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This investigation is directed towards a determination of
how fiber-to-fiber friction and fiber mobility in a fibrous
structure affect bending and unbending behavior. The classical
theories for predicting this behavior involve the assumption of
either a negligible or infinite interfiber frictional interaction,
and the results based on these limiting assumptions cover a wide
range of possible behavior. Experimental and analytical investi-
gations of the intermediate cases of frictional interaction have
shown that the way in which fibers move relative to each other
during bending can have a strong effect on the manner in which
the properties of the individual fibers develop the properties
of the fibrous structure. Moreover, it was shown that the actual
bending "behavior and bending recovery obtained for the cases of
intermediate frictional interaction differ both quantitatively
and qualitatively from that of the limiting cases.

In order to evaluate the bending behavior of textile materials,
a special instrument was designed and constructed to measure
bending moment as a function of imposed curvature. Data obtained
on this equipment were used to establish the bending parameters
of the various materials under investigation.

As a complement to the £u~damental considerations of
textile structures, a study was undertaken on the mechanics of
multi-layer beams with interLayer friction. This was done
analytically and the results were verified experimentally.

Thesis Supervisor: Professor Stanley Backer
Title: Professor, Mechanical Engineering

Head, Fibers and Polymers Division
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INTRODUCTION

One of the fundamental differences between textile
materials and other types of sheet structures is that textiles
generally exhibit unusually high flexibility. Because of this,
they can be used satisfactorily in a wide variety of applica-
tions requiring extremely low bending rigidity, the most
significant, of course, being clothing. Textile fabrics are
made of large numbers of fine fibers that may have considerable
freedom of motion relative to each other. When this mobility
exists, the fiber strains which develop during bending or
creasing of the fabric are considerably lower than those
which develop in bending of corresponding solid sheet
materials 0 With this mobility the potential flexibility of
the fibers can be realized and the fabric structure will, in
turn, have a low bending rigidity. If, on the other hand,
fiber mobility is restricted, the strains which develop during
bending will be of considerable magnitude and the fabric
will be correspondingly more rigid.

Another important attribute of textile materials is
their ability to recover from imposed bending deformations.
This recoverability, like flexibility, also depends on the
fineness of the fibers and their ability to move relative to
each other. When the fiber diameters are much less than the
fabric thickness, and when interfiber mobility exists, the
strains which develop during bending or creasing will be
moderate 0 The permanent fiber deformation will be small and
the recovery of the structure will be good. If the fibers
do not have mobility in the structuret the strains which
develop during bending will be considerably greater and cause
more permanent fiber deformation and poorer recovery of the
structure.
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Since both the bending and bending recovery behavior of
textiles are of prime importance in their end use, it is
important to understand the factors which determine this
behavior. The most important factor is, of course, the indiv-
ual fiber properties. Fabrics made of flexible fibers are
generally flexible and fabrics made of fibers with a high
degree of tensile recovery generally have a high bending
recovery. However, this holds true only if the fibers have
mobility in the structure. If relative fiber motion is
restricted, then a structural interaction develops which can
have a strong affect on the translation of fiber to fabric
properties. This interaction generally increases the fabric
rigidity and decreases bending recoverability. In the limit-
ing case of an interfiber interaction that prevents all
relative fiber motion, the fabric will behave almost as a
solid sheet structure. For this reason, it is of fundamental
significance to develop an understanding of the factors which
govern the motion of fibers in textile structures. These
motions depend on the geometric arrangement of fibers, the
fiber properties, and the interfiber frictional interactions.
Determination of this dependence and of the effect of fiber
mobility on fabric behavior is the fundamental objective of
this investigation.

In the most general sense, what is required for a full
understanding of the mechanics of bending of textile structures
is a relation between bending behavior, fiber properties, and
structural geometry. This involves an understanding of how
the properties of the individual fibers develop the
properties of the structure for any given geometric configura-
tion. The complete answer to this question is not available
at present, nor will it be for some time. Nevertheless, it
is hoped that the information reported-here will contribute
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significantly to our understanding of this phenomena and that
it will stimulate continuing research in this area.

There are a number of important reasons for understanding
the bending mechanics of textiles that should be of importance
to both fiber and textile manufacturers. For the fiber
manufacturer it is important to know the relative importance
of the various fiber properties on bending behavior. This
facilitates the modification of existing fibers or the
development of new ones to meet specific needs. The textile
manufacturer, on the other hand, would be interested in
selecting the proper fiber for a particular use and
determining how to best convert 'it into a fabric. He would
also like to be able to predict the effect of any particular
finishing treatment and then be able to characterize accurately
the bending and recovery of the materials produced.

The problem of pre dicting bending behavior in textiles
is classically dealt with in the literature by means of one
of two limiting assumptions v. The fibers are either assumed
to have complete freedom of motion, or no freedom of motion.
In the first case, the frictional effects are neglected; and
in the second, they are assumed to be of sufficient magnitude
to prevent any relative fiber motion. The differences in the
predictions for the two cases are considerable as would be
expected 0 A loosely made fabric with complete freedom of
motion is much more, flexible than one that has been treated
with starch, for example, and has no freedom of fiber motion.

Since the difference between the predictions for these
limiting conditions is very large, it is important to have a
means of understanding the mechanics of the intermediate
cases of frictional interaction. That is the specific problem
dealt with in this research. It will be shown that the
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behavior for these cases need not be the same qualitatively
as that found in the limiting cases. In particular, the
energy losses that occur when fibers slide against a frictional
restraint produce a non-linear behavior that is qualitatively
different. This affects both bending and recovery as will
be discussed in detail in the text.

A number of previous investigations have dealt with
the intermediate effects of friction. Platt et al 8 assumed
that one way friction can act is to cause the fibers to form
clusters in the structure. On this basis they developed
certain predictions of bending behavior. Abbott et a19

proposed that the intermediate effect was to cause lengthwise
segments of yarn in a fabric to bend alternatingly with
complete and no freedom of motion. Later, Zorowski and Chen 10
found that a ply yarn could be considered to bend with a core
of non-moving fibers surrounded by fibers acting under complete
freedom of motion. In the mathematical treatments to be
presented it will be shown that some of these proposed
mechanisms can be explained in terms of the mechanics of slip
propagation during bending.

Non-linear effects of bending were also found by some
.11 12. 7investigators. Issh~ ,Eeg-010fsson ,and L~vesey and Owens

10found them in constant moment tests; and Zorowski ,and
GroSberg13 found them in cantilever and buckling tests. These
will also be considered in the treatments to be presented.

Frictional effects on bending recovery were considered14in a number of investigations. Bostwick et al demonstrated
that low amplitude mechanical vibrations during recovery
could improve the ability of fabrics to straighten; and
Danielsl5showed that friction can have a strong effect on
recovery, especially for low curvature bends. In addition,
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16others have shown that fiber surface treatments often have
strong effects on bending recovery.

During the course of this work it was found that some
means for carefully measuring the bending behavior of fabrics
was needed. Since there was no commercial
instrument available and since previous desi&ns of instruments
of£his kind were not considered optimal, a special test
instrument was designed and constructed. On this piece of
equipment it is possible to measure continuously the moment-
curvature relation of textile materials. From this measure-
ment, two parameters we~e found to be capable of describing
bending behavior for low curvature bends.

The thesis is divided into four chapters. In the first,
the mechanical behavior of multi-layer beams with friction
between the layers will be examined 0 This type of structure
has many aspects of mechanical behavior ana~agous to that of
textiles, and the results obtained are applied to .textile
structures whenever possible. In the second and third chapters,
the bending and bending recovery respectively are discussed
for various types of textile structures. These investigations
were performed by both experimental and analytical means.
Then, in the last chapter the test instrument developed will
be described in detail, together with all of the experimental
procedures used.

There are a number of applications to which the results
of this research may be applied. The proposed theory of
multi-layer beams may be used to solve a number of problems
for layered structures in which frictional effects are
significant. In addition, the unusual effect of "reverse
curvature" which was noted from the mathematics and demonstrated
experimentally may have some practical implications. This
effect involves unusual deflections in this type of structure
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under certain types of loading.
The primary significance of the work done on the bending

of textile structures is to add to the information already
available and to clarify some of the mechanisms by which
friction acts~ The specific applications of this informa-
tion relate to such factors as fabric stiffness, hand, aesthetics,
comfort, drape, buckling behavior, non-linear behavior,
energy absorption; and others. In addition, the approache~
taken can in some cases be applied to pressurized fabric
structures where rigidity and recovery are often of prime
concern. For example, in the design of a full pressure suit27
the requirements are for low rigidity, and contrary to the
case of textiles in general, poor recovery from bending.

The results of the investigation on bending recovery can
be used to aid in the improvement of this extremely important
property for clothing fabrics. From the results obtained, it
is possible to estimate the effects which can be expected by
a given frictional treatment, fiber modification, or structural
rearrangement.

The experimental techniques used in this investigation
may have applications in continuing research on this general
problem. In particular, the instrument designed for measuring
the moment-curvature relation may be useful for other research
investigations or for routine measurements.

While the analyses and experimental results presented in
this thesis certainly do not answer more than a fraction' of
the overall problems in this field, it is hoped that they
represent a useful contribution to the existing technology
and that they can be used to help others in continuing this
work.
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CHAPTER I THE BENDING OF MULTI-LAYER BEAMS WITH
FRICTION BETWEEN THE LAYERS

In order to establish the fundamentals of mechanical behavior
of a complex structure, it is often useful to consider the mechanics
of a highly id~alized model. If the essential features of both are
the same, then an analysis of'the model 'willi,provide an understand-
ing of the behavior of the structure.

If the complex structure of interest is a textile material
subjected to bending, then a useful idealization can be found in
a multi-layer beam having friction between the layers. In both
the textile and the multi-layer beam the individual elements--the
fibers or the layers--slide by one another as the system bends.
This sliding may be resisted by frictional interactions in both
cases and this results in an alteration of the mechanical behavior
as compared to the case where no friction exists between the
layers. First, the friction system is ~tiffer than the zero
friction system; second, there may be energy lost in bending; and
third, imposed deformations are not generally completely recoverable.
These three effects can occur in a friction system even if the
individual elements are completely elastico They are observed in
both textile materials and layered beams which display frictional
interactions 0

This chapter will deal exclusively with multi-layer beams
and the results applicable to textile structures will be utilized
in the following chapters of this thesis. The general problem
under consideration here is the determination of how interlayer
~riction ~ffects the mechanics of multi-layer beams. More
specifically, such things as load-geometry relation, strain
distribution, slip distribution, recovery from loading, and propa-
gation of slip are to be analyzedo

As a first approach to the problem the limiting cases of
frictional interaction can be considered--namely, zero and
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infinite friction. When there is no friction between the layers,
the beam will deform as a classical beam having a rigidity equal
to the sum of the individual layer rigidities. There will be no
energy loss due to frictional interaction and the beam will
recover completely from an imposed load. When the frictional
interaction is infinite (or large enough to prevent any relative
motion between the layers) the beam will clearly act as though it
were a solid rather than a multi-layer beam. In this case the
rigidity will be considerably higher than that of the previously
described beam and again there will be no energy loss due to
bending and the beam will recover completely if the material is
elastico The mechanics of both limiting cases of frictional effect
have been considered in classic textbooks on strength of materials
and a number of special investigationsl,2,3.

When friction acts between the layers of a beam, there will
be an energy loss at each layer interface when the layers move
relative to each other. This will have a significant effect on
the mechanical behavior of the beam. The relation between
load and deflection will be non-linear, it will depend on the
direction of loading, and the recovery will not be complete. The
case of a two-layer beam with friction and constant normal pressure
has been investigated by Goodman4 for an end loaded cantilever.
He found this type of behavior to hold true in his investigation.
In bending measurements of textile materials, Livesey and Owens 7:
found similar results for fabric samples.

From fundamental engineering considerations, a general
analysis of a multi-layered beam will be developed. From this, a
number of special cases will be solved and experimental results
presented 0 The information useful for the analysis of textile
structures will be extracted and used in the following chapters
of the thesiso
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GENERAL ANALYSIS OF MULTI-LAYERED BEAMS WITH FRICTION

-1= curvature of centerline of beam (in )
• tension on beam (lb)

fs

v
M

T

k

Load-Geometry Relation. The general problem to be solved is the
deflected shape of a multi-layered beam subjected to arbitrary
transverse loading. More specifically, consider the beam shown
in figure l-:l.There are N layers indexed with the subscript "ilt
starting at a value of one for the bottom layer. Furthermore, let:

E = tensile modulus (lb/in2)
w = layer width (in)
h = layer height (in)

(~e = layer moment of inertia (in4)
N = number of layers
Vi = shear force on i-th layer (lb)
Mi = bending moment on i-th layer (in/lb)
Ti = tension on i-th layer (lb)
f. = shear stress per unit width on bottom of i-th

1-

layer (lb/in)
fk = shear stress per unit width corresponding to

sliding friction force (lb/in)
= shear stress per unit width corresponding to

static friction force (lb/in)
= shear force on beam (lb)
= bending moment on beam (in/lb)

ei = tensile strain in x-direction in i-th layer
y = coordinate measured from center of beam to

arbitrary point (in)
y. = coordinate measured from center of beam to
l.

center of i-th layer (in)
x,z = space coordinates of centerline of beam (in)
Ci = average tensile strain on i-th layer
b. = strain discontinuity term for i-th layer

1.
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Fig. 1-1 MULTI-LAYER BEAM

r
d V ·V · + J d x, "0 x

~~~c~
Fig. 1-2 ELEMENT OF MULTI-LAYER BEAM
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~ )). = integration constants
J l

u.+l · = relative motion between layers i, i+l (in)
1 ,1

s = length coordinate along beam (in)
k ... 1 (. -1)= 1n1t1a curvature 1no~ = tangent angle
~o = initial tangent angle

It will be assumed that:
1. The radius of curvature of the beam is small

compared to the beam thicknesso
2. The material is linearly elastic.
3. The loading consists only of transverse loads.
4. The displacements are small.

The procedure used in formulating this analysis will first
be to establish the types of strain distributions which are
possible for a multi-layer beam and then to insure that each
element of the beam is in equilibrium with the imposed loadso

The strain distribution in each layer consists of two parts,
one related to the curvature of the layer in question and the
other to the average tensile strain c .. Expressed mathematically,

1

this is,
(1-1)

Under assumption 1, i.e. y.k is small, this becomes,
1

, 'e. = yk + b.
1 J.

(1-2)

where b. is Ci - y.k. Note that the result of the strain analysis
1 1

indicates that the strain on any layer consists of two terms, only
one of which (b.) depends on the layer index 0

1
Since the value of b. may be different for each layer the

1

resulting strain distribution may be discontinuous. Although
this is not possible for a conventional beam, it is certainly the
case for multi-layered beams. The difference between the values
of b. for two adjacent layers is, of course, a measure of this

J.

strain discontinuity; and, as will be demonstrated later, a
measure of the relative layer motiono
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In the extreme case of no relative motion between the layers,
all the bits are zero and the strain distribution is the same as
the classical case. (ei a yk)o When there is no frictional
interaction and the layers act independently, th~ equation reduces
to ei = k (y - Yi). The intermediate cases of friction, which are
of interest here, follow the form of equation 2 and the particular
values of b. will depend on the loading and the frictional inter-

1

actiono
It should be noted that the values of k and bi vary with

position along the beam and k is a function of x only, and b
varies with both x and io

The equilibrium conditions will be established by assuring
that each element of each layer and the beam as a whole is in
equilibrium with the imposed forces and moments. Taking first
the force equilibrium in the x-direction of an element h dx of
one layer and referring to figure 1-2 gives,

(1-3)

(1-4)

(1-5)

(1-7)

(1-6)

The force balance on the beam as a whole under the assumption of
small deflections and transverse loads results in the requirement
that the total beam tension be zeroo In terms of the variables
of interest, this becomes,

N!
T '" i. T .... 0

,._ 1
N 1=-'1

L::; (ky. + b.) :I 0
~ 1 1

i=sl-
-18-



The moment equilibrium requirement of an element of one layer can
be found by again referring to figure 1-20 Summing moments about
the centerline of an arbitrary layer gives,

(1-8)

(1-9)
Note that the sign convention established for the f. terms is

~
shown on figure 1-20 Summing the individual shear forces gives
the overall shear force 0

(1=10)

(I-II)

This equation may be written in terms of the moment on the beamo
Fo~ this purpose, the classical relation between shear force
and bending moment may be used. This relation is independent of
the frictional effects within the beam 0

dM = V
dx

Alternatively, an equation for bending moment on the beam may
be obtained by integrating ~he individual components of stress
across the beamo The result of this operation gives the same
effective result as equation 10, but in different form 0

b. y.
~ ~

(1-12)

One other relation required is the equation for determining
the location of the center of the i-th layero This can be shown
to be,

(1=13)
Algebraic manipulation of the above equations gives the

relation between loading and geometry for a fixed frictional
interaction. In this relation, load is expressed by the shear
force and the geometry is given in.terms of the curvature 0

...19=



dk N.
V a NE~ dx + h?2 fi1.::1

(1-14)

The shear stress terms,:fi, in equation 14 must be ev~luated
in o~der to solve the equationo This can be done immediately for
two special cases~ one in which there is no strain discontinuity; ,
and one in ~hich the shear stress is constant from layer to layer.

When there is no motion between the layers of the beam, the
strain discontinuity (hence b.) is zero and the load geometry

1.

relation can be obtained from equations 11 and 120

v = N3 EI. dk
1. dx (no slip) (1-15)

When all the layers move relative to each other (the condition
of complete slip), and when the normal force (between layers) and
the coefficient of friction at any location along the beam are
constant, the frictional forces, f., will also be constant at any

1.

location 0 This type of behavior corresponds to a complete sl:i:ppage
between the layers against frictional restraint 0 For a region of
the beam where the direction of slip is such that the friction
forces are positive according to the established sign convention,
the result is,

v ~ NEI. ok + h (N-l) f
1. dx 'k (complete slip) ','.'(1-16)

This equation gives the load~geometry relation for loads
sufficiently high to produce complete slipo The applicable range
of equation 15 and of equation 16 will depend on the nature of
the propagation of slip through the bearno This will be considered
in greater detail latero

An interesting consequence of equation 16 can be found by
examining the effect of the friction termo If the equation is
integrated, it shows that the curvature of the multilayer beam
may be different from zero eyen in a region having zero moment.
Furthermore, this equation shows that in the region of non-zero
moment it is possible to have a point of zero curvatureo Both
of these effects are not found in conventional beams. They will
be explored in greater detail in the applications section of
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this chapter.
For the case of no frictional interaction, the behavior of

the multilayer beam is governed by equation 16 without the second
term. This is the same as an equivalent ~eam having a rigidity
equal to the sum of the individual rigidities of the layers. The
difference in rigidity between this case and the case of infinite
frictional effect is obtained by comparing this result with that
of equation 15. The solid beam will be stiffer than the zero

2friction multilayer beam by a factor of N 0

Strain Distribution. The strain distribution in the beam can be
written from the equations already derived. The general form
is,

e. == yk + b.
1. 1.

For the case of no relative motion this becomes,
e. :B yk1. (no slip) (1-17)

e. ==1.

For the case of complete slippage against a constant frictional
restraint the strain may be computed by establishing the values
of k and bi from equations 5 and 16 in integrated formo The
results are,

(
V-h(N-l)fk,

NEI. 1x (Y-Yi) +Cy +4, i + 1, N. 1.

'.~.V-h(N-l)fk~', Pr'" fkxl- (Y-Yi) +~ +~- --- igl (1-18)\NEIi y 1. Ewh, (1 1.)'" comp ete s 1.p

~-h(N-1)fk I . I"r fkx ..
\:: NEl

i
lX (Y-Yi) +Cy +oUi + Ewh, J. .... N

The quantities C and JJ are integration. constants determined
from the nature of the loading. The sUbscript'on~indicates
that the value of this constant depends on the layer in questiono
Note that during the case of complete slip, the interior laye~s
have identical strain distributions differing only in the
integration constant; and this constant is zero for many situationso
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Slip Distribution 0 The relative motion between two layers can be
found by taking the difference between the absolute motion of
points at the interface of two adjacent layers. The displacement
of a point at the top of layer i can be shown to be,

du .top, 1.
dx = etop,i (1-19)

Similar1y~ the displacement of a point at the bottom of layer
i + 1 is,

dUboto,i+1 = e (1-20)dx bot.,i+l
Combining these two equations and substituting for the strain
discontinuity between the two layers gives the relative motion.
The direction of positive relative motion has been chosen to
correspond to a positive frictional force and the result is,

dU.+1 .
__ 1. ,1. ~ b _ b (1-21)dx i+1 i

The slip distribution may be formulated in an alternate way
to provide a result that is useful for certain calculations.
Consider a multilayer beam having an initial curved shape that is
deformed to a new geometryo Assume that the layers remain in
contact and that the relative slip may be approximated by that of
a beam ~Aving no frictiooo Let s be a coordinate running along
the interface between the i + 1 and i-th 1ayerso The relative
motion of the layeX"B can be found in teX'ms of the strain distribu~
tions as before 0

dU ...a.,l •
1. ij ,l. ( 22ds ~ eboto,i+l - etoP9i 1- )

In this case, however, the strains may be evaluated in terms
of the changes of curvature to give the relative slipo

heboto,i+l = - 2 (k = ko) (1-23)
h~top,i ~ 2 (k = ko) (1-24)

dU'-obl •
__ 1.. ,~~ ~h (k - k )d~ 0

=22=

(1-25)



This analysis is not restricted to small deflections and the
most useful result is obtained by replacing the curvature with the
derivative of tangent angle with respect to arc length.

du 0+1 01. ,~

ds

k :=! ~

ds

= -h rM _ d ce 0)

\dS ds:';

(1-26)

(1-27)
Integrating gives,

uO+l 0 (s) = -h [~(s) - cp (S)] + uO+1 0(0)
~ ,1. 0 - ~,1.

(1-28)
This equation shows the interesting result that the displace-

ment at any point depends only on the change of tangent angle at
a given location and an additive constanto It means that the
relative motion an element feels is not dependent on the change
in shape of the beam, but only dependent on that particular
element's change of tangent angle. For the case of an initially
straight beam with the coordinate s measured from a point having
no relative slip, the relative motion will be,

ui+l,i = -h~ (1-29)

Longitudinal Shear Stress. In the previous analysis, the general
equations were reduced to the special cases of no relative motion
and complete relative motion against a frictional restraint. The
question still remaining is to find how slip propagates through
the beam as the load is increased.

The approach taken is to compute to local shear stresses
tending to separate the layers of the beam befo~e slip occurs and
compare this value to the shear stress that can be resisted by
static friction between the layers. Clearly, if the imposed
shear stress is below that which can be resisted~ thexe will be
no slip and if it is greater, there will be slipo

In order to make the comparison between the imposed and
allowable shear stresses, it is necessary to know the nature of
the loadingo However, the values of imposed shear stress can be
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calculated in a fairly general sense. That will be done in this
section; and, the results obtained will be used to compute the
propagation of slip in two of the examples given in the applications
section of this chapter.

The longitudinal shear stress of a solid beam has been solved
by classical beam theory methods 6. In this case, the shear
stress results from an imposed transverse shear force on the beam.
In multilayer beams a shear force will also produce a longitudinal
shear stress, but surprisingly enough it is possible to have a
longitudinal shear stress even if there is no transverse shear
force. This is because discontinuous stress distributions can
occur in multilayer beams, and they can cause longitudinal shear
stresses. For this reason the computation will be broken into two
parts and the two contributing factors to longitudinal shear
stress will be analyzed separately 0

Longitudinal Shear Stress due to Transverse Shear Force. To
have a measure of the shear stress tending to separate the layers,
the shear stress distribution must be computed for an arbitrary
number of layers sticking together. In addition, it is necessary
to allow any combination of surface shear forces to act on top and
bottom of these layers 0 There are three such combinations of
interest~ in ~he first, all the layers stick together and there is
zero surface shear stress; in the second, a group of interior
layers sticks together and there is a constant shear stress
corresponding to sliding friction on both sides of the group;
and in the third, a group of layers has one side on the interior
of the beam where the sliding frictional stress acts and one side
at the surface of the beam where there is no shear stress.

In order to solve for the three cases mentioned above for
any number of layers sticking together in a group, consider an
element h*dx of the beam shown in figure 1-3, also a subelement

* *(h /2 - y )dxo NoW let:
ft ~ shear stress per unit width on top of element

(lb/in)



fb = shear stress per unit width on bottom of
element (lb/in)

f * = shear stress per unit width at position y* (lb/in)
y

*'y = coordinate measured from center of the group (in)
to the bottom of the sube1ement.

Ts = tensile force on subelement of figure 1-3 (lbs)
h* = height of element (in)
e = strain at any point

. *e
t

= average stra~n on element, h dx
J = dimensionless coordinate.

--

f. dx

<

f *y '*y

+ dT s

Fig. 1-3 Force Balance on a Volume Element in a Group
of Non-Sliding Layers
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(1-31)

An equation for the shear stress at any position within the
group of layers may be obtained from the condition of force
equilibrium in the x-direction. For the sube1ement shown in
figure 1-3 this is,

dTsdx = fy* .. ft (1-30)
*A similar force balance for the h dx element of figure 1-3 yields,

deT fb - ft
dx = EWh*

The tension on the subelement may be found by integrating the

stress disjtribrion, * ] [ * ]
Ts" Ewedy* = ~w [k~ + kl + 2eT ~ - y*

Substituting this result into equations 30 and 31 and using a
. *dimensionless coordinate ~n place of y gives the result,

(1-32)

(1-33)

(1-34)

cases mentioned before can be solved by
values for the shear stress on top and

2Y*
h*

The three special
taking the appropriate
bottom of the group of

Case 1 fb a

~ayerso
f = 0
t

The results are:
(group?f layers corresponds to
total beam)

(1-35)

Case

*2
Ewh dk (1 _J2)fy* l1li 8 dx

2 fb m ft • fk (group of layers 'is on interior
of beam)

2
fy* • E:h* ~ (1 - J 2) + fk

-26-
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Case 3 fb 0, ft = fk (bottom of group of layers lies
on surface of beam and top of
group lies in interior)

*2 f
f * :I Ewh dk (l _ S 2) +.J5 (1 + 5 ) (1- 37)y 8 dx 2

Nute that the distribution of shear stress is parabolic in
all cases and has the appropriate values on the boundaries. It is
expressed in terms of rate of change on curvature instead of shear
force 0 This is because the relation between shear force and rate
of change of curvature depends on the particular problem in
question and the mode of slip propagation.

In the applications section of this chapter the imposed
shear stress will be computed and compared to the allowable shear
stress 0 This will permit calculation of the development of slip
throughout one type of loaded beam.

Longitudinal Shear Stress due to Discontinuous Strain
Distribution. The shear stress developed by a discontinuous
strain distribution exists even if there is no net shear force on
the beamo To demonstrate this point, consider a multilayer beam
subjected to a symmetrical four-point loading. In the central
region of the beam there will be a constant moment and no shear
force 0 However, if the friction between the layers is moderate,
they will slide by one another even in the region where the shear
force vanishes. The explanation for this phenomenon lies in the
fact that if slip occurs in the region just outside of the
constant moment zone, the stress distribution at the boundary of

,

the zone will be discontinuous. This discontinuity will produce
a shear stress along the interface of two layers as shown on figure
1=40'

The shear stress will be greatest at the beginning of a
region of no slip and it will decrease to zero in a relatively short
distance 0 If it exceeds the shear stress that can be resisted
by static friction, slip will start propagating into the material.
As the slip propagates, the strain discontinuity will diminish

-21-



due to a reduction of curvature, and thereby reduce the imposed
shear stresso The propagation will then continue until the imposed
shear stress is no longer great enough to overcome friction •

.----.---f.. -''0 .-- •. - ••• _--. __ •• __ -._-- •• --.-------.-.-----------

d,i
- ~ +- ...
-.-.----------------- ----1~~~ -':-

........--.-------..----.- ..---------------- -------4

Fig. 1-4 Longitudinal Shear Stress in Non-Slipping Region
Developed by Discontinuous Strain Distribution

In order to estimate the shear stress for the case of strain
discontinuity a two-dimensional stress analysis was used. The
shear stress distribution was assumed to be the same as that in a
large solid block of material subjected to a sawtooth stress
distribution on each side. This assumption makes it possible to
use the available solutions for the stress distribut.ion in a
material loaded by sinusoidally varying loads on both sides. This
solution can be summed by a Fourier series to obtain the results
for the discontinuous loads actually applied. The details of
the calculation are given in the Appendix A and the resulting
shear stress function is,

-21(x

Ew [271 x~ e h
fd i :::i rr -h- -d:!J1. (bi-l - bi), 1 - e h

-28-
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Where:
fd . = shear stress per unit width on bottom of i-th,~

layer due to discontinuous strain distribution. (lbs/in)
x = distance along the beam measured from beginning

of no slip region. (in).
The shear stress decays rapidly and at a distance equal to

about one layer height its magnitud~ is about 1% of the original
value. The maximum shear stress occurs at the ~eginning of the
no-slip region and its value is,

Ew
fd . = ~ (b. 1 - b.) (1-39)

,~ 1/ ~- ~

max

This imposed stress will determine whether or not slip will
propagate into a multilayer beam when it is compared to the static
friction force per length that can be generated between the layers.

APPLICATIONS OF THE THEORY OF BENDING OF MULTIlAYERED BEAMS

WITH FRICTION

Simply Supported Beam with Constant Normal Force--Theoretical. As
a first example of the proposed theory, consider a beam that is
simply supported as shown on figure 1-5. From symmetry the beam
can be replaced by a cantilever of one-half the length as shown.

The problem is to estab~ish the deflected shape of the beam
for a given loading. To do this, the following assumptions will
be made:

I. The assumptions of the general analysis hold
20 The normal force between layers is constant and

unaffected by the imposed bendipg loads
3. The slip has propagated th~oughout the beam.

(This last assumption will be dropped later when the
transition region is examined in detail.)

Let:
a = position of load application
L ~ lengt~ of cantilever
X,z = coordinate system for describing centerline deflection.
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with other variables as before.
The equation for relati.ng load to geometry can be obtained

from equation 16 by substituting the appropriate values of shear
force in each of the two regions of the beam. The result is,

-h(N-l)fkdk =dx NEle
V-h(N-l)fk

NEle
a<x<L

(1-40)

v

L1J_l_LJ __LLJ_LJ,--LLJ~-LL

.................... " .......•. _ .._-_ .._..._--_._-----

....__._-.--.--.-..---------~-----_t

Shear
Force

!~ x.
V

z !
-'

/'

.-./

a~
L

V

Fig. 1-5

-_.~

o . -..._ .. '--a: _.....--- L x_;>

Simply Supported Multi-Layer Beam under Constant
Transverse Pressure
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Equation 40 can be integrated and the constants evaluated by
setting the curvature equal to zero at the free end and by assuring
its continuity between the two regions. Then, the resulting
curva-ture function can be set equal to the second derivative of
the displacement since the deflections are assumed small.

o<x<a
(1-41)

a<x<L
(V-h[N-l]fk)x Va- --NEIy.. NEIe .

An interesting observation can be made from this equation.
In the region of the beam outside the point of load application
there is neither a shear force nor a bending moment. However,
there is a curvature in this region, and its direction is opposite
to that in the region near the wall. This effect will be referred
to as "reverse curvature". It has been observed experimentally
(see figure 1-8) and constitutes perhaps one of the most interesting
effects of friction in a multilayered beam. When the frictional
forces are sufficiently great so that the beam behaves as a solid,
there is no reverse curvature; and, when the interlayer friction
is zero, there is also no reverse curvature. Clearly then, this
effect is limited to those intermediate cases of friction where
there is relative motion against a frictional restraint.

Another interesting effect which is predicted by equation 41
and was observed experimentally is that the curvature is zero be-
tween the load and the wall.. This occurs at a point at which the
bending moment exists. In classical beams that are originally
straight, inflection points occur only at points of zero moment.

The differential equation for the beam deflection can most
easily be solved by first converting it to dimensionless form.
For this purpose let,

v = z/L = dimensionless deflection
u = x/L = dimensionless coordinate along beam
~= aIL = dimensionless load location
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(N-l)fkhL2

R=-----NElj

L2VS ==--NE1.R

= dimensionless measure of relative
effect of friction to elasticity

= dimensionless deflection of end
loaded cantilever with no friction.

Substituting these variables into equation 41 gives the dimension-
less differential equation and the boundary conditions.

d2ar"
tRU

o<u<o
du2 = (S-R)u - So a<.u~l (1-42)

dtt-{l) =rY'(l) == 0du
This equation can be solved with the additional requirement that
the displacement and slope be continuous at the point of load
application. The resulting solution is,

SB(1-~3 + ~(1-~)2(?f-U)J -Rg(1-u)2 - ~(1-U)3] 0<: u<~

.~~ (1-43)
Sn(1-{f)(1-u)2 - ~(l-u)Jj -R[-~(1-U)2 - ~(1_U)3] 0<u<l

This equation is plotted on figure 1-6 for d = ~ and for
.several values of Rls which is a measure of the relative effect of
friction versus the imposed load.

As a check on the solution it is necessary to determine
whether the direction of relative slip at each point corresponds
to the direction of friction force. Since the friction force
was taken as being positive for the loading, cycle, the relative
slip must also be positive (based on the sign convention estab-
lished previously). The slip distribution can be determined by
first establishing the strain distribution from equation 18 and
then integrating this result in accordance with equation 21. The
result is that the directions do not correspond for all points
along the beam and it becomes necessary to make a slight modifi-
cation of the solution. This can most easily be done by using
the method of equation 29 to determine slip direction. Applied
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(1-45)

(1-47)

to this case the equation states that the slip will be positive
when the slope of the deflection curve is negative. This means
that the solution holds when all points on the beam, except at the
wall, have negative slopes. This will be the case when the applied
load exceeds a certain level which depends on the frictional inter-
action and geometry of the beam. This level of load can be
calculated by finding the conditions under which the slope of the
deflection equation goes to zero in the interior of the beam.
From equation 43 it can be shown that this slope goes to zero when,

I 2'R fl 2 J2(1-0') ....8 1"2 (l....u) ....(l""u) ~ 0 (1-44)
The point of zero slope calculated from this equation must lie
outside of the beam itself for the deflection solution to hold.
From equation 44 it can be shown that this is the case when,

s = V >_l_"",!",
R (N-I)fkh (l_~2

At loads below the value indicated by this equation, the
original deflection equation does not hold and the deflection shape
must be computed by a different procedure. For positions u, which
do not reach the point of zero slope, the beam acts as a solid
beam and the deflection curve for these positions is horizontal.
For values of u greater than this, the original equation can be
used with revised boundary conditions. Nevertheless, the original
equation still holds when the condition of equation 45 is satisfied.

A useful relation for experimental investigations of the
proposed theory can be obtained by finding how the load varies
with the displacement at the point of load. This can be found
directly from equation 43 by setting u =~.

V(y) => s[~(1-.n3] - R01-.1"t<2+?!1] (1-46)

In terms of force versus displacement this equation becomes,
- [NEI~Q 3 ~ , 0 (2+?2JV - ---3- 3 f+ (N-1)fkh 2(1-0)L (1-0)
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Where,
s= displacement under the loado

This predicted force-displacement equation consists of two
terms. _The first represents the linear relation between force
and displacement which is obtained for a multilayer beam without
friction. The second represents the additional amount of force
which has to be added to overcome the frictional restraint. During
unloading, the direction of slip reverses and the sign of the
second term changes.

In accordance with the assumptions made in the analysis,
equation 47 is valid only after the slip has propagated throughout
the beam. The behavior preceding this condition consists of an
initial region in which the beam acts as a solid unit and a
transition region in which the slip developso This will be
considered in greater detail later.

Simply Supported Beam with Constant Normal Force--Experimental. An
experiment was performed to determine the validity of the theoretical
relations developed for the simply supported multilayer beam. This
was done by taking a number of strips of polyvinyl-chloride and
subjecting them to a normal force created by an arrangement of
rods and elastic strips as shown on figure 1-7.

Prior to the bending tests, measurements were made to determine
the quantities required for the theoretical expressions. The
results were:

0.37 lb~in 2EIJ =
N = 15
L ::3 6 in.
h = 0.028:-.' in.
w == 0.50 ino

The one remaining value which was required--the friction force
per length--was measured separately for each normal force which
was applied. The procedure used in making all the measurements
is described in detail in Chapter IVo This includes the preliminary
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Fig.1-7 EXPERIMENTAL MULTI-LAYER
BEAM UNDER CONSTANT PRESSURE

Fig.1-8 REVERSE CURVATURE RESULTING
FROM INTERLAYER FRICTION
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measurements and the bending tests.
Measurements were made of the force-displacement curve at

the point of loading. This was done for three different pressures
and for loads applied at varying positions along the beam. A
three-point loading as shown on figure 4-8 was used. The effective
cantilever length was half the total length, and the force-
displacement curve was measured for the outside loads. The
loads were applied by means of an rnstron Tensile Testing Machine
which imposed a constant rate of displacement.

The results showed that the relation between force and
displacement was as shown on figure 9.

Friction ~
Force Vf//

v

Force

~ Displacement
Fig. 1-9 Typical Force-Displacement Curve Measured for

Simple Supported Multi-Layer Beam

The slope and friction force of each curve was measured for
comparison with the values predicted by equation 47. This
equation can be rewritten in the following form.
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Fig. 1-10 MUlti-Layer Beam Stiffness
vs Position of Load

EB

....... THEO RY

EXPERIMENTAL

E9 fk = 0

E8 fk = 0.398 Ibs/ in.
& fk = 0.258Ibs/in.

4

3

O-------'-- ---L ...I-.- -.Io 0.2 0.4 0.6 0.8

1

dV 2en(lb/in)
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1.0

0.8 EXPERIMENTt.L

£ fk = 0.398 Ibs/ in

EEl fk = O.258Ibs/in

0.4

0.2

THEORY

O':------:;:::--L..;:;-------,.~---__:__l~--__._Jo 0.2 0.6.8

Fig. 1-11 FRICTION FORCE vs POSITION
OF LOAD
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Slope dV=- =def (1-48)

Friction Force = VF = 2(i~~fk(N-1)h (1-49)
These quantities are plotted on figures 10 and 11 as functions

of o using the measured values of N, EI~, L, fk, and ho The
measured values are plotted on the same graphso

Agreement between theory and experiment appears to be good.
On the basis of the properties of the individual layers of the
beam, the interaction between layers, and the geometry of system
it was possible to predict the bending behavior. Note, however,
that the predicted slope was independent of the amount of frictional
interaction, whereas there was a difference between the measured
values. This indicates that the assumption that slip has
propagated through the beam and continues to do so as loading
proceeds is not entirely Justified. For this reason the propagation
of slip was investigated in greater detail and will be discussed
latero

During the bending tests, some of the loaded beams were
photographed to measure the deflection curves. These measured
shapes were compared to the predicted shapes and the results are
shown on figure 1-12. Here the parameters input to the deflection
theory were the measured slope and friction force. Again, the
results indicate agreement between measurement and prediction 0 Note,
however, that the measured reverse curvature was greater than that
predicted. This may be due to the approximation made in setting
the curvature equal to the second derivative of displacement. It
may also be due to a lengthwise variation in friction force caused
by the applied loads.

propagation of Slip in Simply Supported Beamo The previous
analysis of the simply supported beam was limited to beams in
which slip had propagated throughout the structure 0 In this
analysis the nature of the slip propagation phenomenon will be
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(1-50)

considered in detail in an attempt to determine the shape of the
force-displacement curve in the initial region 0 The basic principle
to be used is that two layers will slide relative to each other when
the shear stress tending to cause this movement exceeds the shear
stress which can be resisted by static friction.

The analysis will be limited to the simply supported beam
which has no overhang. (0= 0)0 This is, of course, the same
problem as a cantilever with a point load at the end. The assump-
tions which will be used are the same as those of the previous
analysis with the additional assumption that the static and kinetic
coefficients are equal. The results for this assumption will be
analyzed qualitatively to determine the effect of differences
between the coefficientso It will also be assumed that slip will
continue once it has occurred at an interface.

When the beam of figure 1-5 with ~= 0 iSlloaded, the initial
shear stress distribution can be obtained from equation 35 by

..*letting.h = Nh. The maximum value occurs at the center. For an
even number of layers there will be an interface at this point and
slippage will occur when the imposed stress equals the amount
which can be resisted.

dk 8f=-~~
dX1st EWh2N2

slip
The subscript has been dropped from the friction force term

because of the assumptions of equal coefficients of friction. As
the load exceeds the point of first slip, the beam will behave as
two halves slipping at the center. Because of the slippage, the
surface force on each of these two halves will remain fixed at a
level corresponding to the friction force. The shear stress
distribution in each half will follow the form of equation 36

*with h = Nh/2.. This distribution increases in magnitude as the
load increases and will continue to do so until a second interface
attains a shear stress great enough to produce slip. This second
slip will be at the layers above and below the center of the beam

-42-



since the shear stress will reach the critical value first at
those locations. At this second point of slip,

(1-51)
dk 8f
dXind = Ewh1N(N-2)

slip
Following this second slip the beam will consist of two sliding
layers in the center surrounded by two groups of layers that have
not yet slipped. As the load increases further, the slip propa-
gation will proceed outward from the center until each layer
slips. A general formulation can be made to define the point of
each slip, using the same procedure as above. The result is,

dk- =dX
j
_th
slip

j=l

[N-20-2)J 1[N-20_2) -2] j=2,3,4, ... ~

(1-52)

Alternatively, this equation can be written in terms of the
number of layers sliding in the interior of the beam. Letting

S = number of layers sliding in center of b~am,

(1-53)

S-0,2,4, •..N-4

1st Slip1

N
2

dkl
dXend of S=

layers
sliding 8f 1

Ewh2 (N-S)(N-S-2)
As the load increases and the slip propagates, the shear stress
distribution changes from the parabolic shape which exists at the
point of first slip to one which levels out to a distribution of
small parabolic sections for each of the sliding layers. This is
illustrated in figure 1-12.
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a. At 1st Slip bo At Intermediate c. After Complete
Stage Slip

Figo 1-13 Shear Stress Distribution Transition in Beam with
Constant Shear Force

For the assumptions made here, it was possible to determine
the mode of slip propagation. Now it is necessary to compute the
load-deflection behavior that the beam undergoes during each of
the intermediate modes. This can be done by applying the equations
derived in the general analysis to the case of layers of varying
thickness sliding against a frictional restraint. The result is,

(1-54)

before 1st slipdk N3
dx

v Ele :~ E+!<N-S)3J+ fhfNi']. S=0,2,4,6, ... N-4
EIe :~ N + fh [N-l] after last slip

Each mode has a behavior indicated by the above equation.
The relation between V and dk/dx is linear for each stage of
deformation; and the slope gets progressively smaller while the
V-intercept increases. This is shown qualitatively on figure 1-13.
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Mode 1

v

dk
dx

Fig. 1-14 Relation Between Load and Geometry for Each Mode
.of Slip

In order to obtain the final behavior, the force-geometry
relation at each mode (equation 54) must be combined with the
relation which gives the points of slip (equation 53). The result
of this computation shows that for the assumption of equal static
and kinetic coefficients of friction the points of slip corres-
pond to the intersection of the load-geometry curves of equation 54
and figure 1-13. This fact considerably simplifies the calculations
since the entire transition behavior can be defined by equation 54.
Each individual equation holds until it intersects with the next
equation.

The transition can be written in terms of force versus
deflection by converting the derivative of curvature to the
displacement under the load.

. .,

d3z dk
--- = -- = constantdx3 dx

:~(L)= 0 = z(L)
z(O) 3' f
f = 1- dk

3 dx
-45-
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(1-56)c =

Before writing the final equation it is convenient to define
two variables: the spring constant of a solid cantilever (c);
and the total thickness of the beam (H).

3N3EI~

L3

H = Nh (1-57)
Combining equations 54 and 55 and putting the variables in

dimensionless form gives the solution for the transition region
and the final behavior

(1-58)

before 1st slip

S=O,2,4, .•. ,N-4

after last slip

f~ ~

t 1 3JV "'.-£ S + li(N-S) J N+S
Hf fH N3 + 2N

--£... rLJ J + N-l
fH lN2 N

Each line segment holds until its intersection with the
next segment, to give a single valued function V( J").

Equation 58 is plotted on figure 1-15 for various values of
No This plot represents the force deflection behavior of a beam
of constant total thickness and constant pressure that has been
divided into various numbers of layers. The intersection of each
line segment on this plot indicates a change from one slip mode
to another. When the slip is complete, the beam follows the
basic equation used in the preceding analysis.

As the deflection of the end of the beam is increased, the
propagation of slip proceeds rapidly at first and then gets
progressively slower. This may be seen on figure 1-15 by observ-
ing that the distance between intersection points increases with
deflection. At large deflections the slip propagation may not be
complete and yet the relation between load and deflection still
retains the same general form as found for complete slip. In
this case, the friction force would be close to the final result,
but the slope of the force deflection curve could be considera~ly
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different. This may explain the deviations between measured and
theoretical results of figure 1-10.

In materials having differences between the static and kinetic
coefficients of friction the mode of slippage may be different
from that computed here. Each time the maximum allowable shear
stress is reached, and slippage starts between two layers, the
shear stress on the surface of the layers will drop below the
level required to initiate slip. Then the mode of slip propagation
may not be exactly the same as for the case which was considered.
The second slip, for example, may be more than one layer distant
from the center of the beam, depending on the current shear stress
distribution relative to the locations of the interfaces. Then
the modes of slip propagation will be considerably more complicated
than for the case considered here.

Another effect of differences in the coefficients of friction
is that the points of slip will not correspond to the inter-
sections of the load deflection curves of each mode. The beam
will follow the curve for a particular mode and change to the next
mode beyond the intersection of the line segments. This will cause
a rapid drop in load at .the points of mode change and will give
the load deflection behavior a sawtooth appearance. In addition,
the beam will remain in one deformation mode for greater changes
of end deflection.

The analysis presented here defines the transition region for
a constant shear force in the beam and slip was found to propagate
through the thickness of the beam. In a later case, the question
of lengthwise propagation will be discussed in detail.
Beam Loaded with Constant Bending Moment. Another example of the
application of the proposed theory is the case of a beam subjected
to a constant bending moment. This type of loading can be produced
in the center of a beam by four points of loading as shown on
figure 1-15. For the purpose of this analysis the central region
will be taken as being under a constant pressure and the regions
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in which the point loads are applied will be taken as being under
zero pressure.

Using the same symmetry condition as before the beam will
be replaced by a cantilever-having a two-point couple ~t the end.
This is shown on figure 1-16 together with the definition of the
variables to be used in the analysis.

v

v v

v

Figo 1=16 Four Point Loaded Multi~Layer Beam Under
Constant Pressure in Central Region

The assumptions made in this analysis will be the same as
those made for the simply supported beam. In this case the shear
force maintains a constant value in the initial region of the beam
and falls to zero in the central region. The friction force, on
the other hand, is zero in the initial region and constant for
values of x', between a and L. Substituting this information into
equation 16 gives the differential equation for the curvature

-49-



distributiono

dk
dx

=h(N-l)fk
NEI~

O<x<a
(1-59)

Solving this equation gives,

(;-x
k ~1::::-1)fkX + h~N-l)fa + Va

( NEI9 NEI9 NEI9

O<x<a

a<x<L
(1-60)

(1-61)

Note that the curvature varies in the region of constant moment.
This is in sharp contrast to a classic beam where the curvature
would be constant 0

The average curvature (k) in the constant moment region can
be determined from equation 600 The result is,

k ~ ~ _ h(N-l)fk(L-a)
NElr 2NEl9.

Solving the equation for the imposed bending moment (va)
and writing the result in terms of the length of the central
region gives,

(1-62)

This equation expresses the moment~curvature relation for
the multilayer beam under considerationo It ~educes to the
classical result of a zero friction beam when the second term
vanishes 0 However, when the second term exists, the beh~vior
follows the same pattern as in the simply supported beam.
Elasticity produces a linear relation between load and deforma-
tion to which is added or subtracted a constant term that depends
on the frictional effect 0 This term is added during the loading
cycle and subtracted during unloadingo

In both types of loading situations considered, the frictional
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effect is dependent onthe beam length; and for this reason there
is no constituative relation which exists at every point of the
beam. In a textile structure, however, which under certain cases
may be considered as a number of multilayer beams in series,
there is a constituative relation that exists when the size of
each element of the structure is much smaller than the length of
the sample under test.

The slope of the moment-curvature relation will be referred
to as the "elastic rigidity" and the additive amount of moment
which must be applied to overcome frictional effects will be
referred to as the "frictional moment"" For this case the elastic
rigidity is merely the sum of the individual layer rigidities and
the frictional moment is a term related to the friction force,
the number of layers, and the geometryo During unloading the
direction of slip changes and the sign of the friction moment
becomes negative. The hysteresis curve produced is shown on
figure 1-17.

The type of behavior predicted here corresponds to that
observed for textile materialso7 There is a stiffening effect
due to friction, an energy loss due to relative motion and a
non-recoverability from bending due to friction 0

Propagation of Slip in Beam with Constant Bending Moment. The
solution of this loading situation was made with the assumption
that the individual layers are free to slideo This limits the
results to the behavior beyond the transition region during which
the slip is propagating through the structure 0 The transition
region can be investigated in greater detail by determining the
magnitude of imposed shear stress at every point of the beam and
comparing it to the stress that can be resisted by static friction.

In performing this computation an apparent paradox arises.
On the basis of classica.l considerations of beams there is no
shear stress in the central region of a four-point loaded beam
because the shear force is zeroo This is true for most of the



(1-64)
O<x<a

a(x<L s
Mh

+ NEl
~

2-h (N-l)f (x-a),k

hM x
aNEl.Q

b. 1 - b.=1- 1

length of the beamo However, in a small region near the ends, a
shear stress develops because of the discontinuous strain dis-
tribution imposed on the beam section. This was discussed
previously and it was shown that the maximum shear force per unit
width imposed is given by equation 39. To use this equation the
strain discontinuity must be computed at the beginning of the
constant moment region. This can be done by integrating equation 18
with the boundary condition of zero strain at the free end and the
appropriate values of friction force in each region. The result
for an interior layer within the range of slip propagation is,

b. 1 - b. = kh (1-63)1.- 1.

From the curvature function of equation 60 this can be
evaluated in terms of position along the beam.

Where:
L = extent of slips

This equation is valid for any length of slip propagation
into the beam. From equation 39 the imposed shear stress per
unit width at the end of slip (x a L ) can be computed. At thiss
point the imposed shear stress Just equals the shear stress that
can be resisted by the static frictional forces. The extent of
slip can then be calculated from equations 39 and 64.

at x = Ls
fd . = f

)1 s

Mh - Nf 71h3
. s

--1~2-
L - a =------

s h2(N-l) f
k

(1-65)
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The extent of slip into the region of constant moment
increases with the imposed moment as expected. The slip region will
start propagating when sufficient moment is applied to cause initial
interlayer motion and will grow linearly with imposed moment until
the slip has propagated throughout the beam. To characterize
this transitional region, the point of initial slip and the point
at which slip has propagated throughout will be computed. This is
done by evaluating the bending moment at the appropriate values
of L - aos

(lc66)
MIst = 12

slip

Point of Slip Initiation:
L - a = 0s

Nf rfh2
s

Point of Complete Slip Propagation:
LBL - a =-s 2

(1-67)

Mend
of slip

It is convenient to put these computed values in terms of
the friction moment that has been determined for the constant
moment beam in equation 62.

1MF = 4 (N-l)fkhLB (1-68)

(1-69)

(1-70)

This transition region is shown on figure 1-17. For the
static and kinetic coefficient of frictions about equal and for
beam lengths much greater than the layer thickness the slippage
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begins propagating at very low levels of moments. When the
imposed moment equals about twice the value of the friction moment,
the slip will have propagated throughout the beam. Before the
first slip, the beam behaves as a solid and after the completion
of slip, the behavior follows equation 62.

The important difference between the transition region of
the constant moment beam and that of the constant shear force
beam is that in this case the slip propagates along the length
of the beam, whereas in the other case it propagates through the
section of the beam. Furthermore, the development of shear stress
in this case is a result of a discontinuous strain distribution
while in the other case it is the result of the imposed shear
force 0

Recovery from Constant Curvature Band--Theoretical and Experimental.
the previo~s applications of the multilayer beam theory the

emphasis was placed on the loading cycle. The unloading behavior
in each case could be predicted by reversing the direction of the
friction force. In this section bending recovery will be considered
in greater detail and the specific case in question will be a multi-
layer beam under constant pressure bent to a constant curvature and
then allowed to recover .

.During bending it will be assumed that the slip has been
complete. Then, when the load is released, the layers will reslip
an amount dependent on the relative effects of friction and
elasticity. The extent of the reslipping will determine the bend-
ing recoveryo

Let:
k . d (" -1)i = 1mpose curvature 1n
k = residual curvature (in-I)
r

Lb = total length of beam (in)
ub ~ slippage during bending (in)
ur := slippage after recovery (in)
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e. = strain during bending
l.

e = strain during recoveryr
x = coordinate along beam measured from left

edge (in)
xr = point where final slip equals original slip (in).

From the assumption of complete slip during bending, the
initial strain distribution on the interior layers can be found
from equation 18 to be,

ei = ky - kYi (1-71)
The relative slippage can be computed from equation 21 and

the symmetry condition which states that the slip is zero at the
center of the beam.

ub '" kht~ - 0 (1-72)

Upon release of the load, the layers will reslip from edges
inward. This will continue until the res1ip is zero. At this
point (denoted by x ) the relative layer motion will be equal tor
that originally imposed. Within the region of the beam where no
reslippage occurs, the residual curvature will be equal to that
imposed. Considering only the left side of the beam, this may be
written as,

(1-73)

Within the res lip region the relation between geometry and
load may be expressed by equation 16. The friction force will be
negative due to the reverse direction of slip and the shear force
zero because there are no externally applied loads.

h(N-l)fk
NEI,Q (1-74)

Since the residual curvature is zero at x = 0, equation 74 can
be integrated and combined with equation 73 to give the result,

h(N-l)fk x
O<x<xRNEI,Q

~= Lb (1-75)
xR<x<.r
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is,

The remaining portion of the strain distribution can be cal-
culated for an interior layer from equations 5 and 74. The result

-h(N-l)fkyix
bi = NEI~ 0 <x <: xR (1- 76)

From this equation the slip distribution after recovery can be
computed using the results of equations 76 and 21.

u =R

- x )R

(1-17)

Plotting equations 72 and 77 on figure 1-18 for the full beam
length shows the distributions of slip before and after release
of load,o

u

--bent
-""""'''':>''..--- released

x

Fig. 1-18 Slip Distribution Before and After Release
of Load
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(1-78)

The point at which the final slip'equals the original slip
can be obtained from the strain distributions. At this point the
strains will be equal and it can be shown that,

NEI.9. kI
xR =h(N-I)fk

This equation can be used to determine the residual curvature
distribution by substituting into equation 75. Then, averaging
the residual curvature over the length of the beam gives,

(1-79)

(1-80)

occur in a solid beam bent the same amount.
k*
I(1 - 4F )

This can be written in dimensionless form by multiplying each of
the curvatures by the .half-thickness of the beam. The resulting
dimensionless curvature represents the maximum strain that would

The result is,

Where,
(1-81)

(1-83)

(1-82)* - Nh~= ~2
= L(N-1)fkLb (Nh)

F - 4NEI 2~

Equation 80 is plotted on figure 1-19 for several values of
the dimensionless parameter F. This quantity represents a
measure of the relative amount of friction to elasticity in the
bearno Note that it is composed of terms previously introduced in
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the analysis: the friction moment; the elastic rigidity for complete
slip; and the half thickness of the beam.

The results of the recovery prediction show quantitatively
how a multilayer beam with friction displays a non-recoverability
from bending even though none of the individual components have
been permanently deformed. This structural non-recoverability is
also found in textile structures as will be shown in Chapter III.

Experimental 0 Two multilayer beams subjected to constant pressure
were prepared as in the previously described experiment. They
were bent around mandrels of varying curvature and permitted to
recover. The average residual curvature was measured from the
difference between tangent angles at the ends of the bent beam.
And, the friction parameter F of each beam was determined from
preliminary measurements as in the previous experiment. Since
there was some stress relaxation during the test, the times of
bending and recovery were held fixed at 20 seconds each. The
amount of relaxation was then measured in a separate test and a
correction (about 20%) was applied to the elastic rigidity of the
structures. The measured values are plotted on figure 1-19
together with the theoretical predictions.

The theory and experiment appear to be in reasonable agree-
ment, although the residual curvature increases slightly where
the theory predicts it should remain constant. This discrepancy
is probably due to a slight yielding of the material--which was
evidenced in the stress relaxation determinations. This may also
account for a generally greater than predicted residual curvature.

DISCUSSION OF CHAPTER I
This chapter involved the formulation of a theory of bend-

ing of multilayer beams with frictional interactions. This theory
consists of a beam theory approach to the problem with suitable
modifications to account for frictional effectso With a number
of simplifying assumptions it was possible to solve the general
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equations for several special cases. Then, a number of experiments
were conducted to establish the validity of the proposed theory and
treasonable\8.g:lreementwas obtained with the measured values.

The important qualitative conclusions that were reached are
that the effect of friction in a multilayer beam is to require
additional loads to be applied to achieve a certain deformation.
This occurs because friction either prevents the relative motion
of the layers or else provides a restraint against this motion
for which additional input energy must be supplied. When the layers
slide against a restraint, the load deflection behavior is non-
linear, energy is lost in the structure, and recovery is not
complete even when the individual layers behave elastically.

A number of interesting effects were observed theoretically
and experimentally 0 The most striking of these is the reverse
curvature that occurs in a cantilever which is under a normal
pressure and loaded by a point load between the wall and its
free edge. In this effect the region of the beam between the
load and the free edge curves in a direction opposite to that

'.

of the main portion of the beam. ~ beam without relative motion
against a frictional restraint would be straight in this region.

Another interesting effect is that the behavior of a beam
with friction may be dependent on the length of the beam. This
means that a constituative relation cannot be established between
moment and curvature at each point such as is done in classical
beam theoryo For example, in the case of a beam bent with a
constant bending moment, the curvature will vary along the length
of the beam and the extent of this variation will depend on the
beam length as well as the frictional force.

The applications of the work presented here may be applied
to a number of situations that arise in engineering technology.
Examples of this would be such things as laminated structures,
devices for generating unusual motions, structures for damping
vibrations, and combination spring-dampers.

As mentioned in the introduction, there are a number of
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aspects of the mechanical behavior of multi-layer beams that
correspond to observable phenomena in textile materia1so In
both cases friction between the elements causes a stiffening of
the structure; a non-linearity in the bending behavior energy loss
due to structural interactions; an increased level of strain; and
a non-recoverabi1ity of the structure.

In textile materials, it is possible, under certain circumstances~
to consider the structure to be composed of series of mu1ti~layer
beams. Then, even though no constituative relation may be established
for a point on the elemental beam~ one can be established for the
textile structure provided there are a large number of elemental beams
in the length of bend. This is in effect a continuum approach
to the bending mechanics of texti1eso

When considering a textile to be composed of a series of
beams, the curvature of the textile depends on the angular
deflection of each sub-unit. Since average curvature provides a
measure of angular deflection between the ends o~ a beam, this
quantity was utilized in the analysis, even though it is not usually
of interest in engineering problems.

The analyses presented in this chapter represent one of the
first approaches to the problem of the mechanics of mu1ti~layer
beams with frictional interactions. Additional research in this
area with fewer simplifying assumptions would undoubtedly be
fruitful in the development of a complete understanding of this
type of structure 0 It is hoped that the material presented here
will provide a useful starting point for such investigations.
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CHAPTER II
TH~ EFFECT OF FRICTION ON THE BENDING OF TEXTILE STRUCTURES

In this chapter the effects of friction on multi-layer~d
structures will be extend~d to include textile materials. The
generalizations established for multi-layered beams will be
utilized wherever possible and new approaches will be developed
when they are needed.

In the first section several classical methods of
analyzing the bending behavior of textiles will be discussed.
These analyses consider only the limiting cases of frictional
interactions. The next section contains a mostly qualitative
discussion on the intermediate frictional effects that are
actually found in many textiles. In this section a conceptual
mathematical model is developed from which the bending behavior
of textiles can be described by two parameters.

In the sections that follow, computations and experimental
results are presented to establish these parameters for a
number of different types of textile structures. In addition,
some general formulations are presented which pertain to the
relative motion of fibers and yarns in textiles that may be
useful for areas of textile technology not related to bending.

LIMITING ANALYSES FOR THE PREDICTION OF
BENDING BEHAVIOR OF TEXTILE STRUCTURES.

A number of investigations have been conducted with
the aim of predicting the bending behavior of textile
structures7,8,l7,l8 The goal was to relate the bending
behavior of a particular structure to the properties of the
component fibers and their geometric arrangement.

As a first approach to the problem, the classical method
has been to compute the limiting situations that can exist.
These limiting cases can be established by considering two
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possible forms of fiber interactions: complete freedom of fiber
motion, and no freedom of fiber motion. In both cases it is
generally assumed that the fibers deform as linear elastic
elements. Then, for small deflections, the moment=curvature
behavior will be linear and can be described by the slope
of the curve which is, of course, the rigidity.

For the case of complete freedom of fiber motion, the
overall behavior of a structure is determined by assuming that
there is no interaction between the fibers which will cause
them to develop axial stresses. Then, the total moment acting
on a structure can be computed by vectorially summing the
individual bending and twisting moments on each of the fibers.
If all the fibers are aligned perpendicular to the axis of
bending, the total rigidity for this case will merely be the
sum of the individual fiber rigidities.

In the case of no freedom of fiber motion, it is assumed
that the interactions between the fibers are of sufficient
magnitude to prevent any relative fiber motion or fiber buckling.
Then, the structure will deform as a solid material and have
a linear strain distribution across the section perpendicular
to the axis of bend. These strains will develop stresses in
the fibers which can be computed by considering the orienta-
tion of the fibers relative to the axis of bend, and assuming
that each fiber carries. only axial loadso This was done for
the case of a twisted yarn by Backerl~ The rigidity of the
structure can then be determined by integrating the stress
distribution at a fixed curvature. If all the fibers are
perpendicular to the axis of bend, the rigidity will be
approximately that of a solid material having the same modulus
as the fibers.

Clearly, the rigidity computed by each of the two limit-
ing analyses depends on the number of fibers in a section of
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Df = fiber diameter (in)
D = yarn diameter (in)y

(lb/in2)E = tensile modulus
I. = moment of inertia of fiber (in4)

~
(in4)I = moment of inertia of yarny

N = number of.fibers in yarnf
~y = packing factor
M = bending moment on yarn (in/lb)
k = yarn curvature (in-I)

For the case of complete freedom of motion, the

the structure, the rigidity of each fiber, and the geometry
of the system. The result for the assumption of no freedom
of fiber motion will be considerably greater than that for
the assumption of complete freedom of motion and this is
illustrated qualitatively on Figo 2-10 The magnitude of
rigidity will be computed for the limiting cases of certain
structures in this sectioDo Then, in later sections, the
intermediate cases of frictional interaction will be considered
to determine the actual moment-curvature relation for certain
structures.
Limiting Rigidities for Zero Twist Yarn. The rigidity of a
zero twist yarn can be computed for the two cases of freedom
of fiber motion using the above methods. It is assumed that
the yarn cross section is round and that the packing of
fibers is constant. Let,

bending
moment on the yarn will be the sum of the individual fiber
bending moments. If the radius of curvature is small relative
to the diameter of the yarn, then all of the fibers will be
bent approximately the same amount and they will each have
approximately the same bending moment. The moment-curvature
for this case can be written as,

M = Nf Eli k (complete freedom,-'ofmotion) (2-1)
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Since this equation can be used to give a good estimate of
the bending rigidity of a large number of textile materials,
it is useful to rewrite it in terms of quantities commonly
used in textile terminology 0

(2-2)

(2=4)

(2=3)

Where:
Eg = fiber modulus (gms/denier)
UJ = fiber linear density (denier)
~ = fiber density (gm/cc)
M/k = yarn rigidity (lb-in2)

For the case of no freedom of motion the rigidity can
be determined from the rigidity of a solid rod corrected for
the packing of the fibers. Since all the fibers lie perpen-
dicular to the axis of bend, orientation effects need not be
considered 0 The moment-curvature relation for this case is,

M = EI k
YThe yarn moment of inertiai,can be written in terms of the

yarn diameter and packing factoro The result can then be
rewritten in terms of the fiber diameter and packing factor 0

?f 1TD 4 N211 D4
I = Y y = f

Y 64 cr 64y
This equation can be used to determine the final relation

in terms of the individual fiber rigidity,
N 2

M = ~ Eli k (no freedom of motion) (2=5)
From equations land 5 it is clear that the rigidity for

no freedom of motion is about Nf times as great as that for
complete freedom of motion. Since Nf is of the order of 100
for many yarns, there is considerable difference between the
rigidity in both cases. Note that in the multi=layered beam
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analysis of Chapter I, the results indicated a factor ofNi between the rigidities of the limiting caseso The
difference arises because in one system fibers are the individual
elements and in the other, layers.

Limiting Rigidities of a Twisted Yarn. The limiting cases
of rigidity of a twisted yarn can be computed by considering
an idealized yarn made of helically arranged fibers 0 The
complete freedom of motion rigidity can be determined by
vectoria1ly summing the moment contributions on the individual
fibers at one cross section. The no freedom of motion
rigidity can be determined by integrating the tensile stress
distribution across the section and correcting for the
inclination of each of the fibers.

Both limiting cases were solved by Platt8 in an analysis
which was quite involved because of the complex geometry of
the structure. Nevertheless, he was able to solve the equations
by making suitable approximations, and he obtained results
which are valid up to helix angles of about 30°0 These
results may be written in the same form as used in the previous
section~

Complete Freedom of Motion (2=6)

Where,

N 2
M = ~f Elif2(Q) K No Freedom of Motion

y
(2=7)

t~= OUiSide he~~ angle 4 ~~ 2 J_ ~nesec Q - 3 S1n Q + (I-cos Q) tan QcosQ
fI(Q) ~ 2 (1 = cos Q) 2(1 ~ cos Q) (2~8)
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E~esec2Q - 2Sin2Q~~tan2QCOSQ]
f2(Q) = 4 (2-9)

tan Q (1 - cosQ)
It can be shown that the values of both functions

fl(Q) and f2(Q) are unity for zero helix angle and the results
reduce to the solution of the zero twist yarn. As the helix
angle increases, both functions fall slightly, and each
reaches a magnitude of about 0.75.at 30°. This means that
the effect of the helical configuration of the fiber is
small on the.bending rigidity.of the yarn. The maximum change
of rigidity due to this effect is about 25%, whereas the change
of rigidity due to differences in freedom of motion can
easily be a factor of 100.

A similar result was found by Owens7 for the case of
complete freedom of motion. His approach was considerably
different from that of Platt, but the results are in
surprisingly good agreementl9 .

In addition to a direct geometric effect on rigidity,
~he twist can also influence the degree of relative fiber
motion. Since the geometric effect is small, it is probable
that the major effect is the change of internal yarn pressure
and relative fiber motion with change of twist.

Limiting Rigidities of a Bonded Fabric. Although bonded
fabrics have a considerably different structure from the yarns
considered in the previous sections, it is possible to compute
their limiting rigidities by the same general procedures.
This was done by platt and Freestonl8 for a bonded fabric
having an arbitrary angular distribution of the fiber
orientations. When the equations are applied to the case of
a random laid non-woven,. the results can be written in the
same form as before. The conversion of Platt's equations to
the form used here is shown in Appendix B.
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Complete Freedom of Motion (2-10)

No Freedom of Motion (2-11)
Where,

Nf = number of fibers in section having a width equal
to the fabric thickness.

5 = factor dependent on fiber torsional properties
(between about 1.2 and 1.3)

0; = approximate packing factor of bonded fabric.
Note the similarities between the limiting rigidities for the
bonded fabric and the yarn structure. For this material,
there is an additional factor of about 0.5 in the equation and
this accounts for the fact that the fibers are not all per-
pendicular to the axis of bend. The ratio of rigidity for
the limiting cases is almost the same as before.

Experimental investigations have shown18'~~at the behavior
of bonded fabrics approaches the predicted values for no
freedom of motion. This results from the bond points between
fibers which act to restrict relative fiber motion.

Twisted yarns and most fabrics on the other hand behave
very close to the predictions of complete freedom of motion.
This can be demonstrated qualitatively by applying treatments
such as starch and observing large increases of rigidity.

QUALITATIVE EFFECTS OF FRICTION
ON BENDING BEHAVIOR

In the preceding section, predictions of bending behavior
were made for the limiting cases of fiber interaction. The
results indicated that there are large differences between
these cases and the problem at hand is the determination of
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the bending behavior for intermediate values of frictional
interaction.

This was done in Chapter I for multi-layered beams. It
was found that inter-element friction produced: a stiffening
of the structure; a non-linearity in the moment-curvature
relation; an energy loss in bending; and a non-recoverability
from bending. Quantitative determinations of these effects
were made by an analysis of the equilibrium requirements of
the structure. The results indicated that friction affects
the bending of multi-layer structures in two ways; it prevents
the elements from sliding by each other as much as they would
if there were no friction; and it requires that energy be
lost where sliding takes place.

In Chapter I it was also found that friction could
restrict sliding by either preventing slip propagation through-
out the cross-section of the structure, or by preventing its
propagation throughout the length of the beam. This lack of
slip produced an increase in rigidity but had no energy loss
associated with it.

It was also found that friction had an effect in the
region of the beam where sliding did occur. The sliding
friction forces required an additional moment to be applied
to the structure during bending. This is illustrated on
Fig. 1-16 as is the energy loss associated with this frictional
effect.

On the basis of these results a conceptual model can be
constructed which is useful for analyzing the bending behavior
of textile structures. This model, which is shown on Fig. 2-2,
consists of an elastic element in parallel with a dry-frictional
element. The load-deflection or moment-curvature relation for
this model is shown by the straight lines on Fig. 1-16. The
elastic term increases linearly with load while the friction
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Elastic
Element Dry

FrictionalElement

Fig. 2-2 Conceptual Model of
Frictional Effect
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(2-12)

term is constant and always acts opposite to the direction of
loading.

This conceptual or mathematical model requires two para-
meters for its description: an elastic parameter which will
be called the'elastic rigidity; and a frictional parameter
which will be called the friction moment. The magnitude of
these quantities are functions of the geometry and properties
of the elements of a structure. The elastic rigidity depends
on the degree of freedom of fiber motion and the friction
moment depends on the amount of energy lost due to sliding
friction. One method of computing the friction moment which
has been found convenient for the analysis of textile
structures is shown in the following equation,

'~UIf
M = -~--
f 9'i<

Where,
friction momentM =f

k =

~=
f

average curvature
energy loss per length of material due
to sliding friction.

This equation can be solved when both the slip distribution
and the friction force distribution is known in a structure
being bent. Upon integration, these functions determine the
energy loss per length.

Previous investigators have found the existence of a
friction moment in the bending of textiles. Eeg~Olofssonl2,21
found a hysteresis in the moment-curvature rela'tion which
may have been due to frictional effects. In similar measure-'
ments Isshi11 found a relation close to that shown on Fig.
1-16 for cotton yarns and fabrics. owens7 talso observed
frictional moments on a n~mber of textile fabrics.
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In addition to direct observations of friction moments
in textiles, Zorowski and Chen 10 found non-linearities in
the deflection behavior of gravity loaded cantilevers made of
ply yarns. Their results could be explained in terms of a
friction momento Similar measurements were also made by

13Swami and Grossberg ,using fabric samples 0 They determined
friction moments by both cantilever and buckling tests and
related the measured values to certain properties of the
materials.

Since friction can effect bending behavior by either
preventing complete slip or by producing a restraining force
against slip, it will effect both the elastic and the
frictional parameters of this madelo At low frictional effects
there will be both low elastic rigidity and low friction momento
At very high frictional effects,which are close to the case of
no freedom of motion, the elastic rigidity will be high, but
the frictional moment will again be lowo In the first case
the friction moment will be low because the frictional forces
are low; and, in the second case, it will ,be low because the
relative fiber motion is amallo At intermediate friction
effects, the elastic rigidity will be moderate and the frictional
moment will reach its maximum valueo

A number of modifications can be applied to the funda-
mental model of Figo 2-2. For example, combinations of this
type of element can be used to account for such effects as
variability of properties or frictional interactions. Or,
it is possible to include time dependent elements in the
model to account for the visco-elastic properties of fibers.
This will not be done in this investigation but would
certainly be of value for further research on frictional
effects on bending.
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FIBER MOTIONS DURING BENDING
In the preceding section it was shown that the frictional

effects in textiles are directly connected with the relative
fiber motions 0 The extent of these relative motions depends
on the amount of frictional interaction and the amount of
motion required to map out the bent configuration of the
fiber assembly. In this section two analyses will be
presented from which it is possible to determine the relative
fiber motions for a number of situations. The results will
be applied in the later sections of the thesis.

In Chapter I two methods were derived for computing
relative motion between the layers of a multi-layer beam.
(Equations 21 and 28.) These methods are based on strain
discontinuities of parallel layers in intimate contact.
Although the results are useful for fiber systems having
layered arrangements, they cannot be applied to more compli-
cated cases such as twisted yarns or randomly arranged fibers.
Consequently, additional methods were established and will be
included in this section.

The equations which describe the relative motions of
fiber have applications in fiber technology not necessarily
related to bending. Examples of this are drafting, fiber
migration, fabric abrasion, and jaw penetration during tensile
testing. Perhaps the equations developed here can later be
applied in some of these areas of research.

Continuity Equation for Fiber in a Deforming Structure.
When a textile structure deforms, the component fibers are
rearranged or distorted in some manner 0 The fibers may either
strain, move relative to the structure, or buckle. These
actions can occur separately or in combinations 0
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As an example, consider a yarn bendingo There are a
number of possible changes of fiber configuration that can
take place. If all the fibers are cemented together, the
fibers will undergo tensile deformations but will not ~lip or
buckle. If, on the other hand, the fibers are free to slide,
they will not develop a net tension or compression, but will
slide relative to the structure and possibly buckle. Here,
the term buckling refers to a departure of the fiber from the
assumed geometric configuration. For example, the fiber may
follow a helical path before bending and then deviate into a
non-helical path after bending. The particular type of
fiber rearrangement occurring in any situation clearly will
depend on the interactions between the fibers. However,
from the condition of continuity there are only a limited
number of possible fiber rearrangements for any situation. And
this may be expressed mathematically in the form of a continuity
equation.

The continuity equation will be written in terms of a
coordinate system defined by the yarn axis. It can easily be
rewritten in terms of a coordinate system defined by a line in
the center of a fabric or any other convenient systemo Let,

5 = coordinate measured along yarn axiso
Ll = fiber length in length of yarn from 0=8 at

state 10

L2 = fiber length in length of yarn from 0=8 at
state 2.

u = fiber length moving through yarn cross~sectiony
in change from state 1 to 2.

ef = fiber strain.
Consider a control volume defined by two planes perpen-

dicular to the yarn axis at locations sand s + ds. As the
yarn axis deforms from state 1 to state 2, the fibers will in
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general move through these planes by a certain amount. This
movement will be referred to as fiber motion relative to the
structure. The motion of two fibers relative to each other
can then be computed by taking the difference between their
motions relative to the structure.

The relation between slip and strain of a fiber can be
found by a conventional continuity approach for the control
volume shown on Fig. 2-3. Note that a partial derivative is
used to avoid confusion with the change of slippage with
curvature.

\
\
\

,
I '--~" •.- ---+ -.
I "~_

\ I
." \ I

/~~I-----
I ----\ .

\ I .

State 1 State 2

(2-13)

Fig. 2-3 FIBER SLIP AND STRAIN IN.'DEFORMING STRUCTURE
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The continuity equation can be specialized for certain
cases to obtain solutions. This is done by specifying the
geometric states of the system in terms of functional rela-
tions between Ll, L2 and s. This will be demonstrated for
two types of systems, a bent twisted yarn and a bent layered
structure.
Twisted.Yarn. In this case it is assumed that the fiber
geometry is helical (with constant rate of rotation around
yarn axis) in both the straight and bent yarn. A coordinate
system can be defined from the yarn axis with,

s = coordinate along yarn axis
r = fiber radial position
8 = fiber angular position measured from inside

of bend
Lt = yarn length per turn of twist.

Now the fiber length functions can be written for the case
of a yarn straight in state 1 and bent to a curvature k in
state 2. It will be assumed that the fibers do not buckle
and that their path around the yarn axis remains helical.

dLl _ -I. Udr)2 2~e02-~ 1+- +r-ds ds ds
(2-14)

d~; =-P{l _ rk cos 9)2 ~~Y+ r
2 ~:r

For a yarn with no migration and a constant fiber rotation
about the axis,

r = constant (2-15)

e = Yr. s (2-16)Lt
For this idealized yarn, the continuity equation is obtained
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(2-19)

from equations 13 -16.

~C)Uy = (1 + £ )i +(dr)2 + r2 (de) 2' .'
;;s f \ds\ds

'., -'~l~rk cos e/ + (~~Y+ r
2 (~:y' (2-17)

This equation relates the fiber slippage to the strain.
It can be integrated directly for the two limiting cases of
freedom of fiber motion. When there is no freedom of fiber
motion, there will be no slippage and the equation reduces to
the following form,

2 ( ?2
£ ( ) (l-rke) + ,(211r/Lt) No Freedom of Motion (2-18)f r,9

1 +~Tfr/LJ2
This strain distribution has previously been established

17.42by Backer ~ for fibers at different radial positions and for
varying twist. He used a method based on differential
geometry.

When there is-complete freedom of fiber motion, there
will be no strain and the continuity equation reduces to,

;:}U1= -y{ +(21{r\
2 -~6. _ rk~)2 + (2i!r.\2 Complete

~s \Lt/ )I(J \ t) Freedom of
Motion

This equation cam be solved using the boundary condition
of no slippage at the inside of the bend, e = 0, which is a
point of symmetry. The result for radii of curvature much
greater than the yarn radius is approximately,

,rkL
tu = ---- sin e (2-20). y 211

The result re~~ces to that derived by Backer for low
values of twist.
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The slippage is greatest at the sides of the bend and
falls to zero at the top, e ~~, which is also a point of
symmetry 0 Since the conditions of symmetry require that slip
be zero at this point, it can be concluded that an idealized
yarn can bend with complete freedom of fiber motion and no
strains 0 Alternatively stated, an ideal yarn which bends
with no fiber strain maintains a fixed fiber length between
inside and outside of the bendo This length of fiber moves
relative to the structure but does not have to strain or
buckle to map out the geometry of the bent yarno This
finding corresponds to derivations in differential geometry
of the constancy of the path length of a single loop of

. 17 22a'yarn~-beforei.~andafter bend~ng ,
An interesting observation can be drawn from equation 20.

From this expression it can be shown that the points of fibers
lying on a plane perpendicular to the yarn axis before bend-
ing will not lie on that plane after bending. In fact, these
fiber points will lie approximate1~ on a plane that has
rotated from the original plane 0 This is illustrated in
Figo 2-40 Note that this situation differs consider~bly
for the case of no freedom of fiber motion where the points
on individual fibers always remain in the plane perpendicular
to the yarn axis.

Another interesting observation can be drawn from the
fiber motions of a bent yarn that may have some practical
significance. When two equally twisted yarns are side-by-side,
during bending, there will be a considerable relative motion
between the surface fibers. This effect does not occur for
yarns with opposite direction twist.

In more complex cases the conditions of symmetry cannot-
be satisfied without fiber strain or buckling. For example,
in a yarn having fiber migration so that individual fibers
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form a helix of varying radius, it can be shown that the
length of the fiber path between two symmetry points is not
constant during bending. This means that the fibers will have
to alter their path around the yarn axis during bending and
buckle; or they will have to strain at some points along
their length.

\

I

I
I

I
I

I

I
I
\
\

plane containing points of
fibers originally in ~lane

perpendicular to yarn axis.

Fig. 2-4 FIBER MOTION IN A BENT TWISTED YARN

The same situation holds true in structures of higher
order such as ply yarns and cables. In these systems the
fibers may have to strain to map out the bent configuration
merely because there is no available path by which they can
slide. This phenomenon represents a geometrically induced
strain or buckling. It can also occur in simple layered
structures under certain conditions. One such case is a
multi-layer .beam that is cemented or clamped at the ends so
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that no relative motion can occur at these points. Then, even
if the interlayer friction approaches zero, there will be no
relative layer motion within the structure as it is bent.
This results from the boundary conditions of no slip at the
ends which corresponds to the case of no slippage at the
symmetry points of a textile structure. The bent configura-
tion of this multi-layer beam will then of necessity involve
tensile strains and/or buckling of the layers; and the beam
will be much stiffer than a similar beam without an end
restraint.

From these considerations, it may be concluded that the
bending behavior of a multi-element structure depends not only
on the frictional interactions between the elements, but also
on the geometric restrictions to relative motion between the
elements.

Two-Dimensional Layered Structureo The continuity equation
may also be applied to layered structures which deform from
one state to another. The length functions can be determined
from a knowledge of the shapes of each state and from the
distance between the centerline of the structure and the
element in questiono Again, for the purpose of illustration
the structure will be assumed to be a yarn, but this time
composed of parallel layers of fibers. An example of the
deformation of this structure from one state to another would
be the bending of a yarn in a fabric 0 State one would corres-
Hond to the original crimped path of the yarn and state two
would be the crimped and bent pa~h of the yarn in the bent
fabric. Let,

kl 2(s) = curvature function describing path of yarn,
axis in state 1 or 2.

= distance of fiber to yarn axis in state 1

or 20
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(Z-2l)

Other variables as before.
The differential relation between fiber length and yarn

length can be written as follows for the two states,
dLl _

~ - 1 + rl kl (s)

dL2ds = 1 + rZ kZ (s)

Substituting into equation 13 gives the result,
du
~ = r1 kl - r2 k2 + ~f(l + rl kl)

(2-22)

(2-23)

(2-24) Only strain, no slip,
no buckling.

This equation may be specialized as before for limiting cases
of ~iber interactions. These specialized forms of the
continuity equation illustrate how the change in geometric
states can be accomplished by fiber strains, fiber slippage,
fiber buckling, or combinations of the three.

rl (k2 - kl)
€ =-----f 1 + rl kl

du
--.:i. = r (kl - k2) (2-25) Only slip, no strain,ds 1

no buc\<ling.

=
kl (2-26) Only buckling, no strain,r2 rl k

2 no slip.
Relative Fiber Motion. The slippage term of the continuity
equation is based on the relative motion between individual
fibers and the planes perpendicular to the yarn axis. This
motion represents the relative motion of the fibers to the yarn
structure. For certain cases this motion will be the govern-
ing factor in the description of frictional effects. In
others, the relative motion between two adjacent fibers will
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be of importance. The solution for the first case can be
obtained by a direct application of the derived equation and
that of the second case can be computed by taking the difference
between the values of relative motion of tW9 adjacent fibers.

The results for the two cases will be quite different
and 'generally differ by a factor on the order of the ratio of
fiber to yarn diameter. This difference can have a great
effect on the overall behavior of a yarn or a textile structure
in general.

When the arrangement of fibers in a yarn or fabric is
higqly disoriented, the motion of one fiber can be thought of
as occurring through a med~um composed of a rand9m fiber mass.
In this case the relative fiber motion can best 'be ,calculated
by considering fiber motions with respect to the-yarn structure.
This is because the adjacent fibers will be different at
every point and will not necessarily move in the same manner
a~ the fiber in question. The relative fiber motions
computed in this way will be large and will result in large
frictional effects if they occur against a frictional restraint.
This probably takes place in some needled fabrics 0

If the fibers are arranged in a highly oriented manner,as
would be the case in an idealized twisted or layered yarn,
the relative fiber motion is much less than in the previous
case for a given amount of change of curvatureo This is
because the relative fiber motion involves the movements of
two adjacent fibers. Although the individual fibers may
move considerable amounts relative to the yarn axis, they will
move only small amounts relative to each other. For this
reason, the frictional effects for this type of system are
much smaller than those of the previous effects when the
internal pressures are the same. On the other hand, highly
disoriented fiber systems often have a greater opportunity
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v =
x =s
x =r
fk =

for fiber buckling and in those cases there may be small
amounts of relative motion.

Effect of Friction on One-Dimensional Slip and Strain.
In addition to the continuity equation developed in the
previous section, another fundamental relation may be obtained
by considering the propagation of slip into an infinite medium.
This will be done for the case of a fiber which is held in such
a medium by frictional forces and displaced a fixed amount
at the point of entry into the medium. To compute the slippage
and strains that take place in this case, it will be necessary
to go beyond the point of using the conditions of continuity
and utilize the equations of force equilibrium.

Consider a rectangular fiber extending into a semi-
infinite medium as shown on Fig. 2-5. Using the coordinate
system shown, let,

u = relative fiber motion during loading
relative fiber motion during unloading
extent of slip into medium during loading
extent of reslip during unloading
sliding frictional force per length on
each side of fiber

f = static frictional force per length that cans
be exerted on each side of fiber

u = imposed displacement on end of fiber0
v = residual,displacement at end of fiber0

after unloading
E = fiber tensile modulus
w = fiber width
h = fiber thickness.
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Fig. 2-5 ONE-DIMENSIONAL SLIP AND STRAIN PROPAGATION
INTO SEMI-INFINITE MEDIUM.

The problem in this case is to determine the nature and
extent of slip and strain propagation into the infinite medium
when a force or displacement is applied to the fiber end.
Qualitatively, it can be reasoned that the fiber will both
strain and slip only a finite distance into the medium. Then,
when the load is released, the fiber will slip back into the
medium, but it will not do so completely and thereby leave a
residual deformation. This deformation will depend on the
counterbalancing of elastic and frictional forces and will be
analagous to the residual bending deformation computed for the
multi-layer beam in Chapter I.

During the loadi~g cycle, a differential equation may be
written for the displacement at a point of the fiber. This
equation is obtained from the continuity equation for this
case, the stress-strain relation, and the force balance for
an infinitesmal element,
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E, = _ du
f dx

T = Ewh e
f

2f +dT=O O<x<xk dx s

The boundary equations for this equation are,
u(o) = u

o

u(x) = 0s

(2-27)

(2-28)

(2-29)

(2-31)

(2-32)

du _
- (x ) -dx s.

'Tffs---Ew (2-33)

Note that one extra boundary cond;Lt:ion',islgiven and]:this permits
calculation of the extent of slip propagation. The boundary
condition which gives the strain at the point x is obtaineds
by computing how much shear stress is developed in a solid
wall of material subjected to a step distribution of strain.
When this shear stress equals that which the material can
just withstand by static friction, the step distribution of
strain will correspond to the strain used in the boundary
condition. The intermediate steps leading to this con-
clusion are not shown, but they follow the same general
procedure used in Appendix A.

During unloading, a similar differential equation can
be written for the region in which reslippage occurs. In
this case, the sliding frictional force will act in the opposite
direction. The boundary' conditions for this equation are
based on zero tension at the fiber end and no res lip beyond the
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point x. At this point the tension drop due to resliding
rwill produce shear stresses which can just be maintained by

the static friction forces. The magnitude of the strain at
the point is computed by a superposition of strain distribu-
tions and a method similar to that used for loading.

d2v -2£k

dx2 =--Ewh

dV(o) = 0dx

v(x ) = u(x )r r

dv du 17£
+ V )dx(xr) = -(x) + __ s(1

dx r Ew

(2-34)

(2-35)

(2-36)

(2-37)
The solutions to the differential equations can be

obtained by considerable algebraic manipulation. They are,

Where,

u = (u - x F)(X )2 - (2u - x F) Ex )+ uo s x o. s x 0s s

f.;~ (x F)2(2V+V2)
v = -(u -x F) x + Uo + ~s~ ~_o s x 2 8(u ...x F)s 0 s
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(2-40)

(2-41)
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The results are plotted on Fig. 2~~ for slip and reslip as
functions of position.

u,v

u
o

v
o

~~---recoverable displacement

____ --~~- non-recoverable displacement

xr
x s X ---:):fP-

Fig. 2-6 SLIP AND RESLIP IN ONE-DIMENSIONAL PROPAGATION

Two variables are of particular interest in this result:
the length of slip propagation and the residual displacement.
The length of slip propagation can be represented in terms of
the parameters of the system and the imposed displacement.
The result is plotted on Fig. 2-i for ~ = 1. This result
shows that the greater the friction is relative to the elastic
forces, the less propagation. It also illustrates the nature
of the dependence of imposed displacement on the propagation
length. Another relation of importance is the residual
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Fig.2-7 SLIP PROPAGATION LENGTH vs END
DISPLACEMENT
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displacement that remains after the load has been removed.
This variable is plotted on Fig. 2-8 in terms of the same
variables as before and for v1= 1. Note that the residual
displacements equal the imposed displacement when the elastic
restoring force is not great enough to cause reslipping into
the matrix. Beyond this point the residual displacement is
close to one-half the imposed displacement.

The analysis presented here was done in conjunction with
Mr. Harvey Plonsker, who is using the results in connection
with a research project on fiber drafting. In addition to
being of interest in connection with that problem, these results
may have application in the problem of slip and stretching
that takes place in a stretch fabric garment during wearer
motion. They could also be used to predict the degree to
which materials will slip into the jaws of a tensile testing
machine. Or alternatively how much pressure must be applied
to confine the propagation length to a fixed space.

Although the results do not give any direct information
on rending behavior, they do give a better insight into the
question of slip during bending and reslip during recovery.
Moreover, the results may be applied directly to the problem
of bending by considering the infinitesmal element at the top
and bottom of a layer in a multi~layer system. This infinitesmal
strip will behave as the fiber in this analysis if the curva-
ture changes are small. The strain variable can then be
replaced by the local change of curvature if the layer bends
with no tension.

FRICTIONAL EFFECTS IN YARNS
Zero Twist Yarn. In most uses of textiles the yarns used
have at least some twist inserted for either strength or
geometry requirements. However, the length of one tu~n of
twist is usually considerably greater than the length of the
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repeating unit of the fabric. For this reason, it is often
possible to assume that the yarns have a negligible twist
and that fabrics behave as though the fibers were arranged in
a simple layered form.

For a yarn of this type the frictional behavior is
similar to that of the multi-layered beam discussed in
Chapter I. There it was shown that once the slip had
propagated throughout the structure, the bending behavior
could be characterized by an elastic rigidity and a friction
moment. This can be done readily for a zero twist yarn if
it is assumed that the structure is under a constant normal
pressure. This pressure can develop from such things as
cross yarn interlacings in a woven fabric or fiber tensions
in a bent yarn.

Assuming that the yarn is bent by a pure moment and
that slip has propagated throughout the yarn length, the
elastic rigidity will be the sum of the individual fiber
rigidities and the friction moment can be computed from
equation 12. Let,

n = normal force per length at each fiber
interface

Df = fiber diameter
k = curvature of the yarn centerline
u = relative fiber motion
w. = frictional energy loss at each interface
1

in yarn length L
Wt = total frictional energy loss in yarn length L
L = yarn length
s = position coordinate measured along fiber from

center of bend
N. = total number of fiber interfaces between
1

layers
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Nf = total number of fibers
r = yarn height to width ratio.

The relative displacement between two fibers stacked on
top of one another can be determined from the strain discon-
tinuity between the fibers and the condition of symmetry at the
center of the bend as in Chapter I, equation 25. (Note that
a correction may be applied to account for close packing
effects.)

(2-44)
Since the fibers move relative to each other against

an assumed constant frictional restraint, the work lost at
each element of fiber interface can be computed by

dW. = J.J. n u ds
1 . I (2-45)

After integrating, this becomes,
Lj~

~~nDfkL2
Wi = 2J.J<- n Dfk s ds = 4 (2-46)

o
Note that the integration was broken into two parts

because of the change in direction of the frictional force on
either side of the bent yarn. This same procedure will be
used in subsequent calculations. Summing the frictional work
loss over all the fibers gives,

This equation can be differentiated as in equation 12,
1

Mf = 4 Nifln Df L

(2-47)

(2-48)

If the fibers are arranged in an open packed rectangular
section, the number of fiber interfaces will be equal to the
number of fibers less the number of fibers in one layer.
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This can be expressed in terms of the height to width ratio
of the yarn

(2-49)

(2-50)

This equation relates the frictional effect in zero twist
yarns to the parameters of the system. Note that the result
is identical to that of equation 62 in Chapter I. In this case
the number of fibers is used in place of the number of layers;
and, the force per length on each fiber is used in place of
the force per length on each layer. Note also that the
computation made here utilized the energy equation rather than
the method of Chapter I which involved the equa~ions of force
equilibrium.

In the section on the bending of woven fabrics, the
imposed pressure will be evaluated in terms of the structure
and properties of the system and it will no longer be necessary
to include this unknown quantity in the equations.
Twisted Yarn.. The frictional effect in twisted yarns can
be determined for situations in which the fibers are free to
slide, but do so against a frictional restraint. In this case
the elastic rigidity will be given by equation 6 and the
frictional moment can be computed by the energy method of
equation 12.

In order to establish this frictional bending moment, it
will first be necessary to determine the relative fiber
motions that occur as the yarn bends. If the yarn is
assumed to consist of cylindrical layers of twisted fibers,
there will be relative motion both between fibers of different
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layers and fibers of the same layer as bending takes place.
These relative motions can be computed from the geometry of the
bent twisted yarn.

Relat~ve motion~ of fibers in adjacent layers can be
computed by first determining the relative motion of the
individual fibers to the yarn matrix and then computing the
relative motions of these fibers to each other. Using the
results of equation 20 and considering two fibers at radial
positions differing by one fiber diameter, the result is found
to be,

(2-51)
where,

Us = relative motion between fiber of the same
layer

ur = relative motion between fibers in adjacent
layers

Df = fiber diameter
k = yarn curvature
T = yarn twist
r = fiber radial position
8 = position angle of point on fiber measured

from inside of bend
Qo = helix angle before bending
Q = helix angle after bending
Lt = yarn length in one turn of twist
w. = frictional energy loss per length at one

l.

fiber interface.
or

The pattern of relative motion of equation 51 indicates
that there will be a sinusoidal distribution of slip which
is zero at both the inside and outside of the bendo The
amplitude of this distribution depends on the yarn twist, fiber
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diameter, and yarn curvature as shown. It is independent on
the radial position of the fiber.

Relative motion between fibers of the ~ layer results
from a change in the local helix angle as bending progresses.
The magnitude of this change has been computed by Backer
and found to vary with fiber position as follows,

1
1

cot Q = (1 - rk cos 8) 211rT (2-52)

This equation has been rewritten in terms of the variables
used in this treatment. (See Appendix C). It indicates that
all fibers except those at the sides of the bend change their
helix angle; and that the maximum increase is at the inside
of the bend while the maximum decrease is at the outside.
When two adjacent fibers of the same layer experience this
change in helix angle, they will slide by each other as shown
in Fig. 2- .

Unbent Bent

Q

Fig. 2-9 RELATIVE FIBER MOTION DUE TO CHANGE IN LOCAL
HELIX ANGLE
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The magnitude of this relative motion can be shown to be
related to the change in helix angle as follows,

Us = Df (cot Qo - cot Q) (2-53)
Combining equations 52 and 53 gives the slippage distri-

bution for this effect.

(2-54)
This relative motion is quite similar to that of equation

20. In this case, however, the relative motion is zero at the
sides of the bend and reaches a maximum at the inside and
outside positions.

Since the relative motion of fibers is readily observable,
an experiment was conducted to determine the validity of
equation 54. This was done with a large scale model of a
seven-ply yarn (each model fiber being about 1/8 inch in
diameter). In order to facilitate the interpretation of
the variables in the slippage equation, it was rewritten in
dimensionless form.

(2-55)

In this notation the slippage is measured in units of
fiber diameters. The curvature is given in a dimensionless
form which corresponds to the maximum amount of strain that
would occur in a solid elastic rod of equal size bent the same
amount. This dimensionless curvature was used in Chapter I
and will again be used in Chapter III.

Measurements were made to determine the relationship
between slip and curvature, and slip and fiber position.
The results for both theoretical and measured values are given
on Figs. 2-9 and 2-10. Note that there is generally good
agreement for low curvatures. The deviations at the higher
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curvatures probably occur because of the mathematical
simplifications made in the analyses.

The relative fiber motions that take place in a bent
twisted yarn are given by equations 51 and 54. When the
interfiber friction resisting these motions is known, then it
is possible to compute the friction moment by applying equation
12. This will be done for two cases: in the first the internal
pressure distribution will be assumed constant; and in the
second it will be assumed to be the distribution resulting
from a constant tension. In both cases the analyses will
assume that the fibers are able to slip to the full extent
and that frictional forces act against the motions rather
than act to prevent them. In this case the elastic rigidity
will be as given by the result of the complete freedom of motion
case. If the frictional forces are sufficiently high to
prevent.complete slip, then the continuity equation must be
used to determine the effects of partial slip on elastic
rigidity and friction moment. The case of partial slip will
be considered later for the woven fabric and those results
can be applied hereo

Friction Moment in Twisted Yarn under Constant Pressure.
Under the assumption of constant pressure the normal force
per length at each fiber interface will be constant. Then
the frictional energy loss per length of yarn at one interface,
'~.", can be computed. This is done by integrating the force-

~
displacement behavior over one-half turn of twisto A half
turn is used because this length represents a repeating unit
of the structure. ~~-

wi = 2T~niUdS (2-56)
o

Note that the yarn length of one-half turn of twist is
1/(2T) and the length of fiber in this amount of yarn is taken

-101-



(2-57)

(2-58)

to be approximately L /2. Since the normal force is assumed
t

constant, equation 56 may be rewritten as:
Lt

w. = 2!,t<.ni -2 u
1 avg

L%,
u a ~(S) dsavg J

(j
Since the slippage distributions between and within

layers differ only in phase, the average values will be the
same. It should be noted that the integration of equation 58
must be performed in such a way as to average the slippage
over a region in which the frictional force remains the same.
This must be done because the direction of this force changes
so that it always opposes motion. The result may be substituted
into equation 57 to give:

2 Lt
Wi = 1l00iDf T k (2-59)

Summing over all the fiber interfaces N. and differentiating
1

with respect to curvature gives the friction" moment,

2 Lt
Mf = 1T2A 0i Ni Df (2") (2-60)

This equation corresponds ~10se1y to the friction moment
predicted for a zero twist yarn by equation 50. In this case
the characteristic length of the system corresponds to the
average length of fiber in one-half turn of twist, whereas
in the other it corresponds to the sample length.

If it is assumed that each fiber contacts two fibers in
its layer, two fibers in adjacent layers, and the number of
fibers in the yarn is large, then:

4 Lt
Mf =< 112 N~oi Df T (2-61)
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Equation 61 gives the functional relation predicted
within the assumptions of this analysis. The normal force
between fibers has been left in general terms. It will depend
on the equilibrium configuration of the fibers, the yarn tension,
any lateral loading which may exist, and the yarn twist.

It should be noted that this equation assumes that the
length of yarn being bent is much greater than the twist
length. If the test length is smaller than the twist length,
then the yarn will behave as predicted by the zero twist analysis
previously presented. In that case the effect of twist will
be to change the normal force. If the test length is greater
than the twist length, then equation 61 holds and the twist
will serve to reduce the required relative fiber motion. This
indicates that twist not only reduces rigidity because of the
fiber inclinations to the yarn axis, but also because it
reduces the required relative fiber motion.

Friction Moment in a Twisted Yarn under Constant Tension.
The friction moment developed in a twisted yarn under tension
can be computed by a method similar to that used in the constant
pressure case. In this case, the pressure will vary radially
and its magnitude will depend on the tension and geometry of
the system. For the purpose of this analysis it will be assumed
that the assumptions of the previous case hold and that the

23pressure distribution is as computed by Machida
2 2PA = 271FT (1 - r 2) (2-62). R

Y
Where,

r = fiber radial position
= yarn radius
= packing factor
= coefficient of friction
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T = twist (turns/length)
F = yarn tension
PA = internal pressure (force/area)

This pressure distribution can be translated into a
normal force per length on each fiber interface and this can
be combined with the relative fibers motions to give the
energy loss. The essential difference between this analysis
and that of the previous section is that in this case the
energy loss varies with radial position. For this reason, the
total energy loss involves summing, or integrating, the energy
losses throughout the structure after correcting for the
differences in number of interfaces at each radial position.

The details of the calculation are shown in Appendix D
and the resulting friction moment is approximately,

Mf = 4 R2 ?ryAFT (2-63)

The results of this analysis can be applied to twisted
materials that are bent while under tension. Examples of
this are found in yarns running over guides and twisted structures
being wound on drums or packages.

FRICTIONAL EFFECTS IN WOVEN FABRICS
As in the case of multi-layer beams and yarns, the

elements of a woven fabric slide by one another as the structure
bends. The extent to which sliding occurs will determine the
elastic rigidity of the material and the energy lost during
the process will determine the frictional moment 0 These two
quantities, which describe the bending-behavior, were
investigated analytically and experimentally. The results
will be given in terms of the fabric geometry and the proper-
ties of the component fiberso
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The frictional moment will be investigated for two different
types of energy losses that can occur--~one due to relative
fiber motion and one due to relative yarn motions. Following
this, the elastic rigidity of the fabric will be related to
t~e geometry of the system and the extent of slip propagation 0

Frictional Moment due to Relative Fiber Motion. As a fabric
bends, the fibers slide by each other as do the individual
layers of a multi-layer beam. This relative motion is resisted
by frictional forces which develop as a result of the internal
pressure of the fabric. From a knowledge of the distribution
of fiber slip and internal pressure, it is possible to compute
the energy lost during bending and this can be used to compute
the frictional moment by means of equation 12.

In the analysis it will be assumed that: the fibers are
not restricted from sliding by friction in a fixed region of
the structure; the fibers are linearly elastic; the fibers are
arranged in layers and have no twist; and, the pressure
distribution does not change during bending. Furthermore,
the analysis will be restricted to cases of low curvature
bends where the radius of curvature is much greater than the
thickness of the fabric and to fabrics having moderate~rimp.
Let,

s = coordinate along fiber
Ts = length coordinate fiber at start of slip

region
Df = fiber diameter
k = fabric curvature
n. = normal force per length acting between fibersJ

in layer j-l and j
nd = net downward force on fiber
Nf = number of fibers per yarn
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N
P

r

= number of fibers per layer
= height to width ratio of yarn
= number of layers of fibers
= fiber rigidity
= rectangular coordinates
= wave height of bent yarns
= spacing of cross yarns
= coefficient of friction between fibers
= crimp of bent yarns
= frictional work 10s8 per length of fabric at

fiber interface j-1, j
= total frictional work loss per length of

fabric
u = relative fiber motion at each point.

The slippage distribution can be estimated from the
strain discontinuity in the fibers using the method of
Chapter I equation 25 just as in the case of the zero twist
yarn considered earlier. Referring to Fig. 2-12, if relative
fiber motion starts at the point 8 = T, and if every element
of fiber between s ~ T and s ~ p , changes its curvature by anc
amount equal to the curvature of the fabric, then the slippage
distribution can be shown to be,

u = Df k (T - s) (2-64)

The fibers located at the inside crowns of the fabric
will experience some buckling and lateral motion to satisfy
the continuity requirements of bending. This effect will be
neglected in the present discussion.

The internal pressure distribution can be computed from
a knowledge of the geometry of each of the fibers in the fabric
and their equilibrium geometry. For a first approximation
it will be assumed that the fibers are originally straight
and that their geometry in the fabric is sinusoidal 0 Further-
more, it will be assumed that the fiber deflections in the
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\ /
Fig. 2-12 Relative Fiber Motion

in Woven Fabric

Fig. 2-13 Pressure Distribution
in a Woven Fabric
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fabric are small and that the conventional beam theory
formulations can be used. Referring to Fig. 2-13 the fiber
shape can be represented as,

11y = -hb cos p- x (2-65)
c

The net normal force per length acting downwards on
each fiber can be determined from the classical relation of
beam theory which relates deflected shape to loading.

d4
nd = Elf ~

dx
Solving equations 65 and 66 gives,

~.Jl)4 ,1Ixn = El h cos---d f b p Pc c

(2-66)

(2-67)

The net downward force on each fiber element represents
a difference between the normal forces on either side of the
fiber. Since the normal force on the outside of the fiber on
the exposed side of the yarn is zero, it is possible to solve
for the normal force at each fiber interface by a difference
equation type approach. The result for the j-th fiber,
counting from the bottom, on Fig. 2-13 becomes;

n. = j El h (ffJ4 cos 1Tx (2-68)J f b Pc Pc
From symmetry arguments the same reasoning holds for

fibers in the next crown. However, in the coordinate system
being used, a correction must be made for the fact that the next
element is inverted and out of phase by ninety degrees.
After performing this manipulation, the pressure distribution
can be found to be,
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n. =
J

(2-69)

- (L- j) El h (1f y. cos 1fx_ 1[(1/x < 1(
f b "-PC) Pc ~ 2 Pc

This equation gives the pressure at any location along
the fiber length for a fiber in any layer.

Since the pressure distribution is assumed constant,
the frictional work lost at each fiber element is merely the
friction force times the relative fiber displacement. This
energy loss is obtained by integrating over the length of fiber
in a length of fabric and dividing by the length of fabric
considered.

w. = L[Cu(s)
J Pc

s=T
n. (s) ds

J
(2-70)

(2-71)

This integral may be evaluated by using equations 64 and
69, and assuming that x = sand T is small. (The second
assumption will be dropped in a later section.) The result is,

wj =A.Elf hb (£) Df [-}j + (~ - }r)L] k

(2-72)

In order to find the total work per length done on the
fabric, it is necessary to sum over all the fiber interfaces
in a cross-section. This can be done by assuming a rectangular
yarn cross section with Nf fibers per yarn and~ layers of
fibers.

Wt =:A. Elf hb ({)3 DfNf (~ +;)
-109-
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This result can now be differentiated with respect to
curvature to obtain the frictional moment per yarn. Written
in terms of the number of fibers per yarn and the height to
width ratio, the result is,

(2-74)

(2-75)

(2-76)

The relation between wave height, spacing and crimp
established by Pierce24 can be used to express the result in
more convenient terms.

hb = 4 I!C'
Pc 3 V vb

4rr2 , r;;-: ~Mf = 3 7 (Nf Elf) V Nfr DfY- 2
p c

The frictional moment predicted by this equation can be
seen to depend on geometric structure of the fabric as well
as the fiber properties. Since this moment can have an important
effect on the bending, and, as will be shown later, the recovery,
it is felt that this analysis will be useful, although not
completely rigorous.

Experiments were conducted on two series of fabrics to
determine the validity of the predicted relation between
frictional moment and fabric structure. Both series involved
fabrics constructed of yarns with varying spacings and crimps.
One set was made of cotton and the other of nylon. The
specifications of these fabrics are given in Appendix E.

The moment-curvature relation of each fabric sample was
measured on a specially designed instrument which is described
in detail in Chapter IV. From this test it was'.possible to
determine a friction moment and an elastic rigidity for each
sample. The measured friction moments are plotted on
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Figs. 2-14 and 15 as functions of the structural variable
~/pc2 which is a measure of the fabric tightness in the
direction of bending. Equation 76 predicts a linear relation
between friction moment and this variable which passes through
the origin. The measured values of friction did increase
with the structural parameter~/pc2 but the agreement
between experiment and theory is not good. In both the cotton
and nylon fabrics, the extrapolated value of friction moment
for zero structural parameter is greater than zero. This is
probably due to additional friction losses that occur due to
yarn twist or adjacent yarn rubbing (discussed in the next
section) 0

In the theory which was developed it was assumed that
the equilibrium configurations of the fibers is straight. How-
ever, in both sets of fabrics a major portion of the residual
stresses had relaxed between the time of weaving and measure-
mento The fiber equilibrium configurations were changed from
straight to crimped and the actual internal pressures were
far less than those predicted on the basis of no stress
relaxation. For this reason it was expected that the measured
value of slope of the friction moment VSo structural parameter
relation would be considerably smaller than that predicted
on the basis of no stress relaxation 0 This was found to be
the case. The ratios of theoretical to measured slope for the
cotton and unset nylon fabrics were approximately 100 and 6
respectively. These values are in line with estimates of
stress relaxation which were determined from comparisons of
the crimp spacing of yarns withdrawn from the fabrics to
yarns in the fabrics 0

An additional consequence of fiber stress relaxation was
found in the difference in measured values of the unset and
heat set nylon samples. As expected, the heat setting altered
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the equilibrium configuration of the fibers, lowered the
internal pressure distribution, and resulted in fabrics with
considerably reduced friction moments7

It is probable that a more rigorous mathematical treat-
ment which includes the effects of stress relaxation and
partial slip propagation would be useful in obtaining a more
precise prediction of the effects of fabric structure on the
friction moment. Nevertheless, it is felt that the analysis
and experimental results presented here do indicate the
general trend of the important interrelations between fiber
properties, fabric geometry, and friction moment. In a later
section the question of partial slip propagation will be discussed
in detail.

Parallel Yarn Rubbing in a Woven Fabric. The previous section
dealt with the frictional moment that develops in a woven
fabric due to energy losses between the fibers. This type of
frictional effect appears to be the most significant in most
materials at low curvature bends. However, experimental
investigations of a number of large scale fabric models have
shown that another mode of frictional behavior is possible
in some asymmetric fabrics. This mode of frictional effect,
which does not appear to have been observed previously, involves
a rubbing together of two adjacent yarns as the fabric bends.
When the rubbing is done against a frictional force, energy is
lost and a frictional moment will develop.

This yarn rubbing is illustrated in Fig. 2-16. There it
can be seen that as the fabric bends, the yarns will move
relative to the structure (as shown by the arrows) and
consequently relative to each other. If these yarns are in
contact (as they are in some fabrics), energy will be lost
to friction as the material bends. An illustration of
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Fig. 2-16 Yarn Motion DuringBending Fabric
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Fig. 2-17 Illustration of AdjacentYarn Rubbing
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adjacent yarns in contact is given in Fig. 2-1~.
An approximate analysis will now be presented with the

aim of computing the frictional moment for this effect.
Let:

u = relative motion between yarns and fabric
matrix at crossing point

~ = relative motion between adjacent yarns at
crossing point

~ = wave height of bent yarns
cb = crimp of bent yarns
p = spacing of cross yarnsc
k = fabric curvature
m = number of bent yarns weaving together
F = force between adjacent yarns at crossing

point
Mf = frictional moment per yarn of fabric
w = energy loss per length of fabric per yarn

.,......t.c = ;31iding coefficient of friction between ya:t'ns.
If it is assumed that the shape of each yarn axis is

sinusoidal relative to the fabric centerline before and during
bending, it is possible to compute the relative motion between
the yarns and the body of the fabric, using the previously
derived continuity equationo This relative motion can be
shown to be zero at the top and bottom of each crown and a
maximum at the crossing point between adjacent parallel yarns.
At this point it has a magnitude equal to,

u =(;r)~ t.:b
+~ + t~~2)Jk (2-77)

The relative motions between the yarns can be computed
vectoria11y from this equation and the yarn geometry. It is
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(2-78)

If a constant force acts between the adjacent yarns at
each crossing point, then the work done against friction can
easily be computed from the above equation. Assuming that
there are m yarns weaving together, the frictional work per
length that must be done per yarn in order to achieve a given
curvature may be written as,

~F uRw = (2-79)m Pc
The frictional moment can be found by combining equations

78 and 79 and differentiating with respect to curvature.
Furthermore, it is possible to make a simplification by
introdu~ing the relation between crimp and wave height to
spacing ratio as in equation 75. The frictional moment can
then be found in terms of the cross spacing, the crimp, the
number of yarns weaving together and the frictional force.

(2-80)

(2-81)
Fabrics in which adjacent yarns do not touch have a zero

value of F and, clearly, there is no frictional loss due to
this mechanism. However, in some fabrics this effect can be
considerable. This is especially true in certain elastic
type fabrics where stretch yarns are left in the material with
high residual stresses. These stresses pull the cross yarns
together and thereby develop a normal force F. In more
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conventional fabrics that have internal yarn rubbing without
residual stresses,a normal force develops as the yarns compress
each other laterally. The magnitude of these forces depends
on the amount of this compression and the lateral properties
of the yarns.

Since the relative yarn motions that occur in this situa-
tion are of considerable magnitude, large losses can be obtained
by this mode of frictional behavior. This may be desirable
for certain types of industrial applications such as damping
devices or schrapnel protective materials.

Although the effect of internal yarn rubbing was developed
in connection with fabric bending and recovery, it should be
pointed out that this action may be important in internal
fabric abrasion and fiber migration.

Structural Effect on Elastic Rigidity. The bending behavior
of woven fabrics was studied by both microscopic examination
and by means of large scale models. It was found that as the
fabric bends there is a change of curvature produced in the
yarns perpendicular to the axis of bending. However, the
sections of these yarns that form the outer crowns of the
bend are restricted from bending by the cross yarns and they
retain their original curvature 0 This is illustrated in
Figs. 2-18 and 2-19~ This means that the lengths of yarn in
the unrestricted regions will have to undergo larger changes
of curvature to conform to the curvature of the fab ric. From
this consideration the rigidity of a yarn in a fabric will be
greater than that of the yarn before it was woven. On the
other.hand, the yarn in a fabric follows a crimped path and
this would tend to reduce the rigidity of a yarn in a fabric
over what it was originally. Both of these factors will be
considered in the following analysis in an attempt to predict
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Fig 2-18 CROSS SECTIONS OF FABRIC BENT TO
VARIOUS CURVATURES
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Fixed Curvature Region

Changing CurvatureRegion

Fig. 2-19 Effect of Fabric Structureon Rigidity

Fig. 2-20 Idealized Geometry ofWoven Fabric
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f/Jo =

f/JB =
S =r
St =

Pc =

M =

the elastic rigidity of a woven fabric.
Let,

Ryf = rigidity of a yarn in a fabric
R = rigidity of a yarn before weavingy
s = coordinate along yarn axis measured from

center of outside crown
tangent angle of yarn axis--original
tangent angle of yarn axis--bent
length of restricted region
total yarn length between crowns
spacing of cross threads
moment per yarn applied to fabric

cb = crimp of bent yarns = St/L - 1
q = Sr/St
D = yarn diametery
kf = fabric curvature
8b = inclination angle of bent yarns.

If a pure moment is applied to the fabric, then it can
be shown that each element of yarn length not touching a cross
yarn is also under a pure moment. These elements of yarn length
will then change their curvature (df/J/ds) by an amount
M/R. On the other hand, each element of yarn in they
restricted region will retain its original curvature.

Referring to Fig. 2-18 this can be expressed mathematically
as,

d,~ b _
--~:=ds

d 00 M--+-ds R
Y

(2-82)

Integrating this equation and assuring that f/J is continuous,
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gives,

M
rA +--!ro R

y

MSR---R
Y

(2-83)

This equation makes it possible to compute the fabric
curvature. If it is assumed that the yarn spacing remains
fixed, then the fabric curvature becomes,

,
~ b (ST)

kf =
Pc

With the aid of equation 83 this may be written as

(2-84)

M _ R = Pc Ry
kf - ~f ST - SR (2-85)

This result can be written in terms of the crimp and

(2-86)

(2-87)- 2 sin eb

2 sin

fractional length of the restricted region.
R
~ = --l~~_--
Ry (1 + Cb)(l - q)

Equations 85 or 86 can be used directly, or else they
can be converted to a more useful form. This conversion
can be made in terms of the usual idealized model of a plain
weave as shown on Fig. 2-20. From this model it is possible
to evaluate the quantities in equation 86. The result is,

Pc
R f D': cos eb-I!. • -.r.y ;;..-. _

Ry Pc
9b cos 9b + D

y

Pc < 2
9b<j) sin e

b

The limits placed on the cross spacing result from
considerations of yarn jamming. Equation 87 is plotted on
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Fig. 2-21. It illustrates the relation between fabric rigidity
per yarn and looseness of the fabric. As tighter fabrics are
considered (lower p ID ), the rigidity predicted will remainc y
approximately equal to the original yarn rigidity for a range
of p ID and then the rigidity will increase sharply. Thisc y
effect was found by Chadwick25in his research on a variety
of fabrics. It was also found to be the case in experiments
conducted in this research. The cotton and nylon fabric
series described in Appendix E were evaluated on the
moment-curvature instrument and the results of elastic rigidi~
are plotted on Figs. 2-22, 23 and 24~ The measured relation
between elastic rigidity and cross yarn spacing follows the
trend predicted by equation 87 for both series. The leveling
off of this relation at high spacings is more apparent in the
nylon series since those fabrics cover a considerably wider
range of constructions.

The increase of elastic rigidity with decreasing spacing
was more pronounced in the unset than in the heat set nylon
fabrics. This occurred because of the higher internal
pressures present in the unset fabrics which apparently caused
a reduction in the extent of slip propagation. Superimposed
on this effect was the cross yarn restriction which occurred
in both sets of fabrics. As a result both sets had higher
elastic rigidities for the tighter constructions due to the
geometric effect considered in this section, and the unset
fabrics had additional increases in rigidity due to incomplete
slip propagation. (The degree of slip propagation will be
discussed in a later section.) The measured results also
indicate that the asymptotic complete freedom of motion
rigidity is the same for both sets of nylon fabrics as expected.

An additional relation regarding the effect of geometric
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restrictions was observed for the cotton fabric series bent
in the filling direction. In this experiment the cross yarn
spacing of each sample was approximately constant, but the
crimp of the bent yarns varied cons iderab1y 0 The measured
values of elastic rigidity of these samples showed a definite
increase with crimp. This is shown on Fig. 2-24 , together
with an extrapolation to the complete freedom of motion rigidity
at zero crimp.

The measured effect of crimp on elastic rigidity is as
predicted by the theory. As originally stated, crimp tends
to reduce rigidity by providing excess yarn length for bending;
and, it also tends to increase the rigidity by increasing the
relative size of the regions of fixed curvature of the yarns.
According to the results of the analysis which are shown on
Fig. 2-21 the latter effect of crimp predominates and
rigidity increases with crimp at a fixed value of cross yarn
spacing. (Note that the parameter used on this figure is
the yarn inclination angle) which is a measure of crimp.)
This effect of crimp on rigidity is independent on the ability
of the fibers to slide by one another and is caused by a
geometric interaction between the yarns in a fabric.

When structures, either of a non-plain weave, or else
. 21,26plain weave with highly flattened yarns are cons1dered ,

then this analysis must be modified. This is due to the fact
that in these cases geometric changes occurring in the cross
yarns will not hold the bent yarn at a fixed curvature .. There
will be a region of slightly changing curvature rather than
one of fixed curvature. This can be seen in some of the
open fabric sections on Fig. 3-11.

Relation Between Friction and Extent of Slip Propagation. The
previous sections dealt with the relations between friction
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moment, elastic rigidity, and fabric structure. It was
assumed t~at slip had propagated throughout the structure and
that the effect of friction was to provide a restraint against
slip rather than to prevent it from occurring. Under this
assumption, the elastic rigidity corresponds to the complete
freedom of motion case corrected for geometric restrictions.

In this section, partial slip propagation will be considered
and it will be shown that the assumptions made previously hold
only for low levels of friction. It will be assumed that slip
propagates lengthwise through each yarn element and that the
extent of this propagation depends linearly on the frictional
interaction. If the friction is low, the propagation is
complete and if the friction is above a critical value, there
will be no slip at all.

In the case of bending under a pure moment, it was shown
in Chapter I that slip propagated lengthwise through the
structure. The extent of the propagation was shown to depend
on both the frictional interaction and the level of applied
load. Here, it is assumed that the extent of propagation
depends only on the frictional restraint and not on the load.
The justification for this assumption is found in the fact
that the internal fabric pressure changes as the material is
bent. This means that while the slip is propagating into the
structure, the tendency for increased propagation due to
increased level of load will be offset by the increased
resistance to propagation caused by the pressure. In this way
the extent of propagation will be fixed even though the
load increases.

The effect of the extent of slip on elastic rigidity can
be predicted by considering the yarns in the fabric to be
composed of sections of fibers having no freedom of motion
and sections having complete freedom of motion against a
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frictional restraint9 . The fractional length of each of
these sections can be expressed in terms of the properties and
geometry of the fabric using the indicated assumption.

f
L = L (1 - -)s g (2-88)

Where,
Ls = length of yarn within propagation region
L = total length of yarn in one element
f = frictional force per length at one fiber

interface
g = frictional force per length at one fiber

interface required to prevent all relative
motion

R = elastic rigidity
When a fabric composed of a series arrangement of the two
types of elements is subjected to a pure bending moment, the
net change of curvature can be found by computing the change
in each section and then averaging. Assuming that the fibers
are in an idealized square layered form, the section having
no freedom of motion will bend with a rigidity of Nf

2 Elf
and the section having complete slip against friction will bend
as the zero twist yarn previously analyzed (equations 1 and 50).
Note that this involves the further assumption that the
pressure distribution is constant in the latter region and
that the number of fibers is large. On this basis, the
moment curvature relation can be shown to be,

2
NEI. (1 - f) f ~f Nf gL/4

M = f ~ 11k + gf g 1 1 (2-89)
(1 - g)(l - N) + N (1 - g)(l - N) + N

From this equation, the friction moment and the elastic
rigidity can be related to the friction force and to each
other. This has been done for the case of fabric with a
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large number of fibers in each yarn with the following results,
Df Nfg L f f

M = -_. - (-) (1 - -) (2-90)f 4 g g

(2-92)

(2-91)1=R
NEI.

l. 1 - f (1 1)g N

Df N# L ( NEI.\ / NEI.)
M = - f 1 l.), \ __ l.
f 4 \ R R

"-

These equations are plotted on Fig. 2-25 in dimensionless
terms. Note that the length term corresponds to twice the
cross yarn spacing for the case of a plain weave fabric.

These equations show that the elastic rigidity increases
with friction from the case of complete freedom of motion to
the case of no freedom of motion as the friction force varies
from zero to g. If the value of fIg is small, the change of
elastic rigidity will be small for low values of friction force
and the result reduces to that found in the previous sections
where the elastic rigidity was assumed to be the sum of the
individual fiber rigidities independent of friction.

Equation 90 indicates the relationship between friction
moment and interfiber friction force. This quantity varies
approximately parabolically with friction force. It first
increases, goes through a maximum, and then falls to zero.
The physical interpretation of this effect is that the friction
moment increases with friction force until the reduction of slip
length becomes significant. Then, when the slip length approaches
zero the friction moment falls to zero. For the case of
small values of fIg, the results of the analysis reduce to
those of the zero twist.yarn. In that analysis the effect of
partial slip propagation was neglected.

The relation between friction moment and elastic rigidity
is given by equation 92 and Fig. 2-25b. It is useful for the
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evaluation of fabriGs in which it is difficult to measure the
interfiber friction force. The functional relation exists for
values of elastic rigidity between the limiting cases. It
increases rapidly at first, goes through a maximum and then
drops to zero gradually.

Although equation 89 has been written for the bending of
a fabric, it can also be applied to other situations. In a
twisted yarn, for example, the effect of changing the friction
force will also effect the length of slip propagation and there-
by cause changes in both the elastic rigidity and the frictional
moment. In that case, the nature of the extent of propaga-
tion will be more complex. Fibers will begin slipping on the
sides of the bend and the slip will propagate towards the
outside and inside of the bend. Again, the elastic rigidity
will increase with friction from the case of complete freedom
of motion to that of no freedom of motion and the friction
moment will increase, go through a maximum, and then fall to
zero.

An experiment was conducted to determine the effect of
frictional changes on the elastic rigidity, the friction
moment, and the bending recovery behavior. One cotton and one
nylon fabric was used and treatments were applied to each for
the purpose of both increasing and decreasing the interfiber

t

friction. For each fabric seven samples were scoured and
then three samples were treated with softening agent (commer-
cially available type) of varying concentration and three
were treated with a "frictionizerrr (MonsantoWs Syton) of,
varying concentration. The seventh sample was used as a
control. (See Appendix E for the sample descriptions.)

The bending parameters were measured on the moment-
curvature instrument described in Chapter IV and the results
are plotted on Figs. 2-26 to 2-29. For the nylon series,
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both the elastic rigidity and the friction moment are plotted
against the interfiber friction force. This quantity was
determined by means of the pullout test described in
Chapter IV. The bending parameters of the nylon series are
also given in crossplotted form. For the cotton series, it
was found unfeasible to measure the fiber pullout force and
the bending parameters are given only in cross plotted form.

The results of the nylon series show good qualitative
agreement with the theory. The elastic rigidity increases
monotonically with interfiber friction while the friction
moment increases and then falls. In order to compare the
theoretical relations with those measured, it was necessary
to graphically determine the parameter "g" from the friction
moment plot. Then, the value of Df Nf L/4 was determined
from the fabric specifications and also from the maximum of
the friction moment plot. The two values thus obtained
differed by a factor ot two, and the value obtained from the
second method was used to plot the theoretical curve on
Fig. 2-26-.. On this basis, the a greement between theory and
experiment was good. The discrepancy between the two values
of Df Nf L/4 obtained is probably due to the effect of a
varying pressure distribution within the fabric which was not
considered in this section.

The measured relation between elastic rigidity and friction
force for the nylon series also showed good qualitative agree-
ment with the proposed theory (Fig. 2-27,). The extrapolation
of rigidity to a zero value of friction force on this plot
represents the complete freedom of motion rigidity of the
material and the value~' thus obtained was.~ within 5% of that ~
determined from the tensile properties of the yarns. This
value was used in conjunction with the previously determined
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value.of "g" to establish the theoretical relation for this
measurement. The comparison between theory and experiment
is quite good for moderate :values of friction. " At the higher
levels the predicted elastic rigidity is considerably higher
than that measured. This discrepancy is probably due to the
effect of yarn flattening which was not included in this
analysis and which has the effect of changing the ratio of
the complete freedom of motion rigidity to the no freedom
of motion rigidity. This ratio was taken to be llNf in
equation 91.

The relation between friction moment and elastic rigidity
is plotted on Fig. 2-28 for the nylon series. The measured
values on this graph have been corrected from the original
ones by adjusting each point to the value lying on the best
smooth curve through the original data. Then the theoretical
relation was plotted based on the parameters used previously.
The agreement between theory and experiment is excellent for
the lower values of elastic rigidity, then at the higher values
the agreement becomes poor because of the previously discussed
discrepancy between theoretical and measured elastic rigidity
at high friction levels. Note that the samples treated with
the friction reducing treatments fall in the initial region
of the curve and they are followed by the control sample and
the samples treated with the frictionizer.

The measured results of the cotton series are shown.on
Fig. 2-29. The qualitative relation between the variables
is as expected although it appears that the levels of inter-
fiber friction force was insufficient to extend the measured
values beyond the point of maximum friction moment. As in
the case of the nylon serie~, the data points are identified
by the type of friction treatment applied. Again, the low
friction fabrics lie in the initial region of the curve while
those with high friction lie"at the end.
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CHAPTER III
BENDING RECOVERY OF TEXTILE STRUCTURES

Since the bending recovery behavior of fabrics plays an
extremely important role in the performance of textile materials
for clothing purposes, a great deal of research has been done
in this area28,~9 It has been shown that the individual fiber
properties determine recovery behavior to a great extent and
that fibers with good recovery from tensile strains generally
have good recovery from bendin~~ A number of investigations

14,15,31have demonstrated however tHat the bending recovery also
depends on the frictional interactions of the fibers. Although
this effect is generally of secondary importance, it certainly
warrants careful investigation because of the great importance
of bending recovery in user acceptance of new materials and
finishes.

In the first section of this chapter a bending recovery
relation will be established which can be used to characterize
the performance of any material or structure. This relation
involves the use of dimensionless variables and permits the
evaluation of materials independent of their size.

In the sections to follow, the recovery behavior will be
given for the limiting cases of fiber motion. Then, following
the procedure of Chapter I, the intermediate cases of fiber
motion will be considered. It will be shown that friction
not only produces an intermediate behavior, but also introduces
an entirely different type of behavior in certain cases.
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REPRESENTATION OF BENDING RECOVERY

Bending recovery is defined as the fractional amount of
curvature recovered to that imposed on a specimen. In standard

32tests the imposed curvature is usually determined by the
curvature a fabric experiences when it is bent around a slab
approximately 10 mils thick. Since the thickness of fabrics
varies, the imposed curvature of such a test will vary
for different materials. Also, the severity of a given imposed
curvature will depend on the thickness of the fabric. For
these reasons a standard test which involves bending a material
around a slab of fixed thickness is not always satisfactory.
This was demonstrated by Bostwick in an investigation of a

33number of test procedures A better measure of bending
recovery is to bend a fabric to a radius of curvature that is
a fixed fraction of the fabric thickness. The magnitude of
the imposed curvature in this case can be expressed in
dimensionless form by multiplying it by the half thickness of
the material as is done in Chapter I. The physical significance
of this dimensionless curvature is that it is the same as the
maximum strain that would exist in a solid material of equal
thickness bent to the same curvature. For example, the
dimensionless curvature of a fabric bent around a thickness
equal to itself is one-half.

For a complete representation of bending recovery, the
recovery at every possible value of imposed curvature must
be known. This functional relation has been used in a number

14 15of previous investigations 'and will be used here and
referred to as the recovery curve. Both variables on this
curve range from zero to one; and, on this representation it
is possible to plot the recovery of anyone or two dimensional
structures such as fibers, wires, ropes, films, fabrics, and
other materials.
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BENDING RECOVERY'.OF A SINGL'E FIBER

(3-1)lfl<l2c{Jl{J 2 -1)1.1:rr - 11' sin T ).I

As mentioned uefore, the most important single factor
that determines the bending recovery of textile structures
is the bending recovery behavior of the individual fibers.
It has been shown in a number of investigations that this

30recovery depends largely on the tensile recovery of the fibers
34In particular, Platt and Freeston found the mathematical

relation between residual fiber curvature and imposed curvature
based on the fiber stress strain behavior. For a fiber with

3-1, the residualan idealized tensile curve as shown on Fig.
curvature was shown to be,

_ ~ 4t{J3lf
kr - ki (1 - E)(1 - 311

Where,
Df = fiber diameter
k = residual curvaturer
k. = imposed curvature
1

~2 = 1 - vJ 2

'K
2e*

= Df ki

Stress

e e~

Fig. 3-1 IDEALIZED TENSILE BEHAVIOR FOR BENDING RECOVERY
PREDICTION
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t =2D fN?f fY~ y

Where,
tf = fabric thickness
Nf = number of fibers in yarn
r = height to width ratio of yarn section

2Y = yarn packing factory

k* = dimensionless curvature of fabrici
B = bending recovery

From the definition of dimensionless curvature,

ki* = ki Df --Ii:

(3-2)

(3-3)

This equation can be used in conjunction with equation 1

which defines the recovery of individual fibers. For fibers
which do not follow the assumptions on which equation 1 is
based, it is possible to use any other formulation which
describes the recovery of individual fibers. For example,

· lIb d h. · 35 · h.exper1menta resu ts can e use at t 1S p01nt . to g1ve t 1S
information 0 If, however, equation 1 is assumed to hold,
then the result for the recovery behavior of a fabric with
complete freedom of fiber motion can be obtained by
rewriting the equation in terms of bending recovery and
substituting equation 3.

B =

-144-
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The recovery behavior predicted by equation I has been
measured by Platt and Freeston for a number of metallic fibers
and for viscose rayon with good agreement between theory and
experiment.

In the following sections this formulation will be used
to predict the recovery of fiber assemblies. Then frictional
effects will be included to determine how this factor affects
recovery. It should be noted that the residual curvature
predicted by equation 1 applies to fibers whose stress-strain
and recovery behavior can be characterized by the idealization
of Fig. 3-1. For other materials, the individual fiber
recovery must either be recomputed or measured directly.

LIMITING CASES OF FRICTIONAL INTERACTION
Just as in the case of the bending of textile structures,

it is possible to estimate the recovery from bending by consider-
ing the limiting cases of frictional interaction. This can
be done for the case of a woven fabric bent by assuming that
the change of curvature of the centerline of the fabric is
the same as that of the individual fibers. This assumption
can be applied most satisfactorily for yarns with moderate
crimp and for moderate imposed curvatures.

For the case of complete freedom of motion, the fibers
will bend independently and on the basis of the stated
assumption)equation I can be applied directly. However, to
express the result in terms of the dimensionless curvature
imposed on fabric, it is necessary to express the fabric
thickness in terms of the fiber diameter. This can be done
for a yarn of elliptical cross section in a fabric with a
thickness of two yarns. The result is,
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p

*k.
1.

~2=l_r2

p = 2 e*f:
y

r
(Complete Freedom of Motion) (3-5)

*p = 2 e

For the case of no freedom of fiber motion, the fibers
will not slip and the fabric will be assumed to be made of
yarns which behave as monofilaments. In that case, the
diameter term of equation 1 must be replaced by the yarn
diameter. The resulting recovery equation is the same as
equation 4, but the parameter "p" is replaced by,

(no freedom of motion) (3-6)
This means that the recovery behavior for the case of

complete and no freedom of motion follow the same form but
have different values of a parameter which is a measure of the
non-recoverability of the fibers. This recovery relation is
plotted for several values of this parameter on Fig. 3-2.
These curves are given for ~/E = 0, and can easily be
adjusted for non-zero values of this variable by realizing
that its effect is to shift the curve upwards to complete
recovery by a fractional amount equal to its magnitude.

The results given here for the limiting cases of freedom
of motion can directly be applied to situations in which the
fibers form clusters in the yarn. In that case it is merely
necessary to modify the values of the parameter in terms of
the number of fibers in a cluster.

The recovery behavior predicted by this analysis is
generally observed for textile materials where the effects of

34sliding against frictional forces can be ignored Note
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that the recovery is not strongly affected by the magnitude
of imposed curvature for values of dimensionless curvature
approximately equal to 0.5. Since the standard bending test
generally operates at this level, the results can be used for
constant thickness slabs even though the imposed curvature
may be different for samples of different thicknesses.

EFFECT OF FRICTION ON RECOVERY
In Chapters I and II it has been shown that the effect

of friction on bending of textiles or multi-layer beams is
either to impose restraints on relative fiber motion or else
to prevent the complete propagation of slip. Both of these
effects will affect the bending recovery.

In the first case, recovery will be affected since the
fibers will not reslip to the same extent that they did during
bending. This type of non-recoverability due to friction was
discussed analytically and experimentally in Chapter I for
multi-layer beams and analytically in Chapter II for the one-
dimensional case of slip and strain. Since this type of non-
recoverability arises from a structural effect rather than
from permanent fiber deformation, it will be referred to as
the "friction-elastic" type of non-recoverability.

In the second effect, friction will prevent relative fiber
motion in parts of the structure and cause larger strains to
develop. This will clearly reduce the recovery.

Friction-Elastic Effect. In Chapter I, an analysis was presented
to determine the recoverability of a multi-layer beam under
constant pressure that is bent to a fixed curvature. The
residual curvature due to the balance between the elastic
and frictional forces in the system are given by equation 80.
When this result is applied to a textile structure and
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rewritten in terms of bending recovery, the result is,

B =

F1",,-
'*ko

~

*2F<ke
1.

(3-7)

Where,
B = bending recovery
Mf = friction moment
R = elastic rigidity
tf = fabric thickness.

This equation relates bending recovery to imposed curvature
for various values of a dimensionless parameter which expresses
the friction relative to the elasticity of the system. Bending
recovery for this effect is plotted on Fig. 3-3. It is
interesting to note the difference between the recovery result-
ing from this effect to that from purely plastic deformation
shown on Fig. 3-2? In this case the recovery increases with
imposed curvature while in the other it decreases with curvature.

Effect of Frictionally Induced Strains on Recovery (P1astic-
Elastic Effect) 0 When frictional forces prevent complete
slip propagation the effect on recovery can be estimated by
assuming that part of the structure bends with no freedom of
motion and part with complete against a frictional restraint.
This is the same assumption made and discussed in the case
of frictional effects in bending in Chapter II. Again, the
length of propagation of slip will be assumed to depend
linearly on the frictional force as given by equation 88. If
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each element of yarn changes its curvature by the same amount
and this change is equal to the curvature of the fabric center-
line, the frictional effect can be determined from the recovery
equations for complete and no freedom of motion given by
equations 4, 5, and 6~ The length of yarn through which
slip has propagated will have the residual curvature corres-
ponding to the complete freedom of motion case and the
remainder will have a residual curvature ,~corresponding
to no freedom of motion. The fractional amount of each case
is given by equation 88. This permits calculation of the
average residual curvature of the fabric and this can be used
to determine the bending recovery in terms of the limiting
values.

f fB = (1 - g) BCFM + (g) BNFM (3-9)

The result indicates that on the basis of the stated
assumptions, the recovery for this effect of friction will be
the weighted average of the recovery curves for the limiting
cases of freedom of motion. The weighting factor is
dependent on the friction of the system as indicated.

It is interesting to note that the two frictional
effects on recovery discussed in this section are quite different
in the way they act. The first produces a non-recoverability
by not allowing the fibers to return to their original relative
positions. The fibers need not be permanently deformed for
this mechanism to act. The non-recoverability is purely
structural and arises from a balance of the friction forces
with the elastic restoring forces. A good example of this
type of deformation is found in fiberglass fabrics. In this
type of material the recovery is often extremely poor, even
though the fibers are not at all permanently. deformed. This
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is especially pronounced at low curvature bends when the
recovery predicted by this effect is lowest.

The second effect of friction is not purely structural.
It acts to reduce recovery by increasing the effect of the
permanent fiber deformations by preventing relative fiber
motion in parts of the fabric. In this way the recovery goes
from the complete freedom of motion case to that of no freedom
of motion as friction increases. This effect is greatest in
large curvature bends.

Combined Effect of Friction and Permanent Fiber Deformation.
The results of the previous sections can be utilized to obtain
a prediction for the combined effects of friction and permanent
fiber deformation on bending recovery. This combined effect
will give the recovery behavior for the levels of frictional
interaction between the limiting cases.

When a material is bent to a certain level of curvature
and released, it will maintain some amount of residual curva-
ture. This residual curvature was shown to arise from two
different effects; permanent fiber deformations, and frictionally
held deformations. In the first of these effects, referred
to as the plastic-elastic case, it has been shown that the
residual curvature varies with the imposed curvature in a
manner that depends on the fiber properties, the structural
geometry, and the interfiber frictional interaction 0 The
frictional interaction in this case determines the level of
residual curvature relative to the limiting cases of freedom
of fiber motion as illustrated on Fig. 3-4. Here, it can be
seen that the residual curvature due to this effect is small
for low imposed curvature and increases to considerable
levels at high imposed curvatures.
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The second effect which produces a residual curvature
results from frictionally held deformation. This friction-
elastic effect arises from an inability of the fibers to
reverse the relative motions which they experienced during
bending. The relation between residual and imposed curvature
for this effect was computed in Chapter I and is plotted on
Fig. 3-4. On this graph it can be seen that this residual
curvature is approximately constant for all levels of imposed
curvature.

A comparison of the residual curvature relations resulting
from the two effects shows that the friction-elastic effect
predominates at low curvatures, while the plastic-elastic
effect predominates at high curvatures. This means that the
way in which interfiber friction affects bending recovery
depends on the level of imposed curvature. For low curvatures,
friction is important since it prevents fibers from retracing
the motions which they experienced during bending. Then, at
high curvatures, friction prevents the complete propagation of
slip during bending and thereby increases the level of fiber
strain and of the corresponding permanent deformation.

In order to evaluate quantitatively the combined effects
of the two types of residual curvature, it will be assumed
that the net residual curvature equals the sum of the residual
curvatures due to fiber deformation and frictionally held
deformation 0 This is shown on Fig~ 3-4. The justification
for this assumption is obtained from a consideration of the
equilibrium configuration of the fibers. For fibers that do
not undergo permanent deformations, the residual curvature
corresponds to that of the friction-elastic case. This residual
curvature represents a point of balance between the frictional
forces, which tend to hold the material bent, and the elastic
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restoring forces, which tend to return the material to the
original equilibrium configuration. When the fibers do under-
go permanent deformations, the elastic restoring forces will
tend to return the material to the state that corresponds to
the altered fiber equilibrium configurations. Since the
residual curvature due to the friction-elastic effect acts to
produce a fixed change in curvature from whatever equilibrium
configuration exists, the assumption made appears reasonably
justified. There is one difficulty however that does arise
when making this assumption. The recovery behavior of the
individual fibers, and therefore the plastic-elastic para-
meters, depends to some extent on the state of fiber strainl5

When this effect is significant, a coupling term must be
introduced between the residual curvatures and the simple
superposition assumption will not hold. This effect was
neglected for the purposes of this investigation.

= dimensionless imposed curvature
= dimensionless residual curvature

Let:
*k r

*k i

F

G

f

g

= friction force per length between fibers
= friction force per length between fibers required

for prevention of all slip
subscripts:

p refers to plastic-elastic effect,
f refers to friction-elastic effect
nfm refers to no freedom of motion
cfm refers to complete freedom of motion.
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*k .
-1.

Fig. 3-4 RESIDUAL vs IMPOSED CURVATURE FOR COMBINED PLASTIC-
ELASTIC"AND FRICTION-ELASTIC EFFECTS
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The residual curvature due to the plastic-elastic effect
depends on the amount of interfiber friction and the recovery
of the limiting cases as in equation 9.

k* = f k* + (1 _ f) k*r,p g r,nfm g r,cfm (3-10)
The residual curvature due to the friction-elastic effect

can be obtained from equation 7. It can be ~ewritten in terms
of the relative amount of friction by applying the results ~f
equations

G (f Ig) (1 - fIg) 2

From the indicated assumption,

(3-11)
k*i» 2(f/g)(l-f/g)2G

(3-13)

k* = k* + k* (3-12)r r,p r,f
These equations can be combined and written in terms of
bending recovery rather than residual curvature,

*
B = f B + (1 _ !) B _ k ..r•f

g Nfm g cfm *k .
1.

The individual terms of this equation can be evaluated from
equations 4, 5, 6, and 11. Then, the bending recovery can be
seen to depend. on five parameters,

B = B(P f Nf, ~/E, G, fIg) (3-14)c m,
This bending recovery relation has been plotted on

Figs. 3-5 and 6 for several values of the parameters. The
most striking result that can be seen is the reduction of
recovery at low levels of imposed curvature and a recovery
curve that goes through a maximum. This type of behavior has
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been previously observed by Daniels15and was also observed in
this investigation. Note that the recovery curves for the
combined effects reflect a combination of the recovery curves
for the plastic-elastic and friction-elastic effects shown
on Figs. 3-2 and 3.

On Fig. 3-5 the recovery relation is plotted for
P f = 0.1, 0/E = 0, and for the case of complete slipc m
propagation (fig = 1). The amount of friction acting in the
system is given by the dimensionless parameter F. As this
value increases, the recovery gets progressively worse at the
lower levels of imposed curvature .. At the higher levels, the
effect of friction is less and the recovery curves are
asymptotic to the zero friction case. This occurs because
these recovery curves are restricted to the case of complete
slip propagation.

On Fig. 3-6 the recovery curves are shown for a material
in which the effect of propagation of slip is included. The
curves are plotted for Pcfm = 0.1, Nf = 100, ~/E = 0.5,
G = 0.1, and for various values of fIg. The limiting cases of
recovery occur at fIg equal to 0 and 1. For the intermediate
cases the friction-elastic effect increases and then decreases
with fIg, while the plastic-elastic effect continuously shifts
the recovery curve closer to the no freedom of motion limit.

The important conclusion to be drawn here is that the
recovery behavior for the intermediate cases of friction differs
qualitatively from that found for the limiting cases. This
was also shown to be the case for the bending behavior as
described by the moment-curvature relation. For the high
imposed curvatures, friction acts to give a recovery which is
between that of the limiting cases. At these curvatures, the
recovery performance relates to the ability of a fabric to
recover from imposed wrinkles or creases. At low curvatures,
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friction reduces the recovery below that of both limiting
cases. At these curvatures the recovery gives only a small
indication of how a fabric will recover from imposed wrinkles,
but it does give a strong indication of the "hand" of the
material. Fabrics with low recovery from low curvature bends
differ noticeably in their aesthetic appeal from fabrics with
high recovery.

A number of experiments were conducted to establish the
validity of the proposed theory of frictional effect on
bending recovery. The procedure used is described in Chapter
IV. To illustrate the qualitative nature of the frictional
effect, a cotton canvas fabric having a rather strong inter-
fiber frictional interaction was first evaluated. The results
of this experiment are plotted on Fig. 3-7. The recovery of
this material very definitely follows the predicted trend
and has very poor recovery at low imposed curvatures followed
by a maximum in the curve and then a gradual decrease.

Two additional series of experiments were conducted to
determine the effect of friction on the recovery behavior of
a nylon and a cotton fabric. These samples were treated with
varying concentrations of a softening agent and with varying
concentrations of a frictionizer. The detailed sample
descriptions are given in Appendix E and the results of the
recovery measurements are given on Figse 3-8 to 3-10, and on
Table I in Appendix F.

The recovery of the nylon samples shown on Fig. 3-8
represents the results of a treatment with a softening agent,
a frictionizer, and a control sample. The amount of frictional
interaction of each of these samples is specified in terms of
the fiber pull-out force, which was measured by the procedure
described in Chapter IV. A similar plot for three of the
cotton samples is given on Fig. 3-9. In this case the amount
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Fig.3-10 BENDING RECOVERY vs ELASTIC
RIGIDITY
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of interfiber friction is given in terms of the elastic
rigidity of the sample. This quantity was shown to be a
monotonically increasing function of friction in Chapter II.

The results show that friction affects the shape of the
recovery curve as predicted. At both the low and high imposed
curvatures the samples with the higher friction levels showed
poorer recovery. In the low curvature region this was due to
increased resistance to relative fiber motion, and in the
high curvature region it results from a reduction in the
extent of slip propagation 0

For an additional representation of the recovery results,
the bending recovery is plotted as a function of friction,
measured in terms of elastic rigidity, for various levels of
imposed curvature on Fig. 3-10. This curve illustrates the
strong effect that friction has on bending. By changing the
frictional interaction between the fibers it was possible to
obtain changes in recovery amo~nting to almost a factor of
two.

EVALUATION OF CROSS-SECTIONS OF BENT FABRICS
In order to obtain a better understanding of the structural

geometry that develops during fabric bending, a number of
fabric samples were bent, embedded, cross-sectioned, and
examined microscopically. The technique employed is described
in detail in Chapter IV. Several of these samples were
photographed and are shown in Figs. 2-18., 3-11, and 3-12.
These photographs include three series of samples which illus-
trate the effects of frictional changes, structural changes,
and curvature changes. The following observations can be
made from these cross-sections:

1 .. There are two fundamental modes in which a fabric
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can bend at high curvatures36 The first is a "square" mode
and it is characterized by a yarn path which is asymmetric
to the plane of bending. Cross-sections taken of adjacent
yarns in this mode are mirror images of each other. The
second mode is a "round" mode and it is characterized by a
symmetrical yarn path. In this case, sections taken at
adjacent yarns are different since the bent yarns will
alternatingly pass over and under the cross yarn at the center
of the bend. Both of these modes occur in each of the fabric
series photographed. Because of the similarity of adjacent
yarn sections in .the square mode, only one cross-section is
required to describe this geometry, whereas two are required
for the round mode. It is interesting to note that the
frequency of occurrence of the square mode is considerably
greater than that of the round mode. This was not only found
.tobe the case in the sections shown, but also in a number of
additional samples which were sectioned.

2. During bending the yarns experience only small
curvature changes in the regions where they form outside
crowns. This observation corresponds to the assumption made
in the analysis for predicting the effect of cross yarn
restriction on elastic rigidity. This effect is most pronounced
in fabrics having round cross yarns, since only a small amount
of yarn compaction takes place in these materials.

3. In order to satisfy the continuity requirements
of bending, the fibers at the inside crowns buckle towards
the inside of the bend. The extent of this buckling is small
but it can be seen by careful examination of the cross~
sections on Fig. 3-11. Another form of buckling can also
be seen in the loosely woven fabrics in this figure. This
buckling involves a lateral movement of the yarns out of
their original plane.
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d e

Fig 3-11a CROSS SECTIONS OF BENT FABRICS
(NYLON SERIES N)
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j

Fig 3-11b CROSS SECTIONS OF BENT FABRICS
(NYLON SERIES N)
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4. Perhaps the most pronounced effect that can be
observed from the fabric cross-sections is the compaction of
the cross yarns. The effect of this compaction is to change
the original cross-sectional shape of these yarns to a circular
form. This effect is, of course, less noticeable when the
cross yarns are originally round. Since the extent of
compaction can be considerable in some fabrics, it appears
that this factor may have some influence on their bending
recovery. If the yarns are able to recover elastically to
their original cross-sectional shape, they will assist in
returning the bent yarns to their original configuration.
This suggests that it would be advantageous to design yarns
which compact readily during bending and then rapidly spring
back to their original shape during recovery.

5. The fabric series shown on Fig. 3-12 is composed
of seven samples each having a different interfiber frictional
interaction, but an identical geometric structure. These
samples were prepared by treating a nylon fabric with various
concentrations of both softening agent and frictionizer
(Syton). The bending and recovery behavior of these samples,
reported previously, demonstrates that friction played a
significant role in establishing the fabric properties.
However, the cross-sections on Fig. 3-12 show that there is no
apparent difference between the bent geometries of the
samples. This indicates that alth.ough friction may effect
the extent of slip propagation and the~resistance against
relative fiber motion, it does not significantly affect the
geometry of bending at high levels of curvature.
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Fig 3-12 CROSS SECTIONS OF BENT FABRiC
WITH VARYING FRICTION TREATMENTS
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CHAPTER IV. EXPERIMENTAL. TECHNIQUES

INSTRUMENT FOR MEASURING MOMENT-CURVATURE RELATION
The fundamental characterization of the bending behavior of

a material is given by the moment-curvature relation .. This curve
can be used to determine such quantities as stiffness, non-
linearity of bending, energy loss in bending,and non-recoverability
in bending. An instrument for making this measurement was designed
and constructed. This instrument imposes a constantly increasing
or decreasing curvature while measuring bending moment continuously.

In an ideal, linearly elastic material there is no need for
any elaborate equipment for measuring the moment-curvature
relation. In that case this relation will be linear and can be
described by only one number. There will be no rate dependence
and the behavior will be independent on the direction of loading.
Because of this, very simple evaluation techniques can be used to
measure the bending behavior of ideal materials. For relatively
rigid materials a beam or strip can be loaded as a simply supported
beam or a cantilever and the loads required to produce a certain
deflection can be used to compute bending rigidity. This type of
test37 is used for many applications, such as the evaluation of
reinforced plastics and stiff fabrics.

For relatively flexible materials that can be considered as
ideal, it is possible to measure the rigidity by a number of
gravity loading techniqu~s. A sample is placed in a configuration
in which gravity forces will cause deflections. The extent of
deflection or the amount of material length necessary to produce
a certain deflection can then be used to determine the rigidity
relative to the weight per length of the test stripe The most
commonly used of these techniques for textiles are the cantilever
and heart100p tests38. In both of these tests the relation
between gravity deflected geometry and rigidity has been deter-
mined by rather sophisticated mathematical techniques. However,
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since the assumption of ideal bending behavior was made in the
mathematics, the rigidity calculations are not valid for non-
ideal materials. This means that accurate quantitative measure-
ments of many textile materials are not possible by these methods.
And, it has been shown that sometimes even qualitative measurements
are not possible. This was shown by Shwartz39 in an experiment in
which fabrics were evaluated by a number of techniques and the
relative rankings of rigidity were not found to be fully consistent.

Because of the general non-ideal bending behavior of textile
materials, it is not always possible to use an experimental
technique which can only properly be used for ideal materials.
To do so would be equivalent to measuring tensile modulus of a
material by merely applying a constant weight and measuring
deflection. This may be satisfactory fo~ certain cases, but it is
not so for research investigations in which fundamental mechanisms
of deformation are under consideration.

A number of attempts have been made in the past to measure
the complete moment-curvature relation rather than just measure a
single number to describe bending. Eeg-OlofssoJ2,~lIsShi 11, and
Livesey and Owens 7 have constructed instruments for this purpose.
Although each of these instruments operates on a different principle,
the general procedure involves subjecting a fabric or yarn sample
to progressively increasing curvatures and then measuring the
applied bending moment.

In Eeg-Olofsson's instrument the curvature is imposed by the
rotation of one end of the sample while the other end is fixed.
A clamp connected to the rotating end floats on a pool of mercury
so that the ends of the sample can c9me together during bending.
The bending moment is measured from the current flow in a coil
which transmits to;que to the rotating end. This method seems to
have been used with reasonable success. However, there appear to
be several difficulties in sample mounting and maintenance of
the pool of mercury.

Isshi's device imposes a progressively increasing curvature
to the sample by moving and rotating one end of the sample in a
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prescribed manner. This involves a complicated arrangement of
gears, cams, slots and sliders. The other end of the sample is
fixed to a shaft which is mounted on jewel bearings and which
is prevented from rotating by a torsion spring. As the sample
is bent, the fixed end will cause a slight rotation of the
torsion spring. This rotation is reversed by another spring until
the original rotation is nullified. The deflection of the second
spring for nulling can be related directly to the bending moment
on the sample. The major disadvantage of this method is that the
test is performed in a series of steps and during each such step

I

the load is changed slightly by the measurement procedure.
The method of Livesey and Owens is an approximation to a pure

moment-curvature measurement. A sample is mounted on a clamp
which can be rotated about a horizontal axis. A small tab with a
protruding pointer is connected to the free end of the sample.
The gravity acting on the pointer will produce a moment an~ a force
on the sample. But, according to Owens, the force will be
negligible under certain conditions. The curvature can be
increased by rotating the clamped end of the sample and the bend-
ing moment can be obtained by measuring the angle of the pointer.
The difficulty with this procedure lies in the fact that the
readings are taken stepwise, tabs must be cemented to the ends
of the samples, and the loading is not accomplished by a pure
bending moment. Nonetheless, this method of measurement is relatively
simple and has already been used by Owens to obtain interesting
results.

The~e are, several other methods of obtaining the moment-
curvature curve that operate on an indirect principle. These
involve measurement of two parameters which from other considera-
tions have been shown to be capable of describing bending--the
friction moment and the elastic rigidity. 'The methods use either
modified cantilever or buckling tests13• The difficulty in
these methods lies in the fact that they do not actually measure
a moment-curvature relation, but just fit parameters to an assumed
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form. Furthermore, imposed curvatures vary along the lengths of
the samples and they are not imposed at constant rates.

During the course of this investigation a moment-curvature
measuring instrument was developed 0 Although certainly not without
faults, it has eliminated many of the disadvantages of the previous
designs. The instrument, shown on figure 4-1 and 4-2, operates by
imposing a constantly increasing curvature to one end of a sample.
The other end is instrumented with a cantilever spring, a differ-
ential capacitor, and suitable circuitry to give a continuous
output signal which is proportional to the applied bending moment.
This signal is fed to a recorder to give the final moment-curvature
plot.

The design has been made for maximum versatility. Provisions
are included for changing the rate of change of imposed curvature,
the sensitivity, the sample length, and the sample grips. In
addition, the imposed curvature change can be reversed or stopped
to measure load-unload, cyclical, or relaxation behavior. The
following sections will include detailed descriptions of the
component parts of the instrument.

Drive mechanism. Since one end of the sample is held fixed,
the moving end must execute a translation and rotation so that the
sample ,is always in a circular arc of constant lengtho The
curvature of this arc must increase linearly with time.

iThe moving end of the sample is mounted on a carriage, and
in order to meet the stated requirements this carriage must move
in a certain way. The equations of motion can readily be

11derived using the method of Iashi 0 Referring to figure 4-3,
let

r, e = polar coordinates of point on carriage relative
to fixed end of sample and original straight line
of fabric.

G = gage length of sample.
9c = rotation angle of carriage.
k = sample curvature.
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Fig.4-1 MOMENT-CURVATURE
INSTRUMENT

Fig.4-2 TOP VIEW OF MOMENT-
CURVATURE INSTRUMENT
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To maintain a constant length of circular arc of the sample,
the required translation of the carriage can be shown to be,

r = G sin 9
9 (4-1)

To insure that the tangent angle of the bent sample ends
corresponds to that of a circular arc of appropriate radius, the
required rotation of the carriage can be shown to be,

9 = 29c (4-2)

The curvature of the sample at any position of the carriage is,
k 29=-

G
(4-3)

This means that if the angular position of the carriage is
increased linearly with time, the curvature will increase linearly
with time, and the boundary conditions of position and slope will
correspond to that of a circular arc.

The mechanisms employed to generate the required motions of
equations 1, 2, and 3 follow a modification of tnat developed by
Isshill• Referring to Fig. 4-4, the power comes into the system
at shaft 51 from a synchronous motor. The rotation is transmitted
to 52 through gears and a slip clutch. This clutch is used as a
safety device and as a means for providing a break in the gear
train so that the carriage may be rotated by hand. The next
shaft, 53' is rotated by gears M and N which may be changed to
vary the rate of imposed curvature. The motion then rotates

..shaft 54 and gear A. This is the input point of motion to the
carriage drive unit.

Figure 4-5 shows the carriage drive unit in greater detail.
Rotation of gear A causes a circular motion of the bearing of
shaft 55. In addition, this causes a rotation of 55 because gear
B rolls around st~tionary gear segment H. This rotation is trans-
mitted through gears C, D, E, F, and G to shaft 89 which carries
the carr.iage. Linkages Ll and L2 hold the shafts parallel, and
the slot in gear A holds 55' 54' and 59 in one plane. As a result
of this, and the fact that gears H, B, C, E, and G have the same
number of teeth, the rotation of shaft 59 is twice the rotation of
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84 independent of the distance between the two shafts. This then
satisfies the required carriage rotation given by equation 2. The
proof that So rotates twice as fast as S4 can be obtained by
applying the theory of epicyclic gears.

Having satisfied the rotational requirement of the carriage,
it only remains to produce the translational motion dictated by
equation 10 This was done by using a slot cam which was
machined to meet this requirement 0 Shaft S9 rides in this cam;
and, since the rotational motion of this shaft is independent of
its distance from 54' the final required motion is obtained.

Two cam slots were cut, each corresponding to equation 1 with
different values of "G"o This permits the testing of samples of
different gage lengths.

In an attempt to minimize backlash of the system, a number
of springs were installed to insure that S9 remains on the same
side of both the slot in gear A and the camo

Method of Gripping Sample. preliminary tests on this
instrument have shown that the method of gripping the sample
requires careful controlo The best method found was to use a four-
point loading system whereby the sample is fixed between two sets
of pins (actually fine drill bits) and bent by the couple set up
by each such seto The pins in each set may be separated by either
1/8" or 1/4" and they can be individually adjusted to permit
testing of samples of different thickness. As the pips are vertical,
some provision must be made to keep samples from sliding down in
the initial portions of the test. This is accomplished by the use
of small beads of modelling clayo

One pair of pins is mounted on the moving carriage with a
screw thread arrangement for adjusting the individual positions.
The other pinsar~ supported ind~viduallyo One is fixed to the
instrument frame through an adjusting screw aqd the other is
mounted on a stiff cantilever springo The deflection of this
spring is measured by the transducer to determine the moment
exerted on the sampleo
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Measurement of Bending Moment. T~e bending moment is measured
by determining the force on one of the pins holding the fixed end
of the sample. This' is done by mounting the pin on a cantilever
spring, and measuring the small deflections of this rather stiff
member. One section of the cantilever forms the central plate of
a differential capacitor which is used to measure the deflections.

The differential capacitor is used in conjunction with suitable
40circuitry (a non-linear twin-T circuit ) to obtain an output signal

which is proportional to the displacement of the central plate.
The input to this circuit is a 40 volt, 2 megacycle signal, and
the output is a D. C. voltage which can be fed directly into a
recording unit. The required oscillator and capacitance circuit
used was a commercially available unit sold by Lion's Research

. 41CorporatLon •
Since the voltage output is proportional to the displacement

of the cantilever, and this displacement is proportional to the
bending moment, the output is a direct measure of the bending
moment.

The balancing of the capacitor circuit is accomplished in
two ways. A coarse adjustment can be made by varying the positions
of the fixed plates of the differential capacitor relative to the
central plate. Then a fine adjustment is made by setting a
potentiometer included in the capacitor circuit.

Calibration. Both the curvature and bending moments must be
calibrated to set' the scales of the output curve. The rate of
change of curvature is determined by determining the speed of
the instrument relative'to the chart and applying equation 3. The
moment calibration requires more care. This was done by preparing
a sensitive calibrated spring capable of applying a known hori-
zontal force on the pin of the cantilever. The relation between
force and output voltage was recorded. From this relation and
the spacing between the pins of each pair, the moment-voltage
relation was computed. This relation was found to be linear,in
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the operating range.
To ~heck on the validity of the calibration, a strip of rubber

having a rigidity close to that of the fabrics to be measured
was tested on the instrument using the calibration performed by
the spring. Then the rigidity of the rubber was measured by two
other means: a tensile test; and a cantilever bending test. These
measured rigidities were then compared to the linear moment-curva-
ture plot which was obtained on the instrument and excellent
agreement was achieved.

MEASUREMENT OF BENDING RECOVERY
In Chapter III the variables of importance in describing the

recovery behavior of a material were defined. It was found that
this behavior could be characterized by the relation between
dimensionless imposed curvature and bending recovery (or
dimensionless residual curvature). This relation could be obtained
by two series of measurements covering both the low and high
range of imposed curvature. This was done by using a standard
technique for the high curvature'Lraqge:tand,,:.a;~~pecial~y,;devised
technique for the low range.

Previous measurements of bending recovery were made by a
. . 15,21 .number of ~nvest~gators • They used a number of techn~ques

ranging from floating bent samples on pools of mercury to using
specially desigped equipment for the purpose. Some of these
experiments may have been more sophisticated than those used in
this investigation; however, the methods used were simple and found
to give consistent, useful results.

Measurement of Low Curvature Recovery. The method used for
measuring low curvature bending recovery was merely to bend
samples around mandrels of varying curvatures and optically
measure the residual curvature. ALthough this measurement could
also be made on the moment-curvature instrument, it was found to
be more convenient to use this direct method.
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In order to hold time effects constant in all of the bending
tests, the length of time for bending and recovery were each held
constant at two minutes.

The effects of gravity were minimized in this measurement by
using samples of sufficiently short length 0 This made deflections
due to gravity much less than those due to residual curvature from
bending 0 This was ch~cked by bending around mandrels having a
vertical axis. The optical measurement of residual curvature was
made with a telescope mounted in a specially prepared rotating
stand as shown on figure 4-7. The angle between the tangents at
the ends of a sample were measured. This measurement in radians
divided by the length of the sample gave a direct measure of
residual curvature 0 This could be converted to bending recovery
by dividing the recovered curvature by that imposed 0

Measurement of High Curvature Recoveryo For the purpose of
32this measurement a standard Monsanto Recovery Tester was used

with some modifi~ation. This test involved bending a sample to a
180° bend over a slab of predetermined thickness. The recovery
is made in an apparatus designed to minimize the effects of gravity.
And, as in the previous case, the times of bending and recovery
were both held fixed at two minutes each.

The geometry of this test is shown in figure 4-60 From the
assumption that only a fixed length of the sample bends and
recovers, the bending recovery can easily be computed as follows:

Let,
R
k.
1

kr
ts
tf

ffiH
*k.

~

= bending recovery
-1= imposed curvature (in )

= residual curvature (in-I)
= thickness of the spacer slab (in.)
= thickness of the fabric (in.)
= recovery angle (0)

= dimensionless imposed curvature.
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a •

b .
Fig. 4-6 Geometry of BendingRecovery Test
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Fig.4-7 ROTATING TELESCOPE USED.FOR
MEASURING LOW CURVATURE RECOVERY

Fig.4-8 METHOD OF MEASURING BENDING
BEHAVIOR OF MULTI-LAYER BEAMS
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(4-4)

k HTI
R - 1 - k: - 1800 (4-S)

Varying curvatures were imposed by changing the thickness of
the spacer slab •. The lowest curvature used in this measurement
overlapped the highest curvature tests of the preceding method and
the measured bending recoveries were found to produce continuous
curves.

MEASUREMENT OF FRICTIONAL FORCE
In both the textile materials and the multi-layer beams

tested, the frictional force between the elements was measured by
a pull-out test. The frictional force determined by this technique
is a combined measure of normal pressure and coefficient of
friction~ Since this quantity is the variable of interest,
additional measurements were not generally made to isolate the
pressure and the coefficient of friction.

The principle of this measurement is based on the well-known
stick-slip phenomenon. When a system consisting of a mass with
~ry frictional constraint and a spring in series is subjected to
a constant rate of displacement, the force will follow a saw-
tooth shaped curve. The upper peaks of this curve will correspond
to the static friction force and the average between the upper
and lower peaks will correspond to the sliding friction force.
This can be demonstrated by either force or energy considerations.

Friction Force Measurements in Multi-Layer Beams. The friction
force between the layers of a multi-layer beam was measured on an
Instron Tensile Testing Machine. One layer was partially with-
drawn a known amount from the interior of the beam. Then the
force-time curve required to move this layer through the beam at
a constant rate was recorded. A stick-slip behavior was found,
but in contrast to the case of the mass-spring-friction system
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described above, the level of force fell as the layer was withdrawn.
This resulted from a reduction of layer length subjected to the
friction force.

The static force was found from the upper peaks of the
force-time curve and the sliding force was found from the mid-
point between the upper and lower peaks. This friction force
was divided by the length of layer in the beam and this value was
halved to determine the friction force per length of each side of
a layer.

Friction Force Measurements in a Woven Fabric. Fibers were
withdrawn from fabrics made of continuous filament materials to
determine the friction force at their interface;. The procedure
was very similar to that used in multi-layer beams.

A fabric strip approximately l" x 2" was used. One yarn
was cut a known distance from one of the: edges; and then a
single fiber from this yarn was partially extracted to enable
gripping it for withdrawal. The fabric was gripped by one clamp
of an Instron Tensile Tester and the single protruding fiber was
gripped by the other. The fiber was then withdrawn at a constant
rate and the force-time behavior was measured.

The original length of fiber in the fabric was reco~ded and
used to compute the friction force per length. As in.the case of
multi-layer beams, the total friction force per.'length was
halved to give the force on each side of the fiber. This in effect
assumed that the friction force developed from the pressure of the
fibers in adjacent layers only. It was further assumed for this
measurement that fiber rigidity effects are negligible. That is,
it was assumed that the friction forces resisting fiber withdrawal
were independent on the fiber rigidity.

As in the previous case, the static and kinetic friction
forces were determined from the peaks of the pull-out force trace.
The results were found to be relatively insensitive to the
original fiber length and the rate of testing.
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MEASUREMENT OF BENDING BEHAVIOR', OF MULTI-LAYER BEAMS

The results presented in Chapter I were those taken from
bending tests of simply supported multi-layer beamso The procedure
used required a three-point loading of one of these beams with
measurements of force vs. deflection taken at one of the loads.
This was done on an Ins~ron Tensile Testing Machineo

As illustrated in figure 4-8, a 1/2" rod was fastened to the
upper jaw of the machine. From this were suspended two "trapezes"
made of strain-hardened copper wire and steel rods. These rods
were used to suspend the sample and to apply point loads at the
required locations. Another "trapeze" was inverted and used to
apply the central point load. This unit was connected to the
lower jaw of the testing machine. During a test, the lower jaw
moved down at a constant rate while loads on the upper jaw were
measured continuously.

The deflected multi-layer beams were photographed
with a polaroid camera to determine the deflected shape for
various' conditions of loading, ge~metry and pressure.

The rigidity of each la,yer of the beam was determined by a
separate bending test on the lristron Machine. Specimens were
supported as cantilevers and force displacement measurements
were taken to determine' rigidity.

The sliding friction force between the layers was measured
by a pull-out test similar to that described in Section IV of
this chapter"

TECHNIQUE FOR EMBEDDING BENT FABRIC SAMPLES
In order to obtain a better understanding of the nature of

bending deformation in fabric samples, a technique was developed
by which fabrics could be bent to various curvatures, embedded,
sectioned, and then observed microscopically. Previous work of

lb!

this sort was done by investigators such as Coplan4 and
Eeg-Olofsson21. However, in their work there was no provision
made for imposing controlled amounts of curvature. Otherwise,
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the technique used in this work follows similar lines of approach.
Prior to embedding the sample~, the following items were

prepared:
1. Strips of steel approximately 0.15 x 0.5 x 1.7

inches covered by aluminum foil.
2. Strips of aluminum .006 x 1/2 x 1 inch to be used

as spacer slabs.
3 . A box made of heavy aluminum foil 1.5 x 5 x 2 inches

to contain the embedding medium.
4. Butyl methacrylate monomer (Rohm and Haas) with a

catalyst of benzoyl peroxide.
5. A mixture of parafin wax and polymer (for example,

Fisher Scientific, paraplast, M. P. 56-57°C).
6. Gelatin capsules about 1/2 in. diameter x 1-1/2 ':in..

long, with the ends cut off.
7. Microtome specimen holders.

The procedure involved the following steps:
1. A fabric sample (1/2 x 2-1/2 inches) is bent

around a fixed number of spacer slabs and sandwiched between the
steel strips. The geometry is similar to that shown on figure 4-7a.
The imposed curvature is controlled by the number~of spacer slabs
used and the fabric thickness.

2. The steel strips are clamped using conventional
"bulldog" type fasteners.

3 • Apout five samples are inserted in an embedding box
and supported from the top by the clamps. Butyl methacrylate is
added.

4. The embedding box is heated gradually on a hot plate
for about several hours and then permitted to cool. If the polymer
has not hardened to a sufficient extent, the box is reheat~d in an
oven.

5. The polymer block is removed from the box and the
individual specimens are cut and trimmed by hand with a razor blade.

6. The clamps and steel strips are removed carefully.
t
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Then the embedded bent section of the fabric is cut from the
polymer containing the spacer slabs.

7. The small piece of polymer containing the bent
fabric section is placed in a microtome holder and oriented as
desired.

80 A gelatin capsule is placed over this holder and is
filled with melted parafin. This forms a cylinder of parafin
around the small block of polymer containing the bent fabric.

9. Thin sections are cut with a microtome and the
parafin is removed. These sections are then mounted on glass
slides. A drop of solvent is placed on each section to insure
adhesion to the slide and to clear the cutting marks made by the
microtome blade.

Fabric sections prepared by this technique were studied
microscopically under conditions of both normal and polarized
light. Photomicrographs were made using a polaroid back camera.

It should be noted that it was not possible to determine
directly whether. the geometry of the bent fabrics was substantially
affected by the embedding process. However, since there was
relatively little opportunity for fiber rearrangement in this
embedding technique and since the bent geometries observed
corresponded to those of large scale models, distortions due to
embedding were neglected.
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CONCLUSIONS

1. Friction has two effects on the bending behavior of
textile materials. It provides a resistance against the
relative motions of the fibers and it prevents the complete
propagation of slip throughout the structure. This results in
a moment-curvature plot as shown in Fig. 1-16. The first
effect causes an energy loss and requires that a friction
moment be applied during bending. The second effect causes
the material to have an elastic rigidity that is greater than
it would have if no interfiber friction existed.

As friction increases from zero to the level required
for the complete prevention of slip, the friction moment
increases from zero to a maximum and then falls to zero.
At both limiting cases of frictional interaction the friction
moment is zero. At the lower limit of friction it is zero
because no force opposes the relative fiber motion; and at the
upper limit it is zero because no relative fiber motion takes
place. The elastic rigidity increases monotonically with
friction from the value corresponding to the complete freedom
of motion case to that corresponding to no freedom of motion.

2. Bending recovery is also affected by the two frictional
effects. The frictional restraint that acts against the
relative fiber motions prevents the fibers from completely
reversing the relative motions that occurred during bending.
This results in a structurally held deformation that acts
even if the fibers are not permanently deformed. The second
effect of friction acts to prevent the complete propagation
of slip and in so doing increases the level of fiber strain
and permanent fiber deformation.

The resulting relation between recovery and imposed
curvature is shown on Fig. 3-6 for both the limiting and
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intermediate cases of frictional interaction. For the
intermediate cases the recovery curves differ qualitatively
from those obtained for either of the limiting cases. The
recovery is very low at low imposed curvatures, goes through
a maximum, and then follows the trend of the limiting cases.
At all levels of imposed curvature, friction reduces the amount
of recovery. At low imposed curvatures the reduction in recovery
is large and is caused by frictional forces preventing the
fibers from reslipping after bending. At high imposed curvatures
the reduction in recovery results from the incomplete slip
propagation caused by friction.

30 The mechanical behavior of multi-layer beams with
friction between the layers differs considerably from that of

,conventional beams. The proposed theory which describes
this behavior appears to be in reasonable agreement with
experimental observations. As predicted, interlayer friction
results in an increased resistance to deformation, energy loss
during bending, and non-recoverability from imposed deformations.
It also causes the multi-layer beams to have an unusual mechanical
behavior that differs qualitatively from the behavior of
beams with either zero or infinite friction. One example of
this behavior is the "reverse curvature" that develops as a
direct result of friction. This effect involves beam deflec-
tions in which the curvature is in a direction'opposite to
that which would develop if no friction were presento (See
Fig. 1~8o)

D~ring the first stage of loading, multi-layer beams act
as solid ,beams. Then, as the load is increased, slip begins
to propagate throughout the structure 0 It was found that
this propagation could proceed either across the section of
the beam or along its length.
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4. The geometric arrangement of twisted yarns provides
the fibers with a convenient path along which slippage can
occur. In a zero twisted arrangement of fibers there is no
such path, and in order for the structure to bend, it is
necessary for the individual fibers to strain or buckle. This
is a consequence of the fact that the required amount of slip
between fibers in this case is proportional to the length of
the yarn. In the twisted yarn, the amount of slip required is
proportional to the length of one turn of twist, and is
independent on the sample length. For this reason, the
magnitude of the slip required in twisted yarn can be much
less than that required in an untwisted yarn.

Two types of relative fiber motion occur during the
bending of a twisted yarn. The fibers in adjacent layers
slide relative to each other with a sinusoidal distribution of
slip. This slip is zero at the outside and inside of the bend
and reaches a maximum value at the sides. The second type of
slip occurs between fibers of the same layer. This slip is a
result of local changes of the fiber helix angle. It is also
distributed sinusoidally with the same amplitude, but is
maximum at the inside and outside of the bend and zero at the
sides. Since these relative motions may occur against a
frictional restraint, energy will be lost in the process of
bending and a frictional moment will develop. The magnitude
of this moment will depend on the pressure distribution within
the yarn.

5. During bending, a woven fabric loses energy due to
relative fiber motions and thereby-develops a friction moment.
The magnitude of this moment depends on the slip distribution
and the local pressure distribution between the fibers. To
a first approximation this moment is given by equation 2-76
which is a relation between fiber properties, structural
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geometry and friction moment. The structural variable in this
equation is a factor involving the crimp of the bent yarns
and the spacingr of the cross yarns.

In addition to losing energy due to relative fiber motions,
it is possible for certain types of fabrics to lose energy
due to relative motions of adjacent yarns. The amount of
energy lost by this effect depends on the structural geometry
and interyarn forces as given by equation 2-80.

6. The elastic rigidity of a woven fabric is greater than
that of the component yarns before weaving. This is due to
the restrictions to curvature changes imposed by the cross
yarns of the fabric. As a result, the rigidity of a fabric
remains approximately constant, and equal to the sum of the
yarn rigidities, for large cross yarn spacings. Then, as
this spacing gets small, the rigidity increases sharply.

Yarn crimp has two effects on elastic rigidity. It
reduces yarn rigidity by providing excess length and it increases
fabric rigidity by increasing the effect of cross yarn rigidity.
It was shown that the latter effect predominates and crimp
increases fabric rigidity.
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SUGGESTIONS FOR CONTINUING RESEARCH

The following suggestions for continuing research are
based on the various research problems encountered in this
investigation. In most cases, the experimental results or
mathematical analyses presented here would form a starting point
for this continuing research.

1. Experimental Investigations of MUl~i-Layer Beams.
Since the theoretical work presente~ on this type of
structure is of a rather general nature, there are many
more areas to which it can be applied and evaluated
experimentally than were investigated in this study.
It would also be of importance to investigate the
strain distributions that develop in this type of
structure and this could probably be done by suitable
photoelastic techniques. On the basis of this
extension of experimental work, it may be possible to
improve or extend the proposed theory.

2. Experimental Investigation of Twisted and Ply
Yarns. A useful extension of the work presented in
this area would be the evaluation of this type of
structure for varying twists and frictional effects.
This would enable the determination of such things
as friction moment, elastic rigidity, and extent of
slip propagation. The moment-curvature instrument
developed in this research could be used for these
measurements.

3. Evaluation of the Degree of Slip propagation.
Since the degree of slip propagation plays an important
'role in establishing the friction moment, the elastic
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rigidity, and the recovery, it would be important
to extend the work done on this factor. This
could be done by direct experimental observations on
large scale models or by careful examinations of
photomicrographs of actual samples that are marked
along their length.

4. Time Dependence of Bending Behavior. Using the
moment-curvature instrument developed it is possible
to study the effects of loading rate on bending
behavior. This effect would be particularly
pronounced for samples treated with "wet" type lubricants.
Another important time dependent effect that can easily
be evaluated is the relaxation of bending moment when
a sample is held at a constant curvature bend. The
relaxation behavior of bending can then be compared
to that of tension to obtain a measure of the degree
of strain which the individual fibers experience.

45One investigation of this sort conducted by Suzuki
showed that the distribution of relaxation times for
the two types of loading differ considerably.

5. Effect of Temperature and Humidity on Bending
Behavior. Since textiles are used under a wide variety
of conditions of temperature and humidity, it is
important to characterize their bending performance in
terms of these variables. As temperature and humidity
change, the fibers will experience a change in modulus
and tensile recovery. These changes will affect the
fabric properties since they involve alterations of
both fiber properties and fiber to fiber interactious.
To measure these affects on bending it is proposed
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that the moment-curvature instrument be outfitted
with a variable temperature and humidity chamber.
The recovery experiments can also be run in such a
chamber 0

60 Effect of Fiber Blends on Bending Behavior. As
blends of fibers involve both changes of fiber proper-
ties and their interactions, experiments involving this
variable would be of both practical and fundamental
importance in this field. This type of investigation
has, of course, been done in the past in connection
with bending recovery. However, the emphasis has
usually been placed on the effect of fiber properties.
When fibers of high recovery are added to fibers of
low recovery, the bending recovery generally improves.
The question still remaining is the determination of
how much improvement can be attained by adjusting the
interactions between fibers or the geometry of the
structure 0 For example, would a significant improve-
ment in properties be attained by adding fibers of
extremely low friction to a blend? Or, would it be
possible to make a good fabric by blending a large
number of very fine fibers (for good recovery) with a
small number of stiff, recoverable fibers (for
adequate fabric stiffness).

70 Instrumentation for Measuring Recovery Behavior.
Since the relation between bending recovery and imposed
curvature was found to be of fundamental importance,
it would be desirable to have an instrument for making
this determination automatically. ,This could be done
by constructing a device which automatically bends
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yarns or fabrics to varying curvatures and measures
recovery or residual curvature by an optical or
electrical system. Such an instrument should have
the capability of varying such factors as pressure,
time of bend and recovery, temperature, and humidity.

8. Fundamental Studies on the Geometric Structure of
Bent Fabrics. Using the technique developed for
embedding fabric specimens at varying curvatures, it
is possible to analyze the geometric structure in
the bent state in detail. For example, the geometry
of a yarn in a bent fabric can be compared to that
in the flat form by measuring the local curvature as
a function of position for both situations. This
would make it possible to determine the local changes
of curvature that occur; and this can be used in con-
junction with the continuity equation which was
developed to determine the relation between fiber
slippage, straining, and buckling. In addition, a
number of important factors can be studied from this
type of test: relative yarn motions at sharp bends;
effects of yarn compaction during bending; and
possible variations of fabric geometry during
bending. The last item involves the probability that
the fabric will form a square, round, or intermediate
type bend.

9. Effect of Distribution of Imposed Fiber Curvatures.
In the analyses presented, it was generally assumed
that the fibers of a yarn all bend to the same
curvature. This approximation may not be valid in
certain situations, particularly if one set of yarns
has a smaller diameter than the other, or if certain
fibers have the opportunity to buckle laterally. The
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recovery of the structure will then be based on a
balance of the restoring forces of fibers which have
been deformed different amounts. The analysis of this
situation would be quite involved, bu~ may yield
useful results.

10. Effect of Lateral Fiber Motion During Bending.
During bending, the fibers of both the bent yarn system
and the cross yarn system may move laterally relative
to one another. This effect is particularly apparent
in the cross sections of bent fabrics where large motions
occur between the fibers of the cross yarns. This
motion will cause an energy loss during bending and a
non-recoverability due to entanglement. These effects
would probably be most pronounced in materials having
highly disordered arrangements of fibers.

110 Frictional Effects of Fabrics Bent on the Bias.
The work presented here for woven fabrics is restricted
to bends directly across one set of yarns. In other
investigations it has been shown that fabric properties
can vary considerably when bends are imposed at inter-
mediate angles. For this type of bend a frictional
effect occurs that was not considered in this
investigation--namely that of yarn rotation at the
crossing points. This rotation occurs because of an
angular change between warp and filling along the
line of bend. This angular change may not be recoverable
and cause permanent deformation. This effect was
observed qualitatively for fiberglas fabrics which had
relatively high interyarn pressures. Since fabrics
are frequently bent on the bias in actual use, it
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would be of considerable importance to study this
effect in greater detail.

120 Extension of Application of Fundamental Relations.
A number of fundamental relations were derived which
relate to fiber motions. As mentioned previously,
some of these relations may be applied to problems in
textile technology that are not restricted to bending
mechanics. For example, the one-dimensional slip-
stretch theory could be applied to stretch garment
extensions and sliding relative to the skin or to the
mechanics of fiber drafting. The continuity equation
which was derived could be used for characterizing
torsional or tensile behavior.

13. Geometric Restrictions to Fiber Motion. In
Chapter II it was shown that under certain circum-
stances there is a restriction to relative fiber motion
even if there is no friction. This occurs when the
geometry of the structure fails to provide a path
along which the fibers can slideo This effect is
particularly important in tightly twisted yarns with
fiber migration or in ply or cabled structures. An
investigation of available slip paths for these and
other types ~f structures would probably provide
useful results.

14. Determination of Friction Moment for Braid and
Pressurized Structure. Using the energy approach,
the friction moment can be determined for these
types of textile structures. In the braid, the
energy loss arises from a local change in helix angle
during bending 0 Its magnitude can be determined in a
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manner similar to that used for the twisted yarn.
For pressurized structures, the mode of relative
yarn motion must be established and combined with the
forces resisting it to give the frictional energy
loss and the friction moment. This type of computa-
tion is particularly important for such applications
as full pressure suits where a non-recoverability from
bending due to friction is actually desirable.

15. Relation Between Frictional Effects and Fabric
Hand 0 Fabrics having a high friction moment relative
to the elasticity of the structure have a noticeably
poor "hand"o Correlation experiments between these
measurable quantities and hand would be useful in
providing further insight into how the aesthetic pro-
perties can be evaluated in a quantitative manner.
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APPENDIX A

The shear stress distribution in a rectangular slab subjected
to a sinusoidal pressure on two opposite sides as in Fig. A-I
can be obtained by the use of stress functions 0 This is done
b d. 43 . h h Iy Goo ~er w~t t e resu t,
r __(A+B)~c coshO(c ~inhc<y -o{y coshO<y sinhcXc coseXx

xy s~nh 20< c - 20< c

- (A-B)0< c sinho\:c coshO<y - cA Y sinho(y cosho<.c ,....J
sinh 20< c - 2o(c cosv\x

c

,- .•
(x,c) = -B sin c:l\ x

x

Y

--t-l----l!ll'.P'-.-.-.- ...-.- ....-.-.--.-.-.-.-.-.-.
c

~ (x,=c) = -A siny x

Fig. A-I BOUNDARY CONDITIONS FOR SHEAR STRESS PROBLEM

For equal amplitude sin waves, and values of c approaching
infinity, the'shear stress can be written in terms of the

-201-



coordina te v.
= -

Using the principle of superposition, this result can be used
to determine the shear stress distribution for a saw tooth surface

This is done by expanding the saw tooth function in a
series.

2a- 00£i::!l n+1 . n1fx
(J'-' = max

1/ Sl.n--
-1 n Ln-

the shear stresses for the individual sin functionsSumming
in this series requires the indexing of both the amplitude and
frequency as follows,

An = 2;x (~)(-l)n+1

= EJr
L

stress.
Fburier

The

Txy

resulting shear stress is,
00

=Z -~v
1 -A 0( \,-"/1 cos ~ xn= n nv~ n

can be shown to be,
-y-'1/

L

( ) -n1Tv
"CDS n;:x n{v e L

of the saw tooth function (x - L),

=J: _2~ax i::!ln+l
n=1 7r Ii

At the point of discontinuity
the shear stress distribution

- e
This equation is rewritten in equation 38 in terms of the
variables used in Chapter I.
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(EI)cell

APPENDIX B

From reference 18 equations 32 and 44 (authors ° equations)
Complete Freedom of Motion

(EI)cell = ~ NcEli G + 3 <iw) [32]

Nc = number fibers in unit cell
A = poissons ratio
Nf = number fibers passing through square

cross...,section= N tc
t = fabric thickness
Df = fiber diameter
Af = fiber area
!B = packing factor

Taking a cell having a width equal to the fabric thickness
gives,

(2-10)

No Freedom of Motion
-. 1 2
= 32 Nf Ef Af t

2
A :=l 1/D
f 4

1 2
If =: 41/ Af

..., 2 y
NAf => t 0 B

Substituting in equation 44 gives the result

=203=
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APPENDIX C

From reference 17 equation 33, using the author's
notation,

tan o(B =

Converting this notation to the form used in Chapter II
gives,

c;( = Q
B

aB = r

eB = s k

~B = 8

~
4JB 271

= GB = Lt k

Substituting gives,

cot Q = (1 - r k cos 8)
Lt
2T(r
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APPENDIX D

Using variables defined in the text,
2

PA(r) = 211FT2 (1 - .E-)
R2

ur

f.
1.

w.
1.

uavg

Df k
= 21fT sin 9

Df k
= 271T cos 9

Lt= 2T f. - u
1. 2 avg

Combining these equations gives,

From geometry,

To find the total energy loss requires a summation over
all the interfaces. To do this requires a correction for
the fact that there are different numbers of fibers in each
layer. Let,

~ = number of fibers in lay~r at r
Ni = number of interfaces for fibers at r

contributing to energy loss
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~ = number of layers
From the geometry of an idealized yarn,

8ro y

N =i

Summing over all layers each subscrip~ed by i gives,
~

wT = Z N. w.
~ ~

i = I

This equation can be solved by approximating the summation by
an integral. The result is then differentiated to obtain the
friction moment,
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APPENDIX E
SAMPLE DESCRIPTIONS

Cotton Series Ca and Cc
Sample No. Ends/Inch Picks/Inch % Warp Crimp % Filling Crimp
Ca 1 45.1 46.1 4.20 11.13
Ca 2 45.4 40.5 3.99 9.28
Ca 3 44.3 36.0 5.32 7.70
Ca 3A 43.2 33.9 5.85 6.88
Ca 4 43.1 31.2 5.05 6.78
Ca 4A 42.9 2'7.0 5.49 5.51
Ca 5 42.6 25.0 5.50 3.67
Ca 6 41.5 20.0 4.90 3.61

<Cc 1 41.8 20.0 3.20 2.69
Cc 2 42.1 27.7 2.96 5.69
Cc 3 43.2 33.6 4.33 5.67

All samples are unfinished
Warp Yarn: Ca Series 2/22's

Cc Series 2/22's
Filling Yarn: Ca Series .2/22's

Cc Series 2/40's

Nylon Series N-l Picks/Inch % Warp Crimp Position on Fig.3-11
N-S 1 34 .16
N-S 2 32.5 14 a

N-S 3 29 12 b

N-S 4 27 .11 c

N-S 5 25 .9 d, e

N-S 6 22 7 f

N-S 7 20 6 g
N-S 8 18 4 h
N-S 9 15.5 3.5 i
N-S 10 13 3 j
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Nylon Series N-l. (continued)
Sample No. Picks/Inch
N-H 1 33
N-H 2 31
N-H 3 28.5
N-H 4 27
N-H 5 25
N-H 6 22
N-H 7 20.5
N-H 8 18
N-H 9 15.5
N-H 10 13

Sley: 44 epi

% Warp Crimp
16

13

10

5.5

4.5

Warp Yarns: T-lOO Nylon 400/68/.75 Z
Filling Yarns: T-lOO Nylon 400/136/4 Z 3 plied at 48
All fabrics scoured after weaving and the "H" numbered samples were

also heat set.

Cotton Fabric T-3
Yarns:
Fabric:

Nylon Fabric E-5
Yarns:
Fabric:

Warp: 2/20's, Filling 2/20's
53 ends/inch, 38 picks/inch, plain weave
warp crimp 8.5%, filling crimp 12.5%, fabric
weight 6.7 oz/yd2. Commercially finished material.

Warp 933 de, Filling 924 de.
48 ends/inch, 48 picks/inch
weave 2 x 2 basket
warp crimp 4%, filling crimp 10%
fabric weight 12.2 oz/yd2.

Friction Treatments Applied to T-3 and E-5
All samples were scoured before treatment in a warm solution of
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soap ~nd caustic soda, and then rinsed several times and
dried. Then the samples were treate~ with various concentra-
tions of softener or Syton and subsequently rinsed, dried,
and conditioned for testing.
Concentration of Treatments (by volume)

Softener ( commercially available type) 2~%, 5%, 10%
Syton 2~%, 5%, 10%
Control 0%

.Position on Fig.3-12 Interfiber Friction Force (lb/in) Treatment

a .0066 5% Softener

b .0060 10% Softener

c .0122 2~% Softener

d .0353 Control

e .0303 2~% Syton

f .0424 10% Syton

g .0347 5% Syton

h .0347 5% Syton

-209-



APPENDIX F
Bending Recovery vs. Imposed Curvature for Cotton Fabric
T-3 Treated with Various Concentrations of Softener and

Frictionizer

Warp Direction Bend

* 2084 3.36 3.46 3.68k. 1081 2.15 2075 R
l.

5 6 7 4 2 1 3 T
.00483 .386 .477 .309 .370 .353 .509 .462
.0133 .570 .688 0626 .397 .514 .526 .470
.0237 .828 .770 .732 .660 .651 0705 .615
.0329 .902 0820 .775 .658 .665 .690 .644
.0343 .900 .834 .734 .690 .695 .660 .662
.0543 .917 .862 .800 .683 .695 0682 .671
.148 .889 .845 .817 .734 .684 .632 .606
.262 .844 .800 .770 .623 .612 .592 .550
.620 .712 0672 .645 .500 .512 .478 .439

1.00 .628 .584 .538 .434 .406 .428 .350
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. -Iek. = Dimensionless imposed curvature
~

R = Elastic rigidity per yarn (in2 - Ib x 10-6)
T = Treatment numberQ
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