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Abstract

We present a new framework, Sonnet, for the interactive visualization of large,

complex biological models that are represented as graphs. Sonnet provides a flexible

representation framework and graphical user interface for filtering and layout, allowing

users to rapidly visualize different aspects of a data set. Many previous approaches have

required users to write customized software in order to achieve the same functionality.

With Sonnet, once features of interest are identified, they can be captured as figures for

offline presentation. We demonstrate the application of Sonnet to the visualization and

manipulation of transcriptional regulatory networks in yeast. Sonnet is particularly well

adapted to this application as native presentation of these networks yields dense and

difficult to decipher results.
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Title: Professor of Computer Science and Engineering
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1.0 Introduction

With sequenced genomes as references, scientists now measure an assortment of

genome-wide phenomena including expression of genes, binding of transcription factors

to DNA, and protein-protein interactions. The enabling factor for these measurements

has been the dramatic advancement of high throughput biological assays. Robotics and

miniaturization have increased the throughput of assays spectacularly, while the natural

progression of the science has increased the breadth of assays. Most importantly, the

commoditization of assays has empowered scientist to begin probing cells under a wide

variety of environmental conditions, allowing much more sensitive resolution of

functional systems that lie dormant in the rich media conditions under which laboratory

cells are typically maintained.

This boon in data has engendered a flurry of computational research geared at

functionally annotating genes, discovering genetic pathways and understanding control

mechanisms. Earlier work in this field focused on learning from homogenous data, such

as protein interaction networks based on protein-protein interaction data and gene clusters

based on gene expression [1-3]. Recent work has tried to elucidate higher level

organization, such as genetic regulatory networks, from disparate data sources [4-6].

Regardless, visualization of the resulting interaction networks, whether simple and

homogeneous or complex and heterogeneous, is of paramount importance. As assays

become standardized, inferred networks are moving into the forefront of research; an

inferred networks is not merely an incidental finding, but the central discovery in a

research work, and graphs of networks are often the most important way of summarizing

and visualizing the data.
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Unfortunately, the creation of informative and visually appealing static graphs

from the increasing variety and quantity of high throughput biological data sources is

becoming intractable with current approaches. Although layout algorithms and software

can readily render large numbers of nodes and edges, the end result is often a dense,

unintelligible, spaghetti-like graph (see Figure 1). The sheer number of edges and nodes

overwhelm the capability of the reader to discern organization and to understand the

significance of the data.

To avoid unintelligible graphs, researchers often carefully hand select relevant

portions of the data to visualize, and then painstakingly layout the graph by hand.

Alternatively, they can render the graph with an automatic layout program and try to

adjust parameters until some satisfactory output is achieved, an arduous process at best.

Unfortunately, even the best efforts are no match for the rapid growth in complexity of

the models. For instance, a 2003 study on genetic regulatory interactions in

Saccharomyces cerevisiae (baker's yeast) found over 1500 regulatory interactions [6].

These interactions were further reduced into approximately 100 co-regulated, co-

expressed genetic modules, which were presented in a graph with roughly 100 nodes and

200 edges. However, this research only explained regulation for 600 of yeast's 6000

genes. Extrapolation of these figures and recent unpublished research, suggest that over

1000 such regulatory modules exist in yeast. When this analysis is applied to human data,

with five times as many genes and untold-fold more complex regulation, one might

expect to discover tens of thousands of modules. Even in the most conservative case, any

graph like those in Figure 1 would be hopelessly clogged with information.
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Figure 1. Typical visualizations of yeast interaction networks
a) Interaction network describing one of the first large scale mass spectroscopy assay of yeast

protein complexes [7]. Ovals represent protein complexes and the number and size of the

ovals relate to the number of proteins. Edges between two ovals exist if the complexes share

a protein. The ovals are color coded according to functional categories: red, cell cycle; dark
green, signaling; etc. Although the publication is notable for the data itself, this diagram is

only suitable for conveying vague notions that the protein interaction network contains
somewhat large clusters (many with 100+ proteins), the network is distributed across many
yeast functions, and the organization of this network is complex.

b) Recent work attempting to reveal the organization of the yeast molecular network by
combining heterogeneous data [5]. Genes are organized into functionally related groups
represented by small white ovals. An edge exists between two ovals if the two groups share
more than 1/3 of their genes. Groups of genes are further organized into large gray ovals
which are labeled by their GO classification. Although this study is noted for using a wide
variety of genome wide data to create a reasonable model without any a priori knowledge
about the networks, this particular interaction diagram presents only a "cartoon" of the data
with a few placid observations. The reader garners that there are a lot of interactions,
interactions might follow a power log distribution (star topology), and general biological
systems (Transport, Mating, etc) are connected.

The rapidly growing magnitude of datasets is only part of the problem when

visualizing models. As mentioned earlier, current models are also rapidly growing in

dimensionality. High-throughput assays have become more accessible, and as a result,

data is beginning to be gathered under a variety of environmental conditions. Even

though these conditions are sometimes naively lumped together when creating models, in

many cases, such presentation is misleading or even erroneous. In addition, models are

often labeled with additional layers of supplementary or corroborating data. For instance,

a common practice when building regulatory networks is to functionally categorize

learned structures based on their MIPS or GO categories [8, 9]. Current approaches of

using textures, colors and sizes to denote different attributes are cumbersome. Invariably,

the graphical metaphor for how the representation relates to meaning confuses the reader.

In the worst cases, visually hard to detect variations in color or size distort the meaning of

the model.

Difficulties with large heterogeneous networks aside, one should also consider the

requirements and practices of researchers who create the models. Model building occurs
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in an iterative "boot-strap" fashion. Researchers usually begin by qualifying the raw data.

Then, exploratory analysis, based on previous research, might be performed to determine

areas that merit further attention. Finally, new computational techniques are developed to

analyze the dataset. After a model is resolved, it is often corroborated with other data

sources or research. At each of these steps, intermediate models may be built and

preliminary graphs created. These models provide great insight into how the analysis

works, and may greatly aid a reader in understanding the results. However, for lack of a

convenient way of representing data, preliminary models are usually not incorporated

into the final visualization.

Fortunately, the inherent complexity of large heterogeneous models can be

exploited to provide a solution for many of these problems. Instead of static and

meticulously hand-perfected images, these models might be best described and

understood by a series of automatically drawn graphics, interactively created by the end

user. Using various features to filter the high dimension data, a reader could explore the

data in a series of intuitively connected fragments. Specific layouts and filters could be

programmatically defined for a given model so as to focus the reader's attention and aid

them in their exploration. However, the bulk of the learning would be automated, based

on interactions from the user. Moreover, interactions of the network could be

synchronized with novel ways of summarizing attributes of nodes and edges (see Figure

2) to create a seamless environment for viewing complex models.
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Figure 2. Example tabular data summary from Tanay et al[5]
This table represents one module of genes from Tanay et al. Building upon "Eisengrams", this
table extends the concept of color density relating to the value of an attribute [3]. Genes are listed
along the y-axis while different properties-GO category, protein binding (ChiP), phenotype
sensitivity, transcription factors/conditions-are listed along the y-axis. Different properties have
different colors as well as different interpretations for shadings. For example, red and green (and
shades thereof) correspond to the usual down and up regulation of a gene with respect to the
transcription factor gene. Meanwhile, yellow represents the strength of the binding of a
transcription factor to the upstream region of a gene. This representation not only summarizes the
data well, it allows the user to readily see which properties contributed most to the inclusion of a
gene in the module.

1.1 Background

Even though the main mechanisms for cellular regulation have been known since

the 1950s, many important aspects of regulation are still uncharacterized today [10]. The

data and analysis in this section will deal with the components of the central dogma of

biology; a very simplified view is presented (for a more realistic view see Alberts et al

[11]). Protein transcription factors bind to the upstream region of genes, enabling (or

obstructing) transcription. During transcription, DNA is transcribed into mRNA by

various protein apparatuses. mRNA may undergo post-transcription modification such as

intronic excision and alternate splicing in eukaryotes. However, the relatively unstable
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mRNA molecule is then immediately translated into proteins via ribosomes. Finally,

proteins may be modified post-translationaly.

Modem molecular biology is essentially the story of the biological assay.

Hundreds of assays have been developed to capture various snapshots of cellular state.

Scientist can now measure the genome-wide levels of transcription and translation, as

well as proteome-wide binding between protein and protein, and binding between protein

and DNA (transcription factors and DNA). More importantly, advancements in

technique and machinery have radically increased the throughout of assays.

Unfortunately, not only does this windfall of data overwhelm analysis techniques, but

also high-throughput data usually includes much more noise. Hence, new emphasis is

being placed on computational analysis to learn relationships hidden inside noisy data.

1.1.1 Biological assays

Traditionally, molecular biologist elucidated the inner workings of cells one

interaction at a time with thorough and often ingenious assays. Although traditional

assays are often complex and time-intensive, molecular biologists have developed the

finesse and experience to measure proteins and DNA accurately. In general, high-

throughput assays represent a distinct shift in philosophy from traditional assays. Assays

are miniaturized, and hundreds to thousands of the same assay can be performed in

parallel with the aide of robotics. Although high-throughput assays might reduce certain

forms of human error, more insidious forms of noise arise. For example, in single

experiments, the parameters of the protocol are usually fine-tuned to best resolve the

particular interaction in question. In the case of high-throughput assays, parameters may

not be ideal for any individual assay, but rather satisfy global constraints.

Dacheng Zhao 11



Although not an assay in the conventional sense, the Sanger method for

sequencing DNA is the forefather of most modem biological assays [12]. The Sanger

method, along with shot-gun sequencing techniques developed in the 1990s, allowed the

rapid sequencing of the genomes of many organisms. Notably, the yeast genome was

completed in 1996 and a rough draft of the human genome was completed in 2001 [13-

15]. At the time of writing, hundreds of genomes have been completed, including those

of 35 eukaryotes'. Sequenced genomes are often referred to as parts lists; however, a

more accurate description would be a parts list where all annotations-spaces,

punctuation, etc.-have been removed. Nonetheless, even without any annotation,

sequenced genomes are an extremely critical reference for many assays.

With accurate sequenced genomes in place, scientists were able to develop assays

to learn state information about transcribed genes. Before the early 1990s, DNA and

RNA products could be verified via Northern and Southern blot assays [16].

Unfortunately, these assays could only accurately resolve a handful of DNA or RNA

products. The breakthrough came when scientists at Affymetrix were able to attach short

DNA bait sequences to substrates at high density [17-19]. Then, the entire RNA detritus

from a collection of cells was washed over the slide. When, segments of RNA bound to

the baits, antibodies tagged with fluorescence would bind to the RNA and reveal their

presence, and hence, which genes were being expressed. Many similar microarray

technologies are based on these basic principles, and the latest versions of microarrays

can resolve well over one hundred thousand unique sequences per slide [20, 21].

Dacheng Zhao
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Currently, reliable and accurate protein microarrays, where antibodies specific to various

proteins serve as baits, are still being developed.

Assays have also been developed to determine the binding of transcriptional

regulatory proteins to genetic promoter regions on a genome-wide scale. This is

particularly important because it provides direct physical evidence for which transcription

factors regulate which genes. In the Chromatin Immunoprecipitation (ChIP) assay, a

chemical treatment causes covalent bonds to form between all protein-DNA complexes in

the cell [22]. Then, antibodies specific for a transcription factor are used to co-precipitate

the transcription factor and all DNA fragments bound to it. Finally, the covalent DNA-

protein bonds are reversed, and the DNA fragments originally bound to the transcription

factor are assayed using a microarray to determine which gene promoter they bound to.

Proteins often bind together into complexes that form the machinery for many

cellular processes, including genetic regulation. There are several common methods for

measuring protein-protein interactions and protein complexes. One method is two-hybrid

assays, in which the genes of the proteins of interest are inserted into two special genetic

constructs [1, 2]. If the two proteins products interact, a reporter gene2 , whose protein

product can be detected, is expressed. Another popular method is mass spectrometry,

which separates ions by their mass to charge ratio. Although mass spectrometry has been

used since the late 1800s, recent innovations have allowed scientist to use it to probe

large portions of the proteome of an organism [23]. At the moment, there is considerable

debate as to which technology produces less error-prone results.

2 A common reporter gene is the gene for green fluorescent protein, a molecule which fluoresces green

when exposed to blue light.
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Besides assays that measure the presence or absence of binding between

molecules or the presence or absence of molecules themselves, assays have been

developed to probe large scale genetic interactions. One mainstay assay of molecular

biology is the knock-out experiment, in which a gene of interest is permanently turned off

in order to see how the lack of the gene affects the rest of the cell. Now assays have been

developed that allow knock-outs to be tested in mass [24]. The most promising approach

is synthetic lethal screens, in which two viable single knock-out organism are crossed to

form a double knock-out organism. The basic premise is that if the two genes are located

in the same pathway, the organism will die; however, if the genes are in different or

redundant pathways, the organism might live. Unfortunately, given the complexity of

biological pathways, making these assessments is extremely difficult.

1.1.2 Computational analysis

With respect to learning from large biological datasets, computational analysis is

first used simply to normalize data and to create error models. Comparing data from

different runs of the same assay may already be a challenge; however, the situation is far

worse in practice where biological datasets are often cobbled together from a variety of

experiments under any number of conditions. If data is normalized unfairly or error

models are inaccurate, further analysis can be moot, yielding insignificant results.

Normalization aside, one of the first problems tackled with computational

analysis was clustering of expression profiles generated by microarrays. When the first

large datasets were generated, many genes had yet to be annotated with a function. One

application of clustering was to functionally annotate unknown genes based on the

annotation of genes with which they co-clustered. Basic clustering techniques were able
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to yield significant results. For example, simple extensions of hierarchal clustering were

sufficient to annotate many genes in yeast, while extensions of correlation were adequate

to automatically distinguish between two types of leukemia [3, 25]. Since then, almost

every method in the pattern classification book has been applied to expression clustering,

without significantly better results [26].

In earlier works, co-expression was taken to imply co-regulation or at least co-

function. However, since this is often not the case, recent works have focused on using

additional information to find clusters of genes, known as modules, which function

together. One method for module discovery is to seed a module with statistically

significant data, and then expand the modules in a probabilistic fashion [6, 27]. This

hybrid approach uses ChIP (protein-DNA binding) data as the core of modules, and

expression data to expand modules. The result is that the discovered modules tend to be

significant (i.e., have significant overlap with existing biological knowledge); however,

the hard requirement of DNA-protein binding, and the relative dearth of ChIP data,

results in many genes that are not represented in any module.

Other approaches involve probabilistic graphical models. One group has

successfully abstracted this approach so as to make it applicable to many different types

of data with only minor changes to the algorithm [28]. So far this approach has been

applied to solely expression data, expression data and sequence, and expression data and

protein-protein interaction data [4, 29, 30].

1.2 Previous Work
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Relevant previous research includes both software for visualizing networks as

well as the actual graphs seen in publications. Given this immense space of research, we

will focus on software and graphs that pertain to genetic regulatory networks.

1.2.1 Visualization Software

As we will discuss extensively in this thesis, creating a useful graph is a

complicated process involving data management, graph drawing 3 (i.e. layout rendering),

and many other details. Typically, after a network has been discovered and validated,

scripting tools are used to import the data into one of many visualization or layout

programs4. Then networks are usually meticulously refined by hand, which often entails

iteratively repeating the entire layout process, until the author deems the figure

sufficiently polished.

At one end of the spectrum are generic graphics software packages-Adobe

Photoshop, Microsoft Draw, etc-where the user uses a palette of shapes and colors to

draw cartoons of networks. The most powerful example is Microsoft Visio 5, which was

used to create many of the figures in this thesis. Visio has many advanced features such

as dynamically connecting and rerouting lines between points, and templates for common

3 It should be noted that graph drawing (creating a legible figure from lists of edges and nodes), despite the

passing treatment it receives in this thesis, is far from a simple problem. The complexity arises from the

introduction of constraints-minimization of bends in an edge, minimization of edge crossings, etc. [31].

For an overview, see this tutorial:

http://www.cs.brown.edu/people/rt/papers/gd-tutorial/gd-constraints.pdf

4 http://directory.google.com/Top/Science/Math/Combinatorics/Software/GraphDrawing/

5 www.microsoft.com/office/visio/
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figures. Unfortunately, the amount of human interactions that these programs require

limits their use to creating figures with relatively small numbers of edges and nodes.

For the more programmatically inclined, there are also a number of graph drawing

and layout software packages. The most popular of these are GraphViz6 and Pajek7 [32,

33]. Both packages are capable of automatically rendering graphics of large networks

and can output the graphics in a wide variety of formats. GraphViz is lauded for the

sophistication of the implemented graph rendering algorithm and for the flexibility a user

has in specifying the appearance of the graph. Meanwhile, Pajek has implemented graph

analysis algorithms, and can be used to find clusters of nodes, and then reduce edges

between clusters in order to highlight the true relationship of clusters.

Other applications have built upon these graph layout packages to create more

powerful visualization tools. There are many software packages that provide GUIs which

allow the user to interact with networks derived from a specific type of data, or a strongly

constrained network. For example, GeneNet is a formal model for fully specifying

components (gene, protein, transcription factor, promoter, etc.) in a genetic network,

along with a companion database of specifications for components gleaned from research

and literature [34]. Visualization and interactions with this network are achieved by a

complimentary Java application, GeneNet viewer8. Likewise, a large number of protein

centric interactions have been gathered together in the GRID (General Repository of

Interaction Datasets) database [35]. The interactions from this network of roughly 7000

6 http://www.research.att.com/sw/tools/graphviz/overview.html

7 http://vlado.fmf.uni-lj.si/pub/networks/pajek/

8 http://wwwmgs.bionet.nsc.ru/mgs/gnw/genenet/

Dacheng Zhao 17



nodes and 26000 edges can be visualized using Osprey9 . Although Osprey does not

exhibit elaborate layouts, it does allow a user to examine networks in an intuitive fashion,

where individual nodes (proteins) in the network are linked to a wide assortment of non

network information.

Finally, there are some more ambitious projects that attempt to provide more

general and extensive user interfaces to networks and network layout tools. One such

project is daVinci, a "universal, generic visualization system for automatic generation of

high-quality drawings of directed graphs" [36]. daVinci does possess an impressive set

of methods for drawing graphs; however, it is not open source, rendering it somewhat

unsuitable for extension in an academic setting. Another promising example is

Cytoscape [37]. Cytoscape 10 was originally geared towards visualizing genetic

interaction networks, however, the newest version (scheduled to be released in the fall of

2004) promises to be a full-fledged platform for interactively modeling arbitrary

networks. Most importantly, the new version of Cytoscape will be completely open

source, and will build upon the open source Java graph layout package GINY" (Graph

INterface LibrarY). The original version of Cystoscape had been built upon the

proprietary yFiles12 Java graph layout package.

9 http://biodata.mshri.on.ca/osprey/servlet/Index

10 http://cytoscape.org/

"1 http://csbi.sourceforge.net/

12 http://www.yworks.com/en/productsyfiles-about.htm

Dacheng Zhao 18



1.2.2 Graphs of networks

Graphical displays of networks are as diverse as the myriad tools that created

them. The following figures have been selected for their relatively clear presentation and

appeal. Nonetheless, even among the "cream of the crop" graphs, the weaknesses of

static images are obvious. Although Sonnet does not provide a direct solution to these

problems, it does provide a mechanism with which end users can create and interact with

many graphs, ameliorating the main problem of trying to represent too much data in one

graph.

The graph in Figure 3 illustrates many of the tradeoffs needed to create a graph.

While the column of the graph aids in the distinction between transcription factors and

modules, it also creates many unnecessary edge crossings. Fortunately, the number of

nodes is relatively small, and this shortcoming is not excessively distracting. However,

the layered annotations can be ambiguous. For instance, it is unclear if red edges

(regulation supported by literature) are also inferred from the data. Still, the main

drawback of this graph is that the presentation in graphical form does not provide much

additional information. The crisscrossing lines sufficiently break up the flow so that

connections have to be meticulously traced. If the image must be static (i.e. for

publication), the data might be better presented using a simple table, in which modules

are indexed by transcription factors and modules are colored to show correlation between

transcription factors. An alternate solution would be to use an interactive graph where

the nodes and edges only represent interactions, and users attain additional information

by browsing the network.
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This graph represents a network. Regulation factors are represented by ovals and modules of
genes are represented by small squares. Groups of modules that share motifs are represented by
the larger boxes. If broad functional annotations exist, they are written to the right of the large
boxes in bold. Color is used extensively to differentiate objects. For instance, green ovals
represent transduction molecules and black ovals represents transcription factors. Ovals that are
shaded gold represent factors that that have been experimentally confirmed. Red edges represent
regulation that is supported in literature, while black dotted edges represent inferred regulation.

Figure 4 is an example graph in which the author has taken special care to

spatially arrange related objects. Initially drawn with a graph layout program, the author

has rearranged objects to pull apart modules so that modules appear to be in distinct

clusters. The end result is visually appealing, however, upon closer inspection, the hard

assignments of transcription factors and modules to functional categories seem to be

arbitrary. For example, one interesting conclusion a reader might draw is that
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transcription factors that span multiple functional categories might coordinate those

functions; but without other evidence or annotation, this may be an artifact of the drawing

rather than a true finding of the data. A series of graphs could reduce this problem by

showing possible assignments instead of one assignment. Furthermore, interactivity

could improve this graph if one were able to "collapse" modules. For instance, if the user

could interactively create layouts where all the modules within a functional category were

represented by one node, then the effect of transcription factors spanning functional

categories would be readily apparent.
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Figure 4. Network graph from Bar-Joseph et al [61
This graph represents a network discovered by the GRAM algorithm from data in rich media
conditions. Modules of co-expressed and co-regulated genes are represented by circles.
Transcription factors are represented by small rectangles. Directed arrows represent regulation,
where blue signified activation and black represents unknown function. Modules are also color
coded by functional categories. When several modules have the same functional category, they
are grouped, and a larger box surrounds them, with the name of the functional category. Black
circles represent modules of mixed, or unknown function. This graph contains 68 transcription
factors and 106 modules that represent 655 genes.
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The graph in Figure 5 is an example where the author has done relatively little to

rearrange objects after a layout program has rendered the graph. Ultimately, as networks

grow in size, this may become the predominant approach. However, it is obvious that

more care is required during layout to make the graph tractable. The use of line thickness

to convey probability is a clever idea; unfortunately, the reader is left with many faint

lines along with many heavy lines. Moreover, the reader gains almost no information

from the spatial relation of objects. If the reader gains no information from spatial

relationships, one has to wonder if the data could be better conveyed through a table.

Figure 5. Network graph from Tanay et al 151
This is a network of functional modules learned by the SAMBA algorithm from a wide variety of
data sources. Modules of genes are represented by white ovals with the name of the represented
process. Gray circles represent transcription factors. The thickness of the line connecting
transcription factors to modules is proportional to the p-value of the enrichment of the
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transcription factor in the module. An interactive version of this figure with additional data can be
seen online' .

Ultimately, one way to visualize the data has already been implemented by online

mapping websites (see Figure 6). As the user browses a map, salient features are

highlighted and emphasized depending on the level of resolution. This example of an

online map automatically summarizes data as the user expands the scale; however,

detailed features and relationships are presented as the user focuses on specific areas. For

purposes of visual presentation, this map simplifies a complex network and encourages

exploration.
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Figure 6. Maps of the location of the author's home (at the start of the project)
These are maps depicting the author's home (at the time of writing) at varying levels of detail.
The graph automatically highlights the relevant details as the user changes the level at which he
wishes to view the data. Some connections exist at multiple levels (interstate highways) whereas
some connections are unique to one level (street names).

1.3 Objective

The objective of this work is to create a tool that facilitates the creation of

excellent interactive graphical displays of high dimensional biological data, as well as aid

in the interpretation and exploration of these graphical models. Practically and

programmatically, this objective can be broken down into three sub-objectives. First, a

logical framework will be defined and implemented for representing the data in these

models. Then, this programmatic framework will be extended with interfaces that allow

the user to easily filter and organize the models. Finally, this software will be coupled to

an existing graph layout program so that the user can modify the model and view the

graphical representation in an interactive fashion. In addition, the software tool will

provide programmatic interfaces, so that users can focus on the possible layouts of the
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model, and so that new summaries of data represented by nodes and edges can be added.

Although this project will focus on models of genetic regulation in yeast, the framework

this project defines and the software this project implements can be applied to a wide

variety of graphical display problems.

Excellence in graphical displays deserves further attention and discussion. As

Professor Edward Tufte's explains in his landmark book on statistical graphics, graphical

displays should [38]:

" induce the viewer to think about substance rather than about methodology,

graphic design, etc.,

" make large data sets coherent,

" encourage the eye to compare different pieces of data, and

" reveal the data at several levels of details, from broad overview to fine structure.

Although Tufte was referring to more conventional graphics, these guidelines still serve

well when thinking about interactive graphical display of complex biological models.

For this project, excellence in interactive graphical displays of complex dimensional data

also entails that the software should allow one to:

" filter out extraneous data in a intuitive and simple manner

* easily compare different representations of the same model

" quickly browse through the model based on selected information

" understand the representation of all interactions by simply browsing the network

Put another way, the objective of this project is to help the reader create a series of

excellent graphics from a model that is too complex to be represented by one static

graphic. As discussed in section 3.2, a large number of specialized software tools have
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been developed for examining biological networks. The most widely used tools are those

that allow complete flexibility in layout and specification. This project will build on that

philosophy of flexibility, and at the same time, incorporate an interactive interface for

manipulating the graphs and models.

2.0 Design of Sonnet

The word Sonnet derives from an acronym, a Simple Ontology for NETworks

(SONNET), which is the name of the schema used to represent network like data. As the

project grew beyond just data representation, the name Sonnet has come to encompass

the entire software package. See Section 6.1 for an overview of the terminology and

conventions used in the rest of the thesis.

After examination of use cases, the necessary functionality can be broken into the

three main types. Foremost is data representation. In the case of Sonnet, data is assumed

to be text based and will be modeled as a network of nodes and edges. In addition to

representing the data, a framework will be created that allows data to be manipulated,

loaded, saved, etc. After data management, the next step is the creation of views. In the

Sonnet framework, a view is a selection of nodes and edges, and the visual characteristics

of those nodes and edges. In other words, a view is a specification of which nodes and

edges should appear and how those nodes and edges should appear, i.e. their shape, size,

color, etc. Again, besides simply representing views, the framework will allow a view to

be created, edited, saved, etc. Finally, once a view has been created, the view will be

rendered into a network diagram. Sonnet will use third party applications (layout

programs) to create the diagrams. A robust and extensible interface will be created so

that the integration of new layout programs will only require a minimal amount of
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additional software. If the layout program supports interaction (selection of edges and

nodes, etc.), the interactions can be monitored by Sonnet through the interface, allowing

Sonnet to react to the users' actions. Moreover, Sonnet will work on seamlessly

integrating these three core functions. Users should be able to easily maneuver from the

data, to the view, to the layout, and vice versa.

vI
Implement
imports for
new Data
sources

Load,
Edit,

Save Data

Implement
new methods
for creating

Views

Creat,
Edit,
Load

Save Views

Implement
Interfaces to
other layout

programs

Render Layouts,
Manipulate Nodes

and Edges,
Save Layouts

Figure 7. Summary of use cases for Sonnet
Sonnet supports casual users who wish to use the existing software to create and interact with
network diagrams. Sonnet also provides support, in the form of abstractions and extensible
software, for users who wish to extend the capabilities of Sonnet.

Sonnet is designed to support two main kinds of end users. One type of user

simply uses Sonnet to create network graphs, or to interact with network-like data. This

user will use the provided software as-is to complete his tasks. However, other users will

wish to augment the capabilities of Sonnet with new ways to create views, interfaces to
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new layout programs, etc. Sonnet will support this user by providing a simple interface

to core functions and abstracting away common elements of code. A summary of how

Sonnet is designed to be used is shown in Figure 7.

2.1 SONNET

Simple Ontology for Networks (SONNET) is a framework for representing data

as networks. This framework captures only the necessary dependencies required to

represent a consistent network, giving SONNET the capability of representing a variety

of networks. SONNET has three kinds of objects-Node, Edge, Attribute. Each object

is strongly typed'.

A type is a taxonomical label and represented by a pseudo-object, Type. For

purposes of explanation, all Type'5 objects will simply be text labels-Person, Location,

School, etc.-where equality of the text implies equality of the Type.

An Attribute is the basic object of SONNET and represents a mapping between a

Type and a value. In SONNET, there is no specific object for representing a value, and

in general, a value can be any object. For purposes of explanation, values16 will be

14 Lower case edge, node, attribute and type refer to the common conceptual meaning of the word, whereas

upper case Edge, Node, Attribute and Type refer to objects in the SONNET definition. Edge, Node,

Attribute and Type objects model their counterpart concepts with restrictions.

15 A Type will be represented by a Capitalized word, such as Person, Location, School, etc. When a Type

is more than one word long, the Type will be enclosed in double quotes, such as "MIPS Category,"

"Credit Card," etc.

16 Values will be denoted in italics.
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limited to objects that can be represented by text. The Type and value of an Attribute

have an "is a" relationship. For example, the Attribute Location::Boston 17 can be

interpreted colloquially as Boston is a Location, or literally as Boston is an object of the

Type Location. An Attribute is considered equivalent to another Attribute if both their

Types and values are equivalent. For instance, Location::Boston is not equivalent to

Location::New York, or to City::Boston. In addition, Attributes can restrict the kind of

values that can be associated with a Type. For example, the Type Birthday might only be

allowed to map to valid dates such as 12 JUNE 2004, but not to other values such as This

is not a valid date value.

A Node is a special version of an Attribute. The only difference is that a Node is

mapped to other Attributes, whereas, an Attribute is not mapped to other Attributes. For

instance, if Person::Dacheng Zhao is represented as a Node, then Person::Dacheng Zhao

could be mapped to the Attributes Location::Boston, School::MT. The interpretation of

the mapping between a Node and is Attributes is ill-defined and depends entirely on the

interpretation of the Attributes. In our example, the Person::Dacheng Zhao is located at

Location::Boston and attends School::MT. More importantly, there is only one Node

Person::Dacheng Zhao in a SONNET framework. In other words, two references to

Person::Dacheng Zhao would refer to the same Node. Moreover, those two references

would have the same mapping to Attributes, namely, Location::Boston and School::MJT.

However, the Attribute Person::Dacheng Zhao is not equivalent to the Node

Person::Dacheng Zhao.

17 An Attribute with Type "Person" and value "Dacheng Zhao" will be denoted Person::Dacheng Zhao.
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An Edge is a special version of a Node. Since a Node can only map to Attributes,

an Edge is necessary to represent mappings between two Nodes. In addition to the

requirements of a Node, an Edge is required to have two Attributes-one of Type

Directed, one of Type Interpretation-as well as two Nodes-source, and target. The

Attribute of Type Directed can only have two values-true orfalse. The values for the

Attribute of Type Interpretation should explain to a reader how to interpret the Edge.

Since an Edge is also a Node (hence, also an Attribute), an Edge can be represented by a

Type and a value; however, the Type and value of an Edge are completely determined by

the four parameters-Attribute objects with Types Directed and Interpretation, which

will be referred to as directedness and interpretation, and two Nodes which will be

referred to as source and target. Hence, if our system had another Node, Person::Georg

Gerber, and Person::Georg Gerber is a friend of Person::Dacheng Zhao, then we could

create the Edge "Person is a friend of Person, not directed":: Georg Gerber is a friend of

Dacheng Zhao, not directed18 which has the source Person::Georg Gerber, the target

Person::Dacheng Zhao, the directedness Directed::false and the interpretation

Interpretation::is afriend. When an Edge is not directed (Directed::false), the source and

target Nodes can be switched. For example, the aforementioned Edge could equally be

represented as "Person is a friend of Person, not directed"::Dacheng Zhao is a friend of

18 In our example, the method for creating a Type from the source Node "A Node Type"::Source Node,

target Node "Another Node Type"::Target Node, directed Attribute Directed::True, and interpretation

Attribute Interpretation::connects to is: "A Node Type connects to Another Node Type, is Directed".

The method for creating the value from the four parameters is: "Source Node connects to Target Node, is

Directed"
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Georg Gerber, not directed9 . However, the aforementioned Edge is not equivalent to the

Edge "Person works in the same lab as Person, not directed"::Dacheng Zhao works in the

same lab as Georg Gerber, not directed20 (edges differ in terms of interpretation,

Interpretation::is a friend of vs. Interpretation::works in same lab). Two directed Edges

are equivalent if they have the same target, source, directedness, and interpretation. Two

undirected Edges are equivalent if they have the same directedness, interpretation, and

the same two Nodes (Nodes in the two Edges do not have to be assigned to the same

variable). An undirected Edge cannot be equivalent to a directed Edge.

Outside of discussing the SONNET specification, a reference to an "edge" is a

reference to an Edge object and all Attribute objects associated with that edge. Likewise,

a reference to a "node" is a reference to a Node object and all Attribute objects associated

with that node.

2.2 View

Although a view is simple conceptually, it can be complex to create in practice.

By definition, a view is a mapping between nodes and edges2 1 , and visual characteristics.

The most straightforward method would be to specify an individual set of visual

characteristics for each node and each edge. The components of the set of visual

19 which has the source Person::Dacheng Zhao, target Person::Georg Gerber, the directedness

Directed: false and the interpretation Interpretation::is afriend

20 which has the source Person::Dacheng Zhao, target Person::Georg Gerber, the directedness

Directed::false and the interpretation Interpretation::works in the same lab as

21 Nodes and edges include the attributes that they are associate with
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characteristics may not necessarily be unique (i.e. two different nodes could be the same

color, etc.); however, the data for each node and edge would be stored and edited

separately. Although state information for visual characteristics may be stored in files in

such a way, this one-to-one approach is not tractable for large numbers of nodes and

edges. Even with current graphs that have hundreds of nodes and thousands of edges,

manipulating the visual characteristics of edges and nodes one by one would be

impracticable.

Instead, we will present a framework for designing computational filters and rule-

based approaches to assigning visual characteristics. We imagine a scenario where

diverse rules and filters have been implemented. Some filters may use graph theoretic

techniques to assign visual characteristics, others might be a series of rules based on the

data attributes of a node or edge, etc. Furthermore, we envision that rules and filters can

be layered in systematic ways.

2.3 Interface to Layout Programs

Layout rendering programs have a wide variety of features. While some

programs focus on allowing users to manually manipulate nodes and edges, others focus

on using algorithms to computationally determine the best layout. The wide range of

features already offered by graph layout programs is one of the reasons that Sonnet

focuses on the data and visual characteristic management aspects of creating a graph.

Only a few aspects of layout programs are needed to create an interface with Sonnet.

First, one must determine the legal visual characteristics of nodes and edges in the layout

program (i.e. which colors, shapes, etc., nodes and edges are allowed to have). Then, one
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must have a programmatic method for instructing the program to draw nodes and edges

with the appropriate characteristics. Although it would be ideal if the program had an

exposed interface to commands such as "draw edge" or "draw nodes," more roundabout

methods, such as exploiting file specifications, can also work. Finally, one hopes to

capture in a timely fashion messages about how nodes and edges are being manually

moved, so that Sonnet can respond with appropriate actions or graphics.

3.0 Implementation of Sonnet

Sonnet is completely implemented in the Java programming language

(specifically, Sonnet makes use of features that are only available after version 1.4 of

Java22 ) [39]. Hence, Sonnet can be used on any platform for which a Java Runtime

Environment (i.e. Java Virtual Machine) exists2 3 .

Furthermore, Sonnet adheres to the object-oriented paradigm. Sonnet makes

extensive use of interfaces and static classes to decouple implementation from

specification. An overview of Sonnet can be seen in Figure 8.

22 The latest released version of Java is 1.4.2. Its specifications can be seen here:

http://java.sun.com/j2se/1.4.2/docs/api/

23 http://java.sun.com/j2se/1.4.2/download.html
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Figure 8. Overview of the implementation
This overview of Sonnet focuses on key classes and dependencies. See appendix Section 6.2 for a
detailed explanation of the various symbols. In short, dashed lines represent use of interfaces,
including implementation if the line terminates at a package. Solid lines represent use of classes.
A solid line between packages implies use of classes and interfaces; however, a dashed line
between packages implies no classes in the target package are used by the source package.
Moreover, a solid line between one class and a class in another package implies that the source
class does not use any other class in target package (that would be represented by a solid line
between a class and a package). For brevity, dashed lines have been omitted when the target
package is sonnet. data since every other package uses that package. Notable design features
include the relative dearth of dependencies, especially the complete lack of dependencies of the
sonnet . data package (no outward bound edges).

A central theme to this implementation is the reduction of dependencies through

the use of a few singleton classes [40]. Node, edge, and attribute data is managed and by

an instance of the class Data, an implementation of the interface SonnetData2 4 (see

24 The class Data is not strictly a singleton since it does not enforce the singleton policy of only one

instantiation per Java virtual machine. However, there is only one copy exists per Sonnet environment
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Section 3.1). Views are managed through the class ViewsManager, an implementation

of the class SonnetViewsManager (see Section 3.2). Interactions with a layout

rendering program are managed through an instance of the class LayoutAdapter (see

Section 3.3; currently the only layout program for which an adapter has been written is

Cytoscape. The implementing class is CyLayoutAdapter). Graphical user interfaces

(GUIs) are managed by the class GUIManager (see Section 3.4). GUIManager

updates GUIs when data changes, or when the program receives notice that the user has

selected a node or edge in the layout program. Finally, all of these classes are managed

by the class Sonnet. Sonnet, and Sonnet alone, instantiates the classes

ViewsManager, CyLayoutManger, and GUIManager. Sonnet also possesses an

instantiation of SonnetData (instantiated by SonnetFileReader). When one of

these classes needs to access other functionality (e.g. the ViewsManager needs to tell

the LayoutAdapter to render a View), that class simply calls Sonnet, which

returns the interface of the requested functionality, hence isolating the requesting classes

from the concrete implementations. Similarly, when any class needs to access the data

represented by the system, they call on Sonnet which returns an instantiation of an

implementation of SonnetData25

Another hallmark of Sonnet is ease of extension, specifically regarding new

interfaces to layout programs, and new methods of creating views. In each case, the

since the class sonnet only maintains one copy, which it then shares with all classes that need access to

Data.

25 Currently, implementing classes are often located in the same directory as the interfaces. However, this

may change, since separating classes from interfaces would only enhance the modularity and abstraction
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implementing classes need only extend one package (two if you include the ubiquitous

sonnet. data) and implement two or three classes. Again, the fact that all interactions

pass through only a handful of classes, and the relative lack of dependencies, greatly

improves a user's ability to understand how the system works, and how to extend it.

3.1 Nodes, Edges and Attributes

sonnet sonnet.data.io

Reader e n

Sone

Sonnet~dge Sonnet~ode onnet Sne~p

Value

Figure 9. Overview of the sonnet. data and sonnet. data. io packages
For brevity, some edges have been omitted from this diagram. Notably, every single class and
interface in these packages (except value and sonnetvalue) uses the interface sonnetType. In
addition, use or implementation arrows between interfaces implies use arrows between
implementing classes since only one class implements each interface. These packages are unique
in the Sonnet framework because of their complete lack of dependency on other Sonnet packages.

A robust version of the SONNET specification is implemented in the package

sonnet. data. An overview outlining the most salient relationships can be seen in
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Figure 9. This package regularly trades memory for computational efficiency by hashing

basic data-types as well common queries (such as which edges a node is connected to).

In addition, the package makes extensive use of static factory methods to facilitate

extensibility [40]. More importantly, this package, along with the auxiliary

sonnet .data. io package for saving and loading files, has no dependencies on any

other package in Sonnet. Hence, this package can be readily imported into any Java

application that needs to model a network comprised of nodes and edges, where nodes

and edges represent other data.

Nodes, edges and attributes in this framework are strongly typed. In this

implementation, every node, edge and attribute contains a non mutable object instance of

a SonnetType interface, which is implemented by the class Type. Conceptually a

type is simply a text label; hence the class Type is a wrapper for the class String. In

the Java framework, instances of the class String are immutable and are hashed,

meaning if one instantiates two instances of a class String containing the text "hello

world," both instances point to the same object in memory. In anticipation of future

definitions of a type that might not be simple text labels, the class Type also hashes all

instances of itself. The class Type is by far the most instantiated class in the framework

since every node, edge and attribute has an instance. On larger networks, hashing of the

class Type could result in significant savings in time and memory.

Values are generally text based; however, depending on the text, the actual

interpretation is very different. For example, the text "123.0" should be interpreted as a

decimal number whereas the text "www.yahoo.com" should be interpreted as a URL

reference. To accommodate this difference at the base level, each value is passed to the
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class value which then interprets the text appropriately and creates an instance of class

Double, Integer, URL, Boolean, or String. Value returns an object of the

generic class Object; however, this object can then be cast into one of the

aforementioned classes. It is debatable whether the values should be represented by a

unique class to help restrict the possible kinds of acceptable values. Since values are

currently stored as the generic class Obj ect in Type, changing all values to instances

of a specific class would be a trivial task.

An attribute is a binding between a single type and a single value. In this

implementation, an attribute is an instance of the SonnetAttribute interface which

is implemented by the class Attribute.

A node, like an attribute, is also a binding between a type and a value. However,

a node is allowed to be associated with, or mapped to, a set of attributes. A node is an

instantiation of the SonnetNode interface which is implemented by the class Node.

The class Node is an extension of the class Attribute2 6 . There is little difference

between Node and Attribute except that Node has an additional getName ()

method since, grammatically, it is more reasonable to refer to the name of a node rather

than the value of a node . In addition, the equals (Object obj) of the class Node

has been rewritten to override the method inherited from Attribute. For two Node

instances to be equal, obj must be able to be cast as a SonnetNode in addition to

26 SonnetNode is also an extension Of SonnetAttribute. Extension of SonnetAttribute by SonnetNode iS

somewhat unnecessary, however, it reinforces the conceptual logic that a Node is simply a special type

of Attribute.
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having an equivalent SonnetType and value. In other words the Node

Person::Dacheng Zhao is not equivalent to the Attribute Person::Dacheng Zhao.

An edge represents a connection between two nodes. Hence, at minimum an edge

needs to encapsulate two nodes, the directedness of the edge, and the interpretation of the

edge. In this implementation, an edge is an instantiation of the interface SonnetEdge

which is implemented by the class Edge. A SonnetEdge manages two SonnetNode

objects, a variable determining whether the edge is directed, and a String object

encapsulating a text interpretation of the meaning of the edge. SonnetEdge extends

from the SonnetNode, and Edge extends from Node. In this way, an edge is also a

node and an attribute. However, the type and value of an Edge is automatically

generated from its two nodes, directedness and interpretation. At instantiation, an Edge

concatenates the types of the two nodes, directedness and interpretation to create its

SonnetType. For instance, an Edge that is directed, signifies "binds to" and contains

the edges "Transcription Factor"::GAL80 and ORF:YNLJ59C would create the type

"Transcription Factor >binds to> ORE". If this Edge were not directed, then the Type

would be "Transcription Factor binds to ORF." In addition, an Edge will concatenate the

names of the two nodes along with the directedness and interpretation to create its name

(i.e. value for an attribute). In this case, the name of this edge would be "GAL80 >binds

to> YNL159C." Again, if the edge were not directed, the name would be "GAL80 binds

to YNL159C". By extending from Node, and hence Attribute, the Edge class is

able to share some machinery, chiefly that which is used for checking equality. The

Edge class overrides the equals (Object obj) from Node so that Edge can

check that obj can be cast as an SonnetEdge, but then, it uses the inherited
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equals (Obj ect obj) to perform the rest of the equality check. In addition, by

extending Edge from Node, and Node from Attribute, we reinforce the concept that

a Node is a special kind of Attribute, and that an Edge is a special kind of Node.

This will allow us to natively exploit the similarities when creating user interfaces and

other software.

Edges, nodes and attributes are all tied together by instantiations of the

SonnetData interface, which is implemented by the class Data. The class Data

performs all the expected functions, such as allowing one to add SonnetNode objects

and SonnetEdge objects, mapping SonnetNode objects and SonnetEdge objects

to SonnetAttribute objects, and allowing the removal of SonnetNode and

SonnetEdge objects. While these tasks are being performed, the environment, which

contains these edges, nodes and attributes, is maintained consistently. For instance, if a

node belongs to an edge, and the node is removed from the environment, then, the edge is

also removed since an edge must have two nodes to exist. In addition, the class Data

makes extensive use of the classes HashMap 2 7 and HashSet 2 8 so that many common

queries are cached. For example, the set of all edges that a node belongs to can be

retrieved in constant time (getNodeEdges (SonnetNode node)). Likewise, this

holds for retrieval of all the attributes associated with a node, or all the attributes

associated with an edge. Furthermore, Data also caches all the types of nodes, edges

27 http://java.sun.com/j2se/1.4.2/docs/api/java/util/HashMap.html

28 http://java.sun.com/j2se/1.4.2/docs/api/java/util/HashSet.html
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and attributes in the system. Hence, one can find in constant time all nodes that are of

type "ORF" or all edges of type "ORF >belongs to> Module," etc.

This implementation of SONNET makes extension simple and elegant. One

common feature might be to require certain types of nodes and edges to have instances of

certain attributes 29. This capability could be added by simply extending the class Data

and then overriding any methods that add nodes and edges. In the overridden methods,

the extended class would check to see if the nodes and edges possessed the required

attributes. If the nodes and edges did not possess the required attributes, an error would

be passed back to the user. If the nodes and edges did possess the required attributes,

then the extending method would simply pass its variables to the extended method in

Data. Similarly, if a user wished to view certain attributes differently (see Section 3.4),

he could extend the classes EdgeDataPane and NodeDataPane.

3.1.1 SONNET File Type

State information for an object that implements SonnetData can be saved in a

simple verbose format using the classes SonnetFileReader and

Sonnet FileWriter found in the sonnet. data. io package. The specification for

29 For example, biologists often need to verify the source of data. Sources could be represented as

attributes Experiment, Laboratory, Reference, etc. Then, all edges between transcription factors and

ORFs (representing a binding event) could be required to have the attributes Experiment, Laboratory,

and Reference (e.g., Experiment::ChIP, Laboratory::Young Lab, Reference::Lee et al, Science 2002).

30
addEdge (SonnetEdge edge, Set attributes), addNode (SonnetNode node, Set attributes), etc.
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the Sonnet File Type (SFT) consists of a rule for saving attributes, a rule for saving a list

of attributes, a rule for saving nodes and a rule for saving edges.

SFT is a prototype solution for specifying the state data of SonnetData as text.

The main advantage of SFT is that it requires very little code to parse and write. Unlike

31more advanced specifications such as RDF or XML , or graph specific specifications

such as DOT32 and GML33 , SFT does not require any advanced libraries to parse the text.

Instead, simple string tokenizing tools available in most programming languages

(j ava. lang. StringTokenizer in Java) or regular expression tools are more than

adequate. Data is currently housed in a variety of formats, from spreadsheets and Matlab

workspaces, to databases and online repositories. Unable to support all formats, the next

best solution was to create the simplest possible format so that programmatic users of

Sonnet need only spend a minimum amount of time on importing data. However, as data

grows in size and complexity the shortcomings of SFT (i.e. verbosity, no inherent error

checking) may become more pronounced. Future work will involve reexamining these

issues and modifying SFT, or abandoning SFT altogether in favor of more advanced

specifications.

SFT uses different delimiter tokens to separate different values. Attributes are

saved as:

Type-As-Text Attribute-Delimiter-Character Value-As-Text

31 http://www.w3.org/TR/rdf-syntax-grammar/

32 http://www.research.att.com/~erg/graphviz/info/lang.html

33 http://infosun.fmi.uni-passau.de/Graphlet/GML/gml-tr.html
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The variable representing the attribute-delimiter-character is typically named aDelim.

An a Delim can only be one ASCII character with a few restrictions (e.g. it cannot be the

space or carriage return character). However, it is imperative that the aDe l im character

is not used as a character in any text representation of a type or of a value and that the

aDelim character is not used for any other delimiter in the Sonnet file type. Currently

aDe lim is set to "\" by default and a typical attribute in the Sonnet file type looks like

this:

ORF \ YER074W

Lists of attributes are separated by another token, typically represented by the

1 De1 im variable. Currently 1 De 1im is set to "\t" (i.e. tab) and a list of attributes looks

like this:

Binding Condition \ YPD interp \ binds to dir \ true

Since a node can be thought of as an attribute that is allowed to map to attributes,

saving a node amounts to outputting an attribute and delimited list of attributes. The

character that separates the attribute and list of attributes is named vDelim (nodes

versus attributes) and is set to "I" by default. A node typically looks like this:

ORF \ YPR132W I ORF Function \ 40S small subunit ribosomal protein S23.e

An edge could conceivably be represented in two ways. One way would be to

save the type and value (i.e., name) of an edge, hence treating an edge like a node. The

other way would be to save the two nodes of an edge as well saving the directness and

interpretation of an edge. This second method has been chosen because the first method

relies on the implementation of SonnetEdge since the type and value of an edge is

generated by the implementing class. Hence, an edge is saved as two nodes, separated by

lDelim. In the attributes section of the text, an edge must have the two special
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attributes "interp" (or "interpretation") and "directed" (or "dir"). If an edge is directed,

then the first node listed must be the source and hence the second node will be the target.

A typical saved edge looks like this (all on one line):

Transcription Factor \ FHL1 Module \ Module #9 1 Binding Condition \ YPD interp

\ binds to dir \ true

This line represents a directed edge that translates to: transcription factor FHL1 binds to a

module, Module #9 w/1 1 genes. This edge is associated with a binding condition, YPD.

It lies between a transcription factor, FHLI, and a module, Module #9. This edge is

directed and the interpretation is "binds." Note that the two special attributes can be

located anywhere in the attributes list. Further, a node in the edge (source or target) does

not have to be specified before the edge is specified in the text file. In Sonnet, when

adding an edge, the existences of the source and target nodes are first checked. If they do

not exist, they are instantiated at that time.

The main benefit of this file type is a flexibility that matches the flexibility of the

Sonnet data package. However, the current disadvantage is the need for three unique

single character delimiters to serve as aDelim, 1Delim, and vDelim. The current

three delimiters ("\", "\t", " I ") were chosen after analysis of a several example of

networks. An especially troublesome feature of the data in these networks is the use of

URLs that can contain many non-alphanumeric characters. For example, the following

URL specifying a search for a specific text string in the Entrez database disqualifies

many characters that might otherwise be used as more legible delimiters (e.g. ":", "

"?", etc.):

http://www.ncbi.nlm.nih.gov/gquery/gquery.fcgi?term=YMR194W
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Future versions of SonnetFileReader and SonnetFileWriter will migrate

away from using the simple text tokenizing class StringTokenizer, and move

towards using more powerful regular expression tools found in the j ava . util . regex

package (see Section 6.3, "Using regex in SonnetFileReader and

SonnetFileWriter").

3.2 Views
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Figure 10. Overview of sonnet.view and sonnet. view. simple package
This diagram shows the key interactions of the sonnet. view package. The sonnet.vimplemse
package diagram demonstrates the key interactions when sonnet.view is extended.

SimpleViewCreator, besides being the most basic way to create views, also demonstrates how one

class can simultaneously implement both View and ViewCreator (a tactic that can easily solve the

problem of sharing state information between a view and the viewCreator that created it).

Sonnet's method of managing views is located in the package sonnet. .view.

An overview of this package can be seen in Figure 10. This package implements these

functions: specification of a view, storage of views, management of views (through a

GUI), specification of a view creator, and management of view creators. In the Sonnet
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framework, a view is any class that implements the view interface. The view interface

only requires three methods:

getNodeViz(SonnetNode node)

getEdgeViz(SonnetEdge edge)

getViewsCreator ()

For every SonnetNode and SonnetEdge stored in the current SonnetData, an

implementation of view is required to return a valid NodeViz or Edgeviz. If a

SonnetNode or SonnetEdge does not exist in the View, then the view should

return null. In addition, a view usually has access to the ViewCreator object that

created it, and it will pass the viewCreator to ViewsManager when requested.

However, if the view does not have access to ViewCreator, it will be assumed to be a

SimpleView3 1 (which can accommodate any view) and the SimpleviewCreator

will be used instead.

Classes that implement ViewCreator must implement methods for saving,

loading and editing a view. Depending on how the ViewCreator intends the user to

create and edit views, the state data can vary wildly from simple constants (perhaps from

rules) to elaborate databases. ViewCreator does not impose any standard for saving

the data. In addition, a ViewCreator usually implements a GUI to allow the

34 SimpleView does not exist and the implementation Of View in sonnet. view. simple is actually the class

SimpleViewCreator. Because SimpleCiewcreator implements both View and ViewCreator,

SimpleCiewCreator will sometimes be referred to as SimpleView when we are addressing the View

interface aspects of the implementation (i.e. getNodeViz (SonnetNode node) and

getEdgeViz (SonnetEdge edge)). See Section 3.2.1 for more details.
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modification of a View interactively. ViewsManager will take care of setting up a

JFrame to host the GUI of a ViewCreator, and hence, will ask the ViewCreator

for a JPane and JMenuBar.

Classes that implement View and ViewCreator can extend the abstract classes

AbstractView and AbstractViewCreator. These classes contain some

common methods (such as equals (Object obj)) that should be useful for any

classes implementing View and ViewCreator.

Managing view and ViewCreator objects, along with a GUI that allows users

to interact with these objects is the responsibility of the class ViewsManager, which

implements SonnetViewsManager. The ViewsManager class has a few primary

responsibilities including:

" maintaining a list of view objects that the user can select in a GUI,

" instructing the LayoutAdapter to render a view if the user wants to render

a view,

* setting up the ViewsCreator for a view if the user decides to edit a view

or create a new view, and

* converting a view to Simpleview if the ViewsCreator for a View

cannot be instantiated.

In short, the ViewsManger will attempt to allow a user to use the ViewsCreator

that created the View to also edit, load, save, etc. the view. However, if that is not

possible, ViewsManager will default to using the SimpleViewCreator

implementation of ViewCreator.
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3.2.1 Simple Views

The sonnet.view. simple package espouses the most basic approach to

creating a view. In short, the user specifies a unique view for each edge and node that is

to be rendered. This process is laborious and this approach was only created for two

reasons. First, it serves as a concise example for how the interfaces in sonnet view

should be and can be extended. In addition, the approach of sonnet . view . s imple

is the only approach that every implementation of view is guaranteed to be compatible

with. When a view does not return a valid ViewCreator 3 5 , ViewsManager will

call upon SimpleViewCreator to edit, save, load, etc. the view. Furthermore, in

this case the Simpleview object is also the SimpleViewCreator object. This

double implementation by SimpleViewCreator is quite natural, as it allows state

data regarding the view to be innately shared between the View and the

ViewCreator.

In addition, sonnet.view. simple also serves as a demonstration of the

flexibility of the sonnet. data package. Without any modification or extension to the

sonnet. data, sonnet. view. simple uses the sonnet. data. io package to

save and load Data objects. When saving a View, SimpleViewCreator simply

converts an EdgeViz or NodeViz to a set of SonnetAttribute objects, which

then are added to Data. When all EdgeViz and NodeViz objects have been

converted, SimpleViewCreator uses SonnetFileWriter to save Data.

3 This is can happen for valid reasons. For one, the author of the view may not intend it to be editable

through an implementation of the viewcreator class.
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Similarly, SimpleviewCreator uses SonnetFileReader to load the data and

then reverses the process.

3.2.2 List Style Views

If the sonnet . view . simple is the zeroth order approach to creating views,

then the sonnet .view. list approach is the first order approach to creating views

and sonnet. view. list can be thought of as a logical extension of

sonnet . view. simple. In this package, the creation of the View has three tiers.

First, the user can specify EdgeViz or NodeViz simply based on individual

SonnetEdge and SonnetNode objects. Then, the user can specify EdgeViz and

NodeViz based on the SonnetType objects of the SonnetEdge and SonnetNode

objects (e.g., all SonnetNode objects of type "ORF" should be small blue circle).

Finally, a user can specify specific EdgeVi z and NodeVi z based on specific ranges or

values for SonnetAttribute objects that SonnetEdge and SonnetNode objects

map to (e.g. all SonnetNode objects with the attributes Module::Module #47 should

have green borders). In View mode, the process is the same. When returning an

EdgeViz, the getEdgeViz (SonnetEdge edge) method checks to see if the

edge maps to a unique EdgeViz. If not, it checks to see if the SonnetType of the

edge matches a SonnetType that has a unique EdgeViz. If that fails, it finally

compares the SonnetAttribute objects of the edge with sets of specified

SonnetAttribute objects that map to an EdgeViz. The ordering of this logic can

be user defined; however, it seems that the default ordering (individual node or edge,

SonnetType, sets of SonnetAttribute) is the most powerful.
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3.3 Layout Interface
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y ot
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Figure 11. Overview of the sonnet. layout and the sonnet. layout. cytoscape package
This diagram demonstrates the sonnet.layout package and the salient aspects of the extension,
sonnet.layout.cytoscape.

All the interfaces required to be implemented in order to extend Sonnet to a new

layout program are located in the sonnet. layout package. An overview of the

package can be seen in Figure 11.

EdgeViz and NodeViz specify the boundaries of what constitutes a visual

characteristic for a node and edge. Currently, this includes: fill color, line color, border

color (for nodes), shape (for nodes) height, width, target end shape (for edges), source

end shape (for edges), and transparency. It is the task of the LayoutAdapter to

translate these characteristics into a form the layout program can understand, or if a
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layout program does not support certain characteristics, LayoutAdapter should filter

out the extraneous characteristics.

3.3.1 Cytoscape

Currently, the only layout program for which a Sonnet interface has been

implemented is Cytoscape. Specifically, the interface is for Cytoscape 2.0 alpha release

number 3. Cytoscape 2.0 is set to be released in the fall of 2004. The

sonnet . layout . cytoscape package should only require minor changes (in the

class CyAbs tr act Plugin) to work with the fully released version of Cytoscsape 2.0.

In addition to implemented classes for EdgeViz, NodeViz and

LayoutAdapter, other classes, unique to the Cytoscape integration, exist in the

sonnet.layout.cytoscape package. Cytoscape uses instances of

PInputEventListener for handling node and edge interaction events. To interface

with this class, SimplePInputEventListener implements

PInputEventListener and raps events (PInputEvent) into Sonnet's

InteractionEvent. Then, SimplePInputEventListener calls Sonnet's

InteractionListener, which triggers an action with the new

InteractionEvent. CyPluginSonnet extends AbstractPlugin, the default

class for creating a plug-in for Cytoscape. CyData holds state data for both Cytoscape

and Sonnet and maps between the node and edge objects in Cytoscape, and the node and

edge objects in Sonnet.

3.4 GUI
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The package sonnet . gui contains a variety of graphical user interface

elements. In general, any GUI class that has been designed to be reused by other classes

is located in the sonnet .gui package. GUI classes that are specific to one application

are located in the package where they are used.

All GUI classes follow a simple pattern in Sonnet. Although not specified in an

interface, all GUI classes have two methods:

setup(Object obj1, Object obj2, etc.)

update ()

In addition, GUIs that are based on one state Object-such as EdgeViz, NodeViz,

Edge, Node, etc.-have a third method, Object grabData (), where Object is

EdgeViz, NodeViz, Edge, Node, etc.

The method se tup () contains logic that creates all they physical components of

the GUI. This includes instantiating JComponent objects (JPanel, JButton, etc.)

as well as setting up default behavior, such as behavior of scroll bars, behavior of lists

(number of items that can be selected at once), etc. In addition, setup () will set the

values of internal state variables with the variables passed into setup () (i.e., Obj ect

obj 1, Obj ect obj 2, etc.), or with default values. After setup () has been

called, accessing any state variable in the GUI should never return null. setup ()

should only be called if the user wishes to create the GUI, and in general, setup () is

only called by the constructor.

The method update () is called to update GUI elements that contain state data

once state data has changed. For example, if a GUI is based on an Edge, once the Edge

has been changed externally (i.e., not by the GUI), update () should be called so that
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all fields and labels based on the Edge are updated. Even though the update method

wastefully updates all fields, labels, lists, etc., the readability and reusability of the code

is greatly enhanced. In our example, the GUI object might have a method

setEdge (SonnetEdge edge). We would expect that method to only have two

lines of code:

this.edge = edge;

update();.

The method grabData () is called to return the state data encapsulated in an

Object. For example, in a GUI that allows a user to edit data related to an Edge,

grabData () should return an instantiation of Edge based on the fields of the GUI.

MOUUUSUOUUIS p174 WI17 gens
Trm-crlon FactorWER130C
ORW.-W
ODRDR372C
ORR R137W
OFWTLIIW
ORWDR129C
OWJL141C
O-WDIt45C

Figure 12. An example of the versatile ListPane
An example instance of a ListPane filled with 2955 elements. ListPane encapsulates many
common functionalities needed when using a selectable list, including a search function (based on
regular expression), and formatting and layout issues. Selection of the box directly following the
field with YNL159c enables search text to be treated as a regular expression. When the box is
unchecked, the search is equivalent to the regular expression . *YNL159C. * .
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There are a few highly reusable classes in sonnet . gui, one of which is the

class ListPane (see Figure 12). ListPane encapsulates all the logic for a

selectable list. Moreover, it also supports adding buttons, menus, as well as listeners. It

has a built in search function based on regular expression, and it has logic for

automatically shifting the appearance of the list to the selected item. Many of the GUIs

in Sonnet are based upon ListPane.

Figure 13. GUIs for editing Edge Visuals and Node Visuals
These two classes, EdgeVizPane and NodeVizPane, allow an end user to create an EdgeViz or

NodeViz. These classes include such conveniences as a color chooser, and a pull down list for
shapes. Furthermore, they also handle error handling and will warn the user if they try to input
invalid data, such as This is not a number for Transparency.
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Two other GUIs that are designed for extension and embedding in other GUIs are

the Edge and Node visuals editors-EdgeVi z Pane and NodeVizPane (see Figure

13). As their name suggests, theses classes encapsulate an EdgeViz and a NodeViz

respectively. These two panes allow an end user to create a specific EdgeViz or

NodeViz. Hence, it allows a programmatic user to easily create new methods for

creating Views. These classes also highlight the versatility of ListPane, since the

scrolling lists in both GUIs (Source end shape, Target end shape, Shape), are actually

instantiations of the L is t Pane class. In these cases, the search portion of L i s t Pane

has been disabled and the scrolling list portion has been sized to fit one row. In addition,

no buttons were added to the Lis t Pane.
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Figure 14. Node and Edge Data Editor Pane
(a) This is an example of EdgeDataPane where the mouse cursor (currently unseen) is resting

over the Type field of the Edge section. Hence, the pop-up box with the text ORF >belongs

to> Module can be seen floating under the Edge section. White boxes represent fields that
can currently be modified by the end user. In this case, the end user can only edit the values
of Attributes.

(b) This is an example of the EdgeDataPane where all sections have been collapsed. A section
can be collapsed and expanded by double-clicking on the title of the section.

(c) This is an example of the NodeDataPane where the user is currently editing a type field in the
Out-Bound Edges section, hence, the pop-up blue box with the text Module >belongs to>

MIPS Category can bee see floating under the Out-Bound Edges section. The Attributes
section has been collapsed.

Likewise, the classes EdgeDataPane and NodeDataPane allow an end-user

to modify data related to Edge and Node objects. Since Edge and Node objects do not

contain any information regarding the Attribute objects that an edge or node maps to,

EdgeDataPane and NodeDataPane require access to the current SonnetData.
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These panels contain numerous time-saving and error-detection features for both the end

user and the programmatic user. For example the programmatic user can specify which

fields are editable. If a field is editable, the end user can toggle its editing mode by

double-clicking on the field. To protect from accidental changes in data, an end-user

might wish to selectively turn off the editing mode of certain fields. Moreover, these

panes will automatically check the text that the user inputs for compatibility with Sonnet.

For instance, if all Attributes of Type "Entrez Search" are valid URLs, then, all edits of

the value field of an "Entrez Search" Attribute must also result in valid URLs.

3.5 Testing

Sonnet makes extensive use of JUnit 3 6 testing [41]. In general, any non-GUI

functionality, including event handling, is tested. Test classes are named after the class

they test. For example, EdgeTest is a JUnit test class for Edge. Any package with

JUnit tests also contains the class Al iTes t s, which is a JUnit suite (one per package).

Each AllTests class will execute every test class in that package as well as the

AllTests of sub packages. This culminates in the AllTests class in the sonnet

package. Hence, running AllTests in the sonnet package will run all tests in all

packages of Sonnet. In general, sonnet . AllTests should be executed whenever

functionality changes or when new functionality is added. When new functionality is

added, a test for that functionality should be created in the appropriate test class.

Dacheng Zhao
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4.0 Results

Sonnet's main contribution is not its effectiveness as-is, but rather its abstraction

of common code and ease of extension. Sonnet can readily be extended to interact with

other layout programs and new methods for creating views can easily be created.

Moreover, the GUIs classes in sonnet.GUI implement components for helping

programmatic users create new graphical interfaces. It is our hope that Sonnet becomes

the core of many specialized tools, and the platform from which a universal data, view,

and layout management tool is built.

For the casual user, Sonnet is currently stable and useful as a standalone network

modeling tool. Combined with Cytoscape, it also useful as a rendering and interactive

tool. However, much can be done to further improve the end user experience.

4.1 Usage
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Figure 15. Example of Sonnet in use with Cytoscape
Here is example where a graph of a network has been rendered by Cytoscape and the data and
views are managed by Sonnet. The Cytoscape frame is in the background. In the foreground,
clock-wise from the upper-left hand corner are the main Sonnet menu bar and frame, the Node
data editor frame for the last selected Node, the Edge data editor frame for the last selected Edge,
and the Views Manager frame with the view of the current layout selected (view is names "Nodes
and Edges View").

When combined with Cytoscape, Sonnet is an efficient method for managing data

and views. Figure 15 demonstrates how the typical runtime environment of Sonnet and

Cytoscape might appear. When used with Cytoscape, a user executes Cytsocape and then

loads the Sonnet plugin. Then, using Sonnet, the user can load existing data and views,

as well as modify existing views and create new views. A user can instruct Sonnet to

render a view, which creates a graph in the Cytoscape frame. By selecting an edge or a

node in the Cytoscape frame, the user triggers Sonnet to bring up panels that summarize

data about the node or view. These panels also allow the user to modify the data. In the
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edge or node data editor panes, the user can add and delete attributes and other state

information. In addition, selecting the edge section of the node data pane will cause the

selected edge to become selected in the Cytoscape pane. Similarly, a node section in the

edge pane will cause Cytoscape to select the node.

4.2 Future work

Besides integrating Sonnet with more layout programs and creating more methods

for creating views, the most pressing issue with Sonnet is integration of the spatial

location of nodes and edges. Currently, the spatial location of nodes and edges is handled

entirely by the layout program. However, if Sonnet is to create truly layered graphs (i.e.

a sequence of graphs where each succeeding graph simply adds nodes and edges to the

previous graphs), then Sonnet must be able to assign the spatial location of nodes and

edges. This could be approached in two ways. First, Sonnet could render a layout via a

layout program and ask the layout program to return the location of the nodes and edges.

In subsequent views, Sonnet could build on those previous locations. A more direct

method would be to implement layout programs in Sonnet, so that Sonnet has the

capability of determining where nodes and edges should be located. In this manner,

layout programs would only be used to render the graphics and perhaps provide

interactivity.
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6.0 Appendix

6.1 Terminology and Conventions

Sonnet refers to this entire project and specifically to the Java software that this

project is has created. SONNET, a Simple Ontology for Networks, refers to the data

representation specified in section 2.1. Outside of discussing SONNET, a reference to an

"edge" is a reference to an Edge object and all Attribute objects associated with said edge.

Likewise, a reference to a "node" is a reference to a Node object and all Attribute objects

associated with said node.

"Data" almost always refers to data that is being modeled. In the examples used

this thesis, it was a regulatory network for yeast. Hence, data included the names of

genes, the names of modules, MIPS categories, etc. Data regarding the physical

appearance of edges and nodes is referred to as "visual characteristics," "visual

attributes," or simply "visuals." A view is a mapping between nodes and edges and sets

of visual characteristics. Another important aspect of a view is the inclusion and

exclusion of nodes and edges. In other words, not all edges and nodes have visual

characteristics in every view. A layout (i.e. graphic, network graph) is picture
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representation of a view. A layout may or may not be interactive. A layout is usually

created or rendered from a view.

References to "a class" refer to the Java implementation of a class object".

Although a Java class can roughly be thought of as an object, from object-oriented

programming, there is no simple definition for what a class can or cannot do. An

"interface" is an object that only specifies requirements. In object-oriented programming

terms, an interface is known as a specification or as requirements. A class can implement

an interface by satisfying all the requirements of the interface. A class can also inherit or

extend the functionality of another class. The extending class is called a child class, and

the class that was extended is called the parent. When an interface extends another

interface, it simply means that any class that extends the child interface must meet the

specifications of both the child interface and the parent interface. When the class for

code is read and interpreted by the Java virtual machine, the class is said to be

instantiated, and the resulting object in memory is referred to as an instance of the class.

Section 3.0 discusses the implementation of Sonnet in Java. Java specific

references-class names, interface names, data types, etc.-are displayed in the

Courier New fixed width font. Examples related to the SONNET file type are also

displayed in Courier New font.

6.2 Key for software dependency figures

3 http://java.sun.com/docs/books/tutorial/ ava/concepts/class.html
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The diagrams used in the implementation section are meant to show both

relationships and dependencies. There are a few relatively simple conventions.

Interface N

Uses Uses Extends
package Class Interface Interface

Uses
Uses Class B Extends Class A Implements Interface A - Uses - Interface M Interfaces and

Interfaces Class Interface Interface Classes

Uses Uses
Interfaces and Interfaces

Classes Itrae

Figure 16. Conventions for code centric figures
This diagram is a model software system that demonstrate the conventions used in code centric
figures throughout this Thesis.

A package is represented by an empty box. The name of the package is above the

top right hand corner of the box. For brevity, the part of the package name that is

identical for all packages (edu . mit. lcs . psrg) is omitted in all diagrams.

A class is represented by a box with a single bar above the name of the class. An

interface is represented by a box with two bars; one above and one below the name of the

interface.

An arrow with a fully formed white head represents implementation. The arrow

extends from the implementing class to the implemented class.

An arrow with a fully formed shaded head represents extension or inheritance.

The arrow originates from the class that is extending and terminates at the class that is

being extended. (Hence, it also represents inheritance. The arrow goes from the class
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that is inheriting to class that has been inherited). This arrow has a synonymous meaning

between two Interfaces.

A dashed arrow between two objects represents use of an interface. The most

basic form is when a dashed arrow extends from a class to an interface. When a dashed

arrow extends between a class and a package, it not only means that the class uses

interfaces in the package, but also it means that the class does not use any classes in the

package. This means, that the source class must be using other classes that implement

the interfaces in the package. Also, given the definition of an interface, only dashed

arrows are allowed to extend from an interface.

A solid arrow with out a fully formed head represents use of a class. This is most

obvious when the arrow is between two classes. When the terminal end of this arrow is a

packages, it also implies that the source object uses the interfaces in the terminal package.

When this arrow extends between a class and a class in another package, it implies that

the source class only uses the terminal class in the terminal package.

Finally, for brevity, certain types of connections will usually be omitted.

Specifically, if Class M were to implement Interface M, and Class M was the only class

to implement Interface M, the "uses class" arrow would be omitted from Class A to Class

M, since Interface A (the Interface for Class A) uses Interface M, which would then

automatically require Class A to use Class M since Class M is the only implementation of

Interface M.

6.3 Known Unresolved Issues

Package definition no longer matches reality.
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When this project was initiated, I was working in the Laboratory for Computer Science

(LCS) and specifically in the Programming Systems Research Group (PSRG). Since then,

LCS has combined with the Artificial Intelligence Laboratory (AI) to form the Computer

Science and Artificial Intelligence Laboratory (CSAIL). In addition, PSRG has changed

focus and has become the Computational Genomics Research Group (CGRG).

Fix org. apache. log4j import

Currently the log4j package has been refactored to be located at

edu.mit.lcs.psrg.sonnet.org.apache.log 4 j. This is due to an

idiosyncrasy of Cytoscape, where packages located outside of the main plug-in package

are not loaded. Since Cytoscape does not use the log4 j package, a temporary solution

was to move all needed packages from log 4 j to a location where Cytoscape would load

it. Hence, the package org.apache.log4j was re-factored to the package

edu.mit.lcs.psrg.sonnet.org.apache.log 4 j, etc. One possible solution

is to migrate away from using log4j and instead use a package with similar capabilities

j ava .util. logging. Since this package is part to the default Java 1.2 distribution,

Cytoscape should have ready access to it.

Normalize logging

Although logging is a powerful debugging tool during implementation, it should be an

equally useful tool during maintenance and upgrades to the system. However, most of
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the logging performed is on the "debug" threshold. One should examine the code closely

and determine when other messages on the "warn," "info", etc., thresholds. In addition,

error logging messages should be captured to a text file that can be examined when the

program fails. A relevant place to start is by rethinking the initialization of the logging

apparatus in the Sonnet in the setupLogger () method.

Improve value handling in edu. mit. lcs . psrg. sonnet. data. Value

When converting View to SonnetData and saving, integers are saved as floating point

decimals (i.e. 128.0 instead of 128). Hence, when View is created out of a SonnetData

created from such a file, integers must be read as floating point numbers and then cast

into integers.

Use regular expressions in SonnetFileReader and SonnetFileWriter

The current implementation of SonnetFileReader uses the class

java.lang.StringTokenizer, which can only tokenize with tokens of one

character. Hence, tokens such as ": :" or "==" are invalid. Because attributes often

include URL references, many non-alphanumeric characters are disqualified from being

tokens (e.g. ":", "=", "?", etc.), and in fact, almost all characters are found in legal URLs,

rendering most characters unsuitable for tokens. This problem can be resolved by

modifying StringFileReader to use the regular expression tools found in the

j ava. util. regex package.
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