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Abstract

This thesis develops a machine learning framework for predicting crystal structure
and applies it to binary metallic alloys. As computational materials science turns a
promising eye towards design, routine encounters with chemistries and compositions
lacking experimental information will demand a practical solution to structure predic-
tion. We review the ingredients needed to solve this problem and focus on structure
search. This thesis develops and argues for a search strategy utilizing a combination
of machine learning and modern quantum mechanical methods.

Structure correlations in a binary alloy database are extracted using probabilistic
graphical models. Specific correlations are shown to reflect well-known structure
stabilizing mechanisms. Two probabilistic models are investigated to represent cor-
relation: an undirected graphical model known as a cumulant expansion, and a mix-
ture model. The cumulant expansion is used to efficiently guide Density Functional
Theory predictions of compounds in the Ag-Mg, Au-Zr, and Li-Pt alloy systems.
Cross-validated predictions of compounds present in 1335 binary alloys are used to
demonstrate predictive ability over a wide range of chemistries - providing both effi-
ciency and confidence to the search problem. Inconsistencies present in the cumulant
expansion are analyzed, and a formal correction is developed.

Finally, a probabilistic mixture model is investigated as a means to represent cor-
relation in a compact way. The mixture model leads to a significant reduction in
model complexity while maintaining a level of prediction performance comparable to
the cumulant expansion. Further analysis of the mixture model is performed in the
context of classification. Unsupervised learning of alloy classes or groups is shown to
reflect clear chemical trends.

Thesis Supervisor: Gerbrand Ceder
Title: R.P. Simmons Professor of Materials Science
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Chapter 1

Introduction

The primary goal of this thesis is to develop a framework in which historical data is

used in conjunction with modern quantum mechanical methods to predict the crystal

structure of a material.

Calculating material properties through the use of so-called first principles meth-

ods is transforming fundamental materials science. Owing to steady improvements in

both computing technology and the availability of robust, thoroughly tested ab initio

total energy codes, the properties of materials may be rapidly predicted, from scratch,

in a reliable manner [5, 3, 6, 7, 8]. These advances are the enabling agents in a virtual

materials design laboratory whereby materials with targeted properties are under-

stood and optimized prior to synthesis. This new process of discovery spans the full

range of time and length scales with applications in virtually all areas of materials sci-

ence. Current applications include materials for energy conversion and storage (e.g.,

battery cathodes [9, 10, 11, 12] and anodes [13], hydrogen storage [14, 15, 16, 17, 18],

fuel cell cathodes [19], thermoelectrics, optimized metallic alloys for stability [20] or

mechanical behavior, nanotubes for electronic devices [21] and high-rate batteries,

dielectric resonators [22]. This list is far from complete, but gives an indication of the

breadth of impact that first principles techniques are making in the search for new

materials. Recognizing this impact, a recent issue of the Bulletin of the Materials

Research Society focused on the many material properties that can now be addressed

in a fully ab initio manner [5]. To put it bluntly, the first principles search is on, and



the stage set for these techniques to venture into new chemical territories, designing

materials before they are synthesized and tested.

To this day, first principles calculations have focused on understanding and opti-

mizing the behavior of known materials with atomistic level detail. In such a frame-

work experimental structural information is used as a starting point for detailed first

principles calculations. Combining the detailed information and control afforded by

DFT calculations with experiment has led to a much richer understanding of known

materials and the causal mechanisms leading to their observed behavior. However,

when exploring truly new chemistries the most basic information required to run a

calculation, namely the positions of atoms in a crystal, is missing. We call this the

"structure prediction" problem [23] and despite significant advances that are high-

lighted throughout this chapter, predicting structure remains an elusive, difficult task.

This thesis is devoted to developing a strategy for solving the structure prediction

problem through a combined use of historical information and first principles calcu-

lations. The next section details the problem of predicting structure, the ingredients

required to solve it, and summarizes the literature on the subject.

1.1 the structure problem

Crystal structure occupies both a fundamental and widely applicable role in materials

science. Many relevant physical properties of inorganic materials are directly tied to,

and sometimes prohibited by, the underlying symmetry of their crystalline form [24].

Structure alone has a pronounced effect on a wide range of properties from band

gaps to brittle fracture, so material property calculations ab initio quickly lose their

relevance and impact when performed on the wrong structure. Therefore, to fully

harness the capabilities of first principles methods we require a strategy to predict

structure, i.e., given a material's composition and a set of thermodynamic control

variables, what is the stable state of the system ? Methods for predicting structure

generally require three ingredients: an accurate energy model, an effective strategy

to search through the space of possible structures, and a method for evaluating



entropy.

At the energy and time scales of interest to the material's scientist, well estab-

lished methods exist for evaluating the energy of a system. To do so, one must solve

the Schrodinger equation for a collection of interacting electrons and nuclei. For

most materials, the electronic degrees of freedom are assumed to respond instanta-

neously to an electrostatic potential created by a clamped set of nuclei (i.e., the Born-

Oppenheimer approximation)1. The quantum mechanical problem of computing the

energy of a set of electrons under an applied external potential has been successfully

addressed through well known approximations to Density Functional Theory (DFT)

[26, 27, 28, 29] whereby the intractable many-body problem is mapped onto an effec-

tive single particle theory that is exact in principle. It can be argued that practical

implementations of DFT, such as the Local Density Approximation or LDA, employ

somewhat uncontrolled approximations. However, because DFT has proved itself

so immensely effective in reproducing a wide range of experimental properties [5],

predictions with DFT are almost treated as gospel. Most importantly for structure

prediction, where one is interested in determining the stable state of a system, DFT

has been shown to correctly reproduce energy differences between crystal structures

[6]. For example, Curtarolo, Morgan, and Ceder[3] found that for metals and their

alloys, DFT in the LDA or Generalized Gradient Approximation (GGA) reproduced

the true ground state of a system with substantial success (90-97%). There are some

classes of systems, such as transition metal or mixed valence oxides, where LDA and

GGA are known to yield results that are in qualitative error. These failures can often

be traced back to the self interaction error present in DFT which tends to delocalize

states that should be localized [30]. Pronounced errors are manifested in electron

transfer reactions between delocalized and localized orbitals, breaking the usual DFT

"cancellation of errors" and measurable quantities such as redox potentials are in sig-

nificant error [11]. For some chemistries the errors are more severe, and DFT might

predict compound formation while nature phase separates. To circumvent this issue,

'though notable exceptions exist where the zero-point motion of the nuclei are large (superfluids),
systems where large electron-phonon interactions are present (superconductors), and other non-
adiabatic systems [25]



the DFT+U approach and more elaborate methods such as dynamical mean field the-

ory (DMFT) have been shown to improve agreement between theory and experiment

[11, 31]. In summary, some highly celebrated errors of DFT remain, but history has

shown that DFT (or its close relatives) will assign the correct energetic order over

structures with a high degree of accuracy.

While an accurate energy model is necessary to predict structure, it alone is not

sufficient. In general, one will be interested in the stable state of a system held at

finite temperature. Under these circumstances the system will fluctuate over a great

number of states consistent with the imposed thermodynamic boundary conditions.

These fluctuations imply that the state of the system cannot be described by a single

microstate, but can only be understood in terms of an appropriate statistical aver-

age over all allowed microstates. Thus, once the ground state of a system has been

found, methods for evaluating entropy require knowledge of the material's excitation

spectrum detailing both the state space or type of excitations (e.g. vibrational, con-

figurational, electronic), and the energetics of those excitations [32]. For many years,

models of excitations in solids have been studied extensively (refs) and the domi-

nant mechanisms through which a system equilibrates with its environment are well

known. Once an appropriate excitation spectrum has been constructed, a strategy is

needed for appropriately evaluating thermal averages. A variety of methods such as

Molecular Dynamics [33], Monte Carlo sampling [34], mean field theories [35, 36, 37],

and occasionally analytic solutions exist to evaluate a system's entropy.

While challenges certainly remain in all three ingredients required for structure

prediction, this thesis focuses on a key missing piece, namely an efficient method

for searching through the space of possible ground state structures. We confine our

problem to searching for the ground states of a system as a function of composition

at zero temperature and pressure as this is a key ingredient (boundary condition)

for the structure problem under other conditions of equilibrium. The next section

outlines the search problem and strategies for its solution.



1.2 Ground state structure search

Searching for ground states is a difficult, highly non-linear optimization problem of

a system's energy in the space of its atomic coordinates2 . Throughout the course of

history the methods of searching for ground states tend to fall into two categories:

(1) those which directly optimize a system's atomic coordinates and (2) heuristic

rules governing structural stability. Splitting the world of structure search into these

two camps and understanding the advantages and limitations of each, provides the

underlying context for the solution presented in this thesis.

1.2.1 Coordinate based search

Optimizing the energy of a system in the space of atomic coordinates and unit cell

parameters is made tremendously difficult due to the high dimensionality of the space

coupled with the presence of many local energy minima. Canned optimization [38]

of a system's energy converge to one of the many local minima and to address this

issue, several strategies have been developed. One method of reducing this com-

plexity is to optimize a system's energy starting from a small number of common

structure prototypes because such prototypes are known to be the global mini-

mum configuration in some chemistry. This approach rests on the observation that

in nature, a relatively small number of structure prototypes are observed across a

large number of chemical systems (e.g., the CsCl or NaC1 structure prototypes have

been observed in , 7% of all binary systems studied experimentally). Researchers

select a finite number of prototypes based on their own intuition, a highly biased

process in itself, perform a gradient based optimization on these, and proclaim the

resulting stable structure as the true ground state. Unfortunately, there are currently

more than 2500 known structure prototypes. A truly unbiased strategy would require

calculating the energy of each known prototype for every chemistry, which is simply

an intractable solution. Due to the presence of many local minima strategies have

2 For a periodic system consisting of N particles there are 6 + 3(N - 1) degrees of freedom. If one
makes an assumption about the symmetry of the system this number may be reduced.



been developed which essentially "hop" out of the local optimum. These alternative

methods optimize a system's coordinates with a stochastic optimization technique

such as Simulated Annealing (SA) [39] or a Genetic Algorithm (GA) [40]. A key

advantage of stochastic optimization methods is that they can place a guarantee on

finding the global optimum, albeit in the "infinite runtime" limit. In SA standard

gradient-based optimization is paired with a source of random perturbation e.g., by

coupling the system to a fictitious heat bath held at constant temperature. By grad-

ually lowering the temperature of the heat bath the system will eventually "cool"

into the ground state configuration. In practice [41] one finds that SA is both slow

to converge and will often "miss" energy minima even for moderate cooling rates.

The GA approach [42, 43, 44] optimizes a system's coordinates over a population

of structures. Generations of structures are evolved by mating fit members of the

population (e.g., by combining slices of two energetically favorable structures) sub-

ject to mutation (random perturbations of a population member's coordinates). The

key shortcoming of stochastic optimization techniques is the significant number of

energy evaluations required for accurate convergence. For example, in their use of a

GA Probert, et al. [41] and Trimarchi, et al. [45] required more than 40 and 50 local

optimizations respectively to obtain the structure of bulk silicon. In multicomponent

systems the computational cost of GA is increased due to additional configurational

degrees of freedom (atom swaps). A study by Glass, et. al. [44] required 390 total

energy relaxations to find the structure of MgSiO 2, and Trimarchi, et. al required

70 to obtain the structure of GaAs. In metallic alloys, energy differences between

structures are more subtle than "octet" compounds and energy excitations required

to create 0-,1-,and 2-dimensional defects are quite small. Thus, finding ground states

in metallic alloys is likely to be the most stringent test for a GA (e.g. in Reference

[45] the authors simply stopped after 40 calculations having a structure 2meV/atom

above the ground state for AusPd 4 ). Note that because the size of the primitive cell

is unknown a priori, a supercell must be employed to allow sufficient flexibility for

the GA, adding a significant overhead in computational cost.

An alternative approach to optimizing a system's coordinates is to restrict the sys-



tem to a fixed topology. Such methods have been tremendously useful for chemistries

where the set of phases appearing as a function of composition can be described as

an ordering or decoration on a single or small set of underlying parent topologies,

e.g mixing atoms "A" and "B" on an fcc or bcc lattice. By constraining the descrip-

tion of a system to a fixed topology, the standard optimization problem involving

real-valued coordinates of all atoms and unit cell parameters can be converted to

an integer programming problem [46, 47, 48] consisting of finding the lowest energy

decoration of the topology. In this scheme, the energy of a system can be rigorously

expanded with respect to the occupation of groups of nearby lattice sites resulting in

a so-called Cluster Expansion (CE) [49, 35, 36, 50].

H(l, 2, 0 ... , N) = Vo + ZVIi(i) + ZV•,i,j(i,j ) + .
i i,j

H(0) = ZVa¾(a)

Here ai is a variable denoting the species occupying site i and G (a) is an orthogonal

polynomial of occupation variables in the cluster {i E a} and Vc is an expansion

coefficient. In practice, a CE is truncated after including a small number of terms such

as point, nearby pairs and triplets, and so on. Remarkably, the ground states for some

truncated CE's can be obtained exactly [46, 47, 35, 37]. More frequently, to accurately

describe the energetics of mixing, a CE contains so many terms that only approximate

solutions can be made [51, 48]. Often the Vc are fit [52, 53] to a set of energies

obtained via first principles calculations, and the ground states are determined for

a fixed set of interaction coefficients. Such an approach has led to several structure

predictions [9, 54, 8] some of which have later been confirmed by experiment [55, 56].

The CE has recently been "extended" to include the configurational energetics of

localized electrons [57], mixtures of cations and anions [58], as well as rotational

degrees of freedom of fixed structural units such as OH or NH groups [15]. Zhou et al.

recently used the CE to coarse grain protein energetics [59], in essence 20-component

alloy problem ! These extensions provide continued evidence of the utility of such

coarse-grained [50] or "restricted degree of freedom" Hamiltonians. However, because



the CE restricts a system to a fixed topology, solving all structure prediction problems

with the CE is simply not a tractable solution. In many chemistries, the set of phases

appearing at different compositions span many different topologies, and performing

the full procedure of constructing a CE for each is simply too computationally costly.

At their core, each method mentioned in this section is essentially a mathemati-

cal optimization technique coupled to varying levels of approximation to a system's

energy. As such, all suffer from what I call a lack of knowledge transfer across

chemistries. For example, using any of the above techniques to exhaustively deter-

mine the ground states of the Au-Sc system gives no indication of the likely ground

states in the Au-Zn system. Ultimately this task of transferring knowledge from

system to system has been left to the researcher, utilizing his or her own chemical

intuition to decide what to calculate. In the context of deciding what to calculate,

simple heuristic guidelines, discussed next, are often used to winnow the enormous

set of candidates into one that is both chemically reasonable and computationally

tractable.

1.2.2 Heuristic methods

Historically, structural stability has been understood in a qualitative manner using

heuristics: simple, efficient rules and guidelines appropriate for classes of chemistries

which work well under most circumstances at the expense of introducing bias. These

guidelines are used for such tasks as rationalizing why some structures are stable

over others, or deciding if two elements will mix with a positive or negative enthalpy

of mixing AHmix < 0. Heuristics don't rely on any microscopic Hamiltonian, but

rather attempt to relate stability to simple physical concepts. Perhaps the most

widely known set of heuristic rules for understanding structure stability, the so-called

Pauling Rules, were formulated in 1929 by Linus Pauling [60] and detailed later in his

book The Nature of the Chemical Bond [61]. The Pauling Rules are a set of intuitive

rules governing both the type and connectivity of the basic structural units making

up ionic compounds. They owe much of their success to treating both geometrical (or

space filling) and chemical concepts on the same footing. Similar characterizations



based on structural units have also been put forth for metals.

Size effects and hard sphere packing in metals Due to the delocalized na-

ture of valence electrons in metals, crystal structures of metallic alloys are often

conceptualized as dense packings of neutral hard spheres. While at first glance this

approximation may seem too severe, the existence of several classes of metallic al-

loy structures were succinctly summarized on such a "size-effect" basis by Laves and

Witte [62] in 1935. According to their reasoning, when two elements of very different

size are mixed (tacitly assuming that the constituents would otherwise prefer to mix

AHmix < 0), some structures are preferred over others due to a favorable accommoda-

tion of the size mismatched atoms. Following on these ideas, Frank and Kasper [63]

put forth a geometric theory of topologically close-packing phases, providing a ra-

tional for the stability of a number of structures such as the a, p, /-tungsten, and

Laves phases. Somewhat recently, Daams, et al. [64] has identified a small number of

structural units or local environments recurring across a large population of metallic

compounds. Size effect and packing arguments are a useful tool for characterizing a

particular structure, but translating these characterizations into a predictive model

of stability is somewhat difficult and has been met with only limited success. Fur-

thermore, understanding crystal structure on the basis of their local environments

alone carries an inherent limitation in descriptive power. Truly inequivalent struc-

tures will appear identical on the basis of their local environments, but differ in how

the environments are fit together.

Electronic and chemical arguments Early understanding of the physics of met-

als, before the days of DFT, pseudopotentials, and GigaFLOP commodity computers

relied on simplified descriptions of how a materials constituents interacted. The anal-

yses performed were borne out of the solid state physics community who identified

several key factors influencing compound formation in alloys.

Hume-Rothery noted in 1926 [65, 66] that the ratio of "valence" electrons to

atoms in a compound appears constant for some intermetallic phases (e.g., CuZn and



CusSn both have a ratio of e/a = 3/2). Mott and Jones [67, 68], using ideas put forth

by Bloch, deduced a formal relationship between these "magic" ratios and structure

stability. By combining a rigid band theory of electrons with valence electron concen-

tration, Jones was able to illustrate how the nearly free electron Fermi surface would

encounter a zone boundary (and hence a divergence in the electronic density of states)

providing an energetic preference for one structure over the other. While the severity

of approximations in Jones' theoretical analysis are now more well understood, the

idea that the valence electron concentration plays an important role in the formation

of compounds persists to modern treatments of the same problem [69]. Perhaps the

most successful heuristic model of compound formation is due to Miedema [70, 71],

which classifies binary alloy systems as "compound forming" or "phase separating"

based on a two-parameter model for AHmix. Although the Miedema model can-

not discriminate between structures, it has been found to be roughly 95% correct in

predicting whether a system will form compounds or not.

Structure Maps One of the key concepts to arise out of heuristic methods is the

idea that structural stability can be understood on the basis of simple, physically

motivated parameters such as size mismatch (Ar), valence electron concentration

(ne), electronegativity difference (Ax), etc. These parameters provide a simplified and

compact indication of the mixing tendencies of a materials constituents. A structure

map is constructed by plotting which structures are stable over a wide range of systems

in a coordinate space defined by these heuristic parameters. When the coordinates

dictating structural stability, such as Ar and AX, are similar in value for different

chemistries it seems reasonable to expect the stable structures in both to be the same

or very similar. Figure 1-1 gives a schematic representation of an idealized structure

map for several AB compounds. The coordinates xz and x2 could be Ar and Ax

or some other set of physically relevant parameters. The ideas behind structure

maps originated in the work of Mooser and Pearson [72] using the coordinates AX,

a measure of ionicity, and average principle quantum number, which they took as

a measure of the directionality of bonding. Subsequently Harrison, Heine, Simons,
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Figure 1-1: Idealized structure map of AB compounds. Each structure is stable in
regions of the parameter space defined by the coordinates xl and x 2 which could be
size mismatch, electronegativity difference, valence electron concentration, etc..

and St.John [73, 74, 75, 76, 77] identified structural trends using parameters derived

from pseudopotentials. Zunger [78] later used these concepts in his own attempt to

"systematize" binary compounds. Phillips and Van Vechten [79] proposed a dielectric

classification of the crystal structures of octet compounds, making a point to connect

the classification task to experimentally measured quantities. Villars [80, 81, 82]

created a wide number of structure maps using various combinations of the above

parameters even creating "property" maps - the equivalent of a stability map, but

for material properties. Structure maps for oxides have also been constructed by

Muller and Roy [83].

The goal of structure mapping is to achieve separation between different structures

or at least different structure classes and as such it can be viewed as a classification

problem [84] - i.e., in Figure 1-1 all of the B2-forming systems are one class, while

those forming the B3 structure are another. In other words, chemical systems are clas-

sified by their parameter values in terms of the stable structures that appear. Given

an objective of classification, many heuristic coordinate combinations are known to

fail [4] (i.e., multiple structural domains significantly overlap). For example, using

the coordinates Ar and Ax alone will mix structures forming between sp-bonded



materials and transition metal intermetallics. To overcome this deficiency, additional

coordinates such as total electron count must be introduced, a strategy employed by

Villars [80]. Worse still, common combinations of coordinates such as Ar and AX

cannot be varied independently [85]; for example, the electronegativity of an element

can be loosely related to many measures of atomic "size". The key point is that one

particular set of coordinates may work well for covalently bonded materials, but fail

for metallic or non-directionally bonded materials. Pettifor, recognizing the deficien-

cies in using such coordinates created his own chemical scale, X, indexing each element

to a unique number. This chemical scale was then used to create Pettifor's version

of structure maps for common stoichiometries in binary alloys [4]. Pettifor's chemi-

cal scale, while still physically motivated (tending to run up and down the columns

of the periodic table), achieves better separability (classification) at the expense of

understanding the underlying mechanisms driving stability.

Heuristics summary Understanding structural stability on the basis of heuristic

arguments is a powerful method of efficiently summarizing structural trends across

a large number of chemistries. In essence, these methods forgo atomistic level detail

in an attempt to extract general trends. As such they provide just the transfer of

knowledge that is notably absent in coordinate-based searching for stable structures.

Although heuristic methods provide a powerful approach to extracting general

structural trends, a number of thorny issues beyond those already mentioned remain.

First, while heuristics might identify some favorable structures for a given chemistry,

they provide no explicit ranking. Thus structures are either likely or unlikely, but the

question still remains, "by how much ?" Perhaps the best strategy one can use is a

ranking of candidate structures by some function of distance to the system of interest

in the structure map [86]. A more severe limitation is the lack of a strategy for dealing

with conflicting information. For example, an experimental database may contain

information about multiple structures appearing at the same composition, presenting

a complication when constructing a structure map: which structure should be used

in the map ? Given that both experiments appear valid, and barring additional



discriminating information, both structures must be considered a valid assignment.

To utilize a structure map a decision must be made, albeit at the expense of removing

a considerable amount of data from the dataset (e.g. Morgan et al. [86] removed

40% of the available data based on this complication). Finally, structure maps are

constructed for each composition independently, although it seems quite intuitive

that correlation should extend from one composition to another. Because of this

limitation, information available in one structure map cannot be utilized to perform

predictions at others.

1.3 Our solution

We believe significant progress towards the structure prediction problem can be made

by combining the suggestive character of crystal structure correlations present in

historical data with the accuracy of modern first principles energy methods. In a

sense, this thesis will attempt to combine the advantages of both the heuristic and

coordinate-search techniques outlined in this chapter while avoiding the pitfalls as-

sociated with both. Figure 1-2 shows an outline of our overall algorithm. Structural

correlations are extracted from a database of experimental and/or computed structure

information. These correlations are in turn used to suggest the most likely candidate

structures for a given chemistry, and the stability of the candidates is assessed with

an accurate energy model based on modern implementations of DFT. Stable struc-

tures are fed back into the database, correlations rebuilt, and additional iterations are

performed as needed. Provided a sufficient machine learning method can be found to

extract and utilize structure correlations, this framework will solve both the knowl-

edge transfer problem associated with coordinate-based optimization schemes and the

accuracy problem associated with heuristic rules.

The primary focus of this thesis is therefore the construction of a general, unbiased

technique for extracting and using structure correlations present in historical infor-

mation. Of the three ingredients needed for predicting structure, accurate models

for both the energy and entropy exist for all chemistries and structures considered
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Figure 1-2: Outline of formalism for determining the ground states for a specified
chemistry and composition.

within this thesis. The machine learning techniques developed here will ultimately

have a significant impact on how one searches through the space of crystal structures

based on prior information. Our formalism will be described in Chapter 2 and specific

implementations of the technique will be described in Chapters 3 and 4. We have

used our technique to efficiently determine the ground states in the Ag-Mg, Au-Zr,

and Li-Pt alloy systems, the results of which are summarized in Chapters 3. Chapter

5 gives some concluding remarks and an outlook for future work.



Chapter 2

Probabilistic models of structure

correlation

Chapter 1 reviewed the structure prediction problem, the ingredients needed to solve

it, and a brief history of available literature. This chapter introduces the conceptual

framework used in the remainder of the thesis.

To predict the stable state of a system under a particular set of thermodynamic

boundary conditions we require accurate models of the energy and entropy of a sys-

tem, and an effective procedure for searching through the space of structures. Our

strategy is to develop a machine learning technique to enable a systematic, informed

search over the space of structures using a modern DFT-based Hamiltonian. It should

be noted that if we can narrow the list of possible structures down to just a hand-

ful of most likely candidates, the stability of these candidates can be accurately and

rapidly evaluated with DFT. In essence, by systematically winnowing the set of can-

didates, we are solving the structure prediction problem within the class of known

possibilities. In this chapter we will use a machine learning technique to extract cor-

relations from historical data (in essence a form of compression) with an eye towards

remaining unbiased. These correlations will subsequently be used in later chapters

for prediction.



2.1 Data Abstraction

If one is to use any machine learning method to operate on data, perhaps the first

step of the process is to define what your variables are, and give some indication

of the values that they can take on. This process of abstracting the raw data into

a form that is amenable for calculation is of critical importance at all stages down

the machine learning production line. How the data is represented will determine

how difficult it will be to extract and utilize correlation within the data. We are

interested in obtaining correlations from raw experimental and computed information

on structural stability. We are of course at liberty to choose any set of variables to

describe structural correlation, some examples of which have been presented in our

discussion of heuristic coordinates in Section 1.2.2. However, the serious deficiencies

of such a set of coordinates are well-known. Therefore, we will attempt to map

the description of structural data onto a set of coordinates that are as abstract as

possible, while retaining enough information such that predictions can be used directly

to perform a calculation.

Notation and set-up Our goal is to make predictions about the likelihood of

structures appearing at low temperature and pressure as a function of composition.

For this purpose, consider a system composed of m elements denoted el, e2 , ... , em.

We start by discretizing the continuous composition space (Cl, c2, ... , Cm)T

{ci E [0, 1]s.t. Ej ci = 1} into a finite set of p compositions denoted (6l, c2, ... , p).

Each of the p compositions is thus an m-component tuple such that Kr ci = 1. Ob-

viously, choosing to discretize a continuous space is an approximation with potential

complications; a discussion of these topics is provided in the next section. To each

element ei and composition c' we will assign a variable. Let the variable Xe, denote

the variable indicating what the 1st constituent is; e.g. Oxygen, Carbon, Thallium,

etc. Likewise the variable Xa denotes the structure prototype appearing at compo-

sition c' or "nothing known" if no information is available. Note that the variable

values are of no particular order and are thus of nominal type (rather than ordinal or

numerical). The collection of random variables Xei, X 2,..., Xem,I X6, X62,. . . XX• is
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Figure 2-1: Example of how experimental information for the Al-Ti system is mapped
onto our set of variables representing what structures are present as a function of
composition. (taken from [1])

a m + p tuple denoted by the symbol X. In keeping with common nomenclature, the

upper-case X is used to denote a collection of variables while the lower-case x will de-

note a particular instance of these random variables. For our purposes, the collection

of random variables, X, fully characterizes the low temperature and pressure state

of the m-component alloy system. A database of information for N alloys, denoted

by D, is just a collection of N instances of X or D =_ {xl,X2,... ,XN}. Figure 2-1

demonstrates the relationship between x and the experimental information available

in the Al-Ti phase diagram.

discussion of variables In our framework, the set of variables X fully specifies the

information available about an alloy. It is important to contrast this choice of variables

with those used in other data mining-like methods such as structure maps discussed



in Section 1.2.2 or methods that try to understand structural stability on the basis of

local environments. Structure maps utilize a set of coordinates derived solely from the

constituents present in an alloy. The coordinates A X and Ar in binary alloys can thus

be viewed as functional mappings Ax = f(Xe,, Xe2) and Ar = g(Xe,, Xe 2) between

the constituents present, and the values for Ax and Ar. As these variables are part

of our overall analysis, our method should in principle be able to capture much of

the predictive power found in structure maps (although how we use Xi, and Xe,

may be quite different). Structural stability has often been understood through an

analysis of a structure's local environments. As mentioned in section 1.2.2 viewing a

structure as just a set of local environments comes at the cost of a loss of information.

In general, it is simply not possible to uniquely reconstruct a structure on the basis

of its local environments alone. By using structure prototypes as our basic set of

structural descriptors, we retain all of the details of how environments are connected.

Note also that we have not resorted to an oversimplified Hamiltonian or model of

mixing. Through this choice of variables, we free our method from having to describe

the complicated and subtle physical mechanisms responsible for structural stability;

they are simply embedded in the data itself. Nevertheless, in the representation we

use certain approximations have been made, and it is instructive to comment on them.

Perhaps the most important approximation is the use of a discretized composition

space. Phases are known to appear at seemingly any composition, so how does one

justify the use of a finite number of them ?

physical arguments First, our method is intended for use at low temperature

where, according to the 3 rd law of thermodynamics, the composition range over which

a phase is stable will shrink to a single point. So each phase, stable at zero Kelvin,

will be present at only one stoichiometry, but phases can in principle be present at

any stoichiometry (e.g., A99 B, A98 B2 , A97B3, .. .). Crystalline materials are composed

of periodic arrangements of unit cells containing a finite number of atoms. The finite

number of atoms in the unit cell, say N, implies that only a finite set of rational-

valued compositions are possible at zero Kelvin. Empirically it has been found that



the majority of compounds observed in nature occur at compositions where N could

be quite small (e.g., AB, A2B, A3B, ABC, A2BC, etc.). For example, in the Pauling

File binary alloys database 95% of all compounds present form at just 35 compositions.

In the Inorganic Crystal Structure Database (ICSD), 95% of all ternary compounds

are distributed over just 200 distinct compositions 1

machine learning argument A stronger argument for using a finite set of com-

positions can be made from a machine learning perspective. Each alloy maps onto an

instance of the set of variables X and correlations will be extracted from a database

of alloys, D. Our only requirement is that we do not destroy correlation through a

particular choice of variables (discrete compositions). In the context of our data, this

would occur only if two or more compounds present in the same alloy are mapped

onto the same composition variable Xe. If such a situation occurred quite frequently,

we would preclude the possibility of capturing such a correlation. Further discussion

of this issue will be taken up in section 2.2, where the specific dataset used in this

thesis is described.

2.2 Structure correlations

Binary metallic alloys: the Pauling File dataset At this point, we have de-

scribed a procedure for mapping a database of computed or experimental alloy infor-

mation to a, set of variables that will be used to extract correlation. The database

that we will use throughout this thesis is derived from The Pauling File, Binaries

Edition [2, 87]. The Pauling File contains information on more than 10,000 distinct

compounds 2 distributed over 2300 binary alloy systems. This dataset was signifi-

cantly cleaned by Tibbetts [88] who removed high pressure and temperature entries,

duplicate listings, and performed a systematic binning procedure. For initial test-

ing and development, this dataset was restricted to 1335 binary alloys containing

Ithis number is obtained from the raw data, which even includes structures with disorder
2a compound in this thesis is synonymous with the concept of a thermodynamic phase: a partic-

ular crystal structure appearing at a particular composition.



metallic elements. The compounds appearing in each alloy were mapped onto a set

of 29 different composition variables consisting of the following stoichiometries (and

their symmetric, ci -- (1 - ci), counterparts): A, A9B, A6B, A5B, A4B, A7B2 , A3B,

A5B2 , A7B3 , A2B, A5B3 , A3B2 , A4B3 , A5B4 , and AB. After cleaning, a total of 4256

compounds appearing at intermediate compositions remained. In total, 586 structure

prototypes are distributed over 4256 entries.

2.2.1 Correlation between structures

In nature, a compound forms at low temperature because the interactions between

a material's constituents result in an enthalpy of mixing that is negative AHmix <

0 3 The structure of the compound that forms depends on many factors, some of

which were outlined in Section 1.2.2, making the mapping from atomic properties

to a compound's structure extremely difficult, if not impossible, without resorting

to quantum mechanics. Nevertheless, it is quite clear that if a compound forms at

composition ci, then the most likely structures to form at composition cj $ ci would

be related to the structure forming at ci. Let's illustrate this idea with an example.

If the pure elements A and B both form the fcc structure, and at composition AB the

CuAu, or Li 0 prototype forms 4, then it seems reasonable to expect that compounds

forming at other compositions might also be decorations on an fcc lattice. This line

of reasoning represents a heuristic argument utilized for many years to simplify the

analysis of intermetallic compounds. Part of our goal is to take this strategy from

the realm of mental guidelines, to one that is both quantitative and unbiased.

In our abstraction of experimental alloy data, the variable X 5I indicates the

structure prototype, or lack thereof, forming at composition ci. We can analyze the

3Strictly speaking, a AHmix < 0 is alone sufficient for compound formation at zero Kelvin. At
finite temperature one must also include entropic effects and a compound's stability is no longer
determined by simply AHmix < 0 or even AGmix < 0.

4the simplest possible ordered arrangement on the fcc lattice with composition AB
5the vector symbol on composition has been dropped because we are now only concerned with

binary alloys



correlation between structures appearing at different compositions through the ratio

P(zc, _=V,X• =_v=lm)
g(xc1 = Vi, Xc = m) P Vm ) (2.1)p(Xes = 113D)p(xcj = Vm 9))

Here p(xc, - vj, xcj = Vm D) represents the probability that the structure prototype vt

forms at composition ci and prototype Vm forms at composition cj in the same alloy

given available data D7, whereas p(xc, = vmID) represents the probability that the

structure Vm forms at composition ci given a database of known information. Details

of how numerical values are obtained for both are given in Appendix B. Using the

definition of a conditional probability we can write g(xc, xlj) in two equivalent forms

for ease of interpretation.

g(xc,xCj) = p(xc ) - p(x, )  (2.2)

When g(xcc = vi, x• = vm) > 1, the structures forming at compositions ci and

cj are correlated - given that vt forms at composition ci it is more likely that vm

will form at composition cj. Likewise, when 0 < g(x, = vj, Xcj = vm) < 1, these

structures are anti-correlated - the presence of one implies that it is less likely to

form the other. The correlation ratio g(xci, x,) thus mathematically codifies the

concept that structures forming at different compositions can be correlated with one

another. However, rather than representing this correlation through a proxy defined

by a combination of atomic parameters, it is represented in a mechanism independent

way. Thus we are not required to explicate a microscopic model detailing why the

structures are correlated.

Intuitively, highly correlated structures will share common characteristics or con-

served units whereas anti-correlated structures will share very little in common. We

therefore expect that interactions between a materials constituents will give rise to

conserved structural motifs between compounds appearing at different compositions.

Table 2.1 below gives a few examples of structures that appear correlated in nature as

well as a rough summary of the shared features of each. Note that strong correlations

are often the result of a dominant bonding mechanism. Thus metal-hydride structures



are highly correlated, as are the so-called "size effect" compounds. Compounds with

strong directional bonding, such as A1B 2, are also present. Correlations also show

up between more traditional intermetallic phases such as Cu3Au with Ni2In, so this

formalism appears to capture the effects of a wide variety of bonding mechanisms.

Note that transitive effects are also observed (i.e., if structure A is correlated with

structures B and C separately, then B and C are often correlated). For example, in

the class of size effect compounds, both MgCu 2 and Fe3C appear often together with

the compound MnsC 2 . Incidentally, MgCu 2 and Fe3C are also strongly correlated

with one another, having a g factor of 8.5.

One advantage of casting the problem of identifying correlation between crystal struc-

tures in a probabilistic fashion, is that we can equally utilize structures that are anti-

correlated (i.e., they never appear together). As one might expect, if two structures

are stabilized through very different interactions between their constituents, it will be

unlikely that they appear together in the same alloy system. These anti-correlations

will play a symmetric role in the prediction process, allowing us to rapidly rule out

structures as plausible candidates. Table 2.2 gives a few examples of structures that

essentially never appear together in nature. As expected, the stability of each pro-

totype in an anti-correlated pair is rationalized through a different mechanism. For

example, the Cu3Au structure is unlikely to appear with CaF2 ; the former is common

to metallic alloys, while the latter appears more frequently in ionic systems.

2.2.2 Correlation between compositions: mutual information

Looking at individual correlations between pairs of structure prototypes is useful, but

we can take this analysis a bit further in an attempt to answer a slightly more general

question. Suppose that you have knowledge of the structure, any structure, appearing

at some composition ci. How much does this tell you about the structure appearing

at another composition ? Suppose you know what one constituent in an alloy is (but

not the others), how should this knowledge change what structures are most likely at



intermediate compositions ? To answer these questions, we would like to know how

much information is carried by the outcome of variable X,, or Xe, with respect to

the other variables we have thus defined. This concept is represented mathematically

through a quantity called mutual information [91]. Mutual information is a property

of two variables and measures an overall degree of correlation between the pair.

For notational simplicity, let Xi and Xj denote the pair of variables. The mutual

information is given by

j P(XjXj) In P(X' p Xj)(2.3)
Xi'Xj(xi)p(xj)

Mutual information will fall in the interval 0 < li,j : min(Hi, Hj) where Hi is the

information entropy of the variable Xi (see Section A.3.2 for further details). When

Iij = 0, the variables Xi and Xj are said to be independent or uncorrelated. On the

other hand, when li,j is a maximum, one of the variables is a deterministic function

of the other; knowing the outcome of one unambiguously determines the other. In

this case p(xi( xj) or p(xj |xi) becomes a function that is zero or one depending on the

combination of xi and xj. For example, Ii,j = Hi will hold when the variable Xi is

completely determined through knowledge of Xj. Computing values of Iij for pairs

of variables in our analysis will quantify, in a global sense, how much information

is carried by knowledge of stable crystal structures. Figure 2-2 shows the mutual

information for all pairs of variables in our formalism. Each pixel in the matrix corre-

sponds to the quantity i for various combinations of variables. The strongestmin(Hi,Hj)

correlation in the plot corresponds to the pairs of variables X 0, XA and X 1, XB or

the mutual information between the "A" or "B" constituents and their ground state

structures respectively. Strictly speaking the normalized mutual information between

these pairs of variables should be 1; knowing what element is present should uniquely

identify its ground state structure at zero temperature and pressure. However, our

particular database of information, D, happens to have multiple structural listings

available for many elements, resulting in a normalized value that is slightly less than

one. The more interesting behavior depicted in Figure 2-2 is the significant degree
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Figure 2-2: Mutual information between pairs of variables using the Pauling File
Binaries database. Combinations include pairs of variables where each is a structure
forming at intermediate compositions, and combinations involving an element and the
crystal structure forming at a particular composition. Lighter colors indicate stronger
correlation. (*NOTE-this figure needs to be updated *)

with which pairs of variables are correlated across the composition space. Knowledge

of a materials constituents (i.e., knowledge of the variables XA or XB) clearly has

a significant influence on what structures form at intermediate compositions. Some

elements, due to the particulars of their electronic structure and how they interact

with other elements, tend to stabilize specific crystal structures. For example, binary

compounds containing Hydrogen often form the CaF 2 structure while those involving

Beryllium tend to form the NaZn 13 structure. These correlations ultimately manifest

themselves as the bright rows between the variables XA or XB and most of the compo-

sition variables. It is also important to note how the bright regions in Figure 2-2 tend

to be centered along the diagonal running from bottom-left to top-right. This behav-



ior is to be expected, information about structural stability should have a some degree

of locality - the influence of what forms at composition ci tends to diminish as the

focus turns to more "distant" compositions. The strongest composition-composition

correlations tend to involve "common" compositions such as ci = - and c = - (these

compositions result in bright rows and columns). Crystal chemistry has long focused

on rationalizing the existence of compounds involving a dominant bonding mecha-

nism, such as compounds stabilized by "ionic" versus "covalent" bonds. When a

dominant bonding mechanism is present, it is perhaps more likely that a compound

will form at a "common" composition such as cs = or ci = 1; this information then

propagates itself out to other compositions resulting in the observed streaking.

2.3 Overall objective: constructing p(x D)

At this stage of the game, we have (1) developed an abstraction of available crys-

tal structure data, (2) advocated the use of a probabilistic framework for extracting

correlations, and (3) shown evidence that such a framework embodies many of the

rules and guidelines put forth by crystal chemists in the literature. Thus capturing

correlation in a probabilistic fashion implicitly embeds the physics of structural sta-

bility. At no point do we have to connect stability to a microscopic property of a

material's constituents, and as such, we avoid many of the pitfalls associated with

previously used data mining-like techniques such as structure maps. What remains

is to stitch these correlations together into a general technique that can be used for

prediction. The central objective of the remainder of this thesis is the construction

of a high-dimensional probability distribution p(XA, XBX X, ,c2 ,. ''' c pD) = p(xlV).

Before diving into the construction of p(xlD) let's briefly motivate why such an object

would be so useful. Recall our overall strategy discussed in Section 1.3 and shown

in Figure 1-2. In the prediction process one will often have some partial degree of

knowledge about compounds that are stable in an alloy. As an example, consider the

Li-Pt system where the Pt-rich region of the phase diagram is quite well known while

the Li-rich region is more uncertain [1]. Missing structural information could arise



for several reasons, such as the difficulty in keeping Li-rich compounds isolated, or

because of the large difference between the ability of Li and Pt to scatter radiation

(e.g. the atomic scattering factor for Pt is roughly 24 times that of Li for Cu Ka

radiation [92]; making matters worse, the measured scattering intensity will go as

the square of the structure factor or a ratio of nearly 600 [93]). Thus one is often

faced with some partial, and possibly noisy, knowledge about an alloy system and

the task is to make predictions about additional phases that could be present. Let

the known information, or evidence, be denoted by the symbol e. Performing pre-

dictions consists of calculating p(xle, D); the probability of x given the evidence e.

The known information will, at a minimum, consist of the elements present in an al-

loy and their ground state structures, but can also include information about phases

appearing at intermediate compositions. Based on our discussion of the correlation

factors, g(xj, xj), and mutual information, it should be clear that highly informed pre-

dictions could be made by appropriately using the correlation present in a database

of information, D. By constructing p(x|D) we will be able to utilize the correlations

analyzed in Sections 2.2.1 and 2.2.2 to make an informed, logically consistent set

of predictions. These predictions will effectively steer detailed quantum mechanical

calculations to the most likely set of candidates for a given system.

2.4 Graphical models: a framework for building

p(xlD)
To construct a probability distribution in the high dimensional space spanned by x we

will make use of a graphical model framework. Graphical models provide a structured

approach to building high-dimensional probability distributions where clear depen-

dencies and/or correlations exist between variables of interest. If the variables in our

problem, X, were independent we would be able to determine p(xlD) viz.

p(xID) = fIp(xiDv) (2.4)
i

44



However, the evidence presented in Sections 2.2 and 2.2.2 demonstrates that variables

in our problem are not independent. In the worst case scenario, one would have to

construct a table for each possible value of p(x&D). However, the number of entries in

the table will grow exponentially with the number of variables involved. For example,

the Pauling File dataset contains 31 variables each with a sizable domain. Represent-

ing p(xlD) directly would require a table of size |Ox| - 1 = Il I xJ I - 1 _ 0(1050)

which is both impossible to do practically and unnecessary. Rather, the solution to

our problem will lie somewhere within the two extremes defined by an independent

variable distribution and the full joint probability distribution. Graphical models

are the framework of choice for building systematic approximations to high dimen-

sional probability distributions [94]. At their core, graphical models seek to reduce

the complexity associated with representing a full joint distribution by factoring it

into compact terms. Such factorizations can be derived from known independence

relationships between variables, but more often they are used to find the best trade-

off between representing data and computational complexity. The following section

gives a brief overview of graphical models. The purpose here is to highlight only the

properties of graphical models needed for our analysis continued in later chapters.

Many excellent, and much more thorough, reviews of this material can be found in

[95, 96, 94, 97, 98].

Graphical models consist of two parts: (1) a directed or undirected graph over

the variables in the problem and (2) an associated probability distribution. The

graph is useful for determining and/or representing the qualitative features of the

associated probability distribution. Specifically, from the graph one can determine

the independence properties between random variables that will hold in the associated

distribution; e.g. variables X and Y are independent given Z or (X I YjZ).

2.4.1 Bayesian Networks

Bayesian Networks consist of a directed acyclic graph (DAG) and an associated prob-

ability distribution. The graph, denoted g, consists of a set of nodes and a collection

of directed edges between the nodes. Each node in the graph corresponds to a vari-



able, and directed edges explicate dependencies between the variables. To write down

the form of a distribution, given g, we need a few definitions. The set of nodes with

directed edges feeding into variable Xi are called the parents of Xi and the collec-

tion of variables associated with these parents is denoted Xpa,. When no edges feed

into variable Xi, the set of parents is the empty set, 0. Given a set of variables

X = {X1,...,Xm} and a set of parents for each {XPal,... ,Xa,}, the probability

distribution associated with the graph is given by

p(x) = JJP(ilXpai) (2.5)
i

If there are no edges in the graph (i.e., Xpa, = 0), one is left with the independent

variable approximation of Equation 2.4. On the other hand, if the graph is a fully

connected DAG, the factorization in Equation 2.5 is equivalent to the product rule

(generalization of Equation A.3)

p(x) = p(xilxl, ... I,xil)
i

which is an identity. Thus, the appearance of edges in the DAG will take us from

a set of fully independent variables all the way up to the full joint distribution rep-

resenting various degrees of correlation along the way. An example of some possible

distributions obtained over three variables, and their corresponding graphs are given

in Figure 2-3. We can directly read off how a probability distribution will factor

given its DAG. Moreover, the structure of a graph determines a set of independence

relationships that will hold for the associated distribution [94, 95]. For example

in Figure 2-3(b) if the outcome of variable X 1 is known, the resulting distribution

p(x 2 , x31 1 ) factors as p(x 2, x31xl) = f 2 (x 2 )f 3 (x 3 ) i.e., the variables are conditionally

independent given xl or (X 2 I X3 1X1). However, if the outcome of xl is not known,

the distribution p(xz, x2 ) = -- 3 p(X1 , x 2, x3) does not factor and the variables are, in

general, correlated. Although we have used equations to demonstrate the indepen-

dence properties of Figure 2-3(b) one can determine the set of independence state-



(a) (b)
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p(xl)p(x2)p(x 3) p(xl)p(x 2 Ix)p(x3lx0) p(x lx 2, 3)p(x 2)p(x 3)

Figure 2-3: Several Bayes Nets over three variables (a) all variables are independent,
(b) variables X 2 and X3 are conditionally independent given their common parent,
X 1, and (c) a network where X 2 and X3 are marginally independent.

ments that will hold in a DAG through the so-called d-separation criterion [94, 95].

Therefore the DAG explicates both the form of the distribution and a set of indepen-

dence properties that must hold. Due to their use of directed edges Bayesian networks

are often most useful in problems where it is possible to identify causal relationships

between variables. For example, in the field of medical diagnosis a set of variables

describing a patient's symptoms will be determined through variables describing a

state of disease (i.e., the disease state causes a set of symptoms, not the other way

around).

Despite their utility, Bayesian networks have several well-known limitations [95]. For

example, given a set of independence statements about a collection of variables, it is

not possible in general to uniquely construct a DAG which satisfies them (no solution,

a single solution, or multiple solutions may be found). As a consequence, some prob-

ability distributions cannot be represented with any Bayesian network whereas others

are representable in multiple ways, i.e., multiple graphs each with a different set of

directed edges encode the same relationships. Therefore, given only a set of data, D,

it is only possible to determine the DAG structure up to an equivalence class (the



set of DAGs each making the same independence statements). Interpreting causal

relationships from the resulting directed edges between variables therefore must be

done with care. A second and related shortcoming of Bayesian networks is the use

of directed edges which tend to assign a direction of influence. In some settings,

the semantics of the problem imply no direction of influence. For example, in our

problem the distribution p(xcs IXA, XB) seems reasonable; the appearance of structures

is conditioned on their constituent elements. However, the distribution p(xcijXz) is

harder to rationalize as we would have to define a "direction" of influence between

compositions.

Given a dataset, A9, and the functional form of a distribution analytic solutions are

available for its parameters [99](see also Appendix B). Moreover, efficient algorithms

exist for performing the plethora of inference tasks, such as marginalization and pre-

diction. It is even possible to search over the space of factorizations (i.e., the space

of graphs 9) to select the best model for a given set of data [99]. Summary of the

properties of Bayesian networks:

1. Every graph implies a set of independence statements about its variables that

could be true in the given distribution. Thus a graph indicates the possible

independence properties as well as eliminates those that cannot be true.

2. Multiple graphs can map onto the same set of independence statements even

though their arcs may point in opposite directions. Graphs sharing the same

independence statements are said to be equivalent. Without additional infor-

mation on how data was collected it will be impossible to distinguish between

the two.

3. Parameters can be estimated for Bayesian networks very efficiently, in the same

way as Appendix B.

2.4.2 Markov Networks

Markov networks (or undirected graphical models) [100] are the undirected counter-

part of a Bayesian network. A Markov network, like a Bayesian network, is made up



of a graph and an associated probability distribution. Unlike a Bayesian network, the

edges connecting nodes in a Markov network are undirected; they represent a generic

correlation between the two variables. Discovering the dependence relationships be-

tween variables in a Markov network can be obtained simply through the separation

properties of the graph [95, 94]. The independence relationships implied by the graph

place constraints on the associated distribution, and the Hammersly-Clifford theo-

rem [94] provides the connection between independence statements and factorization.

Specifically, the theorem states that any associated distribution consistent with the

graph must factor as

p(x) = (xc) (2.6)
cEC

where C is a set of maximal cliques 6 present in the graph, x, is the subset of variables

corresponding to the clique c E C, and 40(xc) is a potential function defined over

the subset of variables X,. The quantity, Z, is an overall normalization constant

sometimes called the partition function of the distribution. The only requirement of

a potential function is that it is strictly positive Oc(xc) >0 V xV E PC.

relationships between Bayesian and Markov networks

It is important to note some relationships between Markov and Bayesian networks.

First, every strictly positive Bayesian network (i.e., p(x) > 0) can be written as a

Markov network; the conditional distributions satisfy positivity and the #'s can be

written in terms of the local conditional distributions. There are however Markov

networks that cannot be written as a Bayesian network. Consider the Markov net-

work shown in Figure 2-4(a). On the basis of the separation properties of the graph,

we can conclude that the variables X 1 and X 3 are independent given the outcome

of X 2 and X 4 or (X 1 I X3 |X 2 , X 4). In addition, we can say that X 2 and X 4 are

independent given the outcome of X1 and X3 . These two independence statements

are impossible to represent with a Bayesian network over the same variables. Al-

though every Bayesian network can be represented as a Markov network, doing so
6A clique is a fully connected set of nodes (variables) in the graph and "maximal" means that c

is not a sub-set of any other clique in the graph
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'/012(X1, X2)0 23 (X2, X3>, 34 (X3, X4 )

Figure 2-4: Example undirected graphs and their associated probability distributions.

will generally obscure independence statements that can be derived from the di-

rected graph. For example, the v-structure shown in Figure 2-3(c) implies that

(X 2 I X 3 ), but (X2 I X3 X 1) is not true. These two independence statements

cannot be represented with an undirected graphical model using only two edges.

Rather, the Markov network equivalent of Figure 2-3(c) contains three edges or

p( 1 , , X x 3) = -4 123(x 1 • 2, 3 ) which obscures the fact that (X 2 I X 3) in the Bayes

net.

Parameter estimation

Unlike Bayesian networks, there is often no simple closed-form solution for the param-

eters of a Markov network (the numerical values returned by the O's). The underlying

reasons for this difficulty lie in the fact that undirected graphical models do not ascribe

a direction of influence between variables, and that parameter estimation necessitates

a calculation of the partition function, Z, which is intractable to compute in many

cases. Thus given a dataset, D, and an undirected graph, it is often considerably

(a)



more difficult to obtain appropriate values for the O's. An notable exception to this

property of Markov networks occurs when the underlying graph is a tree [94, 97] in

which case the distribution can be written as

p(x) = 1 p p(Xj)P(Xk)
i (j,k)EE

where 8 is the set of edges appearing in the tree. When the underlying graph is a

tree (i.e., it contains no cycles), the parameter estimation process can be carried out

in closed form and efficient inference algorithms are available.

Factor graphs

One drawback of the undirected graphical models discussed thus far is the use of

potentials defined over cliques. For example, an undirected graph may become

densely connected by analyzing just pairwise relationships between variables; i.e.,

you know that many pairs of variables are correlated, but haven't studied higher

order correlations to ascertain their dependencies. For each pairwise correlation,

you add an edge to the undirected graph, and before long you have a maximal

clique that contains all the variables ! The Hammersly-Clifford theorem is use-

ful for making general statements; i.e., statements that will hold for any distribu-

tion consistent with a given graph. Nevertheless, your distribution of interest could

factor in a simpler way, which is certainly allowed. For example, the Hammersly-

Clifford theorem indicates that the graph shown in Figure 2-4(b) must factor as

p(x) = 123(x 1, 2 , x3)34 (3, x4 )' 35 (x3, x 5 ). It may be that your model will only

have factors defined over pairs of variables (e.g., one for each edge) in which case the

distribution would be written

p(x) = IkV12(X1, X2)0 13 (X1, X3)0,323 (X2, 3)034(X3, 4) 4 35(X3, X5 )

Consider the implication, in terms of storage, of this additional factorization. Suppose

for example, each of the 5 variables involved can take on q different values. The



number of parameters required for the Hammersly-Clifford version of p(xl,..., xs) is

q3 + 3q2 whereas for the reduced version it is 5q2 . Hence the reduced factorization

will require fewer parameters for any q > 3. For cliques containing a large number

of variables, this additional factorization would lead to a dramatic reduction in the

number of parameters.

Undirected graphical models where the explicit form of the clique potentials has

been simplified further, or specified at a finer level, are called factor graphs. Every

factor graph is an undirected graph, but they are reserved distinction because they

are generally simpler.

2.5 Outline

The remainder of this thesis focuses on the construction and testing of three differ-

ent graphical models for p(xlD). Chapter 3 outlines the construction of a cumulant

expansion and Maximum Entropy model for p(xlD); both undirected graphical mod-

els. In Chapter 4 a simple Bayesian network, known as a mixture model will be

constructed and analyzed.



Structure A
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Ga @ 0

PuGa6 @
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Structure B
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PuGa6 A
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CaCu 5 A -
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Correlation
Ratio

g(xc, zcj)
54.0

30.67

30.23

46.7

93.8

54.7

9.6

6.8
27.2
11.0

8.6

Shared structural elements

Both structures contain the same
two local environments for the
rare earth ion. The Gd 2Co7
structure arranges these environ-
ments in layers with the stacking
sequence AABAAB... while in
PuNi3 the sequence is ABAB....
Both structures share a local en-
vironment for the rare earth ion
(the "A" environment mentioned
above).
The AlB2 structure contains a
Boron layer dominated by sp 2

bonding. The a-Ga structure is
known to contain both covalent
and metallic bonds [89].
The 5-fold and 3-fold coordi-
nation environments of Ga in
PuGa 6 are influenced by the co-
valency character of Ga.
The covalency bonding charac-
ter of Ga/B influences the struc-
ture. Note these structures are
separately correlated with the Ga
structure prototype.
Both structure prototypes are
common among metal hydrides
Both structures are so-called
"size effect" compounds
Both are "size effect" compounds
Both are "size effect" compounds
Both are fairly common close-
packed intermetallics. Pu3 Pd5
can evidently be derived from the
CsCl structure type [90]. One
can also view it as an ABAB...
stacking of distorted close-packed
layers with stoichiometries A4 B4
and A6B 2.
Ni 2In (also called B82) contains
close-packed planes much like the
111 planes of an fcc lattice but
with a stacking fault. Cu 3Au is a
well-known A3B ordering in the
111 planes of the fcc lattice.

Table 2.1: Highly correlated structure prototypes present in the Pauling File database



Correlation Ratio g(x,,, xc) )
S0

S0

S0

" 0

1 0

Shared structural elements
Both structures are "size effect"
compounds. For both to ap-
pear in the same alloy system,
one would have to place "small"
atoms on "large" atom sites.
The ionic bonding present in
NaCl is not compatible with a
size effect compound
One is stabilized by ionic interac-
tions, while the other is a simple
ordering on a close-packed lattice
Bonding characteristics in an al-
loy will not change significantly
over such a small composition
range
An sp2 /sp 3 bonding constituent
needed to stabilize AlB 2 is incom-
patible with the CsCl structure
The concentration of the "metal-
lic" constituent in Fe3 C should be
large, whereas this combination
would place the metallic element
on the C sites

Table 2.2: Strongly anti-correlated crystal structures in the Pauling File database

Structure A
MgZn 2 A 1

NaC1 12

NaCl@ u

Cu 3Au ©

AlB 2 @

W(bcc) @ 0

Structure B

MgCu 2 @
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Cu3Au @ a

CaF 2 A•

CsCl ~

Fe3 C ©"



Chapter 3

Cumulant expansions for structure

prediction

This chapter explores the construction and testing of a probability distribution in

the space of all possible binary alloy ground states. Chapters 1 and 2 discussed

how such an object would be used, and gave preliminary evidence suggesting that a

probabilistic approach to predicting structure would be useful. In this chapter the

probability distribution, p(xlT)), is expressed as a truncation to an exact expansion

for p(xJD). The truncated expansion, a model for p(xlD), is then used to make

predictions in three specific alloy systems and further tested by predicting all known

ground states in binary metallic alloys. The expansion for p(xlD) is shown to perform

remarkably well in spite of a number of known formal difficulties. This chapter finishes

with a discussion of these formal issues and how one might correct for them.

3.1 Introduction

The idea of approximating a multivariate distribution through a factorization into

smaller parts has appeared in many different areas of science. Several general strate-

gies were outlined in Sections 2.4.1 and 2.4.2 in the context of probabilistic graphical

models. The model presented in this chapter, a so-called cumulant expansion, is a

specialized form of an undirected graphical model. This technique for constructing



p(xID) is not in common use in the machine learning or graphical model literature, so

this section will begin with a review of how the cumulant expansion came about. The

goal is to give a bit of background as to the source of our appromation for p(x17D).

We'll start by giving an overview of how Morita [101] used a cumulant expansion to

derive Kikuchi's [102] Cluster Variation Method (CVM).

In the field of statistical mechanics one is faced with the problem of computing aver-

ages over a probability distribution having the form [32]

p(x; 3 ) = 1 exp (-PH(x)) (3.1)

where H(x) is a Hamiltonian defined over the microscopic degrees of freedom of a

physical system, x is a set of variables describing the microstate of the system, Z

is a normalization constant, and f = (kBT) - 1. A well-known result of statistical

mechanics [32] is that the thermodynamic state of the system can be determined by

performing certain averages over the distribution given by Equation 3.1. To accurately

represent the energetics of a system it is often necessary to include terms in the

Hamiltonian which couple pairs and multiplets of variables. However, doing so makes

the analytic calculation of averages over the equilibrium distribution (Equation 3.1)

simply impossible. For example, including pairwise interactions in the Hamiltonian,

{V(xi, xj)}, with a general dependence on (xi, xj) will couple all the variables in the

system. Quantities describing the thermodynamic state of the system, such as the

partition function, Z, or the entropy, S

Z(3) = E exp (-PH(x))
x

s(O) = -ks p(x) In (p(x)) = -k (ln (p(x)))

require a sum over states to be performed that cannot be generally expressed in any

simple analytic form. A method for obtaining approximations to the free energy of the

system is to start with the relation between the equilibrium free energy, the average



of H(x) and the entropy S

F(0) = (H) - TS (3.2)

Starting with Equation 3.2 one develops approximations to the (H) and S terms

by substituting by substituting in a trial form for p(x; /) affording easily manipula-

tion. By carefully choosing the trial form for p(x; /) it is possible to develop accurate

approximations for (H) and S terms in Equation 3.2. This strategy was perhaps

initiated by Kirkwood [103], and later taken up more generally by Kikuchi [102].

Morita [101, 104] was the first to express Kikuchi's method as a cumulant expansion

for the entropy term in Equation 3.2 and shed light on the approximation using the

variational principle of statistical mechanics.

Morita's cumulant expansion for the entropy is given by

S = Zs (3.3)

where S9 is the entropy cumulant associated with a subset of variables xc and the

sum extends over all possible subsets. The entropy associated with the subset of

variables Xa, denoted So, is given by

So = -kB p(xa) In (p(xa))

One can solve for the entropy cumulants in terms of the entropies of subsets of vari-

ables using a M6bius inversion, as suggested by An [105] and Schlijper [106]

Oca

where nu denotes the number of variables in the subset xp. For example, when the

subset of variables is xa = (xi, xj), the entropy cumulant is given by

Si,i = Sij - Si - Si = -Iij



where i,j is the mutual information between variables Xi and Xj. As discussed in

Section 2.2.2 and Appendix A.3.2 the mutual information is zero when the variable Xi

is independent of Xj or (Xi I Xj). For three variables x, = (xi, xj, Xk) the entropy

cumulant is given by

Si,j,k = Si,j,k - Si,j - Si,k - Sj,k + Si + Si + Sk

The entropy cumulant Si,j,k is the negative of the so-called interaction information

defined by McGill [107]. Morita developed approximate expressions for the entropy

(Equation 3.3) by only including terms involving small subsets of variables. This

truncation of Equation 3.3 is equivalent to expressing p(x; 3) as a factorization over

compact functions (functions containing a small number of variables). By only retain-

ing a small number of terms in the factorization, it is possible to arrive at expressions

for the (H) and S terms in Equation 3.2 involving only the compact functions. Fol-

lowing this simplification, the approximate free energy, denoted F(O), is minimized

in the low dimensional space of factors rather than attempting to determine (H) and

S directly (i.e., from a sum over states under the distribution given by Equation 3.1).

The variational principle of statistical mechanics [32] guarantees that if the trial form

for p(x) is a valid probability distribution 1, the inequality F(O) _ F(3) will hold.

This technique for obtaining approximate free energies is nowadays referred to as the

Cluster Variation Method, or CVM. We have included this discussion of the CVM

for two reasons. First, this chapter will start by directly using the expansion for p(x)

implied by the CVM; hereafter referred to as the cumulant expansion approach. This

expansion for p(x) is not often found in the machine learning or graphical model

literature, so our discussion has been provided to highlight the origin of this tech-

nique. Second, in Section 3.3 we will derive a model for p(x) on the basis of the

maximum entropy principle; the CVM can be used in this context as well as a means

for parameter estimation.

'The cumulant expansion is not a valid probability distribution. The consequences of this fact
are discussed in Section 3.3.1



Derivation Quite generally one can consider a factorization of p(x) in the following

form

p(x)= ]gi(x5) fIIgk(xj , k) I gimn(xi,•Xm, n) -.. (3.4)
i j<k l<m<n

independent vars pair correlations triplet correlations

The factorization in Equation 3.4 extends over all possible groupings of variables and

makes no approximation - it is an identity statement. However, Equation 3.4 suggests

that we view a decomposition of p(x) first as a product over independent variable

terms with correction terms added to capture correlation present between pairs of

variables, triplets, and so on. With this in mind, the cumulants (correction terms)

are often defined recursively. To see how this works, let's start with a distribution

over just one variable. For a single variable Equation 3.4 becomes

p(zX) = gi(xi)

Now, for a distribution over two variables we write out Equation 3.4 substituting in

the single-variable result

p(xi,xj) = gi(xi)gj(xj)gij(xi,x j)

= p(xi)p(xj)gij(X, Xj) (3.5)

Any distribution over two variables can be written in the form of Equation 3.5. The

correction term, gij(xj, j), is therefore given by gj(xj7, xj) = P(pj. Continuing in

this fashion, the general form for a cumulant over the variables X, is given by

g(x) - p(x0 )
a (x ) = a(3.6)

where the product in the denominator extends over all possible subsets of X,. In

Chapter 2 pair cumulants {gij(xi, xj)} were analyzed to show how pairs of structures

are correlated in nature. When gij(i, xj) = 1 the pair of structures is said to be

uncorrelated, because in that case p(Xi, xj) = p(xi)p(xj). The higher-order cumulants,



such as gijk(xi, Xj, Xk) can be thought of as a generalization of this concept to larger

collections of structures. When gij(Zi, xj) = 1 but gijk(Xi, xj, Xk) = 1, the structures

are pairwise correlated, but not correlated as a triple. The principle approximation

used in the CVM is to assume that for subsets of variables beyond a certain size or

scope 2, g,(x,) e 1 V x, E Qx:; hence there is no need to include these terms in the

factorization. For example, using the approximation that any cumulant containing

more than two variables will be equal to one, Equation 3.4 becomes

p() = Z P(Xi) HJgk (Xj, Xk)
i j<k

= 1 p(1i) r p(Xj, Xk)
Zi j<kP(Xj)P(Xk)

Here we have included an additional constant Z to normalize the distribution. Recall

our focus is to determine the probability of a set of ground states x given available

data D, or p(x D ) . To do so we will keep the form of Equation 3.7, and just use

p(zi)'s and p(Xj, Xk)'s estimated from the data D or

p(xID) = (1 p(xI)7J p(j, k JD) (3.8)Z , j<k p(Xj179)p(XkIE

where p(x I D) and p(Xj, Xk ID) are given according to the procedure presented in Sec-

tion B.1.2. Equation 3.8 is the model used in this chapter for making predictions,

hereafter referred to as just the cumulant expansion.

Before discussing the results obtained with Equation 3.8, it is important to draw

the correspondence between Equation 3.8 and the graphical models discussed in Sec-

tion 2.4. In other words, in the context of graphical models, what is the structure of

the graph corresponding to Equation 3.8 ? The graph is not directed, as the prob-

ability function does not factor according to Equation 2.5. However, we can view

2 note that size takes on a different meaning when referring to a generic set of variables versus
those that, due to their interactions, can be arranged onto a lattice with connecting lines representing
interactions.



Equation 3.8 as an undirected graphical model where, as before, each variable cor-

responds to a node in the graph. Each correction term, gij(Xi, xj), in Equation 3.7

adds a direct correlation between the variables Xi and Xj. Therefore, for every

gij(xi, xj) term appearing in Equation 3.7, an edge will be added to the undirected

graph connecting the nodes associated with the variables Xi and Xj. If correlation

terms are included for all pairs of variables, as performed here, the resulting graph is

fully connected. Based on this graph connectivity the Hammersly-Clifford theorem

(Equation 2.6) makes no statement with regard to the factorization of p(x) because

the maximal clique for such a graph corresponds to all the nodes. However, the

cumulant expansion suggests a much stricter factorization; it is more explicit about

how the distribution factors because only pairwise terms are included. Models with

such strict factorizations are called factor graphical models and their corresponding

graphs, factor graphs [95]. To every pair of variables connected in a factor graph,

one associates a non-negative potential function, ij (xi, xj). The important concept

to note here is that the cumulant expansion (Equation 3.8) explicitly gives the form

of the potential functions appearing in a factor graph. In particular the cumulant

expansion indicates that

and

Because the potential functions can be directly related to the marginals of the full

joint distribution p(xlD), we call the cumulant expansion a specialized form of an

undirected graphical model. Parameterizing a factor graph in this way is a bold

statement, the consequences of which are discussed later in Section 3.3.



3.2 Predictions in binary metallic alloys

Using a filtered 3 version of the Pauling File Binaries Edition for D we have con-

structed the expansion of Equation 3.8 and this section outlines our main results.

We begin by illustrating predictions for a few specific systems following the outline

presented in Section 1.3 and Figure 1-2. As a brief reminder, the overall process

consists of the following steps. First, information about an alloy is collected from

the database, D, to form the evidence e. Evidence about an alloy consists of, at a

minimum, the constituents present and their structure prototypes. In many cases,

one will also have knowledge about other compounds present in the system at inter-

mediate compositions - these are all collected into the evidence e. Compositions for

which nothing is known are assigned the value "no-compound/2-phase". Next, for

the composition of interest, the conditional probability p(xi e, D9) is calculated for all

possible prototypes using the formula

p(zi Ie, D) = 1 p(xi D) p(Zi, J=ejV) (3.9)Z(e) p(xi D)p(xj = ej D) (3.9)

where

Z(e)= Z p(xjD) -II p(xi xj = ej1D)

Assigning the value "no-compound/2-phase" to compositions for which nothing is

known is used to simplify the calculation of the conditional probability. If these

values were not assigned, calculating the conditional probability would require a sum

over all unknown variables; an operation with exponential complexity in the number

of unknown variables. The values of p(xile, D9) are used to generate an ordered list

of likely prototypes (ordered by decreasing conditional probability). Finally, detailed

DFT calculations are performed according to the ordered list, and the stability of all

phases is assessed. Following the detailed discussions below we'll perform a database-

wide set of predictions to establish how our method performs in general.

3 as described in Section 2.2



3.2.1 Specific predictions

In this section, the results of performing structure predictions using the model de-

scribed by Equation 3.8 followed by detailed calculations are presented for three

binary metallic alloys: Ag-Mg, Au-Zr, and Li-Pt. Two of these systems, Ag-Mg and

Au-Zr, have been studied previously within DFT by Curtarolo, Morgan, and Ceder [3].

In Curtarolo, et al. DFT calculations were performed on 176 different crystal struc-

tures (101 prototypes) in 80 binary metallic alloys. This large scale study gave broad

evidence establishing the general agreement between modern DFT techniques and

available experimental information. In the Ag-Mg and Au-Zr alloy systems, the crys-

tal structures investigated in Curtarolo et al. [3] were not sufficient to fully ascertain

the correspondance between DFT and experimental results (for reasons described be-

low). The results presented here help clarify the comparison between experiment and

DFT for these two systems by predicting the structure of compounds for which no

comparison was possible in Curtarolo's work.

Ag-Mg

The phase diagram of Ag-Mg is known to a reasonable level of accuracy [1, 2, 108, 109],

though the structural information for a number of compounds remains unknown. In

particular, a compound with composition AgMg 3 has been reported by Prokof6f [108]

to be stable at low temperature, but the structure has not been refined. Figure 3-1(a)

shows the experimental information available for the Ag-Mg system in the Pauling File

database. We will use this information as the available evidence, e, to condition our

predictions. Note that the Pauling File [2] lists the ZrAl3 prototype (D0 23) for Ag 3Mg

while Massalski [1] lists Cu 3Au (L12). Detailed DFT calculations [3] and a Long Pe-

riod Superstructure analysis by Kulik, Takeda, and de Fontaine [109] have confirmed

the stable state as ZrAl3, so we will assign the ZrAl 3 prototype to the Ag 3Mg com-

position for making predictions. Figure 3-1(b) shows the most likely candidates for

the structure of AgMg3, on the basis the conditional probabilities calculated using

Equation 3.9. On the basis of these suggestions, DFT calculations were performed
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0.000000175
0.000000037
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Figure 3-1: Evidence and predictions
taken from [2].

in the Ag-Mg system. Experimental information

using the top 10 predicted candidate structures along with 26 other common struc-

tures (taken from Reference [3]) within the GGA approximation to DFT 4. Figure 3-2
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shows the calculated formation enthalpies (at p = 0) of all structures investigated in

the present study. Each red square corresponds to the formation enthalpy (AHform)

of a structure referenced to the pure end members, in this case face-centered cubic

(f.c.c.) Ag and hexagonal close-packed (h.c.p.) Mg. The green line in Figure 3-2,

called the convex hull, identifies the thermodynamically stable states of the system as

a function of composition. In Figure 3-2, the convex hull extends from the CsC1 (or

B2) structure at composition AgMg (not shown) to the Cu 2.82P structure and from

the CU2.82P structure at AgMg 3 to pure Mg (also not shown). The ground states

at compositions AgMg, and Mg are well known and both experiment and DFT are

in agreement. The Cu 2.82P prototype, identified by the cumulant expansion as the

most likely compound at the AgMg 3 composition, is also the most stable within DFT

compound among the 29 structures prototypes calculated at this composition. The

IrA13 prototype, also known as DO18s, is the next most stable structure relative to

the CU2.8 2P prototype with an enthalpy 20 above the hull. The D019 prototype,

identified as a potential ground state in Reference [3], lies 22 above Cu2.8 2P

Also note that an additional phase, the so-called E' phase, has been experimentally

reported at composition Ag17Mg 54 (off-stoichiometry from the AgMg 3 composition).

The enthalpy of formation for this phase is also shown in Figure 3-2(just to the right

of the AgMg 3 composition), but it is unstable with respect to phase separation into

a mixture of AgMg 3 and pure Mg.

For this prediction, our probabilistic method has been remarkably efficient in sug-

gesting likely ground states. It is important to note that according to practices

commonly found in the literature, whereby only common structures are investigated

for stability, the CU2.8 2 P would most likely not be tested for stability. This is pri-

marily due the fact that the Cu2.82P structure is both uncommon, appearing a scant

nine times in the Pauling File database, and the size of the Cu 2.82P unit cell (24

atoms) would discourage its calculation with quantum mechanical methods due to a

large computational overhead. In contrast, our method ranks Cu2.82P as a very likely,

although non-obvious, candidate on the basis of available experimental correlations.



The ability to predict rare, complicated structure types such as Cu2.82 P is an impor-

tant feature of our method and illustrates that structure correlation can significantly

influence the order in which potential ground states are searched for.

AuZr

The Au-Zr alloy system, like the Ag-Mg system, has been studied within DFT by

Curtarolo et al. [3]. A number of ordered compounds have been reported experimen-

tally for this system [1] at the compositions Au 4Zr, Au 3Zr, Au 2Zr, Au10Zr7, Au 4 Zrs,

AuZr 2 , and AuZr 3. Of these, two compounds Au10Zr7 and Au 4Zr5 lack detailed

structural information. In the DFT study [3] of this system no prototypes were cal-

culated at the Au 10 Zr7 composition. Because no structures were calculated at this

composition in Reference [3] the stability of DFT calculated compounds appearing

at nearby compositions was inconclusive; it is possible that the Au10Zr7 compound

makes compounds appearing at nearby compositions unstable with respect to phase

separation. To further clarify this issue, we have performed predictions and DFT

calculations for the Au10Zr7 prototype using the available experimental information

shown in Figure 3-3(a). A list of suggestions for the structure of Au 0oZr 7 is generated

/Y-_F·I-IL~-^ I Th4-ILL-~-.-

'omposI Lon rorLouype Rank
Au Cu (f.c.c.) 1
Au 4Zr Au 4Zr
Au 3Zr 3Cu 3Ti (DOa) 3
Au 2Zr MoSi 2 (Cllb) 4
AuZr 2  MoSi 2 (C11b) 5
AuZr 3  Cr 3Si (A15)
7r MT (h n)

Prototype
Zr7 Nio
Os 2A13
T19Pd1 3

CusZn 8

Ti2Pd3

p(x2 e)
0.00034
0.00000
0.00000
0.00000
0.00000

b . .pV

(b) Structure candidates for the
(a) Summary of experimental in- compound AuioZr 7

formation or evidence, e

Figure 3-3: Evidence and predictions in the Au-Zr system. Experimental information
taken from [2].

with Equation 3.9 based on available evidence, summarized in Figure 3-3(b). In this



study DFT calculations were performed for all structures having a formation energy

within 30 me of the calculated convex hull given in Reference [3]. The convex hull of

the system on the basis of these calculations is shown as the green line in Figure 3-4.

On the basis of the predictions shown in Figure 3-3(b), we calculated the Ni10 Zr 7 pro-

totype, suggested as the most likely candidate for this composition. Figure 3-4 shows

the calculated convex hull (blue line) after the Ni 10 Zr 7 prototype is included into

the set of calculated phases. The key observation here is that including the Nio1 Zr 7

prototype into the set of calculations changes the sequence of DFT-predicted ground

states as a function of the Zr composition. This highlights the fact that predicting

ground states as a function of composition requires a thorough search over the set of

possibilities. Constructing the probability distribution, p(xID), using a large database

of known experimental information enables such a systematic, informed search to be

performed.
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Figure 3-4: Convex hull for the Au-Zr system in composition range czr E [0.3, 0.6].
The tie line on the left hand side connects to Au 3Zr (PCu 3Ti prototype) and that on
the right to AuZr 2 (MoSi 2 prototype). The green line corresponds is the calculated
convex hull using the results of Reference [3] (without the Nij 0Zr 7 prototype) while the
blue line is the calculated convex hull including the predicted structure for Au10Zr 7.



LiPt

Unlike the Ag-Mg and Au-Zr systems, experimental evidence for the Li-Pt alloy sys-

tem is both scarce, and occasionally in conflict. The Li-Pt phase diagram in common

use [1] is based primarily on the work of Loebich and Raub [110] and supported by

only a handful of others [111, 112, 113, 114]. Most of the uncertainty surrounding

the compounds of Li and Pt is a result of the experimental difficulties in keeping

Li-rich compounds isolated [1]. A good portion of the phase diagram has been called

into question, and in particular, little information is available for Li-rich alloys. Ex-

perimental structural information is available for the compounds Li2Pt, LiPt, LiPt 2,

and LiPt7 . Two suspected compounds, LiBPt and Li1 5Pt4 , have been proposed in the

Li-rich portion of the phase diagram on the basis of thermal arrest evidence [111]. To

our knowledge, no other DFT calculations have been performed in this alloy system.

Because so little information is known for several compositions in this system, predic-

tions were performed by attempting to maximize the conditional probability p(xle, D))

over multiple variables at once. In general, the space of possibilities is so large that

a fully analytic optimization is not possible. To address this issue a greedy search in

the space of unknown variables has been performed. Greedy search starts with a ran-

dom value of x (i.e., a random assignment to the unknown variables). The function

p(xle, 1D) is then optimized, in a sequential manner, over each variable. The vari-

able for which the single largest increase in p(xle, D) can be obtained is then fixed,

and the procedure repeated. The greedy search algorithm, optimizing one variable

at a time, will find a local maximum of p(xle, D~) in the space of unknown variable

assignments. Because only a local maximum is found, the search is repeated several

times starting from different random initializations. We have found this procedure

particularly efficient for performing predictions over many different variables at once.

Figure 3-5(a) shows the available evidence for the Li-Pt system and Figure 3-5(b), the

most likely predictions associated with this system - note that predictions are made at
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(b) Structure candidates for Li-Pt compounds

Figure 3-5: Evidence and predictions in the Li-Pt system. Experimental information
taken from [1, 2].
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multiple compositions. Each prototype listed in Figure 3-5(b) was calculated within

DFT along with all experimentally known compounds of Li and Pt[113, 114, 112].

The resulting convex hull and DFT formation enthalpies of all calculated structures

are shown in Figure 3-6. Our calculations confirm the stability of the experimentally

determined phases Li2Pt, LiPt, and LiPt7. In the Li-rich region of the phase dia-

gram, the suggested structures have led to one ground state prediction at composition

Li 15Pt 4. The formation enthalpies of two additional suggested structures essentially

lie on the tie line between pure Li (h.c.p.) and Li15Pt 4 . In particular, DFT calcula-

tions predict the stability of the Cu 15Si4 prototype at composition Li15Pt 4 and near 5

stability of Li5 7Pt1 3 ( Rh13Sc57 prototype) - both compounds were suggested as highly

likely candidate ground states by p(xle, D). During the greedy optimization proce-

dure, the cumulant expansion also suggested the Cu 3Au, LiIr 3, and SrPb3 prototypes

as candidates for the compound LiPts. Our DFT calculations indicate the Cu 3Au

prototype is stable for this composition (the structure of SrPb3 is related to Cu 3Au

through a tetragonal distortion of the simple cubic unit cell of Cu 3Au). The LiIr 3

prototype has an enthalpy 32 m above Cu 3 Au. Note that the experimentally [112]

determined structure of LiPt 2 , the MgCu 2 prototype, is found in our calculations to

be unstable (by 57 ) with respect to phase separation into a mixture of LiPt and

LiPt 3. It is possible that entropic mechanisms stabilize the MgCu 2 structure at finite

temperatures over the LiPt and LiPt 3 two-phase state, although additional calcula-

tions are required to investigate this assertion.

The cumulant expansion has again performed remarkably well in suggesting the

ground states of Li-Pt, especially in the Li-rich region of the phase diagram. Calculat-

ing only a handful of the most likely suggested candidates is sufficient to identify the

structures of several suspected Li-rich compounds. Moreover, note that all structures

suggested by the cumulant expansion are either ground states or lie within 35meV of

the calculated convex hull of the system.

Sthis compound has a formation energy that is less than 1 above the tie line between pure
Li and Li15 Pt 4



3.2.2 Database-wide prediction

The successful structure predictions performed in the Ag-Mg, Au-Zr, and Li-Pt sys-

tems give some preliminary evidence that our approach to structure prediction is

working as desired. However, to get a handle on how well the method performs in

general, the cumulant expansion will now be used to predict all compounds in the

Pauling File dataset, D. The purpose for this activity is twofold. First, predicting all

compounds in the dataset, D, will give an indication of how well the cumulant expan-

sion performs over a wide range of chemistries. Predictions performed in the Ag-Mg,

Au-Zr, and Li-Pt systems suggest that the cumulant expansion works well, but how

will it perform across a broader class of chemistries ? Second, recall that p(xle) gives

a ranked list of likely structure prototypes, conditioned on available evidence, e. Once

these conditioned probabilities have been determined, structures are calculated with

DFT in order of decreasing likelihood (i.e., calculate the most probable structures

first). The performance of the cumulant expansion is therefore determined by how

far down a ranked list one must travel before reaching the true stable structure - i.e.,

by how effectively the evidence is used to make informed predictions. In practice the

position of the true compound is obviously unknown and one is forced to choose a

reasonable stopping point. By analyzing the distribution of these positions over all

predictions, we will develop an empirical stopping criterion.

Cross-validation [115] is a general technique useful for assessing the predictive power

of a model over a dataset. To ascertain both the performance of the cumulant expan-

sion over a wide range of chemistries and obtain a handle on a reasonable stopping

criterion for investigating suggested ground states, we have performed cross-validated

predictions of all compounds appearing in the dataset, D. The overall outline is given

in Algorithm 1. Each compound with a non-unique structure prototype 6 in the

database is predicted in the following manner. First, the alloy of interest, denoted xi,

6predicting a unique compound in a cross-validated setting is equivalent to predicting a structure
that has never appeared. Unique prototype predictions comprise just 5% of all possible predictions
and therefore do not significantly alter the conclusions drawn here.



is removed from the data and the model is re-fit to the new data, 7 - this ensures

that correlations from the alloy are not used in the prediction process. Next, predic-

tions for the compound of interested will be conditioned using all other information

available in the alloy, denoted e. The values of p(xzie, bi) are then used to generate a

sorted list of candidate structures, and the position of the true structure, denoted li,

is recorded from this list. The position of the true compound, li, is referred to as the

loss associated with the prediction. In other words, the further down the list one must

travel to observe the true structure, the larger the loss. Analyzing how these losses

Algorithm 1: Procedure for performing cross validated predictions of all com-
pounds in a database, D7

are distributed will give an indication of how well the cumulant expansion approach

performs on average. For example, suppose we want to know how far on average

one must travel on the ordered list of prototypes to observe the true compound, i.e.,

we want to know (1i). We might also be interested in knowing the probability that

we have observed the true structure, given that we've descended to a depth 1 on the

ordered list. This information is useful for developing a stopping criterion such as:

calculate all structures such that there is at least a a% chance that the true structure

has been calculated. Figure 3.2.2 summarizes the prediction losses for three differ-

ent approaches to structure prediction; random selection, relative frequency, and the

cumulant expansion model presented in this chapter. Note that the cumulant expan-

sion is distinguished through its use of correlation to aid in the prediction process,

whereas the other two, random and relative frequency, explicitly ignore correlation.

Data: A database of alloys, 7D {x 1,..., XN}, and the model p(x)
Result: A list of losses £ = {l, 12, ...

for each alloy to be tested do
/* Subtract data for alloy i from database
form D = - xi ;
fit new model, p(x|5 ) ;
for each compound a in alloy xi do

Sort values xj E Q9 by p(xj I7, e) ;
append position of a to list L ;

end
end
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Each curve in Figure 3.2.2 shows the depth one must travel on the sorted list to ob-

serve the true prototype with a given probability. For example, using the cumulant

expansion there is a 90% chance that the true prototype lies within just the first 5

suggested structures. In contrast, picking structures according to the frequency at

which they are observed in nature7 would require a depth of nearly 20 structures to

achieve a 90% confidence level. We also note that in more than 40% of the predictions,

the cumulant expansion places the true compound at the top of the candidate list.

Clearly making use of structure-structure correlation has a significant effect on the

efficiency with which one would investigate structures for stability. This is especially

true in the "high probability" regime of Figure 3.2.2. In this regime the cumulant

expansion drastically reduces the number of structures one needs to investigate to

have a high confidence in observing the true ground state. These results demonstrate

that structure correlations gleaned from historical information can be used to signif-

icantly improve the efficiency of searching for stable crystal structures with detailed

quantum mechanical calculations. Moreover, because the cross-validation procedure

extends over the database as a whole, this conclusion is applicable to a wide range

of structures and chemistries. The prediction results shown in Figure 3.2.2 give a

general indication of the predictive power of the cumulant expansion, while specific

predictions performed in the Ag-Mg, Au-Zr, and Li-Pt alloy systems give a proof-of-

principle that the method can efficiently guide quantum mechanical calculations to a

relevant, informed structure space.

3.3 Refinements and corrections

The cumulant expansion technique presented in this chapter has proven quite use-

ful. However, there are a number of formal problems [116] associated with cumulant

expansions that need to be addressed. These formal problems have manifested them-

selves through a number of related channels. First, note the tables of calculated con-

ditional probabilities, such as the one presented in Figure 3-1(b), are very strongly

7stated differently, using the model p(xlD) = [1 p(xi IZ))



peaked around a "most probable" value. In other words, the cumulant expansion

appears to be making very strong predictions and the question is whether or not such

strong predictions are warranted by the available data. The strongly peaked condi-

tional probabilities suggest that the function p(xID) is also strongly peaked in a small

region of the space of all possible collections of ground states, denoted Qx. A general

and consistent measure of how strongly a probability function is peaked or spread out

is given by the information entropy of the distribution, denoted H[p(xID7)] (reviewed

in Section A.3). The pairwise cumulant expansion (Equation 3.8), conditioned with

the Pauling File binaries edition for D, has an information entropy of just 7.73 bits

(obtained through Monte Carlo integration). For comparison, the information en-

tropy of a uniform distribution over the possible ground states is In (1-i IRi) 165

bits, and for the independent variable approximation or "relative frequency" model

(p(xID) = fIip(xi |D)) it is - 42 bits. Information entropy values correspond to the

optimal number of binary questions (on average) one would have to ask to determine

the outcome of the set of variables X distributed according to p(x) [96]. The repre-

sentation of the Pauling File data used in this thesis contains 31 variables in the set

X with IQxI ,0(1050) possible outcomes; the information entropy of the cumulant

expansion (7.73 bits) implies that a remarkably small number of binary questions

are required to determine x if the data is truly distributed as the cumulant expansion

indicates. On a final note, the entropy expression for a pairwise cumulant expansion

in the CVM formalism (reviewed in Section 3.1) is given by

SCVM = Si + ES,k
i j<k

= Si + E(sJ,k - S3 - Sk)
i j<k

= Hx, - Ij,k (3.10)
i j<k

Where Hx, is the information entropy for the variable Xi and Ij,k is the mutual infor-

mation (described in Section A.3.2) between the variables Xj and Xk. Equation 3.10

corresponds to the Bethe entropy approximation and is negative for the distribution



given by Equation 3.8 using the Pauling File binary alloy data for D. These issues

are a result of the same underlying cause; the following sections will attempt to point

at the root of the issue, develop a formal fix, and discuss its implementation.

3.3.1 The marginalization paradox

Both issues noted above are a result of the fact that the cumulant expansion, as we

have used it, over counts correlation. We can understand this with a simple example.

Suppose one knows the variables X, Y, and Z are correlated with each other in some

manner. If X is correlated to Y and Y to Z, then with no other assumptions, X and

Z will be correlated through their respective interaction with Y. In other words, the

mutual correlation of X and Z with Y induces correlation between X and Z. There

is no simple way to explicitly subtract out this induced correlation between X and

Z from their true pairwise interaction. To illustrate this a bit further, consider the

pairwise cumulant expansion for these three variables-viz.

PCE p(1x, y) p(, z) (y, z)
.Q p(-)p(y) p(x)p(z) p(y)p(z)

1 p(x,y)p(x,z)p(y,z) (3.11)
Q p(x)p(y)p(z)

where Q is an overall normalization constant. Each correlation term in Equation 3.11

includes both "direct" and "induced" correlation rather than just "direct" alone8 .

This fact, by itself, suggests why the cumulant expansion becomes strongly peaked

- each correlation term, say for the subset of variables X0 , is tacked onto the ex-

pansion as if none of the other variables exists. Now, if this object were a valid

probability function, it should marginalize properly. By construction, it satisfies the

global marginalization constraint 1 = j,4,•z p(x, y, z), but what about all of the other

marginalization constraints ? For example, consider the set of equalities that should

'The pairwise cumulant expansion (Equation 3.8) used in this chapter suffers from this correlation
overcounting, but in a more severe way due to the number of variables involved.



hold by marginalizing over the variable Z.

p(x, y) = p(x, y, z) V (x, y) 62X,Y (3.12)
z

The question is whether or not the cumulant expansion we have used satisfies all

marginal consistency constraints required of the distribution p(x, y, z), a subset of

which are given by Equation 3.12. The set of all possible marginal consistency con-

straints applied to a multivariate probability distribution defines what is known as the

marginal polytope [117, 118]. The marginal polytope describes geometrically, using

the marginal probabilities as coordinates, the set of all possible probability distri-

butions defined over a discrete space. Note that the marginal polytope, appearing

here in a machine learning context, is conceptually equivalent to the configurational

polytope used in alloy theory to determine ground states [47, 46, 35, 48]. We can

prove that a cumulant expansion will not satisfy these marginal consistency require-

ments under all possible distributions. For example, substituting Equation 3.11 into

Equation 3.12 and simplifying leads to

p(X, y) = p(,)p(y) Ep(z)p(X z)p(y z) (3.13)Q p(X)p(y) z
Op(x)p(y) in general

The only way for Equation 3.11 to satisfy marginal consistency over Z is for the

independence statements X I Z and Y _ Z to hold; these statements are clearly

not satisfied in the space of all pair probability functions p(x, z), and p(y, z). There-

fore, a cumulant expansion will not satisfy marginalization constraints such as those

described by Equation 3.12. It is this marginal inconsistency, in particular, that can

lead to unphysical free energies that have occasionally been observed when the Clus-

ter Variation Method has been used in practice [119].

To expand on this a bit further, suppose one is interested in a system containing

just three particles with a microstate described by the tuple x, y, z. Assuming the



Hamiltonian of the system can be written H(x, y, z) = h(x, y) + h(x, z) + h(y, z)

the CVM approximation to the free energy of the system using a pairwise cumulant

expansion is given by

F(L) = (H) - T S

= (h(x, y)) + (h(x, y)) + (h(x, y)) - T (Sx + Sv + Sz + xy + Sx,z + S yz)

= (h(x, y)) + (h(x, y)) + (h(x, y))

- T (Sx,y + Sx,z + Sy,z - Sx - Sy - Sz) (3.14)

where, for example

(h(x, y)) = p(x, y)h(x, y)
zy

and

Sx,y = -kB Zp(x, y) Iln(p(x, y))
xy

To obtain an approximation to the free energy of the system one minimizes Equa-

tion 3.14 with respect to the probability functions p(x, y), p(x, z), and p(y, z). The key

point is that Equation 3.14 is derived assuming the cumulant expansion for p(x, y, z)

is a valid probability distribution. In particular, to derive the CVM entropy for-

mula it is tacitly assumed that marginalization constraints such as those described

by Equation 3.12 are satisified. Because these constraints are not implicitly satis-

fied by the cumulant expansion, the optimization of Equation 3.14 can result in a

set of marginals {p(x, y),p(x, z),p(y, z)} which cannot be obtained from any proba-

bility distribution over X, Y and Z. As a consequence, it is no longer possible to

claim that [min,,CE} F(3)] is a variational bound to the equilibrium free energy or

[min{PCE} FP()] > F(O) - hence, unphysical results are possible.

In the context of this thesis, we refer to the problem described in this section as

the marginalization paradox. In other words, to construct a cumulant expansion for

predicting ground states a set of pair probability functions, estimated from available



data D, is used to form an approximation to p(xlD). If the resulting function is then

used to re-determine the pair probability functions, something very different and in-

consistent with the information given is obtained. Using the Pauling File dataset for

D we have validated this assertion on several combinations of highly correlated vari-

ables. For example, the mutual information analysis presented in Figure 2-2 indicates

that the pairs of variables (XA, Xi) and (Xi, X) are highly correlated. Checking

the marginals of the pairwise cumulant expansion for p(XA, 7X, X1)D) indicates that

roughly 50% of the cumulant expansion's marginals differ from those estimated from

the data by more than a factor 9 of 5.

3.3.2 A Maximum Entropy approach

Given the cumulant expansion used in this chapter results in a function p(x D) that

is inconsistent with the data used in its construction, the key question we'd like to

answer here is, what should the distribution be ? It is possible to solve for the correct

distribution by appealing to a principle of maximum entropy - namely, choose the dis-

tribution, consistent with known information, that maximizes the information entropy

over the set of variables X. The motivations behind a maximum entropy approach

have been discussed elsewhere[120, 121, 122], but the overall idea is to make p(x)

as spread out or non-committal as possible, while remaining consistent with known

information. Of all the definitions of "spread out" one could conjure up for probabil-

ity functions, it turns out that information entropy, H[p(x)] = - E•p(x) In (p(x)),

appears to be the most general and theoretically sound [120, 121, 122].

To solve this problem we need to define what "consistent with known information"

means mathematically. Note the key ingredient in Equation 3.8 is the set of pairwise

probability functions {p(xi, xjiD)})0 . The pair probability functions encode all the

9the marginals of the cumulant expansion are most often smaller than those estimated from the
data - again, consistent with the idea that the cumulant expansion is erroneously peaked in a small
portion of configuration space.

10we also use the "point" probability function p(x4•D), but they are subsumed by the knowledge
of p(xi, xj ID)



correlation used previously to successfully make predictions. The claim here is that

these functions, estimated from available data, will serve as our working definition of

"known information". Therefore, the solution to our problem can be found by solving

for the distribution, p(x), which maximizes the information entropy of X subject to

the condition that it yield pair probabilities consistent with the data. The task now

is to translate the above statements into a optimization problem. For this we will

make use of the so-called indicator function basis or

6i,a = 1 if i = a (3.15)
0, otherwise

In other words the function 6i,, is 1 when the outcome of variable Xi is a and zero

otherwise. Furthermore, let the vector Oi represent the indicator functions associated

with the variable Xi or

where O[ denotes the transpose of 4i. The vector function Oi(x) just indexes the

value of Xi in the outcome of all variables, denoted x. For example, suppose that

xi = vi in x, then

O(x) = (1, 0,..., 0)

Because 4i(x) only depends on the variable Xi we could use Oi(xi) to denote the same

object. In a similar fashion, let Oij denote a vector of indicator functions associated

with all combinations of the values of Xi and Xj

with 4O, (x) defined in a similar way. Note that 6i,vl * 6j,v = 1 when Xi = vi && xj =

Vm and is zero otherwise. We will let (i) denote the expectation of 4i(x) under some

given distribution p(x).

(i) = E i (x)p(x)



Note that (6i,a) = p(i = a).

(6 iw) = 6ip(x)
X

= p(x)
X[xi=aY

Sp(xji = a)

Therefore (4i) is a vector of the function values for p(xi) obtained from p(x).

(OT) = (p(i = v=), P(X = V2),... ,p(Xi = v,))

Likewise, (i4,j) corresponds to a vector of the function values for p(xi, xj) also ob-

tained from p(x). Using the functions {1i(x)} and { ij(x)} it is possible to deter-

mine the point and pair marginals of any valid probability distribution p(x). Our goal

is to construct a distribution p(x), defined in the high dimensional space x E Ox,

that is consistent with a given set of low-dimensional point, {p(x1jD)}, and pair,

{p(xi, xj ID)}, probability functions estimated from the given data, D. Let /, denote

a vector corresponding to these estimated probabilities for variable Xi or

PT = (p(xi = v1 ID),P(X = V2 D),... ,P(Xi = vn ID))

Note the distinction; p(xi) is the marginal of some generic distribution while p(Xj jD)

is given as input and based on available data. Our goal is therefore to determine the

distribution p(x) such that maximizes H[p(x)] and satisfies the conditions

AIi =

or (element by element)

p(xi = a ) = i,ap(x) V a E Qi
X



for each variable. Pair probability constraints are given by the equation

for each pair of variables, (Xi, Xj). It is worth noting that in general the number of

unknown quantities (i.e., the number of probability values we must determine) vastly

outnumbers the number of constraints given. Therefore, to solve for the values of

p(x) an additional guiding principle (maximum entropy) is required. To maximize

information entropy under a set of constraints we begin by forming the Lagrangian

L ({p(x)};A) = H Ip(x)1 - ZA'(( i) - pi)

- ATk , jk p(s) - (3.16)
j<k x

where Ai denotes a vector of Lagrangian multipliers for marginal p(xi)'s constraints,

i.e.,
T  = Ai,v i,v2 ... , Ai,vQ)

and Aj,k a vector of Lagrangian multipliers for marginal p(xj, Xk)'s constriants. The

Lagrangian multiplier A0 ensures proper normalization and the symbol A is used

to denote all of the Lagrange multipliers collectively 11. To solve for p(x), we find

the extremal value of Equation 3.16 treating the probability values, the p(x)'s, as

variables. The first order variation of L holding the Lagrangian multipliers fixed is

given by

dL({p(x)}; A) = - log(p(x'))- (x)
X'\ i

- _\ Akj,k(x') - Ao dp(x') (3.17)
j<k /

"the single variable terms aren't needed, because p(xj) = ••k p(Xj, Xk), but they are included
for comparison with the pairwise cumulant expansion



Setting each partial derivative to zero yields the solution

p(x; A) = olexp i - Z Ahk j,k )
Z-1 i j<k

1Z J bi(xi) 1 )j,k(Xj, xk) (3.18)
i j<k

where

0i(X) = exp (-'ATO(xi))

- exp 1: Aijv~i'v%)

and

j',k(Xj, k) = exp (-ATkj tj,k(XJ Xk))

= exp 1: E Aj~kjvjVk 6j,Vj (k,vz

Note that the extremum found with this procedure is a unique global maximum of

£({p(x)}; A) because both the information entropy and the constraint set are convex

functions of p(x) [123]. The notation p(x; A) is used to indicate the probability dis-

tribution parametrized, or indexed, by the full set of Lagrangian multipliers A. Note

that at this point, we have only solved the problem up to an undetermined set of

Lagrangian multipliers A.

The principle of maximum entropy has led to the form of the correct distribution

over X. The form of p(x; A) is similar to a cumulant expansion; namely it is a prod-

uct over functions involving only single variables and pairs of variables. However,

unlike Equation 3.8, the parameters of the maximum entropy solution, A, are not

related in any simple way to the point ({p(x•iD)}) and pair ({p(xj, x3jD)}) prob-

ability functions estimated from available data. Recall that the pairwise cumulant

expansion factors such that (xi) = p(xi) and Cj (xi,, x) = '~-P ;) • the maximump(xi)p(xj),I



entropy solution makes no such assertion. Equation 3.18 describes a factor graph or

undirected graphical model. As mentioned in Section 2.4.2, fitting undirected graph-

ical models is considerably more difficult than directed graphical models, or Bayesian

networks. A general outline of how one would solve for A is shown in Algorithm 2.

Algorithm 2: Procedure for determining the parameters, A, of the maximum
entropy solution of Equation 3.18

The process of determining A, or parameter estimation, for the maximum entropy

model consists of two parts. First, for a fixed set of parameters we must determine

the point and pair marginals of p(x; A) (i.e., the expectation values of the Oi's and

Sj's). If the marginals of p(x; A) differ from those estimated from the data, the

Lagrangian multipliers A must be updated. Therefore following the estimation step,

the parameters are updated with the function "parameterUpdate". Parameters can

be updated through Iterative Proportional Fitting [124], or a standard Conjugate

Gradient minimization of the dual entropy function [125]. Unfortunately, the fitting

procedure in Algorithm 2 is made tremendously difficult due to the expectation step.

Because the pairwise functions i,j (xi, xj) = exp (-A [ijT (xi, xj)) couple the vari-

ables Xi and Xj, determining the marginals of p(x; A) is computationally intractable.

As a result, one must resort to a variety of approximate methods for determining the

marginal probabilities of p(x; A) such as Monte Carlo sampling [126], Belief Propa-

gation [100], its generalization called Generalized Belief Propagation 12 (GBP)[127],

or more sophisticated schemes such as "tree re-weighted" belief propagation [128].

Because these schemes can only approximate the marginals of p(x; A) one cannot

guarantee that Algorithm 2 will even converge to the correct answer. However, some

12BP corresponds to minimizing a Bethe free energy to determine the marginals of p(x; A) while
GBP is just a new name for using the Cluster Variation Method to accomplish the same task.

Data: A set of point and pairwise marginals {p(xiI|D)} U {p(xi, xj D)}
Result: Parameters, A, for the model p(x; A)
Initialize A;
while not converged do

Calculate expectation values { () } and (i,j,) };
A +- parameterUpdate (A, {(Oi)}, {(oij)});

end



empirical evidence by Murphy, Weiss, and Jordan [129] along with the theoretical

analysis of Wainwright [130] suggests that approximate techniques are effective prac-

tical alternatives.

3.4 Summary

In this chapter we have come a long way towards the goal of constructing a probability

function p(x) defined in the space of all known ground states of binary alloys. Two

different approaches to constructing p(x) were outlined; one based on a truncated

cumulant expansion (Equation 3.8) and another based on the principle of maximum

entropy (Equation 3.18). Through a number of specific predictions in the Ag-Mg,

Au-Zr, and Li-Pt alloy systems, we have shown the practical advantages of using

p(x) to suggest structures to calculate. Moreover, a large scale cross-validated test

of the cumulant expansion demonstrates that it is remarkably efficient in suggesting

ground states over a wide range of chemistries. Calculating only a handful of the

candidate structures it suggests is sufficient to guarantee the true ground state 13 will

be known with a high degree of certainty.

However appealing, the cumulant expansions suffer from a number of known for-

mal problems which were analyzed to arrive at the "most correct" 14 model one could

construct using only knowledge of the pairwise probability functions {p(Xi, xj D)} -

the maximum entropy solution in Equation 3.18. Unfortunately, fitting the maximum

entropy model is tremendously difficult and one has to question whether the addi-

tional complexity in doing so will "pay off" in terms of improved predictive capability.

When using the structure prototypes available in the Pauling File binaries edition,

solving for the parameters in the maximum entropy model requires minimizing an

objective function over several hundred thousand variables ! To make matters worse,

this minimization procedure must be carried out when the objective function is known

13within the set of known binary alloy ground states
14in the sense of information entropy



only approximately due to the difficulty in calculating the marginals of Equation 3.18.

For these reasons a decision not to pursue the maximum entropy solution further has

been made. Rather an effective strategy is to simply restrict the interpretation of the

cumulant expansion's results. In particular, the prediction results presented in this

chapter suggest using the likelihood order assigned to candidate structures based on

the cumulant expansion, but the conditional probabilities p(xle, D) are meaningful

only up to determining this order. Predicting all non-unique compounds appearing in

the Pauling File database provided the information necessary to establishing a stop-

ping criterion for investigating candidate structures over this order. For example, to

have a 95% confidence in observing the true ground state among known structure

prototypes, it is sufficient to calculate the top 11 suggested candidates with DFT.



Chapter 4

Mixture models for structure

prediction

Chapter 3 of this thesis discussed the implementation and testing of an undirected

graphical model for predicting crystal structure. The results were very encouraging

- cross-validated predictions of an entire database of compounds (Section 3.2.2) and

detailed predictions in specific alloy systems (Section 3.2.1) demonstrate the utility

of using a machine learning method to decide what to calculate. Although successful,

the cumulant expansion presented in Chapter 3 suffers from a number of formal in-

consistencies. The principle of maximum entropy (Section 3.3.2) was used to derive

a general solution to constructing a probability distribution although the practical

difficulties associated with this approach preclude its use at the moment.

This chapter is devoted to exploring the construction of p(x) starting from a very

different probabilistic model. Before getting into the details of the model a brief mo-

tivation of why it will be useful is given here. First, the cumulant expansion contains

a very large number of parameters. In Section 2.2.2 the mutual information between

pairs of variables was analyzed and the results obtained provided strong evidence that

structures appearing at different compositions correlate with one another. Mathemat-

ically, these results suggested that correction terms {gjj(xri, xj)} were needed in the

pairwise cumulant expansion (Equation 3.8) to properly account for this correlation.



Each pairwise correlation term, say between variables Xi and Xj, requires the cal-

culation of OQx,••IQx 3 - 1 parameters where (~x,( is the number of elements in the

domain of variable Xi. Suppose now that one were trying to build a cumulant expan-

sion for multi-component systems. The general procedure described in Section 2.1

starts by discretizing composition space and associating a variable to each discrete

composition. For an nc-component system, the number of distinct compositions will

scale as n-l where a is a characteristic number of divisions along each composition

coordinate (e.g., in this thesis a s 30). A pairwise cumulant expansion will generally

require correction terms, gij (i, xj), for each distinct pair of variables; the number of

these terms will scale as a 2(nf - 1) and the number of parameters in the model will be

proportional to a2(nc-1). An objective of this chapter is to explore whether or not it is

possible to construct a parameter lean model for p(x). The idea is that a parameter

lean model will scale more favorably1 as our method is applied to multi-component

systems where the number of possible compositions increases dramatically. Ideally,

a model will be found that achieves a level of predictive capability similar to the

cumulant expansion in Chapter 3, using a much smaller number of parameters.

4.1 Introduction

The probabilistic model used in this chapter is known as a mixture model. Mixture

models are used in a wide variety of machine learning problems, often in the context

of classification, i.e., you are given data which can be clustered together into a set

of groups or classes. To classify data, we will need to introduce a new variable, J,

ascribing a label to each data point. Occasionally, data is furnished with labels; in

other words _- {(x,j)l, (x,j)2 ,..., (x,j)N}. A supervised learning problem con-

sists of determining a mapping between any possible value of x and the label j using

the given data D as a guide. Once a mapping has been determined it is possible to

predict a data point's class given x alone. For example, x could represent informa-

tion about a credit card transaction with the labels "fraudulent" and "valid". Using

'i.e., the ratio of the number parameters in the model to the number of available data points



a database of transactions that are both fraudulent and valid a mapping between x

and j is constructed. When presented with information about a new transaction,

the mapping is used to predict if the transaction is fraudulent. Another example of

supervised learning is the task of constructing structure maps. In a structure map,

each structure prototype becomes a class label, and x represents a set of coordinates

derived from atomic parameters such as electronegativity difference and valence elec-

tron concentration. The available data consists of this set of labeled points and the

task is to determine a set of boundaries in the space of x placing each prototype into

its own distinct region of space - ideally the result would look similar to Figure 1-1.

More often than not, data is supplied without labels, although it may be both pos-

sible and useful to group the data into an underlying set of classes for prediction

purposes. Classification problems involving unlabeled data are called unsupervised

learning problems.

In this chapter, the unlabeled alloy data, D, will be viewed as a collection of an

underlying set of groups. It isn't necessary to define what these groups are at the

moment, but suffice it to say that because each alloy in D is identified by a sequence

of structure prototypes appearing at intermediate compositions, a group of alloys will

be connected by the structure prototypes they share in common. A mixture model

will represent this class structure in a probabilistic way by "mixing" the predictions

for each class on a probability scale. As before, x represents an observation of the

ground states in an alloy. We will assume that x can come from a set of m different

categories. If the type j for each instance x is known, we could create the distributions

p(xlj) and p(j). Using the product rule for p(x,j) (Equation A.3) the distribution

p(x) is given by

p(x19) = Zp(j)p(xlj )  (4.1)
j=1

Where 0 is defined as the set of parameters sufficient to specify the distributions p(j)

and {p(xlj)}. In other words, the probability of x is taken as a mixture of predictions

arising from m different class-specific distributions {p(xlj)}. Mixture models of this



type arise in a wide variety of problems where one is trying to explain the behavior

of an observed set of variables X when one or more additional variables cannot be

observed. For example, suppose we observe a set of symptoms for a patient, but do

not know the underlying disease state generating those symptoms [131]. Ultimately,

through an analysis of a large number of patients, patterns of similar symptoms will

emerge indicating the same underlying state of disease. In this thesis the variables,

X, represent the ground state structures of an alloy. In a database of alloys, D,

the patterns that emerge are groups of alloys sharing the same or similar structure

prototypes as a function of composition. Conceptually, it may be useful to think of

alloy classes as representing different "bonding types". For example, many of the

heuristic approaches for rationalizing structure stability outlined in Section 1.2.2 de-

fine such classes. Alloys in which the atoms are of very different size would constitute

a "size effect" class, whereas those with large electronegativity differences an "ionic

bonding" class. Each bonding class will tend to stabilize a limited number of struc-

ture prototypes as a function of composition; e.g. a "size-effect" class, if present,

would probably contain the Fe3C and MgCu 2 structure prototypes. Loosely speak-

ing, predictions for new alloys are made by correlating whatever partial information

is presently available with the structure prototype fingerprints for each bonding class.

It is important to note that although "bonding type" may be a useful conceptual tool

for understanding the class structure in D, the model (Equation 4.1) does not assume

these are actually the classes present. In addition an alloy does not have to belong

to just one class; rather the predicted ground states can arise from a 50/50 mixture

of "ionic" and "size-effect" ground states (or any other proportion for that matter).

4.1.1 The naive Bayes model

One piece of Equation 4.1 that has yet to specified are the class-conditional distri-

butions {p(xlj)}. By itself the hidden variable J simply appears to make things

more complicated because (1) we now have another variable to deal with and (2) it

is never actually observed in the data. Mixture models are used in practice because

remarkably compact class-conditional distributions can be used to represent seem-



ingly arbitrarily complex behavior [132]. In fact, the very purpose of introducing the

hidden variable, J, is to considerably simplify the representation of alloy data [133].

The class-conditional distribution we use in this thesis is the following

p(xlJ) = fP(xiIj)

so our model in full form is

p(x 8) = "p(j) f1p(xilj) (4.2)
j=1 i

The form p(x, j 9) = p(j) li p(xzi j) results in what is known as a naive Bayes classi-

fier. Models of this type are often adopted in settings where using as few a number of

parameters as possible is particularly important. The number of parameters needed

to specify the distribution in Equation 4.2 is given by

19e = (m-i1)+ + (lQx, I - 1)m

n terms

where m is the number of mixture components, n the number of variables in the model,

and I Qx, is the number of elements in the domain of variable Xi (i.e., the number of

different structure prototypes appearing at the composition corresponding to variable

Xi). In contrast, the cumulant expansion presented in Chapter 3 is determined by a

number of parameters equal to

10 = (l QxjIlXkI-1)
j<k

n(n-1) terms
2

i.e., this is the number of pair probability values that need to be determined to

compute Equation 3.8. Therefore, if the number of mixture components, m, is small,

the number of parameters required for a mixture model will be significantly smaller

than the pairwise cumulant expansion used in Chapter 3.



Naive Bayes independence statements

The mixture model given in Equation 4.2 makes a number of independence statements

that are worth mentioning. First, recall the v-structure shown in Figure 2-3(b) cor-

responding to the distribution p(xl, x 2, x 3) = p(xl)p(x 2 1xl)p(x3 1x). The discussion

in Section 2.4.1 demonstrated that for this distribution the independence statement

X 2 I X31X 1 is true (the variables X2 and X3 are independent given X 1). However,

if the variable X 1 is not known, it is no longer possible to claim that X 2 and X3

are independent. This is because p(x 2, 3), obtained by summing p(xl, x2, X3 ) over

x1, results in a function that cannot generally be decomposed into a simple prod-

uct of functions over each variable, i.e., Elp(Xl, 2, X3) # f 2(x 2)f 3(x 3 ). Because

of this marginal dependence between X 2 and X 3, the two variables are correlated

with one another through their mutual dependence on X 1. With this in mind, we

can better understand the dependence relationships between variables in a mixture

model. Figure 4-1 shows the directed acyclic graph corresponding to the distribution

for p(x, jl0). The key point is that the Naive Bayes mixture model is just a general-

ization of the v-structure appearing in Figure 2-3(b) to a larger number of variables.

Due to the independence properties of the v-structure in Bayesian networks, pairs of

variables in our model become correlated, all within a rather compact model

m

p(xl0) = E p ( j ) ]7p(xi j) A fi(xi)
j=1 i i

In the context of alloys, if the class variable J is interpreted as "bonding type", the

independence statements of the naive Bayes model reads -- the structure prototypes

appearing as a function of composition are independent, given a bonding type.

4.1.2 chemical symmetry

Before moving on to discuss the fitting and testing of a mixture model, a minor

subtlety with regard to chemical symmetry is discussed here. For binary alloys our

model should be symmetric with respect to the transformation c -- (1 - c); in other



0 0

Figure 4-1: Directed acyclic graph corresponding to the naive Bayes model for
p(x,jlO).

words if one were to change all compositions in our data from c -+ (1 - c) the same

model should be obtained. For example, suppose that all alloys in which both the

CuAu and Cu3Au prototypes appear were grouped together into a class. Over the

database of alloys, D), this class would consist of alloys in which CuAu appears at

CB = 1 and Cu 3 Au appears at CB = 1 or CB = ý. If no symmetry were used, then two

classes would be present; one for the pair CuAu and Cu3Au appearing at CB = 1 and

another for CuAu and Cua3 Au appearing at cB = . An easy way to ensure proper

model symmetry is to introduce a permutation variable, a, such that Equation 4.2

becomes
m

p(x 8) = E -p(j, U)p(xlj, a) (4.3)
j=1 a

The variable a is used to index a particular permutation or reordering of composition

variables. For example, in binary alloys a E { -1, +1} for the AB and BA ordering of

elements. Likewise for a p-component system, there will be p! different permutations.

Note that because a just indexes a permutation of the elements we require that

p(j, a) = p(j, a') Va, a'. The class-conditional distributions are now also indexed by



the variables j and a

p(xj, a) = J p(xi j, a) (4.4)

For p-component alloys only one of the p! class-conditional distributions needs to be

independently specified. Each of the other distributions are generated by tracking how

variables map onto one another under permutations of the composition variables. For

example, in a binary alloy if the variable Xi maps onto Xj under the transformation

c --- 1 - c then we have

p(xi Ij, r = +1) = p(Xj Ij,a = -1)

Therefore, although the sum in Equation 4.3 contains more terms than a "standard"

mixture model (Equation 4.2), the number of parameters required to specify a m-

component "symmetrized" mixture model is no different. In this chapter the primary

focus is understanding how to predict crystal structures using a mixture model. We

are interested in what classes are present in the data and how well they can be used to

predict new structures. Therefore, to simplify the notation, we will not make explicit

reference to the permutation variable, a. However, it should be implicitly understood

that chemically symmetrized probability distributions have been used throughout.

4.2 Fitting mixture models

The goal of this section is to determine the optimal mixture model given a set of

data, D. This process will take place in two stages. First, for a fixed number of

components, m, the functions p(j) and {p(xijj)} must be determined i.e., parameter

estimation needs to be performed. For a fixed m, fitting the functions p(j) and

{p(xi j) } requires care because the variable J is never observed. Parameter estimation

for mixture models is discussed in Section 4.2.1. Second, provided Equation 4.3 can

be reliably parametrized, an optimal number of mixture components, mopt, needs to

be determined. Choosing an optimal value for m is a difficult model selection problem

discussed in Section 4.2.2.



4.2.1 The Expectation Maximization method

For a fixed number of classes, m, the model p(xl|) can be fit to data in several different

ways. For example, the log-likelihood of the data in terms of p(x I) is given by

11(D) = log p(j)p(xt j)) (4.5)

Where xt is the tth alloy in the database D. It is possible to optimize Equation 4.5,

treating the functions p(j) and {p(xi j) } as variables, through a standard gradient as-

cent or conjugate gradient method [133]. However, a method due to Dempster [134],

called Expectation Maximization (EM) achieves the same result through an efficient

and easy to implement algorithm. The challenge in fitting Equation 4.2 to data is

that we do not know the class assignments jl, j2, * , jN a priori - i.e., we must de-

termine the labeling of the data points without observing them.

The remainder of this section details the fitting procedure used in the EM pro-

cedure. The EM algorithm is briefly outlined as follows. If the complete data,

D = {(x, j)l, (xj) 2, Xj)2,., , j)N}, were available then the functions p(j) and {p(x|i j)}

could be fit directly. Therefore a logical strategy is to use the current setting of the

parameters, 0, to estimate class membership (i.e., fill in the missing data). For a

given setting of the parameters 0 one calculates the probability that any given alloy x

belongs to the classes j = 1, 2, .. ., m. These conditional probabilities can be thought

of as estimating the class labels of the data (for a fixed 0). Using these class labels,

the functions p(j) and {p(xijj)} are then updated, to form a new set of parameters

0' and the process is repeated until convergence. It can be shown that this process of

estimating class membership, followed by forming a new set of parameters increases

the log-likelihood of the data at each iteration [134]. A more explicit description of

the EM steps is given below.

If the class assignments, jl, j2,.- , jN were known, the log-likelihood of the complete



data - {(x, j)1, (x, j) 2,..., (, j)y} would be given by

N
11(L) = log p(J) )H P(X lit)

t=1 i

= 6(Ut) log P) fp(xt)I}

=- •(jt) log(p(j))
j=1 t

+6(zaxilt) log(p(x Ij)) (4.6)
j=1 " X i t

In Equation 4.6 we let axt) and jt represent the outcome of variables Xi and J in

alloy t, 6(j t) equals 1 if jt = j and zero otherwise, and 6(j, xljt) is 1 if (jt = j) and

(x- = xt)); zero otherwise. Note we no longer sum over j to obtain the likelihood

of the data because the outcome of the variable J is given for each data point. The

maximizing solution to Equation 4.6 treating the values of p(j) and {p(xi j)} as

variables (i.e., the parameters) is given by

(Et S(jIt))_n(j)

N N

p(xilj) = = Yt Et(J, xilt) _ n(xi,j) (4.7)
Ex; Et, 6(j, x'lt') n(j)

If one were to perform Bayesian estimates of the above quantities, they need to be

adjusted according to the development provide in Section B.1.2. Unfortunately, the

data is not furnished with labels, and we must discover them automatically. In EM

this problem is solved by guessing the class assignments using the current parameters,

denoted 0(1) . For example, using the parameters 0(1) the probability that the tth alloy

belongs to class j is given by

p(jxtl(')) - p(k) ~ip(xt) k)



As the conditional probability, p(jlxt, 9(O)), represents the probability that alloy xt

belongs to class j, it can be used as a count for n(j) and {n(x, j)} arising from the

tth alloy. To obtain the total counts n(j) and {n(xi, j)}, needed for Equation 4.7, one

simply adds up the partial counts from each alloy.

n(O)(j) = p(jlxt,O(1)
t

n( )(j, xi ) = E 6b(xit)p(jlxtO(1)) (4.8)
t xi

where 6(x lt) = 1 if xi = zxt) and is zero otherwise. Using the counts determined from

the parameters O(Y), a new set of parameters, 9(11), are determined using Equation 4.7

or its Bayesian counterpart. This two-step process, expectation (Equation 4.8) fol-

lowed by maximization (Equation 4.7), is iterated until convergence. It can be shown

that the EM updates increase the log-likelihood of the data, 11(D), at each itera-

tion [134]. For all results presented in this thesis the initial parameters, 9(0), are

picked from a random distribution. Convergence criteria vary across implementa-

tions, but usually one tracks the log-likelihood of the unlabeled data (Equation 4.5)

and stops after a tolerance criteria is met. Due to the latent (hidden) nature of the

variable J, the likelihood surface as a function of the parameters in our model, 0,

is littered with local maxima (the likelihood surface is a polynomial containing mN

terms). To circumvent this issue, the EM algorithm is usually run multiple times

starting from random initializations. For all results given here, the EM algorithm

was restarted at least 200 * m times and run for a minimum of 50 * m iterations

before attempting to evaluate convergence criteria. Figure 4-2 shows the evolution

of the log-likelihood function for the Pauling File database as the number of mixing

components is changed. For each value of m, the EM algorithm was restarted at

least 200 * m times starting from a random initialization and the model with the best

log-likelihood was used for the plot.
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Figure 4-2: Log-likelihood of the Pauling File database of binary alloys as a function
of m, the number of components in the mixture model. Each point is the maximum
likelihood model obtained with > 200 * m restarts of the EM algorithm applied to
convergence.

4.2.2 Choosing the number of classes

Using the EM algorithm described in Section 4.2.1 it is now possible to obtain the

parameters needed for Equation 4.2. To complete the fitting procedure for the mix-

ture model, a sensible number of classes, m, needs to be determined. Ideally we will

have a criterion to indicate what the "best" number of mixture components is. Un-

fortunately, the log-likelihood function is of little help here; ll(D) is a non-decreasing

function with increasing m [135]. The reason for this behavior is due to the nesting

property of mixture models. Let Cm represent the set of all allowed probability func-

tions in the form of Equation 4.1 with m mixture components and Cm+l defined in a

similar way. The fact that Cm C C Cm+1, i.e., the model class Cm is nested within Cm+1,

leads to the observed behavior in the likelihood as a function of m [135].

Choosing the optimal number of classes is a rather difficult model selection prob-

lem. The number of classes determines the total number of parameters needed to
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specify the distribution, denoted 181, which is a surrogate measure of the complexity

of the model. Ultimately, we must find an appropriate trade-off between reducing

model complexity (favoring a small number of classes) and increasing the likelihood

of the data (favoring a large number of classes). A number of techniques have been

developed for performing this procedure, each of which tends to fall into two different

camps.

score criteria One approach for finding the optimal m is to derive an analytic

expression, or score, which attempts to balance the two effects of complexity and

description of data on the same scale. Therefore, scores typically combine a complex-

ity penalty with the log-likelihood of the data, an indicator of how well the model

describes the data [135, 136]. Scoring functions are popular because they can be

calculated quickly from a single converged model and typically take the form

score(m, D, p(x l)) = complexity(m, p(x|1)) - 11(D) (4.9)

Where complexity(m, p(x l)) is a term which is larger for more complex models

and ll(D) is the log-likelihood of the data. Scores commonly used in practice are

the Bayesian Information Criterion (BIC), Minumum Description Length (MDL),

and Minimum Message Length (MML); each using a slightly different form for the

complexity(m, p(x 0)) term appearing in Equation 4.9 (see reference [135] for more

detail). Complexity functions are often derived from asymptotic behavior in the "in-

finite data" limit [137, 138, 135, 136]. Thus scores are easy to calculate, but the

conditions under which the score becomes valid are often not met in practice. The

score used in this chapter is due to Figueiredo and Jain [135] and is given by

c m  /Np(j) m Nscore(m, D, p(x 8)) = log 12 + log(

j= 1

m(c + 1)+ 2 - 11(D) (4.10)2



Where N is the number of data points in D, m the number of mixture components,

and c = m Ei (Is|I - 1). Equation 4.10 was picked from the myriad of score op-

tions based on the empirical success demonstrated in reference [135]. The score given

by Equation 4.10 is rooted in communication theory and is used here primarily for

comparison to the re-sampling techniques discussed below. Loosely speaking commu-

nication theory treats the model selection problem in the context of communicating

the observed data D. By forming the model p(x80) which describes how data is dis-

tributed, it is possible to devise an encoding of the data which is efficient (short

message). To communicate D over a channel, one must transmit the data with a

message length proportional to ll(D), as well as the model p(xl0) used for encoding.

More complex models require longer messages to transmit the encoding scheme lead-

ing to the complexity term in Equation 4.10. The key point is that the complexity

terms in Equation 4.10, M log(.) and r1, will increase with increasing m to offset

the decrease in -11(D). Note that the complexity terms are linear in m whereas the

log-likelihood of the data ll(D) is sub-linear (see Figure 4-2). Therefore, an optimal

setting of m can be obtained by minimizing Equation 4.10 with respect to m.

re-sampling An alternative to score-based criteria, called re-sampling methods [135,

115], take the approach of separating the data into two pieces, a training set and a

test set. The model is fit to training data, and its predictive ability evaluated on

the test data. In principle as the model complexity surpasses what is warranted by

the data its performance on the test data will degrade. The so-called leave one out

cross-validation (LOOCV) used in Section 3.2.2 falls into this category of re-sampling

methods. Techniques such as LOOCV are useful because they measure the predictive

power of a model directly on the data available rather than relying on certain limit

criteria to be satisfied (as in the score approach). Re-sampling methods are widely

used, and provide as a by-product, a quantitative measure of the predictive power of

a given model. Therefore, we will adopt a re-sampling technique to determine the

optimal number of mixture components.
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4.2.3 Predictions

Thus far we have (1) given an overview the mixture model, (2) described the inde-

pendence relationships implied by such a model, and (3) discussed how one would

fit Equation 4.1 to available data D. In this section we will present cross-validated

prediction results for all non-unique compounds appearing in our dataset D). Our

goals are the following:

1. cross-validated predictions will be made for models with a varying numbers of

mixture components m = mmi,,..., mmax allowing for the optimal number of

mixture components to be determined, mopt

2. as a by-product of the prediction steps, we will obtain a database-wide picture

of how well a mixture model suggests compounds

Essentially this section performs the same procedure described in Section 3.2.2 with

a few minor modifications to Algorithm 1. Recall that to perform a cross-validated

prediction, each alloy is first removed from the dataset 7D, the probability function is

then re-fit, and the result is used for prediction. However, re-fitting a mixture model

with EM after an alloy is removed from available data (for every alloy) is computa-

tionally prohibitive. Each re-fitting step requires many restarts of the EM procedure,

resulting in a large computational overhead. So rather than performing LOOCV,

the dataset, D7, is first split into 20 groups of alloys chosen at random and perform

cross-validated tests on each group is performed. Predictions on each group are ob-

tained by first removing the group from the dataset, refitting the mixture model with

EM 2, and predicting each compound appearing the random group of alloys. As in

Section 3.2.2 we track the performance of our method by monitoring the position of

the true compound on a list of predictions - defining a loss 1i for each predicted com-

pound. Figure 4-3 shows the average loss (list position) over all compound predictions

in our binary metallic alloy data as a function of the number of mixture components

m. As expected, increasing the number of mixture components m reduces the average

2as before, at least 200 * m restarts of the EM algorithm were performed to obtain converged
results
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Figure 4-3: Expected losses for a 5% holdout cross-validation test as a function of the
number of mixture components m. For each m, the model score is calculated from
Equation 4.10 using a model with the largest 11(D) out of % 200m EM restarts.

loss (better predictive capability), but essentially saturates near m d 9. Figure 4-3

appears to indicate an optimal number of mixture components mopt = 9, 10, or 11.

Note that a model score (green line in Figure 4-4), given by Equation 4.10, suggests

a more conservative setting of m. As mentioned previously, model scores are derived

analytically in the limit of large N, the number of data points. It should therefore

be expected that in a data-limited setting (small N), the model score will tend to

place too much emphasis on the model complexity term in Equation 4.9. Figure 4-4

shows the list length required to contain the true compound with a given probability

for three different methods: (1) an ordering based on the prototype's frequency of

occurrence in nature (red curve), (2) the cumulant expansion discussed in Chapter 3

(green curve), and (3) a mixture model with m = 9 mixing components (blue curve).

Each prediction consists of generating a list of candidate prototypes ranked by the

conditional probability p(xile, 0). On the basis of Figure 4-4 we can conclude that

the mixture model has a predictive capability that is approaching the cumulant ex-

pansion discussed in Chapter 3. However, as mentioned in Section 4.1.1, the naive
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Figure 4-4: List length required to contain the true compound for a given probability.
Three different approaches to structure prediction are shown (red curve) picking struc-
tures according to their frequency of appearance in nature, (blue curve) a mixture
model with m = 9 components, and (green curve) the cumulant expansion discussed
in Chapter 3.

Bayes mixture model used in this chapter is remarkably compact; it requires a very

small number of parameters relative to alternative forms of the distribution p(x). In

fact, for the binary alloy predictions presented here, a naive Bayes mixture model

with m = 9 mixture components requires just 1.1% of the number of parameters re-

quired for the cumulant expansion 3 ! This dramatic reduction in the required number

of parameters for roughly an equivalent predictive power indicates that latent class

structure is an easy way to explain the appearance of crystal structure in binary al-

loys. In other words, the prototypes shared between two or more alloy systems define

associations that can be utilized for prediction purposes 4

3the pairwise cumulant expansion (Equation 3.8) requires one parameter for every pair probability
4in the same spirit as collaborative filtering systems [139]
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4.3 Post-analysis of alloy classes

In Section 4.1 the use of a mixture model was motivated on the basis of reducing model

complexity. Using the EM algorithm for parameter estimation and cross-validation

to determine the optimal number of components, mopt, we have now constructed a

compact probabilistic model for binary alloy ground states with significant predictive

power (as demonstrated in Figures 4-3 and 4-4). In Section 4.1 also discussed the

underlying theme behind mixture models; classification. The idea is that classes

or groups of alloys sharing similar prototypes drive the predictive power of mixture

models. In a way, predictions in a mixture model are performed in a similar manner

to the recommendations made by collaborative filtering [139] systems. For example,

suppose the alloy A-B contains the structure prototypes a and /, while alloy C-D

contains the prototypes a and -y. When presented with a new alloy, also containing

the structure prototype a, the information contained in alloys A-B and C-D can

be leveraged to recommend 3 and y as likely prototypes for the new alloy based

on the fact that a is present. The mixture model presented in this chapter derives

its predictive power through a related mechanism. The EM algorithm is used to

group alloys together forming the class-conditional distributions {p(xjj)}. These

class-conditional distributions encode the information about what the groups of alloys

are and the structure prototypes that are most likely to be shared within a group. In

this section the mixture model fitted with the EM algorithm will be used to analyze

what classes are present in the Pauling File binary alloy database and whether this

latent class structure is physically meaningful. An alloy's class membership can be

estimated by constructing a distribution over classes j given the alloy's ground states,

x - viz.
= p(x, j) p(j) Hi P(xi1j)

p(jlx) -
p(x) Ek p(k) li p(xi Jk)

Note that the mapping from alloy ground states, x, to class membership, j, is done

in a soft way. In other words, p(jlx) is the probability of alloy x belonging to class

j, which can take on any value between 0 and 1 - hence the assignment of x to

j is soft. Because of these soft assignments, it is possible for an alloy to "belong"
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to several different classes simultaneously. To back out the alloy classes identified

by the EM fitting procedure we start by calculating the distribution p(jlx) for each

alloy in the database D. The alloy is then placed into group j if p(jlx) > (1 - e)

where E e 10- 3 - when this condition holds, the alloy is strongly predicted to belong

to class j. After scanning over all alloys, the available data, D, is now split into a

set of alloy classes, D)1, D)1,.. , Dm. Each alloy class, Di, should contain a collection

of systems sharing similar structure prototypes - this is the mechanism by which

alloys are classified. Because the alloys present in class i (i.e., Di) will share common

structure prototypes, each class should contain alloys that are chemically similar. To

test the validity of this assertion we have plotted the binary alloy classes present in

the Pauling File database in a Pettifor map [4], shown in Figure 4-5. In Figure 4-5

each (x, y) coordinate corresponds to a binary alloy. Each element in the periodic

table is given a unique number, called the Mendeleev number described in Ref. [4],

and this number is used to define the coordinate system in Figure 4-5. Each alloy

class, of which there are m = 9, is assigned a different symbol in Figure 4-5. Alloys

in the database satisfying the condition p(jlx) > (1 - e) with e = 10- 3 are plotted

in Figure 4-5 according to their class membership. A key feature of Figure 4-5 is

that alloy classes group together in the 2-d space defined by an element's Mendeleev

number. Elements with similar Mendeleev numbers are often "similar" in a chemical

sense (the Mendeleev scale tends to run up and down the columns of the periodic

table). For example, the dark blue squares in Figure 4-5 correspond to alloy class

j = 2. Each alloy in this class combines a rare-earth or group IIA or IIIA element in

the periodic table with a late-transition metal series element such as Rh, Ir, Ni, or Pd.

Consider also the alloy class given by j = 4 corresponding to the gray square symbols

in Figure 4-5. This group consists of alloying Ge, Sn, Sb, Bi, or Po, all elements just

to the left of the Zintl line in the periodic table, with just about anything else. The

group j = 0 (red squares) corresponds to alloys containing one rare-earth element

and one of T1, In, Ga, or Al. Figure 4-5 confirms in a graphical way, the chemical

intuition underlying the construction of the mixture model presented in this chapter.

Note however, that no assumptions have been made to arrive at this grouping - these
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are alloy classes determined on-the-fly based on the appearance of common structure

prototypes. The mixture model derives its prediction power by grouping together

similar alloys contained within the database D. The groups of alloys determined

by the EM algorithm are chemically similar, as evidenced by their spatial grouping

when projected into the Pettifor map (i.e., neighboring elements on the Mendeleev

scale are chemically similar, so clusters of points in the Pettifor map are indicative

of chemical similarity). Similarity within each alloy group is determined by structure

prototypes shared across alloys within the group. When presented with a new alloy

for which only partial information is available, the mixture model predicts the most

likely structures on the basis of how the partial information aligns with the presently

known alloy groups.

4.4 Summary

In this chapter we have developed a probabilistic model for structure suggestion using

a naive Bayes mixture model. Mixture models are used in a wide variety of machine

learning problems from classifying hard drive failures [140] to understanding gene

expression data [141]. Mixture models are useful for identifying latent class structure

in data that can be used for prediction purposes. We have shown that a naive Bayes

mixture model performs remarkably well in the task of predicting the ground states of

binary alloys. It achieves a level of predictive power rivaling the cumulant expansion

presented in Chapter 3, but does so with a dramatic reduction in the number of model

parameters required. The latent class structure obtained for the Pauling File dataset

indicates that a mixture model derives its predictive power by grouping together

chemically similar alloys. In constrast to other techniques for alloy classification,

such as the structure mapping technique presented in Section 1.2.2, the mixture

model classification scheme utilizes the physics driving structure stability at many

different compositions to defining class structure.
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Figure 4-5: Pettifor map of alloy classes present in the Pauling File binaries edition
database [2] for a mixture model with m = 9 components. Each symbol plotted
represents an alloy for which p(jlx) > 0.999. Elements are ordered on each axis
according to their Mendeleev number described in Reference [4]. Alloys not containing
"metallic" elements, as defined in Section 2.2, are deliberately ignored.
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Chapter 5

Conclusions and future research

Computational materials science has made significant progress toward the goal of a

virtual materials design laboratory. The exponential growth in FLOPS per dollar

will continue to push outward the boundary of materials science problems that can

be aided through calculation. As the field turns its eye toward problems requiring

a search over chemistries and compositions, methods will be needed to suggest what

to calculate, where nothing is already known. In this thesis we have developed an

abstract machine learning framework (Figure 1-2) which takes as input a collection

of historical and computed data and as output furnishes the user with a list of highly

informed suggestions for detailed investigation. Our method ultimately uses corre-

lations present in a database of information, D, along with available evidence, e,

to perform the prediction process. An investigation of specific structure correlations

(Tables 2.1 and 2.2) provides evidence that our method is consistent with more tradi-

tional heuristic-based rationalizations of structure stability. To incorporate individual

correlations into a coherent system for making predictions we have adopted the use of

probabilistic graphical models. We have applied this technique to the study of binary

metallic alloys, and have demonstrated through both proof-of-concept and statistical

analysis, that it is highly efficient in making suggestions for further calculation.

Nevertheless, a number of open questions remain and suggestions for future research

are given below.
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5.1 Suggestions for future research

5.1.1 Applications

Perhaps the most fruitful direction for future research is to apply the methods de-

veloped in this thesis for predictions in both binary and multi-component systems.

Although binary alloys have been studied quite extensively, our experience with the

Ag-Mg, Au-Zr, and Li-Pt alloy systems suggests that a number of compounds have

yet to be discovered. Thanks to the availability of computing power and robust ab

initio electronic structure codes, it is likely that the structure of these as yet undiscov-

ered compounds can be predicted in a reliable way faster than detailed experiments

can be performed. The probabilistic models constructed in this thesis can be used

to rapidly guide calculations towards the most likely set of candidate structures for

unknown compounds. Therefore, one application of our framework would be to fill

in these missing holes in binary alloy data through the use of quantum mechanical

calculations. Quite simply, this would consist of generating predictions followed by

calculations for all binary alloys and compositions where experimental information is

lacking or inconsistent. In addition, there is little doubt that a number of structure

mis-assignments have been made throughout the course of experimental history.

Multi-component systems comprise another application of the technique presented

in this thesis. We believe the potential for impact is quite large in multi-component

alloys as they have not been studied as extensively as binary systems. In principle, the

only ingredient required for this task is a database of compounds identified by their

structure prototype. A recently developed structure prototyping algorithm [142, 143]

has made it possible to prototype an arbitrary database of crystal structure infor-

mation and will certainly aid in performing this task. To perform predictions in

multi-component systems, strategies are needed to managing the complexity involved

as the number of chemical components is increased. The mixture model discussed in

Chapter 4 was investigated with complexity reduction as a primary objective, so it

may be particularly useful for making predictions in multi-component systems.
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Although this thesis focused on predicting structure in binary metallic alloys, there

are many other classes of technologically relevant chemistries. For example, multi-

component oxides form a class of systems that are both physically interesting and

technologically relevant. Predicting the structure and properties of ABO, oxides

in which the A and B cations can take on multiple formal valence states is an out-

standing problem for computational materials science. While this problem, at first

glance, appears to be equivalent to predicting structure in a ternary system, it can be

simplified by considering only pseudobinary mixtures of An+ and Bm + cations where

n and m are allowed valence states of the A and B cations.

5.1.2 Method development

discovering new prototypes

A number of questions remain which require method developments beyond those

discussed in this thesis. A significant drawback of the machine learning framework

presented in this thesis is an inability to suggest truly new prototype structures. The

domain of our prediction ability is limited to all currently known structure prototypes

and nothing further. While there is some evidence that the number of unknown struc-

ture prototypes is small (e.g., by analyzing the number of new prototypes discovered

as a function of time), a true structure prediction scheme should have the ability to

suggest entirely new structure prototypes. This drawback of our method is a result of

the fact that we have explicitly avoided developing a microscopic description of a sys-

tem's energetics with an approximate Hamiltonian. While approximate Hamiltonians

are useful in many other areas of the materials design problem, we refrained from us-

ing them in an attempt to maximize the use of historical data. To discover truly new

structure prototypes, a method is needed to intelligently explore the infinite space of

unknown structures. The genetic algorithm (GA), a stochastic optimization method

discussed in Section 1.2.1, appears to provide a intriguing combination of general

applicability (i.e., it isn't restricted to any particular class of systems) and relative
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efficiency (i.e., relative to the only other stochastic technique, simulated annealing).

However, we believe current implementations of the GA are notably inefficient. The

literature available on the subject indicates that a very large number of total en-

ergy evaluations and relaxation steps must be performed before convergence can be

obtained (as discussed in Section 1.2.1). Current implementations of the GA are ini-

tialized with a population of structures with random coordinates, forcing the method

to spend a considerable amount of effort optimizing away from energetically unfavor-

able configurations. We believe a particularly simple way to improve the efficiency of

the GA would be to seed the initial population with a set of highly likely structures

suggested with a machine learning model. Doing so will initialize the population of

structures in energetically relevant portions of phase space. The algorithm then pro-

ceeds forward with mating and mutation steps providing the stochastic component

required to discover new prototypes.

pruning the cumulant expansion

The cumulant expansion discussed in Chapter 3 performed remarkably well in pre-

dicting crystal structure. In Chapter 3 correlation terms, gij(xi, j), were included

for all distinct pairs of variables. While the correlation terms gave rise to significant

prediction improvements, it is possible that some terms simply lead to over-fitting

(reducing the prediction ability). No systematic procedure was formulated for decid-

ing which correlation terms to include. Therefore, one possibility for increasing the

prediction capability of Equation 3.8 is to remove correlation terms which decrease

the prediction performance. For example, one could start with the independent vari-

able approximation (Equation 2.4) and include correlation terms through a greedy

search (i.e., pick the correlation term which improves the prediction performance the

most, then the next, and so on). Another option would be to start with full pair-

wise expansion (Equation 3.8) and remove the correlation term which decreases the

prediction performance the most (if present at all).
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fitting maximum entropy models

The maximum entropy model presented in Section 3.3.2 resolved the formal problems

associated with a cumulant expansion for p(x& D). The maximum entropy solution

was not pursued further due to the difficulty in solving for the Lagrangian multipliers,

A. Although not discussed in this thesis, a preliminary investigation of solving for the

Lagrangian multipliers has been performed on several models containing three and

four variables (so that the expectation step could be performed analytically). To per-

form the expectation step on the full model approximate methods must be pursued

and Monte Carlo sampling has been investigated. However, the very large number of

equilibration and sampling steps were required to obtain reasonable estimates of the

marginal probabilities.

Several alternative techniques for performing approximate expectation have been re-

cently developed in the machine learning community [100, 127, 128]. Oddly enough,

these approximate techniques are equivalent [127] to Kikuchi's CVM formalism [102,

101] for constructing approximate free energy functionals. There is some evidence

that these techniques approximate the expectation step appearing in Algorithm 2

more accurately than Monte Carlo sampling [129]. Therefore, if one were to de-

velop the maximum entropy approach further, a fruitful direction would be to utilize

the CVM for performing the expectation step in Algorithm 2. Moving beyond the

traditional CVM, a technique in active development by Wainwright, Jaakkola, and

Willsky [128] expresses a CVM-like entropy as a convex combination of entropies

that can be exactly computed. Doing so results in an algorithm with better stability

properties than the original CVM formalism.
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Appendix A

Notation, Probability, and related

functions

Although it may seem a little silly at first glance, this appendix is devoted to an

overview of the notation used in this thesis when talking about probabilities. The

decision to do so is based on the observation that there is simply no consistent notation

in the theory of probability. Every author seemingly uses their own notation, leading

to a confusing state of affairs for the reader. Thus for the sake of readability, a

notational overview and review of the basic properties of probability functions is given

here. This appendix borrows heavily from Chapter 2 of MacKay's book Information

Theory, Inference, and Learning Algorithms [96].

A.1 random variables and their probabilities

Just as the White Knight distinguished between the song, the name of

the song, and what the name of the song was called, we will sometimes

need to be careful to distinguish between a random variable, the value of

the random variable, and the proposition that asserts the random variable

has a particular value. -David MacKay [96]

For our purposes, a capitalized symbol will denote a random variable. A lower-case

symbol will denote the outcome of a random variable which is one element in a set
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of possible values. For example, X will denote a random variable, x the outcome of

a random variable, and Qx - {vI, v2, ... , vq } a set of qx possible outcomes. For

every possible outcome of X we will associate a probability, pi in the set Px =

{P1, P2, ... ,pqx} with p(x = vi) = pi and e~Eo•xp(x = vi) = 1. When the context

is clear, a more compact notation will often be used such that p(x = vi) might be

written as p(vi) or just p(x). So the above normalization condition may be written a

little more succinctly as Xp(x) = 1.

A.2 basic properties

A.2.1 Joint probabilities

When two or more random variables are involved, say X and Y, the possible outcomes

of both are identified with an ordered pair x, y where x E Qx = {v 1,..., vqx} and

Y E Qy= {wl, ... , wqy}. The set of all possible outcomes of X and Y is just the

Cartesian product over the domains of each variable or Qx,y = Qx x Qy. The number

of elements in the set of possible outcomes is qx * qy = IJQxI IQI. We will let p(x, y)

denote a joint probability, i.e., the probability of an event where X and Y take on the

values x and y respectively. Continuing in this fashion, if one has the set of variables

X = {X 1, X 2,... ,X)} the probability of event x E Qx, x ,x2 x "' x, X x

is denoted p(x) where IQxI = 1li qi. Subject only to the normalization condition

Ex p(x) = 1 there are I|xl - 1 independent values of p(x).

A.2.2 Marginalization

From p(x, y) we can obtain the marginal probability, p(x), through summation

p(x) = p(x, y) (A.1)
Y
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A.2.3 Conditional probability

The probability of X having outcome x given that Y has the outcome y is given by

p(x, y) p(x, y)p(ly) - (A.2)

For the above equation to have meaning we must obviously have p(y) > 0. Conditional

probabilities provide a mechanism through which the probabilities over x E Ox can

be updated provided knowledge of the outcome of Y.

A.2.4 Product rule

The product rule is obtained from the definition of a conditional probability

p(x, y) = p(xly)p(y) = p(ylx)p(x) (A.3)

The last equality is also known as Bayes' theorem. Another equivalent form of the

product rule is

p(x, y1I) = p(xly, 2T)p(y IZ) (A.4)

where I is any other information.

A.2.5 Independence

Two variables X and Y are independent iff

p(x, y) = p(x)p(y) (A.5)

so that

p(xy)p(xly) - -_y) = p(x) (A.6)

i.e., the fact that the outcome of Y is y has no effect on the probability assigned

to the outcome x of X. A mathematical statement of this independence is denoted

(X I Y). When two variables X and Y are independent given a third variable, say
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Z, we denote the independence statement (X I YIZ) and we must have

p(x, y1z) = p(Xlz)p(ylz) (A.7)

A.3 Information entropy and related functions

Further details regarding Shannon's information entropy [120] and its properties are

summarized in the paper [121] and book by Jaynes [122]. MacKay [96] and the book

by Cover and Thomas [91] also give a thorough review. Some basic properties are

given below.

The information entropy associated with the random variable X, under the distribu-

tion p(x), denoted H(X), Hx, or H[p(x)] is given by

H(X) - Zp(x) log(p(x)) (A.8)
x

Because 0 < p(x) _ 1, the information entropy H(X) > 0 with equality iff p(x) = 1

for some x E zx. Entropy is a maximum if p(x) is a uniform distribution or p(x) =

Ijx -1 in which case H(X) = log(lQx ). For distributions defined over more than

one variable, say X and Y, the information entropy is given by

(A.9)H(X, Y) = Hx,y = - p(x, y) ln(p(x, y))

When the variables are independent, the entropy is additive

H(X, Y) = - p(x)p(y) (ln(p(x)) + ln(p(y)))
xy

= -Zp(x)ln(p(x))- ZP(y)ln(p(y))
X y

= H(X) +H(Y)
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Note the connection to thermodynamics where entropy (that is thermodynamic en-

tropy) is defined as an extensive or additive quantity. When extensivity holds, a

system consisting of two identical subsystems, each with N particles, will have a

probability distribution that decomposes as independent distributions for each of the

N-particle systems.

p(xl,X2, ... ,2N) = p(1,...,XN)p(XN+1I, X2N)

so

H(Xl,...,X 2N) = 2H(Xi,...,XN)

Using the product rule (Equation A.3) we can express the entropy as

Hx,y = - p(x, y) In (p(x, y))
x,y

= -Zp(x,y) [In(p(x)) +In(p(ylx))]
x,y

= Hx - p(x, y) In (p(y x))

= Hx + HYIX (A.11)

Equation A.11 defines the conditional entropy, HYlx. Using successive applications

of the product rule one can show that for the variables X 1,..., X,

n

Hx = y HxjIx,...,x, _
i=1

A.3.1 Kullback-Leiber divergence

The relative entropy or Kullback-Leiber divergence between two probability distribu-

tions p(x) and q(x) is given by

DKL(pl q) = Zp(x) log (x) (A.12)
119()/
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Although not obvious, DKL(Pllq) Ž 0 with equality iff p(x) = q(x) V x e Qx. The

statement DKL(pI Iq) : 0 can be proved using Jensen's inequality [91]. The Kullback-

Leiber divergence measures the "distance" between the distributions p(x) and q(x), al-

though it cannot be interpreted as a distance metric because DKL(pI q) = DKL(qI PI).

Nevertheless DKL (PI I q) is useful for say measuring overall difference between the dis-

tribution p(x) and a target distribution q(x). For example, DKL(pI q) can be used to

derive the variational principle of statistical mechanics [32].

A.3.2 Mutual information

The mutual information between variables X and Y is given by the Kullback-Leiber

divergence between p(x, y) and the distribution q(x, y) = p(x)p(y)

I(X; Y) = Ix,y = p(x, y) log p(x, y)
z,y

The mutual information measures the degree to which two variables are correlated, or

equivalently, how much the outcome of one variable constrains the possible outcomes

of the other. The mutual information Ix,y is symmetric Ix,y = Iyx and bounded

by 0 < Ix,y < min(Hx, Hy). The equality Ix,y = 0 is obtained iff the two variables

are independent or uncorrelated, while Ix,y = min(Hx, Hy) is obtained only if one

of the variables is a deterministic function of the other.

proof of 0 < Ix,y < min(Hx, Hy)

Because DKL(qlIP) > 0, we know that Ix,y = DKL(P(X, y)IIp(x)p(y)) Ž 0. Using

definition of conditional entropy

Ix,y = Hx + Hy - Hx,y

= Hy - HyIx

= Hx - HxlY
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Using the inequalities 0 < HYix < Hy we can re-arrange terms to arrive at

0 < Ix,y < Hy

Using the inequalities 0 < HxlY < Hy gives

0 < ,YIx, < Hx

Hence 0 < Ix,y < min(Hx, Hy).
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Appendix B

Parameter Estimation

To use a probabilistic model of structural stability we have to at some point connect a

database of information, D = {(x,..., XN}, into the numerical values assigned to the

function p(x). The values of p(x) are determined through a collection of parameters,

here denoted 8. Many values of 0 are permissible, but at the end of the day we must

make a choice, and parameter estimation is the process through which the choice

is made. For example, suppose you've been tossing a biased coin and you're given

the question, "what is the probability that the next toss is heads ?" Any answer

between 0 and 1 is permissible, and this section outlines two different strategies used

to obtain an answer. Before detailing parameter estimation, it is important to note

the following. One must first pick the form for a probability distribution and this

will determine both the number and semantics of the parameters used. For example,

to analyze some univariate ordinal data one could use either a Poisson distribution,

with just one parameter, or a Normal distribution, with two. Choosing the form

of a distribution, called model selection, is not described here. Rather, parameter

estimation is the process of choosing a particular 0 from the infinite set of possibilities

for a fixed model. We will also restrict the scope of this Appendix to closed-form

parameter estimation. There are models for which it is not possible to write down

a closed form solution for their parameters given some data and these will not be

discussed here (e.g., undirected graphical models described in Chapter 2). None of

this material is "new", but is provided as support for Chapters 2 and 3.
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B.1 multinomial

The problems discussed in this thesis deal with discrete-valued variables containing

a finite number of possible outcomes. The multinomial distribution is appropriate

for such cases, so multinomial parameter estimation is described here. Consider a

variable X that can take on q possible values, i.e., x E {Vl, v2,..., Vq}. Given a set

of N observations for this variable, denoted D = X, , X2, .. , XN} we are interested in

determining the probability function p(x D). For each of the q possible values of X we

will associate a parameter with the value of the probability function. In other words,

let 9,, denote the parameter associated with the ith value of X or p(x = vi) = 8,v.

Because we are dealing with a multinomial distribution the parameters are the values

assigned to the function p(x) - in contrast to say a Normal distribution where you

would estimate the mean (p) and variance (a 2) from available data and use the

formula p(x) oc exp -_ (X-)2) to determine probability values. The collection of

q parameters will be referred to as 0 = {0v,,i=1,...,q. Given D there are several ways

of choosing a particular 0 from the set of permissible values E - {0" : --, , = 1}

discussed next.

B.1.1 Maximum Likelihood

An approach often used is to choose 0 such that it maximizes the likelihood of ob-

serving the data given. For a particular value of 0, the log-likelihood of the data is

given by

l(D; 0) = logp((D 0)

= logp(xl, 2,. ... XNO)
N

= _logp(xt O)
t=1

N q

E E J(Xt, vi) log O~j
t=l i=1

- n(x) log Ox (B.1)
X
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Where 6(xt. vi) = 1 if xt = vi and is zero otherwise, and n(x) is the number of times

that the variable X had the outcome x in the dataset. Maximizing the log-likelihood

function under the constraint Ex 8O = 1 leads to the well-known maximum likelihood

estimate for 0

=L n(x) for x E {vi,..., vq} (B.2)

Here the optimal setting of 0, denoted by the hat symbol 0, is given by emprical

frequencies of observation. The counts {n(x)} are known as sufficient statistics since

they are sufficient to parameterize the distribution p(x) from available data.

B.1.2 Bayesian estimate

The central idea of a Bayesian estimate for 0 is to consider all permissible values of

0 as valid, but weigh them according to what the data would indicate. For example,

suppose you are tossing a bent coin (or tack for that matter) and would like to

measure the geometry of the bend (or length to width ratio of the tack) without

the use of a micrometer (i.e., using only the laws of Newtonian mechanics and the

outcomes of the tosses). After tossing the coin N = 2000 times, your estimate of

the coin's geometry is much more strongly peaked around a "best guess" than after

just N = 2 tosses. Bayesian parameter estimates are an attempt to capture this

effect of various degrees of belief [122, 144, 96] when picking a particular value of 8.

A Bayesian estimate will capture the uncertainty associated with 0 by constructing

a distribution over the permissible values of 0 conditioned on the available data.

The key point is that a Bayesian approach will incorporate both a "best guess" and

our uncertainty in the "best guess" on the same footing. Additionally, a Bayesian

framework allows statements to be made about what values of 0 are "sensible" before

observing a single shred of data - i.e., using only information about the problem at

hand. As a consequence of this latter property, a Bayesian approach allows for the

possibility of assigning a probability values in data-limited settings (i.e. where the

maximum likelihood estimate would assign a probability of zero to an event, although

paradoxically such an event is permissible). This property of Bayesian estimates is
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crucial for complex graphical models where the number of parameters in the model

can approach the size of the available dataset. We start by expressing p(x D) as an

integral over all possible values of 9 using the marginalization property of probabilities

(Equation A.1)

p(xJ1) = Jp(x, 0D)dO (B.3)

Using the product rule (Equation A.3) we can decompose this further

p(xD) = Jp(x9, D)p(OID)dO (B.4)

Using the definition of a parameter (p(x9, D9) = Ox), we are left with the central

object of interest: p(01D9 ). Applying Bayes' Rule we have

p(D) =(O)
p(D)

= p(xl,X 2 ..

= A i Oxn(x)] p(9) (B.5)

Here the quantity p(xl,..., XN) has been absorbed into an overall normalization con-

stant A-1 = p(xl,...,XN) which will be determined using the constraint

1 = /p(OID)dO (B.6)

The quantity p(O) represents a prior over our distribution's parameters. It represents

our belief in how probabilities should be assigned based only on what is known about

the problem at hand before receiving any data [122]. A convenient, consistent, and

arguably the only [145] distribution for p(O) in the multinomial case is the so-called

Dirichlet distribution

p(O)-= /3(a) l OXz-1
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where P(a) = xr(az) A Dirichlet distribution is conjugate to a multinomial distri-

bution in the sense that when you use a Dirichlet prior with your data, you obtain a

multinomial posterior distribution over the permissible parameter values. So using a

Dirichlet we are left with

p(OID) = AL(a) ri Oxn(x)+ax-1 (B.7)

To determine A we will need to perform the following integral under the constraint

, O= I1

I(n, a) = J On(x)+ i 1dd,,dO ... dOv (B.8)

where n = {n(vi),..., n(vq)}. To enforce the constraint (Ex OC = 1) we extend the

range of integration for each component to Ox E [0, 00) and make use of a delta

function

I(n, a) = j On()+a-16 O- r dO (B.9)

Laplace transforming both sides we have

I(n, a) c On(x)+a'-16 , rexp(rs)drd

00--Qn(v1)+ av1 00 n(Vq)+ -ep(-sdO, d (v1)+av- 1 exp(-sOvI) .. d0,vq O exp(-sOVq)

Using the definition of the gamma function (F(x) = fo t-le-tdt) and a change of

variables we are left with

I(n, a) _ r(n(x) + ax)
S Sn(x)+ax

Inverse transforming the above and evaluating at r = 1 yields

a , r (n(x) + a x)

F (Ex, n(x') + ax,)
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Using the normalization condition to determine A we are left with

n(') + ) r(n(z) + ax)

= C(n, a) f 0x,n(x')+ac' (B.10)
ZXI

Before moving on to finish the calculation of p(x|D) we should perhaps say a few

words about what p(OID) gives us. First, we now have an object that encodes our

various degrees of belief in the possible values of 0 both before and after a set of data,

ED, is observed. The values of a - av,,,..., a,,} communicate our degrees of belief

before any data is observed and these are updated according to what the observations

indicate through the empirical counts n. Taking this back to the bent coin example,

if one knows the coin contains no bend, then it is sensible to choose very large and

equal numbers for the two prior parameters aheads and atails. Picking such values

for Oheads and atails leads to a prior distribution, P(Oheads, Otails) that is very strongly

peaked around Oheads = Otails = 1/2. However, knowing the coin is bent removes a

lifetime of prior knowledge and a more sensible prior would correspond to an aheads

and atails that are much smaller.

Getting back to the program, we are interested in p(x|D) when x is equal to some

value x E {vl,..., vq}.

p(a = vi D) = JOp(01D)Id

= C(n, a) vi I Oxn(x')+axdO

= C(n, a)I({n(vl),..., n(vi) + 1,... }, a)
= n(vi) + aov (B.11)

EX, n(x') + ax,

This result is intuitively consistent with the view that a communicates a prior belief

and the values of az appear simply as extra "counts" in the problem. One can

also view the parameters a as "smoothing" parameters; they lower the variance of
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parameter estimates over different datasets. Due to their formal properties and well-

known advantages [95], Bayesian parameter estimates are used throughout this thesis.

Empirical tests comparing Bayesian parameter estimates to Maximum Likelihood

estimages often show that Bayesian estimates more closely approximate the true

distribution for a finite amount of data, D = {x1,..., XN} [95]. Note that p(xID)) is

given by the expection value of Ox over the distribution p(O8D) denoted (Ox). With

this in mind, the uncertainty in p(xlD)) can be related to

o2 = (J2) - (O)2

For reference, the mth moment of Ox under the distribution p(O|D)) is

r (E. n(x) + ax) r(n(vi) + a, + m)
(")= r (m + Ex n(x) + ax) r(n(vi) + a,,)

B.1.3 multiple variables

When several variables are involved, say X and Y, estimates are needed for the

quantity p(x, y1l)) where D represents a set of N observations of the ordered pairs

x, y or D - ((x, Y)1, (x, Y)2, ..., (, Y)N}. If there are q possible values of the variable

X and r possible values of the variable Y, then there are qr possible combinations of

the pair. This situation is equivalent to the single variable case, except estimates are

being performed for a multinomial with qr possible values rather than just q or r. In

this case the Maximum Likelihood estimate will be given by

ML n(x, y)
x,y N

and the Bayesian estimate

S= = = n(vi, wj) + av,,w
p(x- =Vi, y = wj D)) = N + aT

Where aT = Z,, ax,y-.
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B.1.4 choosing an appropriate a

In choosing a particular a one is communicating a prior belief about the likelihood of

possible outcomes before any data is observed. Thus no "standardized" mechanism

exists for choosing a, rather the choice made will be somewhat problem dependent.

Nevertheless, several common choices of a exist in the literature [122, 136, 145] and

it is useful to elaborate on the particular statement that each makes. One commonly

used prior is specified by a = (1, 1, 1,...) which leads to a uniform distribution

p(0) = F(q)

Such a prior distribution assigns a uniform probability to all possible parameter val-

ues and leads to parameter estimates that correspond to "Laplace's rule of succes-

sion" [122] or

p( ) n(x) + 1
N+q

It can be seen that the above setting of a has the effect of adding q counts to the data,

one observation for each possible value of the random variable X. In many settings

one is interested in comparing the performance of different models. For example, one

could choose to express p(x, y) as a fully parameterized joint distribution, or use the

approximation p(x, y) = p(x)p(y). Using a uniform prior in each case will lead to qr

additional counts in the fully paramerized case and q + r in the independent variable

approximation. Having too many "additional" counts can lead to situations where

the prior will overtake the effect of the data making it impossible to select one model

over another. Thus, a more common choice for a is

n
/

a x = -
q

for the point estimate and
n /

qr
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for the joint probability estimate. This will have the effect of adding n' counts to each

estimated function. When n' = 1, the resulting prior corresponds to the so-called

Minimum Information Dirichlet prior [136] which is used throughout this thesis.
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Appendix C

DFT Calculations

All of the prediction results presented in this thesis would not be possible without an

accurate method for evaluating the total energies of phases competing for stability.

Our approach is to feed the predictions of a machine learning method into an accu-

rate Hamiltonian. Doing so leverages the suggestive character of a machine learning

technique with the accuracy of detailed quantum mechanical calculations (which are,

at present, computationally expensive). At the time of writing this thesis, the most

accurate and practical method for evaluating the total energy of a system is through

the use of Density Functional Theory (DFT) [26]. Density functional theory has

proven highly accurate in reproducing a wide range of materials properties [5]. In

particular, significant agreement between DFT and experiment with regard to the

stability of competing crystal structures has been shown by Curtarolo, Morgan, and

Ceder [3]. Other total energy methods, such as Quantum Monte Carlo [146], the

GW approximation [147, 30], and Dynamical Mean Field Theory [31] are available

but presently only at a significant computational cost. Most importantly, a mod-

ern, robust implementation of the algorithms needed to perform DFT calculations

is available in the Vienna Ab-Initio Simulation Package (VASP) [148]. This robust,

thorougly tested implementation of DFT has enabled a large number of calculations

to be performed with ease. This section gives a description of the most important

parameters controlling the convergence of DFT calculations performed with VASP -

it is included for posterity.
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Exc functional Calculations performed in the Ag-Mg and Au-Zr alloy systems used

the Perdew-Wang GGA exchange correlation functional (PW91) [149] while

those performed in the Li-Pt system used the Perdew-Burke-Ernzherof GGA

functional [150]. All calculations were performed spin-polarized.

pseudopotentials Projector Augmented Wave (PAW) [151] potentials were used

throughout this thesis. The potentials were obtained from an all-electron cal-

culation of a neutral isolated atom using a method described in by Kresse and

Joubert[152]. Electrons treated as valence states (out of the core) for each ele-

ment were as follows: Ag(4d1o 5sl), Mg(2p 6 3s 2), Au(5d1o 6s2), Zr(4s2 4p 6 5s'

4d 3), Li(2s'), Pt(5d9 6s1 )

cutoff energy Each pseudopotential requires a characteristic number of Fourier com-

ponents required to describe the variations of its valence wavefunctions and

pseudo core electron potentials accurately. This concept has been used to derive

a suggested energy cutoff [153] for a plane wave basis set. For all calculations

presented in this thesis energy cutoffs were set to 1.5 times the largest suggested

cutoff for any species present in an alloy.

k-point grid Brillouin-zone integrations were performed using a Monkhorst-Pack

mesh [154] containing at least 2500/(number of atoms in unit cell) k-points

distributed as uniformly as possible over the reciprocal cell.

coordinate optimization For each predicted structure, the coordinates of the sys-

tem are initialized to those of the structure prototype and a conjugate-gradient

based optimization is performed over cell lattice vectors and positions of all

atoms in the system.

extra notes all calculations are performed at zero temperature and pressure and

the zero-point motion of the nuclei is neglected. Total energies are expected

to be converged to 10 m V [3] while formation enthalpies, AHform(Al_•Bx) =

H(A 1_-Bx) - (1 - x)H(A) - xH(B), are expected to be converged to a much

smaller tolerance due to cancellation of errors. These convergence values are
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only up to the intrinsic approximations made in DFT, the particular GGA

functional used, and the use of frozen-core PAW potentials.
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