
Designing and Editing

2.5-Dimensional Terrain in StarLogo TNG

by

Daniel J. Wendel

S.B., C.S. M.I.T., 2005

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

August, 2006
0-'

C 2006 Massachusetts Institute of Technology
All rights reserved

Author
Departmer ineering and Computer Science

August 21, 2006

Certified by

Accepted

by

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

OCT 3 2007

LIBRARIES

Eric Klopfer

ation Program

js- Supervisor

:hur C. Smith

-Iairman, Department Committee on Graduate Theses

BARKER

2

Designing and Editing

2.5-Dimensional Terrain in StarLogo TNG

by

Daniel J. Wendel

S.B., C.S. M.I.T., 2005

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

August, 2006

Abstract

StarLogo TNG is "The Next Generation" in block-based decentralized programming for
modeling and simulation software. Its aim is to make computer programming more
appealing for students in middle school and high school. Part of the draw of StarLogo
TNG is its 3-D rendered world called Spaceland where "agents" live on a terrain made of
a grid of "patches". This thesis evaluates and outlines the redesign of Spaceland and its
associated terrain editor based on user-task analysis, and discusses the design of new data
structures to support the desired features.

Thesis supervisor: Eric Klopfer
Title: Professor, Director, MIT Teacher Education Program

3

Table of Contents
1. Introduction ... 7

1.1. W hat is StarLogo.. 7
1.2. W hat is StarLogo used for?... 9
1.3. Drawbacks of StarLogo .. 10

1.3.1. Text-based programm ing ... 10
1.3.2. Simple 2D graphics.. 11

1.4. Solution: StarLogo TNG 11
1.4.1. StarLogoBlocks... 11
1.4.2. Spaceland - a 3D world ... 13

2. Spaceland, version 0.9, Preview 1 15
2.1. M oving from 2D to 3D .. 15
2.2. Design............................16

2.2.1. Data storage... . 17
2 . . . R n e i g6................................ 82.2.2. Rendering... 18

2.2.3. Stomp and yank... 18
3. Level Editor, Preview 1 ... 21

3.1. Prelim inary requirem ents.. 21
3.1.1. W hatever an agent can do ... 21
3.1.2. Som e things an agent cannot do.. 21

3.2. Design .. 21
3.2.1. Overview and layout.. 21
3.2.2. Tools .. 23
3.2.3. M issing tools... 26

4. Evaluation of Preview 1... 28
4.1. Evaluation contexts.. 28

4.1.1. After school at CCSC.. 28
4.1.2. Physics class in M assachusetts ... 28
4.1.3. Teacher Education Program lab at M IT... 29

4.2. User observations and evaluations.. 30
4 . . p .. 30
4.2.2. Observations ... 30
4.2.3. Evaluation .. 31

4.3. Terrain/level observations.. 32
4.3.1. M azelike... 32
4.3.2. Scenic... 34
4.3.3. Picturelike .. 34
4.3.4. Agent-edited.. 35

5. Revised Spaceland and editor requirem ents ... 38
5.1. Spaceland features ... 38
5.2. Block com m ands.. 39
5.3. Editor tools... 40

5.3.1. Shaping tools.. 40
5.3.2. Painting tools ... 40
5.3.3. Agent tools.. 41
5.3.4. General tools ... 42

4

6. Spaceland and Editor, version 0.9, Preview 2 .. 44
6.1.1. Im proved Spaceland speed .. 44
6.1.2. Change color tool... 45

7. Spaceland, version 0.9, Preview 3 .. 46
7.1. N ew data structures... 46

7.1.1. Terrain structure... 46
7.1.2. Patch structure... 47

7.2. Textures... 47
7.2.1. Texture specification.. 47
7.2.2. Com bining textures with colors .. 50

7.3. Rendering ... 50
7.3.1. Steady-state rendering.. 50
7.3.2. Changing terrain... 52

7.4. Extensions to blocks ... 53
7.5. M issing Features .. 54

8. Editor, version 0.9, Preview 3+ .. 55
8.1. Im proved features ... 55
8.2. A dded features .. 56

9. Future w ork... 57
10. Conclusion .. 58
11. A cknow ledgem ents.. 59
12. References... 60
Appendix A : Spaceland data structure files... 61
Appendix B : Editor features to fulfill requirem ents ... 69

5

List of Figures:
Figure 1-1 The StarLogo Runtime environment. In this example, colored agents move
around on a world made of black and yellow patches.. 8
Figure 1-2 Som e StarLogo Blocks.. 12
Figure 1-3 A portion of code written with StarLogo Blocks.. 13
Figure 2-1 Several shapes found in the StarLogo TNG shape library.......................... 16
Figure 2-2 One red patch is divided into nine sub-patches. Two sub-patches are outlined
in gray for clarity 17
Figure 2-3 Vertex Multipliers for stomp and yank operations. 19
Figure 2-4 One red patch that has been yanked, surrounded by green patches............ 19
Figure 3-1 Layout of the terrain editor for Preview 1... 22

Figure 3-2 A region of red patches that has been leveled, in the middle of a terrain full of
green h ills.. 2 3
Figure 3-3 A region of red patches that has been raised, in the middle of a terrain full of
g reen h ills.. 2 4
Figure 3-4 A crater drawn in the middle of a mound, forming a ring-shaped ridge........ 25
Figure 3-5 The color palette that pops up when using the "paint" tool....................... 25
Figure 3-6 A terrain that has been painted with several different colors..................... 26
Figure 7-1 A sample of what a patch top source image might look like. The yellow

rectangle indicates a possible portion of the image that would be specified by a patch's

texture coordinates.. 49
Figure 7-2 An example of a possible patch side source image.................................... 49
Figure 7-3 A tilted red patch in the middle of green terrain ... 51
Figure 7-4 A green patch with brown sides raised two units above the surrounding

terrain .. 5 2

6

1. Introduction

StarLogo TNG (The Next Generation) is a 3D graphical programming

environment designed to help increase computer literacy, especially in students in middle

school and high school. Its goal is to use novel tools and cool display capability to get

students to write programs, expanding their powers of expression on the computer. In

particular, StarLogo TNG is designed to be a flexible tool to let users with little or no

prior programming experience create powerful, graphically attractive games without the

need for text-based coding [3].

At the heart of this approach are StarLogoBlocks and Spaceland. StarLogoBlocks

are small graphical representations of the various control and data structures in a

program, and Spaceland is the 3D projection of a customizable surface on which the

game characters live. While the StarLogoBlocks are robust and nearly completely

designed, the capabilities of Spaceland are not. Spaceland has now gone through two

redesigns, and the editing tools needed to work with it are only beginning to take form.

This thesis project consists of the design and implementation of an editor for

Spaceland. The project starts with a simple editor designed to meet the barest minimum

requirements, evaluates it in light of actual usage, and concludes with the second

iteration, a design that better meets users' real needs.

1.1. What is StarLogo?
In order to better understand the workings of StarLogo TNG, it is useful to start

with its predecessor, StarLogo version 2, hereafter referred to simply as StarLogo.

StarLogo was developed as a tool for decentralized thinking and modeling. With a few

lines of code, developers can model bird flocking behaviors, termite mound building,

simple ecological systems, or any number of decentralized systems [6]. However,

StarLogo's text-based language can be difficult for younger students to grasp, and its

2-dimensional graphics are no longer state of the art. This section discusses some of the

benefits of StarLogo, as well as some areas that can be improved to let StarLogo reach a

more diverse, less computer-savvy audience.

7

Two concepts form the core of StarLogo -patches and agents. The world on

which the agents live and interact is made of a 2-dimensional grid of patches. Each patch

has certain built-in properties, like color and user-defined properties, called patches-own

variables, that might include "vegetation cover" for an ecosystem model or "mound

height" for a termite model. A palette on the left-hand side of the StarLogo window

features brush and shape tools for painting on the grid of patches. The patches'

properties can also be modified programmatically by agents on or around the patches or

by the "Observer," an all-knowing entity with access to global properties of the model.

In StarLogo, patches can even run a limited set of commands to modify themselves

according to global properties such as the number of agents alive or the number of red

patches. Patches are rendered as colored squares in the StarLogo runtime environment,

as shown on the right-hand side of Figure 1-1.

:aa I-,nt ize winOOWS HIP

I

IU
-x:. YU

Figure 1-1 The StarLogo Runtime environment. In this example, colored agents move around on a
world made of black and yellow patches.

8

Agents are the entities that can move around and interact programmatically with

the patches and each other. Each agent is an instance of an object running "agent code."

The agents are divided into species, which can run different code based on a simple if

statement. The agent code specifies the movement and behavior of agents on a

decentralized, individual level, and each agent runs the code in its own virtual machine.

In other words, each agent knows how it should move and behave based on the agent

code for its species, but no central entity controls the group behavior of the agents. Any

group behaviors that do emerge come from the interaction between individuals. Agents

can have images associated with them, or can be invisible and simply paint patches as a

record of their existence. Figure 1-1 shows the StarLogo runtime environment, with

agents scattered around a world of yellow and black patches.

1.2. What is StarLogo used for?
StarLogo is a tool for decentralized thinking, aiding in the understanding of

complex dynamic systems. Through interaction with StarLogo models (i.e. simulation

projects), students can gain a better understanding of concepts such as:

" Predator/prey population dynamics

* Forest fire spread and containment strategies

" Bird flocking patterns

" Termite nest building

As well as many more [6]. By interacting with models, rather than simply

viewing static information, students can gain first-hand knowledge about the concept

being modeled. For more information on StarLogo as an educational tool, see the

Adventures in Modeling book by V. Colella, E. Klopfer, and M. Resnick, available from

Teachers College Press, and New paths on a StarLogo Adventure by the same authors

[6].

9

1.3. Drawbacks of StarLogo
Despite its usefulness for many applications, StarLogo also has several drawbacks

that prompted the creation of "'The Next Generation." These drawbacks fall into two

main categories: difficulty of programming and lack of graphical appeal.

1.3.1. Text-based programming
The difficulty in programming StarLogo models stems primarily from its

dependence on its text-based programming language. Although the language is not

difficult compared to other text-based languages such as BASIC or PASCAL, it still

presents a high entry barrier for users with little or no programming experience, such as

most junior high and high school students have.

The first difficulty is syntax. New users must repeatedly look up the proper

syntax for commands in order to use them correctly; the commands themselves give no

indication of the syntax with which they should be used. Even for users with prior

experience with other programming languages, syntax is always a bit of a guessing game

without the documentation. For example, the formatting of brackets and parentheses in a

StarLogo if-else statement, although easy to memorize, is unlike mainstream languages

such as C, BASIC, and Java.

A related problem is that compile errors stemming from incorrect syntax are not

apparent until the users compile the code. By that time they have often shifted their focus

to another aspect of the model and must spend time re-familiarizing themselves with the

problematic portion of code.

The final difficulty with the text-based language in StarLogo is its separation from

the runtime environment. In order to change the code for a model, i.e. a StarLogo

project, users must switch to an editing window, make changes, and then switch back to

the runtime interface to test. This also applies when users want to test a command to see

what it does - they must switch windows, type the command, save and compile, and

return to the runtime interface to run.

10

1.3.2. Simple 2D graphics
StarLogo's use of 2D graphics rendering for its patches and agents, although

sufficient for many models and simulations, may be a drawback for many new users who

are used to the advanced 3D graphics of modern computer games. Since even games for

young children now use 3D characters and worlds, StarLogo's graphics may not have the

appeal or "coolness factor" needed to draw students whose goals are to make games or

simply to have fun [5].

Although the above drawbacks do not diminish StarLogo's usefulness for its

original purposes, they deserve consideration for a more important reason: the Computing

Research Association (CRA) reported in May 2005 that interest in computer science as

an undergraduate major in the US dropped 60% between 2000 and 2004. Even more

distressing is that only 0.5% of incoming female college freshmen expressed an interest

in computer science as a major, an all time low since the early 1970s [9]. Additionally,

Gee [2] states that children, although fluent in "reading" video games, are largely inept in

the other half of computer literacy, "writing" [5]. There is clearly a need to make

programming more accessible to students across the board, and to provide an example of

programming as an exciting, interesting activity.

1.4. Solution: StarLogo TNG
Enter StarLogo TNG, "The Next Generation" of StarLogo programming.

StarLogo TNG's aims are similar to those of StarLogo: to provide a powerful platform

for modeling and learning about decentralized systems. However, StarLogo TNG also

addresses the problems and shortcomings of StarLogo, providing a programming

environment that is both easy andfun for students to use. StarLogo TNG addresses these

goals by introducing two significant changes to StarLogo: blocks-based programming

and a 3D rendered world [5].

1.4.1. StarLogoBlocks
The StarLogoBlocks concept was developed as a graphical alternative to text-

based programming. As in LogoBlocks [1], the graphical language after which StarLogo

TNG's language is patterned, StarLogoBlocks commands take the form not of textual

words, but of graphical "blocks" as shown in Figure 1-2. These blocks can be snapped

11

together like pieces of a jigsaw puzzle to form complete programs. Figure 1-3 shows a

portion of code written in StarLogo TNG's StarLogoBlocks language.

Figure 1-2 Some StarLogo Blocks.

In blocks-based languages, syntax can be given by visual cues, i.e. the shapes of

the blocks themselves. It is therefore immediately obvious if two commands do not fit

together syntactically, as their shapes are not compatible and hence do not snap together.

In the same way, commands that require arguments are given "sockets" that must be

filled. Notice, for example, the block labeled "set energy" in Figure 1-3. It has an

angular socket on the right side, indicating that it requires a number argument, and

conversely, the number block is shaped such that it fits into the socket.

12

sHit"

Tm t mn

Figure 1-3 A portion of code written with StarLogo Blocks.

This shape-based syntax indication not only provides clues for what arguments

are required by commands, but also provides error prevention and feedback [3]. Unlike

StarLogo, where it is necessary to compile code in order to find out where the errors are,

in StarLogo TNG one can see errors immediately; it is instantly obvious if two blocks

placed next to each other do not snap together, and it is also obvious when a block's

socket is empty.

1.4.2. Spaceland - a 3D world
The second large improvement in StarLogo TNG is the addition of Spaceland, a

3D rendered world in which the agents live. Spaceland takes StarLogo's concept of a

grid of 2D patches and adds another dimension - height. The patches themselves are

actually 2.5D. This means that for any (x,y) coordinate in the grid, there is exactly one

height. In other words, the patches are rendered as a grid that cannot overlap itself.

However, agents in StarLogo TNG can exist anywhere in the 3D space above and below

this 2.5D grid of patches. It is our hope that the addition of this 3D graphical capability

will make StarLogo TNG more enticing to today's youth [5].

Of course, the introduction of 3D into StarLogo TNG required more than just a

change of rendering. Additional height-changing commands needed to be added to the

StarLogo language to allow users to control the 3D properties of patches, as well as the

13

3D properties and movement of agents. Additionally, the old painting tools used in

StarLogo are no longer sufficient; painting only covers a small subset of the new needs

for editing 2.5D terrain. This thesis project focuses on designing a framework for and

editing the new 2.5D terrain.

In this paper I introduce the first version of Spaceland along with a simple terrain

editor I developed for it. I then evaluate Spaceland and its editor in light of feedback

gained from real world use cases. I analyze some of the tasks these users tried to

accomplish in order to develop a specification of requirements for the next iteration of

Spaceland and its editor's design. Finally, I propose, implement, and evaluate a design

for the next version of Spaceland and its editor.

14

2. Spaceland, version 0.9, Preview 1

The first version of StarLogo TNG to be released to the public was version 0.9,

Preview 1. Preview 1 contains rough versions of most of the target features of StarLogo

TNG, including a user interface for block-based programming and a 3D rendered window

showing Spaceland, the virtual world in which StarLogo TNG agents live.

2.1. Moving from 2D to 3D
In order to move into 3D, StarLogo TNG had to add several new features to the

original StarLogo design. The first step in moving to a 3D world was extending the

StarLogo commands and agents to take three dimensions into account. To this end,

agents were given several new properties relating to their 3D location and appearance,

and several commands were added to the StarLogo language to change the properties.

Additionally, a few commands were added for changing the heights of the patches in the

terrain.

Each agent has a property specifying its shape. Although this concept is not new

in StarLogo TNG, the shapes themselves are. Agents rendered in Spaceland must have

3D shapes, so an entirely new palette of shapes was developed. For Preview 1, the

available shapes include basic shapes such as spheres, cones, and cubes, as well as letters,

numbers, and more complicated character shapes. The more complicated shapes include

.OBJ models of several animals, as well as .MD3 shapes imported from some of the

countless Quake 3 websites. Spaceland's ability to draw shapes from both .OBJ and

.MD3 file formats also allows users to import 3D shapes of their own into StarLogo

TNG's shape library. Figure 2-1 shows agents of several different shapes from the

StarLogo TNG shape library.

15

Figure 2-1 Several shapes found in the StarLogo TNG shape library.

The most obvious agent property that was added is altitude, which specifies an

agent's height above the terrain. The set-altitude block was added to control this

property, allowing users to create programs in which agents appear to be floating above

the terrain or even wading through it. A corresponding reporter block was also made,

which reports the agent's current altitude.

Similarly, the most obvious patch property that was added is height, which

specifies a patch's height relative to the middle of Spaceland, or what would otherwise be

known as sea level. This height can be changed and read by four commands that were

added to StarLogo TNG's language: stomp, yank, patch-height, and ph-ahead. Stomp

and yank are the commands to change a patch's height. When agent executes a stomp

command, the patch under that agent is lowered by the given amount. Conversely, when

an agent executes a yank command the patch under the agent is raised. The patch-

height command reports the height of the patch the agent is standing on. The ph-ahead

command reports the height of the patch one unit in front of the agent.

2.2. Design
The patches in Preview 1 of Spaceland are arranged in an evenly spaced square

grid 101 patches on a side, allowing for patch coordinates from -50 to 50. Patches share

16

vertices at the corners and sides, making for a smoothly connected terrain. Additionally,

each patch is divided into nine sub-patches, arranged in an evenly spaced 3 x 3 grid. The

height is stored at each corner in the grid, giving the editor sub-patch height control.

Each of the nine squares is rendered as two triangles, which is standard practice for

OpenGL rendering. Figure 2-2 shows one red patch surrounded by green patches on the

side of a mound. Notice the nine sub-patches each rendered as two triangles. Emphasis

is added on two sub-patches to make the distinction clearer.

-~ - jv -=I.

1~ AJL21D~

Figure 2-2 One red patch is divided into nine sub-patches. Two sub-patches are outlined in gray for
clarity.

2.2.1. Data storage
The data for this terrain of patches is stored in two Java ByteBuffers that can be

read both by the Java front-end and the C virtual machine that make up StarLogo TNG.

The first ByteBuffer contains data with which the agents can interact. This includes the

patch color, the patch height (as an average of its nine sub patch corners), and a pointer to

the patch heap, a location in memory where any user-defined variables for that patch are

stored.

17

The second ByteBuffer stores data related to how the patches are rendered,

including the nine sub-patch heights. Although this data is modified by the stomp and

yank commands, the data is only ever read by the terrain-rendering code.

2.2.2. Rendering
Spaceland, including agents and the terrain, is rendered using JOGL, a Java

binding to OpenGL. The terrain is rendered as a series of 303 triangle strips (because

there are 303 sub-patches on a side), each containing 606 triangles. Each of these

triangle strips can be converted to an OpenGL display list for much more efficient

rendering. However, a display list must be recomputed whenever the data for one of its

triangles changes. This means that the execution of common commands, such as stamp,

to change the color of a patch, or stomp, to change the height of a patch, results in

substantial recalculation. Sections 4.2.3 and 6.1.1 address this issue in more detail.

2.2.3. Stomp and yank
Due to the connected nature of Preview l's Spaceland terrain, it is impossible to

change the height of a whole patch without changing its neighboring patches. Given the

3 x 3 grid of sub-patches, however, is possible to change the height of part of the patch

more than other parts. Preview l's design of stomp and yank takes advantage of this

fact. Sections 4.3.1 and 4.3.2 discuss how this connected version of stomp and yank,

although good for creating smooth mountainous features, is less than ideal for creating

vertical walls.

The design of stomp and yank in Preview 1 is based on the observation that if all

of the patches in a certain region are yanked by the same amount, the region should still

appear to be flat and connected, but higher than the surrounding terrain. In order to

maintain this behavior, a grid of multipliers was devised that indicates what fraction of

the total height a given vertex should move. For example, the four corner vertices of the

patch are assigned a .25 multiplier so that if the four patches sharing a corner are all

yanked, the vertex between them will be at the same height as their centers. Figure 2-3

shows the multipliers for each vertex of a patch. Figure 2-4 shows a red patch that has

been yanked by one unit, surrounded by green patches. Sidebar 1 shows how using this

grid, when yanking four patches sharing a corner, yields a plateau.

18

YANK VERTEX MLTIPLIERS

0.5

*j.75
11

Figure 2-3 Vertex Multipliers for stomp and yank operations.

Figure 2-4 One red patch that has been yanked, surrounded by green patches.

19

w IRV IRV

Sidebar 1

This progression of images shows the heights of the vertices of four adjacent patches as
the patches are yanked one-by-one. Notice that at each iteration, the patches that have
been yanked share a middle region (colored blue) with height equal to 1.

.1

N

/ '

/ '

\ /

V Iq

-I \

\ i

F 11

-I ~

\ /

IL ,kI

-, \

-' ,

11 1

IRV

~' /

/1k /U

Ik 'd k
V IF

Ik Ik
IRV 'qV IRW

/T.% /bL /bL Ak

0

.25

.5

.75

1

20

IRV IRV IRV

Ah Ilk

/1% 'Ift Ak /1k /Ik

IRV

Ah
@

IRV

IRV Nr

Mv W

11

W 11 W

k

F 14 J

J

3. Level Editor, Preview 1

The design of Spaceland also gave rise to the need for level editor to allow users

to shape and paint the terrain. To this end, I developed a simple editor with a bare

minimum of tools that we could distribute as a part of this first Preview release of

StarLogo TNG.

3.1. Preliminary requirements
The first step in designing this simple editor was to develop some basic

requirements. The first set of requirements included actions that could be done by agents

running block code, such as setting the height or the color of patch. The second set of

requirements was for macroscopic tools that an individual agent could not do.

3.1.1. Whatever an agent can do
The two properties that an agent can control about a patch are its height and its

color. However, agents can only affect one patch at a time. Therefore it seemed useful to

require tools that could:

1. Control the height of a region of patches, and
2. Control the color of a region of patches.

3.1.2. Some things an agent cannot do
Three other tools were required for editing the terrain in ways agents could not.

These high-level requirements were for tools that could:

1. Draw smooth mounds,
2. Place agents around the terrain, and
3. Change the dimensions of the terrain's grid of patches.

3.2. Design

3.2.1. Overview and layout
Figure 3-1 shows the general layout of the terrain editor for Preview 1. The

terrain is represented by a grid of squares in the middle of the window. Tools for editing

the terrain are along the left-hand side of the window, next to a bar used for choosing

heights. Along the top left of the window are buttons for saving and loading terrains, and

the bottom right has buttons for changing the view.

21

StarLogo TNG: StarLogoBlocks - shapes
File Edit Options Window Help

Blocks Runtime Terrain

Save current terrain Load terrain (overwrite this one) Swap this terran into 3D view, and edit the other one

Rase Area

Lower Area

Draw Mourd

Draw Crater

Level Area

Heights Ory [Colors Only

Figure 3-1 Layout of the terrain editor for Preview 1.

The editor for Preview 1 inherited an unfortunate "edit then swap" methodology

from its predecessors. In this design, Spaceland displays one terrain, while the editor

controls another. In order to make Spaceland show the terrain he/she just edited, the user

must click a button to swap the terrains, bringing the terrain from Spaceland into the

editor, and putting his/her terrain into Spaceland. The large button on the upper right

hand side of the editor window controls the swapping of terrains.

The editor has three selectable viewing modes for the terrain. The default mode,

colored height, shows the colors of the patches, but shades them according to their

heights, with higher patches being shaded more brightly. The height-only mode ignores

the colors of the patches, shading them instead using a height-dependent gradient. This

gradient ranges from black for -50 to white for positive 50, passing through shades of

green in the middle for added contrast. The color-only mode ignores the height

information of the patches, displaying only their actual, unshaded colors.

22

3.2.2. Tools
The terrain editor for Preview 1 has four tools that, along with the height slider,

provide the functionality of the terrain editor. They are listed below along with a

description of how they work.

Level: The level tool brings all of vertices of all of the selected patches to the same

height, effectively leveling the patches. The position of the height slider determines what

height the patches will be brought to. Figure 3-2 shows a region of red patches that has

been leveled, in the middle of a hilly terrain full of green patches. Notice that of the two

visible "walls" of this plateau, one is green, while the other is red. This is due to the

connected nature of the terrain; the south and east edges of any region will slant if

necessary to connect to the surrounding terrain.

Figure 3-2 A region of red patches that has been leveled, in the middle of a terrain full of green hills.

Raise/lower: The raise/lower tools interpret the height slider differently than the level

tool. Rather than reading it as an absolute value, the raise and lower tools interpret it as

an offset. The raise tool simply adds the height on the height slider to the height of every

vertex of the selected region of patches. Similarly, the lower tool subtracts the height of

23

the height slider. Figure 3-3 shows a region of red patches that has been raised in the

middle of a hilly terrain of green patches.

Figure 3-3 A region of red patches that has been raised, in the middle of a terrain full of green hills.

Mound/crater: The mound (and similarly, crater) tool can be used to make curved

terrain features. Like the raise and lower tools, the mound and crater tools interpret the

height slider's value as an offset rather than as an absolute height. However, unlike the

raise and lower tools, the mound and crater tools do not apply this offset uniformly to the

selected patches. Instead, they change the center patches by that amount and taper off

toward the edges of the selected region, thereby creating a mound or crater. An inverted

cosine curve is used to determine the tapered heights, since it yields a rounded shape

which transitions smoothly from level terrain to the slope of the mound. Figure 3-4

shows a crater drawn in the middle of a mound, forming a ring-shaped ridge.

24

- I

Figure 3-4 A crater drawn in the middle of a mound, forming a ring-shaped ridge.

Paint: The paint tool sets the color property of the patches in the selected region. When

the user clicks on the paint tool button, a small dialog box, shown in Figure 3-5, pops up

asking the user to choose a color. Subsequently selected patches will be set to the

selected color. Figure 3-6 shows a terrain that has been painted with several different

colors.

OK - Fcancel
11

*

Figure 3-5 The color palette that pops up when using the "paint" tool.

25

Figure 3-6 A terrain that has been painted with several different colors.

3.2.3. Missing tools
Two of the requirements for the terrain editor are conspicuously missing from the

design of the editor for Preview 1: the ability to place agents, and the ability to resize the

terrain.

The ability to place agents on the terrain was temporarily implemented for this

editor. However, the editor had to store agent placement data internally, since the design

of the terrain data structure in Spaceland had no place for storing data. Additionally,

agents and agent properties are not stored with project files in StarLogo TNG. Therefore,

although users could place agents, they could not recover or save this placement. For this

reason, the agent placement tool was disabled until the rest of the StarLogo TNG system

could support it.

Terrain resizing faced a similar lack of support in the backend. The size of the

terrain, rather than being stored in a data structure, was hard-coded into several

interdependent modules of the StarLogo TNG virtual machine and Spaceland. Even if

the terrain editor changed its representation of the size of the terrain, Spaceland would

26

still render the terrain as a grid of 101 x 101 patches. Terrain resizing was also disabled

until sufficient backend support for it existed.

27

4. Evaluation of Preview 1

4.1. Evaluation contexts
The following evaluation of Preview 1 is based on observations of users using the

system in three contexts. The first was an after school program at a nearby junior high

school. The second was a ninth grade conceptual physics class in Massachusetts. The

third was the Teacher Education Program lab at MIT where StarLogo TNG is being

developed.

4.1.1. After school at CCSC
The first context in which we observed users interacting with StarLogo TNG was

at an after school program at the Community Charter School of Cambridge. At CCSC

our users were seventh, eighth, and ninth grade students with a wide range of previous

computer experience. They all chose the StarLogo TNG after school program over other

options, presumably lured by the idea that they could make their own computer games.

The after school program lasted approximately 9 weeks, with most students attending

between two and eight sessions.

The curriculum used for the after school program was developed by Kevin Wang,

in conjunction with the StarLogo TNG developers. An improved and updated version is

available on the StarLogo TNG web site as a tutorial for new users. The idea of teaching

computer programming concepts through the use of StarLogo TNG with this curriculum

was presented at the International Conference for the Learning Science during the

summer of 2006 [4].

The computers used for this after school program were Dell laptops with Intel

Celeron processors and 256 MB of RAM. They had an integrated Intel graphics chipset

with shared graphics memory.

4.1.2. Physics class in Massachusetts
The second context in which we collected observations about StarLogo TNG was

in a ninth grade conceptual physics class at the Governor's Academy in Newbury,

Massachusetts. The students were all ninth graders with a general distaste for math and a

wide range of previous computer experience.

28

The observations from this user group were sent to us by their teacher, Hal

Scheintaub, who also developed the curriculum that was used in this class. He will be

presenting a poster at the International Research Group on Physics Teaching (GIREP)

conference in Amsterdam about his success in using StarLogo TNG programming to

teach physics concepts. As one of our most active users, Dr. Scheintaub also sent us

numerous observations about his own interactions with StarLogo TNG.

The computers that these students used were older Dell OptiPlex desktops with

1.7 GHz Intel Pentium 4 processors and 256 MB of RAM. The computers initially had

32MB ATI Rage 128 Ultra graphics cards, but these proved to be much too slow to

display Spaceland at an acceptable frame rate. We purchased and installed NVIDIA

GeForce FX 5200 graphics cards instead, which enabled the computers to display models

where the agents were simple shapes such as spheres and cubes.

4.1.3. Teacher Education Program lab at MIT
The group of StarLogo TNG users at MIT consisted of a mix of researchers,

developers, and college students. The researchers and developers were well aware of

StarLogo TNG's capabilities, as each of them had a part in its design. The college

students in this group were taking education classes at MIT and had a range of computer

backgrounds, although most had strong mathematical skills and several had programmed

before. Most of the observations from this group were made by the users themselves and

emailed to the StarLogo TNG developers email list.

Most of the users in this group were concerned with making models that

demonstrated educational concepts such as osmosis, erosion, planetary orbit,

predator/prey population dynamics, decision-making, or emergent properties. However,

some were also interested in making sample games such as simple role-playing games or

first-person shooters.

The computers that these users used ranged from old laptops with integrated

graphics to then state-of-the-art AMD Athlon 64 based systems with NVIDIA 6600 GT

graphics cards. Many users in this group also worked on Macintosh computers, and one

used Linux on his laptop.

29

Both the CCSC after school program and the ninth grade conceptual physics class

focused mainly on teaching programming concepts through the use of StarLogoBlocks.

Although students in both groups made heavy use of the terrain editor, their training

consisted of a brief demo after which they were allowed to experiment. The users in the

Teacher Education Program (TEP) lab similarly focused predominantly on the blocks,

although they did interact often with Spaceland and the terrain, as many of their models

had agents interacting with and changing the terrain.

Since the focus of this paper is on Spaceland and the terrain editor, I will focus on

observations related to those aspects of StarLogo TNG, though they form only a small

subset of the observations we were able to gather from the users. For further discussion

regarding other aspects of StarLogo TNG, see the detailed description of StarLogo TNG

by lead designers Eric Klopfer and Andrew Begel [3] or Corey McCaffrey's thesis on

improving block programming efficiency [7]. Additionally, look for future work by

Ricarose Roque on debugging StarLogo TNG models.

4.2. User observations and evaluations
The following sections summarize some of the common observations from the

three user groups, and evaluate the design of Preview 1 based on those observations.

4.2.1. General Spaceland and editor
The following two sections discuss observations and related evaluations of

General Spaceland and editor functionality.

4.2.2. Observations
Although users rarely paused to make observations about parts of StarLogo TNG

that were working well, most of the students seemed to enjoy using the terrain editor to

change the appearance of the patches in Spaceland. Once they were shown how to swap

terrains between Spaceland and the editor, users tended not to have any trouble with it.

In fact, the typical usage pattern was to make a change with a tool, swap terrains to view

the change, and then swap back to continue editing.

The users did have a few general complaints. Of these, the most frequent was that

StarLogo TNG was simply too slow. On the computers that the middle/high school

30

students were using, models in which agents walk around Spaceland interacting with

each other could run at between 10 and 20 frames per second. However, frame rates for

models in which agents were changing the colors or heights of patches dropped to

between one and five frames per second. Even on the fastest computers tested, frame

rates for such models hovered below 30 frames per second.

The other two frequently mentioned complaints were that: 1) there was no undo

function and 2) there was no way to "reset" a terrain to the way it was before the agents

in a model modified it. The lack of an undo function had the potential to be very

frustrating because it often resulted in lost work due to mistaken edits. The lack of a reset

mechanism also resulted in lost work, but in this case, it was due to the running of a

model, a purposeful action essential to the StarLogo TNG design.

4.2.3. Evaluation
Based on the observation that users would frequently swap their terrain into

Spaceland to see what it looked like, it is apparent that the swapping mechanism is an

unnecessary annoyance to the user. Rather than making users swap terrains, it would

make more sense simply to view the terrain in both Spaceland and the editor

concurrently, updating Spaceland's view after every edit.

The obvious solution to the problem of speed is to improve the efficiency of

Spaceland to make it faster on more platforms. This merited a careful look at the

rendering code for Spaceland. Radu Berinde, one of our developers, found several places

in which the rendering code created unnecessary new variables or did unnecessary

recalculations. However, at the heart of the biggest slowdown was the decision to render

the terrain as many triangle strips and to internally mark modified strips as needing re-

rendering. This design meant that if even one patch in a strip was changed, the entire

strip would need to be re-rendered. It did not take very many agents running terrain-

modifying code before the entire terrain would need to be re-computed and re-rendered

every frame.

The lack of reset functionality was also due to a design shortcoming. Because

both edits and agent actions took place on the same terrain data structure, agents running

a program with terrain modifying commands would destroy prior editing work that the

31

user had done on that terrain. Despite there being two terrains in the system, there was

no way to copy from one to the other. The only way to reset a terrain after agents had

modified it was to save the terrain beforehand and then reload it.

What many users desired in an undo tool was actually the ability to erase terrain

features and reset the patches to their initial flat, green state. However, many other users

desired a true multi-command undo history. Still, due to direct manipulation style of the

editor, users were able to rebuild lost features, indicating that the lack of undo at least did

not hinder their ability to create terrains.

4.3. Terrain/level observations
In observing the levels made by the users, it became apparent that most of the

levels could be classified into three categories: mazelike, scenic, and picturelike. A

fourth type of level, in which agents shaped the terrain somehow, was less common in the

student models but more common in the educational simulations. Of course, many levels

displayed characteristics of multiple categories of levels. The categorization here is for

the sake of analyzing tasks specific to those characteristics. The following four sections

describe the characteristics of these levels, as well as problems users encountered with

them, in more detail.

4.3.1. Mazelike
The levels that I categorize as mazelike were characterized not by their

appearances, although they often looked like mazes, but by the way agents in the models

interacted with them. In these models, agents would read the terrain properties, taking

different actions if they encountered patches of various heights or colors, for example.

The most common usage of patch property differences was to provide boundaries for

agents in the model, in the form of walls or colored lines.

Observations: The most noticeable problem that users had with this type of level was

that agents would often walk partway up walls that were supposed to form a boundary for

them. This problem would appear regardless of whether the agents were checking the

height or color of the wall patch as the condition for stopping. A problem whose cause

32

was much more difficult to trace was that sometimes agents would fail to recognize the

boundary colors at all.

Many users also expressed dissatisfaction with the coloring of the walls they

would make. In some cases, this was due to the fact that the south and east sides of a

wall would be painted the color of the top of the wall, while the north and west sides

would be painted the color of the surrounding terrain. However, many users also said

they wanted to be able to paint the walls independently of the colors of the tops of the

walls or the surrounding terrain.

Evaluation

The problem of agents walking on the sides of walls was related to the connected

nature of the terrain. In order for one patch to be higher than its neighbor, either a part of

its or its neighbor had to be sloped to connect the two. In Preview 1, the southern and

eastern sub-patches would slope as necessary to connect to the surrounding terrain. This

meant that it was possible for an agent to be standing on a patch whose reported height

was zero, but, by standing on the sloped portion, to appear to be halfway up the side of a

wall. For the same reason, agents could be found standing halfway up a green colored

wall when the color of the top of the wall, for example red, was a boundary color for that

agent.

The connected nature of the terrain was also the reason that users could not paint

sides of walls independently of the tops. Since the side of wall was actually the southern

or eastern extension of a patch, it was impossible for the side of the wall to be colored

differently than the patch itself without redesigning the data structure that held patch

properties.

The scenario in which agents would simply not respond to a color was traced back

to the way colors are stored in StarLogo TNG. Agents checking for color are checking

for numeric matches, since colors are stored as numbers in the virtual machine.

However, users editing a terrain would choose a color from the palette presented by the

paint tool. The problem occurred when users thought they were choosing green, for

example, but were actually choosing a color that would be internally represented as

green+1 or green-1.

33

4.3.2. Scenic
The terrains that I categorize as scenic often had rolling hills, plateaus, walls, and

several colors. Their purpose was simply to act as a backdrop for a model; if agents

interacted with the terrain I classified it as mazelike or agent-edited. Many of these

models used hills or small walls to limit visibility, or large, gentle mounds which seemed

more realistic than the purely flat terrain.

Observations

Unfortunately, users found that it was difficult or impossible to make terrains look

as realistic as they would like. Neither the editor tools nor the agents were capable of

adjusting the slope of an individual patch, so structures such as ramps were impossible to

build. Additionally, some users mentioned that a tool that could import heightmap data

from other sources would be extremely useful.

Spaceland is rendered inside a "skybox," a large six-sided shape with images

rendered on the inside. Spaceland's skybox shows images of a mountain range beneath a

blue, sunny sky. Many users making scenic terrains expressed a desire to be able to

choose a different skybox from a library, or least to be able to turn it off. Similarly, some

users, especially in the TEP lab, said that the ability to make the terrain itself invisible

would be useful for some of their models.

Evaluation

Unlike the problems encountered by the creators of mazelike levels, the problems

creating scenic levels were due to a lack of editing tools and agent program commands

rather than core design shortcomings. Additional tools for shaping the terrain can be

added to the editor, and commands for changing the skybox and showing or hiding the

patches can be added to the StarLogo TNG language.

4.3.3. Picturelike
The defining characteristic of a picturelike terrain is its use of color for artistic or

aesthetic purposes. The patches in these terrains might be colored to form shapes, a

smiley face, a map, or even a low resolution color photo or drawing.

34

Observations

Users who wanted to draw pictures on the terrain immediately complained that

there was only one painting tool, and that it could only draw rectangles. I therefore

immediately changed the editor slightly so that the selected paint color would be applied

to all tools. This way, by selecting a zero height and using the mound tool, users could

draw circles and ellipses. While this change was a vast improvement, users still had to

draw many shapes, such as diagonal lines, one patch at a time.

Some users wanted turn the entire terrain into a map or photo. For these users,

neither of the rectangular nor elliptical drawing tools were of much help; they could both

be used to fill in large areas of color, but detail work had to be done one patch at a time.

Evaluation

Although the rectangle and ellipse tools were useful, they were simply inadequate

for many of the tasks users desired to accomplish. A common task, drawing a line, had

no associated tool. Users did not even attempt more complicated shapes such as stars or

curves, presumably because the tools did not exist.

Drawing a map or photo on the terrain would also be greatly assisted by the

proper tools. For example, users said that the ability to import a picture from an external

file would be very useful. An editor tool could be developed to assign patch colors based

on an image, assigning patch colors according to the pixel colors of the image.

Fundamentally, though, the one color per patch limitation would still prevent

users from drawing detailed pictures on the terrain. For the users, it would be much more

useful for each patch to be rendered with a texture, i.e. a small image, rather than simply

a color. In the case of importing a picture, it would be ideal to chop the picture into 101 x

101 sub pictures and have each patch display its own sub picture. This ability would also

be ideal for maps or cases where users wanted the terrain to look like rock, dirt, or grass.

4.3.4. Agent-edited
Agent-edited terrains occur in models in which the initial features are less

important to the user than the features that arise as the result of agents running modifying

commands on the patches. Although there are many such models, I will focus on two

particularly informative ones, the erosion model and the termite model.

35

In the erosion model, users could swap a hilly terrain into Spaceland and watch as

eroding agents carved away at it. The eroding agents were born randomly near the center

of terrain and would flow downhill from there, stomping the terrain as they went in an

attempt to mimic erosion.

In the termite model, the setup code randomly scattered raised yellow patches

("woodchips") throughout the terrain. The termite agents would then wander randomly

around the terrain. If they bumped into a raised yellow patch, they would "pick up the

wood chip" by stomping the patch and setting its color to green. They would then

wonder until they were next to or on top of another yellow patch, in which case they

would "drop the wood chip" by yanking the yellow patch. As this process ran, the wood

chips would begin to form "piles" (raised yellow mounds) rather than being randomly

scattered.

Observations
Two observations arose from the erosion model. First was the observation of how

vital resetting the terrain is for some models. It became frustrating having to redraw the

terrain every time, despite the fact that no particular terrain shape was required. The

second observation was that the "eroded" terrain did not quite look eroded because the

slopes of the patches were unchanged, with the exception of the south and east

connecting sub-patches.

The most interesting observation that arose from the termite model was that,

given enough time, the wood chips would form one pile in a corner of the terrain. This

was confusing at first, but we soon determined that it was due to the fact that corner wood

chips, being inaccessible from three quadrants, were the least likely to be picked up

because they only needed three surrounding yellow patches in order to be completely

protected from being picked up.

Evaluation

The erosion model confirmed the need to add the ability to reset terrains to the

design of Spaceland, despite there being no existing support for it as discussed in the

general evaluation of Spaceland.

36

The observation about the appearance of the eroded terrain had a less obvious

solution. Although stomp and yank seem to work fine for the termite model, their

behavior did not seem quite adequate for erosion. For the termite model, the patches

were manipulated largely independently of each other, with each patch having an integral

number of wood chips on it, given by its height. In the erosion model, on the other hand,

it seemed that nearby patches should be able to affect the slope of a patch, perhaps

causing it to slope downward toward lower patches. These seemingly contradictory

requirements for stomp (and therefore yank) indicated a possible need to separate the

concepts into unique commands - one for independent patch height changes, and one that

would weakly affect surrounding patches.

The comer wood chip migration phenomenon in the termite model led us to

realize that for some models, it is inappropriate for agents to "bounce" when they hit the

edge of the terrain. Rather, some models might prefer that agents "wrap" around to the

other side of the terrain when they walk off one edge.

37

5. Revised Spaceland and editor requirements

Based on the task analysis and evaluations from Preview 1, as well as a

brainstorm of possible future tasks and problems with the StarLogo TNG development

team, I drafted a revised set of requirements for Spaceland and the terrain editor for

future versions of StarLogo TNG. The requirements are discussed below, organized

according to whether they are Spaceland features, additional block commands, or editor

tools.

5.1. Spaceland features
Vertical walls: The terrain should be able to support vertical walls, meaning that no

portion of a patch should be forced to slope to attach to its neighboring patches. For

mazelike levels, this would prevent agents from walking halfway up a wall before

registering a patch height change. For the termite model, this would provide height

independence, allowing patches to get taller (as they received more woodchips) without

affecting nearby patches.

Ramps: The terrain should also allow for ramps, in which patches are connected to one

another and share the same slope. Patches should be able to tilt to connect to neighboring

patches if desired. This would allow for the creation of more interesting scenic levels,

such as tiered levels for first-person video games.

Mounds: Mounds in the new terrain design should look reasonably smooth. Many

scenic and agent-edited levels have come to depend on this fact. Additionally, some

models, such as the erosion model, require that the terrain remain smoothly connected for

realism.

Paintable walls: The sides of walls should have the ability to be painted separately from

the patches on the top of or surrounding the wall. This feature was requested by users

creating the first three terrain types.

Textures: Patches and walls should be able to display textures (i.e. pictures) as well as

colors. These textures should be able to be placed one per patch, stretched across

multiple patches, or, in the case of walls especially, tiled to cover the entire surface

38

regardless of size changes. Both picturelike and scenic terrains would benefit from the

added image resolution and realism of textures.

Customizable dimensions: Terrain dimensions should be user-specified rather than

simply defaulting to 101 x 101 patches.

Customizable skybox: As many users requested for scenic models, the skybox should

be customizable through an included library or, at the very least, the ability to import

external skybox files. The skybox should also be able to be turned off entirely.

5.2. Block commands
Improved height control: The design of stomp and yank in Preview 1 does not allow

for the degree of height independence that some models require, nor does it allow patches

to affect each other as much as other models require. The height commands should be

redesigned to allow better control of both neighbor-independent and neighbor-dependent

height changes.

Wall/cliff detection: Rather than checking heights of patches in mazelike levels, agents

should be able to detect the presence of a wall or cliff ahead. Commands need to be

added for this purpose.

Show/hide patches: Commands should be added for either showing or hiding the

patches. These commands should not erase any block properties, which should be

readable and changeable regardless of visibility.

Bounce vs. wrap: Since bouncing is not the ideal behavior for some models, commands

should be added that can toggle between bouncing mode and wrapping mode. When in

bouncing mode, the fence around the terrain should be rendered. Otherwise the fence

should be hidden.

Load terrain: The load terrain command should reset the terrain to match a

previously stored terrain from the editor. Using this command, the user could create a

terrain in the editor and be able to use it in a model without fear of it being destroyed; to

restore the terrain that was previously created, he/she would simply use this command.

Of course this command also requires an editor feature to save terrains. This will be

described later.

39

Load level: Once the virtual machine is modified to allow for the saving and loading of

agents, the load level command should load not only the terrain associated with a

given level, but also the agents on it.

Get/set texture: With the addition of texture to the terrain, commands need to be

developed for reading and writing texture values to the patches. However, since one

patch's texture maybe only a small part of a multi-patch picture, more work is necessary

to determine appropriate behaviors for these commands. For their first iteration, they

should at least enable agents to read the texture from one patch and set another patch to

have the exact same texture.

5.3. Editor tools

5.3.1. Shaping tools
Mound/crater: The mound and crater tools in future versions of the editor should work

similarly to those in Preview 1, which successfully created smooth terrain features.

Raise/lower: In order to enable the creation of vertical walls and cliffs in the terrain, the

raise and lower tools should be changed so that they no longer affect surrounding

patches.

Ramp: For cases where users want height changes to affect surrounding patches, the

ramp tool should allow users to tilt the region of patches to form a connected ramp

between areas of different heights.

Import heightmap: In order to allow users to create realistic looking terrain, a tool

should be added for importing heightmaps from external files. A good starting point for

this tool would be to allow the importing of grayscale bitmaps similar to those used as

heightmaps for WarCraft III [10].

5.3.2. Painting tools
Shapes: Tools should be added to the editor for the easy creation of filled or outlined

shapes. At the very least, these should include rectangles and ovals, although other

shapes should be added as users request them.

40

Line: A line tool should be added for drawing straight lines. This could be extended in

future versions to include tools for drawing curves or polygons. Other extensions, such

as line width, could also be added in future versions.

Wall: the wall tool should be able to paint the vertical sides of raised patches. Since the

editor currently only displays the tops of patches, this tool has to provide a means to

distinguish which sides are currently being edited.

Texturing/coloring: Each of these painting tools should be able to work with both

colors and textures. A design needs to be developed for how colors and textures should

interact. For example, should they be able to coexist on the same patch? These tools

could also be extended to paint any property of the patch, for example height or a

variable value, rather than just color or texture.

Import image: The import image tool should be able to import an external image file,

for example a drawing or photograph, and use it to either color or texture the patches.

5.3.3. Agent tools
The tools in this category are a result of brainstorming rather than user feedback,

as no agent placement tools of any type existed in Preview 1. Additionally, since agent

placement depends on fundamental changes to the virtual machine data structures, these

tools are not merely improvements to Spaceland itself. For this reason, their addition

may be delayed longer than other improvements to Spaceland.

Place agent: The place agent tool should allow users to select a breed and place an agent

of that breed on the terrain. The tool should also allow for control of agent properties,

such as shape, height, heading, and color. Additionally, agents already placed on the

terrain should be able to be moved with a simple click and drag.

Paint/scatter: Another useful tool is one that allows for an army of similar agents to be

placed on a region of the terrain. These agents could either be painted in lines or

scattered about an area with some user-specified density. User feedback will be required

to determine what design works best for this tool.

41

Camera focus: One agent related tool that was requested by users even in Preview 1

was a tool to control camera focus. Using this tool, users should be able to specify which

agents, if any, should be tracked by the camera.

5.3.4. General tools
The tools in this category do not pertain directly to the changing of patch

properties. Rather, they are general features of the editor, the editor's interface, and the

editor's interaction with Spaceland and the rest of StarLogo TNG.

Improved selection: The highlighting when selecting regions of patches for various

tools should take into account the actions of the tools. For example, the raise tool should

select rectangular areas, while the mound tool should select elliptical areas. Each of the

drawing tools should highlight only the patches they would affect, whether rectangles,

ovals, other shapes, or simple lines.

Editor zoom: Some users indicated that it was too hard to select individual patches in

the editor due to their small size. On the other hand, users with very low resolution

screens complained that the editor was too big, and that parts of it did not fit on the

screen. To address these problems, the editor should be able to zoom and scroll its view

of the grid of patches in the terrain.

Height slider labels: In addition to showing the range of available heights and

highlighting the selected height, the height slider should also have a label indicating the

exact value of the current selection. This will help to avoid guesswork in models that

rely on patch heights.

New terrain: The level editor should have a simple tool for creating new terrains. When

creating a terrain, the user should be able to specify its dimensions. At least for now, it

seems reasonable to keep a terrain's dimensions constant throughout its life. However, if

user feedback indicates that it is useful to change terrain dimensions even after editing the

terrain, that capability could also be added.

Instant updates: Since so many users of Preview 1 would frequently swap terrains to

see what their edited terrain looked like in Spaceland, future versions of the editor should

42

simply edit the active terrain so that edits made in the editor are instantly reflected in

Spaceland.

Save to block: In order for block commands to be able to load a terrain or level from a

block, the editor must be able to save terrains and levels to memory slots that are

associated with and can be accessed by blocks. The design for this should be something

that works well for both the editor and the virtual machine that runs the blocks.

Save to file string: The StarLogo TNG project file format consists of strings of encoded

data. For this reason, the terrain editor should be able to save all of the existing terrains

to a file string which can be included in the save file. In the same way, the editor must be

able to read such string to load terrains.

Undo/redo: Many users requested undo capability in the editor. This should work

similarly to the undo/redo schemes of other editing or drawing programs, i.e. undoing one

tool's actions at a time. Undo and redo in the terrain editor should be unrelated to undo

and redo in the StarLogoBlocks interface.

43

6. Spaceland and Editor, version 0.9, Preview 2

StarLogo TNG version 0.9, Preview 2 was released approximately one month

after the end of the programs in which students were using Preview 1. It was almost

exclusively bug fixes and additional features for the StarLogoBlocks programming

environment, and largely ignored Spaceland and editor issues. However, one

improvement in Spaceland and one additional feature in the terrain editor from Preview 2

are noteworthy.

6.1.1. Improved Spaceland speed
The one significant change to Spaceland was its speed. By carefully examining

the code, Radu Berinde was able to eliminate several excess variables as well as several

unnecessary computations in the rendering code. He also converted many strings of

OpenGL calls into OpenGL display lists, which could be sent to the graphics card once

and then repeatedly called to avoid unnecessary data transfer.

The results of Radu's work were astounding. Frame rates for simple models in

which agents were not changing the terrain jumped from the mid-20s on most computers

to well over 100 frames per second. Models that had previously been unbearably slow

became fluid and interesting. Additionally, Radu also put a mechanism in place to slow

the frame rates of Spaceland while the user was editing blocks in the StarLogoBlocks

workspace. In doing this, he was also able to speed up block rendering and dragging by

allocating more CPU resources for them while the user was not focusing on Spaceland.

Unfortunately, though, models in which agents changed the terrain were still just

as slow. The OpenGL display lists, which saved so much time when nothing was

changing, had to be recomputed every time something did change. For example, any

time one patch changed, the display lists for the three triangle strips that it was a part of

all had to be recomputed and re-sent to the graphics card. With only a handful of agents

changing the terrain of a model, it was possible for the entire terrain to need to be

recomputed within the span of a few frames.

44

6.1.2. Change color tool
The change that was made to the terrain editor as an immediate response to

student comments from Preview 1 was the addition of a "change color" tool. Previously,

the terrain shaping tools had no effect on the colors of the patches. However, multiple

users, especially those creating scenic or picturelike levels, wanted to be able to shape

and paint terrain at the same time.

To achieve this goal, I added a tool that users could use to change the default

color of the editing tools. Subsequent use of terrain shaping tools would cause the shapes

patches to take on this default color. The tool is represented as a button whose

background was colored according to the selected color. When the user wanted to

change the default color, he/she would click on the button, and would be presented with

the color palette that had previously been used for the paint tool. Since the paint tool no

longer required that users choose a color (since there was now a default), the color palette

was removed from the paint tool, which simply painted using the default color.

One minor change was made to the palette in transferring it from the paint tool to

change-color tool. As stated earlier in the evaluation of mazelike levels, many users

could be confused when they thought they were painting one color on the terrain but then

the agents they programmed did not respond to that color. This bug was caused when the

color values stored internally were off by one or two from what the user expected. To

prevent this problem, the color palette was made to display the internal value of the

selected. For example, if the user chose a color two shades lighter than the internal

constant for green, the color palette would display "green+2" so that the user could either

select a different color or modify his/her program appropriately.

45

7. Spaceland, version 0.9, Preview 3

StarLogo TNG, version 0.9, Preview 3 was released in August 2006 and

contained multiple bug fixes as well as a new version of Spaceland. Preview 3 is the

most current release and is both faster and more stable than any of the prior releases.

This section describes the design and implementation of Spaceland for Preview 3.

7.1. New data structures
Many of the features desired by users of Preview 1 were fundamentally not

supported by the Spaceland data structures. For example, some things, such as the terrain

dimensions, were hard-coded into the design. Other things, such as vertical walls,

required geometry information that was simply not stored in the structure. For these

reasons, I completely redesigned the Spaceland data structures with the new requirements

in mind, keeping in mind the need for efficiency and high frame rates.

7.1.1. Terrain structure
The terrain structure contains general high-level information about each level. In

Preview 3 the only data stored in the structure are:

* Terrain dimensions
" Patch top texture sub-grid dimensions
* Patch side texture sub-grid length
" A pointer to the list of patches for the terrain

However, this data structure is meant to be extended as additional features are

added. For example, the list of initial agent positions and other information for this level

should be stored in the terrain structure once the agent placement feature becomes

available. There is also a possibility that each terrain will need to have its own copy of

memory for patches-own variables so that the value of such variables can be stored in the

save file or terrain block for this level. If this becomes the case, a pointer to that memory

should be stored in this data structure as well.

The terrain dimensions specify, predictably, the dimensions of the grid of patches

that makes up the terrain. The patch top texture sub-grid dimensions specify how many

sub-textures are stored in the patch top source image and in what arrangement (see the

46

Textures section below for details). Similarly, the patch side texture sub-grid length

specifies how many side texture strips are contained in the patch side source image. The

pointer to the list of patches for the terrain is the terrain structure's link to the patches

themselves.

Both the terrain structure and the patch structure, discussed next, can be found in

patch.h in Appendix A. This data can be accessed from the Java front end of StarLogo

TNG through TerrainData.java, also available in Appendix A.

7.1.2. Patch structure
Each terrain structure has a pointer to a corresponding list of patches that make up

the terrain grid. Each patch stores the following information:

* Four corner heights of the patch
* A pointer to the patch variables
* Color
* Texture
* Texture coordinates of northwest and southeast corners
* Two "side" structures where each side contains

o Color
o Texture
o Two horizontal texture coordinates

The patches list is stored in a shared ByteBuffer so that both the StarLogo TNG

virtual machine and the Java front end can read and modify the structure.

TerrainData.java contains the methods for manipulating the patches from Java. It is

included in Appendix A.

7.2. Textures
The design for incorporating textures into the display of Spaceland is not

immediately obvious from the data structures, so this section describes it in more detail.

The important aspects of the design are the way in which textures are specified and the

way in which colors and textures are combined.

7.2.1. Texture specification
In 3D graphics, the term "texture" typically signifies both a source image and the

coordinates for what portion of that image to draw on a surface, in this case the top or

47

side of a patch. In that sense of the word, the texture for the top of a patch is specified by

both the texture image and the texture coordinates of the patch.

In OpenGL, texture information can also be incorporated into display lists for

speed. However, while experimenting with different portions of the rendering code,

Radu discovered that changing the source image for texturing was an expensive operation

that would make rendering all of the patches much slower than with colors alone. For

this reason, the design that I chose based on his advice uses only two source images - one

for the tops of the patches, and one for the sides of the patches. If Radu or a subsequent

developer finds a faster way to switch source images, the texture property could be used

to specify which source image to use per patch.

These two source images used in the current design are very large, with room for

several smaller images to be painted on them. In this way, the system can mimic having

multiple source images by using the patch's texture coordinates to specify that only a

small portion of the source image should be rendered on the patch. Since each patch

stores texture coordinates for both the northwest and southwest corners of the top of the

patch, the patch can be drawn with any sub-rectangle of the source image. Figure 7-1

shows an example of what the patch top source image might look like, with a sample

rectangle drawn demonstrating what a patch's texture coordinates might be to specify a

particular portion of the source image. [Figures 7-1 and 7-2 use photographs from

www.free-pictures-photos.com with permission.]

48

Figure 7-1 A sample of what a patch top source image might look like. The yellow rectangle
indicates a possible portion of the image that would be specified by a patch's texture coordinates.

For additional convenience, the texture property of the patch can be used to

specify a sub-texture number that, together with the data stored in the terrain structure,

can specify a new origin, letting the texture coordinates be interpreted as being relative to

the sub-texture's corner rather than being relative to the corner of the huge source image.

The sides of patches are textured slightly differently, as the height of a patch may

change and thereby stretch the side. With fixed rectangular texture coordinates, this

would result in the texture stretching or compressing each time a height changed, which

could lead to undesirable visual effects (imagine a brick wall whose bricks could shrink

or grow in height). Therefore, patch sides only store horizontal texture coordinates,

which define a vertical "strip" in the second source image. As the height of the side

changes, it simply shows more or less of this strip, even repeating the image if necessary

to cover the whole side. Figure 7-2 shows an example of what the patch side source

image might look like.

Figure 7-2 An example of a possible patch side source image.

49

As with the patch tops, the texture property of the patch side can be used to shift

the texture coordinates so that they are interpreted as being relative to a given strip rather

than being relative to the source image as a whole. By using this method, it is possible to

change the texture of the side of a patch by changing the texture number without having

to recalculate its texture coordinates.

7.2.2. Combining textures with colors
In order to render both a color and a texture for each patch, the textures' colors

are modulated by the patch's color. For example, if a patch's color is red, only the red

portions of the texture will be displayed, leaving the other regions dark. In this design,

the colors of the textures and patches are interdependent. For example, a red patch

covered by a green texture will be rendered as dark, since the colors cancel each other

out. However, a white color allows the texture to be displayed as it looks in the source

image, and a white texture allows the underlying patch color to shine through in full

brightness.

Using this design, patches that are meant to display only their colors should be

given a plain white texture. Similarly, patches that are meant to display only their

textures should be set to have a white color. Setting either the color or the texture to

black prevents anything from being drawn on the patch.

7.3. Rendering
The rendering of Spaceland was also completely redesigned to support the new

data structures. The new renderer was designed with speed as the primary goal, and it

met that goal better than any previous version.

7.3.1. Steady-state rendering
Each patch in the terrain is rendered as a triangle fan, a group of four triangles

sharing a common central vertex. This design allows the patch to crease along either

diagonal, or to tilt at any angle depending on the heights of the four corners. Figure 7-3

shows a red patch tilted, surrounded by green patches.

50

Figure 7-3 A tilted red patch in the middle of green terrain

The patches are rendered in sub-groups in this design as opposed to strips in the

old design. The size of these groups can be modified in the rendering code, but groups of

16 (4 x 4) seemed to work best for a variety of different models. These groups are

converted to OpenGL display lists so that they can be rendered much more quickly in the

case that the terrain is not changing.

The sides of patches are only rendered where the corner heights of neighboring

patches do not match up. Each patch only stores data for two sides, but since the patches

form a grid, it is more accurate to think of patch sides as shared between the two patches

that bound the side. The same side data is rendered regardless of which of the two

patches is higher. No sides are rendered around the outside edge of the terrain.

Figure 7-4 shows a green patch with brown sides that is raised two units higher than the

surrounding blue patches.

51

ORM 1,C*W' -'a

Figure 7-4 A green patch with brown sides raised two units above the surrounding terrain.

7.3.2. Changing terrain
The new design for the terrain and rendering is much better at dealing with terrain

changes than the old version of Spaceland was. Rather than marking strips as dirty when

any patch in them changes, as Preview 1 did, the new design keeps a list of individual

patches that have changed. Additionally, due to the smaller group size (16 patches, as

opposed to 101) used in the display lists, the new design can do considerably less work to

refresh the terrain surrounding a changed patch.

Additionally, even if enough patches are being changed to require the

recalculation of every sub-group, the new design's lower triangle count and more

efficient data structures allow the entire terrain to be updated at better than 35 frames per

second even with 2000 agents traveling around the terrain, painting and changing the

heights of patches as they go. This is approximately a 1 Ox speed increase over

Preview 1.

52

4;Zft Mw

7.4. Extensions to blocks
The following block commands were added to the StarLogo TNG language to

allow models to better interact with the new terrain:

Dig/build: These are straight-walled operations, changing the height of a patch without

affecting nearby patches. Dig lowers the patch, and build raises it.

Show/hide patches: These commands can be used to turn the rendering of the patches

on or off. However, even if the patches are invisible they still retain all of their properties

such as height, color, texture, and any variables they might have.

Show/hide skybox: Although Preview 3 does not yet support customizable skyboxes,

which require either an import tool or a library of images, it does support toggling the

visibility of the existing skybox for models in which no skybox at all might be preferable.

Bounce/wrap: When the bounce command is executed, the fence is rendered around the

perimeter of the terrain and agents will bounce at the edges. When the wrap command is

executed, the fence disappears and agents that walk off one edge of the terrain appear on

the other side.

Load terrain: This command takes a terrain index, and loads the associated terrain into

Spaceland as the new active terrain. Currently there are 15 available terrain indices that

users can fill from the terrain editor

Get/set texture: Currently these commands simply read and write the texture property

of the patch. This works well when the sub-texture mechanism is used, but for textures

that are meant to be stretched across several patches, this could lead to improper

behavior. These commands need more investigation to determine if it is useful to expose

the concept of texture coordinates to users or if there is a better abstraction that can be

presented.

New stomp/yank: The stomp and yank commands were designed in this version of

StarLogo TNG to be the neighbor-dependent counterparts to dig and build. Whereas

dig and build modify patch heights without regard to neighboring patches, stomp and

yank behave differently depending on their neighboring patches because they keep the

53

corners of the affected patch connected to the corners of the surrounding patches. See

Sidebar 2 for a detailed description of the new design and behavior for stomp and yank.

7.5. Missing Features
One command is unfortunately missing from Spaceland and the blocks in

Preview 3: load level. As stated previously, the StarLogo TNG virtual machine does

not currently support importing or exporting agent data from or to different data

structures. As no change was made to the virtual machine design for Preview 3, the load

level command was also excluded. However, with the addition of the terrain data

structure to the design, there is now a place to store agent placement data once the virtual

machine supports it. Spaceland is ready to support this new feature once a suitable

design can be found for the mechanism to interact with the virtual machine.

Sidebar 2

54

The progression of images to the left
shows a side view of several patches
being yanked. The patch that is
being yanked in each image is
shaded red, while the effect on
neighboring patches is shaded gray.
In Preview 3, yank is given an
"auto-leveling" behavior. This
means that if the patch being yanked
starts out sloped, the first portion of
the height difference is contributed
only to the lower vertex, thereby
making the patch level. Once the
patch is level, the amount of height
left over is applied to the entire
patch. This behavior is most clearly
visible from the second to third
images at left - first the lower vertex
is raised (which takes /2 height
because it is only /2 of a patch), and
then the remaining /2 height is
applied to the patch, making its final
height equal to 1.5. The third yank
yields a flat plateau at height 1.5.

8. Editor, version 0.9, Preview 3+

The terrain editor for Preview 3 is nearly the same as that for Preview 1

functionally, although it has been completely reworked internally to support the new

terrain format. In anticipation of the next preview release (3+), several small but

important features have been added or improved to unlock some of the functionality of

the new terrain format.

8.1. Improved features
Change color: The change color tool from Preview 2 was updated for the current

version of the editor to include a combination of color and texture. In the new editor

design, color and texture are only considered independently in this tool. Everywhere

else, the "default color" has been changed to mean the color + texture combination

defined in the change color tool. In the tool, the color palette has been modified to also

show possible textures that the user can choose from. The user chooses both a texture

and color. The green color that used to be the patches' starting state is now a green color

and a solid white texture.

Heights-only view: The heights-only view has been modified in the current editor to

show a much wider range of colors to improve height contrast. By using height-

dependent polynomial equations for the red, green, and blue components of the colors,

this view now displays a spectrum from black to white, going though blue, red, and

yellow as height increases.

Height slider: The height slider has also been updated to match the color spectrum of

the heights-only view. A label has also been added to it which displays the exact value of

the currently selected height.

Colored height view: The colored height view, which is the default for the editor, has

been modified to display the combined colors of the patch and its texture, all modulated

by height.

Instant Updates: The current version of the terrain editor only works on the current

terrain, allowing edits to be shown in Spaceland immediately. The swapping feature of

55

older versions of the editor has been replaced by the ability to load and store terrains to

and from this active terrain and an array of 15 available storage locations.

8.2. Added features
Texture-only view: A texture-only view has been added to the editor that behaves much

like the color-only view, displaying the textures of the patches unmodulated by height or

patch color.

Erase: Many users requested an erase tool for the terrain. Although unsure of what an

erase tool should do, I designed it to reset affected patches back to their initial default

state, which is level at height 0 with color set to green and texture set to solid white.

New level: Using the new level tool, users can create new terrains and specify their

dimensions. When creating a terrain, the newly created terrain is loaded as the active

terrain so that edits can be seen immediately. If an unsaved terrain is currently active

when a new terrain is created, the user is prompted to save.

Save to block: The save to block tool allows users to save the active terrain into one of

15 available terrain storage locations. These terrains are saved with the project file and

can be reloaded into Spaceland using the load terrain block.

Load from block: The load from block tool allows a user to load a terrain from storage

into the active terrain, overwriting the active terrain. If the active terrain is unsaved, the

user is prompted to save before loading.

56

9. Future work

Although the Spaceland data structures have been redesigned to support many

more of the features that users need, many of those features are not yet included as tools

in the editor. Appendix B contains an outline of features for the editor that would allow it

to fulfill the requirements described in Section 5.

The ultimate goal in my opinion is to allow direct manipulation of Spaceland

itself, letting the editor exist as an overlay to the Spaceland window. Further

investigation and user study would need to be done to determine if editing in the 3D

environment itself is as intuitive as the use of a 2D grid, but I suspect that at least for

tools such as the wall painter, the added dimension would greatly increase the simplicity

to the user.

In general, all of the features of Spaceland and the editor need to be continually

tested and evaluated, leading to a cycle of iterative design focused on the user's needs

and preferences.

57

10. Conclusion
StarLogo TNG is "The Next Generation" in graphical, decentralized

programming, and may be a way to engage students in programming who would never be

interested in it otherwise.

One of StarLogo TNG's main draws for users is its ability to render agents in a

3D world called Spaceland, where the agents live on a terrain formed by a grid of patches

with which the agents can interact. In order to design a version of Spaceland that

supported the features required by users of StarLogo TNG, I first evaluated older designs

in light of user feedback and observations and then designed and implemented new data

structures to support the desired features.

Part of the fun and usefulness of Spaceland comes from the ability to edit the

terrain to form different types of levels or worlds. These levels might include features

with which the agents interact, or they may simply be aesthetic additions that make the

levels more appealing to users. I designed and evaluated the level editor associated with

the first Preview release of StarLogo TNG, and then updated it to work with the new and

improved data structures made for the current version. Exciting future work exists in this

area, with the possibility of extending the editor to fulfill all of the users' requirements,

perhaps blending the editor into Spaceland itself as an overlay allowing direct

manipulation of the terrain from Spaceland.

As with all user-centered designs, Spaceland and the editor need to be continually

evaluated in light of user feedback and observations. As the expectations of users

change, so should the design of Spaceland and the editor, forming a cycle of iterative

design that can help to keep StarLogo TNG appealing and useful to children and adults in

the future.

58

11. Acknowledgements

This thesis would not have been possible without the help of many friends and

colleagues. I would like to thank Eric Klopfer for his guidance and leadership throughout

the course of this project. A team is largely defined by the leader, and the StarLogo TNG

team is the best I have ever worked on. Corey McCaffrey patiently explained countless

details of StarLogo TNG to me when I started work on the project, and quickly became a

good friend. It was an honor to work with him on several aspects of StarLogo TNG as

well as on other class projects throughout the year. Ricarose Roque and Brett Warne

made this summer my favorite of my MIT career because of their humor and uncanny

ability to accomplish anything they set their minds to. I wish them success in all they do.

Evelyn Eastmond, Anna Wendel, and my mom, Donna Wendel, all took the time to

carefully edit this paper, providing more pages of feedback than I had a of text. I could

not have written this without them. My dad, Tom Wendel, provided several figures and

kept me productive when I had no motivation left.

Of course, writing the paper is only a small portion of what goes into a thesis. I

would like to thank my friends, especially Lawrie, Matthew, Joyce, Jessica, and Mindy,

who kept being nice to me while I neglected to return calls and emails for months on end,

and reminded me that life continues with or without the thesis. I would like to thank my

girlfriend, Monica, who put up with my incessant stress-outs and fed me yummy dinners

while I was working. Finally, I would like to thank my family for the constant love,

peace, encouragement, wisdom, and joy that they continue to pour into my life.

59

12. References

[1] Begel, A. 1996. LogoBlocks: A Graphical Programming Language for
Interacting with the World MIT Advanced Undergraduate Project.

[2] Gee, J. P. 2003. What video games have to teach us about learning and literacy?
New York: Palgrave Macmillan.

[3] Klopfer, E. and A. Begel. 2006. StarLogo TNG. An Introduction to Game
Development. In Press for the Journal of E-Learning.

[4] Klopfer, E., A. Begel, K. Wang, C. McCaffrey, and D. Wendel. 2006. Teaching
Game Programming through StarLogo TNG. Paper presented at the
International Conference for the Learning Science 2006.

[5] Klopfer, E. and S. Yoon. 2005. Developing Games and Simulations for Today
and Tomorrow's Tech Savvy Youth. Tech Trends. 49(3) 33-41.

[6] Klopfer, E., V. Colella, and M. Resnick. 2002. New paths on a StarLogo
Adventure. Computers & Graphics, 26(4) 615-622.
(http://www.sciencedirect.com/science/article/B6TYG-46 1 XFW7-
3/2/272cbfl 349ce3d80dc79a8d872c39793)

[7] McCaffrey, C. 2006. StarLogo TNG: The Convergence of Graphical
Programming and Text Processing. Master's thesis, Dept. of Electrical
Eng. and Computer Sci., Massachusetts Inst. of Technology.

[8] Scheintaub, H. 2006. Programming: A Powerful Physics Learning Tool. Paper
presented at the International Research Group on Physics Teaching
(GIREP) Conference 2006.

[9] Vesgo, J. 2005. Interest in CS as a Major Drops Among Incoming Freshmen.
Computing Research News, 17(3).
(http://www.cra.org/CRN/articles/may05/vegso)

[10] WarCraft III. Blizzard Entertainment. (http://www.battle.net/war3/)

60

Appendix A: Spaceland data structure files

TerrainData.java

package starlogoc;

import java.awt.Color;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.LongBuffer;
import java.util.ArrayList;

import java.util.LisF;

public class TerrainData {

each patch contains:
slnum color; // SL Color of the patch
slnum *heap; // pointer to the heap where this patch's variables are stored
int texture; // the index of the texture of this patch, --1 for no texture
float corner heights[4]; // NW, SW, SE, NE i.e. UL, LL, LR, UR
Tex coord tex coords[2]; / NW, SE texture coordinates
float x;
float y;

Patch side north
slnum color; /
int texture; /
float tex x[2];

siae;
SL Color of the side
index of the texture of tnis side, -1
// horizontal texture coordinates (y

for no texture
zalues are calculated by

renderer)
Patch side west side;
slnum color; // SL Color of the side
int texture; 7/ index of the texture of this side, -J for no texture
float tex x[2); // horizontal texture coordinates (y values are calculated by

renderer)

Note that the following offsets are measured in bytes

public
public
public
public
public
public
public
public
public

static
static
static
static
static
static
static
static
static

public static
public static

final
final
final
final
final
final
final
final
final
final
final

int
int
int
int
int
int
int
int
int
int
int

COLOROFFSET = getColorOffseto;
HEAPOFFSET = getHeapOffset(;
TEXTUREOFFSET = getTextureOffset(;
CORNERHEIGHTSOFFSET = getCornerHeightsOffseto;
TEXCOORDSOFFSET = getTexCoordsOffset(;
NORTHOFFSET = getNorthSideOffset(;
WESTOFFSET = getWestSideOffset();
SIDECOLOROFFSET = getSideColorOffset(;
SIDETEXTUREOFFSET = getSideTextureOffset(;
SIDETEX X COORDSOFFSET = getSideTexXCoordsOffset(;
PATCH SIZE = getPatchSizeInBytes();

public ByteBuffer patches;
private int height, width;
private int index;
private float patchSize;
private static StarLogo sl;
private int numPatchesOwn;
private LongBuffer patchHeap;
private List<Variable> varList = new ArrayList<Variable>();

Native terrain functions

private
private
private
p r iv ate
or i vate

static native int getPatchSizeInBytes(;
static native int getHeapOffseto;
static native int getColorOffset();
static natve int getTextureOffseto;
static native iot getCornerHeightsOffset();

61

private static native int getTexCoordsOffset();
private static native tnt getNorthSideOffseto;
private static native int getWestSideOffset(;

private static native ins getSideColorOffset();
private static native int getSideTextureOffset();
private static native Lnt getSideTexXCoordsOffset(;

private native void initTerrain(irit index, int width, int height, ByteBuffer patches);
private native void setPatchHeap(int index, int numPatchesOwn, LongBuffer patchHeap);

private native void clearPatchesO(int index);
private native void scatterPCO(int index, double red, double green, double blue,

double black, int reseed);

public TerrainData(int index, int width, int height, StarLogo thesl)

this.index = index; // this terrain's Lndex tn the terrains array
this.height = height;
this.width = width;
sl = thesl;
patchSize = 3; //TODO: lNt this be variatie

patches = ByteBuffer.
allocateDirect(width * height * getPatchSizeInBytes().
order(ByteOrder.nativeOrder();

initTerrain(index, width, height, patches);

/*
oi Note: ,m this class does not support bounds checking.

@return the number of patches

public int getNumPatches()
return width * height;

}

public int getHeight)
return height;

}

public int. getWidth()
return width;

}

public float getPatchSize()
return patchSize;

}

public void setPatchSize(float newSize)
patchSize = newSize;

}

private int getPatch(int patchX, int patchY)
return (patchY * width + patchX)* PATCHSIZE;

Use this method rf you need to interact with starlogoc.Colors directly.
@return the StarLoo color number of patch

public double getColorNumber(int patchX, int patchY) {
return StarLogo.slnumToDouble(patches.getLong(getPatch(patchX,

patchY)+COLOROFFSET));

Use this method if you -only need the Color of patch.
@return the of patch

62

public :r getColor(int patchX, int patchY) {
return Colors.colorarray[(int) (getColorNumber

(patchX, patchY)*32.0)];

private static float[] colorVector = new float[]{0.0f, 0.0f, 0.0f);

public float[] getColorVector(int patchX, int patchY) {
int index = (int) (getColorNumber(patchX, patchY)*32.0);
colorVector = Colors.colors[index];
return colorVector;

}

public void setColor(int patchX, int patchY, druble color) {
patches.putLong(getPatch(patchX, patchY)+COLOROFFSET,

StarLogo.doubleToSlnum(color));

public void setColor(int patchX, int patchY, Ctror color)
double colorNumber = Colors.mapColorToStarLogoColor(color.getRed(),

color.getGreen(),
color.getBlue));

if (colorNumber < 0.0 11 colorNumber > (Colors.numcolors + 0.0))
Sysrem.out.println("Set PC to illegal color: " + colorNumber + ". Substituting

gray 5.");
new Ftception)).printStackTrace();
colorNumber = 5.0;

}

setColor(patchX, patchY,
Colors.mapColorToStarLogoColor(color.getRed(),
color.getGreen),
color.getBlue()));

@return the height of patch as the average of the corner heights

public float getHeight(int patchX, int patchY)
int base = getPatch(patchX, patchY) + CORNER HEIGHTS OFFSET;
patches.position(base);
float height = 0;
for (int i = 0; i < 4; i++)

height += patches.getFloat();

}
height /= 4.0;
return height;

public float getHeight(int patchX, int patchY, int corner)

{
patches.position(getPatch(patchX, patchY) + CORNERHEIGHTS OFFSET + corner * 4);
return patches.getFloat();

}

public void setHeight(int patchX, int patchY, int corner, float height)

{
patches.position(getPatch(patchX, patchY) + CORNERHEIGHTSOFFSET + corner * 4);
patches.putFloat(height);

}

public float[] getHeights(int patchX, int patchY)
int base = getPatch(patchX, patchY) + CORNERHEIGHTSOFFSET;
patches.position(base);
float[] heights = {0,0,0,0};

patches.asFloatBuffer).get(heights);
return heights;

public void getHeights(int patchX, int patchY, floar[] heights)

63

int base = getPatch(patchX, patchY) + CORNERHEIGHTSOFFSET;
patches.position(base);

patches.asFloatBuffer().get(heights);

public void setHeight(int patchX, int patchY, float height) {
float[] heights = {height, height, height, height};
setHeights(patchX, patchY, heights);

@para} patohx

* @param patchy

@param heights - the heights of the 4 corners in this order: NW, SW, SE, NE

public void setHeights(int patchX, int patchY, float[] heights) {
if (heights.length != 4)

throw new Runrime; ception("Bad array passed to setHeights. 4 elements
expected.");

int base = getPatch(patchX, patchY) + CORNERHEIGHTSOFFSET;
patches.position(base);

patches.asFloatBuffer().put(heights, 0, 4);

}

public void addHeight(int patchX, int patchY, float height)

float[] heights = getHeights(patchX, patchY);
for (int i = 0; i < 4; i++) {

heights[i) = heights[i] + height;
}
setHeights(patchX, patchY, heights);

public void addHeights(int patchX, int patchY, float[] heights)
float[] heights2 = getHeights(patchX, patchY);
for (int i = 0; i < 4; i++) I

heights2[i] = heights2[i] + heights[i];
}
setHeights(patchX, patchY, heights2);

/*

@return the texture of patch
**/

public int getTexture(int patchX, int patchY) {
return patches.getInt(getPatch(patchX, patchY) + TEXTUREOFFSET);

public void setTexture(int patchX, int patchY, int texture) {
patches.putInt(getPatch(patchX, patchY) + TEXTURE-OFFSET, texture);

fills the fields of a TerrainDataPatch

public void getTerrainDataPatch(int patchX, int patchY, TerrainDataPatch p)

int base = getPatch(patchX, patchY);
patches.position(base + COLOR OFFSET);
p.color = patches.getLong();
//skip the heap pointer
patches.position(base + TEXTURE OFFSET);
p.texture = patches.getInt();
patches.asFloatBuffer).get(p.heights, 0, 4);

p.heights[0] * patchSize; // multiply by height scale, since
p.heights[l] * patchSize; // these DataPatches are used for
p.heights[2] * patchSize; // rendering rather than for interaction
p.heights[3] *= patchSize; // with agents. I/

64

patches.position(base + TEX COORDSOFFSET);
patches.asFloatBuffer().get(p.tex coords, 0, 4);
patches.position(base + NORTH OFFSET);
p.northcolor = patches.getLong(;
p.northtexture = patches.getInt);
p.northtx0 = patches.getFloat();
p.northtxl = patches.getFloat(;
p.westcolor = patches.getLongo;
p.westtexture = patches.getInt(;
p.west tx0 = patches.getFloato;
p.west-txl = patches.getFloat();

// temporary hack to make walls brown =P FIXME
p.northcolor = StarLogo.doubleToSlnum(36);
p.westcolor = StarLogo.doubleToSlnum(36);

public void reallocateVariables(List<Variable> newVarList) {
// Shortcircuit if rio changes have been made
if (varList.equals(newVarList))

return;

LongBuffer newPatchHeap = ByteBuffer.
allocateDirect(getNumPatches() * newVarList.size() * 8).
order(ByteOrder.nativeOrder)).
asLongBuffer();

// Generate a list that maps new var positions to old positions.
// -1 signals that this is a new variable that will be initialized to 0.
List<Integer> positions = new ArrayList<Integer>(newVarList.size()); // Indexes new

positions to old positions
for (int newPosition = 0; newPosition < newVarList.size); newPosition++)

positions.add(new integer(varList.indexOf(newVarList.get(newPosition))));

int oldPosition;
for (int i = 0; i < getNumPatches); i++) {

for (int newPosition = 0; newPosition < positions.size); newPosition++)
oldPosition = positions.get(newPosition).intValue();
if (oldPosition == -1) {

//System. out. printin ("new variable at pos: " + newPosition);
newPatchHeap.put(0);

}
else {

//System.out.printin("oldvar: " + oldPosition + " to newvar: +
newPosition);

newPatchHeap.put(patchHeap.get(i * numPatchesOwn + oldPosition));

varList = new ArrayList<Variable>(newVarList);
numPatchesOwn = newVarList.size();
patchHeap = newPatchHeap;
setPatchHeap(index, numPatchesOwn, patchHeap);

public void clearPatches)
synchronized(sl.getLock())

clearPatchesO(index);

public void scatterPC(double red, double green, double blue, double black) {
synchronized(sl.getLock())

scatterPC0(index, red, green, blue, black, sl.seedThisThread());

65

patch.h

#ifndef _patch h
#define _patch_h

#include "sinum.h"
#include <stdlib.h>

/* Patches Notes:

Each Patch has a top, wnion is really the "patch, " and two sides -
north-side and west side. These should never be rendered or the
edge of the terrain. Otherwi.se, they're rendered between patches
whose corner heights do not match for shared corners.

'The "heght" of a patch is equal tc -ne average of the four corner
heights. This should also be rendered as a vertex in the center
of the patch, but is not stcred since it is a calculaed valUe.

typedef struct patch side
sinum color; // SL Color of the side
int texture; // index cf th- texture .cf this side, -1 for no texture
float tex_x[2]; // horizontal tcture coordinates (y values are calculated by

renderer)
} Patchside;
#define PATCHSIDELENGTH (sizeof(Patchside)) // =24 on PPC Mac

typedef struct tex coord
float x;
float y;

Texcoord;

typedef struct patch
slnum color; // SL Color of the patch
slnum *heap; 7/ pointer to the heap where this patch's variabies are stored
int texture; // the index of the texture of this patch, -1 for no texture
float corner heights[4]; // NW, SW, SE, NE i.e. UL, LL, LR, UP
Tex coord texcoords[2]; // NW, SE texture coordinates
Patch side northside;
Patchside westside;

Patch;
#define PATCHLENGTH (sizeof(Patch)) // =96 on PPC Mac

typedef struct terrain {
int width; // the width of the terrain in patches
int height; // the height/depth/whatever you call it of the terrain
Patch *patches; // the patches in this terrain
7*
Space here to add other saved state for the terrain, such as agent
starting positions, custom texture info, level name, skybox texture,
etc., etc. These will come soon hopefully!!

} Terrain;

typedef struct mod-patch {
short x;
short y;

} Modified-patch;

#define MAXPATCHTERRAINS 16

/* Patches heap is an array of Inums, allocated by the compiler
when it informs Startogo of how many patches-own variables
there ar/. '7

extern int num patches own;

extern Terrain *currentterrain;
evtern Terrain **terrains;
extern Modified patch *changed-patches;
extern int num changed patches;

66

.............. ..

extern int max changedpatches;
extern int patchcolors shownp;

extern int changedPatchHeight, changedPatchColor,
changedPatchTexture; // from vm.h

extern int screenwidth, screenheight, cellsize;
extern int screen half width, screen half height;

#ifndef WIN32
#define min(x, y) (((x) < (y)) ? (x) (y))

#define max(x, y) (((x) > (y)) ? (x) (y))
#endif

// returns pointer to the patch, or NULL if out of bounds. Maybe will

// change this Later to make it faster, but hopefully for now will cause
// NPE's if an algorithm is wrong and tries to go out of oounds
#define GETPATCH AT(x, y) ((x >= 0 && y >= 0 && x < currentterrain->width && y <
current terrain->height) ? &(current terrain->patches[(y)*current terrain->width + (x)])

: NULL)

INLINE slnum patch heap fun(int x, int y, int index)

Patch *p = GETPATCH AT(x, y);
return p->heaplindex];

#define PATCHHEAPMEMBER(x, y, index) patch-heap-fun(x, y, index)

INLINE void set patchheap fun(int x, int y, int index, slnum val)
Patch *p = GETPATCH AT(x, y);
p->heap[index] = val;

}
#define SETPATCHHEAPMEMBER(x, y, index, val) set_patchheapfun(x, y, index, val)

// from -m.h
INLINE slnum logoToInternalXcor(slnum logoxcor)

return FLOATTOSLNUM(screenhalfwidth + SLNUMTOFLOAT(logo-xcor));

INLINE slnum logoToInternalYcor(slnum logo ycor) {
return FLOATTOSLNUM(screenhalfheight - SLNUMTOFLOAT(logoycor));

}

INLINE slnum internalToLogoXcor(slnum internalxcor)
return FLOATTOSLNUM(SLNUMTOFLOAT(internal xcor) - screen half width);

}

INLINE slnum internalToLogoYcor(slnum internal ycor)
return FLOATTOSLNUM(screen half height - SLNUM TOFLOAT(internalycor));

}

void setmodified(int x, int y);
void clearpatches_i(int index);

void clear patches));
void setcurrentterrain(int num);
void scatter patches i(int index, double red, double green, double blue, double black,
int reseed);
void scatterpatches(double red, double green, double blue, double black, int reseed);

void init patches(int width, int height, int cellsize);

void setnum patches own(int num, slnum *newpatch heap);
void set patchheap(int index, int num, sinum *new patchheap);

int patchat(double x, double y);
int patchtowards(double angle, double magnitude, double xcor, double ycor);

void setpatchterrain(int num);

sinum getpatchheight(int x, int y); //used in turtle.c, from vm.h

// from vm.c
void stamp(int x, int y, slnum color);

void set patch height(int x, int y, double height);
void changepatch heightsmooth(int x, int y, double delta-height);

67

void change patchheight(int x, int y, double deltaheight);
slnum getpatchtexture(int x, int y);
void set patchtexture(int x, int y, slnum texture);

slnum get pc(int x, Lnt y);

#endif // patch n

68

Appendix B: Editor features to fulfill requirements

General
Height slider improved (w/ label)
Grid location displayed (even if over Spaceland, eventually)
Multiple terrain blocks, "active" one can be swapped in.

Always edit active, so changes visible (eventually edit IN SpaceLand)
Can store to a block or load from one

Views (all zoomable, scrollable)
Height-only
Colored height (also includes texture)
Color only
Texture only

Tools
Raise/Lower area
Wall/Trench
Mound/Crater
Level area
Erase (sets height to 0 and reset to green for now)
Paint Shapes
Change Color (where color is color + texture)

Includes color/texture editor
Wall painter

Choose color, texture (different palette of textures from patch tops)
Choose which wall(s) of 4 possible to affect
Choose - edges, or all internal walls too?

Place/move agents (one-by-one, at mouse pointer, locations stored in sub-structure under
the terrain structure)

Agents under mouse highlight
Delete deletes them, dragging moves them.
Hover long enough, and an agent monitor pops up to change properties.

Import heightmap
Import colormap

Meta-tools
New level (and set dimensions there)
Save to block/load from block
Undo/redo (based on log)
Save to file/load from file (ALL terrains go to project save file already)

For future versions
Add agents to the file format
Add skybox to format
Add tools for changing agent properties when placing them
Extend agent adding tools - density scatter/formations/etc.
Where useful, add overlay so editing works on terrain in Spaceland as well!
(Goal is direct manipulation on Spaceland)
Keep evaluating and iterating design!

69

