

 In Chapter 2, we investigated the role of integrins α5β1 and αvβ3 in chondrocyte 

response to dynamic compression in 3-D agarose gel culture using function blocking antibodies 

and small-molecule antagonists. 

 In Chapter 3, we examined the temporal (2, 8, 24 hour) gene expression response of 3-D 

agarose cultures on Days 1, 10, 28 to a 25% ramp-and-hold compression through real-time RT-

PCR. We clustered these gene expression profiles and compared them to previous observations 

in intact cartilage tissue to discover similarities and differences in regulation. 

 In Chapter 4, we measured MAPkinase (ERK1/2, p38, SEK) and Akt activation kinetics 

in response to 25% ramp-and-hold compression through phosphorylation state-specific Western 
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blotting at both a short (10-60 minute) and long (1-24 hour) time scale. We again compared these 

to previous studies in intact cartilage tissue. 

 The main findings and conclusions are summarized and interpreted in Chapter 5. 
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Chapter 2   

Blocking integrins avb3 and a5b1 suppresses dynamic compression – induced 

stimulation of proteoglycan synthesis in agarose gel culture through distinct 

pathways 

 

 
 
2.1 Introduction 

In vivo, cartilage experiences a combination of compressive, tensile, and shear forces, 

both dynamic and static in nature. These mechanical loads can induce a variety of macroscopic 

signals including changes in intratissue pH and osmotic pressure, hydrostatic pressure gradients, 

fluid flow, streaming potentials and current, and mechanical deformation [1-3], which are sensed 

by chondrocytes and serve to regulate cell behavior. In vivo, static immobilization or reduced 

joint-loading leads to a loss of glycosaminoglycan (GAG) content and decreased proteoglycan 

synthesis, which can be partially rescued by remobilization [4, 5]. In vitro, radially unconfined 

dynamic compression at frequencies greater than 0.001 Hz has been shown to increase 

chondrocyte biosynthesis of proteoglycans and protein in both explant and 3-D agarose gel 

culture models [6-9], while static compressive loading can lead to decreases in chondrocyte 

biosynthesis [10-13]. In vitro, static and dynamic loading cause activation of the MAPkinase 

pathway and ion channels, which result in time-varying changes in gene transcription of matrix 

proteins, catabolic enzymes, transcription factors [14-16].  
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Recent research on the transduction of mechanical signals into changes in cell behavior 

has begun to elucidate the role of integrin interactions with the extracellular matrix (ECM). 

Chondrocytes express α1β1,α5β1,αvβ5, αvβ3,α3β1 [17, 18]. This expression can change with 

local microenvironment, mechanical stimulation, and during osteoarthritis [19-21]. Integrins play 

a role in adhesion, cell survival, regulating matrix metabolism, and in chondrocyte response to 

mechanical stimuli [22-24] [reviews]. β1, α5β1, αvβ5 integrins have been shown to mediate 

chondrocyte adhesion to cut cartilage surfaces [17, 25]. In monolayer studies, blocking α5β1 

integrin interactions can lead to increased MMP13 activation and cellular apoptosis [26, 27]. 

Mechanical stimulation of aggrecan mRNA and suppression of MMP3 mRNA by dynamic 

stretching of monolayer chondrocytes involves a β1-integrin dependent pathway as well as 

stretch-activated ion channels and autocrine/paracrine stimulation by interleukin-4 (IL-4) [28, 

29]. Other studies have also identified a β1-integrin dependent translocation of PKCa to the cell 

membrane and increased association of RACK1 and PKCa with β1-integrin after mechanical 

stimulation as a possible downstream signaling cascade [30]. 

 The use of physiologic dynamic compression as a stimulant for cartilage regeneration in 

tissue engineering has been demonstrated by several groups [7, 8, 16, 31-35] and has prompted 

studies on how cells transduce signals under physiological loading conditions. Some studies 

suggest the role of ion channels, especially calcium channels, in regulating sGAG synthesis in 

response to dynamic compression [36, 37]; however, the role of cell interactions with the 

extracellular matrix are less well understood. The goal of this study is to examine the role of 

integrins in chondrocyte response to dynamic compression by cells in 3D agarose gel culture at 

early times in culture, prior to significant accumulation of extracellular matrix. 
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2.2 Methods 

2.2.1 Cell Harvest and Culture Chondrocytes were isolated from the femoral condyle cartilage 

of 2- to 3- week old bovine calves (Research 87, Marlborough, MA) by sequential digestion in 

0.2% pronase (Protease type XIV, Sigma) and 0.025% Collagenase-P (Roche), as described 

previously [38]. Cells were counted by a hemocytometer and seeded in 2% agarose (low 

melting-temperature, Invitrogen) at concentrations of 15 million cells/mL using a stainless steel 

casting frame [32, 39], in a slab geometry approximately 1.6mm thick. 4mm diameter plugs were 

cored from the slab using a dermal punch and cultured in 1% ITS supplemented feed medium 

(high glucose DMEM, 0.1mM nonessential amino acids, 0.4mM proline, 100U/mL PSA – 

penicillin, streptomycin, amphoteracin, 10µg/mL ascorbate). 

2.2.2 Integrin-blocking Compounds An array of integrin-blocking compounds was used 

including small-molecule peptidomimetics, function-blocking antibodies, and RGD-containing 

disintegrins. Small-molecule compounds have the advantage of rapid diffusion times, which 

allow for more spatial uniformity of treatment. PF001 (previously referenced as S247 [40]), 

PF002, PF003 are synthetic peptidomimetics (see Figure 2.1) of the conserved amino acid motif 

RGD (arginine-glycine-aspartic acid) and are potent in vitro antagonists of ligand interaction 

with specific integrins (generous gift of Drs. David Griggs and Elizabeth Arner, Pfizer, Inc.). 

Their molecular weights and IC50s (nM) are summarized in Table 2.1. Echistatin (Sigma) is a 

5.4 kDa disintegrin peptide that non-selectively blocks the activities of several integrins 

including αvβ3, α5β1, αIIbβ3 [41]. Function blocking antibodies to αvβ3(MAB1976, clone 

LM609), αv(MAB1953, clone P3G8), α5(MAB1956, clone P1D6), β1(MAB1965, clone JB1A), 

and α5β1(MAB1969) integrins were obtained from Chemicon. 
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2.2.3 Activity and Toxicity of PF001, PF002, PF003 To test activity and toxicity of 

compounds, a cell-adhesion assay was performed using an RGD-conjugated comb copolymer 

surface which promote integrin-mediate adhesion and prevents non-specific adhesion. Prepared 

surfaces were obtained from Maria Ufret from the Griffith lab at MIT. Briefly, cover slips were 

spin-coated with PMPI polymer, activated, and conjugated with an RGD peptide+fibronectin 

synergy site. Cover slips were placed at the bottom of a 24-well plate and held in place by silicon 

rings. After isolation, 25,000 cells were seeded per well and given 2 hours to attach. 0, 50, 100, 

200µM PF001, PF002, PF003 were then added to each well. Cells were cultured for 7 days, with 

medium changes every other day. Cells were imaged daily using an inverted microscope to 

qualitatively observe adhesion spreading. After 7 days, cells were live/dead stained with 

FDA/EtBR and imaged using an inverted UV microscope. Echistatin [27] and the blocking 

antibodies [17, 26, 30, 42, 43] have been previously used on chondrocytes with no reported cell 

death. 

2.2.4 Mechanical Loading – Integrin Blocking Studies On day of casting, plugs were pre-

incubated for 18 hours in one of the following conditions (3-4 plugs/condition): (1) untreated 

control (feed medium), (2) 200µM PF001, PF002, or PF003 (concentrations for PF003 was 

confirmed using a dose response of 0, 100, 150, 200µM), (3) 5 µg/mL integrin-blocking 

antibody, (4) 1 µM echistatin. Immediately prior to loading 5 µCi/mL 35S-sulfate, 10 µCi/mL 

3H-proline was added to the medium. Plugs were then subjected to a 24-hour, 1 Hz continuous 

unconfined dynamic compression at 2.5% strain amplitude superimposed on a 7% static offset 

strain, with free-swell cultures as controls using an incubator-housed loading apparatus as 

described previously [44]. This low amplitude dynamic compression protocol is similar to 

previous studies in agarose gel culture [7] and self-assembling peptide hydrogel culture [32] in 

 - 31 -



which dynamic compression resulted in stimulation of chondrocyte biosynthesis. At the end of 

loading, plugs were removed and washed 3 x 20 minutes in PBS with 142 µg/mL sodium sulfate 

and 50 µg/mL L-proline to remove free radiolabel, and digested in 1mL Proteinase K (0.1 

mg/mL, Roche) at 60o C overnight (approx. 16 hours) for assays. Experiments were repeated for 

1-6 animals. 

2.2.5 Biochemical Assays Radiolabel incorporation rates were measured by scintillation 

counting [45, 46]. sGAG content in the digests and collected medium were assayed by DMMB 

dye binding [6]. DNA was quantified by Hoescht 33258 dye-binding assay [47]. 

2.2.6 Data Analysis Radiolabel incorporation and sGAG content data were normalized to DNA 

content to account for variations in cell number. Data were further normalized to averaged free-

swell controls for each animal to count for baseline animal-to-animal variability. A Shapiro-Wilk 

test was used to test for normality of data. 1-way and 2-way ANOVA followed by post-hoc 

Bonferoni pairwise comparisons were used to analyze results. A p-value less than 0.05 was 

considered significant. 

2.3 Results 

2.3.1 Activity and Toxicity of PF001, PF002, PF003 RGD-conjugated comb copolymer 

surfaces that can promote binding by the αvβ3 or α5β1 integrins were used to confirm activity 

of PF001, PF002, and PF003 on chondrocytes. By day 6 in culture, untreated cells seeded onto 

RGD-conjugated surfaces showed a spread morphology, while cells treated with 100µM PF001, 

PF002, or PF003 remained rounded on the RGD-conjugated surfaces (Supplementary Figures, 

Figure 2S.1). At concentrations up to 200µM of each compound over 7 days, there was no 

qualitative increase in ethidium bromide stained cells compared to untreated controls, suggesting 

no adverse effects on cell viability (Figure 2S.1).  
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2.3.2 Effects of Small-Molecule Blockers on GAG Biosynthesis and Accumulation with 

Dynamic Compression of Agarose Gel Cultures To test the role of integrin-ECM interactions 

in chondrocyte biosynthesis response to dynamic compression, agarose cultures were incubated 

with small-molecule peptidomimetics of the RGD binding sequence recognized by integrins such 

as αvβ3 and α5β1 to block these interactions and subjected to a 24-hour continuous, unconfined 

dynamic compression. At the end of 24 hours in culture, untreated agarose cultures in free-swell 

incorporated an average of 192 pmol sulfate/µg DNA/hr, 113 pmol proline/µgDNA/hr and 

accumulated 7.38 µg GAG/µg DNA. Treatment with PF001, PF002, or PF003 resulted in no 

changes in DNA content, as measured by Hoescht dye-binding (Figure 2S.2). DNA content was 

used to normalize data for all subsequent analyses. In free-swell, PF001 and PF002 resulted in no 

significant changes in sulfate or proline incorporation, as measured by radiolabel incorporation, 

or in sulfated glycosaminoglycan (GAG) content, as measured by DMMB dye binding, while 

PF003 (200µM) resulted in a 27% decrease in sulfate incorporation (p<0.0005) and 17% 

decrease GAG content (p<0.0005), as well as a 26% decrease in proline incorporation 

(p<0.0005) (Figure 2.2A,B). 

Consistent with previous studies [7, 8, 33], low amplitude (<10% strain amplitude) dynamic 

compression at 1Hz frequency increased sulfate incorporation rates by approximately 24% (to 

243 pmol sulfate/µg DNA/hr, p<0.0005) after 24 hours of compression in untreated agarose gel 

plugs (Figure 2.2A). GAG loss to the medium was minimal; <10% of the total GAG content (in 

agarose plug and in the medium) or approximately 0.7µg GAG/µg DNA was lost to the medium 

over 24 hours in free-swell culture. While GAG loss to medium increased by approximately 75% 

to 1.2 µg GAG/µg DNA with dynamic compression, possibly due to increased transport, GAG 

accumulation in the samples after 24 hours of dynamic compression was increased by 
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approximately 14% (to 8.51 µg GAG/µg DNA, p<0.0005) (Figure 2.2B). Since the experiment 

was conducted during early times in culture and GAG loss was minimal, the majority of the 

GAG content was newly synthesized and GAG accumulation mirrored sulfate incorporation 

trends. PF001 treated samples responded to dynamic compression with similar increases in 

sulfate incorporation (27%, p<0.0005) and GAG accumulation (15%,p=0.089). PF002 treated 

samples responded to dynamic compression with slight increases in sulfate incorporation (12%, 

p=0.16) and GAG accumulation (6%, not statistically significant). In contrast, PF003 treated 

samples showed no stimulation of sulfate incorporation or GAG accumulation with dynamic 

compression (Figure 2.2). None of the treatments (PF001, PF002, or PF003) affected GAG loss 

to the medium. Markers of proteoglycan synthesis (sulfate incorporation and GAG content) were 

responsive to dynamic compression and sensitive to integrin blockers. A single dose response 

experiment to PF003 was conducted with 0, 100, 150, 200 µM PF003 treated agarose cultures. 

Samples showed a dose-dependent decrease in sulfate incorporation, proline incorporation and 

GAG accumulation in free-swell culture. Dynamic compression stimulation of proteoglycan 

synthesis (sulfate incorporation and GAG accumulation) was blocked dose-dependently with a 

slight (10%) but insignificant increase in sulfate incorporation and GAG accumulation at  

100µM, and no stimulation by 150µM PF003 (Figure 2S.3). 

2.3.3 Broad-spectrum blockers PF001 and Echistatin show little effects on dynamic 

compression Echistatin is a disintegrin containing the RGD-motif that has broad specificity to 

integrins [41]. Echistatin decreased sulfate incorporation by 43% (p<0.0005), proline 

incorporation by 42% (p<0.0005), and GAG content by 21% (p<0.0005) (Figure 2.3A,B), and 

increased GAG loss to medium by 77% in free swell culture. As with PF001, dynamic 

compression increased sulfate incorporation in treated samples by 20%, but not statistically 
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significant (p=0.125); however, dynamic compression did not stimulate GAG accumulation in 

echistatin treated samples (Figure 2.3C). This is possibly due to GAG loss to medium not seen in 

PF001 treated samples since the total GAG content (agarose plug + medium) was increased by 

approximately 9% (not statistically significant) after 24 hours dynamic compression with 

echistatin treatment. 

2.3.4 In free-swell culture, αvβ3 blockers show differential effects from α5β1, β1 blockers, 

while αv and α5 blockers showed few effects To further test the hypothesis that blocking 

specific integrin-ECM interactions can disrupt chondrocyte response to dynamic compression, a 

series of blocking antibodies were used in parallel experiments. Antibodies are larger in size 

(approximately 150 kDa), but in early cultures of agarose can still diffuse in relatively easily [48, 

49]. αvβ3 blocker PF003 decreased sulfate and proline incorporation by approximately 30% 

(p<0.0005) and GAG accumulation by 18% (p<0.0005) in free-swell culture (Figure 2.4A,B). 

αvβ3 blocking antibody clone LM609 at 10ug/mL concentration decreased sulfate incorporation 

by 10% (p<0.05) and slightly decreased GAG accumulation by 5% (p=0.079), while showing a 

slight but non-significant decrease in sulfate incorporation at 5 ug/mL (Figure 2.4A,B). 

αv blocking antibodies showed no significant effects on sulfate or proline incorporation, GAG 

accumulation, or GAG loss in free-swell culture (Figure 2.4A,B). In contrast, α5β1 blocker 

PF002 showed a slight but statistically non-significant increase in sulfate incorporation (9%) and 

GAG accumulation (6%) (Figure 2.5). Blocking antibodies to α5β1 (5 ug/mL) and β1 (5 ug/mL, 

10 ug/mL) integrins increased sulfate and proline incorporation rates, and GAG accumulation by 

20%-40% (p<0.0005) (Figure 2.5A,B), while blocking antibody to α5 integrin showed only a 

10% decrease in proline incorporation (p<0.05) (Figure 2.5A). None of the blocking antibodies 

had significant affects on GAG loss to the medium. 
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2.3.5 αvβ3 blocking antibodies abolish proteoglycan synthesis response to dynamic 

compression. β1 blocking antibodies, but not PF002 or α5 blocking antibodies abolish 

proteoglycan synthesis response to dynamic compression In untreated samples, dynamic 

compression increased sulfate incorporation rates by approximately 20% (p<0.0005) and GAG 

accumulation by 14% (p<0.0005). Treatment with PF003, αvβ3  blocking antibodies, and αv 

blocking antibodies abrogated the response to dynamic compression (Figure 2.4C). In PF002 and 

α5 blocking antibody treated samples, dynamic compression resulted in a 12-15% increase in 

sulfate incorporation (p=0.079, 0.023, respectively), while GAG accumulation increased by only 

5-10% (statistically insignificant) (Figure 2.5C).  β1 blocking antibody treated samples showed 

no stimulation of sulfate incorporation or GAG accumulation by dynamic compression (Figure 

2.5C). None of the effects described were due to changes in GAG loss to medium. 

While blockers of αvβ3 and α5β1 both appear to abrogate the response to dynamic compression, 

they appear to be acting through distinct and opposing mechanisms. Blockers of full integrin 

complexes or β subunits appear to have a greater effect that those of α subunits. 

2.4 Discussion 

Dynamic compression and other mechanical stimuli have been increasingly used in tissue 

engineering to promote development of cartilage constructs through increasing extracellular 

matrix content and mechanical properties [31, 32]. Even at early days in culture, when little 

pericellular matrix is present, chondrocyte cultures in agarose can respond to dynamic 

compression with increased sulfate incorporation and sGAG accumulation [7, 8, 33]. This 

response to 24 hours of continuous dynamic compression increased with number of days in free-

swell culture [7]. In long-term studies of the effects of dynamic loading, the presence of a pre-

elaborated pericellular matrix (either by seeding chondrons initially or culturing for 2 weeks 
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prior to loading) does not alter the stimulatory effects of extended dynamic loading, which 

increased over time [31]. This perhaps suggests that interactions between the cell and its 

surrounding matrix developed during dynamic compression play a greater role than pre-existing 

interactions. The goal of this study was to examine the role of integrin-ECM interactions in the 

response of chondrocyte cultures to dynamic compression at early time-points. Early times in 

culture have the added benefit of allowing comparison of multiple integrin blockers, including 

antibodies, without diffusion and penetration concerns of larger molecules into tissues. The 

results of this study suggest that multiple integrins (α5β1, αvβ3) may play a role in 

mechanotransduction and chondrocyte’s ability to sense its local microenvironment; however 

they may play opposing or complementary roles.  

As previously shown [7, 8, 33], 24 hour continuous unconfined dynamic compression 

stimulated proteoglycan synthesis at days 1-2 in culture. Measureable amounts of sGAG were 

accumulated in constructs by the end of culture. Previous studies have shown that a pericellular 

matrix begins developing within 4 hours after isolation [50] and can be visualized at the cell 

surface on day 2 in agarose culture [51]. In the present study blocking α5β1 integrins with 

blocking antibodies or αvβ3 integrins, either with small-molecule antagonists or blocking 

antibodies, abolished proteoglycan stimulation (as measured by sulfate incorporation or sGAG 

content) by dynamic compression. αvβ3 and α5β1 are both RGD-recognizing integrins. While 

the main binding partner for αvβ3 and α5β1 are vitronectin and fibronectin, respectively, αvβ3 

has also been shown to bind to fibronectin, fibrinogen, osteopontin, and collagen [52]. In 

addition, αvβ3 and α5β1 have been found in focal adhesions, while other integrins expressed by 

chondrocytes, α3β1 and αvβ5, are more diffusely distributed [52]. Their proximity suggests 

possible functional overlaps or interactions.  
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While blocking both α5β1 and αvβ3 prevented dynamic compression stimulation of 

proteoglycan synthesis, they appeared to do so by independent and possibly opposing 

mechanisms. In this study, blocking α5β1 integrins in free-swell with α5β1 or β1 blocking 

antibodies result in a significant upregulation of sulfate incorporation, while blocking αvβ3 

integrins with small-molecule compounds result in a downregulation, and blocking αvβ3 

integrins with antibodies result in no detectable change in basal sulfate incorporation. Previous 

studies have suggested that αvβ3 and α5β1 have modulating roles in articular chondrocytes [43]. 

In that study, treatment with anti-α5β1 antibody JBS5 induced a pro-inflammatory response 

(upregulation of NO, PGE2, IL-6, IL-8, and IL-1b) in both normal and osteoarthritic cartilage as 

well as bovine articular chondrocytes, while treatment with αvβ3 blocking antibody LM609 

decreased these pro-inflammatory signals and could regulate the α5β1 response in a dominant-

negative fashion [43]. Other studies have demonstrated similar responses when blocking α5β1 

antibodies or treating with fibronectin fragments [26]. While stimulation of proteoglycan 

synthesis by blocking α5β1 integrins in agarose culture appears to be in contrast to these 

previous studies, it is possible that the stimulation observed is part of increased turnover that has 

been described previously with hyaluronan (HA) oligosaccharide treatment of cartilage [53]. 

Also consistent with previous studies, treatment with different αvβ3 blockers can result in 

different free-swell responses [43]. Taken together, this study suggests that blocking α5β1 may 

decrease response to dynamic compression in a pro-inflammatory manner, while blocking αvβ3 

may be preventing response to dynamic compression in a more direct manner. Supporting this 

hypothesis is the observation that treatment with broad-spectrum blockers, which bind to α5β1 

and αvβ3 with similar affinities, did not affect dynamic compression stimulation of proteoglycan 
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synthesis. In addition, only blockers of α5β1 integrins that induced an increase in biosynthesis in 

free-swell resulted in abolishment of response to dynamic compression, while all blockers of 

αvβ3 integrins affected stimulation of chondrocytes by dynamic compression. 

Previous studies in monolayer focus on the role of α5β1 integrins in chodrocyte 

mechanotransduction, while this study suggests a more complex view where multiple integrins 

may be playing a role in regulating chondrocyte response to mechanical stimuli. This is 

consistent with research on the role of ion channel signaling as well, where more complex 

interactions were observed in 3D compared to 2D culture [37].  Given the variety of mechanical 

signals present during physiological dynamic compression (fluid flow, streaming potentials, 

deformation), it is conceivable that individual ligand-ECM interactions and other surface 

receptors may be sensing different mechanical signals. Further studies on downstream signaling 

events can shed light on how these may interact, and allow for better understanding as to how 

mechanical stimulation affects tissue development for tissue engineering, and also how to 

preserve mechanical response in tissue. 

2.5 Acknowledgements 

Drs. Elizabeth Arner and David Griggs at Pfizer, Inc. for helpful discussions. Pfizer, Inc. for 

donating the small-molecule antagonists used in this study. NIH Grant AR33236, NSF and 

NDSEG Graduate Student Fellowships. 

2.6 References 
 
1. Frank, E.H. and A.J. Grodzinsky, Cartilage electromechanics--II. A continuum model of 

cartilage electrokinetics and correlation with experiments. J Biomech, 1987. 20(6): p. 
629-39. 

2. Mak, A.F., Unconfined Compression of Hydrated Viscoelastic Tissues - a Biphasic 
Poroviscoelastic Analysis. Biorheology, 1986. 23(4): p. 371-383. 

3. Mow, V.C., M.H. Holmes, and W.M. Lai, Fluid transport and mechanical properties of 
articular cartilage: a review. J Biomech, 1984. 17(5): p. 377-94. 

 - 39 -



4. Jurvelin, J., I. Kiviranta, A.M. Saamanen, M. Tammi, and H.J. Helminen, Partial 
restoration of immobilization-induced softening of canine articular cartilage after 
remobilization of the knee (stifle) joint. J Orthop Res, 1989. 7(3): p. 352-8. 

5. Behrens, F., E.L. Kraft, and T.R. Oegema, Jr., Biochemical changes in articular cartilage 
after joint immobilization by casting or external fixation. J Orthop Res, 1989. 7(3): p. 
335-43. 

6. Sah, R.L.Y., Y.J. Kim, J.Y.H. Doong, A.J. Grodzinsky, A.H.K. Plaas, and J.D. Sandy, 
Biosynthetic Response of Cartilage Explants to Dynamic Compression. Journal of 
Orthopaedic Research, 1989. 7(5): p. 619-636. 

7. Buschmann, M.D., Y.A. Gluzband, A.J. Grodzinsky, and E.B. Hunziker, Mechanical 
compression modulates matrix biosynthesis in chondrocyte/agarose culture. J Cell Sci, 
1995. 108 ( Pt 4): p. 1497-508. 

8. Lee, D.A. and D.L. Bader, Compressive strains at physiological frequencies influence the 
metabolism of chondrocytes seeded in agarose. J Orthop Res, 1997. 15(2): p. 181-8. 

9. Kelly, T.A., K.W. Ng, C.C. Wang, G.A. Ateshian, and C.T. Hung, Spatial and temporal 
development of chondrocyte-seeded agarose constructs in free-swelling and dynamically 
loaded cultures. J Biomech, 2006. 39(8): p. 1489-97. 

10. Kiviranta, I., J. Jurvelin, M. Tammi, A.M. Saamanen, and H.J. Helminen, Weight bearing 
controls glycosaminoglycan concentration and articular cartilage thickness in the knee 
joints of young beagle dogs. Arthritis Rheum, 1987. 30(7): p. 801-9. 

11. Gray, M.L., A.M. Pizzanelli, A.J. Grodzinsky, and R.C. Lee, Mechanical and 
physiochemical determinants of the chondrocyte biosynthetic response. J Orthop Res, 
1988. 6(6): p. 777-92. 

12. Caterson, B. and D.A. Lowther, Changes in Metabolism of Proteoglycans from Sheep 
Articular-Cartilage in Response to Mechanical-Stress. Biochimica Et Biophysica Acta, 
1978. 540(3): p. 412-422. 

13. Kim, Y.J., R.L. Sah, A.J. Grodzinsky, A.H. Plaas, and J.D. Sandy, Mechanical regulation 
of cartilage biosynthetic behavior: physical stimuli. Arch Biochem Biophys, 1994. 
311(1): p. 1-12. 

14. Fanning, P.J., G. Emkey, R.J. Smith, A.J. Grodzinsky, N. Szasz, and S.B. Trippel, 
Mechanical regulation of mitogen-activated protein kinase signaling in articular 
cartilage. J Biol Chem, 2003. 278(51): p. 50940-8. 

15. Fitzgerald, J.B., M. Jin, D. Dean, D.J. Wood, M.H. Zheng, and A.J. Grodzinsky, 
Mechanical compression of cartilage explants induces multiple time-dependent gene 
expression patterns and involves intracellular calcium and cyclic AMP. J Biol Chem, 
2004. 279(19): p. 19502-11. 

16. De Croos, J.N., S.S. Dhaliwal, M.D. Grynpas, R.M. Pilliar, and R.A. Kandel, Cyclic 
compressive mechanical stimulation induces sequential catabolic and anabolic gene 
changes in chondrocytes resulting in increased extracellular matrix accumulation. 
Matrix Biol, 2006. 25(6): p. 323-31. 

17. Kurtis, M.S., T.A. Schmidt, W.D. Bugbee, R.F. Loeser, and R.L. Sah, Integrin-mediated 
adhesion of human articular chondrocytes to cartilage. Arthritis Rheum, 2003. 48(1): p. 
110-8. 

18. Salter, D.M., D.E. Hughes, R. Simpson, and D.L. Gardner, Integrin expression by human 
articular chondrocytes. Br J Rheumatol, 1992. 31(4): p. 231-4. 

 - 40 -



19. Lucchinetti, E., M.M. Bhargava, and P.A. Torzilli, The effect of mechanical load on 
integrin subunits alpha5 and beta1 in chondrocytes from mature and immature cartilage 
explants. Cell Tissue Res, 2004. 315(3): p. 385-91. 

20. Kim, S.J., E.J. Kim, Y.H. Kim, S.B. Hahn, and J.W. Lee, The modulation of integrin 
expression by the extracellular matrix in articular chondrocytes. Yonsei Med J, 2003. 
44(3): p. 493-501. 

21. Lapadula, G., F. Iannone, C. Zuccaro, V. Grattagliano, M. Covelli, V. Patella, G. Lo 
Bianco, and V. Pipitone, Integrin expression on chondrocytes: correlations with the 
degree of cartilage damage in human osteoarthritis. Clin Exp Rheumatol, 1997. 15(3): p. 
247-54. 

22. Millward-Sadler, S.J. and D.M. Salter, Integrin-dependent signal cascades in 
chondrocyte mechanotransduction. Ann Biomed Eng, 2004. 32(3): p. 435-46. 

23. Knudson, W. and R.F. Loeser, CD44 and integrin matrix receptors participate in 
cartilage homeostasis. Cell Mol Life Sci, 2002. 59(1): p. 36-44. 

24. Mobasheri, A., S.D. Carter, P. Martin-Vasallo, and M. Shakibaei, Integrins and stretch 
activated ion channels; putative components of functional cell surface mechanoreceptors 
in articular chondrocytes. Cell Biol Int, 2002. 26(1): p. 1-18. 

25. Kurtis, M.S., B.P. Tu, O.A. Gaya, J. Mollenhauer, W. Knudson, R.F. Loeser, C.B. 
Knudson, and R.L. Sah, Mechanisms of chondrocyte adhesion to cartilage: role of beta1-
integrins, CD44, and annexin V. J Orthop Res, 2001. 19(6): p. 1122-30. 

26. Forsyth, C.B., J. Pulai, and R.F. Loeser, Fibronectin fragments and blocking antibodies 
to alpha2beta1 and alpha5beta1 integrins stimulate mitogen-activated protein kinase 
signaling and increase collagenase 3 (matrix metalloproteinase 13) production by human 
articular chondrocytes. Arthritis Rheum, 2002. 46(9): p. 2368-76. 

27. Pulai, J.I., M. Del Carlo, Jr., and R.F. Loeser, The alpha5beta1 integrin provides matrix 
survival signals for normal and osteoarthritic human articular chondrocytes in vitro. 
Arthritis Rheum, 2002. 46(6): p. 1528-35. 

28. Millward-Sadler, S.J., M.O. Wright, H. Lee, K. Nishida, H. Caldwell, G. Nuki, and D.M. 
Salter, Integrin-regulated secretion of interleukin 4: A novel pathway of 
mechanotransduction in human articular chondrocytes. J Cell Biol, 1999. 145(1): p. 183-
9. 

29. Millward-Sadler, S.J., M.O. Wright, L.W. Davies, G. Nuki, and D.M. Salter, 
Mechanotransduction via integrins and interleukin-4 results in altered aggrecan and 
matrix metalloproteinase 3 gene expression in normal, but not osteoarthritic, human 
articular chondrocytes. Arthritis Rheum, 2000. 43(9): p. 2091-9. 

30. Lee, H.S., S.J. Millward-Sadler, M.O. Wright, G. Nuki, R. Al-Jamal, and D.M. Salter, 
Activation of Integrin-RACK1/PKCalpha signalling in human articular chondrocyte 
mechanotransduction. Osteoarthritis Cartilage, 2002. 10(11): p. 890-7. 

31. Kelly, T.A., C.C. Wang, R.L. Mauck, G.A. Ateshian, and C.T. Hung, Role of cell-
associated matrix in the development of free-swelling and dynamically loaded 
chondrocyte-seeded agarose gels. Biorheology, 2004. 41(3-4): p. 223-37. 

32. Kisiday, J.D., M. Jin, M.A. DiMicco, B. Kurz, and A.J. Grodzinsky, Effects of dynamic 
compressive loading on chondrocyte biosynthesis in self-assembling peptide scaffolds. J 
Biomech, 2004. 37(5): p. 595-604. 

 - 41 -



33. Chowdhury, T.T., D.L. Bader, J.C. Shelton, and D.A. Lee, Temporal regulation of 
chondrocyte metabolism in agarose constructs subjected to dynamic compression. Arch 
Biochem Biophys, 2003. 417(1): p. 105-11. 

34. Demarteau, O., D. Wendt, A. Braccini, M. Jakob, D. Schafer, M. Heberer, and I. Martin, 
Dynamic compression of cartilage constructs engineered from expanded human articular 
chondrocytes. Biochem Biophys Res Commun, 2003. 310(2): p. 580-8. 

35. Mauck, R.L., B.A. Byers, X. Yuan, and R.S. Tuan, Regulation of Cartilaginous ECM 
Gene Transcription by Chondrocytes and MSCs in 3D Culture in Response to Dynamic 
Loading. Biomech Model Mechanobiol, 2006. 

36. Pingguan-Murphy, B., D.A. Lee, D.L. Bader, and M.M. Knight, Activation of 
chondrocytes calcium signalling by dynamic compression is independent of number of 
cycles. Arch Biochem Biophys, 2005. 444(1): p. 45-51. 

37. Mouw, J.K., S.M. Imler, and M.E. Levenston, Ion-channel Regulation of Chondrocyte 
Matrix Synthesis in 3D Culture Under Static and Dynamic Compression. Biomech Model 
Mechanobiol, 2006. 

38. Ragan, P.M., V.I. Chin, H.H. Hung, K. Masuda, E.J. Thonar, E.C. Arner, A.J. 
Grodzinsky, and J.D. Sandy, Chondrocyte extracellular matrix synthesis and turnover 
are influenced by static compression in a new alginate disk culture system. Arch 
Biochem Biophys, 2000. 383(2): p. 256-64. 

39. Kisiday, J., M. Jin, B. Kurz, H. Hung, C. Semino, S. Zhang, and A.J. Grodzinsky, Self-
assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell 
division: implications for cartilage tissue repair. Proc Natl Acad Sci U S A, 2002. 
99(15): p. 9996-10001. 

40. Shannon, K.E., J.L. Keene, S.L. Settle, T.D. Duffin, M.A. Nickols, M. Westlin, S. 
Schroeter, P.G. Ruminski, and D.W. Griggs, Anti-metastatic properties of RGD-
peptidomimetic agents S137 and S247. Clin Exp Metastasis, 2004. 21(2): p. 129-38. 

41. Pfaff, M., M.A. McLane, L. Beviglia, S. Niewiarowski, and R. Timpl, Comparison of 
disintegrins with limited variation in the RGD loop in their binding to purified integrins 
alpha IIb beta 3, alpha V beta 3 and alpha 5 beta 1 and in cell adhesion inhibition. Cell 
Adhes Commun, 1994. 2(6): p. 491-501. 

42. Genes, N.G., J.A. Rowley, D.J. Mooney, and L.J. Bonassar, Effect of substrate mechanics 
on chondrocyte adhesion to modified alginate surfaces. Archives of Biochemistry and 
Biophysics, 2004. 422(2): p. 161-167. 

43. Attur, M.G., M.N. Dave, R.M. Clancy, I.R. Patel, S.B. Abramson, and A.R. Amin, 
Functional genomic analysis in arthritis-affected cartilage: yin-yang regulation of 
inflammatory mediators by alpha 5 beta 1 and alpha V beta 3 integrins. J Immunol, 
2000. 164(5): p. 2684-91. 

44. Frank, E.H., M. Jin, A.M. Loening, M.E. Levenston, and A.J. Grodzinsky, A versatile 
shear and compression apparatus for mechanical stimulation of tissue culture explants. J 
Biomech, 2000. 33(11): p. 1523-7. 

45. Hascall, V.C., C.J. Handley, D.J. McQuillan, G.K. Hascall, H.C. Robinson, and D.A. 
Lowther, The effect of serum on biosynthesis of proteoglycans by bovine articular 
cartilage in culture. Arch Biochem Biophys, 1983. 224(1): p. 206-23. 

46. Sah, R.L., J.Y. Doong, A.J. Grodzinsky, A.H. Plaas, and J.D. Sandy, Effects of 
compression on the loss of newly synthesized proteoglycans and proteins from cartilage 
explants. Arch Biochem Biophys, 1991. 286(1): p. 20-9. 

 - 42 -



 - 43 -

47. Kim, Y.J., R.L. Sah, J.Y. Doong, and A.J. Grodzinsky, Fluorometric assay of DNA in 
cartilage explants using Hoechst 33258. Anal Biochem, 1988. 174(1): p. 168-76. 

48. Leddy, H.A., H.A. Awad, and F. Guilak, Molecular diffusion in tissue-engineered 
cartilage constructs: effects of scaffold material, time, and culture conditions. J Biomed 
Mater Res B Appl Biomater, 2004. 70(2): p. 397-406. 

49. De Rosa, E., F. Urciuolo, C. Borselli, D. Gerbasio, G. Imparato, and P.A. Netti, Time and 
space evolution of transport properties in agarose-chondrocyte constructs. Tissue Eng, 
2006. 12(8): p. 2193-201. 

50. Goldberg, R.L. and B.P. Toole, Pericellular coat of chick embryo chondrocytes: 
structural role of hyaluronate. J Cell Biol, 1984. 99(6): p. 2114-22. 

51. Dimicco, M.A., J.D. Kisiday, H. Gong, and A.J. Grodzinsky, Structure of pericellular 
matrix around agarose-embedded chondrocytes. Osteoarthritis Cartilage, 2007. 15(10): p. 
1207-16. 

52. Hynes, R.O., Integrins: versatility, modulation, and signaling in cell adhesion. Cell, 
1992. 69(1): p. 11-25. 

53. Knudson, W., B. Casey, Y. Nishida, W. Eger, K.E. Kuettner, and C.B. Knudson, 
Hyaluronan oligosaccharides perturb cartilage matrix homeostasis and induce 
chondrocytic chondrolysis. Arthritis Rheum, 2000. 43(5): p. 1165-74. 

 
 



2.7 Figures 

Figure 2.1 Chemical structure for PF001 (S247). 
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Figure 2.1 Chemical structure for PF001 (previously cited as S247 [40]). 
PF001 is a synthetic RGD peptidomimetic that acts as an integrin binding 
antagonist with broad specificity to αv and α5 integrins.  

 
 
 
 
Table 2.1 Molecular weight and relative specificities for PF001, PF002, PF003 
 

IC50 (nM)  

Mol Wt αvβ3 αvβ5 α5β1 
PF001 

(S2471,2) 569.8 0.40 1.50 64 

PF002 
 388.9 179 1660 1.23 

PF003 681.7 0.627 1.38 8940 

 
 

Table 2.1. Molecular weights and relative specificities for PF001, PF002, 
PF003. IC50s were measured using cell adhesion assays. Data obtained from 
Pfizer, Inc. PF001 was previously cited as S247 [40]. 
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Figure 2.2 Small-molecule RGD peptidomimetic compounds affect biosynthetic response of 
chondrocytes in agarose gel culture to dynamic compression 
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Figure 2.2 Biosynthetic response of chondrocytes in agarose culture to 24 hours of 
dynamic compression (1.0 Hz, 2.5% amplitude) in the presence of small-molecule 
integrin blockers PF001, PF002, PF003 (200uM). Data were normalized by the averaged 
untreated free-swell control for each animal.Data shown as mean ± SD, n = 6-19 samples 
from 2-6 animals. A) Sulfate and proline incorporation as measured by radiolabel 
incorporation. * p<0.0005,**p<0.05,***p=0.16 relative to free-swell, + p<0.0005 relat
to untreated controls. B) glycosaminoglycan (GAG) accumulation as measured by 
DMMB dye binding assay. p<0.0005,**p=0.089 relative to free-swell, +p<0.0005 
to untreat

ive 

relative 
ed controls. 
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Figure 2.3 Effects of broad spectrum blockers in free swell and on dynamic compression 
response. 
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Figure 2.3 Effects of broad spectrum integrin antagonists PF001 and echistatin in free swell 
culture (A,B) and on dynamic compression stimulation of agarose cultures. Data shown as 
mean ± SD. A) Sulfate and proline incorporation  in free swell relative to untreated controls. 
n = 6-51 samples from 2-11 animals, *p<0.0005 relative to untreated control. B) GAG 
content  in free-swell cultured plugs relative to untreated controls. n = 6-51 samples from 2-
11 animals, *p<0.0005 relative to untreated control. C) Proteoglycan synthesis as indicated 
by sulfate incorporation and GAG content with dynamic compression relative to treated 
free-swell controls. n = 6-13 samples from 2-4 animals, *p<0.005, **p=0.071,***p=0.125 
relative to 1 (no change relative to free swell). 
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Figure 2.4 αvβ3 blockers in free swell and with dynamic compression 
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Figure 2.4 Effects of blocking αvβ3 integrins on biosynthetic behavior in free swell and in 
response to dynamic compression. Data shown as mean ± SD. A) Sulfate and proline 
incorporation in free swell agarose cultures relative to untreated controls. n = 3-51 samples 
from 1-11 animals, *p<0.0005, **p<0.05 relative to untreated control. B) GAG content in 
free-swell culture relative to untreated control. n = 3-51 samples from 1-11 animals, 
*p<0.0005, **p=0.079 relative to untreated controls. C) Proteoglycan synthesis (sulfate 
incorporation and GAG accumulation) after 24 hours of dynamic compression relative to 
respective treated free swell controls. n = 3-19 samples from 1-6 animals, *p<0.0005 relative 
to 1 (no change compared to free swell). 
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Figure 2.5 Effects of α5β1 blocking on free swell and dynamic compression 
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Figure 2.5 Effects of blocking α5β1 integrins on agarose cultures in free swell and in 
response to dynamic compression. Data shown as mean ± SD. A) Sulfate and proline 
incorporation in free-swell agarose cultures relative to untreated controls. n = 3-51 samples 
from 1-11 animals, *p<0.0005, **p<0.05 relative to untreated controls. B) GAG content in 
free-swell cultures relative to untreated controls. n = 3-51 samples from 1-11 animals, 
*p<0.0005 relative to untreated controls. C) Proteoglycan synthesis (sulfate incorporation and 
GAG content) response after 24 hours of dynamic compression relative to respective treated 
free-swell controls. n = 3-12 samples from 1-4 animals. *p<0.001, **p<0.05, ***p=0.079 
relative to 1 (no change compared to free swell). 
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2.8 Supplementary Figures 

Figure 2S.1 Activity and toxicity of echistatin, PF001, PF002, PF003 
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Figure 2S.1 Representative pictures of chondrocytes cultured in control (1%ITS 
supplemented medium) or treated (1 µM echistatin or up to 200 µM PF001, PF002, PF003) 
conditions on RGD-conjugated comb copolymer surfaces designed to present specific binding
sites in sparsely distributed or clustered conformations. Cells were live/dead stained with 
FDA (green)/ethidium bromide (red) and imaged using an inverted UV microscope after 7 
days in culture. Treated cells appeared rounded in comparison to control cells. No 
qualitatively changes in dead vs. live cells were observed with treatment.  
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Figure 2S.2 Treatment with PF001, PF002, PF003 did not significantly alter DNA content   
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Figure 2S.2 DNA content, as measured by Hoescht 33258 dye-binding assay, for 
chondrocytes in agarose culture after 24 hours in free-swell or dynamic compression with or 
without the presence of integrin blockers PF001, PF002, PF003 (200 µM). Data shown as 
mean ± SD, n = 6-19 samples from 2-6 animals. 

Figure 2S.3 Dynamic compression stimulation of proteoglycan synthesis decreases dose-
dependently with PF003 treatment 
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Figure 2S.3 Proteoglycan synthesis as indicated by sulfate incorporation and GAG content 
with dynamic compression relative to free-swell controls in samples treated with 0-200 µM 
PF003. n = 3 samples from 1 animal. Data shown as mean ± SD. 
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Chapter 3   

Mechanical regulation of gene expression of chondrocytes in agarose culture 

evolves distinctly with matrix development over time in culture 

 

 

3.1 Introduction 

Articular cartilage functions as a lubricating surface that distributes and transmits stresses in 

joints. It is well accepted that mechanical stresses and strains can influence cartilage biosynthesis 

and helps to regulate cartilage biosynthesis. In cartilage explants, previous studies have shown 

that dynamic compression and dynamic shear increase proteoglycan synthesis, while static 

compression decreases biosynthesis [1, 2]. These mechanical loading protocols also affect gene 

expression of multiple matrix proteins, proteases, protease inhibitors, signaling molecules, 

transcription factors, growth factors, and cytokines in a distinct, time-dependent manner [3, 4]. 

By clustering the temporal gene expression response, Fitzgerald et al. were able to identify 

groups of co-expressed genes and possible mechanisms of regulation [3, 4]. 

In tissue-engineered constructs, dynamic compression has been used to stimulate the 

development of the extracellular matrix and enhance their mechanical properties [5-8]. The 

stimulatory effect of dynamic compression in tissue engineered constructs is dependent on load 

duration, with intermittent protocols generally providing stimulation of ECM production while 
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continuous loading suppressing ECM production [8, 9]. In addition, while the biosynthetic 

responses of chondrocytes in 3-D culture are qualitatively similar to that of intact tissue, the 

response of chondrocytes to mechanical compression can change with time in culture. 

Buschmann et al. found that chondrocytes in agarose gel culture responded to static and dynamic 

compression with greater alterations to sulfate and proline incorporation rate after 28 days in 

culture, than on initial days in culture [7].  

The mechanical stimuli transmitted to the cell during compression changes with ECM 

development. Over 28 days in 3-D agarose culture, the equilibrium stiffness of the tissue 

increases with matrix development, reaching approximately 1/5 of “parent” tissue stiffness by 

Day 28, while the permeability decreases to about twice that of cartilage [7]. The accumulation 

of fixed charges associated with glycosaminoglycans also results in streaming potentials under 

compression of approximately 1/5 of parent cartilage by Day 28 [7]. In static compression, cell 

strain is reflective of gel strain on Day 1 of culture, when little matrix has accumulated, but by 

Day 6 in culture, the developed pericellular matrix protected the cell from deformation [10]. 

These changes may all contribute to altered downstream responses to mechanical stimulation. 

The purpose of this study was to examine the temporal gene expression response of 

chondrocytes in 3-D agarose gel culture and how these responses change with ECM 

development with time in culture. By comparing these responses, we hope to identify similarities 

and differences in regulation between 3-D culture models and intact cartilage tissue and gain 

insights into important regulatory stimuli. 

3.2 Materials and Methods 

3.2.1 Cell Harvest and Culture Chondrocytes were isolated from the femoral condyle cartilage 

of 2- to 3- week old bovine calves (Research 87, Marlborough, MA) by sequential digestion in 
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0.2% pronase (Protease type XIV, Sigma) and 0.025% Collagenase-P (Roche), as described 

previously [11]. Cells were counted by a hemocytometer and seeded in 2% agarose (low 

melting-temperature, Invitrogen) at concentrations of 15 million cells/mL using a stainless steel 

casting frame [8, 12], in a slab geometry approximately 1.6mm thick. 4mm diameter plugs were 

cored from the slab using a dermal punch and cultured in 1% ITS supplemented feed medium 

(high glucose DMEM, 0.1mM nonessential amino acids, 0.4mM proline, 100U/mL PSA – 

penicillin, streptomycin, amphoteracin, 10µg/mL ascorbate) with medium changes every other 

day for up to 28 days. 

3.2.2 Ramp-and-Hold Compression for Time Course Studies On days 1, 10, and 28 in 

culture, groups of 6 plugs were placed in fresh 1% ITS supplemented medium and compressed 

over a 2-minute interval to a final strain of 25% [13] and held for 2, 8, or 24 hours. Free-swell 

cultures for 2, 8, 24 hour time courses in fresh 1% ITS medium served as controls. At the end of 

incubation, plugs were pooled, gently blotted dry with sterile gauze, and flash frozen in liquid 

nitrogen. In parallel, 4 plugs were placed in 5 µCi/ml 35S-sulfate supplemented medium for 24 

hours in free-swell or 25% compression. At the end of compression, plugs were washed with 

radiolabel-free PBS and individually frozen. 

3.2.3 Biosynthesis and GAG Accumulation measurements Radiolabelled samples on each 

Day (1, 10, 28) were individually digested in proteinase K. Radiolabel incorporation was 

measured by scintillation counting to measure sulfate incorporation into glycosaminoglycans 

[14, 15]. DMMB dye binding was used to quantify sGAG accumulation [2]. DNA amounts were 

measured by Hoechst 33258 dye-binding [16]. 

3.2.4 RNA Extraction and Real-time RT-PCR For each pooled sample, RNA was extracted 

and reverse transcribed as previously described [3]. Briefly, samples were pulverized under 
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liquid nitrogen and homogenized (BioSpec Products Inc) in TRIzol lysis buffer (Invitrogen), 

then separated using phase-gel spin columns (Eppendorf). The supernatant was then further 

purified using the Qiagen RNeasy Minikit, according to manufacturer’s protocol with optional 

DNase digest (Qiagen). Total RNA was quantified using a Nanodrop, and 1 µg RNA per sample 

was reverse transcribed (Applied Biosystems). Real-time PCR was performed using an Applied 

Biosystems 7900HT Fast Real-Time PCR System and SYBR Green Master Mix (SGMM, 

Applied Biosystems). Primers for the 32 gene examined (Table 3.1) were designed and 

calibrated as previously described [3].  

3.2.5 Statistical Analysis Relative gene expression was obtained from the standard curve 

method. Gene expression in a given sample was normalized to 18S, as previous work suggests 

that mechanical loading can affect GAPDH and β actin expression [17]. For each gene, 

expression levels for loaded samples at each Day/Time point were then normalized to their 

respective free-swell controls for each experimental repeat. Mean gene expression vectors for 

loading at 2, 8, 24 hours on Days 1, 10, 28 from 4 experimental repeats were used for clustering 

analysis. Principle component based k-means clustering, a method previously established [3, 4], 

was used to examine expression patterns and trends. To emphasize expression patterns over 

magnitude, each expression vector was standardized to obtain equal variances. Principle 

component analysis was applied to the standardized gene expression vectors to optimize 3-D 

graphical representation of the data. Projection coordinates of the standardized gene expression 

vectors were clustered using Euclidean distance k-means clustering to group genes. Centroid 

vectors were calculated as the average expression profile from genes within a group. In addition 

to clustering the complete data, expression vectors (for 2, 8, 24 hour timecourses) for each 
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individual day of loading were clustered separately to examine the effect of culture duration on 

expression patterns. 

3.3 Results 

3.3.1 Biosynthesis response to mechanical compression and sGAG accumulation with time 

in culture is consistent with previous data sGAG content of cell-seeded plugs increased with 

time in free-swell culture to approximately 50 µg sGAG/µg DNA by Day 28, while proteoglycan 

synthesis rates, as measured by sulfate incorporation, decreased with time in culture (data in 

Supplementary Figures, Figure 3S.8); both are consistent with previous reports [7]. Proteoglycan 

synthesis was not affected by 25% compression over 24 hours at Day 1, 10, or 28, also consistent 

with [7], however GAG release to medium decreased by approximately 20%, possibly due to 

decreased transport. 

3.3.2 Temporal gene expression trends in response to 25% compression on Days1, 10, and 

28 Over the course of 28 days in culture, the biochemical and mechanical properties of agarose 

gel cultures of chondrocytes change dramatically. This results in an alteration of the forces and 

flows that the cells experience during loading [7]. To examine the effects of the evolving 

microenvironment on gene expression responses to mechanical loading, we measured the 

temporal response of 31 genes to 2, 8, and 24 hours of 25% ramp-and-hold compression on Days 

1, 10 and 28 in culture. Looking at selected individual gene expression profiles (Figure 3.1), we 

found expression of aggrecan was slightly upregulated at 24 hours of compression on all Days in 

culture. In contrast, Collagen 2 showed a much higher magnitude of regulation by compression 

(not the logarithmic scale on the y-axis), with early upregulation (at 2 hours of compression) on 

Days 1 and 10 in culture, and downregulation by 24 hours on Day 28 in culture. Catabolic 

enzymes MMP3 and MMP13 showed upregulation at different times on different days in culture, 
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while ADAMTS-5 was upregulated in response to compression only on Day 1 of loading. Sox9, 

a transcription factor, showed little regulation by mechanical loading, with slight upregulation 

after 8 hours of loading on Day 10 and slight downregulation at 8 hours on Day 28. Remaining 

gene expression profiles can be found in the Supplementary Materials.  

Clustering these gene expression vectors revealed 5 distinct groups (Figure 3.2). Gene 

groups are listed in Table 3.2A, and the centroid profiles are shown in Figure 3.3. Clusters were 

found to be statistically different from each other, except for Centroids 2 and 4 (Table 3.3). 

Further examination determined that this was likely due to the low number of genes in each 

group (low degrees of freedom) and the high variance of Centroid 2 (discussed below). Because 

of the biological significance of Centroid 4, we chose to maintain 5 clusters for all remaining 

analyses. Centroid 1 gene expression profile (Figure 3.3A) showed a temporal response to 

loading on Day 1, but little response on subsequent days in culture. Approximately half of the 

genes examined were in this centroid, suggesting that 25% compression has a maximal effect on 

Day 1 in culture. Centroid 2, which included ADAMTS-5, OP-1 (or BMP7), and TNFα showed 

a varied response to mechanical loading over time in culture, with upregulation on Day 1, 

downregulation on Day 10, and little response on Day 28 (Figure 3.3B). Looking at the 

individual gene expression profiles (Figure 3.4), we see that ADAMTS5 and OP-1 behave 

similarly on Day 1, with a bimodal upregulation at early (2 hours) and late (24 hours) times 

under compression. In contrast, gene expression of OP-1 and TNFα in response to loading in 

suppressed by approximately 50% by 24 hours under compression on Day 10 and only slightly 

suppressed on Day 28 in culture. Centroid 3 and Centroid 5 showed a shift in the temporal 

response over time in culture (Figure 3.3C, E), with early, transient upregulation of gene 

expression on Day 1 and increasingly delayed upregulation of gene expression on subsequent 
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days in culture. Centroid 3 genes showed higher peak stimulation, while Centroid 5 genes 

showed lower amplitude, but more sustained upregulation. Centroid 4 contained cFos and cJun, 

known early-response genes, which showed upregulation with 25% compression at the 2 hour 

timepoint on all days in culture (Figure 3.3D). 

3.3.3 Temporal gene expression responses on each day in culture clustered separately In 

order to examine the temporal gene expression response on each day and how physical forces 

particular to each day in culture is affecting gene regulation, we clustered the temporal gene 

expression responses (at 2, 8, 24 hours) to 25% compression relative to free-swell controls 

separately for each day. We chose 5 groups for ease of comparisons with the full set of clustered 

data and to maximize the likelihood of identifying unique expression patterns. The genes in each 

cluster are listed in Table 3.2B-D for Days 1, 10, and 28, respectively. As expected, gene 

expression profiles and clusters differ greatly from day to day, suggesting that multiple 

mechanical and biochemical cues can influence gene expression, and that the balance of these 

cues changes with the development of the agarose gel constructs. On Day 1, the majority of 

genes examined were grouped in Centroid 2 (Table 3.2), which showed a transient upregulation 

at 2 hrs of loading with a rapid decay to free-swell levels by 8 hours (Figure 3.5A). Centroid 3, 

comprising of Aggrecan and ADAMTS5, was unique in showing upregulation at 24 hours of 

compression. On Day 10, the magnitude of expression changes decreased, with few genes or 

cluster centroids showing changes greater than 20% (Figure 3.5B). Centroid 5 genes (c-Fos, c-

Jun, Collagen 2, and IGF1) maintained their early response to compression. On Day 28, most 

genes were transiently upregulated; Centroid 1 showed peak stimulation at 8 hours, Centroid 2 at 

24 hours, and Centroid 3 at 2 hours of compression (Figure 3.5C). 
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3.3.4 Coexpression of genes in response to 25% compression on all days in agarose gel 

culture A few sets of genes were found clustered together on each day as well as in the clusters 

for the complete set of data: cFos and cJun; IL4 and TIMP2; IL6 and MMP1; ADAMTS-4 and 

Link; β-actin and bFGF; and TIMP3 and TGFβ. All sets of genes were upregulated at 2 hrs on 

compression on Day 1; however, their gene expression patterns on subsequent days diverged 

(Figure 3.6). cFos and cJun were upregulated at 2 hours by compression with a rapid decay on 

each day of culture. IL4 and TIMP2 were transiently downregulated at 8 hours of compression 

on Day 28. IL6 and MMP1 showed a minimal response after Day 1 in culture. The transient 

upregulation of ADAMTS-4 and Link shifted to 8 hrs on Day 10 and 24hrs on Day 28. β-actin 

and bFGF upregulation was delayed to 24 hrs by Day 10. TIMP3 and TGFβ showed a transient 

upregulation at 8 hours of compression on Days 10 and 28. 

3.4 Discussion 

 Gene expression in response to different forms of mechanical loading have been 

investigated in intact cartilage tissue [3, 4] and in monolayer [18, 19]. Gene expression in 

response to dynamic compression has also been used to evaluate its use in stimulating matrix 

accumulation in various tissue engineered constructs [9, 20-23]. However, the mechanical and 

biochemical environment of chondrocytes in tissue engineered constructs change with culture 

duration, which can greatly alter mechanical signaling and response of the cells. To examine how 

this evolving microenvironment can affect chondrocyte mechanotransduction, we investigated 

the temporal gene expression response of chondrocytes in agarose gel culture to a 25% ramp-

and-hold mechanical compression on Days 1, 10, 28 in culture. Ramp-and-hold compression was 

chosen because of its well characterized effects on intact cartilage tissue. On Day 1 in agarose 

culture, cell strain is expected to be similar to total construct strain, but cell deformation in 
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agarose gel constructs decreases with development of the pericellular matrix [10]. In contrast, 

modulus, streaming potential, permeability, and the development of cell-matrix interactions 

become more similar to intact tissue over time in culture [7]. By comparing the gene expression 

response of chondrocytes in agarose gel culture to the previously studied responses in intact 

tissue, we hope to get insights into common mechanotransduction mechanisms as well as 

differences remaining between tissue engineered constructs and native tissue. 

 In our study, we examined the temporal gene expression levels of 31 genes over the 

course of 2, 8, 24 hours of 25% ramp-and-hold compression on Days 1, 10, and 28 in agarose gel 

culture. As expected, we found distinct changes in the gene expression profiles on each day in 

culture. Matrix molecules aggrecan and collagen 2 showed contrasting behavior, with aggrecan 

gene upregulation at 24 hours of compression on all Days in culture while collagen 2 was 

transiently upregulated at 2 hours of compression on Days 1 and 10, and downregulated by 24 

hours of compression on Day 28. This opposing behavior is consistent with previous studies 

showing that aggrecan and collagen 2 promoter activity were opposite of one another in response 

to dynamic compression of agarose gel constructs [21]. Catabolic enzymes MMP3, 9, and 13 

showed transient upregulation in response to loading, with peak upregulation shifting from 2 hrs 

on Day 1 to 8 or 24 hours by Day 28. 

 To further examine trends in gene expression responses to 25% compression, we 

performed clustering analysis to group co-expressing genes with an emphasis on expression 

patterns as opposed to magnitudes. By clustering gene expression behavior on all days in culture 

together, as well as each day separately, we hoped to gather insights into how changes in 

mechanical and biochemical signals are affecting gene expression responses. When clustering 

the gene expression responses on all days in culture together, we found 5 distinct groups. 
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Interestingly, the majority of genes we examined were clustered into Centroid 1, which showed a 

transient upregulation at 2 hours of loading on Day 1 in culture, but minimal responses on Days 

10 or 28 in culture. This suggests that 25% compression has a maximal effect on Day 1 in gel 

culture and that cell deformation, which is unique to day 1, may play a large role in regulating 

gene expression. It is possible that larger strains would result in higher responses at later times in 

culture; however, due to agarose construct failure at higher strains, it was not possible to apply 

higher strains consistently. In contrast, Centroid 3 and 5 genes, which included catabolic 

enzymes MMP3, 9, 13 as well as inhibitors of metalloproteinases TIMP1 and TIMP3, showed a 

temporal shift in upregulation of gene expression, while Centroid 4 genes, c-Fos and c-Jun, is 

consistently transiently upregulated at 2 hours of compression, with maximal stimulation on Day 

28 in culture. The correlation between the increase in c-Fos and c-Jun stimulation by 

compression with the shift in peak upregulation of MMPs 3, 9, and 13 is consistent with previous 

studies in cartilage, which suggested that MMP3, 9, and 13 are all regulated by AP-1, a 

heterodimer of c-Fos and c-Jun [4], and studies in tissue engineered cartilage which showed a 

mechanical stimulation of MMP3 and 13 through AP-1 [23]. 

 To isolate the effects of mechanical stimulation on each day in culture on gene 

expression, we clustered the temporal (2, 8, 24 hour) response to 25% compression on each day 

separately. Predictably, the expression profiles in response to compression and groups of genes 

differed greatly with time in culture, emphasizing the idea that multiple mechanical and 

biochemical cues regulate gene expression, and that these are evolving with matrix development 

and changing biomechanical of the agarose gel construct. Only a few genes were consistently 

grouped together, of which 2 pairings stood out. The first was c-Fos and c-Jun, components of 

the AP-1 complex, and shown to be upregulated transiently in response to mechanical loading in 
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intact tissue [4]. The second was TIMP3 and TGFβ. TIMP3 is an inhibitor of ADAMTS-4 and 

ADAMTS-5 in cartilage [24, 25]. TGFβ is a growth factor implicated in chondrocyte 

differentiation, and has been shown to regulate TIMP3 in cartilage [26]. Interestingly, both were 

shown to be similarly regulated by intracellular calcium and cAMP in 50% compressed cartilage 

[3, 4]. 

Looking closer at the groupings on each day in culture, we found that on Day 1, the 

majority of gene clustered into one group, Centroid 2, which showed a transient upregulation at 2 

hours, with a rapid decay to levels just below free-swell. The transient nature of the gene 

expression behavior suggests that the transient phase of the ramp-and-hold compression is 

dominating the response to loading on Day 1 in culture. This phase is characterized on Day 1 by 

cell deformation and fluid flow. In studies with cartilage tissue, Fitgerald et al. [4] identified a 

group of genes (M1: aggrecan, collagen 2, link protein, MMP1, and TIMP3) that showed a 

similar transient response to 50% static compression as well as similar responses to dynamic 

compression and dynamic shear stimulation, which suggested deformation as a dominant 

regulatory signal. All of these genes except for aggrecan are found in Centroid 2 on Day 1, 

further supporting the hypothesis that deformation is a dominant signal in regulating these genes. 

In contrast, aggrecan showed upregulation at 24 hours on all days in culture, suggesting a 

different mode of mechanical regulation. On Day 10, the magnitude of gene expression changes 

in response to mechanical compression decreased dramatically, with most genes up- or down- 

regulated by less than 20%. Only Centroid 5, containing c-Fos, c-Jun, Collagen 2, and IGF-1, 

showed a robust transient upregulation in response to compression. While it is possible that the 

limited sample times (2, 8, and 24 hours) were not sufficient to detect maximum gene 

transcriptional changes, it appears improbable that this would occur with the majority of genes 
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investigated. Instead, it is likely that the development of the pericellular matrix is protecting the 

cells from deformation [10], but is still insufficient for transmitting mechanical signals. This is 

consistent with studies suggesting that FGF-2 plays a role as a chondrocyte mechanotransducer, 

and accumulation in the matrix during development is necessary for functional response [27]. On 

Day 28, gene expression was more strongly regulated by mechanical compression. In most cases, 

gene expression was transiently upregulated, but the time of peak upregulation was different 

between different sets of genes. Centroid 5 genes, which included c-Fos and c-Jun were still 

upregulated transiently during the first 2 hours of compression, while Centroid 1 genes were 

upregulated at 8 hours, and Centroid 2 genes were upregulated at 24 hours under compression. 

The distribution of behavior and complexity of gene expression responses on Day 28 are more 

similar to those seen in cartilage [3]; however, unlike in tissue, clusters of co-expressed genes 

were not dominated by genes with particular functions. Instead, catabolic enzymes, cytokines, 

growth factors, and matrix molecules were often co-clustered, suggesting that the balance of 

signaling is still altered from functional, intact tissue. 

Through our investigation of gene expression regulation by 25% ramp-and-hold 

compression on Days 1, 10, and 28 in agarose gel culture, we have found that while similar gene 

expression patterns between chondrocytes in agarose gel culture and in intact cartilage tissue 

exist, the disparity of mechanical cues between the two systems result in dramatically different 

gene expression responses. In addition, the presence of functional matrix, as seen when 

comparing behavior between Day 1 and Day 28 agarose gel culture, results in more complex 

temporal signaling responses, which are still unique from behavior in intact cartilage tissue. 

Considering the increasing use of loading for the purpose of enhancing tissue engineered 

constructs, and the fact that these constructs will be subjected to many loads when implanted, it 
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is important to better understand how long-term effects of loading may differ between 

engineered and native tissue. 
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3.7 Figures 

Table 3.1 Genes examined and their primers for real-time PCR 

Gene Forward Primer Reverse Primer 

18S TCGAGGCCCTGTAATTGGAA GCTATTGGAGCTGGAATTACCG 

ADAMTS-4 CTGGGCCATGTCTTCAGCAT GGCGGGAGGTGCTCTCA 

ADAMTS-5 CTCCCATGACGATTCCAA AATGCTGGTGAGGATGGAAG 

Aggrecan CCTGAACGACAAGACCATCGA TGGCAAAGAAGTTGTCAGGCT 

β-actin GATGAGATTGGCATGGCTTT GTCACCTTCACCGTTCCAGT 

bFGF or FGF-2 GCCATAATCGGAACAGCACT AGGAATGCACTGTGGAGCTT 

c-Fos CTCCACTTCATCCTAGCGGC GCCCCCACTCAGATCAAGAG 

c-Jun AGCTGGAGCGCCTAATCATACA CCTCCTGCTCATCTGTCACGTT 

CD44 GTCCTATGCGGAAACCTCAA CTGCCCACACCTTCTCCTAC 

Collagen 1 AATTCCAAGGCCAAGAAGCATG GGTAGCCATTTCCTTGGTGGTT 

Collagen 2 AAGAAGGCTCTGCTCATCCAGG TAGTCTTGCCCCACTTACCGGT 

Fibronectin ACTGCCCACTCCTACAACCA CAAAGGCATGAAGCACTCAA 

HA-synthase GCACATCTGGAAGGAAAACC AAAATCACACCACCCAGGAG 

IGF-1 CAGCAGTCTTCCAACCCAAT GAAGAGATGCGAGGAGGATG 

IGF-2 TTCTACTTCAGCCGACCATCC TGGCACAGTAAGTCTCCAGCA 

IL-1β GAAGAGCTGCATCCAACACC ATGCAGAACACCACTTCTCG 

IL-4 GCGGACTTGACAGGAATCTC TTCAGCGTACTTGTGCTCGT 

IL-6 TGAGTGTGAAAGCAGCAAGG AGCAAATCGCCTGATTGAAC 

Integrin α5 ACCAGGGTCACAGGACTCAG AGGAACATCCGTCTTTGCAG 

Integrin αv CTCATCGTTTCCATCCCACT ACGCACAGGAAAGTCTTGCT 

Link AAGCTGACCTACGACGAAGCG CGCAACGGTCATATCCCAGA 

MMP1 GGACTGTCCGGAAATGAGGATCT TTGGAATGCTCAAGGCCCA 

MMP13 TCTTGTTGCTGCCCATGAGT GGCTTTTGCCAGTGTAGGTGTA 
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Table 3.1 continued 

 

Gene Forward Primer Reverse Primer 

MMP3 CACTCAACCGAACGTGAAGCT CGTACAGGAACTGAATGCCGT 

MMP9 TCCCTTCCTTGTCAAGAGCAA TACTTGGCGCCCAGAGAAGAA 

OP-1 GGGCTTTTCCTACCCCTA CACGAGATTGACGAAGCTCA 

Sox9 TGAAGAAGGAGAGCGAGGAG GTCCAGTCGTAGCCCTTGAG 

TGFβ CACGTGGAGCTGTACCAGAA ACGTCAAAGGACAGCCACTC 

TIMP1 TCCCTGGAACAGCATGAGTTC TGTCGCTCTGCAGTTTGCA 

TIMP2 CCAGAAGAAGAGCCTGAACCA TGATGTTCTTCTCCGTGACCC 

TIMP3 TTTGGCACGATGGTCTACACC CCTCAAGCTTAAGGCCACAGA 

TNFα ACGGTGTGAAGCTGGAAGAC CCCTGAAGAGGACCTGTGAG 
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Figure 3.1 Gene expression responses for select genes 
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Figure 3.1 Gene expression responses for select genes, measured by real-time RT-PCR in 
response to 2, 8, and 24 hours of 25% compression on Days 1, 10, and 28 of agarose gel 
culture normalized to 18S, relative to respective free-swell controls. Free-swell levels 
correspond to a value of 1. Data shown as mean ± S.E for 4 complete replicates. * p<0.05, 
† p<0.1 by t-test of log-transformed ratios compared to free-swell levels of log(1) = 0. 

Figure 3.2 Projection plot of individual genes along the three main principle components 
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Figure 3.2 Projection plot of individual gene expression profiles represented by the three 
main principle components derived from principle component analysis of standardized gene 
expression vectors. Genes are visually grouped into 5 clusters found by k-means clustering. 

 - 68 -



Table 3.2 Centroid components for k-means clustering of complete data set as well as of gene responses on individual days 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
c-Fos, c-Jun, IL-1βD28-5

Collagen 1, IGF-1, IL-4, OP-1, TIMP2D28-4

ADAMTS5, Aggrecan, HA-Synthase, IGF-2, IL-6, MMP1, Sox9D28-3

ADAMTS4, β-actin, bFGF, Fibronectin, α5 integrin, αv integrin, Link, MMP9, TIMP1D28-2

CD44, Collagen 2, MMP3, MMP13, TGFβ, TIMP3, TNFαD28-1D. Day 28 Timecourse (2, 8, 24 hours)

c-Fos, c-Jun, Collagen 2, IGF-1D10-5

Aggrecan, β-actin, bFGF, IGF-2, MMP13, MMP9, TIMP1D10-4

ADAMTS4, Fibronectin, HA-Synthase, α5 integrin, Link, Sox8, TGFβ, TIMP3D10-3

ADAMTS5, CD44, Collagen 1, αv integrin, MMP3, OP-1, TNFαD10-2

IL-1β, IL-4, IL-6, MMP1, TIMP2D10-1C. Day 10 Timecourse (2, 8, 24 hours)

Fibronectin, MMP3, OP-1D1-5

Collagen 1, IL-1β, TIMP1, TNFαD1-4

ADAMTS5, AggrecanD1-3

ADAMTS4, β-actin, bFGF, CD44, c-Fos, c-Jun, Collagen 2, HA-Synthase, IGF-1, IGF-2, 
IL-4, IL-6, α5 integrin, αv integrin, Link, MMP1, MMP13, MMP9, TGFβ, TIMP2, TIMP3

D1-2

Sox9D1-1B. Day 1 Timecourse (2, 8, 24 hours)

Aggrecan, Fibronectin, MMP9, Sox9, TIMP1C5

c-Fos, c-JunC4

α5 integrin, MMP13, MMP3, TGFβ, TIMP3C3

ADAMTS5, OP-1, TNFαC2

ADAMTS4, β-actin, bFGF, CD44, Collagen 1, Collagen 2, HA-Synthase, IGF-1, IGF-2, 
IL-1β, IL-4, IL-6, αv integrin, Link, MMP1, TIMP2

C1A. Complete Timecourse (2,8,24 hours) for
Days 1, 10, 28

Genes ClusteredGroupsConditions Used in Clustering

c-Fos, c-Jun, IL-1βD28-5

Collagen 1, IGF-1, IL-4, OP-1, TIMP2D28-4

ADAMTS5, Aggrecan, HA-Synthase, IGF-2, IL-6, MMP1, Sox9D28-3

ADAMTS4, β-actin, bFGF, Fibronectin, α5 integrin, αv integrin, Link, MMP9, TIMP1D28-2

CD44, Collagen 2, MMP3, MMP13, TGFβ, TIMP3, TNFαD28-1D. Day 28 Timecourse (2, 8, 24 hours)

c-Fos, c-Jun, Collagen 2, IGF-1D10-5

Aggrecan, β-actin, bFGF, IGF-2, MMP13, MMP9, TIMP1D10-4

ADAMTS4, Fibronectin, HA-Synthase, α5 integrin, Link, Sox8, TGFβ, TIMP3D10-3

ADAMTS5, CD44, Collagen 1, αv integrin, MMP3, OP-1, TNFαD10-2

IL-1β, IL-4, IL-6, MMP1, TIMP2D10-1C. Day 10 Timecourse (2, 8, 24 hours)

Fibronectin, MMP3, OP-1D1-5

Collagen 1, IL-1β, TIMP1, TNFαD1-4

ADAMTS5, AggrecanD1-3

ADAMTS4, β-actin, bFGF, CD44, c-Fos, c-Jun, Collagen 2, HA-Synthase, IGF-1, IGF-2, 
IL-4, IL-6, α5 integrin, αv integrin, Link, MMP1, MMP13, MMP9, TGFβ, TIMP2, TIMP3

D1-2

Sox9D1-1B. Day 1 Timecourse (2, 8, 24 hours)

Aggrecan, Fibronectin, MMP9, Sox9, TIMP1C5

c-Fos, c-JunC4

α5 integrin, MMP13, MMP3, TGFβ, TIMP3C3

ADAMTS5, OP-1, TNFαC2

ADAMTS4, β-actin, bFGF, CD44, Collagen 1, Collagen 2, HA-Synthase, IGF-1, IGF-2, 
IL-1β, IL-4, IL-6, αv integrin, Link, MMP1, TIMP2

C1A. Complete Timecourse (2,8,24 hours) for
Days 1, 10, 28

Genes ClusteredGroupsConditions Used in Clustering
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Table 3.3 p-values for centroid separation determined by student’s t-test as described in [3]   
 
 
 
 
 
 
 
 
 
 
Figure 3.3 Centroid profiles for k-means clustering of complete data set 
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Figure 3.3 Centroid profiles for 5 clusters found by k-means clustering. Centroid profiles 
were calculated as the average expression profile (in response to 25% ramp-and-hold 
compression relative to free-swell) of genes within each cluster. Data shown as mean ± S.E.  
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Figure 3.4 Individual gene expression responses for genes in Cluster C2 show large variation 
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 Figure 3.4 Individual gene expression responses of Cluster C2 genes ADAMTS-5, OP-1, and 

TNFα to 25% compression relative to free swell. Data shown as mean ± S.E. for 4 complete 
replicates. ADAMTS-5 and OP-1 displayed similar behavior on Day 1 in culture, while OP-1 
and TNFα showed similar responses to compression on Days 10, 28. * p<0.05, † p<0.1 by t-
test of log-transformed ratios compared to free-swell levels of log(1) = 0. 
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Figure 3.5 Centroid profiles for k-means clustering of gene expression responses on individual days in culture 
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Figure 3.5 Centroid profiles for k-means clustering of gene expression responses to 2, 8, 24 hours of 25% compression relative to 
free-swell on A) Day 1, B) Day 10, C) Day 28 in agarose gel culture. Centroids profiles are calculated as the average gene 
expression profile for genes within a cluster. Data shown as mean ± S.E.  
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Figure 3.6 Individual gene expression profiles for co-clustering genes 
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3.8 Supplementary Analysis – Self-organizing Maps 

In addition to k-means clustering, we also examined the use of self-organizing maps 

(SOMs) to group co-expressed genes in our experimental system. The self-organizing map is an 

unsupervised neural network learning algorithm first developed by Kohonen (1984).  An SOM 

starts with a set of nodes with a simple topology (e.g., two-dimensional grid) and a distance 

function. During the learning process, the nodes are iteratively mapped into “gene expression 

space,” with nodes moving towards gene clusters. When training is complete, the clusters are 

identified by mapping the data to the closest node (reviewed in [1, 2]). Both k-means clustering 

and SOMs require pre-determining the initial number of clusters; in addition, SOMs require an 

initial topology [1]. SOMs are appealing in that they simplify and reduce the dimensionality of 

the expression data. In addition, they are more robust than k-means to noisy data. However, 

when clustering gene expression data, the SOM results are more dependent on the size of the 

clusters than on actual differences among gene profiles [1]. SOMs have been previously applied 

to DNA microarray data to examine yeast gene expression [3] and hematopoietic differentiation 

[4]. 

To create the self-organizing maps, we first standardized our gene expression vectors and 

then used principle component analysis as described above. We then applied the Self-Organizing 

map (SOM) clustering algorithm available in the neural network toolbox of MATLAB. The 

“newsom” function creates a Self-Organizing map network which can then be trained with the 

“train” function. Clusters were assigned by finding the nearest node to each point in the data set 

(see demo in MATLAB Help section). We found that a 2x3 hexagonal topology gave the most 

robust results. A 2-D plot of the self-organizing map is shown in Figure 3S.1, and the cluster 

constituents are listed in Table 3S.1. Unlike in k-means clustering, where all the closely related 
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genes were grouped into a single group of similarly behaving genes, the SOM nodes tended to 

congregate in areas more densely populated with genes. This predisposition of SOMs to depend 

more on cluster size [1] combined with our limited gene set (in comparison to microarray data) 

resulted in less than optimal grouping of genes that had more extreme behaviors. Overall, the 

average gene expression profiles for the clusters found by the SOM (Figure 3S.2) were similar to 

the centroid profiles found by k-means clustering (Figure 3.3); however, the individual behavior 

of genes within a cluster was not necessarily representative of the cluster as a whole (for 

example, TNF-α gene expression behavior is distinct from Cluster 3, although it is grouped in 

that cluster). 

When clustering the temporal gene expression responses to compression (at 2, 8, 24 

hours) on each day in culture (Day 1, 10, 28) separately, we found that as the data spread more 

evenly across the principle component space (Figure3S.3), the cluster components from SOM 

analysis became more similar to those found by k-means clustering. In the Day 28 clustering, 

taking into account 6 groups found in SOMs vs. 5 groups by k-means clustering, the groups of 

genes were almost identical, with the exception of only a few genes (Centroid profiles shown in 

Figure 3S.4). 

To further investigate the biological significance of the clusters, we separated out two 

groups of strongly clustered genes observed in both clustering techniques: (1) those that showed 

upregulation at 2 hrs of compression on Day 1 in culture but little subsequent mechanical 

responses (ADAMTS4, CD44, Collagen 1, Collagen 2, HA-synthase, IGF-1, IGF-2, IL-1β, IL-4, 

IL-6, αv integrin, Link, MMP1, TIMP2) , and (2) those that showed a transition from early 

upregulation on Day 1 in culture to late (after 8 hrs of compression) upregulation on subsequent 

days in culture (α5 integrin, fibronectin, MMP13, MMP3, MMP9, TGFβ, TIMP1, TIMP3). We 
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used the Ingenuity knowledge base (http://ingenuity.com with the kind assistance of Rebecca Fry 

from Center for Environmental Health Sciences at MIT, see [5] for other applications of this 

program) to search for known interactions among these groups of genes. Out of the first group of 

genes, Ingenuity found 10 of 15 genes, 8 of which were in a single network (Figure 3S.5). This 

network is associated functionally most highly with cancer and cell cycle processes. This is an 

interesting finding, especially since chondrocyte proliferation and biosynthesis rates in agarose 

gel culture are higher on Day 1 in culture, and further distinguishes the Day 1 response to 

mechanical compression from that during subsequent days in culture. The probability of finding 

this network given the input list is less than 10-12, calculated by a Fisher’s exact test.  

Although the genes we examined were pre-selected for their relevance to cartilage 

biology, there was no prior assumption of interactions between the individual genes. Out of the 

second group of genes, Ingenuity found 6 of the 9 genes, all of which were part of a single 

network (Figure S3.6, p<10-17), whose function was associated with matrix development. This 

network is similar to what we described previously upon visual comparison with cartilage tissue 

response to mechanical compression, and includes AP-1 and NF-κB, further supporting our 

conclusion that this set of genes is similarly regulated in both cartilage tissue and agarose gel 

culture.  

In conclusion, while SOMs can be a powerful tool for visually mapping large sets of gene 

expression data obtained from microarray analysis, because of our limited data set, k-means 

clustering appeared to find more relevant gene expression trends. This was especially 

pronounced given that a large portion of the genes examined behaved similarly with upregulation 

at 2 hours of compression on Day 1 in culture, but little response to compression on subsequent 

days in culture. When applying the SOMs to our data on individual days in culture, we found 
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that with the increased spread of the data across the “gene expression space,” there was better 

agreement between both clustering techniques. Finally, by searching the Ingenuity knowledge 

base with groups of gene observed with both clustering algorithms, we were able to identify 

potential protein networks from the groups of co-expressed genes which further supported our 

visual observations and conclusions. 
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3.9 Supplementary Figures 

Figure 3S.1 2-D Projection plot of self-organizing map and standardized gene expression 
vectors represented the two main principle components 
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Figure 3S.1 2-D projection plot of self-organizing map generated from MATLAB, with
2 x 3 hexagonal initial topology and corresponding genes represented by the two main 
principle components obtained from PCA analysis of the standardized gene expression 
vectors. 
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Table 3S.1 Cluster constituents for self-organizing map clustering of complete data set as well as 2, 8, 24 hour timecourse on 
individual days in culture 
 

IL1β, α5 integrin, MMP13, MMP3, TGFβ, TIMP3, TNFαDS28-6

ADAMTS4, β-actin, bFGF, fibronectin, αv integrin, Link, MMP9, TIMP1DS28-5

CD44, cFos, cJun, Collagen 2DS28-4

Aggrecan, IL-6DS28-3

Collagen 1, IGF-1, OP-1, TIMP2DS28-2

ADAMTS5, HA-synthase, IGF-2, IL-4, MMP1, Sox9DS28-1D. Day 28 Timecourse (2, 8, 24 hrs)

ADAMTS5, αv integrin, MMP3DS10-5

CD44, Collagen 1, IL1β, IL-4, IL-6, MMP1, OP-1, TIMP2, TNFαDS10-4

ADAMTS4, HA-Synthase, α5 integrin, Link, Sox9, TIMP3DS10-3

Fibronectin, TGFβ, TIMP1DS10-2

Aggrecan, β-actin, bFGF, cFos, cJun, Collagen 2, IGF-1, IGF-2, MMP9, MMP13DS10-1C. Day 10 Timecourse (2, 8, 24 hrs)

β-actin, bFGF, CD44, cFos, cJun, Collagen 2, IGF-1, IGF-2, αv integrin, MMP13, 
TGFβ, TIMP2

DS1-5

ADAMTS5, fibronectin, MMP3, OP-1DS1-4

ADAMTS4, HA-Synthase, IL-4, IL-6, α5 integrin, Link, MMP1, MMP9, TIMP3DS1-3

Collagen 1, IL1β, TIMP1, TNFαDS1-2

Aggrecan, Sox9DS1-1B. Day 1 Timecourse (2, 8, 24 hrs)

ADAMTS4, Collagen 2, IGF-2, IL1β, αv integrin, LinkCS6

CD44, Collagen 1, HA-Synthase, IGF-1, IL-4, IL-6, MMP1, OP-1, TIMP2CS5

β-actin, bFGF, α5 integrin, MMP13, TGFβ, TIMP3CS4

cFos, TNFαCS3

fibronectin, MMP3, MMP9, TIMP1CS2for Days 1, 10, 28

ADAMTS5, aggrecan, cJun, Sox9CS1A. Complete Timecourse (2,8,24 hrs)

Genes ClusteredGroupsConditions Used in Clustering

IL1β, α5 integrin, MMP13, MMP3, TGFβ, TIMP3, TNFαDS28-6

ADAMTS4, β-actin, bFGF, fibronectin, αv integrin, Link, MMP9, TIMP1DS28-5

CD44, cFos, cJun, Collagen 2DS28-4

Aggrecan, IL-6DS28-3

Collagen 1, IGF-1, OP-1, TIMP2DS28-2

ADAMTS5, HA-synthase, IGF-2, IL-4, MMP1, Sox9DS28-1D. Day 28 Timecourse (2, 8, 24 hrs)

ADAMTS5, αv integrin, MMP3DS10-5

CD44, Collagen 1, IL1β, IL-4, IL-6, MMP1, OP-1, TIMP2, TNFαDS10-4

ADAMTS4, HA-Synthase, α5 integrin, Link, Sox9, TIMP3DS10-3

Fibronectin, TGFβ, TIMP1DS10-2

Aggrecan, β-actin, bFGF, cFos, cJun, Collagen 2, IGF-1, IGF-2, MMP9, MMP13DS10-1C. Day 10 Timecourse (2, 8, 24 hrs)

β-actin, bFGF, CD44, cFos, cJun, Collagen 2, IGF-1, IGF-2, αv integrin, MMP13, 
TGFβ, TIMP2

DS1-5

ADAMTS5, fibronectin, MMP3, OP-1DS1-4

ADAMTS4, HA-Synthase, IL-4, IL-6, α5 integrin, Link, MMP1, MMP9, TIMP3DS1-3

Collagen 1, IL1β, TIMP1, TNFαDS1-2

Aggrecan, Sox9DS1-1B. Day 1 Timecourse (2, 8, 24 hrs)

ADAMTS4, Collagen 2, IGF-2, IL1β, αv integrin, LinkCS6

CD44, Collagen 1, HA-Synthase, IGF-1, IL-4, IL-6, MMP1, OP-1, TIMP2CS5

β-actin, bFGF, α5 integrin, MMP13, TGFβ, TIMP3CS4

cFos, TNFαCS3

fibronectin, MMP3, MMP9, TIMP1CS2for Days 1, 10, 28

ADAMTS5, aggrecan, cJun, Sox9CS1A. Complete Timecourse (2,8,24 hrs)

Genes ClusteredGroupsConditions Used in Clustering 
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Figure 3S.2 Average expression profile for clusters found by self-organizing maps 
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Figure 3S.2 Average gene expression profile in response to 25% compression for cluster found 
by self-organizing maps applied to complete data set. Data shown as mean ± S.E. of genes 
within each cluster. 
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Figure 3S.3 2-D Projection plots of self-organizing map and gene expression vectors for Days 1, 
10, and 28 clustered separately represented by the two main principle components 
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Figure 3S.3 2-D projection plot of self-organizing maps generated from MATLAB, with 2 x 3
hexagonal initial topology and corresponding genes represented by the two main principle 
components obtained from PCA analysis of the standardized gene expression vectors on Days 
1, 10, and 28, clustered separately. 
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Figure 3S.4 Average expression profile for clusters found by self-organizing maps of gene 
expression on Days 1, 10, and 28 individually 
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Figure 3S.4 Average gene expression profile in response to 2, 8, and 24 hours of 25%
compression for clusters found by self-organizing maps applied to Day 1, 10, and 28 
separately. Data shown as mean ± S.E. of genes within each cluster. 
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Figure 3S.5 Protein network identified by search using Ingenuity knowledge base 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3S.5 Protein network identified by search using Ingenuity knowledge base. Out of 
genes that showed upregulation at 2 hrs of compression on Day 1 in culture but little 
subsequent mechanical responses (ADAMTS4, CD44, Collagen 1, Collagen 2, HA-
synthase, IGF-1, IGF-2, IL-1β, IL-4, IL-6, αv integrin, Link, MMP1, TIMP2), Ingenuity 
found 10 of 15 gene products, 8 of which were in the network above. Probability of finding 
this network given the input list is less than 10-12, by a Fisher’s exact test. 
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Figure 3S.6 Protein network identified by search using Ingenuity knowledge base  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3S.6 Protein network identified by search using Ingenuity knowledge base. Out of the 
genes that showed a transition from early upregulation on Day 1 in culture to late (after 8 hrs 
of compression) upregulation on subsequent days in culture (α5 integrin, fibronectin, 
MMP13, MMP3, MMP9, TGFβ, TIMP1, TIMP3), Ingenuity found 6 of 9 gene products, all 
of which were in the network above. Probability of finding this network given the input list is 
less than 10-17, by a Fisher’s exact test 
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Figure 3S.7 Individual gene expression responses to 2, 8, 24 hours of 25% compression on Days 
1, 10, and 28 in agarose culture  
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Figure 3S.7 Individual gene expression responses, measured by real-time RT-PCR, to 2, 8, 24 
hours of 25% compression on Days 1, 10, and 28 in agarose culture. Data shown as mean ± 
S.E. for 4 complete replicates. * p<0.05, † p<0.1 by t-test of log-transformed ratios compare
free-swell levels of log(1) = 0. 
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Figure 3S.8 Biosynthesis measurements for Days 1, 10, 28 in agarose gel culture 
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Figure 3S.8 Biosynthesis measurements for Days 1, 10, 28 in agarose gel culture. A) 
Glycosaminoglycan (GAG) content and proteoglycan synthesis rate, as measured by average
sulfate incorporation rate over 24 hours, of free-swell samples on Days 1, 10, and 28 in 
agarose gel culture. B) GAG loss to medium over 24 hours under free-swell or 25% 
compression on Days 1, 10, 28 in agarose gel culture. Data shown a mean ± S.D. for 4 
complete replicates. 
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Chapter 4   

Mechanical regulation of MAPkinase (ERK1/2, p38, SEK) and Akt signaling 

pathways in chondrocytes in agarose cultures evolve distinctly with matrix 

development over time in culture 

 

 

4.1 Introduction 

Articular cartilage is an avascular, aneural, and alymphatic tissue with little capacity for 

regeneration. In vivo, cartilage experiences a variety of mechanical stresses, including dynamic 

and static compressive, tensile, and shear forces. Peak dynamic stresses of 15-20 MPa result in 

low strains of 1-3%, while sustained forces of approximately 3.5 MPa result in peak strains up to 

40-45% [1, 2]. Osteoarthritis is a degenerative disease, found primarily in weight-bearing joints 

[3], and is characterized by the loss of matrix integrity, mechanical properties, and mechanical 

responsiveness of the tissue [4, 5]. Tissue engineering as a means of repairing cartilage defects 

has been extensively studied. While many approaches have shown promise in promoting 

chondrocyte phenotype, matrix development, and increased mechanical properties, given the 

mechanical environment and functionality of the tissue, the response of tissue engineered 

cartilage to mechanical loads can be important for long-term success. 

 In Chapter 3, we have shown that while gene expression responses of 3-D agarose culture 

of chondrocytes change with ECM accumulation and show similarities with responses of intact 

 - 87 -



cartilage tissue, the overall responses to mechanical stimulation at Day 28 in culture are still 

distinct from that of “parent” cartilage tissue. MAPkinase signaling has been shown to be 

important in cartilage response to mechanical stimulation. In vivo, rats fed a hard diet showed 

ERK and JNK activation which led to AP-1 activation [6]. Static compression and dynamic shear 

of cartilage explants in vitro have been shown to activate the MAPkinases in a distinct, time-

dependent manner [7, 8]. Blocking MAPkinases ERK1/2 and p38 using small-molecule 

inhibitors altered downstream gene expression of the majority of genes examined, including 

matrix proteins and proteases, in these explant models, demonstrating the regulatory importance 

of MAPks in mechanotransduction [8]. Fluid flow has also been shown to decrease aggrecan 

promoter activity in monolayer chondrocytes in an ERK-dependent pathway [9]. While Akt 

signaling in response to mechanical stimulation has been studied in other tissue systems, only 

recently, in a quasi-in vivo model, Akt phosphorylation was shown to be differentially regulated 

by static and dynamic compression in a frequency-dependent manner in cartilage [10].  

To further examine the mechanical signaling responses of chondrocytes in 3-D agarose 

culture, we investigated the MAPkinase (ERK1/2, p38, SEK) and Akt signaling kinetics of 

chondrocytes in agarose culture on Days 1 and 28 in response to ramp-and-hold compression. 

We then compared these responses to previous observations in intact cartilage to gain insights 

into similarities and differences of regulation. 

4.2 Materials and Methods 

4.2.1 Cell Harvest and Culture Chondrocytes were isolated from the femoral condyle cartilage 

of 2- to 3- week old bovine calves (Research 87, Marlborough, MA) by sequential digestion in 

0.2% pronase (Protease type XIV, Sigma) and 0.025% Collagenase-P (Roche), as described 

previously [11]. Cells were counted by a hemocytometer and seeded in 2% agarose (low 
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melting-temperature, Invitrogen) at concentrations of 15 million cells/mL using a stainless steel 

casting frame [12, 13], in a slab geometry approximately 1.6mm thick. 4mm diameter plugs were 

cored from the slab using a dermal punch and cultured in 1% ITS supplemented feed medium 

(high glucose DMEM, 0.1mM nonessential amino acids, 0.4mM proline, 100U/mL PSA – 

penicillin, streptomycin, amphoteracin, 10µg/mL ascorbate) with medium changes every other 

day for up to 28 days. 

For positive controls and to study the effects of compression on Akt signaling in intact 

cartilage, articular cartilage was harvested from the femoropatellar groove of 2- to 3- week old 

bovine calves (Research87), as previously described [7]. 3mm-diameter x 1mm-thich cartilage 

plugs were harvested from the middle zone of the cartilage and cultured for 2-3 days in 1% ITS 

supplemented feed medium (low glucose DMEM, 0.1mM nonessential amino acids, 0.4mM 

praline, 100U/mL PSA, 10µg/mL ascorbate) with medium changes every other day to recover. 

4.2.2 Ramp-and-Hold Compression for Time Course Studies On days 1 and 28 in culture, 

groups of 8 plugs were placed in fresh 1% ITS supplemented medium and compressed over a 2-

minute interval to a final strain of 25% [14] and held for either a short-term (10, 20, 40, 60 

minute) or long-term (1, 2, 4, 8, 24 hour) time course. Free-swell cultures for short-term (10, 20, 

40, 60 minute) or long-term (1, 2, 8, 24 hour) time courses in fresh 1% ITS medium served as 

controls. At the end of incubation, plugs were pooled, gently blotted dry with sterile gauze, and 

flash frozen in liquid nitrogen. For cartilage controls, groups of 8 cartilage plugs were placed in 

fresh 1% ITS supplemented medium and compressed over a 2-minute interval to a final strain of 

50% [14] and held for 1, 2, 8, or 24 hours, with free-swell cultures as controls. At the end of 

incubation, plugs were pooled, gently blotted dry with sterile gauze, and flash frozen in liquid 

nitrogen. 
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4.2.3 Protein Isolation and Immunoblotting For each pooled sample, protein was extracted as 

previously described [7]. Briefly, samples were pulverized under liquid nitrogen and 

homogenized (BioSpec Products Inc) in 400 uL NP-40 type homogenization buffer with protease 

inhibitors (20mM Tris (pH7.6), 120mM NaCl, 10mM EDTA, 10% glycerol, 1% Nonidet P-40, 

2mM Na3VO4, 100mM NaF, 10mM Na4P2O7, 1mM phenymethylsulfonyl fluoride, 40 ug/mL 

leupeptin). Homogenates were then extracted by end-over-end rotation at 4C for 1 hour and 

clarified by centrifugation (13,000g, 4C) for 1 hour. Total protein in the supernatant was 

quantified using the BCA Assay (Pierce). For probing ERK1/2 and Akt phosphorylation state – 

Aliquots of 30ug total protein suspended in Laemmli buffer were resolved by 10% SDS-PAGE 

(BioRad), transferred to Trans-Blot® nitrocellulose membranes (BioRad), and blocked in 5% 

BSA (ERK1/2) or 5% Nonfat milk (Akt) in PBST (phosphate-buffered saline +0.05% tween-20) 

for 2 hours at 37C (phospho-ERK1/2) or room temperature(RT) (total ERK1/2, phospho- and 

total Akt). Membranes were then incubated with phosphorylation state-specific antibodies (Cell 

Signaling Technology) overnight at 4C; washed with PBST (3x10 minutes); incubated with 

horseradish peroxidase-conjugated goat anti-rabbit secondary (Cell Signaling Technology) for 1 

hour at RT; and washed again with PBST (3x10minutes). For probing p38 and SEK 

phosphorylation state – Aliquots of 40ug total protein suspended in Laemmli buffer were 

resolved by 10% SDS-PAGE (BioRad), transferred to Immuno-Blot™ PVDF membranes 

(BioRad), and blocked in 5% milk in TBST (Tris-buffered saline +0.05% tween-20) for 2 hours 

at RT. Membranes were then incubated with phosphorylation state-specific (Cell Signaling 

Technology) overnight at 4C; washed with TBST (3x10minutes); incubated with horseradish 

peroxidase-conjugated goat anti-rabbit secondary (Cell Signaling Technology) for 1 hour at RT; 

and washed again with TBST (3x10minutes). For the ECL reaction, immunoblots were 
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developed for 5 minutes using Amersham ECL Plus Western Blotting Reagent and visualized 

using a gel imaging system (Alpha Innotech). After imaging, immunoblots were washed 

2x5minutes in wash buffer, stripped with Restore™ Plus Western Blot Stripping Buffer (Pierce), 

washed again 2x5minutes and reprobed with their respective phosphorylation state-independent 

antibodies (Cell Signaling Technology) to account for loading variabilities.  

4.2.4 Statistical Analysis Band intensities were quantified using the AlphaEase™ FC v4.0 

software. For analysis, phosphorylation-state specific band intensities were normalized to 

phosphorylation state independent bands. Then, the band densities within a given blot were 

normalized to the most common test condition between experiments. Four complete replicates 

(four different animals) were performed. Two-way ANOVAs (Systat12 software), with 

dependent values created by normalization removed, were used to determine whether significant 

changes (p<0.05) occurred.  

4.3 Results 

4.3.1 Time course of ERK1/2 phosphorylation in response to ramp-and-hold compression 

show distinct responses on days 1, 28 in agarose gel culture On Days 1, 28 in agarose gel 

culture, groups of plugs were subjected to 25% ramp-and-hold compression for a short-term (0-

60 minute) or long-term (1-24 hour) time course. ERK1/2 phosphorylation was probed by 

Western blotting. On Day 1, ERK1/2 phosphorylation varied significantly with load duration 

(ANOVA, p<0.001 for ERK1, p<0.05 for ERK2). In both short-term (<60min) long-term (1-

24hr) loading time courses, phospho-ERK1/2 levels under compression were highest at the 

earliest timepoints (Figure 4.1), with levels dropping to below that of free-swell samples by 24 

hours. On Day 28, ERK1/2 phosphorylation also varied significantly with load duration 

(ANOVA, p<0.001) and showed highest levels of phospho-ERK1/2 at the earliest timepoints 
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(Figure 4.2). However, ERK1/2 activation remained elevated in compressed samples even at 24 

hours (Figure 4.2). On both Days 1 and 28, ERK1/2 activation showed a bimodal decay, with 

rapid decrease in phospho-ERK1/2 levels between 1 to 4 hours of compression followed by a 

leveling out after 8 hours of compression (Figure 4.3). 25% compression induced a greater 

response in ERK1/2 phosphorylation relative to free-swell levels on Day 28 compared to Day 1 

(ANOVA, p<0.001), with phospho-ERK1/2 levels peaking at an approximately 8-10 fold 

increase in compressed samples on Day 28 and 3-fold increase on Day 1 (Figure 4.3). In 

addition, phospho-ERK1/2 levels remained elevated under compression at 24 hours on Day 28, 

while phospho-ERK1/2 levels under compression drop to levels at or below that of free-swell by 

24 hours on Day 1 (Figure 4.3). Phosphorylation kinetics of ERK1/2 of chondrocytes in agarose 

gel culture in response to 25% compression appear similar on Days 1, 28, but the overall 

magnitude of stimulation differ as the chondrocyte-gel construct develops. 

4.3.2 Akt phosphorylation response to 50% compression in cartilage explants Akt is a 

signaling molecule in the PI3K pathway that has been implicated in cell growth, differentiation, 

survival, and motility. Previous studies on signaling cascades in response to mechanical 

compression in cartilage have focused on MAPKinase signaling. We examined Akt 

phosphorylation in response to 50% compression of intact cartilage explants over 1-24 hours by 

Western blotting with phosphorylation state-specific antibodies. In free-swell, Akt was weakly 

phosphorylated, with little variation for 24 hours after placement in fresh medium (Figure 4.4A). 

Under 50% compression, phospho-Akt levels were suppressed at all times observed, with no 

detectable levels of phospho-Akt after 2 hours of loading (Figure 4.4A). Trends were consistent 

across all four complete replicates. Interestingly, total Akt levels decreased significantly over the 
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load duration (ANOVA, p<0.01), with levels dropping to approximately 50% of free-swell levels 

after 8 hours of compression (Figure 4.4B).  

4.3.3 Akt phosphorylation in response to 25% ramp-and-hold compression of agarose gel 

chondrocyte cultures similar on Days 1, 28 in culture To examine the effects of 25% ramp-

and-hold compression on Akt activation in agarose gel culture, we examined Akt 

phosphorylation over both a short-term (10-60 minute) and long-term (1-24 hours) compression 

time course by Western blotting, as we did with ERK1/2, on Days 1 and 28 in culture. On Day 1, 

phospho-Akt levels varied significantly with load duration (ANOVA, p<0.01). Over the short-

term time course, phospho-Akt levels were suppressed in compressed samples (p<0.01) (Figure 

4.5A,C). Akt phosphorylation was similar in compressed and free-swell levels over the long-

term time course, with slight upregulation (approximately 40%) at 24 hours (Figure 4.5B,D). On 

Day 28, phospho-Akt levels were similarly suppressed by compression over the short-term time 

course (p<0.001, Figure 4.6A,C). Over the long-term time course, Akt phosphorylation still 

showed slight downregulation (p<0.05, Figure 4.6B,D), with levels rebounding by 24 hours. 

Comparing the response of phospho-Akt relative to free-swell controls over both time scales on 

Day 1 v. Day 28, we saw no significant differences over the short-term time course, with 

suppression of phospho-Akt levels by approximately 60% at the earliest timepoint (Figure 4.7A). 

However, phospho-Akt levels appeared to recover more slowly at later times on Day 28 relative 

to Day 1, although this trend is not significant (p=0.074, Figure 4.7B). Total Akt levels on Days 

1 and 28 showed no systematic changes over the loading duration. Overall, we observed similar 

levels of phospho-Akt downregulation in the initial response to 25% compression in agarose gel 

culture on both Day 1 and 28 of culture. Responses were similar between Days 1 and 28 in 

culture. 
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4.3.4 p38 and SEK showed minimal activation in response to 25% ramp-and-hold 

compression on Days 1 and 28 in culture We also examined the role of p38 and JNK 

MAPkinase pathways in agarose gel cultures of chondrocytes to 25% compression. Both 

pathways were transiently activated in a strain-dependent manner in cartilage tissue [7]. 

However, both were minimally phosphorylated in response to 25% compression of agarose gel 

cultures at all times examined. Low levels of phospho-p38 were detected at 10 and 20 minutes of 

compression on Day 28 in agarose gel culture (Figure 4.8C), but not on Day 1 in agarose gel 

culture (Figure 4.8B). No detectable levels of phospho-SEK (upstream activator of JNK) were 

found (Westerns shown in 4.8 Supplementary figures ). To determine whether the pathways were 

intact, agarose cultures were treated with 10ng/mL IL1β+100 ng/mL TNFα on Days 1 and 28 

[15]. Cartilage tissue compressed to 50% strain for 1 hour was used as an additional positive 

control [7]. Protein was extracted from each sample and immunoblotted for phospho-p38 and 

phospho-SEK (Figure 4.8A,D). phospho-p38 and phospho-SEK were found in response to 50% 

compression in cartilage, as well as in response to IL1+ΤΝFα treatment, suggesting that both 

pathways are intact in agarose culture, but not stimulated by 25% compression. 

4.4 Discussion 

As previously discussed, many physical and biochemical signals can contribute to 

chondrocyte mechanical signaling. Cell deformation in agarose gel constructs decreases with 

development of the pericellular matrix [16]; however, modulus, streaming potential, 

permeability, and the development of cell-matrix interactions become more similar to intact 

tissue over time in culture [17].  Given the complexity of signals, we sought to study the role of 

MAPkinase signaling and Akt signaling in agarose cultures of chondrocytes and its dependence 

on matrix development over time in culture by examining temporal phosphorylation of these 
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signaling molecules in response to ramp-and-hold compression. By comparing the transient 

activation of MAPkinases ERK1/2, p38, SEK as well as Akt in agarose cultures to that in intact 

tissue, we hope to gain insights into relevant mechanotransduction pathways, and how tissue 

engineered constructs may behave under load. 

 Previous studies in cartilage have found that ERK1/2 is strongly phosphorylated in 

response to compression in a strain-dependent manner. The decay in phospho-ERK1/2 showed a 

bimodal temporal response, with a rapid decay from maximum levels of phosphorylation at early 

times (t<2hours) followed by a sustained level of ERK1/2 activation at later times (through 24 

hours) in response to 50% compression [7]. Similarly, in agarose gel culture, ERK1/2 was 

phosphorylated transiently in response to 25% compression on both Days 1 and 28. However, 

sustained levels of phospho-ERK1/2 in response to compression were seen only on Day 28. In 

addition, peak levels of phospho-ERK1/2 were higher on Day 28 than Day 1.  

 In contrast to observations in intact cartilage [7], p38 and pSEK showed minimal 

responses to ramp-and-hold compression at all times observed. 50% compressed cartilage 

controls showed that this was a real observation and not a result of changes in immunoblotting 

technique. In addition, treatment of agarose cultures on both Days 1 and 28 with IL-1β and 

TNFα stimulated p38 and SEK phosphorylation as expected [15], suggesting that the signaling 

pathways were intact. While low levels of phospho-p38 were detected at 10 and 20 minutes of 

compression in Day 28 agarose cultures, they were much lower than stimulated by cytokines IL-

1β and TNFα, possibly suggesting little functional relevance. It is possible that peak stimulation 

under compression occurred at times under 10 minutes; however, this would be technically 

difficult to confirm given experimental conditions. It is also possible that compression levels 

higher than 25% are required to stimulate p38 and SEK phosphorylation in agarose constructs; 
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once again, loss of agarose construct integrity and cracking at higher strains prevented testing 

this possibility. In addition, ERK1/2 responses at 25% ramp-and-hold compression in agarose 

culture were similar to that of 50% compression of cartilage, suggesting that this may be a 

functionally similar level of loading given the different material properties between agarose 

culture and intact cartilage tissue. 

 The increase in magnitude of ERK1/2 phosphorylation in response to mechanical loading 

with time in agarose gel culture is consistent with studies suggesting that accumulation of FGF-2 

(bFGF) was necessary for loading-induced ERK1/2 activation [18]. In contrast with that study, 

we observed transient, but not sustained ERK1/2 activation, on Day 1 of agarose gel culture, 

when little to no FGF-2 would have accumulated in the pericellular matrix, suggesting that other 

mechanical signals are contributing to this ERK1/2 response. This discrepancy could also be due 

in part to the different loading or hydrogel culture systems used. Fluid flow has been shown to 

activate ERK1/2 signaling in monolayer chondrocytes [9]. Although fluid velocities during the 

transient phase of ramp-and-hold loading would be much lower than those used in the monolayer 

study, fluid flow could contribute to the transient upregulation of ERK1/2 observed at early 

points in loading on both Day 1 and 28 in agarose culture. 

 We also examined the role of Akt signaling in response to mechanical compression in 

intact cartilage as well as over time in agarose gel culture. In cartilage Akt has been implicated 

MMP2 linked actin reorganization during development [19], IGF regulation of chondrocyte 

differentiation [20], as well as OncostatinM and TGFβ signaling [21, 22]. In chondrocytes 

isolated from human ankle cartilage, Akt was shown to be stimulated by α5β1 integrins in 

response to dynamic mechanical stretch in monolayer [23]. However, its role in tissue-level 

mechanotransduction is not well understood. Recently, in a quasi-in vivo porcine model, Akt 

 - 96 -



phosphorylation was shown to be transiently downregulated by static and dynamic compression 

in a frequency-dependent manner in cartilage [10]. In our study, we found low basal levels of 

phospho-Akt in free-swell culture of cartilage explants. 50% compression over 2 hours in 

duration decreased phospho-Akt levels to below detection level. In addition, we observed a 

significant downregulation of total-Akt levels over 24 hours of 50% compression in intact 

cartilage tissue. This is in contrast to MAPkinase signaling, where no significant changes in 

total-MAPkinase levels were seen in response to loading [7], and to the studies in porcine 

patellofemoral joints where no changes in total Akt were described [10]. Akt degradation by 

caspases during apoptosis has been observed in other cell systems, and TNFα has been shown to 

induce caspase-dependent ubiquitination and subsequent degradation of Akt, impairing insulin 

signaling in adipocytes [24]. It is possible that a similar mechanism involving cytokine signaling 

is involved in Akt responses to mechanical compression. In cartilage IL-1 has been shown to at 

least partially contribute to static compression inhibition of proteoglycan synthesis. Blocking 

with IL-1 receptor antagonist increases sulfate incorporation in compressed, but not in free-swell, 

cartilage [25]. It is interesting to speculate that IL-1 may also be involved in changes in Akt, 

although IL-1 treatment of monolayer chondrocytes has only been shown to decrease Akt 

phosphorylation [26]. Further studies are necessary to elucidate the mechanism by which total-

Akt levels are diminished in cartilage. 

 Unlike in cartilage, 25% compression of agarose gel cultures on Day1 and 28 of culture 

transiently decreases phospho-Akt levels during early times of loading (under 1 hour) with no 

observed effects on total Akt levels. There is also no significant effect of culture duration on the 

response to loading, although a slight delay in recovery of phospho-Akt levels is seen on Day 28. 
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This suggests that the mechanism of Akt signaling is unique to intact tissue, and that by Day 28 

in agarose gel culture, this mechanism is not present in agarose gel culture. 

 One possible downstream effect of Akt signaling in cartilage is regulation of 

proteoglycan synthesis. IGF stimulation of proteoglycan synthesis in human chondrocytes in 

monolayer or alginate culture has been shown to require Akt, but not ERK1/2 signaling. 

Blocking Akt inhibits proteoglycan synthesis, in part through translation regulation [27]. In 

cartilage, 50% static compression greatly inhibits proteoglycan synthesis, while 25% 

compression in agarose up to Day 28 has little effect on proteoglycan synthesis rates [17]. Given 

the disparity in Akt signaling behavior in cartilage and agarose gel cultures in response to ramp-

and-hold compression, it is likely that this plays a role in the biosynthetic response. Further 

examination is warranted. 
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4.7 Figures 

Figure 4.1 ERK1/2 phosphorylation in response to 25% ramp-and-hold compression on Day 1 in 
agarose culture 
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Figure 4.1 ERK1/2 phosphorylation in response to 25% ramp-and-hold compression on Day 1 
in agarose gel culture. Representative phosphorylation state-specific and state-independent 
Western blots for A) short (10-60 minute) and B) long (1-24 hour) time courses. Equal amounts
of protein were loaded for each condition. Optical density was used to quantify band intensities 
(C,D). Phosphorylation-state specific band intensities were normalized to phosphorylation state 
independent bands. Then, the band densities within a given blot were normalized to the most 
common test condition between experiments (1 hr 25% compression). Data shown as mean ± 
S.E. for 4 complete replicates. 
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Figure 4.2 ERK1/2 phosphorylation in response to 25% ramp-and-hold compression on Day 28 
in agarose gel culture 
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Figure 4.2 ERK1/2 phosphorylation in response to 25% ramp-and-hold compression on Day 
28 in agarose gel culture. Representative phosphorylation state-specific and state-independent 
Western blots for A) short (10-60 minute) and B) long (1-24 hour) time courses. Equal 
amounts of protein were loaded for each condition. Optical density was used to quantify band 
intensities (C,D). Phosphorylation-state specific band intensities were normalized to 
phosphorylation state independent bands. Then, the band densities within a given blot were 
normalized to the most common test condition between experiments (1 hr 25% compression). 
Data shown as mean ± S.E. for 4 complete replicates. 
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Figure 4.3 ERK1/2 phosphorylation under 25% compression relative to free-swell on Days 1 
and 28 in agarose gel culture 
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Figure 4.3 ERK1/2 phosphorylation under 25% compression relative to free-swell on Days 1 
and 28 in agarose gel culture. Optical density was used to quantify band intensities. 
Phosphorylation-state specific band intensities were normalized to phosphorylation state 
independent bands. Then, the band densities for sample under compression within a given 
blot were normalized to their respective free-swell control. Data shown as mean ± S.E. fo
complete replicates. Day 28 response is significantly different from Day 1 response, as 
determined by ANOVA, p<0.001. 
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Figure 4.4 Akt regulation by chondrocytes in intact cartilage in response to 50% compression  
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Figure 4.4 Akt regulation by chondrocytes in intact cartilage in response to 1, 2, 8, 24 hours 
of 50% compression. A) Representative blot of 1, 2, 8, 24 hour timecourse for free-swell and
50% compressed cartilage. Equal amounts of protein were loaded for each sample. B) Total 
Akt levels under 50% compression, as measured by optical densitometry, normalized to 24 
hour free-swell controls. Data shown as mean ± S.E. for 4 complete replicates. Akt levels 
were significantly decreased in comparison to free-swell by ANOVA, p<0.01. 
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Figure 4.5 Akt phosphorylation in response to 25% ramp-and-hold compression on Day 1 in 
agarose culture 
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Figure 4.5 Akt phosphorylation in response to 25% ramp-and-hold compression on Day 1 in 
agarose culture. Representative phosphorylation state-specific and state-independent Western 
blots for A) short (10-60 minute) and B) long (1-24 hour) time courses. Equal amounts of 
protein were loaded for each condition. Optical density was used to quantify band intensities 
(C, D). Phosphorylation-state specific band intensities were normalized to phosphorylation 
state independent bands. Then, the band densities within a given blot were normalized to the 
most common test condition between experiments (1 hr 25% compression). Data shown as 
mean ± S.E. for 4 complete replicates. 
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 Figure 4.6 Akt phosphorylation in response to 25% ramp-and-hold compression on Day 28 in 
agarose culture  
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Figure 4.6 Akt phosphorylation in response to 25% ramp-and-hold compression on Day 28 in
agarose culture. Representative phosphorylation state-specific and state-independent Western 
blots for A) short (10-60 minute) and B) long (1-24 hour) time courses. Equal amounts of 
protein were loaded for each condition. Optical density was used to quantify band intensities 
(C, D). Phosphorylation-state specific band intensities were normalized to phosphorylation 
state independent bands. Then, the band densities within a given blot were normalized to the 
most common test condition between experiments (1 hr 25% compression). Data shown as 
mean ± S.E. for 4 complete replicates. 
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Figure 4.7 Akt phosphorylation under 25% compression relative to free-swell on Days 1 and 28 
in agarose gel culture 
 

Day 1
Day 28

0 1 2 3 4 5 6 7 8 9 1011 12 1314 1516 1718 19 2021 2223 24

Day 1
Day 28

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 10 20 40 60

0
0.2

0.4
0.6
0.8

1.0
1.2

1.4

1.6

1.8

0  1  2 8 2

25
%

 c
om

pr
es

si
on

 / 
fre

e-
sw

el
l

25
%

 c
om

pr
es

si
on

 / 
fre

e-
sw

el
l

Time (minutes)

Time (hours)

Day 1
Day 28

Day 1

Day 28

A

B

4

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.7 Akt phosphorylation under 25% compression relative to free-swell on Days 1 and 
28 in agarose gel culture. Optical density was used to quantify band intensities. 
Phosphorylation-state specific band intensities were normalized to phosphorylation state 
independent bands. Then, the band densities for sample under compression within a given 
blot were normalized to their respective free-swell control. Unlike intact cartilage, no change
in total Akt were observed. Data shown as mean ± S.E. for 4 complete replicates. Day 1 and 
28 responses are not significantly differen

s 

t. 
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 Figure 4.8 Representative blots for p38 and SEK phosphorylation positive controls  
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Figure 4.8 Representative blots for p38 and SEK phosphorylation positive controls and in 
response to 25% compression. Equal amounts of protein were loaded for each sample. A) Intact 
tissue and IL1+TNFα treated agarose cultures on Days 1, 28 show p38 phosphorylation. p38 in 
response to short-term (10-60 minute) compression on B) Day 1 and C) Day 28 in agarose 
culture shows little phosphorylation in comparison with positive controls. D) Intact tissue and 
IL1+TNFα treated agarose cultures on Days 1, 28 show SEK phosphorylation. 
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4.8 Supplemental Figures  
 
Figure 4S.1 Western blot replicates for phospho-ERK1/2 
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Figure 4S.2 Western blot replicates for phospho-Akt 
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Figure 4S.3 Western blot replicates for phospho- and total- Akt in intact cartilage 
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Figure 4S.4 Western blots for phospho-p38 and phospho-SEK in agarose cultures 
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Chapter 5   

Conclusion 

 

Studies have shown that mechanical loading of intact cartilage and chondrocytes in 3-D 

culture models can change chondrocyte biosynthesis, protein expression, intracellular signaling, 

and gene expression. Mechanical stimulation is increasingly used to stimulate extracellular 

matrix production and accumulation in tissue engineering [1-6]; however, the strains and forces 

that the cells experience during tissue growth changes with time in culture. Few studies have 

investigated how the evolving mechanical and biochemical microenvironment affects cell 

mechanical signaling with time in culture. The purpose of this thesis was to study chondrocyte 

mechanotransduction in 3-D agarose gel culture, and how mechanical signaling progresses with 

extracellular matrix accumulation over time in gel culture. 

 In Chapter 2, we investigated the role of integrin receptors in chondrocyte response to 

dynamic compression in agarose gel culture. In contrast to previous studies in monolayer, we 

found that multiple integrin receptors may play a role in regulating proteoglycan synthesis in 

response to dynamic compression. When blocking α5β1 increases proteoglycan synthesis in 

free-swell cultures, dynamic compression does not increase synthesis above this level. In 

contrast, blocking αvβ3 prevents dynamic compression stimulation of proteoglycan synthesis, 

independent of the effects of blocking αvβ3 on free-swell cultures. This finding is consistent 
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with other studies on the role of ion channel signaling in chondrocytes, where more complex 

interactions were observed in 3-D compared to 2-D culture [7]. The complexity of response to 

mechanical stimulation can be reflective of both the more physiological configuration of 3-D gel 

culture as well as the greater variety of mechanical stimuli associated. In order to study the 

interplay of these mechanical stimuli and how they may differ from native tissue, we 

investigated the temporal gene expression regulation and MAPkinase and Akt activation in 

response to a ramp-and-hold compression and compared these results to those of native tissue. 

 In Chapter 3 we examined the temporal gene expression response of chondrocytes in 

agarose gel culture to 2, 8, and 24 hours of 25% ramp-and-hold compression on Days 1, 10, and 

28 in culture and then compared this response to that of native tissue [8, 9]. We found that 

several genes were regulated similarly in agarose gel culture and in intact tissue. For example, in 

cartilage, the behavior of aggrecan, collagen 2, link protein, MMP1, and TIMP3 suggested that it 

was regulated largely by deformation. Similarly, these genes show similar temporal responses in 

agarose culture as in intact tissue on Day 1 of loading, where cell deformation is a dominant 

mechanical signal, as opposed to later days in culture, where cell deformation is prevented by the 

formation of the pericellular matrix [10]. In addition, we found that the temporal expression of c-

fos and c-jun and its progression with day in culture correlated well with the progression of 

MMP3, 9, and 13 upregulation, suggesting a similar regulatory link involving AP-1 as found in 

native tissue [8, 9]. Through comparisons of expression profiles and gene groupings on Day 1 

and Day 28, we found that the presence of a pericellular matrix greatly altered gene expression 

responses to mechanical stimulation. While on Day 1, most genes were upregulated during the 

transient phase of the ramp-and-hold compression, by Day 28, the temporal responses were more 

diverse. Despite the development of a pericellular matrix and mechanical properties more similar 
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to intact cartilage, expression response to mechanical compression still differed greatly from 

native tissue. 

 In order to further examine the changes in mechanical signaling over the course of 

agarose gel culture, and differences between gel culture and intact tissue, we examined the 

temporal activation of MAPkinase (ERK1/2, p38, SEK) and Akt signaling pathways in response 

to 25% compression on Days 1 and 28 in agarose gel culture and compared them to intact tissue 

[11]. Consistent with previous studies suggesting that FGF-2 accumulation in the pericellular 

matrix was necessary for ERK activation in response to load [12], we found that ERK1/2 

activation in response to compression behaved more similarly to intact tissue after 28 days in 

culture. In contrast, p38 and SEK showed little activation in response to mechanical compression 

on both Day 1 and 28 in culture, although transient activation of p38 after 10 and 20 minutes of 

compression was observed on Day 28 in culture.  

The shift from ERK1/2 dominated MAPk signaling on Day 1 to participation of p38 on 

Day 28 agrees with the changes in MMP gene transcription. MMP13 transcription has been 

shown to be induced by bFGF [13], IL-1β [14], TNFα [15], fibronectin fragments [16], mediated 

by MAPkinases ERK1/2, p38, and JNK, as well as the AP-1 transcription factor. Based on this 

and previous studies suggesting the importance of bFGF in ERK1/2 mediated signaling in 3-D 

cultures of chondrocytes [12], it is interesting to speculate that bFGF signaling, in part through 

IL-1β, transiently activates MAPkinases ERK1/2 and p38, which leads to transient upregulation 

of MMP13 under compression. In contrast, the transient upregulation of ERK1/2 on Day 1 of 

culture may be due to a different mechanism, which would explain the different kinetics for 

MMP13 expression in response to compression. This mechanism is further supported by studies 

in intact tissue that have shown that blocking MAPkinases p38 or ERK blocks transcription of 
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the matrix metalloproteinases, while blocking p38 only partially suppresses transcription of c-Jun 

and c-Fos [17], as well as a role for IL-1β in static compression suppression of proteoglycan 

synthesis in cartilage [18]. Further studies into blocking different aspects of this pathway would 

be necessary to confirm this regulatory link.  

In addition, previous studies in intact cartilage has shown that blocking MAPkinases 

ERK1/2 and p38 affects the gene transcription response of many cartilage-associated genes [17]. 

Given the altered balance of p38 and ERK signaling in agarose gel culture in comparison to 

intact cartilage, it is not surprising that gene expression profiles are unique from cartilage even at 

Day 28 in culture. Also, the dominance of ERK signaling in response to mechanical compression 

on Day 1 in culture explains why many genes were coexpressed in response to compression on 

Day 1 in contrast to Day 28 in culture. 

We also examined the role of Akt signaling in cartilage and in chondrocytes in agarose 

gel culture in response to compression. Akt signaling has roles in development and as a 

downstream effector of growth factors such as IGF and TGFβ, but its role in 

mechanotransduction is not well understood. We found that 50% compression in cartilage 

abolished the low basal levels of Akt phosphorylation found in free-swell cartilage. In addition, 

we found significant downregulation of total Akt levels in cartilage over 24 hours of 

compression, which had not been previously described in cartilage. A potential role of Akt 

signaling is regulation of aggrecan syntheses; however, further studies into the mechanism of 

Akt regulation and the implications of Akt downregulation are warranted. 

Unlike in cartilage, we did not observe changes in total Akt levels in agarose gel cultures 

of chondrocytes. Phospho-Akt levels were transiently suppressed by compression, but recovered 

to levels at or above free-swell levels by 1 hour of loading. Akt signaling response was similar 
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on both Day 1 and 28 in cultures. This suggests that the mechanical and/or biochemical cues 

regulating Akt signaling are similar on both days in culture, and that these are unique from 

cartilage. In chondrocytes, Akt signaling can influence regulation of ADAMTS-4, MMP3 [19], 

TIMP3 [20] gene expression. Further studies are necessary to determine the role they play in 

chondrocyte mechanotransduction. 

In conclusion, we have found that 3-D agarose gel culture can be a good model for 

studying chondrocyte mechanotransduction in a more native environment than monolayer 

culture. However, differences in the local mechanical and biochemical environment of 

chondrocytes result in different overall responses to load than intact cartilage, although similar 

pathways can be identified in both cartilage and agarose gel cultures. Finally, by examining the 

gene expression and intracellular signaling responses of agarose gel culture in comparison to 

native tissue, we have provided a base of information for understanding how tissue engineered 

constructs compare to native tissue and for determining which mechanical cues will result in 

optimal tissue development. 
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Appendix A: Western Blotting for Signaling Protein Phosphorylation 
 

Protein Purification: 
 
Homogenisation Buffer  (HB) – make every 2 weeks 
 
Material Concentration MW (Da) Amount/100 mL 

TrisHCl (pH7.6) 20mM 121.1 0.2422 g 

NaCl 120mM 58.44 0.70128 g 

EDTA 
(disodium salt) 

10mM 372.24 0.37224 g 

Glycerol 10%  --- 10 mL 

NP-40 1%  --- 1 mL 

 
Add fresh each time: 
 
Na3VO4 2mM 183.9 g/mol 0.7356 g/20mL dH2O pH10 for 20 vials of 

100x – see product insert 
NaF 100mM 41.99 0.8398 g/20mL dH2O for 20 vials of 10x 

Na4P2O7 10mM 446.1 0.8922 g/20mL dH2O for 20 vials 10x 

PMSF 1mM 174.2 0.03484 g/2mL isopropanol for 20 vials of 
100x 

Leupeptin 40 ug/mL --- 0.008g/2mL dH2O for 20 vials of 100x 

 
Store at –20 degrees Cm PMSF is stable for less than 1 hr at room temp. EDTA inhibits activity 
of metalloproteases, PMSF and leupeptin against serine and cystein proteases, NaF, sodium 
orthovanadate, sodium pyrophosphate inhibit activity of diphosphatases. *can also use pepstatin 
A, an acid protease inhibitor, or aprotinin, a serine protease inhibitor* 
 

1. Prepare HB + protease inhibitors 
2. Immerse pulverizers in liquid nitrogen until cold. 
3. Pulverize 6-8 samples (4mmx1.6mm disks) by pounding 12 times 
4. Transfer pulverized sample to 5mL tube 
5. Add 400uL HB per tube 
6. Repeat steps 2-5 for all samples, keeping samples on ice. 
7. Homogenize samples using tissue tearor for about 15s per sample 
8. Transfer to 1.5mL eppendorf tubes and sonicate for 10 seconds 
9. Rotate end-over-end for 1 hour at 4 degrees C. 
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10. Clarify by centrifugation at 13000g for 1 hour at 4 degrees C. 
11. Transfer to clean eppendorf tube. Quantify by BCA assay using full 20uL sample. 
12. Concentrate samples by lyophilization: 

a. 30µg protein for ERK and Akt blots 
b. 40µg protein for p38 and SEK blots 

 
Running SDS-PAGE Gel: 
 
Materials: 
10x Running buffer – 30g Tris Base (25mM), 144g Glycine (192mM), 10g SDS (0.01%), 
pH 8.3 in 1 Liter 
 
Loading buffer (LB) – BioRad Laemmli buffer + 5% β-Mercaptoethanol 
 
10% SDS-PAGE Gel 
 
1. Heat water to boil in glass container 
2. Add 25uL LB to each concentrated sample, vortex, and boil for 5 min. 
3. Set up gels and add 1x running buffer 
4. Remove boiling samples, vortex, and spin down briefly 
5. Apply 10uL low-range standard and up to 30uL sample to each well. 
6. Run gel at 90-100V for approx 2-2.5 hours at Room Temp 
 
Transfer: 
 
Materials: 
Transfer buffer – 3g Tris Base (25mM), 14.4g Glycine (192mM), pH8.3, 0.5g SDS (0.05%) 
in 800mL. Add 200mL Methanol (20%) 
 
Nitrocellulose membrane for Akt/ERK; PVDF membrane for p38/SEK 
 
Transfer setup – sponges, blotting paper, ice block, stir-bar 
 
1. Cut nitrocellulose to size of gel and soak in water for 1 min. If using PVDF, wet with 

100% methanol for 5 seconds before soaking in water. 
2. Pour transfer buffer into metal dish over ice. Soak sponges, blotting paper, and allow gel 

to equilibrate in transfer buffer for approx 15 min. Separately soak nitrocellulose/PVDF 
in transfer buffer for 15 minutes. 

3. Assemble in correct order (bottom to top): 
a. Black panel, sponge, blotting paper, gel, nitrocellulose/PVDF, paper, fiber pad, 

clear panel 
b. Use tweezers with nitrocellulose/PVDF 
c. Use 15 mL conical tube to roll out bubbles after last blotting paper and fiber pad 
d. Avoid overhang with nitrocellulose/PVDF 

4. Close cassette and place black on black 
5. Transfer at 90V for 45 minutes at room temp (with ice block). 
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Western Blotting: 
 
Materials: 
1x PBS 
1xPBS + 0.05% Tween-20 (PBST) 
1xTBS+0.05% Tween-20 (TBST) 
5% Milk in PBST/ 5% BSA in PBST/5% milk in TBST 
Stripping Buffer 
Antibodies (from Cell Signaling Technology): 9102 – ERK1/2 (p44/p42), 9101 – pERK1/2 
(pp44/42), 9217 – pAkt, 9272 – Akt, 9212 – p38, 9211 – pp38, 9152 – SEK, 9151 – pSEK  
 
1. Remove nitrocellulose/PVDF and rinse briefly with PBST/TBST 
2. Block the blot in 10-15mL: 

a. For pERK: 5% BSA in PBST 2hr at 37C 
b. For pAkt: 5% milk in PBST 2 hr RT  
c. For pp38: 5% milk in TBST 2 hr RT 
d. For pSEK: 5% milk in TBST 2 hr RT 

3. Incubate in primary antibody overnight at 4 degrees C in 10 mL blocking buffer 
a. For pERK: 1:1000, for pAkt: 1:500, for pp38: 1:500, for pSEK: 1:500 

ERK, Akt, SEK antibodies can be re-used, p38 antibodies should not be. 
4. Rinse briefly, then wash with PBST/TBST 3 x 10 min 
5. Incubate in 1:2000 secondary (anti-rabbit) in blocking solution for 1 hour at room temp. 
6. Rinse and wash with PBST/TBST as before 
7. Visualize with Amersham ECL kit and image 
8. Rinse, then wash 2 x 5 minutes with PBST/TBST 
9. Incubate with stripping buffer at room temperature 

a. 15 minutes RT for all but pERK which requires 30 minutes RT 
10. Rinse, then wash 2 x 5 minutes with PBST/TBST 
11. Block again for total protein western: 

a. For ERK: 5% BSA in PBST 2 hr RT 
b. For Akt: 5% milk in PBST 2 hr RT 
c. For p38 5% milk in TBST 1 hr RT 
d. For SEK: 5% milk in TBST 1 hr RT 

12. Incubate in primary antibody overnight at 4 degrees C in 10 mL blocking buffer 
a. For ERK: 1:1000, for Akt 1:1000, for p38: 1:500, for SEK: 1:1000 

13. Rinse and wash 3 x 10 minutes with PBST/TBST 
14. Incubate in secondary antibody (1:2000) for 1 hr at RT 
15. Rinse and wash 3 x 10 minutes with PBST/TBST 
16. Store in PBST/TBST until imaging. 
17. Visualize with Amersham ECL kit and image. Save membranes wrapped in saran wrap at 

4C. 
 



Appendix B: Mechanical Gene Regulation of Normal and OA Human Tissue 
 
The purpose of this study was to investigate the gene transcriptional response to mechanical 
loading of human cartilage tissue from normal joints and macroscopically-intact looking tissue 
from osteoarthritic joints. Our hypothesis was that normal-looking tissue in osteoarthritic joints 
may respond to mechanical loading in a different manner than tissue from normal joints, 
signifying a change early in the disease process. This project was done in collaboration with 
Pfizer, Inc. 
 
Methods 
 
Harvest and culture of cartilage 
 
Upon opening of joint, visual Collins grading with supporting photography was recorded for 
each surface (tibial plateau, groove, condyles) and a Collins grade for the whole joint was 
determined (highest grade of all articulating surfaces).  

grade 0 - no cartilage degeneration 
grade 1 – minor surface roughening 
grade 2 - fibrillations and fissuring, no full thickness defects 
grade 3 – full defects covering less than 30% of the articular surface 
grade 4 – full defects covering more than 30% of the articular surface 

  
Full thickness, 3-mm plugs was harvested from 4 regions of the joint, with a target of at least 17 
plugs per region (12 for loading studies, 2 for histology, 3 for biomechanics testing) + scraps (for 
biochemical testing). The four regions investigated were the medial condyle, medial tibial 
plateau (from tissue covered by meniscus), medial groove, lateral groove. 
 
Cartilage was allowed to equilibrate for two-four days and cultured in low-glucose DMEM 
(supplemented with ascorbic acid, praline, non-essential amino acids, HEPES buffer, PSA – 
penicillin, streptomycin, amphoteracin) + 10% FBS. Medium was changed daily; final medium 
change occurred approximately 18 hours prior to loading. 
 
Immediately prior to loading, thickness of the plugs were cut to uniform dimension 
(approximately 1 mm thick), with retention of articular surface for normal joints and the 
remaining macroscopically-intact looking surface in OA joints. 
 
2 x 3-mm, full thickness plugs per region were fixed overnight in 10% formalin at 4C for 
histology then stored in 70% ethanol. 
 
Mechanical loading of tissue 
 
4 mechanical loading conditions were used: 

Free swell – plugs were cultured in 48-well plate with 500 uL medium per plug for 24 hours 
Static compression – Plugs were loaded in 12-well polysulfone chambers with 500 uL 

medium per plug. A slow ramp was applied over 3 minutes to 50% strain, which was held 
for 24 hours. 
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Dynamic compression – Plugs were loaded in 12-well polysulfone chambers with 500 uL 
medium per plug. 0.1 Hz, 3% amplitude, 5% static offset, displacement controlled 
dynamic compression was applied for 24 hours. 

Injurious loading – Plugs were injured individually to 65% cut thickness, at a strain rate of 
200%/s. They were then cultured in 48-well plates with 500 uL medium per plug for 24 
hours. 

 
3 plugs per loading condition per region = 12 plugs per joint were used for each loading 
condition. Medium from each well was frozen and saved. Immediately after loading, each plug 
was frozen in liquid nitrogen and kept at –80 C and sent to Pfizer for RNA extraction and 
microarray analysis. 
 
Subsequent Analyses – Biochemical and Biomechanical testing 
 
Scraps from each region were proteinase K digested. Digests were analyzed for DNA content 
and GAG content. 3 x 3-mm diameter, 1-mm thick plugs per region were mechanically tested to 
obtain equilibrium modulus and dynamic stiffness. 
 
Results – Joint Harvest and Collins Grading 
 
Tissue from 6 joints were harvested for this study – 4 OA, 2 normal. 
 
BDC01 – Donor was 44 year old female. Joint was determined to be Collins grade 2. There was 
a 2 cm fibrillation area at the transition between the lateral condyle and the groove. An 8 mm 
partial thickness defect was also present. All other surfaces appeared normal and intact. 
Accompanying photography shown below: 

 

Fibrillation area

Partial thickness defect

 
BDC02 – Donor was 65 year old female. Joint was determined to be Collins grade 3. There was 
a 1 cm^2 area of fibrillation on the inner aspect of the medial condyle (grade 1); 1.5 cm^2 full 
thickness defect on the front, inner aspect of the medial tibial plateau (grade 3); fibrillation over 
the lateral tibial plateau surface. Accompanying photography shown below: 
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1 cm^2 area of fibrillation 

fibrillation
1.5 cm^2 full 
thickness defect 

BDC03 – Donor was 65 year old female. Joint was determined to be Collins grade 3. The medial 
condyle (MC) was grade 1 with fibrillation at the interface with the medial groove. The lateral 
condyle (LC) was grade 3 with a 3cm x 2cm full and partial-thickness defect with areas of 
regenerated fibril cartilage. The medial groove (MG) had a triangular shaped 1.5 cm x 1cm 
partial thickness defect, grade 2. The laterial groove (LG) with grade 1 with fibrillation. The 
lateral tibial plateau (LT) had a 2cm x 2cm circular full-thickness defect, grade 3. The remaining 
carilage was fibrillated, Grade 1, with 5mm left in the meniscus covered region. The medial 
tibial plateau (MT) was grade 1 with fibrillation at the inner aspect that covered approx 25% of 
surface. Accompanying photography shown below: 
 

Fibrillation on MT

Partial-thickness defect on MG

Full thickness defect 
on LC with areas of 
regenerated cartilage. 

Fibrillation on MC 

Full-thickness defect on LT 

BDC04 – Donor was 52 year old female. Overall joint (right knee) is a Collins grade 3. On the 
inner aspect of the medial condyle (MC), 1 cm below the transition between the condyle and the 
groove, there was a 2cm x 1.5cm Grade 2 lesion with fibrillation and surface loss but no visible 
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bone. On the lateral condyle (LC), 2cm below the transition between the condyle and groove, 
there was a 0.5cm x 0.5cm area of surface loss and surrounding fibrillation. On the posterior 
aspect of the lateral condyle, there was a 1cm x 1cm full thickness defect, Collins grade 3, 
partially covered by repair tissue. The groove showed areas of fibrillation. The medial tibial 
plateau (MTP) showed surface fibrillation. The lateral tibial plateau (LTP) had a 2cm x 1cm full-
thickness defect covered by repair tissue, Collins grade 3. Accompanying photography shown 
below: 

Grade 2 lesion on MC 

Grade 2 lesion on LC 

Grade 3 lesion on LC 

Fibrillation on Groove 

Grade 3 lesion on LTP 
Surface fibrillation 
on MTP 

 
BDC05 – Donor was 56 year old female. Joint is Collins grade 0-1. Slight fibrillation on the 
medial condyle near transition between groove and condyle. Fibrillation on the inner aspect of 
tibial plateaus uncovered by the meniscus – as normally observed. All other surfaces appear 

 

normal and intact. 

DC06 – Donor was 67 year old female. Joint is Collins grade 0-1. Small areas of fibrillation on 
the medial condyle near transition between groove and condyle. Fibrillation on the inner aspect 

 

B
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of tibial plateaus uncovered by the meniscus – as normally observed. All other surfaces appear 
normal and intact. 

 
Discussion 
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perties of tissue samples varied between individuals and location within the joint. 
here were no systematic changes in GAG content, hydroxyproline content, DNA content, or 

 

d high individual variability in the gene expression response to 
echanical loading, with no correlations to disease state. There also appeared to be an effect of 

 whether 

 

 
The bulk pro
T
GAG-to-hydroxyproline ratio with respect to locations within a joint, disease state, or proximity
to lesions. High variability between individuals was observed. Mechanical properties varied 
similarly, with no correlations to GAG content, hydroxyproline content, or GAG-to-
hydroxyproline ratio. 
 
Microarray data showe
m
culture on basal gene expression levels. Additional data would be required to determine
systematic changes in gene expression response to mechanical loading is affected by disease 
state of the joint in macroscopically normal-looking tissue. It is likely that many additional joints 
would be needed at each condition (i.e., age, OA grade) in order to achieve clear results. This
project was discontinued after 6 joints. 



 

Appendix C: Biomechanical Aspects: Joint Injury and Osteoarthritis* 
 
C.1 Introduction 

Osteoarthritis (OA) is a degenerative joint disease of mechanical wear-and-tear, often localized 

in weight-bearing joints such as the knees and hips [1]. While age is the most important risk 

factor for OA, joint trauma, repetitive joint use, obesity, and gender are also risk factors for the 

disease [1].  Arthritis is associated with a progressive wearing away of the articular cartilage of 

the joint surface caused by mechanical injury, by joint instability, or by an inappropriate 

response to normal mechanical stimuli [4].  The molecular pathogenesis of the disease is 

associated with loss of aggrecan, damage to the collagen network and, ultimately, loss of normal 

chondrocyte phenotype and a limited degree of chondrocyte cell death [4]. Chondrocyte 

dedifferentiation, marked by the decrease in type II collagen and aggrecan and an increase in 

collagen type I and type X, occurs as the disease progresses and marks the beginning of the 

inevitable end as dedifferentiated cells can no longer synthesize useful matrix material [4].  

Although the mechanism of matrix loss and the driving force for the disease progression are not 

completely understood, acute mechanical injury and prolonged inflammatory insult increase the 

risk of developing osteoarthritis [7]. 

Cartilage degeneration is driven by the entire synovial joint; however, the chondrocyte, 

by virtue of its location within cartilage, plays a primary degenerative role by producing matrix 

degrading proteases, altering the synthesis of matrix molecules, and producing inflammatory 

cytokines and inappropriate levels of morphogenetic or growth factors [4, 8].  In response to 

joint injury or cytokine stimulation, latent matrix proteases or newly secreted proteases may 

rapidly degrade aggrecan [9-12], with loss of aggrecan significantly altering the mechanical 

* Appeared in Chai DH, AL Stevens, AJ Grodzinsky, Biomechanical Aspects: Joint Injury and Osteoarthritis, in 
Bone and Osteoarthritis, F Bronner, MC Farach-Carson Editors. 2007, Springer-Verlag: London. p.165-179. 

 - 126 -



 

properties of the tissue [13]. Chondrocytes may, however, synthesize and replace lost aggrecan, 

causing the tissue moduli and function to return to normal, without long term damage [14, 15].  

Collagen network damage, on the other hand, seems to be an irreversible step in the pathogenesis 

of osteoarthritis [4].  Protease-induced collagen degradation often occurs after aggrecan 

depletion; this suggests that aggrecan may protect collagen fibrils from proteolytic degradation 

[16].    

Joint injury can lead to loss of chondrocyte viability and to damage of cartilage matrix 

and other joint tissues, i.e., ligaments, tendons, and synovium.  The resulting change in cartilage 

matrix composition and mechanical properties may be partly responsible for increasing the risk 

of arthritis, inasmuch as chondrocytes can rarely repair the damage [17].  Thus, human knee 

injuries including ACL or meniscal tears may significantly increase the relative risk of 

developing OA, a risk that increases with age at the time of injury and with the time that has 

elapsed since the injury [18-20].  Joint instability may contribute to secondary disease 

development, yet ACL correction does not seem to decrease the risk of OA development [21-24]. 

The acute traumatic event may therefore have been sufficient to trigger a cascade of irreversible 

effects that initiate arthritis and cause its progression.   

Osteoarthritis can have an inflammatory component, which involves the production of 

cytokines, continued local, low-level inflammation without inflammatory cell migration, and 

accompanying systemic immune responses.  In vivo, mechanical joint injury occurs with 

concomitant inflammation, characterized  by an increase in pro-inflammatory cytokines, TNF-α 

and IL-1β [25-27] , as well as by an increase in MMP-3, COMP fragments, collagen II cross-

links and aggrecan fragments [28-32] . Pro-inflammatory cytokines IL-1β and, to a lesser extent, 

TNF-α cause extracellular matrix breakdown in cartilage and may be present in OA. 
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C.2 Joint Loading and Cartilage Biomechanics: Changes with OA 

Articular cartilage functions as a weight-bearing and lubricating layer in joints that absorb and 

distribute loads to underlying bone. Cartilage is exposed to a variety of mechanical forces during 

normal joint loading in vivo [33-35]. Loading across joint surfaces can be highly nonuniform 

[33, 35]. Whereas local stresses in the hip rise to 10-20 MPa during activities such as stair-

climbing [33-35], forces of 2-5 times body weight in the hip during walking [36]cause peak 

stresses on the cartilage surface of 2-3 MPa [33]. These forces cause changes in cartilage 

thickness in vivo as high as 20%, though long-term  (static) loading causes even greater 

compressive deformation [33-35]. 

The structure of the extracellular matrix of cartilage is designed to withstand the dynamic 

range of forces. The main structural components are densely packed, negatively charged 

aggregating proteoglycans (aggrecan), water (~80%), and a network of collagen fibrils. 

Aggrecan contributes to the compressive stiffness of the tissue, while collagen provides tensile 

and shear resistance. Tissue biomechanical properties vary with depth and are strain-dependent 

[37-39]. The equilibrium compressive stiffness measured in uniaxial confined or unconfined 

compression is on the order of 1MPa, and the frequency-dependent dynamic compressive 

stiffness is approximately 5-10 times greater (reviewed in [40]). Alterations in the matrix 

structure, due either to mechanical injury or pathologic degradation, can greatly affect the 

mechanical properties and therefore the deformations experienced by the tissue. 

In osteoarthritis, changes in matrix content and structure weaken the tissue and lead to 

changes in the subchondral bone [41-43]. Loss of collagen integrity, increased water content, 

decreased aggrecan content and alterations in GAG sulfation (charge) patterns contribute to 

decreases in mechanical stiffness of the tissue [41, 44, 45].  Kleeman et al. [46] found that 
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stiffness decreases significantly with disease progression from 0.5MPa to 0.28MPa, with this 

decrease reflected in the grade assigned to the tissue when the the ICRS Grade Scale is used. The 

ICRS Grade Scale is based on gross examination of fissures, cracks, lesion extent and depth, and 

Mankin score.  

C.3 Clinical Findings 

Injurious joint loading results in peak stresses and deformations that can be significantly higher 

than the normal ranges quoted above and can lead to significant tissue and joint damage.  

Insights concerning the molecular mechanisms of cartilage degeneration in vivo have come from 

analyses of synovial fluid samples taken from Swedish patients after an ACL or meniscal tear [7, 

47, 48]. The concentration of proteoglycan fragments in the synovial fluid was elevated 2-3 fold 

after injury, and these levels were similar to those found in patients with primary OA [47]. 

ELISA analysis of the synovial fluid revealed the presence of matrix metalloproteinase-3, 

(MMP-3), a protease linked to pathways of matrix degradation. MMP-3 levels in synovial fluid 

were markedly increased at presentation and remained elevated for many years [7]. Joint fluid 

also showed an initial and persistent elevation of the neoepitope Col2CTx in the C-telopeptide 

cross-linking domain of type II collagen. This indicates digestion of mature, cross-linked 

collagen by a matrix metalloproteinase. Taken together, these clinical studies suggest that 

proteoglycan and collagen degradation rates are significantly altered within days of the injury 

and remain altered for years. It thus seems that the acute joint tissue response to the original 

mechanical insult initiates an unbalanced degradative process that can significantly increase the 

risk of OA. 
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C.4 In vitro Models of Acute Mechanical Injury to Cartilage 

C.4.1 Biomechanical parameters For more than a decade, in vitro model systems have been 

developed and specialized to study the effects of acute mechanical trauma on articular cartilage.  

For example, the incubator-housed instrument shown in Figure C.1a can apply compressive 

loads or displacements to individual or multiple geometrically defined cartilage explant disks 

held in specially designed autoclavable loading chambers that are mounted within the instrument 

[49]. Direct mechanical compression of tissue can be performed by applying a known force 

(“load control”) or a known displacement (“displacement control”) to one surface of the 

specimen via a solid platen, while the opposite platen is held fixed. One-dimensional (“uniaxial”) 

unconfined compression [50, 51] typically employs a non-porous compression platen, and the 

sample is allowed to bulge slightly and exude fluid in the radial direction (Figure C.2a). In 

radially confined compression, a barrier is placed around the circumference of the sample and a 

porous compression platen is used; the sample is not allowed to bulge radially, and fluid flow 

occurs in the axial direction emulating an articular surface geometry [52].  Joint loading in vivo 

produces within the tissue a complex, nonuniform 3-dimensional distribution of stresses and 

strains that has attributes of both the idealized confined and unconfined loading configurations. 

The choice between confined and unconfined loading for in vitro studies may depend on 

assumptions underlying the experimental hypotheses, as well as on practical considerations 

concerning maintenance of the organ culture with adequate nutrient supply. Whether loading is 

confined or unconfined, it is essential to understand the spatial distribution of physical forces and 

flows within the explant (i.e. intratissue strain, fluid flow, fluid pressure gradients, etc.). These 

fields and flows can be highly nonuniform in either configuration, and the resulting cellular 

responses will therefore be equally nonuniform.  For example, a compressive strain applied 
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rapidly (at a high “strain rate”) to a cylindrical cartilage disk will result in high peak stresses that 

may damage the tissue matrix (Figure C.2b). Chondrocyte biosynthesis changes and GAG is lost 

in response to such injurious compression. However, quantitative autoradiography at the tissue 

and cell level has shown that cellular biosynthesis [53, 54] and GAG loss can vary markedly 

across the tissue cross-section. Corresponding theoretical analyses of the biomechanical and 

biophysical forces and flows have shown, likewise, that intratissue fluid flow, hydrostatic 

pressure, and even electrical streaming currents induced by compression will vary within the 

explant disk with radius and height (Figure C.2c). It may therefore be possible to correlate the 

resulting spatially nonuniform matrix and cellular responses with the spatially varying 

biomechanical stimuli, thereby enabling the investigator to better understand which 

biomechanical parameter(s) is responsible for the biological response [55]. 

  In general, the rate of loading, the peak stress, and the final strain must be clearly 

specified to define an injurious loading scheme (e.g., Figure C.2b). Any two of these parameters 

can be independently imposed experimentally; the third must then be measured. Without 

knowledge of all three parameters, it is difficult to compare results to those in the literature. For 

example, two investigators [56, 57] loaded cartilage explants at different loading rates to a pre-

specified peak stress (in load control). Comparisons of their data show the counterintuitive result 

that cell death was higher in more slowly loaded cartilage. However, compressing cartilage more 

quickly in these circumstances means that the pre-specified peak stress was reached more 

quickly, and less total compression (strain) was produced. Thus, studies in which two different 

loading parameters are varied independently in a parametric fashion are most helpful in 

understanding the fundamental mechanical variables that cause injury to cartilage cells and 

matrix.  
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  For example, Morel and Quinn [58] subjected young adult bovine cartilage disks to 

uniaxial unconfined compression at 5 different strain rates (over five orders of magnitude) and 3 

different peak stresses (between 3.5 to 14 MPa). The strain rate was defined relative to the 

intrinsic gel swelling [59] or poroelastic relaxation time, τ ~ [δ2/(Hk)], where τ is related to the 

swelling (or deswelling) time for a disk having equilibrium compressive modulus H, hydraulic 

permeability k, and characteristic distance δ through which fluid flows (e.g., the disk radius for 

the case of unconfined compression with fluid-impermeable platens [60]). This relaxation time is 

also related to the characteristic mechanical stress relaxation or creep time to within a numerical 

constant that depends on the mechanical boundary conditions for each configuration. At the 

lowest strain rates (at or below the relaxation time), resulting in highest final strains, no cracks in 

the matrix occurred, but cells died throughout the tissue depth. In contrast, the highest strain rates 

resulted in high intratissue pressurization, causing impact-like surface cracking with cell death 

isolated near the superficial zone. Consistent with these trends, Kurz et al. [3] also found 

increased cell death and decreased mechanical stiffness with increasing strain rate.  

  It has been proposed that threshold levels of either strain rate or peak stress determine the 

threshold of tissue damage. Tissue age and species also appear to be strong determinants of the 

ability of cartilage to withstand overload. Torzilli et al. compressed mature bovine occipital 

cartilage in a load-controlled apparatus at a constant stress rate of 35 MPa/s to reach final stress 

values in a range of 0.5 to 65 MPa [61]. Cell death was significant at a stress of ~17.5 MPa; 

cartilage damage may therefore occur when a threshold is reached in peak stress. Similarly, cell 

death increased with peak stress in immature bovine knee cartilage [45]. Patwari et al. [62] 

studied the relation between peak stress and GAG loss after injury to disks of normal human 

knee and ankle cartilages. Compression was applied to 65% final strain at 400%/sec strain rate. 
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At these loading conditions, knee cartilage suffered significantly more damage than ankle 

cartilage, but peak stress was not an important correlate of GAG loss.  

C.4.2 Damage to matrix and cells Using a variety of instruments as in Figure C.1a, 

investigators have demonstrated a range of events that can occur immediately following cartilage 

traumatic injury.  These include loss of proteoglycan constituents to the culture medium [50, 53, 

56, 61, 63], increased tissue swelling [50, 61], and increased levels of denatured collagen 

neoepitopes [64, 65], indicative of damage to the collagen network. At the same time, the 

tissue’s biomechanical properties become degraded [66].  Loening et al. observed decreased 

equilibrium and dynamic stiffness associated with increased tissue swelling in hypotonic saline, 

which was suggestive of collagen network damage [50]. Mechanical injury can also cause cell 

death by apoptosis [50, 67, 68].  The possibility that apoptosis can be induced at levels of 

mechanical loading below those that cause macroscopic damage [50], as assessed by tissue 

swelling and GAG loss, suggests that apoptosis can be triggered by direct loading injury to the 

chondrocytes.   

Chen et al. and Thibault et al. tested the effects of mechanical injury on the production of 

collagenase-generated neoepitope of type II collagen [64, 65, 69]. In both confined and 

unconfined compression injury models, injury caused an increase in collagenase-generated 

collagen fragments. Thibault et al. [65] postulate that this is the result of mechanical denaturation 

of the collagen fibril, which enables the fibril to become susceptible to cleavage by 

metalloproteinases. A study focusing on repair secondary to mechanical compression injury 

suggested that both fibronectin and proteoglycan synthesis were increased over control levels in 

the course of the ten days that follow the injury. This situation is similar to that seen in early OA 

[64].  DiMicco et al. analyzed the release of sulfated GAGs into the medium over a period of 7 
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days following injury [70].  A small, but statistically significant, increase in sGAG release 

occurred during the first 24 hours after injury. This was attributed to mechanical disruption of the 

matrix, inasmuch as it was not reversed by inhibitors of biosynthesis (cyclohexamide) or 

degradative enzymes. However, a broad spectrum hydroxamate MMP inhibitor reduced the 

cumulative GAG loss from injured disks in the course of the 7-day postinjury period [70].   

Studies using a drop-tower loading system to apply impact loads on cartilage-bone 

cylinders have documented decreases in cell viability in a canine model [71], in the porcine 

patella [72] and in bovine articular cartilage [73].  These studies have shown that bone plays a 

major role in mediating the effects of an impact load on cartilage [73]. With bone attached to 

cartilage, the cartilage was damaged much less [73]; higher-energy impacts damaged the bone 

rather than the cartilage. This finding is consistent with the importance of subchondral fracture in 

animal impact models [74] and with the early work of Radin et al., who emphasized the 

involvement of subchondral bone, having found that impact trauma to the patellofemoral joint 

led to OA in animal models [74, 75]. The response of bone to impact and subsequent changes in 

joint stresses are clearly important in OA pathology. For this reason, impact models using 

cartilage that has been removed from underlying bone do not simulate in vivo loading magnitude 

and distribution. Nevertheless, injury to the cartilage alone may suffice to initiate OA processes 

in vivo [76, 77].  

Moreover, using cartilage explants without underlying bone makes it possible to impose 

controlled mechanical loading, allowing specific loading parameters to be more easily quantified 

and correlated with cellular and matrix changes. Thus, studies regarding the mechanism of 

response to injurious loads by cells and matrix in cartilage explants are therefore meaningful. 
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C.4.3 Apoptosis versus necrosis Recently, it has been proposed that cell death by apoptosis may 

be an important event in osteoarthritic cartilage. Most compression injury models suggest that 

chondrocytes may undergo apoptosis in response to injury [50, 51, 78, 79]. High stress repetitive 

loading can also cause chondrocyte necrosis, which occurs soon after the injury as visualized by 

TEM [80] (see also [66] for a recent review).  We and others have used TUNEL staining, along 

with nuclear morphology on light microscopy, to demonstrate induction of apoptosis by 

mechanical injury [50, 51]. Investigators have since emphasized that false-positive staining by 

the TUNEL assay can be a major limitation [4, 81]. Chen et al. [68] found that cells in cartilage 

subjected to freeze-thaw cycles were 90% TUNEL positive after three days of culture; this 

suggests that TUNEL staining does not reliably distinguish apoptotic from necrotic cell death. In 

addition, it is increasingly clear that there exist modes of cell death with features of both necrosis 

and apoptosis. 

To investigate further, Patwari et al. [79] subjected newborn bovine cartilage disks to 

compression injury (50% strain, 100%/sec) and performed a quantitative analysis of cell 

morphology by electron microscopy (EM), with comparison to the TUNEL assay. By TUNEL, 

the cell apoptosis rate increased significantly from 7 ± 2% in unloaded controls to 33 ± 6% after 

injury (N = 8 animals) and, by EM, the apoptosis rate increased from 5 ± 1% in unloaded 

controls to 62 ± 10% in injured cartilage. Analysis by EM also indicated that 97% of the dead 

cells in injured disks were apoptotic by morphology. These results confirm that cell death 

increases significantly after injurious compression and suggest that in the injury protocol used in 

these experiments most of the observed cell death involved an apoptotic process. 

To further relate the apoptotic response to the biomechanical parameters of injurious 

compression, we note that high strain rates causes tissue pressurization in the center of the 
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explants (Figure C.2c) with the periphery experiencing more strain and fluid flow [70, 82].  Most 

reports have focused on the central pressurized region of the explant to avoid cutting artifacts 

[50] which cause apoptosis independent of injury.  Patwari et al. suggested that compression 

injury may alter cell-matrix interactions sufficiently to initiate apoptosis [79].  While injury-

induced cell death and accompanying damage to the extracellular matrix are clearly 

demonstrable, the contribution of cell death to arthritis is still controversial [4].  

C.4.4 Effects of cartilage injury on chondrocyte gene expression: recent discoveries Several 

studies have provided evidence of marked changes in chondrocyte expression of MMPs and 

other selected genes following mechanical injury to cartilage in vitro. Techniques used for these 

studies include Northern analysis, RT-PCR, and in situ hybridization [66]. Recent technological 

advances involving real time qPCR and gene array technologies have made it possible to use 

systems level genomic approaches to study changes in chondrocyte transcription in response to 

mechanical injury of the cartilage. Chan et al. [83] used a bovine cDNA microarray and real time 

PCR to characterize changes in transcription three hours after unconfined compression injury to 

metacarpophalangeal cartilage explants from 18-24 month steers. They loaded to a peak stress of 

30 MPa at a stress rate of 600 MPa/s, and found 19 genes that were differentially expressed. Up-

regulated genes included chemokine (CCR10, HMGB2, neurogranin, and ezrin) and cytokine 

receptors, enzymes, and molecules involved in signal transduction. In contrast, ICAM-3, NCAM, 

N-cadherin, VCAM-1, and IGF-1 were down-regulated [83]. 

 In complementary studies using immature bovine cartilage explants, Lee et al. [2] used 

real time qPCR to measure levels of mRNA encoding selected matrix molecules, proteases, their 

natural inhibitors, transcription factors, growth factors and cytokines. Expression levels were 

assessed in free swelling culture (4 and 24 hours) and at 1, 2, 3, 6, 12, and 24 hours after 
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application of a single injurious compression to 50% strain at 100%/s strain rate. Expression 

levels measured in non-injured free swelling cartilage varied over five orders of magnitude with 

matrix molecules being the most highly expressed, and cytokines, MMPs, aggrecanases 

(ADAMTSs), and transcription factors showing lower levels of expression. Changes in 

expression levels after mechanical injury were gene specific and time dependent. While the 

matrix molecules showed little change in expression after injury, MMP-3 increased ~250-fold, 

ADAMTS-5 increased ~40-fold, and TIMP-1 increased ~12-fold over free swelling levels by 12 

hours after injury. Genes typically used as internal controls, GAPDH and β-actin, increased 

expression levels ~4-fold after injury; this makes them unsuitable for use as normalization genes 

in this and similar studies. TNF-α and IL-1β did not change expression levels in the 

chondrocytes after injury. Group expression profiles, using k-means clustering techniques, 

showed the main temporal gene expression patterns that were induced by injurious compression 

of the cartilage explants (Figure C.3). Interestingly, one of the group profiles was associated 

exclusively with the immediate response genes c-fos and c-jun, which showed increased 

transcription within the first hour of injury. This suggests that the AP-1 pathway may be an 

important response pathway in injury [2]. The authors [81] concluded that changes in expression 

may alter the quantity of specific proteins that lead to degradation of the tissue structure and 

function. 

C.4.5 Mechanical injury compromises chondrocyte biosynthesis and 

mechanoresponsiveness Several studies have shown that chondrocyte biosynthesis in cartilage 

explants decreases after an injury [61, 63, 64, 84, 85]. Quinn et al. [86] examined changes in 

biosynthesis and increased cell death in osteochondral explants from 18-month-old steer 

shoulder joints subjected by unconfined compression to peak stresses between 3.5 and 14 MPa, 
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at strain rates between 3 x 10-5/s to 0.7/s. With higher strain rates, these authors observed that 

matrix damage occurred primarily in the superficial zone [86].  Furthermore, proteoglycan 

synthesis was suppressed at low strain rates throughout the cartilage depth in a radially 

dependent manner. Kurz et al. [3] showed that increasing the strain rate of injurious mechanical 

compression significantly decreased recovery from injury in chondrocytes. Recovery was 

identified by the ability of the cells after injury to respond to subsequent stimulation by low 

amplitude cyclic compression, considered to be an anabolic stimulus in normal cartilage 

explants.  At higher strain rate injury (i.e., 1/sec in Figure C.2b, but not 0.01/sec), there was a 

dramatic decrease in 35S-sulfate and 3H-proline incorporation three days after the injury. Even 

more striking, chondrocytes in tissues subjected to high strain rate injury lost their the ability to 

be stimulated by dynamic compression in a dose-dependent manner with increasing strain rate of 

injury [3].  These results had been normalized to the surviving viable cells and therefore were not 

simply the result of loss of cell viability. Although these studies had focused only on early time 

points following injury, the findings suggest that mechanical injury causes a decrease in 

extracellular matrix production by chondrocytes. This in turn may contribute to further 

degeneration. A critically important unanswered question is whether the remaining cells can 

respond by increasing biosynthetic activity  in an attempt to repair the cartilage matrix. If 

mammalian chondrocytes were able to respond to anabolic factors, both biological and 

mechanical, this would be of great therapeutic interest. 

C.5 Osteoarthritic Changes in Mechanoresponsiveness of Chondrocytes 

Mechanical forces are widely thought to play a major role in regulating chondrocyte behavior 

(see recent reviews [87, 88]). However, the mechanotransduction pathways by which mechanical 

injury alters long term activity of the surviving chondrocytes are not understood. There is 
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increasing focus on the effect of injury on intracellular signaling and regulation of gene 

expression. Microtubules and comparable connections between the cell surface and the ECM 

transmit deformations of the pericellular matrix to the cell membrane and from there to 

intracellular organelles via cytoskeletal elements [87, 89, 90]. Within the cell, changes in nuclear 

morphology can lead to compaction of chromatin and altered molecular transport through 

nuclear pore complexes, processes important to cellular metabolism. Deformation of the rough 

endoplasmic reticulum and the Golgi apparatus can affect proteoglycan synthesis, GAG chain 

length, and sulfation observed during compression [91]. Deformations of the pericellular matrix 

can also change the physicochemical environment of cells, altering transport of soluble factors to 

cell-surface receptors [55, 92, 93]. Mechanical activation of chondrocyte surface receptors, such 

as the α5β1 fibronectin-binding integrin, induces multiple intracellular signaling pathways 

involving tyrosine protein kinases, cytoskeletal proteins, ion channels, and second-messenger 

signaling cascades [94]. Mitogen-activated protein kinase signaling, involving ERK-1 and -2, 

JNK, and p38 is activated in immature bovine cartilage explants that have been subjected to 

static, dynamic, and shear loading [95-97], and by fluid shear across isolated chondrocytes [98].  

Osteoarthritic cartilage is characterized by reduced mechanical properties, increased 

matrix degradation, and altered responses to mechanical stimuli. Increased force transmission to 

cells and changes in mechanoresponsiveness may play a role in the development and progression 

OA [99]. The ratios of collagen II to collagen I, and of aggrecan to versican, are defined as 

measures of chondrocyte dedifferentiation and decrease in human OA cartilage [100, 101]. 

Expression of matrix proteins and cell surface receptors are altered with OA progression [101-

105]. Integrin receptors known to be involved in mechanotransduction have altered expression 

patterns in OA cartilage, with increased α1 and decreased β1 expression [103]. These changes 
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can result in altered responses to applied forces. Enhanced expression of fibronectin and 

osteopontin, two matrix components that bind and signal through integrin receptors, has also 

been observed [104]. In addition, isolated OA chondrocytes respond differently than normal 

chondrocytes to direct mechanical stimulation [106]. While cyclic stretching of normal 

chondrocytes increased aggrecan and decreased MMP-3 transcription, mRNA levels in OA 

chondrocytes remained unaltered. In addition, normal chondrocyte membranes hyperpolarize in 

response to cyclic stretch, whereas OA chondrocytes depolarize. These altered responses to 

mechanical stimulation may represent adaptive responses to the altered mechanical environment 

that prevails in OA tissue [106]. OA chondrocytes also respond to intermittent hydrostatic 

pressure with increased aggrecan and type II collagen mRNA levels, and to fluid shear stress 

with increased nitric oxide release and decreased expression of matrix proteins [107]. 

C.6 In Vitro Models Emulating Injury to the Joint 

C.6.1 Injury plus cytokine treatment Certain aspects of OA have led to the development of 

new in vitro models of the mechanically injured joint. It is widely accepted that OA is a disease 

of the whole joint [108, 109] that, in addition to cartilage, also involves the synovium, bone, 

muscles and the nervous system.  Inflammatory processes associated with cytokine-induced 

activity are increasingly acknowledged to play a role in the pathogenesis of OA [109, 110].  As a 

result, research using in vitro injury models has broadened to account for interactions with other 

tissues, such as factors secreted by the joint capsule [111].  These novel models include (1) 

incubation of normal or injured cartilage in the presence of exogenous cytokines, and (2) co-

culture of normal or injured cartilage in the presence of intact joint capsule tissue (Figure C.4). 

The direct use of an exogenous cytokine allows focus on the role played by that specific cytokine 

following injury, and its subsequent effects on mechanically injured cartilage. 
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In a recent study involving exogenous cytokines, Patwari et al. [6, 111] examined 

proteoglycan loss from mechanically injured bovine knee cartilage explants that had been  

cultured in the presence of IL-1α or TNF-α. Similar experiments were performed with injured 

knee and ankle cartilage obtained from the same human donor whose injured tissue had been 

cultured with IL-1. The cytokines caused a synergistic loss of proteoglycan [86] from the injured 

cartilage of both bovine and human tissue. In the case of the bovine tissue, the PG loss was 

significantly increased after mechanical injury. However, the loss amounted to only 2% of the 

total PG content and occurred only in the first 3 days following injury. However, the addition of 

1 and 10 ng/ml IL-1α and 100 ng/ml TNF increased the PG loss over that due to injury or 

cytokine treatment alone. This interaction between cytokine treatment and injury was statistically 

significant. In human knee cartilage, the interaction was also significant for both IL-1α (Figure 

C.1b) and TNF-α, although the relative increase in PG loss was less than in bovine cartilage. 

Importantly, there was no significant interaction between injury and IL-1α in human ankle 

cartilage (Figure C.1b). This study suggests that mechanical injury and cytokine-induced 

chondrocyte mediated degradation cause changes in tissue behavior and properties in 

complementary and synergistic ways, even though the human ankle cartilage was relatively 

impervious to either injury and/or cytokine treatment.  

C.6.2 Co-culture of joint capsule tissue with injured cartilage The role played in cartilage 

matrix degradation and remodeling by synovial tissues and the release of cytokines and other 

mediators can be studied in vitro. Jubb and Fell [112] have studied how joint capsule tissue, 

when co-cultured with normal cartilage, affect chondrocyte biosynthesis. Ilic et al. [112] have 

shown that bovine joint capsule and its fibroblasts express soluble aggrecanase activity. Patwari 

et al. [6, 111]  developed a model in which mechanically injured bovine or human cartilage was 
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co-cultured with bovine or human joint capsule tissue (Figure C.4) and observed that 

coincubation of human joint capsule tissue with normal human knee cartilage explants inhibited 

chondrocyte biosynthesis, similar to that which had been observed in animal models. When this 

was studied in a newborn bovine model, blockade of IL-1 had no palliative effect on the 

inhibition 35S-sulfate incorporation.  It was therefore concluded that the effect was mediated by 

an interleukin-1-independent signaling pathway. Using this model, Lee et al. [113] have reported 

that co-culture of bovine joint capsule tissue with normal or injured immature bovine cartilage 

caused dramatic upregulation of chondrocyte gene expression (via qPCR) and increased the 

expression of ADAMTS5, but not of ADAMTS4. The mediating factor(s), presumably released 

from the joint capsule tissue have not yet been identified. This model system may well lead to 

new insights of soluble factors that may become therapeutic targets acting on synovial tissues 

that do contribute to the initiation and progression of OA. 

C.7 New Directions: Proteomic Approaches to Biomarkers of Joint Injury and OA 

Biomarkers of OA typically target indicators of inflammation or indicators of matrix 

degradation. Markers of interest include hyaluronic acid, type II collagen N-propeptide, type II 

collagen C-propeptide (CTX-II), cross-linked collagen II peptides from the C-telopeptide, 

collagen III N-terminal propeptide (PIIINP), COMP, osteocalcin, pyridinoline, AgKS (keratan 

sulfate containing aggrecan fragment), ykl-40 [114].  Recent studies have demonstrated the 

utility of proteomics in the study of normal versus OA human cartilage. An example is 2-D gel 

electrophoresis followed by mass spectroscopy [115, 116]. Proteomics permits following groups 

of proteins, as well as specific target biomarkers. Stevens et al. [117] used mass spectrometry 

applied to an entire system to quantify the effect of mechanical compressive injury of cartilage 

and how treatment with TNF-α and IL-1β affected the joint injury (Figure C.1a). Protein 
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profiling together with clustering analyses revealed distinguishing treatment features that may be 

specific markers for a given degradative process.  

C.8 New Engineering Directions: Molecular Nanomechanics and Chondrocyte Response  

The functional properties of normal and injured cartilage tissue are determined, in part, by the 

mechanical properties of the various ECM molecules that are synthesized by chondrocytes. 

Functionally inferior matrix macromolecules that cannot properly contribute to or assemble into 

a functional ECM may be a hallmark of the progression of posttraumatic cartilage degradation. 

Using the newer techniques of optical tweezers, atomic force microscopy, and high resolution 

force spectroscopy, recent studies isolated matrix molecules have focused on the tensile 

properties of hyaluronan and collagen [118, 119] and the repulsion between chondroitin sulfate 

GAG chains [120] and aggrecan [120]. This is an exciting new area that emphasizes the 

connection between tissue-level mechanical properties, molecular mechanical properties of the 

matrix PGs, GAGs, and collagens. It also points to the importance of chondrocyte 

mechanotransduction as the glue between the tissue, cell, and molecular constituents in cartilage 

remodeling. 
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C.10 Figures 

Figure C.1 Injurious mechanical compression of individual explant disks 
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Figure C.1 (a) Example of an apparatus for applying injurious mechanical compression to 
individual cartilage explant disks. A triangle wave of displacement reaching 50% compression 
in 0.5 sec is applied, resulting in a peak stress of ~20 MPa. (b) GAG loss 3 days after IL-1 
treatment of normal and mechanically injured human knee and ankle cartilage. Unloaded 
and injured cartilage from adult human donors was incubated with 0 or 10 ng/ml IL-1α, and GAG 
content of the medium was measured after 3 days of culture. In the knee tissue, incubation of 
injured tissue with IL-1 caused a synergistic increase in loss of GAG (n = 8, p < 0.05 for 
interaction). In ankle tissue from the talar dome, the interaction between injury and IL-1 
treatment was not significant (n = 6, p = 0.50 by 2-way ANOVA). (a) from [2]; (b) from [6]. 

(b) (a) 
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Figure C.2 Mechanical forces and flows associated with compression of cartilage 
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Figure C.2 (a) Schematic of radially unconfined axial compression geometry to 
apply injurious compression to a cylindrical disk cartilage specimen. (b) 
Application of a “ramp-and-hold” compression in the configuration of (a) to 50% 
strain at strain rates of 1% /sec and 100% /sec; higher strain rates produce higher 
peak stress. (c) Spatial profiles of intratissue fluid velocity, fluid pressure, and 
current density in the top quadrant of (a) induced at the end of a 60 sec ramp, 
similar to that in (b), but employing only a 5% (non-injurious) compression. The 
fluid flow is predominantly radial with maximal flow near the radial edge. Radial 
and axial pressure gradients develop, with maximal pressure near the center of the 
disk beneath the loading platens. Interestingly, an electrical streaming current is 
also induced with relatively high magnitude and inwardly directed beneath the 
loading platens, along with lower, more dispersed, outwardly directed currents 
toward the midplane. In principle, each of these physical forces affects cell 
behavior. ((b) Adapted from [3]; (a,c) adapted from [5]).  

 

 

 

 

 

 

 

 - 145 -



 

Figure C.3 Group expression profiles in response to injury generated by k-means clustering 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.3 Group expression profiles generated by k-means clustering, showing the 
principal gene-expression patterns induced initially by injury of cartilage explants. 
Group profiles were calculated by averaging the expression profiles of genes within 
each group. Results are the mean change from free swelling levels, with a value of 1 
(broken line) indicating similar expression after injury to the level measured in free 
swelling conditions. Group 1: MMP-3, ADAMTS5, TGF-β; Group 2: c-fos, c-jun; 
Group 3: MMP-1, 9, 13, collagen 1, TIMP-1, TIMP-2,   fibronectin, sox 9, GAPDH, β-
actin, TNF-α; Group 4: IGF-1, IGF-2, ADAMTS4; Group 5: aggrecan, fibromodulin, 
link protein, IL-1β. From [2].  
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Figure C.4 Schematic of in vitro models of joint injury 
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Figure C.4 Schematic of in vitro models of joint injury, included injurious compression
of cartilage alone, treatment of compressed and non-compressed cartilage with cytokines, 
and co-culture of compressed and non-compressed cartilage with explants of joint capsule 
tissue (synovium). (Adapted from [2].) 
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