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ABSTRACT

Computational methods, including density functional theory and the cluster expansion
formalism, are used to study materials for hydrogen storage.

The storage of molecular hydrogen in the metal-organic framework with formula unit
Zn40(0 2C-C6H 6-COD3 is considered. It is predicted that hydrogen adsorbs at five sites near
the metal-oxide cluster, in good agreement with recent experimental data. It is also shown
that the metal-oxide cluster affects the electronic structure of the organic linker, qualitatively
affecting the way in which hydrogen binds to the linker.

Lithium imide (Li2NH), a material present in several systems being considered for
atomic hydrogen storage, is extensively investigated. A variation of the cluster expansion
formalism that accounts for continuous bond orientations is developed to search for the
ground state structure of this material, and a structure with a calculated energy lower than
any known is found. Two additional discrete cluster expansions are used to predict that the
experimentally observed phase of lithium imide is metastable at temperatures below
approximately 200 K and stabilized primarily by vibrational entropy at higher temperatures.
A new structure for this low-temperature phase that agrees well with experimental data is
proposed.

A method to improve the predictive power of cluster expansions through the
application of statistical learning theory is developed, as are related algorithms. The Bayesian
approach to regularization is used to show that by taking advantage of the prior expectation
that cluster expansions are local, the convergence and prediction properties of cluster
expansions can be significantly improved. A variety of methods to generate cluster
expansions are evaluated on three different binary systems. It is suggested that a good
method to generate cluster expansions is to use a prior distribution that penalizes the ECI
for larger clusters more and has few parameters. It is shown that the generalized cross-
validation score can be an efficient and effective substitute for the leave-one-out cross-
validation score when searching for a good set of parameters for the prior distribution.
Finally it is shown that the Bayesian approach can also be used to improve the convergence
and prediction properties of cluster expansions for surfaces, nanowires, nanoparticles, and
certain defects.

Thesis advisor: Gerbrand Ceder
Tide: R. P. Simmons Professor of Computational Materials Science





I. Overview





I.1. Acknowledgements

I would like to thank my advisor, Professor Gerbrand Ceder. He was a valuable source

of insight and research advice while at the same time allowing me sufficient freedom to

pursue new ideas. This is a difficult balance to strike, but he does it very well.

I would also like to thank the members of the Ceder group, my housemates, and my

other friends at MIT. They made my graduate career enjoyable and they have contributed

greatly to my understanding of materials science.

I would like to thank my family members, who have been very supportive and have

never stopped trying to understand exactly what it is that I do.

Most importantly, I would like to thank my fianc6e Elisa. She has been loving,

supportive, patient, and someone who I could always depend upon for intelligent and honest

discussion.



8

1.2. Table of contents

I. Overview ...................................................... ........ . 5

I.1. Acknowledgements.......................................................................................7.......

1.2. Table of contents ........................................ .................................................. 8

1.3. Introduction....................................................................................................... 12

II. M aterials for hydrogen storage .................................... 15

II.1. Background and motivation................................. ........ ......................... 17

II.1.1. Department of Energy targets .................................................................................. 18

11.1.2. Potential hydrogen storage systems ................................................................. 19

11.1.2.1. Compressed and cooled hydrogen ................................................................... 19

11.1.2.2. Chemical hydrogen storage ............................................................................... 19

11.1.2.3. Adsorption of molecular hydrogen ...................... ........... 19

11.1.2.4. Storage of atomic hydrogen ..................................... .............. 20

11.1.3. Thesis research......................................................................................................... 21

11.2. Hydrogen storage in metal-organic frameworks........................... ...... 22

11.2.1. Methodology ............................................................................................................ 23

1I.2.2. Structural results ...................................................................................................... 25

11.2.3. Hydrogen adsorption sites ..................................................................................... 26

11.2.3.1. Comparison with other studies ................................................. 36

11.2.3.2. D iscussion ............................................................................................................... 38

11.2.4. The effect of the framework on the BDC linker .................................... ... 44

11.2.5. Summary and Conclusion ............................................................................................ 47

11.3. Lithium imide ........................................................... .... ..... ........ . .... ............ 48

11.3.1. An antifluorite model of lithium imide ................................................................... 49

11.3.1.1. Methodology.....................................................................................................50

11.3.1.1.1. The effective Hamiltonian ............................................. .............. 50

11.3.1.1.2. Enthalpies of formation ........................................................ ............... 55

II.3.1.2. R esults .................................................................................... ........................... 55

11.3.1.2.1. Effective interactions ..................................... ...... ................. 55



9

11.3.1.2.2. A new low-energy structure......................................................................... 59

11.3.2. The low temperature phase .................................................................................... 67

11.3.2.1. Methodology.....................................................................................................70

11.3.2.2. R esults .............................................................. ................................................. 72

11.3.2.2.1. Local interactions ..................................................................................... 72

11.3.2.2.2. Ground state search................................................................................. 75

11.3.2.2.3. Finite-temperature behavior ........................................... 83

11.3.2.3. D iscussion ............................................................................................................... 87

III. A Bayesian approach to building cluster expansions.................... 89

III.1. Background and motivation ..................................... ..... ............... 91

III.1.1. The cluster expansion ............................................................................................ 92

III.1.1.1. Effective cluster interactions (ECI) ................................................................ 96

111.1.2. A new approach to developing cluster expansions......................97

111.2. Bayesian Regression................................................... 98

I1.2.1. Derivation of Bayesian regression............................................................................98

III.2.2. Prior distributions ........................................ 101

11.2.2.1. The mean of the prior distribution..................................... 101

111.2.2.2. The shape of the prior distribution ...................................... ...... 102

11.2.2.2.1. The Gaussian prior.................................................. 102

11.2.2.2.2. The Laplace prior ................................... .......... ......... 106

111.2.2.3. The width of the prior distribution ................................................................. 12

111.2.2.3.1. Cluster selection....................................................................................113

111.2.2.3.2. Constant width ................................... 113

111.2.2.3.3. Independent widths .................................................................................... 14

I1.2.2.3.4. The exponential width function .................................... 114

111.2.2.3.5. The hierarchical width function ............................................................... 18

111.2.2.4. Parameterizing the width-generating functions ........................................ 119

111.2.2.4.1. Leave-one-out cross-validation ..................................... 119

111.2.2.4.2. Generalized cross-validation......................... 121

111.3. Sample generation ....................................................................................... 124



10

111.3.1. Estimating the domain matrix .................................... ................... 126

111.3.1.1. Direct enumeration ........................................ 127

111.3.1.1.1. Enumerating structure lattices ........................................ 129

111.3.1.1.2. Enumerating structure basis decorations ...................................... 132

111.3.1.2. A nalytical m ethods................................. ..... ...... ................................. 135

111.3.1.2.1. All possible structures .................................. 135

111.3.1.2.2. Fixed com position........................................................... .................... 136

111.3.1.3. Statistical m ethods............................................................. ....................... 138

111.3.2. Selecting the training set ........................................ 140

111.4. Experim ents ...................................................................... ....................... 142

111.4.1. Sample data................................................142

111.4.1.1. Calculating input values....................................142

111.4.1.1.1. Generating the sample structures...........................142

111.4.1.1.2. Selecting training structures .................................... ........................... 143

111.4.1.2. Calculating output values ................................... 143

111.4.1.2.1. The em bedded atom potential............................................................... 143

III.4.1.2.2. The Tersoff potential ............................................................. 145

111.4.2. M odel selection ............................ .. . .. ........ ............................. 145

111.4.3. Cluster expansion options .......................................................... 147

111.4.4. R esults ......................... .... .................................. .. ......................... 149

11.4.4.1. Prior distributions ........................................ 149

111.4.4.2. Regularized variable ........................................ 151

111.4.4.3. D ata sets ........................ .. . .... ..... ......................... ..... 152

111.4.4.4. Weighting ......................... ..................................... 156

111.4.4.5. Convergence ............................................................... 157

111.4.4.6. D iscussion .................................... .. .............. ................ 177

111.5. Further Considerations .......................................... 181

111.5.1. The posterior distribution...................................................181

111.5.2. Continuous potential energy surfaces .............................. 182

111.5.3. Applying the Bayesian cluster expansion to surfaces .................................... 182



11

111.5.3.1. Example: Si-Ge nanowire ........................................ 186

IV. References ........................................ 191



1.3. Introduction

This thesis has been divided into four chapters. The first chapter contains an overview

of the thesis, and the last is a list of references. The middle two chapters contain the bulk of

the research. In this introduction, I will briefly, and informally, provide the story behind the

research in these middle chapters.

The second chapter is an exploration of materials for hydrogen storage, with a focus on

mobile fuel-cell applications. This is a pressing problem that remains one of the key

obstacles that must be overcome for the commercialization of mobile fuel-cell technology.

Based on initial reports of positive experimental results, the storage of molecular hydrogen

in nanoporous metal-organic frameworks was investigated. Later experiments showed that

these materials do not have as much promise for hydrogen storage as initially thought, which

is consistent with the calculations in this thesis.

Subsequently the focus of my research shifted to atomic hydrogen storage in systems

based on lithium, nitrogen, and hydrogen (Li-N-H). A glaring problem in the study of Li-N-

H-based systems is the fact that the structure of a key material, lithium imide (LizNH), was

unknown. Numerous attempts to identify the structure of this material have all arrived at

different conclusions. In the end, I found two new structural phases for this material: one

that is a likely candidate for the ground state at OK, and another that is expected to be

entropically stabilized at room temperature and metastable at lower temperatures. These

results resolve discrepancies between calculations and experiments in previous studies and

should help researchers better model hydrogen storage systems that contain lithium imide.

The cluster expansion methodology was repeatedly useful in the study of lithium imide.

Cluster expansions have been used to successfully address a variety of materials science

problems, but it is difficult to parameterize cluster expansions that have a large number of

degrees of freedom. This is essentially a problem in function learning, a mathematical

problem that has been studied in depth in the field of statistical learning theory. In an

attempt to improve the parameterization of cluster expansions, I applied some of the general

concepts in statistical learning theory to develop new methods for building cluster

expansions. Because these methods are relatively unproven, I evaluated them on several sets

of test data. The insights provided by statistical learning theory proved useful, as the new
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methods repeatedly outperformed more traditional methods of building cluster expansions.

A bonus is that the new methods are fairly easy to implement. Although many of the new

methods presented in this thesis were developed in the context of the study of lithium imide,

I am hopeful that researchers find them useful for other problems in materials science.
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II. Materials for hydrogen
storage





II.1. Background and motivation

As the global demand for hydrocarbon-based fuels rises and the supply of natural

hydrocarbons falls, there has been a growing effort to develop alternatives to traditional

power sources. Fuel cells, in which fuel is electrochemically converted into electricity, have

emerged as leading contenders due to their high theoretical efficiency, low pollution relative

to combustion technologies, and quiet operation. A large number of fuel cell systems have

been developed based on a variety of fuels, electrodes, electrolytes, and operating

environments. It is beyond the scope of this thesis to review these systems, but the curious

reader can find thorough reviews in references [1-4].

A potential application of fuel cell technology is in the transportation sector, where

cleaner, quieter, and more efficient alternatives to traditional internal combustion engines are

sought [2-4]. If fuel cells are to be used for transportation ("on board" fuel cells) they will

need to meet challenging technical requirements, including but not limited to the following

[5]:
* High power density

* Short refueling time

* Long lifetime

* Quick startup

Based on these requirements, fuel cells that use proton exchange membrane (PEM)

electrolytes are thought to be well suited for use in transportation [1-4]. PEM fuel cells

operate at temperatures of about 80 'C, but no higher than approximately 100 'C, so they

can be quickly started in normal atmospheric conditions. At the anode of a PEM fuel cell

hydrogen is separated into protons and electrons. The electrons travel through an electrical

circuit to the cathode, and protons diffuse to the cathode through a polymer membrane. At

the cathode, the protons and electrons are typically combined with oxygen from the

atmosphere to form water, which is the only waste product if pure hydrogen is used as a fuel

[1-3]. For a PEM fuel cell to function, the fuel must contain hydrogen atoms to provide the

required protons.



Before PEM fuel cells can be considered a viable alternative to combustion engines

there are several technical challenges that must be overcome. One of the most significant of

these challenges is the development of a means of storing hydrogen for use in these fuel

cells. At atmospheric pressure, pure hydrogen is a gas above 21 K. If hydrogen is to be

stored as a fuel for on-board fuel cells, it must be physically and/or chemically compressed.

This storage system will add weight and cost to the overall fuel cell, making the choice of

storage system critical for the overall fuel cell efficiency. In the following section, the

current state of hydrogen storage research will be summarized.

II. 1.1. Department of Energy targets

The United States Department of Energy (DOE) has set forth technical targets for on-

board hydrogen storage [5]. Some of the key targets are as follows:

Target Year 2007 2010 2015

Gravimetric density (Usable H 2

weight as a percentage of total 4.5% 6% 9%
storage system weight)

Volumetric capacity (kg usable H2  0.036 0.045 0.081
per liter of system volume)

Operating ambient temperature -20 to 50 -30 to 50 -40 to 60
range (oC)

H2 delivery temperature from tank -20 to 85 -30 to 85 -40 to 85
range (oC)

System fill time for 5 kg H2  10 3 2.5
(minutes)

Cost ($US / kg usable H2 200 133 67

Table 1 Some of the technical
Department of Energy

targets for on-board hydrogen storage set

It is important to recognize that these are system targets, not material targets. It is

estimated that depending on the final system, the hydrogen storage material capacities

should be 1.2-2.0 times the given system target capacities [6].

by the U.S.



II. 1.2. Potential hydrogen storage systems

To meet the DOE targets, researchers are investigating a wide variety of hydrogen

storage methods. These different approaches will be briefly discussed here, and a more

thorough discussion of the alternatives can be found in referenced review articles [7-10].

1.1.2.1. Compressed and cooled hydrogen

The hydrogen could be stored as pure liquid H2, but it is difficult to maintain hydrogen

in its liquid form without boil off, and there is typically a 30% energy loss during to the

cooling process [2, 9]. Alternatively, hydrogen could be stored in compressed tanks, but

current solutions are expensive [8] and unable to achieve the DOE 2010 goals for volumetric

storage capacity [2, 9]. This is not surprising, considering the 2010 target for volumetric

density is 64% the density of liquid hydrogen at its condensation temperature and 1 atm

pressure. The 2015 system target is 114% the density of liquid hydrogen, and it is unlikely

that either liquid hydrogen or compressed hydrogen will be able to efficiently achieve this

goal.

11.1.2.2. Chemical hydrogen storage

It is possible to chemically store hydrogen as part of a molecule, such as methanol

(CH 3OH), that is a liquid at fuel cell operating conditions. An on-board reformer would

extract the hydrogen from this liquid when it is needed by the fuel cell. The disadvantages to

this approach are the cost and additional weight of the on-board reformer, the release of

gaseous pollutants, and the need for off-board regeneration of the liquid fuel if it is to be

sustainable (although this may or may not be more efficient than the off-board generation of

pure hydrogen) [3].

11.1.2.3. Adsorption of molecular hydrogen

The adsorption of molecular hydrogen in porous materials and carbon-based

nanostructures has also been extensively investigated. Although the kinetics of hydrogen

storage in these structures is very good, with full uptake occurring in minutes, hydrogen

uptake is generally not as exothermic as it is in materials that store atomic hydrogen, and the

gravimetric densities tend to be too low. Early positive reports on hydrogen storage in



carbon nanotubes and nanofibers have not been reproducible, and it is believed that these

materials hold a maximum of about 1 wt% hydrogen [8, 9]. Activated carbons have been

more successful, achieving gravimetric storage densities of about 2% at 77 K and 1 bar [8,

11]. Gravimetric densities of up to 4.2% have been reported for collapsed BN nanotubes at

room temperature 10 MPa pressure, but the hydrogen is only released at temperatures above

300 'C [12]. Initial reports of high hydrogen storage in a class of nanoporous materials

known as metal-organic frameworks have been discounted in more recent experiments, and

the best results to date are for less than 3 wt% gravimetric storage density at 77 K and 1 atm

[13-15]. At pressures of 20 atm, storage capacities of over 6 wt% have been reported [15].

None of the solutions described above have reached the 2010 DOE targets for either

gravimetric or volumetric storage densities, and remains unclear which, if any, type of

hydrogen storage system will be able to reach these targets [2].

11.1.2.4. Storage of atomic hydrogen

The remaining alternatives for hydrogen storage are based on solid-state materials.

Metal hydrides can reversibly store hydrogen in the interstitial sites of the host metal, but the

hydrides used to date store hydrogen at insufficient gravimetric densities (e.g. LaNisH 6 at

1.37 wt%) and / or thermodynamically release hydrogen at temperatures that are too high

(e.g. MgH, at 1 bar and 300 'C) [7-9]. Higher gravimetric densities can be achieved through

the use of complex metal hydrides. Some of these, such as sodium borohydride (NaBH4) do

not store hydrogen reversibly, and produce solid waste products that must be removed for

off-board recycling [16, 17]. Sodium alanate (NaA1H 4) doped with Zr- and Ti- based

catalysts, can reversibly store 3.7 wt% hydrogen at temperatures as low as 33 'C, although

with very slow kinetics. At higher temperatures (around 1000 C), an additional 1.8 wt% can

be desorbed [17]. The two-stage reaction is as follows:

NaAlH 4 +- 1/3 Na 3AlH 6 + 2/3 Al + H 2 +-+ NaH + Al + 3/2H2  Equation 1

There are a wide variety of combinations of reactants and products that may combine to

release hydrogen. The entropy of hydrogen gas at room temperature is approximately 130 J

/ mol K, meaning that for hydrogen release to occur thermodynamically at room

temperature the reaction enthalpy should be approximately 40 kJ / mol H2 [7]. The



approximate reaction enthalpies of a large number of possible reactions have been calculated

by Alavati et al. [18, 19], yielding a variety of candidates for new hydrogen storage systems

that are awaiting experimental verification. However, they limited their calculations to

systems for which the structures of all reactants and products are known.

A two-stage reversible adsorption process was discovered for lithium amide (LiNH2

[20]:

LiNH 2 + 2LiH +-* Li2NH + LiH + H2 -+ Li3N + 2H 2  Equation 2

The first step in this process releases a theoretical maximum of 6.5 wt% hydrogen

(ignoring the unmodified LiH), and the second step releases a theoretical maximum of 5.5

wt% (ignoring the already released H2. The total process could release 10.4 wt% hydrogen,

although in practice only about 6 wt% can be desorbed at temperatures below 300 'C.

11.1.3. Thesis research

In this chapter, computational methods have been used to study two of the more

promising solid-state hydrogen storage systems: metal-organic frameworks, and Li-N-H

based systems. Some of this work has been published in references [21, 22].



11.2. Hydrogen storage in metal-organic frameworks

It is difficult to achieve the required storage densities in porous materials that adsorb

molecular hydrogen due to the weak interaction of H2 with most surfaces and the difficulty

in creating stable high-surface area materials [23, 24]. To increase the density of molecular

hydrogen that can be stored in porous materials, it is necessary to maintain a sufficiently

strong interaction between hydrogen and the pore surfaces and keep the ratio of the overall

volume and weight of the material to the pore surface area to a minimum. In other words, it

is necessary to find a material with high gravimetric and volumetric surface area densities. In

addition, if the pores are sufficiently small, the attractive interactions between hydrogen and

the opposing surfaces of the pore can facilitate multi-layer adsorption of hydrogen within the

pore. For these reasons, although achievable volumetric hydrogen storage densities may be

low, a class of materials known as metal-organic frameworks have been investigated for

hydrogen storage [13, 25-28].

Metal-organic frameworks are formed by using organic ligands to connect small metal-

based clusters of atoms, forming a periodic framework. The resulting frameworks are

typically nanoporous materials with high surface area densities. Some are stable with empty

pores up to several hundred degrees Celsius [25, 29, 30]. Frameworks of similar

morphologies can be synthesized using a variety of organic linkers, providing the ability to

tailor the nature and size of the pores. Several frameworks have been experimentally

investigated for their abilities to store hydrogen, but to date none are able to do so at high

enough densities to be useful for fuel cell technology [13, 26-28]. By learning more about

how hydrogen interacts with these frameworks it may be better determined if their

limitations are intrinsic or if frameworks can be designed that store H2 at higher densities.

In this section ab initio calculations are used to examine the storage of hydrogen in the

metal-organic framework known as MOF-5 [29]. MOF-5 is formed by using 1,4-

benzenedicarboxylate (BDC) to link together Zn40O clusters. The resulting framework with

formula unit Zn40(BDC) 3 consists of cubic pores, where BDC forms the edges of the cubes

and the Zn40 clusters form the vertices. The width of each pore is approximately 13 A. In

half of the pores the face of the carbon rings faces towards the center of the pore, and in the

remaining pores the edges of the carbon rings face the center, so that there are two formula



units per primitive cell. (See Figure 1) Experiments indicate that MOF-5 is capable of

achieving a gravimetric hydrogen storage density of 1.3% at 77 K and 1 atm [13]. Although

this is significantly less than the minimum target of 6% set by the United States Department

of Energy, it is worth exploring how MOF-5 stores the hydrogen to determine if it is

possible to design other framework structures with higher H2 capacity.

Zn40
Vertex

BDC
Linker

(a)

(b) (c)-

Figure 1 (a) The pore type that is surrounded by the edges of the BDC rings. (b) The pore
type that is surrounded by the faces of the BDC rings. (c) The two pore types combined to
form an eight-pore section of the framework. The atoms are colored as follows: Grey = Zn,
Red = O, Brown = C, White = H.

11.2.1. Methodology

MOF-5 has a highly symmetric periodic structure with 106 atoms per primitive unit cell.

Because it is computationally expensive to perform calculations on systems of this size, it is

tempting to model MOF-5 by looking only at a finite piece of the framework. For example,

the computational cost of studying the BDC linker alone is significantly smaller than that of

studying the BDC linker in the context of the framework. Later it will be argued that such

an approach can give misleading results. In addition, studying only a part of the framework

may bias the results to specific adsorption sites and overlook other important interactions

between the framework and H2. For these reasons the full periodic structure has been

modeled.



Modeling the interaction between molecular hydrogen and MOF-5 is a difficult task

because a significant portion of the interaction may be caused by non-local electronic

correlation. Ab inido methods that accurately evaluate this type of interaction typically scale

poorly with system size, making them computationally expensive for systems such as MOF-5

with large unit cells. On the other hand, methods that scale well with system size, such as

Density Functional Theory [31] (DFT) with the Local Density Approximation (LDA) or the

Generalized Gradient Approximation (GGA), often fail to accurately calculate the

magnitude of weak interactions because of the strong dependence of such interactions on

electron correlation. Studies on weak van der Waals complexes show that LDA usually

significantly overestimates the magnitude of these interactions [32-35]. The results for GGA

depend strongly on which exchange-correlation functional is used [32, 34, 36, 37].

Functionals that obey the Lieb-Oxford bound, such as Perdew-Wang 1991 [38] (PW91) and

Perdew, Burke and Ernzerhof [39] (PBE) are best able to model the weak interaction [32,

34]. Of these two the PBE functional usually gives the best results. For example, in two

studies of the binding energies of rare-gas atoms into a dimer, the mean absolute error for

PW91 was 7.7 meV [32] and 7.1 meV [35], whereas the mean absolute error for PBE was 2.5

meV [32] and 3.6 meV [35]. For these reasons DFT with the PBE exchange-correlation

functional has been used for all calculations in this section.

All calculations were performed using the plane-wave DFT code from the Vienna Ab-

initio Simulation Package (VASP). The Projector Augmented Wave [40, 41] (PAW) method

was used, simplifying the problem to solving for the wavefunctions of 468 valence electrons

per unit cell. Real-space projectors were used to evaluate the projected wavefunction

character. For static calculations and relaxations an energy cutoff of 520 meV was used, and

for molecular dynamics calculations, for which accurate energy evaluations are less

important, a cutoff of 400 meV was used. Due to the large size of the unit cell, the only k-

point used was the gamma point. Using an evenly spaced 2x2x2 gamma-centered k-point

grid reduces the relaxed energy per 106-atom unit cell by 3.1 meV, or 0.03 meV per atom,

supporting the use of only one k-point. The FFT mesh used is sufficiently large to prevent

wrap-around errors.

To find the optimal structure for the MOF-5 framework with empty pores, the ions

were relaxed at a series of lattice parameters with increasing and decreasing increments of



0.1% of the experimental lattice parameter of 25.9109 A [42]. The shape of the unit cell was

fixed for these calculations. The graph of the five lowest structural energies as a function of

the lattice parameter was fit to a parabola using a least squares fit. One final relaxation was

performed in which the lattice parameter was fixed to the value corresponding to the

minimum of this parabola. The ionic positions for the resulting structure were used for all

calculations in which hydrogen was adsorbed to the pores. Because this assumption does

not account for the relaxation of the framework atoms due to H2 adsorption, the interaction

strengths reported in this section should be slightly weaker than those that would be

obtained if full relaxation were allowed.

To calculate the interaction energies of hydrogen molecules three different reference

energies were considered. The first is the energy of the system in which a single hydrogen

molecule is placed in the center of the pore surrounded by the faces of the carbon rings.

The second is the energy of the system in which a hydrogen molecule is in the center of the

other pore. The third reference state is the sum of the energy of the relaxed empty

framework and the energy of an array of hydrogen molecules placed on the same lattice as

the framework but without the framework ions. All of these reference states are within 0.1

meV of each other, and for the values given in this section the third option is used. All

interaction energies given in this section are per hydrogen molecule.

11.2.2. Structural results

The calculated lattice parameter of the framework with empty pores is 26.137 A, which

is less than 1% greater than the experimental lattice parameter of 25.911 A. Similarly, the

calculated values for the Zn-Zn bond length, the C-C bond lengths, and the H-H bond

length in the H2 molecule are approximately 1% greater than their experimental values (see

Table 2). Errors of this type are typical when using a GGA functional. The O-C-O bond

angle is calculated at 126.1', which is 0.2% greater than the experimentally measured value of

125.80 [42].



Experimental Calculated Ratio

Lattice parameter 25.911 A 26.137 A 1.009

Zn-Zn bond length 3.181 A 3.220 A 1.012

C-C distance in carbon ring 1.396 A 1.404 A 1.006

O-C-O bond angle 125.80 126.10 1.002

H2 bond length 0.741 A [43] 0.750 A 1.012

Table 2 Experimental and calculated values for structural parameters of MOF-5 [42] and H2.1

11.2.3. Hydrogen adsorption sites

The pore surfaces of MOF-5 contain numerous distinct sites at which hydrogen might

adsorb. Rather than guessing which sites hydrogen might interact with most strongly, a

molecular dynamics simulation was performed to determine the areas of high average

hydrogen density. Seventeen hydrogen molecules per formula unit were included, which is

approximately the density of hydrogen originally thought to adsorb in MOF-5 at 1 atm and

77 K [26]. This result has since been corrected, and it is currently believed that under these

conditions MOF-5 adsorbs 5 hydrogen molecules per formula unit [13]. The molecular

dynamics simulation was performed with a timestep of 2 fs using velocity rescaling to

maintain the temperature at 77 K.

To initialize the molecular dynamics simulation, the pores were randomly populated

by hydrogen molecules so that the centers of any pair of molecules were no closer than 2.3

A from each other. The molecules were assigned random orientations and initial velocities.

After four picoseconds, the simulation had achieved dynamical equilibration as measured by

the frequency and magnitude of the fluctuations in total energy. The simulation continued

for another 17.5 picoseconds, during which time the average hydrogen density was recorded.

A smoothed hydrogen density distribution p(x) was calculated at each timestep using

Equation 3, where ni is the center of the ith hydrogen nucleus and a = 0.5 A.

1 The values for MOF-5 were measured at 30 K.



p(x) = p (x)

pI x-n(x)i= Equation 3

0 x - nil > 3ar

The average density was calculated by averaging p(x) over all timesteps after the initial

four picoseconds.

The results of this simulation are shown in Figure 2. The density is greatest near the

Zn4O clusters. Figure 3 shows the isosurfaces of the highest hydrogen density. There are

three distinct local maxima near the Zn 4O clusters. Two of these are where they might be

expected, at the high-symmetry sites located in the corners of the cubic pores. These sites

are labeled as sites I and II, where site I is in the corner of the pore surrounded by the edges

of the BDC linkers and site II is in the comer of the other pore. The third, labeled as site

III, is not as intuitive; it is a low-symmetry site located in between the other two. This is

potentially the most significant of the three sites because there are three times as many of

sites in the framework of type III as there are of sites of type I or type II. The locations of

these sites are given in Figure 3.

(a)

Figure 2 (a) Hydrogen density on a plane in MOF-5 as calculated using first-principles
molecular dynamics. The color scale that linearly corresponds to density is shown below the
plot, with blue corresponding to zero hydrogen density. The five adsorption sites investigated
in this thesis are marked in this plane. (b) The plane shown in the context of the three-
dimensional MOF-5 structure. The dark lines correspond to the BDC linkers.
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Figure 3 Isosurfaces of high hydrogen density near the Zn 40 cluster. The three adsorption
sites I, II, and III are labeled. In the coordinate axes shown, where the origin is at the center
of the Zn40 cluster, the coordinates of the three sites are approximately as follows, in
angstroms: Site I: (3.4, 3.4, -3.4). Site II: (2.6, 2.6, 2.6). Site III: (4.4, 4.4, -1.3).

Whereas the molecular dynamics simulation indicates the areas to where hydrogen is

attracted, ground-state relaxation calculations are required to get accurate interaction

energies and to reveal the preferred orientation of hydrogen in these regions. To calculate

the binding energy of hydrogen at each of these three sites it was necessary to try several

different orientations. For sites I and II, an intuitive orientation is for the hydrogen

molecule to be aligned along the body diagonal passing through the center of the Zn40O

cluster and the center of the pore. In Table 3 these orientations are labeled I(A) and II(A)

respectively. To find the optimal location for the center of the molecule along this diagonal,

a series of static calculations were performed at increments of 0.1 A. Along this direction

the minimum was found by fitting a parabola to the points with the lowest energies. The

hydrogen bond length was not allowed to change; rather, it was fixed at the calculated value

of the relaxed isolated hydrogen molecule, which is 0.7501 A.
Other orientations at sites I, II, and III were also considered. (See Table 3) Unlike for

orientations I(A) and II(A), the molecular centers for these orientations do not necessarily lie



on a fixed axis of symmetry. Because of this, the molecule was dynamically relaxed by

calculating the forces on the atoms instead of doing a series of static calculations. Relaxation

was stopped when the energy difference between two successive relaxation steps was less

than 0.2 meV per unit cell. This same method was used to examine the interaction energy at

various orientations near site III. In all these calculations the final bond length of the

hydrogen molecule is within 103 A of the bond length of an isolated molecule, supporting

the use of the frozen bond length for the static calculations. The results for these

calculations are shown in Table 3. The adsorption energy is lowest (most negative) at site I,

followed closely by site III. Site II has the highest (least negative) adsorption energy of the

three sites, and is the only one for which the two hydrogen atoms are equidistant from the

center of the Zn4O cluster in the lowest energy orientation.



Site and Hydrogen Adsorption
orientation Diagram locations (A) energy

(meV)

(3.65, 3.65, -3.65) -21.7
(3.22, 3.22, -3.22)

V.I

(3.11, 3.18, -3.11)
-19.9

(3.42, 3.79,-3.42)

(3.11, 3.79, -3.11) -12.5
(3.42, 3.18, -3.42)

I I A I

(3.00, 3.44, -3.00) -20.2

(3.53, 3.53, -3.53)

z (3.53, 3.48, -3.00) -14.8

(3.00, 3.48, -3.00)
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Site and Hydrogen Adsorption
energy

orientation Diagram locations (A) energy(meV)

(2.88, 2.88, 2.88)
-9.5

(2.45, 2.45, 2.45)

I. I. I- I .1 1

z (2.56, 2.24, 2.56)
(2.67, 2.98, 2.6-13.6
(2.67, 2.98, 2.67)

I I. I I I

Z (2.46, 2.92, 2.46) -17.9
(2.77, 2.30, 2.77)

i I './ I. I I

(2.35, 2.66, 2.35)
(2.88, 2.57, 2.8-13.3
(2.88, 2.57, 2.88)

z (2.35, 2.61, 2.35) -17.9
(2.88, 2.61, 2.88)
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Site and Hydrogen Adsorption
orientation Diagram locations (A) energy

• M*.i

II(A) 4
(4.09, 4.09, -1.25)

-20.8
(4.62, 4.62, -1.36)

I I A, ,. - 1 .1 I

(4.62, 4.09, -1.31). 1-7.5
(4.09, 4.62,-1.31)

I I A I.

III(C) a
(4.35, 4.35, -0.94)

-11.9
(4.32, 4.32,-1.68)

I______ I '. '. I __ _ _ __ _ _ _ .1_ _ __ _ _

Table 3 The orientations considered
energies for those orientations. 2

near sites I, II, and III and the calculated adsorption

Around each Zn40 cluster there are a total of 20 sites that are of type I, II, or III.

Given the proximity of some of the sites to each other it may not be energetically favorable

to populate all of these sites at the same time. A calculation was performed in which all sites

of types II and III around a given Zn4O cluster were populated with hydrogen in

orientations II(C) and III(A) (see Figure 4). The interaction energy between the framework

and the sixteen hydrogen molecules is 9 meV stronger than the sum of the interaction

energies with hydrogen at the individual sites, meaning that on average the attraction

becomes stronger by a little more than 0.5 meV per site as the vertex saturates with H2. This

2 The colors are the same as those used in Figure 1, and the adsorbed hydrogen is shown in yellow. The
coordinates of each adsorbed hydrogen atom are given in the coordinate system shown, which is the same as
the coordinate system used in Figure 3.
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is not the case when hydrogen is placed at sites of type I and II. When sites of type II are

populated in orientation II(C), the adsorption energy for site I in orientation I(A) increases

from -21.7 meV to -6.3 meV. When sites of type II and III are populated, the adsorption

energy at site I in orientation I(A) is -4.5 meV. It is unlikely that more than sixteen sites can

be populated around any Zn40 cluster without significantly adversely affecting the

interaction energy of additional hydrogen molecules on the cluster.

(aV- (b)-

Figure 4 (a) Sites I and III simultaneously occupied with hydrogen in its lowest-energy
orientation. (b) Sites II and III simultaneously occupied with hydrogen in its lowest-energy
orientation.

Two symmetrically distinct areas of high hydrogen density are located near the BDC

linker. One of these areas is located directly above the face of the carbon ring, and the other

is located to the side of the carbon ring. (See Figure 5) These are labeled as sites IV and V,

respectively.



34

Figure 5 Hydrogen density along a plane that slices through the centers of two BDC linkers.
Sites IV and V are labeled. The color scale that linearly corresponds to density is shown
below the plot.

The density of molecular hydrogen at these sites is lower than the density near the Zn40O

cluster. This is reflected in the weaker interaction energies at these sites. At site IV, five

symmetrically unique orientations were considered for the hydrogen molecule. The optimal

distance from the center of the carbon ring was determined in the same way the optimal

center was found for orientations I(A) and II(A): by fitting a parabola to a series of static

calculations. Similar calculations were done for three orthogonal orientations at site V. The

results of these calculations are shown in Table 4.
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Site and
orientation

IV(A)

IV(B)

IV(C)

IV(D)

IV(E)

V(A)

Distance
from BDC
center (A)

3.50

3.45

3.46

3.50

3.52

4.85

Rotational
angle ()

N/A.
Orthogonal

to BDC
plane.

60

30

N/A.
Orthogonal

to BDC
plane.

Adsorption
energy
(meV)

-14.3

-11.0

-10.6

-9.9

-9.5

-12.6

Diagram
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Site and
orientation

V(B)

V(C)

Diagram
Distance

from BDC
center (A)

4.92

5.07

Table 4 Adsorption energies and at different orientations at sites IV and V.3

11.2.3.1. Comparison with other studies

Hydrogen adsorption on the linker is weaker than adsorption near the Zn4O cluster.

This is consistent with the results of Sagara et al., in which second-order Moller Plesset

theory (MP2) was used to compare interaction energies on benzene to interaction energies

on Zn 40(HCO2) [44].

In an analysis of Inelastic Neutron Scattering (INS) data taken from hydrogen stored in

MOF-5, Rosi et al. observe two distinct adsorption sites. They associate one of the sites

with Zn, and the other with the BDC linker [26]. The results presented in this thesis suggest

an alternative explanation: these could be two of the sites on the Zn40 cluster. For example

hydrogen might first adsorb at the sites of type I, and as the hydrogen density is increased

the hydrogen coverage at sites of type II and III might increase. Any increase in hydrogen

coverage at sites of type III would likely come at the expense of the coverage at sites of type

I.

3 The distance between the center of the BDC linker and the center of the H2 molecule is given along with the
orientation of the H2 molecule. Unless otherwise noted, the H 2 molecule is parallel to the plane of the BDC
linker, and the angles given are measured from the axis running between the centers of the two carboxyl
groups. The colors are the same as those used in Table 3.

Rotational
angle (0)

0

90

Adsorption
energy
(meV)

-10.2

-5.2



There have recently been several experimental studies that also support this result.

Rowsell et al. used x-ray diffraction on argon adsorbed in MOF-5 to identify potential

adsorption sites that are remarkably similar to the ones discovered in this thesis [45]. (Figure

6) The ranking of the adsorption energy for the sites was believed to be, from strongest to

weakest, II >> I > III > IV ~ V, which is similar to the ranking of I III > II > IV = V

calculated in this thesis. The notable difference is that Rowsell et al. suggested a stronger

relative binding energy for Ar on site II than the energy for H2 calculated in this thesis.

Initially, Rowsell et al. believed that hydrogen preferentially bound to site II, followed by site

III due to its higher multiplicity. In a later paper, based on single-crystal Laue neutron

diffraction of H2 adsorbed in MOF-5, this was revised to site II followed by site I [46].

E(CH) 2 I

|(ZnO)4

(C)

~y(ZnO)
2

CO2)3

Figure 6 The five main argon adsorption sites identified by Rowsell et al. The sites
correspond to the sites identified in this thesis in the following way: ac=II, P=I, y=III, 8=IV,
s=V. Figure from reference [47].

Using neutron powder diffraction, Yildirim and Hartman were able to experimentally

map the hydrogen density in MOF-5 [48]. They identified the same adsorption sites near the

metal-oxide cluster and the organic linker, and a similar hydrogen density pattern to the one

calculated in this thesis (Figure 7).



(a

Figure 7 (a) The hydrogen density in MOF-5 as calculated in this thesis plotted on a plane.
(b) The hydrogen density calculated experimentally using neutron powder diffraction in
reference [48]. In both plots, blue represents an area of low density and red is an area of high
density, but the scales are not the same.

11.2.3.2. Discussion

It has been experimentally shown that replacing the BDC linker with other organic

linkers influences the ability of the metal organic frameworks to adsorb hydrogen [13]. This

indicates that at least some of the hydrogen experimentally adsorbs on the linker. However

none of the linkers tested caused the framework to store fewer than four molecules of

hydrogen per formula unit at 1 atm and 77K, suggesting the possibility that four molecules

of hydrogen adsorb on each of the Zn 40 clusters and the remaining hydrogen is associated

with the organic linker.

The molecular dynamics simulation indicates an area of high hydrogen density near the

center of pore surrounded by the edges of the BDC linkers (Figure 2). This may be a result

of the pair correlation of molecular hydrogen. The first peak in the pair correlation function

indicates the distance that most commonly separates two hydrogen molecules. As hydrogen

adsorbs on the side of the pore, other hydrogen molecules in the pore will stay

approximately this distance away from the adsorbed hydrogen. For the pore surrounded by

(b
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the edges of the BDC linker, the first peaks in the pair correlation functions from the

adsorption sites on the edges of the pore overlap at the center of the cell, yielding the

observed increase in hydrogen density there. For the larger pore, the peaks do not quite

overlap the center of the cell, resulting in the observed ring of locally high hydrogen density.

Similar results have been observed experimentally for argon adsorbed in MOF-5 [45].

Pores of the smaller type are surrounded by twelve sites of type V. When each of these

sites is populated with hydrogen in orientation V(A), the energy for a hydrogen molecule in

the center of the pore decreases by about 12 meV. The adsorption of hydrogen on the

edges of the pores creates a new adsorption site near the center of the pore. This type of

interaction suggests that under sufficiently high pressures hydrogen could condense to a

liquid-like state in the pore.

The adsorption energies can be interpreted in the context of a simple thermodynamic

model of adsorption in the pore. Under conditions of constant temperature and pressure, a

hydrogen molecule can be expected to enter the framework when the chemical potential of

the hydrogen in the pore is no greater than the chemical potential of free hydrogen gas. If it

is assumed that the Gibb's free energy is a homogeneous function of the number of

particles, the chemical potential of free hydrogen gas is given by the following expression:

P
ext = eext + - Text Equation 4

,ext

where p represents the chemical potential, e represents energy, p represents density, T

represents temperature, and s represents entropy. The subscript ext is used to describe

values external to the framework, and lower-case letters are used to represent values that

have been normalized by the number of molecules.

Likewise, the chemical potential of hydrogen inside the framework is given by the

following expression:

Pint = eint + - Tsint Equation 5

The condition for adsorption of a gas to a given density within the framework is

therefore:



P P
eint + - Tint - eext + - ext Equation 6

Pint Pext

Equation 6 can be re-arranged to produce:

eint - eext < P t1 Pi t1 T(sex - in,t) Equation 7

The first term on the right can be thought of as the required work to compress the

hydrogen to a given density at a given pressure. The remaining terms describe the change in

Helmholtz free energy when the hydrogen molecules enter the framework. Adsorption will

occur when the change in Helmholtz free energy offsets the work that must be done.

In this approximate analysis it will be assumed that the electronic and vibrational

contributions to the difference in chemical potentials are small relative to the translational

and rotational contributions. Under the classical assumption that the kinetic energy and

potential energy can be separated, the change in the average kinetic energy upon adsorption

is zero, leaving only the difference in average potential energy. For an ideal diatomic gas

Equation 7 can thus be written [49]:

Au kT P 3 kT - kTn kT 3/2ek - T + Ts

Pint 2 h2 TSrot int  Equation 8

where Au is the average potential energy of a molecule inside the pore relative to outside

the pore, m is the mass of a hydrogen molecule, e is Euler's number, and sro, is the nuclear

and rotational contribution to the entropy for a free H2 rotor.

Every term on the right-hand side of Equation 8 is known with the exception of Sint .

Two cases will be considered: one in which sint = 0, the minimum possible value, and one in

which sint achieves its maximum possible value. The maximum value of sint would occur if

the potential energy surface of H2 in the framework were completely flat, and is given by the

expression for the entropy of an ideal gas:

3 +2mnkT 3/2 eTsntmax = kT + kTn h2 int Trot Equation 9



Inserting the minimum and maximum entropy expressions into Equation 8 produces

expressions for the upper and lower bound of the average adsorption energy inside the pore

required for adsorption to occur:

Au min - 3 kT- kTTn - TS
Pint 2 h 2  P

Equation 10

Aumax= kT -P -kT1n I

The bounds in Equation 10 are plotted in Figure 8 and Figure 9 for both 1 atm of

pressure and 40 atm. Figure 8 shows the bounds for the adsorption energy required to

adsorb five molecules per formula unit (-1.3 wt%), which is approximately what is observed

experimentally at 77 K and 1 atm [13]. It appears in Figure 8 that the maximum entropy

bound increases with increasing temperature. This is due to the fact that at these

temperatures and pressures, the natural density of free hydrogen gas is greater than five

molecules per formula unit of MOF-5.

Because there are few sites where there is significant adsorption energy, it might be

expected that the required adsorption energies are closer to the minimum-entropy bound

(solid line) than the maximum-entropy bound (dashed line). Given the calculated adsorption

energies, it may be surprising that any adsorption at all is experimentally observed at 77 K.

There are a couple of explanations for this. The first is that the energies calculated by GGA

may underestimate the true strength of the interactions. For example, GGA using the PW91

functional estimates the adsorption energy between molecular hydrogen and graphite to be

about -21 meV [36], whereas experimental values range from -36 to -52 meV [50, 51]. It has

also been suggested based on experiments that the hydrogen adsorption energy on site II in

MOF-5 is in the range of approximately -40 to -52 meV [52, 53]. In addition the hydrogen,

even when adsorbed, has not lost all translational entropy and likely moves between

adsorption sites. This lowers the required interaction energy. For example, in a simple

configurational model in which five hydrogen molecules populate sixteen equivalent and

independent adsorption sites, at 77 K the entropic contribution to the free energy would be

11 meV per molecule in addition to the contribution of any entropy due to center-of-mass

motion at each adsorption site.
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Figure 8 Bounds for the required average adsorption energy per molecule for adsorption of 5
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generated under the minimum entropy assumption (solid) and the maximum entropy
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ten percent hydrogen by weight (-38 molecules per formula unit) to occur at 1 atm (blue) and
40 atm (green). The bounds were generated under the minimum entropy assumption (solid)
and the maximum entropy assumption (dashed). (a) From 25 to 400 K (b) From 25 to 125 K.

43



A more realistic maximum entropy bound might be constructed if the density of

hydrogen in the free volume of the framework is used instead of the density of hydrogen in

the full framework. Experimentally, it is estimated that 61% of the framework is free

volume [29]. In the molecular dynamics simulation H2 molecules passed within 1.5 A of

approximately 73% of the volume of the framework. If it is assumed that hydrogen is

confined the free volume, the maximum entropy bound gets closer to the minimum entropy

bound. For example, at 40 atm and 300 K, the average adsorption energy can be no greater

than -49.7 meV for 10 wt% hydrogen to adsorb. If only 73% free volume is considered, the

average adsorption energy must be lower than -57.3 meV.

Figure 9 shows the bounds for the adsorption energy required to adsorb 10 wt%

hydrogen, which is approximately the DOE material target for 2010 [6]. This density

corresponds to approximately 38 hydrogen molecules per formula unit, which is greater than

the number of adsorption sites identified. It is clear from Figure 9 that much lower

adsorption energies would be required to adsorb 10 wt% hydrogen at 1 atm and 300 K. At

high pressures and 77 K, it might be possible to store close to 10 wt% hydrogen in a

microporous framework, which is supported by recent experiments [54]. However, the cost

and extra weight of a storage vessel that can maintain the material at such lower

temperatures and high pressures must be taken into account.

11.2.4. The effect of the framework on the BDC linker

It is possible to modify the nature of the pores in a metal-organic framework by

changing the linker used to synthesize the framework. If it were possible to predict how

these frameworks would interact with hydrogen by using what is known about the

standalone linkers, it would facilitate the process of determining which linkers might form

the most promising frameworks. In addition, the computational problem could be

simplified to one of studying the just the linkers without the need to model the entire

periodic framework. This would greatly reduce computational cost. The key is that the

linker must have the same properties in the framework that it has outside the framework.

To investigate this, calculations were performed on the BDC linker without the

surrounding framework. For the first calculation a linker was selected from the unit cell of

the periodic system and all other atoms were removed. The coordinates of the atoms of the



linker were frozen and the electronic structure was calculated using exactly the same

parameters used for the entire framework. The charge density of the standalone linker was

then subtracted from the charge density of the full framework to determine how the

framework influences the electronic structure of the linker. The results are shown in Figure

10. As might be expected, the Zn 40 clusters contribute charge, which resides principally

around the oxygen atoms in the carboxyl groups of the linker. This causes a redistribution

of charge over the rest of the linker from the carbon sp2 orbitals to the carbon p, and

hydrogen s orbitals.

I

414

;L j a

A

(a) (bI

Figure 10 Isosurfaces of the change in the electronic density around the BDC linker when it
is placed in the framework. (a) The charge added by the framework. The isosurface is drawn
at 0.0075 qe / A3. (b) The charge removed by the framework. The isosurface is drawn at
0.001 qe / A3.

To test whether these small changes in the charge density have any meaningful effect on

the interaction between BDC and the hydrogen molecule, the adsorption energies were

calculated for hydrogen located at site IV for the standalone BDC linker in orientations

IV(A), IV(B), and IV(E). (See Table 5) The adsorption energy changes by up to 6 meV, and

the order of the preferred orientations is reversed. The reason for the change in the

preferred orientation can be inferred from Figure 10. Placing the linker in the context of the

framework increases the density of hydrogen above the carbon atoms and decreases the

density near the center of the ring. This means there is less electronic repulsion for the

I i-i
71
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hydrogen molecule in orientation IV(A), but more in orientations IV(B) and IV(E). The

adsorption energy for orientation IV(E) suffers the most because of the repulsion caused by

the extra charge around the carboxyl groups. The change in adsorption energy is small in

absolute terms but is significant relative to the already small adsorption energies.

H 2 Site and Orientation IV(A) IV(B) IV(E)

Interaction energy in MOF-5 (meV) -14.3 -11.0 -9.5

Adsorption energy for standalone BDC with coordinates
-7.9 -11.9 -12.4

frozen to match those of BDC in MOF-5 (meV)

Table 5 The adsorption energies for BDC in and out of the context of the framework.

If instead of freezing the coordinates of the atoms, the standalone BDC linker is

allowed to relax, the angle of the O-C-O bond decreases from 1260 to 113' . The

coordinates of the carbon and hydrogen atoms change slightly, but remain within 0.05 A of

their frozen positions. This shift also influences the hydrogen interaction energy, changing it

from 7.9 meV to 10.4 meV in orientation IV(A).

Thus the framework influences the interaction between BDC and hydrogen in two

ways: by changing the electronic structure and by changing the physical structure of the

linker. With these results in mind, it may be prudent to consider the interaction between

molecular hydrogen and the linker in the context of the framework rather than in a

standalone manner. If it is necessary to use a standalone molecule to represent the

framework, care should be taken to ensure the molecule accurately reflects the relevant

properties in the framework.

The way in which the interaction is changed also suggests how the adsorption energy of

hydrogen on the linker can be lowered. The carboxyl groups tend to draw charge from the

rest of the organic linker, reducing the strength of the hydrogen adsorption on the linker.

Putting the linker in the framework counters this effect and increases the strength of the

interaction between the linker and hydrogen. The effect of the carboxyl groups may be

further reduced if a larger linker is used, or if the linker is doped with an element that injects



electron density into the linker. Hiibner et al. have studied the effects of modifying benzene

through substitution and arrive at a similar conclusion [55].

11.2.5. Summary and Conclusion

Density functional theory has been used to investigate the adsorption of hydrogen in

the metal-organic framework known as MOF-5. A molecular dynamics simulation indicates

that there are five distinct adsorption sites on the edges of the pores. Hydrogen adsorbs

most strongly at the three sites near the Zn 4O cluster, and least strongly at the sites near the

BDC linker, indicating that observed hydrogen adsorption might occur near the metal-oxide

cluster rather than on the organic linker. Although there are a total of twenty adsorption

sites on each Zn40 cluster, the ability of these clusters to adsorb hydrogen falls off sharply

after sixteen of the sites are populated.

The way in which placing the BDC linker in the framework changes the electronic and

physical properties of the linker and how these changes affect the interaction between the

linker and molecular hydrogen have also been investigated. The framework contributes

charge to the linker, increasing the interaction between hydrogen and the linker and

changing the preferred orientation of hydrogen adsorbed above the aromatic ring.

The calculated interaction energies are weak, but this may be due to the fact that GGA

is often not able to calculate the exact magnitude of weak interactions accurately.

Nonetheless the calculations indicate that there would likely need to be a significant

strengthening of the interaction between molecular hydrogen and the pores of the

framework for a metal-organic framework to be a viable material for hydrogen storage. It

may be possible to do this by using intelligently functionalized linkers or by enhancing the

interaction energy of hydrogen on the metal-based clusters that connect the linkers [26].

Despite numerous attempts to design metal-organic frameworks with enhanced hydrogen

storage capacity, gravimetric capacities remain below 3% at 1 atm [15, 54]. Gravimetric

capacities of up to 7.5% have been reported for frameworks at pressures above 70 bar [54],

but the need for a high-pressure storage container must be taken into account when

considering such a system for on-board hydrogen storage.



11.3. Lithium imide

Chen et al. have observed that the combination of lithium amide (LiNH2 and lithium

hydride (LiH) releases hydrogen in a two-step reaction [20]:

LiNH 2 + 2LiH -+ Li2NH + LiH + H2  LiN + 2H 2  Equation 11

The first step in this reaction, in which lithium amide reacts with lithium hydride to

form lithium imide (Li2NH), is of interest as a hydrogen storage system because it releases up

to 6.5 wt% hydrogen and is reversible at temperatures below 300'C [20]. Lithium imide is

also believed to be a reactant in related hydrogen storage systems, such as Li-Mg-N-H [56]

and Li-B-N-H [57]. The structures of lithium amide and lithium hydride are well

characterized, but despite the recent high levels of interest in lithium imide a consensus on a

complete specification of its structure remains lacking.

Using X-ray diffraction, Juza and Opp concluded that lithium imide is most likely anti-

fluorite with lithium cations and nitrogen anions, but they were unable to resolve the

positions of the hydrogen ions [58]. Several studies since have indicated that each hydrogen

nucleus is bonded to a nitrogen nucleus to form an imide (N-H) anion [59-64] though the

orientation of these N-H groups is unknown. Using neutron powder diffraction (NPD),

Ohoyama et al. proposed a structure in which hydrogen randomly occupies one of four

symmetrically equivalent sites around the nitrogen ion [59]. Based on synchrotron X-ray

diffraction results, Noritake et al. supported another structure, in which the hydrogen

randomly occupies one of twelve sites around the nitrogen ion [60]. Zhang et al. treated the

hydrogen nucleus as a quantum mechanical particle and found that when nitrogen and

lithium ions are fixed at their anti-fluorite positions the wavefunction of a hydrogen nucleus

is centered at the nitrogen nucleus with density maxima along the <100> directions [62].

Herbst and Hector, based on experimental work by Balogh et al. [63] and density

functional theory [65] (DFT) calculations, have proposed a fully occupied low-symmetry

structure in which one in eight lithium ions have moved to the empty octahedral sites

between nitrogen ions [61]. They calculated the enthalpy of formation of their proposed

structure to be approximately 17 to 38 kJ per mol formula unit (f. u.) higher than the

experimentally derived enthalpy of formation for lithium imide, as opposed to a difference



of 3 kJ per mol f.u. for LiNH 2 [61]. This suggests that although the structure they propose

produces diffraction patterns similar to those observed experimentally it may not be the

energetic ground state. Recently Magyari-K6pe et al. discovered several structures with

significantly lower calculated energies than any previously suggested structure [64].

It is worth considering whether lithium imide might be thermally disordered at room

temperature. Ohoyama et al., find no evidence of a structural phase transition between 10 K

and room temperature [59], suggesting that if the structure is disordered at room

temperature the disorder persists to a very low temperature. A differential thermal analysis

(DTA) study of lithium imide indicates that there is a second-order phase transition at about

356 K, which has been attributed to an order-disorder transition [66]. Balogh et al. have

found a similar result [63]. These results suggest that the hydrogen positions in lithium imide

are fully or partially ordered at room temperature.

Kojima et al. have shown that lithium imide shows two broad N-H stretching peaks in

the infrared, unlike lithium amide for which the absorption peaks are sharp [67]. Although

the authors suggest that the peak broadening could be due to small crystallite size or thermal

disorder, their results might also indicate a wide variety of local environments for N-H

groups, implying either partial disorder or a large unit cell for the imide.

11.3.1. An antifluorite model of lithium imide

There is a widely shared belief that the average positions of the Li and N atoms form an

antifluorite structure, but very different assignments of the H positions have been proposed

[59-64]. The distinction between structural models is significant, as ab initio calculations

indicate that the energy of the imide depends rather strongly on the H positions [61, 63, 64].

Hence a good structural model and insight into the factors that determine the arrangement

of hydrogen nuclei in these imides is required. In this section a model to obtain the effective

H-H interaction in Li-imide is developed and used to obtain a structure with lower energy

than any previously proposed structure.

Under the assumption that lithium imide has an antifluorite-like structure, the challenge

in determining the ground state structure is primarily one of determining the lowest-energy

orientations for the imide groups. The N-H bond length varies little; its average length in 99

relaxed structures calculated for this section is 1.038 A and the standard deviation is 0.003 A.



However the orientation of one N-H bond substantially affects the orientations of N-H

bonds in neighboring cells. To perform a thorough search of possible ground states and to

clarify the interaction between N-H bond orientations, an effective Hamiltonian has been

developed for N-H bond orientations in lithium imide. The objective is to write the energy

of the system directly in terms of the orientation of the N-H groups with the other degrees

of freedom implicitly relaxed to local minima. The model is parameterized with ab initio

calculations and used to predict a new structure with lower calculated energy than any

structure known to date.

11.3.1.1. Methodology

11.3.1.1.1. The effective Hamiltonian

The effective Hamiltonian for the N-H orientations is based on a modification of the

cluster expansion [68, 69] formalism to include continuous variables describing the imide

group orientation. The N-H bond orientation on the ith imide group can be characterized

with a polar and azimuthal coordinate, (Ofi, ). The objective of the model is to find an

expression for the function

F(01,,0, 02, 02 3, 3, ...) Equation 12

where F is the energy of the system with the N-H groups in the specified orientations and

all other coordinates (e.g. the N-H bond length and the Li positions) relaxed. This coarse-

grained energy function is similar to the cluster expansion for configurational disorder in

alloy theory where displacements (and sometimes vibrations) are coarse-grained over to

obtain an energy expression solely in terms of site occupation variables [68-70].

For each domain (0,,i) a local basis of functions f, (Oii,) is defined, where f,,

indicates the nth basis function for the ith imide group. The tensor product of these local

bases forms a basis for the function F:

F(01, 0, ...)= 1{v, fni (o0, 1)0 Equation 13

where n is a vector of basis function indices in which the ith element is ni . The sum is

over all possible ii, and V, are coefficients to be determined later.



For example, if F is square integrable over imide group orientations, f,, can be chosen

as spherical harmonics. As with a discrete cluster expansion, it is convenient to choose f,,

such that fo, is a constant for all i. The function F can then be expanded as a linear

combination of functions of the orientations of single imide groups, functions of the

orientations of pairs of imide groups, etc.:

F( 1,,•,...)=Vo + ZVn, fn(9,(, ) + V±,,n , ,)fn,' +... +  Equation
i ni,0 i,j ni~0,n*O0 14

The symmetry properties of the crystal can be used to group terms that share the same

coefficient. Hence, it is more convenient to choose basis functions f,, that form closed

orbits under the operations in the space group of the crystal. One result of this step is that

terms that are anti-symmetric with respect to the symmetry operations of the crystal

disappear.

The expansion in Equation 14 is in principle an exact representation of Equation 12,

but to reduce this to a finite problem it is necessary to make approximations based on

physical intuition. As with a discrete cluster expansion, it is assumed that Equation 14 will

be dominated by the constant term and terms representing the interactions between

physically small clusters of imide groups. In this study, only terms representing single imide

groups and imide pair interactions up to the next-next-nearest neighbor are included.

For continuous domains there are an infinite number of basis functions f,, in the

complete basis. In practice only the basis functions that should have the most physical

relevance are included. For example, for a basis of spherical harmonics one might truncate

the basis at a certain angular momentum. For lithium imide a truncated basis from

hybridized spherical harmonics has been generated:



foi = 1,

7, = -1•xiYi ,

f2 iii
S2 Equation 15

f ( +175x3 - 4  (3xx i 1 _±) 1,13xi

8 23 6 2 Z 8

where x = cos O sin O, yi = sin 0 sin 0, and zi = cos . The full truncated basis used can

be generated by applying the cubic symmetry operations to these functions and keeping the

ones that are linearly independent.

To determine the coefficients V, of this expansion a library of 98 relaxed structures

with different relative N-H orientations was calculated using the projector augmented

wavefunction [40] (PAW) method with the Perdew-Burke-Ernzerhof [39] (PBE) generalized

gradient approximation (GGA) to DFT as implemented in the Vienna Ab-initio Simulation

Package (VASP) [71]. The standard hydrogen and nitrogen PAW potentials and s-valence Li

PAW potentials in VASP were used with a plane-wave cutoff energy of 520 eV. Calculations

were considered converged when forces reached less than 80 meV / A. For a primitive cell

calculation, total energy convergence within 1 meV per formula unit was reached with a

7x7x7 Monkhorst-Pack [72] k-point grid shifted to include the gamma point. For supercell

calculations this grid was scaled down proportionately to the size of the supercell.

The coefficients were evaluated using a least-squares regression, where structures were

given weights defined by

1
i O AE 2 +.0009 Equation 16

where AE, is the difference in eV between the calculated formation energy of the ith

structure and the lowest calculated formation energy. To help prevent overfitting the

coefficients were fit to both the energies in eV per formula unit and the forces in eV / A,

with the energies given ten times the weight of the forces. To more accurately represent

low-energy interactions, structures with lower energy were assigned higher weights. To

ensure the cluster expansion had predictive power a Metropolis algorithm [73] was used to



find a subset of terms in the expansion that had a low leave-one-out cross-validation score

[74]. The coefficients for this model generated from the original library of 98 structures and

the newfound orthorhombic structure are given in Table 6.

Terms per
formula unit

1

6

24

24

12

48

6

24

24

24

24

24

12

12

48

48

24

12

24

24

12

3

6

24

12

24

Vn (kJ / mol f.u.)

-179.73607

0.91880

0.38115

0.04595

0.01690

0.11320

-0.06256

0.31453

-0.08269

-0.05846

-0.07591

0.18900

0.06545

0.33858

-0.35140

-0.03802

-0.11254

-0.09816

0.16971

-0.05320

-0.09459

-0.17086

-0.04874

-0.05271

0.24773

0.07267

0.21403

0.16783

0.11144

Vn (meV / mol
f.u.)

-1862.78463

9.52246

3.95020

0.47620

0.17514

1.17316

-0.64833

3.25979

-0.85699

-0.60589

-0.78672

1.95885

0.67832

3.50904

-3.64189

-0.39408

-1.16640

-1.01732

1.75887

-0.55134

-0.98028

-1.77076

-0.50514

-0.54629

2.56743

0.75319

2.21818

1.73940

1.15501

0.06158

Cluster

Empty

Point

Nearest

Neighbor

Next-

Nearest

Neighbor

Site 1
function
1

f4(-x)

fi(x,y)
fi(x,y)
ft(x,y)
fi(x,z)
fi(x,z)

f2(x,y,z)

f2(x,y,z)

f2(x,y,z)

f4(-X)

f4(-x)

f4(-X)

f4(-z)

f4(-z)

f4(-z)

f4(-z)

f4(x)

f3(x,z,y)

f3(x,z,y)

f3(x,y,z)

fi (x,y)
fi(x,y)
fi(x,y)
fi(y,z)

fi(y,z)

f4(-y)

f4(-y)

f4(-y)

Site 2
function
1

1

ft(x,y)
f4(x)

f3(x,z,y)

fi(y,z)

f4(-z)

f2(x,y,z)

f4(-z)

f3(z,y,x)

f4(-x)

f4(-y)

f3(y,x,z)
f4(-z)

f4(z)

f3(x,y,z)

f3(z,y,x)

f3(y,x,z)

f3(x,z,y)

f3(y,x,z)

f3(x,y,z)

fi (x,y)
f4(-y)

f3(y,x,z)
f,(y,z)
f2(x,y,z)

f4(-x)

f4(-y)

f3(x,y,z)
0.63821

I I

f3(x,z,y) f3(x,Z,y)



Terms per
formula unit

6

fi (x,y)

fi(x,y)
fi(x,y)
fi (x,y)

fi(x,y)
fi(x,y)

fi(y,z)
fi (y,z)

f2(X,y,Z)

f4(-x)

f4(-X)

f4(-y)

f4(-y)

f4(-y)

f4(-y)

f4(X)

f4(x)

f4(x)

f4(y)

f4(y)

f4(y)

f4(y)

f3(x,z,y)

f3(x,z,y)

f3(x,z,y)

f3(y,x,z)

f3(y,x,z)

Vn (kJ / mol f.u.)

-0.13240

-0.01022

f4(-x)

f4(-z)

f4(z)

f3(x,z,y)

f3(y,z,x)

f3(z,x,y)

fi (y,z)

f4(x)

f3(y,z,x)

f4(-y)

f3(y,z,x)

f4(-x)

f4(y)

f3 (x,y,z)

f3 (y,x,z)

f4(-x)

f3(y,x,z)

f3(y,z,x)

f4(-Z)

f3(x,z,y)

f3(z,y,x)

f3(z,x,y)

f3 (x,y,z)

f3(y,x,z)

f3(y,z,x)

f3(z,y,x)

f3(z,x,y)

-0.02714

Vn (meV / mol
f.u.)

-1.37220

-0.10591

48

48

48

48

48

48

12

24

48

48

48

48

24

48

48

12

48

48

24

48

48

48

24

48

48

48

24

-0.28129

Table 6 The parameters for the model Hamiltonian. Each row lists a sample term from an

included orbit of functions and the coefficient for functions in that orbit. The imide groups

for the sample functions, in conventional anti-fluorite reduced coordinates, are located at (0, 0,
0) for site 1 and (0.5, 0.5, 0) for site 2 for nearest neighbors, (0,0,0) and (1, 0, 0) for next-

nearest neighbors, and (0, 0, 0) and (1, 0.5, 0.5) for next-next-nearest neighbors. The

Cluster

Next-

Next-

Nearest

Neighbors

Site 1
function
f3(y,z,x)

fi (x,y)

-0.06696

-0.02955

-0.02770

-0.03402

-0.03412

0.03978

-0.10254

0.02594

-0.03278

-0.05105

-0.02563

0.06118

-0.23445

0.06373

0.05022

-0.07956

0.02032

0.04955

0.10778

0.02108

-0.06593

-0.02153

0.03629

0.01857

-0.03569

-0.03856

0.05823

f3(y,z,x)

Site 2
function
f3(y,z,x)

f2(x,y,z)

-0.69393

-0.30624

-0.28705

-0.35262

-0.35366

0.41224

-1.06277

0.26880

-0.33972

-0.52904

-0.26559

0.63411

-2.42980

0.66049

0.52049

-0.82452

0.21061

0.51353

1.11707

0.21842

-0.68325

-0.22311

0.37610

0.19244

-0.36987

-0.39968

0.60350

f3(z,y,x)



functions are: fl(a, b)= -61 ab , f 2 (a, b, c)= -12 abc,
2 2

f 3 (a,b,c) =(i7a3 -1 a+l a(b2 - c2)), and

f4(a)= x4 y4 + z4 )+ 3a2 -1+ a- . All functions symmetrically

equivalent to those listed were included in the Hamiltonian.

II.3.1.1.2. Enthalpies of formation

The enthalpies of formation of several low-energy structures were calculated. To ensure

accurate results the electronic energies were recalculated using hard hydrogen and nitrogen

PAW potentials and the cutoff energy was increased to 900 eV. Calculations were

considered converged when the forces on the ions were less than 1 meV / A. Vibrations

within the harmonic approximation were evaluated within the linear response approach as

implemented in ABINIT [75] with the PBE GGA exchange-correlation functional. The

Fritz-Haber Institute pseudopotentials provided with ABINIT were used, and the cutoff

energy was 35 Ry. For the electronic supercell calculations a 4x4x4 k-point grid including

the gamma point was used, and interatomic forces were calculated on a 2x2x2 grid. For the

layered structure a 6x6x6 electronic k-point grid and 3x3x3 interatomic force grid were used.

Ideal gas behavior was assumed for the standard state of the reference molecules H2 and N2.

The values for H2 and N2 reference molecules were calculated in cubic cells with length 15

A. It was found that increasing the size of the cell to 17 A changed the calculated energies

by less than 0.01 meV.

II.3.1.2. Results

11.3.1.2.1. Effective interactions

Within the model Hamiltonian, the interaction between a single pair of nearest-neighbor

imide groups is represented by

SV,f", (1, 4) + V (p2, ( 2 )+ v,,in 2f,, ( ,, )f, (02, 02) Equation 17
n1 #0 n2 • nI O,n2 0

where the contributions from single-imide terms have been included as well. A sample

nearest-neighbor interaction can be visualized in Figure 11. This figure clearly shows that if



the hydrogen nuclei from two nearest-neighbor imide groups are near the same tetrahedral

site, the interaction is unfavorable. On the other hand, an anti-parallel alignment between

two nearest-neighbor imide groups is favorable.

I T*U1

01

02

03

Figure 11 An example of an effective nearest-neighbor interaction in the model Hamiltonian.
The green balls represent lithium nuclei at ideal tetrahedral sites, and they form a cage of four
octahedral sites. The blue ball on the left represents a nitrogen nucleus in the front left
octahedral site, and the white ball is a hydrogen nucleus that is bound to it to form an imide
group. The multi-colored sphere represents a nearest-neighbor imide group in the back right
octahedral site. The colors on the sphere represent the effective interaction energy between
the two imide groups as a function of the orientation of the N-H bond in the imide group on
the right.

The minimum of Equation 17 represents the most favorable nearest-neighbor imide

group orientations and can be visualized in Figure 12(a). This interaction will be referred to

as the "preferred" nearest neighbor orientation. Similar to the observation made in Ref. [64],

it is found that neighboring imide groups tend to align anti-parallel to one another. The

nitrogen and hydrogen nuclei are coplanar with the two lithium nuclei between the imide

groups in the (1 TO) plane, and a N-N-H bond angle of 36.30. The hydrogen nucleus on

each group tilts towards the nitrogen of the other group, possibly to form a hydrogen bond.

In practice the apparent unfavorable proximity between the hydrogen ions and the lithium

03

02



ions between groups is resolved as these lithium ions move towards nearby empty octahedral

sites. Because this leaves behind a vacancy at a tetrahedral site, it results in relaxation towards

octahedral sites unlike the full displacement suggested in Ref. [61].

Figure 12 (a) The "preferred" nearest neighbor orientation. The lithium ions are shown in

the ideal anti-fluorite positions for reference. Both N-H bonds are in the ( TO) plane, which
is shown. (b) The more high-symmetry "near-preferred" nearest neighbor orientation in

which the N-H bonds are aligned along [T T il] in the (0 TO) plane. Dotted lines indicate the
lithium ions to which the N-H bonds point. Large spheres represent nitrogen, medium
represent lithium, and small represent hydrogen.

Figure 13 A tetrahedron of nearest-neighbor imide groups. The lower right group is in the
near-preferred nearest neighbor orientation with each of the other three groups, but as a result
these groups are not in the near-preferred orientation with each other. Large spheres
represent nitrogen, medium represent lithium, and small represent hydrogen.

(a) (b)



It is impossible for a single imide group to be in the preferred orientation with more

than one of its nearest neighbors. To see this, let one imide group, "group A", be in the

preferred orientation with a nearest neighbor imide group, "group B", with the vector from

group A to group B in the [110] direction. Let group B be oriented such that it is at an

angle of 1.10 to the [T 11] direction (Figure 12(a)). All ways in which group B can be in the

preferred orientation with any of its nearest neighbors can be generated by applying the 48

FCC point symmetry operations at group B to imide groups A and B. It is only possible for

imide group B to be in the preferred orientation with two different imide groups

simultaneously if an operation leaves the orientation of group B unchanged but maps group

A onto a different nearest neighbor. The only operation that results in group B having the

exact same orientation is reflection about the (1 10) plane, but this maps group A onto

itself. This frustration can be partially resolved if the N-H bonds rotate slightly so that they

are aligned in the high-symmetry [T 1 ] direction (Figure 12(b)). This is still a low-energy

orientation because of the ability for the lithium ions to relax towards the empty octahedral

sites. This will be referred to as the near-preferred orientation. If groups A and B are in the

near-preferred orientation, the symmetry operations corresponding to 1200 rotations about

the [ T 1] axis all map the orientation of group B onto itself, but maps group A onto three

different nearest neighbors. This allows group B to be in the near-preferred orientation

relative to three nearest neighbors at the same time (Figure 13). For every imide group to be

in the near-preferred orientation relative to three nearest neighbors, the structure must

consist of {111) planes of alternating anti-parallel imide groups where the imide groups in

each plane are aligned orthogonally to the plane. This structure, after relaxation with DFT,

becomes the one shown in Figure 14. Nuclear coordinates for the relaxed structure, which

will be referred to as the "layered" structure, are given in Table 7.
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Figure 14 A 2x2x1 supercell of the layered structure with the unit cell highlighted. Large
spheres represent nitrogen, medium represent lithium, and small represent hydrogen.

Element X Y Z

Lithium 0.980 0.405 0.258

Lithium 0.674 0.202 0.905

Nitrogen 0.653 0.090 0.203

Hydrogen 0.364 0.956 0.640

Table 7 The reduced coordinates of the layered structure. All atoms are at Wyckoff position
2i for space group #2 (P-1). a=3.57 A, b=3.58 A, c=6.80 A, ox = 77.830, P=82.230, and
y=59.910.

II.3.1.2.2. A new low-energy structure

In addition to providing insight into the effective N-H interactions, the cluster

expansion can also be used to very rapidly search for low energy structures of lithium imide.

A search for the ground state of this model was performed with Monte Carlo simulation in

all supercells up to 8 formula units. The lowest energy configuration is shown in Figure

15(a). A DFT calculation relaxes this structure to the one shown in Figure 15(b), which will

be referred to as the "orthorhombic" structure. This structure, although not in the initial

library of structures used to fit the coefficients, was added when determining the preferred

orientations. The lithium ions in the relaxed structure have moved significantly from their



ideal anti-fluorite positions. The new structure has an orthorhombic unit cell, with

coordinates given in Table 8 and calculated lattice parameters of 5.12, 10.51, and 5.27

Angstroms, although these are probably overestimated by a few percent as is typical in the

GGA approximation [76-78]. The space group of the structure as determined by ABINIT is

Pbca (#61). Every imide group in this structure is involved in a nearest-neighbor pair

interaction resembling the preferred nearest-neighbor orientation, although the imide groups

are rotated 25.40 from the preferred nearest-neighbor orientations to be in the low-symmetry

[0.79, 0.58, 0.20] and equivalent directions. The existence of nearest-neighbor orientations

similar to the preferred orientation suggests that preference for this type of nearest-neighbor

orientation remains high even in an infinite crystal.

II~
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Figure 15 (a) The imide group orientations with the lowest predicted energy after searching
structures with up to 8 formula units per unit cell. Lithium ions are shown in the ideal anti-
fluorite sites for reference. (b) The structure after relaxation with density functional theory.
Large spheres represent nitrogen, medium represent lithium, and small represent hydrogen.
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Element X Y Z

Lithium 0.372 0.540 0.651

Lithium 0.480 0.256 0.191

Nitrogen 0.297 0.370 0.451

Hydrogen 0.363 0.610 0.066

Table 8 The reduced coordinates of the orthorhombic structure. All atoms are at Wyckoff
position 8c for space group #61 (Pbca). a=5.12 A, b=10.51 A, and c=5.27 A.

The formation energies for the layered and orthorhombic structures and the lowest-

energy structures proposed in Refs. [61, 64] have been calculated using DFT. The results of

these calculations are in Table 9. The calculated formation energy for the new orthorhombic

structure is significantly lower than that of the any other known low-energy structure.

Evibration AEtotal
Structure AEelectronic

OK 298.2K OK 298.2K

Ref. [61] -183.5 (-1.902) 46.7 (0.484) 56.6 (0.587) -166.3 (-1.724) -173.6 (-1.799)

Ref. [64] -186.6 (-1.934) 47.5 (0.492) 56.9 (0.590) -168.6 (-1.748) -176.4 (-1.829)

Layered -186.3 (-1.931) 47.0 (0.487) 56.3 (0.584) -168.8 (-1.750) -176.7 (-1.831)

Structure

Orthorhombic -188.3 (-1.952) 47.2 (0.489) 56.6 (0.587) -170.7 (-1.769) -178.4 (-1.849)

Structure

Table 9 The calculated electronic and total formation energies and vibrational energies for
the structures proposed in Refs. [61, 64] and the layered and orthorhombic structures
presented in this thesis. The values are given in kJ / mol f.u. (eV / mol f.u.).

The density of the orthorhombic structure, 0.028 formula units per A3, is approximately

8 to 10 percent lower than the experimentally derived density for lithium imide [59, 60, 63].

A portion of this density difference is likely due to the use of GGA, which typically

overestimates the lattice parameter of materials by 1 to 2 percent [76-78]. More significant is

the fact that this structure has different symmetry than that indicated by diffraction studies

[59, 60, 63]. A comparison between published experimental diffraction patterns and



calculated diffraction patterns for the orthorhombic structure can be seen on the following

pages in Figure 16 - Figure 24. Based on these comparisons, the orthorhombic structure is

most likely not the experimentally observed structure.
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Figure 16 The neutron powder diffraction pattern for deuterated lithium imide (Li2ND) at
100K from Ref. [63].
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Figure 17 The neutron powder diffraction pattern for deuterated lithium imide (Li2ND) at
400K from Ref. [63].
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Figure 18 The neutron powder diffraction pattern for Li2ND in the orthorhombic structure,
as calculated by CrystalDiffract. The wavelength is the same as that used in Ref. [63] (Figure
16, Figure 17).
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Figure 19 The x-ray powder diffraction pattern for deuterated lithium imide (Li2ND) at room
temperature from Ref. [63].

Figure 20 The x-ray powder diffraction pattern for Li2ND in the orthorhombic structure, as
calculated by CrystalDiffract. The wavelength is the same as that used in Ref. [63] (Figure 19).



Figure 21 The neutron powder diffraction pattern for lithium imide at room temperature
from Ref. [59]. The points marked with open circles are attributed to Li20, and the closed
circle is unexplained.
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Figure 22 The neutron powder diffraction pattern for lithium imide in the orthorhombic
structure, as calculated by CrystalDiffract. The wavelength is the same as that used in Ref. [59]
(Figure 21).
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Figure 23 The synchrotron x-ray powder diffraction pattern for lithium imide at room
temperature from Ref. [60]. The points marked with circles and triangles are attributed to
Li20, and the square is attributed to Li2NCN.
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Figure 24 The x-ray powder diffraction pattern for lithium imide in the orthorhombic
structure, as calculated by CrystalDiffract. The wavelength is the same as that used in Ref. [60]
(Figure 23).
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There are several potential reasons why the data for the experimentally observed

structure does not correspond to the orthorhombic structure. While the structure search

was extensive it is not exhaustive, and it is possible that structures with even lower energy

exist which are in better agreement with the experimentally measured diffraction pattern. It

is possible that these were not found because of the limits on the search space or the limits

of the model Hamiltonian. Because the nearest-neighbor interactions and their topology in

the fluorite structure lead to some frustration, it is possible that more complex ordering

patterns with larger unit cells have even lower energy as often is the case for frustrated

systems.

It is also possible that the experimentally observed structure is not the energetic ground

state but is stabilized by equilibrium finite-temperature entropy effects that are not captured

by the harmonic approximation. Similarly, it may be instead a higher-symmetry metastable

state with some level of frozen-in disorder. This state may be a partially disordered variation

of the structure proposed in this thesis, or it may be an entirely different structure.

It is also worth considering that GGA is not accurate enough for this material.

However the energy difference between the orthorhombic structure and the next-best

known is about 5 meV per atom. For a comparison between similar structures, this would

be an unusually large error for GGA.

Better agreement with experiment might be achieved by determining a more complete

solution of the hydrogen nuclear wavefunction. Even at low temperatures there may be

rapid tunneling of the hydrogen atoms between low-energy sites, similar to that proposed by

Zhang et al. [62] The potential energy surface of one hydrogen nucleus is affected by

location of nearby nuclei, so it is likely that any motion of hydrogen ions is locally correlated

and dependent on lithium and nitrogen positions at low temperatures.

In the next section, the discrepancy between the experimental data and the calculated

ground state will be examined in more detail.

11.3.2. The low temperature phase

Based on their own neutron and x-ray diffraction data, Balogh et al. conclude that the

low-temperature phase has an FCC lattice, with Fd3m symmetry and a lattice parameter of

approximately 10.1 A. The size of this unit cell corresponds to a 2x2x2 supercell of



conventional anti-fluorite unit cells. They note that this indexing also explains the previously

unexplained peaks in Ref. [59] (Figure 21). However, they note that there were not any

unexplained peaks in Ref. [60] (Figure 23), suggesting that the material in Ref. [60] was in a

different phase, possibly due to contamination [63]. In this section, it will be assumed that

the neutron and x-ray diffraction data in Refs. [59, 63] are correct, and that the low-

temperature phase has a structure that closely resembles an FCC structure with Fd3m

symmetry and a lattice parameter of approximately 10.1 A.

Based on the diffraction work by Balogh et al. [63], Herbst and Hector proposed an

ordered structure for the low-temperature phase [61]. The structure proposed by Herbst

and Hector differs from the antifluorite model of lithium imide in that not all tetrahedral

sites are populated with lithium ions [61]. It belongs to a class of structures in which one in

eight tetrahedral sites is vacant, and the N-H bonds are oriented so that four hydrogen nuclei

surround each vacant tetrahedral site. With the eight lithium vacancies, structures in this

class have the experimentally observed Fd3m symmetry, as shown in Figure 25. Because

this is the same space group as spinel, structures in this class will be referred to as "spinel-

like" structures. In general the Fd3m symmetry is broken when the stoichiometry is

restored by placing the eight displaced lithium nuclei in vacant sites.



8a 48f 32e 8b 32e 16c
Figure 25 The important sites for spinel-like lithium imide structures. The blue balls are
nitrogen, the white are hydrogen, and the green three different lithium sites. The pale green
(8a) are lithium sites that are as far as possible from the 8b vacancy. The medium green (48f)
are lithium sites corresponding to the tetrahedral antifluorite sites. The dark green (16c) are
the octahedral lithium sites. In each unit cell, eight of the indicated lithium sites must be
vacant.

In the structure proposed by Herbst and Hector, the eight displaced lithium nuclei are

placed in alternating layers of 16c sites. Although this structure does not have the Fd3m

symmetry predicted experimentally, it agrees very well with the observed diffraction patterns

I I I I I



[61, 63]. The formation energy of the structure proposed by Herbst and Hector at room

temperature is calculated to be about 50 meV per formula unit higher than that of the

orthorhombic structure (Table 9). Despite this relatively high formation energy, it is the

lowest-energy proposed structure that agrees well with the observed diffraction patterns.

The refinement of the diffraction data by Balogh et al. suggests that the lithium ions in

the octahedral sites are located not at the ideal 16c sites, but at nearby 32e sites that are

between the 16c and 8a sites [63]. There are two 32e sites near each 16c site, and the refined

proximity of these sites to each other (approximately 1.10 A - 1.37 A) suggests that both

cannot be populated at the same time. For this reason, the lithium in the 32e sites can be

considered to be effectively associated with a single octahedral 16c site.

The distance between the octahedral lithium nuclei and nearby tetrahedral lithium nuclei

in the structure proposed by Herbst and Hector, calculated as described in section 11.3.1.1.2,

is between 2.2 A and 2.3 A. In solid lithium metal, the distance between nearest-neighbor

lithium ions is calculated to be 2.98 A, which is close to the experimental value of 3.04 A

[79]. In contrast, Balogh et al. refine the distance between the octahedral lithium site and the

8a site to be between 1.50 A and 1.64 A [63]. The proximity between these sites makes it

unlikely that both are simultaneously occupied. Because it is necessary for some of the

octahedral sites to be occupied with lithium ions displaced from the 8b sites, this suggests

that the nearby 8a sites are vacant.

Based on the above analysis of the experimental data, a general model for the spinel-like

structure of lithium imide can be developed. The 8b sites are vacant and surrounded by

hydrogen nuclei, as in the structure proposed by Herbst and Hector. However, unlike this

structure, the 8a sites may be vacant as well. The lithium ions displaced from the 8a and 8b

sites are near the octahedral 16c sites, most likely relaxed towards a nearby vacant 8a site. In

the following sections, a cluster expansion based on this model will be used to search for

new ground state structures and calculate the configurational contribution to the free energy.

11.3.2.1. Methodology

Some of the techniques used to generate the cluster expansion for the spinel-like

structures are developed and explained in the second part of this thesis. It will be assumed

that the reader is familiar with these techniques.



Per conventional unit cell, there are 24 possible sites for 16 lithium nuclei, which means

that the composition of the 8a and 16c sites should be 2/3 lithium. The analytical method

for cluster expansions at a fixed composition was used to calculate the domain matrix for

this cluster expansion, and a Monte Carlo algorithm was used to find fifteen structures that

complemented the set of twenty-four manually generated spinel-like structures. The energies

for all structures were calculated using DFT as described in section 11.3.1.1.1.

Candidate clusters for the expansion were the eleven smallest pair clusters and three-

site, four-site, five-site, and six-site clusters up to the third nearest neighbor. To fit the ECI,

energies were expressed relative to the energy of the structure in the data set with the lowest

known energy. Gaussian prior distributions defined on the ECI with a hierarchical width

generating function were used, and a grid search was used to find the parameters that

minimized the leave-one-out cross-validation score. After the ECI were fit once, the clusters

with ECI below 0.1 meV per formula unit were removed from the set of candidate clusters,

and the procedure was repeated until no clusters with ECI below 0.1 meV remained.

A Metropolis algorithm [73] was used to search for the structure with the lowest

predicted energy. To calculate the configurational free energy, the following thermodynamic

relationship was used:

F(T)/ = F(TO) o + JE(f))d Equation 18

where F(T) is the Helmholtz free energy at temperature T and f = where kB iskBT
Boltzmann's constant. (E(f)) is the average energy as calculated using a Metropolis

algorithm run on a 6x6x6 supercell of the 128-atom conventional unit cell. To is a reference

temperature, and ,o is defined accordingly. For the purposes of the integration in this

section the high-temperature reference limit was used, in which 80 = 0 and Ffo -,
kB

where S, is the entropy at infinite temperature.

It was observed that in the calculated structures some lithium nuclei relaxed so that they

ended up closer to sites other than their initial sites. Because the cluster expansion is a

model of the local minima of the potential energy surface, the sites closest to the relaxed



nuclei were used when determining the occupation variables. To prevent the calculation of

excess configurational entropy, decorations representing structures in which the nuclei relax

to other sites should be excluded from configuration space. To approximately identify such

decorations, the local configurations of nuclei in the candidate clusters were examined in the

initial and relaxed structures. A local configuration was considered to be unstable if it was

present no more than one third as often in relaxed structures as in initial structures.

Structures with unstable local configurations were excluded from thermodynamic sampling.

Because of the existence of the unstable structures, the high-temperature entropy limit per

primitive unit cell can be estimated by:

-- = 6 In I(- I + lim Equation 19
kB 3 3 3 3 Noites ,-+- Nite,

where x is the fraction of stable configurations in structures with Nste., independent 8a or

16c sites. The factor of six represents the fact that there are six possible sites per primitive

cell.

11.3.2.2. Results

11.3.2.2.1. Local interactions

The fitting procedure resulted in eleven clusters with non-zero ECI (Table 1). The

leave-one-out cross-validation score for the fit is 4.6 meV per formula unit. As expected, the

pair interaction between nearest-neighbor 8a and 16c sites favors different nuclei on each

site. The most favorable interaction is a vacancy on the 8a site next to a lithium ion on the

16c site.



Reduced coordinates Wyckoff Maximum Multiplicity ECI (meV /
of sites positions distance per primitive formula unit)

between sites cell
(A)

{0, 0, 0} 16c N/A 4 9.50102

{0.125, 0.125, 0.125} 8a N/A 2 14.87512

{0, 0, 0} 16c
2.20143 8 5.46169

{0.125, 0.125, 0.125} 8a

{0,0, 0} 16c
3.59492 12 0.59523

{0, 0.25, 0.25} 16c

{0.125, 0.125, 0.125} 8a
4.40286 4 0.22825

{-0.125, -0.125, -0.125} 8a

{0, 0,0} 16c
6.22658 24 0.87240

{-0.25, -0.5, 0.25} 16c

{0, 0, 0} 16c
7.18984 12 1.05321

{-0.5, -0.5, 0} 16c

{0, 0, 0} 16c
7.18984 12 0.11260

{0.5, 0.5, 0} 16c

{0,0, 0} 16c
8.03848 24 0.42894

{-0.75, 0.25, 0} 16c

{0, 0, 0} 16c

{0.25, 0.25, 0} 16c 3.59492 12 1.15799

{0.125, 0.125, 0.125} 8a

{0,0, 0} 16c

{0.25, 0.25, 0} 16c 3.59492 8 0.831504

{0, 0.25, 0.25} 16c

Table 10 The clusters with non-zero ECI. The coordinates are given in terms of reduced

coordinates of the conventional unit cell for the Fd3m space group with origin 2. In the
cluster expansion, occupation with lithium was given a value of + 1, and vacancies were given a
value of -1.



Using the method described in section 11.3.2.1, it was determined that two local

configurations are frequently unstable. The first configuration, shown in Figure 26(a), is a

vacancy at an 8a site adjacent to a vacancy at a nearest-neighbor 16c site. Upon inspection

of the calculated structures, the instability can be explained by considering the following

situations:

1) Another nearest-neighbor 16c site adjacent to the 8a site is occupied, in which

case the nucleus at that 16c site will frequently relax to the 8a site. If all four

16c sites surrounding an 8a site are occupied, this does not happen as the

lithium nuclei at the 16c sites repel each other from relaxing to the center of the

tetrahedron.

2) There are no other lithium ions in the four 16c sites next to the 8a site. In this

situation, there is a cluster of five vacancies, creating a lithium void in the

structure. The void tends to attract lithium from other nearby sites.

The consequence of this instability is that stable configurations will typically have either

an occupied 8a site or a vacant 8a site that is surrounded by a complete tetrahedron of

occupied 16c sites. By inspecting the ECI, it is apparent that local configurations in which a

vacant 8a site is surrounded by four occupied 16c sites should have low energy.

The second unstable local configuration (Figure 26(b)) is closely related to the first. In

the second configuration, there is a vacancy at an 8a site and a vacancy at one of its nearest

neighbor 8a sites. In between the two 8a sites is a single 16c site. If the 16c site is vacant,

the configuration is equivalent to the first unstable configuration. If the 16c site is occupied,

the lithium nucleus on the 16c site tends to relax to the 32e site in between the 16c site and

one of the 8a sites. The other 8a site sees a vacancy on the 16c site as the lithium ion relaxes

away, creating a situation similar to the first unstable configuration.
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(a)

Figure 26 (a) The first unstable local configuration. (b) The second unstable local
configuration. The colors are the same as in Figure 25. The green tetrahedra have at their
centers 8a sites, an on each vertex a nearest-neighbor 16c site. The red crosses represent
vacancies, and the dark arrows show how nearby nuclei might relax.

11.3.2.2.2. Ground state search

The cluster expansion was used to search for new low-energy structures. As might be

predicted by inspecting the largest ECI, the lowest-energy structures were all ones in which

every lithium ion is on a 16c site adjacent to a single vacant 8a site. Every 8a site is in turn

surrounded by a complete tetrahedron of occupied 16c sites. To narrow down the search

for low-energy structures, the configuration space was reduced further to structures which fit

this description. The only remaining variable is the ordering of the vacant 8a sites. Because

each vacant 8a site is coupled to four occupied 16c sites, exactly 1/3 of the 8a sites must be

vacant to preserve stoichiometry. To avoid the second unstable local configuration (Figure

26(b)), none of the vacant 8a sites can be nearest-neighbors with each other.

A second cluster expansion was developed to more accurately model the ordering of the

vacant 8a sites under the constraints described above. Candidate clusters included 2-site, 3-

site, 4-site, and 5-site 8a clusters with sites up to 9 A apart. The leave-one-out cross-

validation score for the final cluster expansion was 3.5 meV.

Because of the numerous constraints on the system, there are only 323 possible

structures with fewer than 384 atoms per unit cell. The energies of all 323 structures were

C
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predicted using the second cluster expansion, and one structure had lower predicted

formation energy than all others. The predicted energy of this structure was 3.2 meV per

formula unit lower than the energy of the structure with the second-lowest predicted energy,

and 4.9 meV per formula unit lower than the energy of the structure with the third-lowest

predicted energy.

To check the predictions, the electronic energies of the two structures with lowest

predicted energy were calculated using DFT. The DFT-calculated energy of the structure

with the second-lowest predicted energy is 1 meV per formula unit higher than the predicted

value. The DFT-calculated energy of the structure with the lowest predicted energy is 0.6

meV per formula unit lower than the predicted value, and is the lowest of all spinel-like

structures. These results, along with the cross-validation score, suggest that the structure

with the lowest predicted energy also has the lowest DFT-calculated energy of all 323

structures. It is proposed that this structure is the ground state of the spinel-like phase.

The space group of the proposed spinel-like ground state, as determined by ABINIT, is

1 4 /a m d (#141). The lattice parameters are a=b=7.16 A and c=30.38 A, and the nuclear

coordinates are given in Table 11. The electronic formation energy of the proposed spinel-

like ground state, calculated as described in section 11.3.1.1.2, is -1.932 eV / formula unit, or

-186.4 kJ / mol. This value is about 30 meV / formula unit, or 2.9 kJ / mol, lower than the

calculated energy of the structure proposed by Herbst and Hector. However it is about 20

meV / formula unit, or 1.9 kJ / mol, higher than the calculated energy of the antifluorite-like

orthorhombic structure.



Element Wyckoff X Y Z
Position

Lithium 8e 0 0.25 0.1246

Lithium 8e 0 0.75 0.0333

Lithium 8e 0.5 0.25 0.0349

Lithium 8e 0.5 0.75 0.0414

Lithium 16g 0.2715 0.0215 0.125

Lithium 16h 0.1746 0.75 0.0954

Lithium 32i 0.2685 0.5042 0.0390

Nitrogen 16h 0 0.9754 0.0882

Nitrogen 16h 0.5 0.9800 0.0817

Nitrogen 16h 0.7392 0.75 0.0022

Hydrogen 16h 0 0.0837 0.0657

Hydrogen 16h 0.5 0.3851 0.0943

Hydrogen 16h 0.8444 0.25 0.0213

Table 11 The reduced coordinates of the spinel-like ground state structure, in terms of space
group I 41/a m d (#141) orientation 2. a=b=7.16 A and c=30.38 A.

A conventional unit cell of the relaxed nuclear positions of the proposed spinel-like

ground state is shown in Figure 27. The structure is simpler than it might initially appear.

The structure can be created by starting with the ideal spinel-like structure shown in Figure

25, and placing vacancies in the 8a sites of every third row of lithium ions. Lithium nuclei

are then place in each of the four 16c sites around the 8a vacancies.
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Figure 27 A conventional unit cell of the spinel-like ground state structure. The colors are
the same as in Figure 25 The grey tetrahedral are vacant 8b sites that are surrounded by
hydrogen nuclei, and the green tetrahedral are vacant 8a sites surrounded by lithium nuclei in
the 16c sites.

The calculated distance between vacant 8a sites and the octahedral lithium is 1.54 A, in

excellent agreement with the 100K value 1.52 A resolved by Balogh et al. [63], considering

that GGA typically underbinds. This distance is much closer than the calculated distance of

2.2 A - 2.3 A in the structure proposed by Herbst and Hector. The calculated lattice

parameter in the c direction for 12 layers of lithium nuclei is 30.38 A, meaning that the lattice

parameter per four layers of lithium nuclei in the c direction is 10.1261 A. The calculated

lattice parameter per four layers of lithium nuclei in the directions orthogonal to the c

direction is 10.1288 A. These values are in good agreement with the isotropic 100 K lattice

parameter of 10.0873 A resolved by Balogh et al. [63]

The predicted x-ray and neutron diffraction spectra for the proposed spinel-like ground

state, and the structure proposed by Herbst and Hector, are given in Figure 28 to Figure 35.

These spectra can be compared directly to the experimental data in Figure 16, Figure 17,

Figure 19, Figure 21, and Figure 23. The patterns for the proposed spinel-like ground state

and the structure proposed by Herbst and Hector are similar, with the proposed spinel-like

ground state generally having slightly sharper peaks. This is positive for the proposed spinel-

like ground state, as the structure proposed by Herbst and Hector is known to agree well

with experimental data [63]. The proposed spinel-like ground state appears to agree slightly

better with some experimental data, such as the peaks near 20=1300 in Figure 28.
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Figure 28 The neutron powder diffraction pattern for Li2ND
state, as calculated by CrystalDiffract. The wavelength is the
(Figure 16, Figure 17).

in the proposed spinel ground
same as that used in Ref. [63]
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Figure 29 The neutron powder diffraction pattern for Li2ND in the structure proposed by
Herbst and Hector [61], as calculated by CrystalDiffract. The wavelength is the same as that
used in Ref. [63] (Figure 16, Figure 17).
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Figure 30 The x-ray
state, as calculated by
(Figure 19).

powder diffraction pattern for Li2ND in the proposed spinel ground
CrystalDiffract. The wavelength is the same as that used in Ref. [63]

Figure 31 The x-ray powder diffraction pattern for Li2ND in the structure proposed by
Herbst and Hector [61], as calculated by CrystalDiffract. The wavelength is the same as that
used in Ref. [63] (Figure 19).
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Figure 32 The neutron powder diffraction pattern for lithium imide in the proposed spinel
ground state, as calculated by CrystalDiffract. The wavelength is the same as that used in Ref.
[59] (Figure 21).

Figure 33 The neutron powder diffraction pattern for lithium imide in the structure
proposed by Herbst and Hector [61], as calculated by CrystalDiffract. The wavelength is the
same as that used in Ref. [59] (Figure 21).
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Figure 34 The x-ray powder diffraction pattern for lithium imide in the proposed spinel-like
ground state, as calculated by CrystalDiffract. The wavelength is the same as that used in Ref.
[60] (Figure 23).
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Figure 35 The x-ray powder diffraction pattern for lithium imide in the structure proposed
by Herbst and Hector [61], as calculated by CrystalDiffract. The wavelength is the same as
that used in Ref. [60] (Figure 23).
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11.3.2.2.3. Finite-temperature behavior

The proposed spinel-like ground state has a significantly higher calculated energy than

the antifluorite-based orthorhombic structure. However, the spinel-like structure agrees

much better with experimental data. It is possible the orthorhombic structure is preferred at

very low temperatures, but the spinel-like structures are entropically stabilized at slightly

higher temperatures. This entropic stabilization could be caused by vibrational and/or

configurational entropy.

The configurational free energy of the spinel-like phase was calculated by

thermodynamic integration as described in section 11.3.2.1. The high-temperature entropy

limit was approximated using Equation 19 with x calculated by sampling 1.5 * 1012

decorations from a 3x3x3 supercell of the 32-atom primitive unit cell. The high-temperature

configurational entropy per formula unit, in units of kB (Boltzmann's constant), was

estimated to be 2.87 ± 0.03. The configurational energy and free energy are plotted in

Figure 36. The difference between the two is the entropic contribution to the

configurational free energy. There is a calculated phase transition at around 450K, in which

the proposed spinel-like ground state disorders.
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Figure 36 The values of the average and free energies of the proposed spinel-like ground
state relative to the energy of the orthorhombic structure. The difference between the two
lines is the contribution of configurational entropy to the stabilization of the spinel-like phase.



As the temperature is increased from 100K to 300K, the experimentally observed

occupation of lithium in the 32e (octahedral) site decreases from 32 % to 26% [63]. (Because

there are two 32e sites per octahedral site, and they cannot both be occupied at the same

time, this corresponds to octahedral occupations of 64% to 52%.) In the structure proposed

by Herbst and Hector, the occupation of the 32e sites is 25%. Based on this structure,

Balogh et. al suggested that the higher-than-expected octahedral occupation might be due to

excess lithium [63]. However this explanation should be reconsidered in the context of the

proposed spinel-like ground state. In the proposed spinel-like ground state, 33% of the 32e

sites are occupied, which is more consistent with the low-temperature 100K measurement of

32%. Because the average occupation of the 8a and 16c (octahedral) sites is 2/3, it should

be expected that the high-temperature limit of occupation of 32e sites should also be 3 3%

lithium. However, at 300K, it is experimentally observed that the occupation decreases to

26%.

A possible reason for this decrease is that experimentally observed decorations are

metastable. Decorations that are unstable are likely very short-lived, and the lithium nuclei

spend most of their time close to the local minima in the potential energy surface. If

decorations that are expected to be unstable are disallowed, the calculated occupation of 32e

sites decreases with increasing temperature to a limit of about 2 6.1%. Intuitively, this occurs

because vacancies at 8a sites are generally only stable if surrounded by a complete

tetrahedron of occupied 32e sites. As the temperature increases, these tetrahedra begin to

break up, which causes lithium nuclei to collapse from 32e sites to nearby 8a sites (Figure

26). The more tetrahedra are broken up, the more nuclei move to 8a sites, reducing the

percentage of lithium on the 32e sites. A comparison of the calculated occupation with

experimental observations is shown in Figure 37.
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Figure 37 A comparison of the experimental and calculated lithium occupation of the 32e
sites. The occupation decreases to a limit of about 26.1% due to the instability of vacant 8a
sites adjacent to fewer than four occupied 32e sites.

The reduction in 32e occupation is calculated to occur at a higher temperature than

experimentally observed. A better fit to the experimental data might be achieved if a more

complex model were used to predict which decorations represent unstable structures. In

addition, the 8a sites might become more favorable with increasing temperature due effects

not considered here, such as volume expansion or greater vibrational entropy for structures

with more highly occupied 8a sites. Comparison with experimental data suggests that the

phase transition to a disordered spinel-like structure might occur at a lower temperature than

calculated, which could significantly reduce the configurational free energy below what is

shown in Figure 37, especially for temperatures between 100K and 1000K.

To estimate the vibrational entropy of spinel-like structures, the vibrational entropy of

the structure proposed by Herbst and Hector is used as a prototype. The calculation was

done as described in section 11.3.1.1.2. The vibrational entropy difference between the

antifluorite-based orthorhombic structure and the spinel-like structure is shown in Figure 38.

The vibrational entropy is higher in the spinel-like structure, likely because the ability for

lithium ions to move between 8a and 16c sites without a potential barrier favors soft modes.
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There is a loss in configurational entropy due to disallowing unstable decorations, but this is

partially offset by the increase in the vibrational entropy. Intuitively, there are fewer local

minima, which reduces the configurational entropy, but the local minima are wider, which

increases the vibrational entropy.

0

-0.2

Temperature (K)

Figure 38 The vibrational entropy of the structure proposed by Herbst and Hector relative to
the vibrational entropy of the orthorhombic structure.

The extra vibrational entropy in the spinel-like phase, combined with the relatively low

energy of the proposed spinel-like ground state, suggests that the spinel-like phase may be

entropically stabilized. A plot of the estimated free energy, including vibrational effects, of

the spinel-like phase relative to that of the orthorhombic structure is shown in Figure 39. It

can be seen that the spinel-like phase is estimated to become more stable at temperatures

above about 225K. If configurational entropy is included, the transition is predicted to be

slightly lower. By comparing the observed and calculated occupations of the 32e sites as a

function of temperature (Figure 37), it can be inferred that the calculated configurational

entropy might be too low in this temperature range. In this case, it can be expected that



spinel-like phase becomes more stable at an even lower temperature. This could explain why

the antifluorite-like orthorhombic structure is not seen experimentally. At the temperature

at which the transition to the orthorhombic structure should take place, the kinetics might

be very slow, effectively trapping the material in a metastable spinel-like state.
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Figure 39 The estimated vibrational free energy of the spinel-like phase relative to the
vibrational free energy of the orthorhombic structure. The spinel-like phase becomes more
stable above approximately 225K. The combined configurational and vibrational free energy
difference is also shown.

11.3.2.3. Discussion

An explanation for the discrepancy between the experimental data and the calculated

ground state structure has been proposed. The orthorhombic structure introduced in

section 11.3.1.2.2 remains the most likely ground state structure, but at low temperatures a

spinel-like phase becomes entropically stabilized. The existence of this phase agrees very

well with published diffraction data. The orthorhombic structure most likely has not been

seen experimentally because lithium imide is typically synthesized above the temperature at

which it becomes thermodynamically unstable. It is possible that even at temperatures

below the transition temperature, slow reaction kinetics have prevented the observation of
the ground state structure.



Experiments indicate a second-order phase transition in lithium imide near 360K [63,

661. Above this transition temperature, diffraction data indicate that lithium imide

transitions to more of an antifluorite structure. It is likely that the high temperature phase

involves disorder among the imide group orientations as well as continuing disorder in the

positions of the lithium nuclei. The free energy of lithium imide above this temperature

must be even lower than the free energy curve for the spinel-like phase. Lithium, nitrogen,

and hydrogen are key elements in a variety of potential hydrogen storage systems. These

results suggest that the configurational and vibrational contributions to the free energy

should be considered when determining reaction products and equilibrium temperatures in

such systems.
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III. A Bayesian approach to
building cluster expansions





III.1. Background and motivation

Approximate values for many material properties can be calculated using the Born-

Oppenheimer approximation [80], in which atomic nuclei are treated as classical particles, if

the potential energy surface of the material is known. The potential energy surface is an

expression of the potential energy of the material as a function of the positions of the atomic

nuclei:

V({i,Si s )  Equation 20

where Pi is the position of the ith nucleus and si is a discrete variable representing the

number of protons and neutrons in the ith nucleus. Among the important material

properties that can be derived from the potential energy surface are:

* The ground-state structure. This is the atomic arrangement the material would

achieve if it were left at a very low temperature for an infinite period of time. It

corresponds to the global minimum on the potential energy surface.

* Free energy of the material. This can be calculated statistically by sampling the

potential energy surface with a sample weight that is a function of the potential

energy.

The calculation of these and other material properties requires sampling or searching

the potential energy surface. Because the domain of {(,si} grows exponentially with the

number of particles in the system, effective searching or sampling of the potential energy

surface for systems with more than a few unique atoms requires the ability to rapidly

evaluate V({,si}).

Evaluating V({(,s }) exactly within the Born-Oppenheimer approximation would

require solving the multi-electron Schr6dinger equation. Because no analytical solution to

the Schr6dinger equation is known for any system with more than one electron, a variety of

methods for calculating approximate solutions to the Schr6dinger equation using numerical

methods have been developed. In general, the more accurately a method approximates a

solution to the Schr6dinger equation, the worse the method scales with the number of

electrons in the system. For example, using one of the most popular methods, density



functional theory [31], calculating a reasonable approximation for V({ ,s,}) on a modern

x86 processor might take on the order of CPU-hours for a system with twenty unique nuclei.

Effective sampling or searching of the potential energy surface of such a system using

density functional theory is computationally infeasible. However, frequently it is

computationally feasible to use a small sample of accurate, but expensive, calculations to

parameterize an effective potential function that can be rapidly evaluated. Such an approach

often strikes a good balance between the needs for speed and accuracy.

Many of the important properties of materials can be well approximated by considering

only the local minima of the potential energy surface. It is therefore often sufficient to

develop an effective potential that only models these local minima. One form of such

effective potentials that has been successfully used to model a variety of systems is the

cluster expansion [69, 81]. Like all potential functions, the success of the cluster expansion

depends on its ability to accurately predict the values of the potential energy surface. The

focus of this chapter will be on the development of methods to efficiently develop cluster

expansions that accurately predict these values.

III.1.1. The cluster expansion

In this section a brief introduction to the cluster expansion formalism and some of its

important properties will be presented. A more thorough review of the cluster expansion

and its applications can be found in references [69, 81].

In the cluster expansion, it is assumed that structures which correspond to local minima

on the potential energy surface are ones in which all nuclei are at or near a fixed set of low-

energy sites. It is assumed that there is nearly a one-to-one mapping between the different

ways in which these sites can be occupied by the atomic nuclei and the low-energy local

minima on the potential energy surface. For example, the low-energy local minima might all

correspond to ways in which atomic nuclei can be arranged on a cubic lattice.

If the low-energy local minima are assumed to correspond to different nuclei occupying

a fixed set of sites, the problem of evaluating V({i,s i }) at the local minima can be replaced

with the problem of evaluating V((ck }), where ck is a discrete "occupation variable" that

represents the type of nucleus present on the kth high-symmetry site (one value could



represent the existence of nothing on the site). For simplicity, ck ) will be represented with

the vector symbol J:

V(F) = V(c,, c2...) Equation 21

The multi-variable function V(c1 , c2 ...) can be expanded in a set of basis functions [69]. To

build this basis, single-variable bases for the occupation variables at each of the sites are first

created. Let the jth basis function for the kth occupation variable be denoted Ojb (). The

complete multi-variable basis can be constructed by taking the tensor product of the single-

variable bases. The function V(c1 , c2 ...) can be expanded in terms of these tensor product

basis functions:

V(cl, c2...)= VH k,k (ck) Equation 22j k

where j represents a particular product of single-variable basis functions and jk is the kth

element of j. The sum is over all possible j .

It is convenient use single-variable bases in which O,k =1 for all k. This allows the

expansion of Equation 22 in terms of products of a finite number of basis functions:

V(C1, C2...= )V_ + ckk k)+ V Ik(ck)+ k Equation 23
jEJ1  k jEJ 2  k

where jo is the vector of all O's and J,, is the set of all j with exactly n non-zero elements.

The non-zero elements in ] represent the sites for which the occupation affects the value of

the cluster function, and set of such sites can be thought of as the cluster represented by i.

The coefficients Vy are known as the effective cluster interactions (ECI). The first term

represents the average potential energy, the second term represents the effect the occupation

of single sites has on the potential energy, the third term represents the effect of pairs of

sites, etc.

The expansion in Equation 23 is known as the "cluster expansion", because it expands

the potential energy into contributions from clusters of sites. The product J j,,k (ck) will
k

be referred to as a "cluster function". Each cluster function is defined by a given vector ]



and represents an interaction between all sites for which jk # 0. The variable (,0, defined

by

Equation 24

will be used to represent a cluster function.

Combining Equation 23 and Equation 24 it can be seen that the cluster expansion is an

expansion of V(c,, c2...) into a linear combination of cluster functions:

...= + )+ +. Equation 25

Often the arrangement of sites in a cluster expansion is symmetric. To take advantage

of this symmetry, the same single-variable basis functions and occupation variables must be

used at symmetrically equivalent sites. By doing this, orbits of symmetrically equivalent

cluster functions can be created. Because all functions in a given orbit are symmetrically

equivalent, they must all have the same coefficient V3-. Let a represent a set of vectors j

corresponding to symmetrically equivalent cluster functions, and Va be the common

coefficients for these functions. Equation 25 can be re-written in terms of these common

coefficients:

V(C1, C2... = VJo + JVa(ll7(c) +  Va, ( j(E)+.-- Equation 26

a=A, jea aeA2  jra

where A, is the set of all different orbits a for which the vectors j e a have n non-zero

elements.

Let Na be defined the number of elements in a, and the "correlation" (p)a be

defined by

((P(ZF))a j rCaNNa

Substituting Equation 27 into Equation 26 results in

V(c,c2...) Vjo + J VaNa (,(C))a + V VaNaQ,())a +...
aeA, aeA2

Often the value of interest is not the potential energy of the entire

average potential energy per some symmetrically repeated group of sites.

Equation 27

Equation 28

structure, but the

This is especially

f7 Ojk,k (k )



true for cluster expansions defined on infinite crystal lattices, where only the averaged

potential energy is necessarily finite. Let the average value of a quantity x per symmetrically

repeated group of sites be denoted by (x),,i . Using this notation, the multiplicity of a

cluster orbit ma will be defined as

ma (Na ),,it Equation 29

From Equation 29 and Equation 28, the average potential energy can be expressed as

(V(Cl,C 2 "* ))Unit =(V•JO)Unit+ -Vama(c))~+ Vama( ()) + -- Equation 30
aeA1  aeA2

For simplicity, the first term in the expansion as is defined as V0 . This term is referred

to as the coefficient for the empty cluster function. This substitution results in

(V(l, c..2"))Unit = Vo + Y (Vama ( ))a + Vama ('()) +a + Equation 31
aeA1  aeA2

Equation 31 can be expressed in a more familiar form, by defining the following

variables:

Pa VVama Equation 32
xo0 =

fo = Vo
By defining f as the vector of all •a and i as the matrix of all xa, Equation 31 can

be written in vector form:

(V(cl,c 2...)) Unit = f• ·- Equation 33

Up to this point the expansion is exact. The correlations xa are properties of a

particular decoration J, and the coefficients •a are unknown. Approximate values for Pa

are typically derived from calculations performed using a relatively accurate method, such as

density functional theory.



III.1.1.1. Effective cluster interactions (ECI)

The coefficients Va are known as the effective cluster interactions, or ECI. The ECI

for a given cluster function orbit indicates the degree to which interactions between the

nuclei in the clusters affect the potential energy. To analyze the ECI, it is convenient to use

orthonormal single-variable bases, where orthonormality is defined by:

Nk

i=1 ak( ,kk, Equation 34

Nk

where the sum is over all Nk possible values of the occupation variable ck.

If the single-variable bases are orthonormal, it can be shown that the cluster functions

must also be orthonormal:

Ne Nk

Sj(c )'(ci) I j#k ,k (Ck,"Ij'k ,k )cki) NkSijk Equation 35
i=1 _ k i=W k :,

Ne Ne No '1'
Equation 35 can be used to derive an exact expression for the ECI by projecting the

known potential energies onto the cluster functions. For example, to calculate the value of

V9,, where j' represents a particular cluster function, first multiply both sides of Equation

25 by ,py(J):

V(),()= Vo (i)q(+)+ Vp. (B)py(c)+ CV (c5),(c)+... Equation 36
jeJ1  jEJ 2

Next sum over all possible decorations

SV(&,)q(,6) = ~-0 (6,!).(c,)+ ( -•-i(E,)() v; ,;(,).(,)+.. Equation 37
i=1 J i1 J i=1 J2 i=

The orthonormality condition (Equation 35) allows this expression to be simplified:

V•(j,),(e,)= VNe6_.O, , + KVN,: ., + VNJ, +...N= V,N, Equation 38
i=1 jeJ1 jEJ2

Re-arranging the terms produces the desired result:

No

Z V(ci)q (I-i) Equation 39
V = i=1



Equation 39 is known as direct configuration averaging. Because it involves a sum over

all possible site decorations, it generally cannot be used. However it does provide a better

understanding of the ECI. Because j1 ()= 1, V- is just the average potential energy over

all decorations, and the remaining ECI represent the covariance between the potential

energy and the cluster functions. The single-site terms (also known as "point" terms) are the

main effects, and the multi-body cluster functions are interactions.

III.1.2. A new approach to developing cluster expansions

They key to the successful application of the cluster expansion formalism is the

determination of values for the ECI that accurately reproduce the values of the local minima

in the potential energy surface. Physically, it is expected that the ECI will become smaller as

the cluster functions include more sites. In addition, it is physically expected that the closer

sites are to each other, the more the occupations of those sites will affect the potential

energy. For these reasons, the ECI should be largest for cluster functions containing a small

number of physically proximate sites.

In this chapter, this well-known insight will be used in conjunction with Bayes' theorem

to develop new methods for generating cluster expansions. The first half will focus on the

theory and algorithms behind these methods, and in the second half these methods will be

applied to different binary systems and evaluated relative to more traditional methods.



111.2. Bayesian Regression

In this section Bayesian regression will be derived in the context of a cluster expansion,

and the relationship to Tikhonov regularization [82] will be briefly discussed. More details

on Bayesian regression can be found in refs. [83] and [84].

111.2.1. Derivation of Bayesian regression

Let there be a set of input values and output values, where the ith set of input values

will be labeled xi and the ith output value will be labeled yi. Assume that the output value

is an unknown function f,,(-) of the input values, plus some random error 'e (the tilde

indicates that F is a random variable). The error iF/ will be referred to as the noise.

Yi = f,, (xi)+ e Equation 40

The noise is a random value drawn from a distribution ni with mean 0 and variance oi2 .

Assuming the samples are independent, the probability of the training output can be

calculated, given the training input and a trial function f(.).

P(f(X)+; = X,y, n)= P(y, -f('i)= • I x,, y,n,) Equation 41

where y is a column vector which has yi as the ith element, n and a are similarly defined,

and X is a matrix with 1i as the ith row. The product is taken over all training samples.

For the remainder of this section, it will be assumed that the training data (X and j) and

the error distributions (ii) are given, and explicit statement of this assumption will be

dropped from the equations for clarity.

An intuitive way to estimate the hidden function fot() might be to search for the

function that maximizes Pf(X)+ = j). Because the natural log is a monotonically

increasing function, this is the same as maximizing ln[P(f(X)+ e = 5)]. Combining this

with Equation 41 produces the following expression:



fm (')= arg max ln[P(y, - f(iji= ei)] Equation 42
f(-)

where the carat symbol (^) is used to indicate an estimated quantity.

Equation 42 is known as empirical risk minimization, with the empirical loss function

defined by

Is f()] = - In[P(yi - f() = e)] Equation 43

For example, suppose the distributions ni are Gaussian, i.e.:

(y-f ( ))2
e ' e Equation 44

P(y, -f(i)= I f(,i,, yn,= e 2a2 Equation 44

The loss function becomes

Isf = In( f)+ - (yi - f(i ))2 Equation 45
2 i oi

where C is some constant. This is just the squared loss function, where each sample is given

-2
a weight of Ci-2

Depending on the function space from which functions are selected, empirical risk

minimization may be ill-posed [82]. In other words, it may not satisfy the following

conditions:

1) For every set of input and output values, there is a unique minimum to the loss

function.

2) Small changes in the input and output values result in predictably small changes in

the function that minimizes the loss function.

An alternative approach for selecting a function is to try to find the function that is

most likely to be f,,o(') given the training data. Using Bayes' rule [85], the probability of a

function f(-) being f ,,P(-) given the training data is:

P(r(. f,,,()f(,(x) )+ =) P(fW+,,(x)+= = I f() )= P,())p(f(.)= f,(.))
o-)=,(p(X(X))+e_ = Equation 46

The optimization problem now becomes
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aye) arg max P(o + = I f) = Equation 47A() P (fo, (X)+ e = y)
Because the logarithm is monotonically increasing, Equation 47 can be re-written

(In[P(fopt(X) Y I f ) = fopt())
f•Iavs()= arg max + ln[P(f(-) = fop,())] Equation 48

- n[P(fopt(X)+ =

The last term on the right is not dependent on A(-), so it can be dropped.

Sln [P fop, (X)+ = y I = fopt

ff ( -) = argmax Equation 49
f(A) + In P (f o = fopt (-A

Combining Equation 49 with Equation 41 and Equation 43 produces:

fBayes ()= arg min(Is [f()]- ln[Pf(-) = fopt ') Equation 50
f(.)

If - In[P(f()= fopt (.)) is appropriately defined (e.g. a norm of the function space

containing f(-)), Equation 50 is equivalent to Tikhonov regularization. Such a problem is

guaranteed to be well-posed [82].

The advantage to deriving regularization this way is that it gives some meaning to the

regularization term, in the form of the prior distribution P(f(.)= fopt(')). The prior

distribution is a probability distribution over functions that assigns to every function f () a

probability that it is f()= fop ,(), before the training data is taken into consideration. The

distribution P(f(.)= fop) I fop,(X)+ = + ) on the left-hand side of Equation 46 is known

as the posterior distribution. Like the prior distribution, this is a distribution over functions

that assigns to every function f(.) a probability that f(.) = fopt (). The difference is that

using Bayes' rule, the posterior distribution takes into account the training data. The

posterior distribution provides a useful way to evaluate candidate functions, but it is

dependent on the prior guess.4 In the following sections prior distributions will be examined

in more detail.

4 In this text the terms "prior distribution" and "posterior distribution" will occasionally be shortened to
"prior" and "posterior" respectively.
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111.2.2. Prior distributions

The choice of prior distribution is an important factor in determining how quickly the

predicted function, fBa•('), converges to fopt,(). The important attributes to consider

when choosing a prior distribution are the mean of the prior, the shape of the prior, and the

width of the prior. In the following sections each of these attributes will be investigated

both generally and in the context of cluster expansions.

III.2.2.1. The mean of the prior distribution

Physical insight might provide a sense of what values the ECI are expected to have.

Perhaps typical ECI values for similar systems are known, or approximations for the ECI

have been analytically calculated. These expected ECI values will be used as the mean for

the prior distribution. Specifically, this is written as

f () = f,() + f (-) Equation 51

where 7f(.) is a function drawn from the prior distribution of functions, fp(-) is the mean

of the prior distribution of functions, and f () represents the variation from the mean.

The mean of the prior distribution can be treated in a straightforward way if it is

assumed that the loss functional Is lf)] can be written as Is[f(X) - ]. Equation 50

becomes:

Bayes ) = argmin(Isf X)- ]- n[P(f (.) = fopt ()) Equation 52
f(.)

If Equation 51 is substituted into Equation 52, the fact that fp () is a known function

can be used to write the minimization in terms of fA ():

fBaye,()= fp ()+ argmin(Is p(X)+ fA(X)- ]ln-[P(fp(±)+ fA(')= fopt.)D Equation
A&(-) 53

Making the following variable substitution:

,A = Y - fp(X) Equation 54

and re-arranging Equation 53 produces
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yes (')= fp()+ argmin(Is[fA(X)- ]-ln[P(fA ()= f op)- f.)) Equation
aA(-) 55

The minimization problem in Equation 55 is equivalent to the one in Equation 52 with

variable substitutions. The training output y has been replaced with A,, and the prior

distribution with mean fp () has been replaced by a distribution with a mean of zero. In the

following sections the shape and the width of the prior distribution will be investigated,

under the assumption that the variables have been transformed so that the mean of the

distribution is zero.

111.2.2.2. The shape of the prior distribution

Given that the problem has been transformed so that the prior distribution has zero

mean, it should be expected that the constant zero function has the highest prior probability.

The prior should also ideally be chosen so that it is computationally convenient. In the

following two sections, two shapes for prior distributions for cluster expansions that meet

these criteria will be investigated.

111.2.2.2.1. The Gaussian prior

A common form for the prior distribution might be:

)A(- - n( ,aa2) Equation 56

where 11-1 is a function space norm and n(0, a 2) is a normal distribution with mean 0 and

2
variance a . The prior distribution can be written as

(.= fp,(.)- p(. 2 2  Equation 57

Plugging Equation 57 into Equation 55 produces:

fB•es,)= fp(.)+argmin Is[fA(X)- iA If + 2 + ln(u ,7ý')] Equation 58
sf(.) 2 2 'P
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Because the last term on the right does not depend on f(-), it can be dropped.

1
Defining ,P = -2 -, Equation 58 can be written as

up

Ba (= f)+argrm.inIsf a A(X)- YA]+ 21 1 Equation 59ayes (.f( A0i 2
Equation 59 can be applied to the cluster expansion. For example, consider using the

L2norm for a cluster expansion. The L2 norm for a function defined over the discrete space

of occupation variables is defined by

E_ __ _
i •  Equation 60

L2)IL- N

Substituting Equation 25 into Equation 60 produces

IIV( 'ILV =I __ 
Equation 61

Equation 61 can be re-arranged as:

IIv(ll, = VV, =1 Equation 62

If an orthonormal basis is used, Equation 35 can be combined with Equation 62 to

arrive at the final result:

V(]IL2= Equation 63

Equation 25 and Equation 63 can be combined to express the regularization term as a

function of the cluster expansion ECI:

Bayes() = )+arg inIsV(X)-A]+(), V Equation 64

where V-, = V- - Vlp and Vlp, is the mean of the prior distribution for VP.

If Gaussian error distributions are assumed, Equation 45 can be combined with

Equation 64 to produce
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VBayes() V,(.)+ argmin 12 (VA()- Yi) 2 + 1± ZV2 Equation 65.)( 2 07i 2
One problem with this approach is that the regularization term penalizes errors in all

ECI equivalently. Physically, it is expected that ECI representing interactions between sites

that are far apart, or interactions between a large number of sites, should be very small. The

root of this problem can be seen by combining Equation 63 with Equation 57 to produce an

expression for the prior distribution of functions, assuming a Gaussian distribution of the L2

norm:

07P ý2

The sum in the exponent can be expanded into a product:

-V- 2

P(vA ()= Vopt (.)- VP (.)) 2 2

Within a normalization constant, this can be written as:

P(V )= VH ()- V ())oc P(VA)

Equation 66

Equation 67

Equation 68

where

-VA 2 -(vi-v 1i)-V 2

P 20- 2 1 P 2c,
2  Equation 69

Thus using the L2, norm is equivalent to expressing the prior probability of a particular

function as the product of independent prior probabilities on the individual ECI. The prior

2
distribution for a given ECI V-. is Gaussian, with mean V-.p and variance o, . It is because

the width of the prior distribution for each cluster function j is identical that the

regularization is physically unrealistic. A more realistic prior would have narrower

distributions for the variables for which the difference V - V-p is expected to be smaller. It

is straightforward to create such a prior by replacing the universal p, with a-, which is

dependent on the cluster function represented by j :
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Equation 70P(V (.)= Vo, v,.)- )C e 22
J

The optimization problem can now be expressed as

Bys(.)= V,()+arg(minl - V (ei) yA, + 2 Equation 71
vh e2 o 2

where

] = aj

If the average potential energy is of interest, prior distributions over

coefficients 8,, can be similarly defined:

Equation 72

the correlation

= v ,) + {argmi Y,) + 1 =aa A2 Equation 73
v, (-) 2 a, 2 a

where the sum is now over cluster function orbits a instead of the individual cluster

functions. This can be expressed in matrix-vector notation:

. (i)= V, (2)+ -arg in -XflAYW(A -XA)+/AAvA

where the matrix W, is diagonal, with elements defined by:

1
Wv,ii = 2

and AV is a diagonal matrix with elements defined by

1
Av,aa= a = 12

Equation
74

Equation 75

Equation 76

To know the values for the noise variances, oi 2 , would require knowing how well the

model can reproduce the actual data. In general, this is not known, which makes the weight

matrix W, impossible to specify. However, the desired magnitude of the noise variance for

a given sample relative to other samples can be specified. This is accomplished by defining a

matrix W by
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2
a.

Wii 2
S This has the desirable property that

for some unknown variance o,2 . This has the desirable property that

Equation 77

2

v,L - 2 Equation 78
W.. W. 2

but no assumptions about the magnitude of the noise variances are necessary. The term

a,2 can be thought of as the uniform variance of the noise for a regression performed with

input values XW112 and output values W1/2?A.

If a matrix A is defined by

2a -
Aaa = 2

4a

Equation 79

Equation 74 can be re-written as

Vyes (2)= V, (i)+ arg min -  - X/A Y WA - X )+ A Equation 80

Equation 80 is a weighted regularized least-squares regression on the output vector VA

with regularization matrix A. The solution for this problem is known, and is given by:

Vyes(2) = V,(2)+ 2(x'WX + A)X' A Equation 81

Through Equation 77 and Equation 79, all of the unknowns from the probability

distributions have been transferred to the matrix A. Later ways to find good values for A

will be discussed.

111.2.2.2.2. The Laplace prior

An alternative to Gaussian priors on the coefficients for cluster functions would be to

use a Laplace prior. The prior distribution is expressed as:

-___ -If -,0..I1 1
TPoaA) e = e a

The optimization problem becomes

Equation 82
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(.)= V, (.)+ arg min - (VA()--y ,, + 2Ia ( jJI) Equation 83
V (A) 2 2 a "

where

A =- Equation 84

Because of the discontinuity in the first derivative of the absolute value, it is more

difficult to efficiently solve this problem. This problem can be written in matrix-vector

notation as follows:

VBsy (1) = V,(i)+ -arg min ~( - XA YWj A - XA)+ ys rTAAj Equation 85

where §,p is a vector whose ith has an absolute value of 1 and the same sign as the ith

element of &A. Under the assumption that all diagonal elements of A are non-zero, the

following variable transformations can be made:

6A,T = AflA

X, = W 112XA - 1  Equation 86

YT = W1/2j

These transformations produce the following minimization problem:

VBayes (X) = V,()+ I -argmin( U rT - XTAT 2 + A." PA,T) Equation 87

using the fact that S£A. = S• as long as all diagonal elements of A are positive. The

regression method that is expressed by Equation 87 is commonly known as LASSO (least

absolute shrinkage and selection operator) [86]. One of the advantages to this method is

that in general, the minimizing function will have only a finite set of non-zero ECI. Thus

the optimal set of cluster function orbits to be included in the fit are automatically selected.

Efron et al. recently produced an algorithm that finds the minimum in Equation 87 with the

same computational efficiency as a least-squares fit [87]. In the discussion of their algorithm,

they assume that the input data has been transformed to fit the following assumptions:

Yi = 0 Equation 88
i
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Vj Xij = 0

Vj xi,j2  1

These assumptions are restrictive, as they prevent regularization of the constant term

and the last assumption is incompatible with the second transformation in Equation 86.

However, none of these assumptions are actually required for the derivation of the

algorithm; they are only required for analysis and comparisons to similar algorithms.

The algorithm as presented by Efron et al., applied to the transformed variables, can be

summarized as follows:

1) Let flA, = 0 , a vector of all zeroes.

2) Let c=XT, -XT A XT).

3) Let C = max cj ).

4) Let A= {": 'cj =C}.

5) Let s 1: :,, < 0 where A i is the ith element of A.

6) Let XT, A be the matrix composed of columns s,XT,A, where XT,r is the jth

column of XT and A, is the ith element of A.

1
7) Let AA = where 1A is a vector of all 1's with length IAI

8) Let WA = AA (XT,A XT,Al A

9) Let j = XTXT,Aw A•

10) Let P = min ,C-J , J where min + means the minimum is over onlyjoA ( AA -j A A + aj

positive elements.

11) Let dj = j0 : j ' A , where A, is the ith element of A.O : jOA
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12) Let 7j= d

13) If there are some je A for which yj > 0, then

a. Let j =argmminn().
jeA:yj >0

b. If Y7 < P, then

i. Remove j from A.

ii. Set P = Y7.

14) Let IA, = •A, +N .

15) Goto 2).

There is one thing missing from this algorithm: a break condition. To derive this

condition, start with Equation 5.22 from reference [87]:

- SAXT,A T - XT,ASAmin,A,T)+ SAIA = 0 Equation 89

where SA is a diagonal matrix whose ith diagonal element is si, fmin,a,r is the minimizing

set of coefficients as defined in Equation 87, and the fact that A = 1 in Equation 87 has been

used. Using the definitions given in the above algorithm, this formula can be written as

- min + SA 1A = 0 Equation 90

where 6min is the vector Z corresponding to the minimizing solution. Re-arranging and pre-

multiplying by SA yields

1A = Cmin Equation 91

where Cmin is a vector of length IAI whose elements are given by Cmin,j = Cmin, j. This

shows that the algorithm reaches the minimizing solution when C = 1. Equation 2.16 in

reference [87] says that for each step, C can be expressed as the following function of y:

C(y)= Co - yAA Equation 92



110

where Co is the value of C at the beginning of the step. The minimizing value of y for a

given step can therefore be expressed as:

Ymin = (Co - 1)AA- 1  Equation 93

Equation 93 provides the break condition for the algorithm . Steps 14) and 15) are

replaced with:

14) Let Ymin = (C - 1)AA- 1

15) If Ymin < ^ then

a. flA, = fA,T + Ymind

b. End.

16) Let fl, = flA, +  .

17) Goto 2).

A limitation of this algorithm is that all diagonal elements of A must be non-zero.

Otherwise, the columns of XT corresponding to the elements with value of zero would be

infinite. It is possible to get around this restriction by re-writing the algorithm in a way that

never involves infinity. Start with the observation that any variables for which A, = 0

should be automatically included in the "active set" A because there is absolutely no penalty

for doing so. This is equivalent to noting that their correlations, c j, will be infinite as long

as they are non-zero. Therefore the LASSO solution must always be one that forces the

correlations for these variables to be zero. This is done by including these variables in A

and ensuring that every "update vector" u is orthogonal to the columns representing

variables for which A, = 0.

Once these variables are included in A, the rest of the algorithm can be written in

terms of terms of X,, defined as

X, = W1/2X Equation 94

Including some optimizations, the new algorithm becomes:



111

1) Define the set of positive-regularized variables as PR = {j: A.#> 0). Let the its

complement, the set of zero-regularized variables, be ZR. For j e ZR, let fl, be

the coefficient determined using a least-squares fit to the variables in ZR. For

j e PR, let 8a, =0.

2) Let c = X,wT(yT XwA).

3) Let C= maxKL c
jiPR A.

4) LetA= j : C u ZR.

5) Let si = 1:C, 0 where A i is the ith element of A.

6) Let XW, A be the matrix composed of columns XW,A, where

column of X w and Ai is the ith element of A.

Xw, j is the jth

7) Let A = where AA is a vector of length AI and the

A.A( XW,A XWAI1 A

element of AA is SiAAA,

Let WvA = AA (XW,AX,A A.

Let d = XTXW,AWA.

10) Let = , where min' means the minimum is over only

positive elements.

11) Let d = Asiwi : j = Ai

0:j0 A
,where A, is the ith element of A.

.

/
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12) Let yj ( dj) for jeA.

13) If there are some j e A for which yj > 0, then

a. Let j =argmin ).
jEA:yj >0

b. If 7 < P,then

i. Remove j from A.

ii. Set P=y7 .

14) Let Ymin = (C - 1)AA- 1

15) If Ymin < P then

a. /A,T = fA, + 7mind

b. End.

16) Let 6 ,T = Y,T + .

17) Goto 2).

This algorithm can be made more efficient by noting that each update of the matrix

(XW,A XW,A 1 can be accomplished in O A2) time using one of a variety of incremental

update methods for matrix inverses.

111.2.2.3. The width of the prior distribution

In previous sections, solutions for Equation 50 were examined for two different shapes

for the prior distribution: a Gaussian shape and a Laplace shape. With the transformed

variables, the mean of the prior distributions will be zero. If only Laplace and Gaussian

shapes are considered, this leaves only the problem of determining o-a, the width of the

prior distribution for each variable. In this section different generating functions for -a, will

be discussed. In the next section ways parameterize these generating functions will be

investigated.
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111.2.2.3.1. Cluster selection

In theory, for a periodic system there are an infinite number of cluster orbits that can be

included in a cluster expansion. Determining the ECI for all of these cluster orbits is a

computationally intractable problem, but this is usually not necessary. One of the

advantages to the cluster expansion is that for clusters of atoms that are far apart, or for

clusters of many atoms, the ECI are expected to be small. In a Bayesian sense, this means

that the width of the prior distributions for the ECI for these clusters should be small. At

some point, the prior becomes so small that a, = 0 is a reasonable approximation for

cluster orbits containing clusters larger than a given size. This approximation allows the

exclusion of large clusters from consideration in the fit, reducing the problem to one of a

finite number of variables. The cluster orbits for which a, is not set to zero will be referred

to as "candidate cluster orbits."

From the set of candidate cluster orbits, a common strategy for determining the ECI is

to choose of subset of the candidate orbits and perform a least-squares fit on this subset.

This is equivalent to choosing a prior distribution with the constraint that Ca , (0,00}.

Although this is of course an unrealistic constraint, it is computationally and conceptually

simple and is widely used to develop cluster expansions. The parameters for this prior

distribution are binary variables that determine whether each cluster orbit is included in the

fit.

In the following sections forms for prior distributions for which the prior widths can

take on a continuous range of values will be investigated. In all forms a, = oo is used for

the empty cluster function.

111.2.2.3.2. Constant width

A common strategy for determining the prior distribution is to assume the same prior

distribution on the ECI for each cluster, so that A = 21 for some A. It is a simple and

popular form for the prior, because it only requires the determination of one parameter.

This prior is equivalent to saying that the expected magnitude of the ECIs for all

candidate clusters is the same. In the case of a cluster expansion, this is an unrealistic

statement. It suggests that the ECI for larger clusters are expected to get smaller not in a
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continuous manner, but as a step function. For candidate clusters the width of the prior is a

constant oa,, and beyond some cutoff point the width of the prior distributions is set to 0.

Physically, the width of the prior distributions should shrink more continuously.

111.2.2.3.3. Independent widths

An alternative to using a constant width is to set the width of the prior distribution for

each variable independently. This is equivalent to trying to find the best set of non-negative

diagonal elements for A. This form of a prior, applied to cluster expansions, was recently

suggested by Drautz and Diaz-Ortiz [88].

One of the challenges with using independent widths is that determining the "best" A

can be computationally expensive. It is an optimization problem on a continuous m -

dimensional search space, where m is the number of candidate clusters. It is possible to use

a local minimization algorithm to find a good value, but this makes the result dependent on

the initial conditions.

Another concern with this approach is that with so many degrees of freedom available

to choose the prior distribution, there is a risk of over-fitting the data. The parameters of

the prior distribution are usually chosen based on a given set of training data, and there is a

risk that a given set of parameters work well for the training data but not in general. This

risk increases as the number of degrees of freedom in the prior parameter space is increased.

Although this might be a reasonable approach for a system for which there is no insight into

the expected magnitude of the ECI, it is perhaps excessive for the cluster expansion. There

is a general physical expectation for what a cluster expansion should look like: smaller

clusters are more likely to have large ECI than larger clusters. In the next two sections

distributions that take advantage of this insight will be investigated.

111.2.2.3.4. The exponential width function

For the cluster expansion, it makes sense to incorporate physical insight into the width

of the prior distribution:

1) As the number of sites in a cluster increases, the width of the prior distribution on

the ECI for that cluster should decrease.
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2) As the distance between sites in a cluster increases, the width of the prior

distribution on the ECI for that cluster should decrease.

3) The cluster expansion should converge with respect to the size of the clusters in the

expansion. To define convergence, let VA,,, (.) be the cluster expansion with the "true" ECI

(as defined in Equation 39) for all clusters with fewer than n,, sites and no two sites further

apart than r,,, and ECI of zero for all other clusters. Convergence is then defined as

follows:

Ve 6> 0, 3 {ncutr, } s.t. E((Va ()- VA,cu t ()))< Equation 95

By this definition, every cluster expansion for a material with a finite number of sites

converges because the cluster expansion that includes all possible clusters can perfectly

reproduce VA,(Z). For this reason, it will be assumed in the rest of this discussion that

systems with an infinite number of sites are being considered.

Equation 25 can be substituted into Equation 95 to get

Ve > 0, 3 nct, ru, } s.t. E ,AP (e) <6 Equation 96

where Jut, is the set of clusters with non-zero ECI in VA,,, (.), and Vy- is used instead of

Vy as a reminder that the mean of the prior expectations of the ECI is zero. The structure-

dependent part of the expectation value can be factored out to get

JE ZV 4 (p,))2
-< i

N;

Equation 97

where the sum is over structures.

The square can be expanded to get

V > 0, 3 {ncutrct} s.t. o., c., <6N

Re-arranging Equation 98 produces the following expression:

Equation 98

Vc > 0, 3 snt rs, I S.t.



Ve > 0, 3 {nc,,u r} s.t. E IV• VA,CUI,. ' J•,,, / ' < 6 Equation 99

The orthonormality condition (Equation 35) yields the following expression:

Ve> 0, {nc,, s.t. ZE(V,2)< Equation 100

Because the expected values of the VIA are zero, Equation 100 can be written in terms

of the variances of the prior distributions on the ECI:

Ve > 0,3 {ncut , } s.t. 2 < 6 Equation 101

The term w 2 will in general be very large unless al2 gets very small. In particular,

using the constant prior implies that the prior expectation is that the cluster expansion does

not converge. How small ' 2 must become as a function of cluster size can be

approximated by considering the density of clusters of a given size. By expressing the

variance of the prior distributions be a function of cluster size, the following continuous

approximation can be used:

nsites rmaU

C 2Z p(n, r) 2 (n, r)dr Equation 102
i'cut n=ncut r,

where p(n, r) is the approximate density of clusters with n sites and a maximum radius of

r, and o2 (n,r) is the variance of the prior distributions expressed as a function of n and

r. Under this approximation, the convergence criterion becomes

sYites rmax

Ve > 0, 3 {ncu,,t r.,} s.t. p(n,r)c2(n,r)dr <6 Equation 103
n=ncut rc

A sufficient condition to satisfy Equation 103 is

Jp(n, r)2 (n, r)dr a-n Equation 104

116

for a>l1.
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A function 02 (n,r) that satisfies Equation 104 can be found by calculating an upper

bound for p(n, r) in the limit of large r and n . The maximum number of sites that can be

selected such than the distance between any two sites is no greater than r grows as rd

where d is the dimensionality of the structure. The number of clusters with n sites and a

distance of no more than r between sites grows at a rate less than rnd . Therefore, r"d is an

upper bound on p(n,r) in the limit of large r and n, yielding

p(n, r)o.2 (n, r)dr < rnd 2 (n, r)dr Equation 105

Consider the following form for 02(n, r):

a°2 (n, r) = r-nd-An-1  Equation 106

where A > 0. Combined with Equation 105, this produces

rmax rMEu ( -

Jp(n, r)& (n, r)dr <2 Ir-"ndr < . Equation 107

With the appropriate choice of 2, the approximate convergence criterion in Equation 104

can be satisfied.

Although this analysis is based on rough approximations, it suggests a useful form for

r2 (n, r). The prior distribution for the ECI for a cluster with n sites and a maximum

distance of r between sites has a width given by:

a2(n, ) = (212 r + A -+ ) - -  Equation 108

where the 2i are non-negative parameters to be determined (for example, by cross-

validation). For a cluster of only one site, set r = 0 . This form allows for prior distributions

that will converge, although it doesn't force such distributions. It also guarantees that as n

and r get larger the widths of the prior distributions on the ECI get smaller (or stay the

same). Because it depends on only five parameters, it reduces the risk of over fitting the data

relative to the individual prior. Equation 108 will be referred to as the exponential width

function. A similar approach was introduced by Laks et al. to treat problems of long-range

lattice strain, although it was only applied to pair functions [89].
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111.2.2.3.5. The hierarchical width function

The exponential width function is just one of many width-generating functions that

allow the prior expectation to be that the cluster expansion converges. The exponential

width function assigns a width to the prior distribution of the ECI for a given cluster based

on two parameters: the number of sites in a cluster and the maximum distance between

those sites. Width-generating functions can use a richer set of data. For example, it might

make sense to consider the distances between all sites in a cluster when determining the

width of the prior distribution on the ECI. It also might make sense to consider what types

of sites are included in a cluster. The following form takes these factors into consideration:

[J2 ( Z) = s s (1i+ rs' Equation 109

where s and s' label sites in cluster a and r,,, is the distance between sites s and s'. The

non-negative parameters As are site-dependent, and all symmetrically equivalent sites share

the same Ai. These, and the non-negative parameters i1 and A2 , are to be determined.

The form given in Equation 109 ensures that as sites are added to clusters, and as the

distance between the sites grows, the width of the prior distribution decreases. It also takes

into account, through the As parameters, the possibility that the types of sites contained in a

cluster may affect the ECI. The distances between every pair of sites in the clusters are

accounted for through the rs,,, terms. For point terms, the expression reduces to

S,2 = A-2. Because there are so few parameters in this form, and the point terms are

special in that they involve no interactions between sites, it might make sense to introduce a

new parameter 13 to explicitly deal with the point clusters. This is the approach used in this

thesis. Because this form determines the width of the prior distribution in a way that

considers the properties of the components of a cluster, and it ensures that all clusters have

narrower priors than their subclusters, it will be referred to as the hierarchical width

function.
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111.2.2.4. Parameterizing the width-generating functions

All of the width-generating functions discussed have parameters that need to be

determined. This is known as model selection, and there are a variety of known ways to

approach this problem. In this section two common approaches, leave-one-out cross-

validation (LOO-CV) and generalized cross-validation (GCV), will be investigated.

111.2.2.4.1. Leave-one-out cross-validation

In leave-one-out cross validation, one sample is removed from the training set and a

model is built from the remaining training samples. This model is used to predict the value

for the sample that was left out. This is repeated for each of the samples in the training set.

The leave-out-out cross-validation score is the root mean squared error for the predictions.

This technique was introduced for cluster expansions by Van de Walle and Ceder in the

context of cluster selection [74].

Leave-one-out cross-validation can also be used to evaluate prior distributions. The

lower the leave-one-out cross-validation score is for a given prior, the better the models

generated using the prior are at predicting the values of the left-out samples. A reasonable

way to choose parameters might therefore be to find the set of parameters that gives the

lowest leave-one-out cross-validation score.

Calculating the leave-one-out cross-validation can be expensive, as it requires fitting up

to as many models as there are samples in the training set. In the case of the Gaussian prior,

a more computationally efficient solution can be found. Start by transforming the input

variables:

X = W11/2X

YT = W1/2(Y - XA,) Equation 110

T= W1/2(Bayes(X)W - V(X)

Next substitute these variables into Equation 81:

S= X, (XWTXW + A-' XWTy Equation 111

Let Xw,o, be a matrix in which each row is a sample being left out of the training set.

Let Xw,,, be the matrix consisting of the remaining samples. Similarly, let YrT,in be the set
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of transformed output values corresponding to the input values in X,i,,. Let fTr,ou and

YT,,ut be defined similarly. Let Yr,out,Cv be the transformed output values for samples left

out of the training set, predicted by a model trained only on the samples left in the training

set. Equation 111 then becomes

Yr,out,cv = Xw,o,(Xw,,iXWi. + A)Xwir ,in T Equation 112

Equation 112 can be re-written in terms of X , Xw,out, YTr, and f,out

x (xWTXW + A - X W out Y(xWT X T Equation
T,out,CV = X W 'uou W0 Y ,out X-113

For readability, it is convenient to define a new matrix fl:

( = XwTX, + A Equation 114

After applying the Sherman-Morrison-Woodbury formula [90] and doing a bit of

algebra, the following expression is derived:

YT,outCV - T,out = - XWO,u 2-)Xw 1 outlt - YTou) Equation 115

The cross-validation score is then given by:5

CV = Avg r,out,CY - YT,out 2  Equation 116

where the average is taken over different sets of samples left out of the fit. For leave-one-

out cross-validation, usually the average is taken by leaving every sample out of the fit, one at

a time. For leave-k-out cross-validation, the number of possible terms in the average grows

roughly exponentially with k as long as k is significantly less than the size of the training set.

For this reason, it may be preferable not to leave out every possible combination of samples

for leave-k-out cross-validation.

Equation 115 is similar to a well-known method for calculating the leave-one-out cross-

validation score for least-squares fits (see e.g. [74]). The advantage to this approach is that it

only involves solving for ,ou,,t once, using the full set of training data. The incremental cost

5 Often the cross-validation and generalized cross-validation scores are given as the squares of the scores
presented in this thesis. The form in this thesis was chosen to make units of the score equivalent to the units

of the output data.
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of using Equation 115 for each set of k samples left out is dominated by the cost of

inverting the k x k matrix (I -Xw,oU,, t -'X w,o, ). For leave-one-out cross-validation, this is

very fast.

For the Laplace prior, the straightforward method of fitting n models for a training set

of size n will be used to calculate the leave-one-out cross-validation score.

111.2.2.4.2. Generalized cross-validation

It can be shown that the leave-one-out cross-validation score is dependent on the basis

used to represent the input data X. A widely used alternative that does not have this

dependency is known as generalized cross-validation (GCV) [91]. It is equivalent to the

leave-one-out cross-validation score for a system in which the input data have been rotated

to a standard form. For systems in which the prior is Gaussian, the generalized cross-

validation score is given by:

NGCV T YllT Equation 117

Tr I - X, -'X,

where N is the number of training samples and C is given by Equation 114. In addition to

being basis-independent, the GCV score has the advantage of being faster to compute than

the leave-k-out cross-validation score.

For the Laplace prior, Tibshirani has suggested using a form similar to Equation 117, in

which f is given by

n = X,T X, + B-1A Equation 118

where B is a diagonal matrix with elements given by B1i = Ji [86]. Although an

approximation, Equation 118 is much faster than calculating the leave-one-out cross-

validation score.

For the Gaussian prior, an interesting interpretation of the generalized cross-validation

score can be derived. This derivation uses some definitions were made previously, but are

repeated here for clarity:

X, = W112X Equation 119
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n = XwX w + A

ýT = w1/2 A - X ,)

YT = W12(VBayes (X) - V (X)

Combining Equation 119 with Equation 81 and re-arranging yields:

ST- Y = (Xw-'Xw, - I)Y, Equation 120

If the training data have not been generated, the values for Y, are unknown. Therefore

YT can be treated as a random vector, denoted YT. By making use of the prior distribution

for ýT, an expression for the prior distribution for (T - T) can be derived:

S- YT = (X -'X - I 12~xP + Equation 121

where pA is a vector of variables drawn from the prior distributions of coefficients, ;, is a

vector of variables drawn from the prior distributions for the noise. The fact that the

expectation of every element of Y, is zero has been used to derive Equation 121. Taking

the squared magnitude of each side produces:

- T Equation
Y-• r 2 ~ Tr[(Xw-'XwT - I_ 11/2(XA + •XA + ± W1 /2Xw'Xw - I)+ Equa ti22

The expectation value of each side can be calculated, using Equation 77 and Equation

79 and the fact that PA and -e are uncorrelated:

E (l - = c2 Tr[(Xw •- 'X w - IXXW A -IXWT + IXX w • 'XXW - I)] Equation

Simplifying Equation 123 produces the following expression:

E(jT - T 2 w2Tr[I -r _ XW Xw) Equation 124

Therefore, for a given positive diagonal matrix A,

E · rI~c2 - ,r = 2w Equation 125
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Comparing this to the GCV score produces

E(GCV2)= aw

1 Tr[(I -_X W-1X ) Equation 126
N

The numerator reflects the noise of the model; it is the error that cannot be recovered

no matter how well the model parameters are fit. In the cluster expansion, this is the error

introduced by the fact that not all possible clusters are included in the expansion. The

denominator is a measure of the degrees of freedom of the model [92]. If no regularizer is

used, this is simply the number of samples minus the number of variables. The regularizer

serves to decrease the effective number of variables in the fit. This suggests that the GCV

score is a way of quantifying the intuition that the fewer degrees of freedom required to

build a model with little noise, the better the predictive power is expected to be.
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III.3. Sample generation

Although the generation of sample data for a cluster expansion can be expensive, the

expected computational cost can be reduced by an intelligent choice of which samples are

generated. In this sense, fitting a cluster expansion is a problem in active learning. To

reduce the computational expense of building a cluster expansion, it is useful to consider

how to best choose the structures that should be included in the training set.

Van de Walle and Ceder argued that when the correlation coefficients are determined

using a least-squares fit, the predictive power of the fit over the universe of all structures

should be approximately proportional to the trace of (XTX)l [74]. Here this idea will be

expanded upon to develop a method for structure selection that works for a Bayesian cluster

expansion and requires fewer approximations.

The derivation begins by calculating the covariance matrix for the correlation

coefficients in the case of regularized regression based on Gaussian prior distributions. The

correlation coefficients are given by:

lA = Q-1XWy, Equation 127

where lA is a vector of the estimated correlation coefficients, and Q, Xw, and Y, are

defined in Equation 119. The output variables can be written in terms of the "true"

coefficients 8A, and a vector of random noise, , . The tilde over 8 A is used to represent

the fact that the coefficients are drawn from a prior distribution. Equation 125 then

becomes

ZA' ,1X TW1/2 X +I Equation 128

The difference between the predicted and "true" coefficients is

(- = (1X X, - +I- +±-X W1/2n Equation 129

This is the sum of two random, uncorrelated variables. The covariance matrix is given
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C"ov -U" p = '2 [-1X,(0 'CX, ~-I 'XTX, -)+n X XEquation

where the facts that CovA)=C o -' and Cov()= ow21 w' have been used. This

expression can be simplified to

Cov( - A)= w 2 -1 Equation 131

For a given input vector F, the difference between the predicted output and the actual

output is given by

1/2- T 12-jT + 2)
YT,i -YT,i = Wi i -w1/2 I Wi ei Equation 132

Rearranging produces

S1/2- T(, 1/2-
YTr,i YT,i = wi xW i -l - e1 Equation 133

The first term on the right is the variance of the fit, and the second is the noise. Once

again, the right side is the sum of two uncorrelated random variables. Taking the covariance

of each side produces

E(jiY,~ - y, w= - w2J 12-,- w,1-1/2 1) Equation 134

Recognizing that the term on the right is the trace of a 1xl matrix, and using the cyclic

property of the trace, the following expression can be derived:

E(jT,, -y,i) =o w2Tr(Y 1, wiX i )+w2 Equation 135

It is desirable to minimize the expected squared error over the entire domain of

structures, which will be referred to as the "test set" or "test domain". Equation 135 can be

generalized for any set of test data.

EI 97, - rtest 1 2") = C2-1 .X Wtest + N ]est Equation 136
E(YiT,tes Test) - 2[ W, Wtest 36

where Ntest is the number of structures in the test set, and IV -Xw,t,TXW,s, is the

Frobenius inner product (the sum over element-wise multiplication) of the matrices l-' and

X,t,,T X W,,tet,. This is a product between p x p matrices, where p is the number of

distinct correlation coefficients to be determined.
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The expected squared prediction error per structure can be written as

= rw 2[- D+1] Equation 137

where the matrix D is defined by

X TX
D = wtest wtest Equation 138

NTest

This provides a useful method for trying to select structures that minimize the

prediction error over the entire function domain. The term a,2 is a function of the model

selection, which has been discussed in the previous section. It is independent of the

structures that are included in the training set. Therefore the expected squared prediction

error, as a function of structures included in the training set, is proportional to D-' 1 D+1.

By minimizing this term, the expected error can be minimized. Specifically training

structures that minimize -' -D, which is proportional to the error due to variance, need to

be selected. Note that if Q = XTX, and D = I, Van de Walle and Ceder's approximation

is recovered.

There are now two problems to address: The first is to calculate the matrix D so that it

represents the universe of all test structures. Because this matrix is a compact, p x p

representation of the relevant information about the function domain, it will be referred to

as the domain matrix.

The second problem is finding a computationally efficient way to select training

structures so that 9-' . D is minimized. In the next two sections these problems will be

addressed.

111.3.1. Estimating the domain matrix

There are several methods available to estimate the domain matrix. In this section a few

simple methods, and the situations in which each method might be appropriate, will be

evaluated.
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I11.3.1.1. Direct enumeration

Perhaps the simplest method of estimating the domain matrix is to enumerate a large set

of unique structures in the test domain, and directly calculate the matrix. For cluster

expansions with a large number of sites, such as those for infinite crystals, the challenge can

be enumerating a set of unique structures that is large enough to be representative for a

domain. In this section an efficient algorithm for accomplishing this in the case of cluster

expansions on infinite crystals will be developed.

An infinite crystal is created by starting with a set of sites, known as the basis, and

repeating the basis over an infinite Bravais lattice. The set of all sites in a crystal that is

periodic in d dimensions can be defined by

Vb, Vi e Zd = b + it  Equation 139

where bj are the coordinates of the basis sites, Zd is the set of all d -dimensional integer

vectors, ry, is the coordinate a crystal site, and Lsi,e is a matrix whose rows are d linearly

independent primitive vectors of the Bravais lattice. For a crystalline cluster expansion,

every site has the same occupation variable domain and single-variable basis functions as the

basis site from which it was generated. In this section it will be assumed that the smallest

possible basis has been chosen to represent the crystal of sites. The corresponding Bravais

lattice will be called the "site lattice".

Often, low-energy structures (site decorations) are also crystalline. The Bravais lattice

for a crystalline structure may be different from the "site lattice", depending on the

occupancies of the sites. The lattice for the occupied sites will be called the "structure

lattice." The site lattice has been defined so that it represents all lattice transformations that

map sites onto symmetrically equivalent sites. Because of this, the lattice vectors for the

structure lattice must be linear combinations of integer multiples of the lattice vectors for the

site lattice. Mathematically, this can be written:

Lstructure = SLsite Equation 140

where the rows of Lstrtu,re are linearly independent primitive vectors for the structure lattice,

and S is a d x d matrix with all integer elements. The absolute value of the determinant of
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S is the ratio between the number of sites in the basis of the structure lattice and the

number of sites in the basis of the site lattice. This means that the number of sites in the

basis for the structure must be an integer multiple of the number of sites in the cluster

expansion basis. This integer multiple will be referred to as the "size" of the structure lattice.

It is possible for two lattices to be equivalent. This occurs when the primitive vectors

of one lattice can be expressed as a linear combination of integer multiples of the primitive

vectors of the other, and both lattices have bases of the same size. This type of lattice

equivalence will be represented by the symbol -, and defined mathematically as

L, - L iff 3T s.t. L, = TL2  Equation 141

where T is a unimodular matrix (a square matrix with integer elements and determinant of 1

or -1). Because T is unimodular, it is straightforward to derive the transitive property of

lattice equivalence:

L ~- L2 & L2 - L3 > L1 - L3  Equation 142

Because of lattice equivalence, there are a finite number of possible different structure

lattices with a given basis size.

For a cluster expansion defined on an infinite lattice, there may be symmetry operations

in addition to translations. The cluster expansion space group will be defined as the group

of all operations that leave the sites, allowed occupancies, and single-variable basis functions

unchanged. Every one of the operations of the space group can be expressed as a "point"

operation, which leaves the lattice origin unchanged, combined with a translation. Every

space group has a finite number of point operations. Because the point operations must

map lattice points to lattice points, they can be expressed as integer matrices operating on

lattice vectors. These point operations may cause two lattices to be symmetrically equivalent.

For example, if a cluster expansion is defined on a 2-dimensional square lattice, then the

reflection operation that maps the x-coordinate to the y-coordinate and vice-versa is a point

operation. Because of this operation, the structure lattice with primitive vectors of (2, 0) and

(0, 1) is equivalent to the structure lattice with primitive vectors of (1, 0) and (0, 2).

A template for an algorithm to enumerate structures can now be written. Often the

structures of interest have relatively small bases, so the algorithm starts by enumerating
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structure lattices with a size of 1. This is repeated for lattices with a size of 2, then with size

of 3, etc. For each size, all structure lattices at that size are enumerated with the constraint

that no two enumerated lattices are lattice equivalent. Lattices that are symmetrically

equivalent based on the point group of the cluster expansion are also removed. For each

lattice, all possible decorations of the sites in the corresponding basis are enumerated, with

the constraint that no two decorations representing symmetrically equivalent structures are

enumerated. The algorithm is terminated at some pre-defined point, usually a size at which

the computational expense outweighs the benefit of additional structures. In the following

sections, the details of a rapid implementation of an algorithm that follows this template will

be fleshed out.

111.3.1.1.1. Enumerating structure lattices

Every structure lattice can be generated from a given site lattice using Equation 140,

with a different matrix S for each structure lattice. Let two lattices L, and L2 be defined by

L, = SLste
L,= Si2L., Equation 143

L2 = S2Lsi.e

By Equation 140, and the fact that Lse is invertible, it follows that

L1 - L 2 iff S,1 S 2  Equation 144

The problem of finding a maximal set of lattices that are not lattice-equivalent can therefore

be transformed to the problem of finding the maximal set of integer matrices that are not

lattice-equivalent.

To proceed further, the concept of Hermite normal is introduced [93]. An integer

matrix in Hermite normal form is lower-triangular6 , with the requirements that the diagonal

elements are all positive, no elements are negative, and the maximum element in each

column is located on the diagonal. If two matrices in Hermite normal form are different

from each other, then they are not lattice-equivalent. On the other hand, every integer

matrix is lattice-equivalent to exactly one matrix in Hermite normal form. Because a matrix

in Hermite normal form is diagonal, the size of a lattice represented by a matrix in Hermite

normal form is given by the product of the diagonal elements. If H(S) represents an

6 Equivalently, often upper triangular matrices are used.
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operation that reduces an integer matrix to Hermite normal form, lattice-equivalence can be

written as follows:

L, - L2 iff H(S,)= H(S 2 ) Equation 145

Enumerating all non-equivalent structure lattices of a given size is therefore the same as

enumerating all matrices in Hermite normal form with a given determinant. The algorithm

for enumerating all unique d -dimensional superlattices is as follows:

1) Let k be the desired size of the structure lattice.

2) Calculate all possible factorizations of k consisting of d factors.

3) For each factorization:

a. Calculate all unique permutations of the factorization.

b. For each permutation:

i. Place the factors, in the order of the permutation, along the diagonal

of a d x d matrix.

ii. Enumerate all possible ways of populating the lower triangular part

of the matrix, such that the elements of the lower triangle are non-

negative integers, and the maximum of each column lies along the

diagonal.

iii. Use each enumerated matrix as the matrix S in Equation 141 to

generate the superlattice vectors.

For example, the set of all symmetrically distinct superlattices with primitive cells that

are three times the size of the base primitive cell can be generated from the following integer

matrices:
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300[ 3o00 30 0
0 1 0, 0 1 0,0 1 0,

O 1 1 1J L2 0 11
3 0 1 3 0 03 0 01
2 1 02 1 1 0 ,1 1 ,

O 0 1 1 0 1 2 0 1
3 0 01 0 01 0 1

L OO 0 1L 01 J2 0 11
10 o0 1 0 0 1 0 0
0 3 0o0 3 0,0 3 0
O 0 11 0 1 1- 0 2 1-[ 100
003

Equation 146

The matrices in Equation 146 have been arranged in a logical order. The three different

permutations of {3,1,1} are explored in order (for example, from greatest to least when

written out as numbers in base k +1). For each permutation the off-diagonal elements are

explored in a similar order, with the constraint that no off-diagonal element can be larger

than the diagonal element in the same column. With this approach, it is straightforward to

rapidly calculate the index of each matrix in the set, and to calculate the matrix that belongs

at each index. Let Si be the matrix in Hermite normal form corresponding to index i, and

let i(S) be the function that maps a given integer matrix to the appropriate index.

The possibility remains that the generated structure lattices are symmetrically equivalent

due to the point operations of the cluster expansion. For example, if the cluster expansion

has cubic symmetry, the structure lattices represented by the first, tenth, and last matrices in

Equation 146 would be symmetrically equivalent. In general, the criterion for two structure

lattices, given by L, = SLsite and L2 = S2Lsite, to be symmetrically equivalent (denoted by

-) is
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L , = L2 iff 3F e G, s.t. SFLsite - S 2Lsite Equation 147

where Gpt is the set of integer matrices representing point operations for the cluster

expansion. Remembering that H(S) is the operation that reduces an integer matrix to

Hermite normal form, Equation 147 can be re-written:

L, = L2 iff 3F E Gpt s.t. H(SF)= H(S 2) Equation 148

The full algorithm for generating symmetrically distinct structure lattices is as follows:

1) For a given size k, first calculate how many matrices exist in Hermite normal

form with a determinant of k. Call this number Nk .

2) For the indices i= 1 ...Nk:

a. Generate the corresponding matrix S i in Hermite normal form.

b. For each cluster expansion point operation F :

i. Calculate j = i(H(SFj)).

ii. If j < i, then a symmetrically equivalent matrix has already been

generated; Set i = i +1, and go to a).

c. Use Equation 140 is used to generate the new structure lattice.

This algorithm runs in O(Nk) time and uses only integer operations and very little

memory. As an example of the performance of this algorithm, on a 2.0 GHz Pentium M

processor all 9537 symmetrically distinct structure lattices up to size 64 for an FCC cluster

expansion were found in 49 seconds.

III.3.1.1.2. Enumerating structure basis decorations

For every structure lattice generated, it is necessary to generate all of the ways in which

the basis sites for the structure can be decorated. Calculating the possible decorations is

trivial: simply list all of the basis sites in some arbitrary order, and then loop in an ordered

fashion over all possible combinations of occupation variables. Much like the matrix

enumeration in the previous section, this provides a way to map every possible decoration to
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a unique index, and for a given index to quickly calculate the corresponding decoration. Let

the vector di represent the decoration corresponding to index i, and id(d) be the function

that maps a given decoration d to a unique index.

It is still necessary to eliminate symmetrically equivalent decorations. Two decorations

are symmetrically equivalent if one of the operations in the space group of the cluster

expansion can be applied to a structure built from one decoration to arrive at the other

decoration. Applying a symmetry operation to a decoration maps each site in the basis to

another site in the basis. In this way, each symmetry operation is equivalent to a

permutation of the basis sites. There are a finite number of permutations corresponding to

symmetry operations in the cluster expansion space group. The set of all such permutations

will be called Gpe,m . A statement can then be written that is analogous to Equation 148:

d, iff 3F e Gp s. 1 (d)= d (F( 2 )) Equation 149

The enumeration algorithm proceeds similarly to the algorithm for the enumeration of

structure lattices:

1) Calculate the total number of allowed decorations, Nd .

2) For i = 1...Nd:

a. Generate the decoration di corresponding to that index.

b. For all F cGpeG

i. Calculate j = id F d

ii. If j < i, then a symmetrically equivalent matrix has already been

generated; Set i = i + 1, and go to a).

c. Add the current decoration to the list of structures generated.

There are two more details to work out in the above algorithm. The first is that a given

decoration might create a structure for which there is a smaller basis. For example, for a

structure lattice of size k, if all sites in the basis are decorated with the same occupation

variable, then the resulting structure can be expressed as one with a structure lattice of size

1. Such a structure would have already been generated when structures of size 1 were

generated. To avoid generating duplicate structures, it is necessary to make sure that there is



134

no translation, other than translations in the structure lattice, which maps a structure with a

given decoration onto itself. This can be accomplished by listing the full set of site lattice

translations so that no two site lattice translations differ by a structure lattice translation.

These translations are just special cases of the symmetry permutations listed earlier. Each of

these site lattice translations are applied to each candidate decoration, and if any of them

map the decoration onto itself then the decoration is ignored and the next decoration is

considered.

The other remaining detail is the performance of the algorithm. The algorithm should

run in O(Nd) time, where for a binary cluster expansion and a structure with m basis sites,

Nd = 2 " . The exponential dependence on m this algorithm cannot be removed, but it may

be possible to reduce the exponent. The iteration over decorations will often involve

changing the occupation variable of only one site between decoration i and decoration i + 1.

Because of this, if decoration i is symmetrically equivalent to a previous decoration, there is

a good chance that decoration i +1 will be equivalent to another previous decoration.

Evaluating all decorations until one is found that is symmetrically different from previous

decorations may be time consuming. A more efficient approach would be to directly

examine the permutations, and figure out the index of the next allowed decoration. It is

then possible to skip directly to this index without generating the intermediate decorations.

This version of the algorithm can run in as little as O(Nd,,) time, where Nd,, is the number

of symmetrically unique decorations. The advantage for structures with a large basis and

high symmetry can be substantial.

For example, for a binary FCC cluster expansion, there are approximately 2.8*1012

possible decorations of structure lattices with a size of 31, but only about 1.9*10' are

symmetrically unique. This gives Nd,u ; 1.58m. Using the algorithms described in this

thesis, all structures with a basis of up to 31 sites were found for this system in less than

eight hours on a 2 GHz Pentium M processor.
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I11.3.1.2. Analytical methods

An alternative to direct enumeration is to evaluate the domain matrix analytically. For

this section, assume all structures as equally weighted. Each element of the domain matrix

can be calculated as follows:

a NtestD X i-- i Equation 150
Dag N,,

Substituting Equation 32 into Equation 150 produces the following expression:

go,
NtNtest

Substituting Equation 27 yields

Da = i=1 ~ea ]efi Equation 152

NaNfN,est

In the following sections, Equation 152 will be considered in two cases: when the test

set is the domain of all possible structures, and when the test set consists only of structures

at a given composition.

111.3.1.2.1. All possible structures

If the test set is the domain of all allowed structures, Ntest = N,. If an orthonormal

basis is assumed, Equation 152 can be combined with Equation 35 to yield the following

expression:

D = ]a ij' Equation 153

Evaluating the sums yields

Da = -a Equation 154

Equation 154 is an interesting result: the domain matrix is diagonal, and the only non-

zero elements for the domain matrix are for the cluster orbits that contain a finite number of
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clusters. For an infinite crystal, there is only one cluster orbit that fits this definition and has

a finite number of sites for which jk 0. This is the orbit for the empty cluster, to which

an index of zero is assigned. Thus the domain matrix has only one non-zero element,

Doo = 1. Plugging this into Equation 137 yields

= 7 2[(-1 + ] Equation 155

This might seem to be a strange result, because it removes much of the information

about the non-empty clusters. This is due to the fact that the distribution of all structures is

sharply peaked at a point at which all correlations are zero except for the correlation for the

empty cluster. Thus the prediction error, on average, will be dominated by errors in the ECI

for the empty cluster. Equation 155 reflects the importance of getting the ECI for the

empty cluster correct.

111.3.1.2.2. Fixed composition

Although the entire universe of structures is sharply peaked around structures with zero

correlations, the entire universe might not be of interest. For example, sometimes the

structures being studied have a fixed composition of elements, such as 30% silver and 70%

gold. In the limit of an infinite crystal, this is equivalent to assigning probabilities to each of

the possible values of the occupation variables. Equation 152 can be re-written as

D,, = j6EaJ' Equation 156
· a- NaN,

where (x,),st is used to indicate the average value of quantity x over the entire test set.

Combining Equation 156 with Equation 24 yields the following expression:

S (Nest _ i k,k (Ck,i j'k ,k (Ck,i
D ]jjEa ]'r\ i=1 k NN )Test Equation 157

where, as a reminder, ck,i is the occupation variable for the kth site and the ith structure,

jk is the kth element of j, and kj,,k is the jkth single-variable basis function for site k.
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If Pk,m is defined as the probability that the occupation variable of the kth site is the

mth allowed value, then in the limit of an infinite number of sites Equation 157 can be

written:

Ea I-k E Pk,m'jk,k (Ck,m )j'k,k (Ck,m
a ea j'e k m=1 aNflD- NrN
as NN,

Equation 158

where ck,m is now the mth allowed value for the occupation variable for the kth site.

If there are an infinite number of sites, but the prior guess only allows clusters with a

finite number of sites to have non-zero ECI, then the odds of two clusters overlapping are

essentially zero. Taking advantage of this fact, Equation 158 becomes:

H 1- Pk,m .jk,k (Ck,m ) Pk,mj'k,k (Ck,m
lEa ]'Ef k:jk#O m=1 k:j'k•0 m=1 Equation 159

UP NaNf
Because the terms in parenthesis are going to be the same for all clusters in the same

orbit, Equation 159 can be written:

Da = Pk,mjk,k (Ck,m) k,mj'k,k(Ck,m
k:jk0O,jea m=1 k:j'k O,j'e fl m=1

Another way of writing Equation 160 is

D =where

where

Equation 160

Equation 161

Nk

()a = (Xa) i P,mjk,k (Ckm) Equation 162
k:jk O,jea m=1

This formula can be used to calculate the domain matrix at any composition. Consider

the special case of a binary alloy, with the following domain and basis:

Vk ck r{-1,1}
Vk 0o,k(ck)= 1
V k Ak(c,)= Ck

Equation 163
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where occupation with species A corresponds to ck= -1 and occupation with species B

corresponds to ck = 1. Let the percentage of sites occupied by species A be fixed at p . For

an infinite crystal, from Equation 160 becomes:

Dai = [1- 2p](" +flP), Doo = 1 Equation 164

where na is the number of sites in each cluster function j e a for which jk • 0, and n. is

defined similarly. From Equation 164, it can be seen that fixing the concentration at 50%

leads to Equation 155. This is because the result for systems not constrained to a given

composition is due to the sharply peaked density of structures at 50% composition.

In general, the distribution of compositions for structures in the test set is not sharply

peaked at 50%. For example, suppose there is an equal interest in predicting the properties

of structures at all compositions. The domain matrix for this situation can be calculated by

integrating Equation 164 over all compositions:

1 p)•1: n, + n even
= - dp n + n + Equation 165

P-O 10: na + n, odd

Noticing that along the diagonal of the matrix, na + np is always even, some similarity to

Van de Walle and Ceder's trace approximation becomes apparent.

The formulas derived in this section are exact in the limit of infinite crystal periodicity,

and should work best for structures that do not necessarily have small crystal bases. In this

sense, the analytical method may be considered complementary to the direct enumeration

method.

111.3.1.3. Statistical methods

There are some situations in which the distribution of structures on the test domain is a

function of the occupation variables themselves. In general, there may be some probability

distribution P(xi) representing the likelihood of a given structure appearing in the test set

with

SP(i)= 1 Equation 166
i
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If P( 1i) (or a close approximation) is known, Equation 150 can be approximated by

statistically sampling the test domain. For example, a Metropolis algorithm [73] might be

used.

An example of when this approach could be useful would be if the thermodynamic

properties of a material in a given range of temperature and chemical potential are of

interest. For example, for a binary compound at a given temperature, T, with the chemical

potential difference between species given by p, statistical mechanics states that in the

grand canonical ensemble

P( , )-(.,

T•PA (i ( A Equation 167
e kT

where NA is the total number of nuclei of species A, and the total number of nuclei in the

system is assumed to be fixed.

The probability function in Equation 167 can be used along with statistical sampling to

estimate the domain matrix at a given temperature and chemical potential, D(T, pA). The

key is that it is necessary to have a good estimate for V( i ) , which is the original problem.

A reasonable estimate for this function might be the prior estimate. Equivalently, if some

training data have already been generated, the most likely function in the posterior

distribution could be used. Alternatively, and perhaps more accurately, the parameters of the

function can be treated as random variables themselves. The sampling would then be over

not only occupation variables, but over values for the ECI distributed according to the

posterior distribution.

The domain matrix over a range of chemical potentials and temperatures can be

estimated by numerically integrating over the domain matrices at fixed potentials and

temperatures:

Tm. . P...x
D[T]r.i[lP.P.J.,. D(T, PA )d adT Equation 168

Tmin ta.min

This method for calculating the domain matrix, combined with Equation 137, provides

a quantitative method for measuring the key property in a training set: the degree to which
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structures are both thermodynamically likely and informative about the potential energy

function.

111.3.2. Selecting the training set

Once a domain matrix has been calculated, a training set can be generated to that gives a

low value for the expected squared error, represented by Equation 137. Generally, the

problem of building a training set can be viewed as one of choosing which structures to add

to an existing set of training data. Equation 137 then becomes

= ' old + X,• Xnew -D+1] Equation 169

where

old = Xod TXo + A Equation 170

The matrix Xola is the set of input data that has already been added to the training set, and

the matrix Xne, is the set of input data that is being considered for addition to the training

set. If Qold is assumed to be invertible, which it generally should be as long as a good

regularizing matrix A has been chosen, the Sherman-Morrison-Woodbury formula can be

used to re-write Equation 182:

Equation 171

w -- old-Xnew I + Xnewold XnewT X new old-1) . D + 1

Using the properties of the Frobenius inner product, Equation 171 can be re-written:

EI N I Ttest Equation
test 172

a 2  oled-1 -D + - c, 2 Tr Xnewc old DQold Xnew + Xnewoldl Xnew

The first term on the right is the expected squared prediction error of the known

training set. The improvement due to the additional training samples is given by the second
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term on the right. The problem of choosing new structures can therefore be reduced to the

problem of finding a set of structures that minimizes the following expression:

-TrtrXnewmobD cld-1Xne I +XnewoXnew ] Equation 173

The expression in Equation 186 term can be calculated in O Np2+ ne3) time, where

p is the number of coefficients to be fit and N,. is the number of new training samples to

be added to the training set. Finding sets of structures to minimize Equation 186 is a can be

addressed with any number of well-known minimization heuristics.

The fact that different structures have different computational costs has not yet been

addressed. Generally, it is desirable to find the best set of structures within a given

computational cost. Van de Walle and Ceder suggest addressing this problem by finding the

structure that maximizes the absolute value of C(i,) . where C(i ) is the computational
c( wsi)

cost of calculating the output for xi, and AV(ii) is proportional the reduction in estimated

variance by adding the correlations xi to the training set [74]. A similar approach could be

used along with the formulas in this thesis, with the only difference being that Equation 1

would be used to calculate A V(ei ).

An alternative, but related approach, is to treat this as a penalized minimization

problem, similar to the problem of Tikhonov regularization. In this method, a penalty

parameter 2 is chosen, and the objective is to minimize following expression:

- Tr[XnewoD Mol-'Xe(I+ X,,nwoulXnew 1 J+ AC(Xn) Equation 174

The parameter A can be adjusted manually to balance the tradeoff between computational

cost and improved predictive power. Once again, heuristic minimization algorithms can be

used to find structures that give low values for Equation 174.
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III.4. Experiments

A good measure of the quality of a cluster expansion is the ability of the cluster

expansion to predict properties of materials that were not included in the training set. When

used to calculate thermodynamic averages, it is most important that the cluster expansion get

the energy of low-energy structures correct. For phase diagrams, it is important that the

cluster expansion correctly ranks the structure with the lowest formation energy at a given

composition. Rather than focusing on specific applications, in this thesis a more general

property of the cluster expansion that is important to many applications is tested: the ability

to calculate the potential energy of structures that were not included in the training set.

111.4.1. Sample data

To evaluate the various methods discussed in this thesis for generating cluster

expansions, sample sets have been generated for three different binary material systems: Si-

Ge, Ag-Au, and Pb-Ir. Each method was evaluated by selecting a training set from the

much larger sample set and using the training set to fit a cluster expansion. The predictive

power of the cluster expansion was then evaluated over the full sample set. To more

accurately reflect the distribution of structures over the test domain, multiple distinct but

symmetrically equivalent structures were allowed in the sample set. (This was accomplished

by weighting each structure proportional to the number of distinct structures that were

symmetrically equivalent to it, and then removing the symmetrically equivalent structures.)

In this section the generation of the test and training data will be described.

III.4.1.1. Calculating input values

111.4.1.1.1. Generating the sample structures

Two of the systems tested (Ag-Au and Pb-Ir) were modeled by cluster expansions with

face-centered cubic (FCC) symmetry. The training sets for these cluster expansions

consisted of all structures with up to nine atoms in the structure basis. Using the methods

described in this thesis, 1135 symmetrically distinct structures were found.
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The remaining system, Si-Ge, was modeled by a cluster expansion with diamond cubic

symmetry. All structures with up to fourteen atoms in the structure basis were included, for

a total of 9631 structures.

III.4.1.1.2. Selecting training structures

For each set of input data, training sets with 15, 30, 45, 60, and 75 structures were

evaluated. All training structures were selected from the sample set by using a greedy

algorithm to find the structures that minimized Equation 1. The domain matrix was

calculated directly from the entire sample set, and the regularization matrix was assumed to

be zero for the purpose of selecting training structures. Because the regularization matrix

was set to zero, it was necessary to ensure there were always at least as many training

structures as clusters used for the structure selection algorithm. Otherwise, the matrix Q in

Equation 1 is singular. To meet this requirement, the set of considered clusters for structure

selection was increased as the set of training structures was increased.

11.4.1.2. Calculating output values

The cluster expansion method is generally used to model calculations that are otherwise

computationally expensive. To avoid taking on an impractically large computational burden,

the data sets used in this thesis were generated using fast multi-body potential models that

are known to reproduce the properties of materials reasonably well. This section contains

descriptions of the models used to generate the data. The General Utility Lattice Program

(GULP) [94] was used to calculate the energies for the datasets using the potential models.

For all structures, the mean of the prior distribution for the potential energy was

calculated as the linear average between the energies of the pure elements. This is equivalent

to fitting the formation energies for the structures. For example, for all structures that were

25% silicon and 75% germanium, the mean for the prior distribution on the energy per atom

was 25% of the energy per atom for pure silicon plus 75% of the energy per atom for pure

germanium.

III.4.1.2.1.The embedded atom potential

The embedded atom potential is a simple multi-body potential that is well-suited for

some metallic systems. The intuition behind the potential is that in addition to the pair-wise
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interactions between nuclei, the nuclei also interact with the local electronic density due to

nearby atoms. The local electronic density is calculated as a linear combination of

contributions from nearby atoms, and the strength of the interaction with the electronic

density is proportional to the square root of the density. The general form for the potential

is:

V = Equation 175
2 iji j. i j.,

where ri is the distance between nuclei i and j, and .c, c,, a., ny, mJ are parameters

that are dependent on the elements of nuclei i and j. In this thesis the parameters

published by Sutton and Chen [95] have been used. Sutton and Chen list only self-

interaction parameters for the elements. For interactions between different elements, the

following combination rules used were used:

a.ii a= j
"- 

2

nii + n+i Equation 176
2

6ij = 26.6.

One of the challenges with the embedded atom model is that there is no distance at

which the interaction between two atoms becomes zero. To make evaluation of the

embedded atom method feasible, a cutoff radius may be chosen. Beyond this radius it is

assumed that atoms have no interaction. In this thesis, a cutoff radius of 12 A was used.

The use of the cutoff radius can cause discontinuities in the potential energy surface, which

may cause issues with convergence when searching for local minima.

The embedded-atom potential was used to generate data for two systems studied in this

thesis. The first, face-centered cubic (FCC) Ag-Au, is an alloy between two elements with

similar lattice parameters, and all systems relaxed to their local minima with forces converged

to 1 meV / A. The second system, FCC Pb-Ir, is an alloy of two elements with a

significantly different FCC lattice parameters in their pure forms. In an attempt to resolve

this lattice mismatch, there were more significant relaxations for Pb-Ir alloys. No effort was
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made to check that the relaxed structures resembled the initial FCC structures, so there may

have been significant reconstruction for some structures. There were 32 structures in which

the forces did not converge within 1 meV / A, but all converged within 10 meV / A. It

should be expected that the cluster expansion converges significantly better for the Ag-Au

system than for the Pb-Ir system.

111.4.1.2.2. The Tersoff potential

The Tersoff potential is a bond-order potential, in which the strength of the interaction

between two atoms is dependent on the "order" of the bond between the atoms, which in

turn is dependent on the positions of other nearby atoms [96]. It is a many-body potential

that works well for diamond cubic materials such as silicon, germanium, and carbon in its

diamond form. The form of the potential is given by:

V = l f Ae-A'j' -b, Be "'")

/ -1
2 2 n 2ni

k i, j d d+ (h1 - os
Equation 177

1, r<R,

(rik + 1CoS 7 -RU) , RU < r. < Sys

0, rj > S,

where all variables except r. and rik are element-specific parameters provided by Tersoff.

The Tersoff potential was used to calculate the energy of the Si-Ge structures. Because

of the f(.) term, there are no first-order discontinuities in this potential, and all calculations

converged so that the maximum force was less than 1 meV / A.

111.4.2. Model selection

For all cluster expansions, parameters were chosen by attempting to minimize either the

leave-one-out cross-validation (LOO CV) or generalized gross validation (GCV) scores.

Selecting the set of parameters that minimizes one of these scores is in general a global
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optimization problem which can not be analytically solved. The technique used to find a

good set of parameters depended on the type of prior distribution.

For cluster selection, a rule was enforced that if a cluster was included in the fit, all

subclusters must be included as well. This constraint can be compared to the constraint in

the continuous prior distributions that clusters must have smaller prior widths than any of

their subclusters. It was found that this constraint significantly improved the quality of the

fit. For cluster expansions in which there were fewer than 30 candidate clusters, the set of

clusters that minimized the score was found by an exhaustive search of all possible sets of

clusters to include in the fit. For cluster expansions with more than 30 candidate structures,

a Metropolis algorithm was run to search for the ground state. The Metropolis algorithm

was run in multiple stages, with the number of attempted changes in each stage equal to 200

times the number of candidate clusters. Between stages, the temperature was dynamically

adjusted to bring the ratio of successful flips closer to 10%. The algorithm was stopped

when the ratio of successful flips was within 30% of 10%.

For the exponential, hierarchical, and constant width-generating functions, parameter

selection was done in a two-stage process. The first stage of the process was a grid search

for a local minimum on a logarithmic grid, in which neighboring grid points represented

parameters that differed by a factor of 2. All parameters were initialized with a value of 1.

The grid search was ended when the improvement in the score between neighboring points

was less than 1E-4 eV. When the grid search was completed, a conjugate gradient algorithm

was used to more finely resolve the local minimum. The conjugate gradient algorithm was

stopped when the gradient of the score with respect to the natural log of the parameter

values was less than 1E-5 eV.

For the individual width-generating function, the same method was used as the

exponential, hierarchical, and constant width generating functions if there were fewer than

six parameters. For situations in which there were six or more parameters, the multi-

dimensional grid search rapidly becomes computationally expensive. In such situations, the

grid search was skipped and only the conjugate gradient step was used.
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111.4.3. Cluster expansion options

To evaluate different methods for generating cluster expansions, a set of cluster

expansions were generated by exploring all possible combinations of the options listed in

Table 12. A total of 60,000 possible cluster expansions can be generated from the

combinations of these options. The algorithm used to fit cluster expansions that use the

Laplace prior requires that the input data be linearly independent, which restricted the

number of cluster expansions that were successfully fit to 56,480.

Option Allowed Values Description

The binary material for which the input
Data set Pb-Ir, Ag-Au, Si-Ge

and output data were generated.

Whether the nuclei should be allowed to

Nuclear positions Initial, relaxed relax to nearby local minima when

calculating energies.

The number of structures in the training
Training set size 15, 30, 45, 60, 75

set

The "candidate clusters" which were
{1,0,0},

allowed to have non-zero ECI. Each set
{2,2,2},

on the corresponds to the maximum
{3,0,0},

distance between sites for pair clusters,
{3, 2,0},

triples, and quads, respectively. A value of
{3, 3, 3},

Candidate cluster sets "0" means none were included, a value of
{4, 3, 0},

"1" means all clusters with no two sites
{4, 4, 4},

further than next-nearest-neighbors were
{5,0,0},

allowed, "2" means all clusters with no two
{5, 4, 0},

sites further than next-nearest-neighbors
5,5,5}cluded,

were included, etc.
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Whether a random noise term, drawn from

a Gaussian with standard deviation of 2
Add noise True, false

meV, should be added to the calculated

energy.

Whether structures should be assigned a
Weight by symmetric True, false weight proportional to the number of

degeneracy
symmetrically equivalent structures.

What type of prior distribution should be

used. "Iterated Gaussian priors" is a
Cluster selection,

method in which the Gaussian prior is
The Laplace prior,

used to fit the data, then all clusters with
Prior distribution Gaussian priors, correlation coefficients below 0.1 meV

Iterated Gaussian
were removed from consideration. This

priors
process was repeated until no clusters had

correlation coefficients below 0.1 meV.

The width-generating functions are
Constant,

described in this thesis and were used to
Width-generating independent, determine the width of Gaussian and
function exponential, Laplace prior distributions. For cluster

hierarchical
selection, this option is not valid.

Whether the prior distribution applied to
ECI,

the ECI or the correlation coefficients.
Regularized variable correlation

For cluster selection, this option is not
coefficients

valid.

Leave-one-out cross- For the Laplace prior, the approximate
Cross-validation

validation, generalized generalized cross-validation score
method

cross-validation suggested by Tibshirani [86] was used.

Table 12 The different options used to generate cluster expansions evaluated in this thesis.
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111.4.4. Results

Because of the large number of cluster expansions generated, there are many ways in

which the results can be analyzed. In this section the impact of the options and noteworthy

combinations of options used to generate the cluster expansion will be examined.

111.4.4.1. Prior distributions

Of the four different shapes of prior distributions considered, the combination of the

Laplace prior with the independent width-generating function produced cluster expansions

with anomalously poor predictive power (Figure 40). Because of the large number of

parameters required for the independent width-generating function, minimization of the

score typically relied on the conjugate gradient algorithm. However with the Laplace prior,

the derivative of the score with respect to individual parameters is zero for parameters

representing variables that are not in the active set, and it is discontinuous at the point at

which the variables join the active set. It is possible that the conjugate gradient algorithm

had difficulty navigating this surface for the Ag-Au and Si-Ge data sets.

" Cluster selection
O Constant
" Exponential
" Hierarchical
" Independent

Figure 40 The average root-mean-square prediction error, relative to the data standard
deviation, for different combinations of prior shapes and width-generating functions. The
averages were taken over the calculated data with no additional noise added.
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The speed at which the cluster expansion can determine the value of a given data point

is determined by the number of clusters in the expansion with non-zero ECI. The cluster

expansions based on the Gaussian prior tended to produce the most clusters with non-zero

ECI (Figure 41). However, this number could be reduced significantly by using the iteration

procedure to remove all ECI with values below 0.1 meV. For the Si-Ge and Ag-Au data

sets, this method produced cluster expansions with about the same number of non-zero ECI

as cluster selection. For the Pb-Ir data set, the iteration method did not trim the number of

clusters as much, probably because the ECI for this data set were on average larger. Cluster

expansions based on the Laplace prior tended to produce the fewest non-zero ECI. When

combined with the independent width-generating function for the Ag-Au and Si-Ge data

sets, very few clusters were assigned non-zero ECI. This helps explain why the prediction

error of these cluster expansions is so poor, and is consistent with the conjugate gradient

algorithm having a difficult time finding clusters that minimize the score.

0
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N,
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o
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15
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• Cluster selection
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N Exponential
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1i Independent

Figure 41 The average number of cluster orbits with non-zero ECI for different
combinations of prior shapes and width-generating functions. The averages were taken over
the calculated data with no additional noise added.

Although the Laplace prior distribution produced the smallest cluster expansions, it also

on average produced those with the worst predictive power. Some cluster expansions which
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used the Laplace prior could not be fit because of constraints on the fitting algorithm.

Because of the discontinuous nature of the Laplace prior, it is more general more difficult to

work with analytically. For these reasons, the remainder of the results presented in this

thesis will exclude all cluster expansions that relied on the Laplace prior. This is more likely

to give meaningful data across a variety of cluster expansion options.

111.4.4.2. Regularized variable

The prior distribution can be defined on either the ECI or the correlation coefficient,

with the only difference between the two of them being a factor of the multiplicity of the

cluster orbit. Cluster expansions with both types of prior distributions were evaluated, and

the predictive power of these expansions is given in Figure 42. There is little difference

between defining a prior distribution on the ECI or the correlation coefficient, with the most

significant impact occurring for the independent and constant width-generating functions.

The result for the independent width-generating function is particularly interesting, because

for this width-generating function the multiplicity factor should not affect the space of

allowed prior distributions. Thus it is likely that the difference is due to the cross-validation

minimization procedure starting at different initial points and navigating differently-scaled

cross-validation score surfaces. This highlights the importance of evaluating different initial

conditions and convergence criteria, especially for the constant and independent width-

generating functions.



= U.7

0.6

S0.5

* 0.4

- 0.3
a)
c 0.20o

o 0.1

0.

0

a,
el

Figure 42 The average root-mean-square prediction error, relative to the data standard
deviation, for different width-generating functions applied to either the correlation coefficients
or the ECI. The averages were taken over the calculated data with no additional noise added.

111.4.4.3. Data sets

The standard deviations of the formation energies per atom in the data sets used for the

cluster expansion are given in Table 13. The standard deviations vary significantly, with the

Pb-Ir system having the largest standard deviation by far. This system was chosen because

of the large difference between the parameters in the embedded atom potential for Pb and

Ir, so it is not surprising that there is so much variation in the formation energies. On the

other hand, the Si-Ge system is almost perfectly described by the mean of the prior

distribution, resulting in very little standard deviation in the formation energies. An

interesting result is that in both the Si-Ge and Pb-Ir systems, the relaxed structures had

lower standard deviation than the unrelaxed systems. The near-linear correlation between

energies and composition in these relaxed systems suggests that volume effects may

significantly contribute to the energetics.
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Data S ct Tct etwcg Psiios tadad eiain(V/

Weighted

Unweighted

Weighted

Unweighted

Weighted

Unweighted

Initial 0.0029

Initial 0.0110
Relaxed 0.0123
Initial 0.0131

Relaxed 0.0144
Initial 0.6294

Relaxed 0.4662
Initial 0.7392

Relaxed 0.5332

Table 13 The standard deviations of the formation energies in the different test sets used.
Values are given for the formation energies without any noise added.

Because the standard deviations for the different data sets vary so widely, results will in

general be presented relative to the standard deviation for the given test set. If the cluster

expansion is replaced by a simple function that returns the average formation energy of the

test set, the root-mean-squared (RMS) prediction error of the cluster expansion should be

equal to the standard deviation of the test set. In general, cluster expansions should perform

much better than this. An unexpected result, likely due to the low standard deviation for the

relaxed Si-Ge system, is that on average the RMS prediction error for the cluster expansions

on the relaxed Si-Ge system was close to the standard deviation of the formation energies

(Figure 43). In contrast, the cluster expansion performed very well on the Si-Ge system with

the nuclei in ideal diamond-cubic lattice positions.

Si-Ge

Ag-Au

Pb-Ir

Relaxed 0.0020
Initial 0.0033

Relaxed 0.0024
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Figure 43 The average root-mean-square prediction error relative to the standard deviation
of the data. Values are given for the formation energies without any noise added. A
logarithmic scale is used.

One possible explanation for the unexpectedly poor fits for the relaxed Si-Ge data is

that in the relaxation process, there is a certain amount of noise that cannot be modeled by

the clusters considered for the fit. Because the standard deviation of the relaxed Si-Ge

system is so small, this noise becomes relatively more apparent. To support this hypothesis,

the results for Si-Ge fit to the calculated data, and the calculated data plus manually added

noise (drawn from a Gaussian of with 2 meV), are shown in Figure 44. The addition of the

noise makes the results appear more similar to the results of the relaxed structure.
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Figure 44 The average root-mean-square prediction error relative to the standard deviation
of the data for the Si-Ge system. Results are plotted for both nuclei in their initial and relaxed
positions, and for the data with and without the addition of noise drawn from a 2 meV wide
Gaussian. A logarithmic scale is used.

The addition of the noise is clearly most significant in Si-Ge, as opposed to the others in

which the noise is smaller relative to the inherent fluctuations in the data (Figure 45). Within

a given data set, the addition of noise generally makes the fit worse overall, and seems to

affect the cluster selection method the most. In particular, the addition of noise seemed to

be most detrimental to the cluster selection method for the Ag-Au data set. This may be due

to the fact that the noise is neither too small to be very noticeable (as in Pb-Ir), nor so large

that is overwhelms the data (as in Si-Ge).
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Figure 45 The effect of adding noise to the formation energies on the RMS prediction error,
relative to the standard deviation, in each of the data sets.

111.4.4.4. Weighting

Often all training structures for a cluster expansion are given equal weight. For a variety

of reasons, structures may be assigned unequal weights in an attempt to improve the

predictive power of the fit. For example, it might make sense to assign a weight to a

structure in the training set that is proportional to the number of symmetrically equivalent

structures in the test domain. A structure with very high symmetry will generally have fewer

distinct symmetrically equivalent structures in the test domain, whereas a structure with low

symmetry will have many distinct symmetrically equivalent structures.

Cluster expansions were generated from both the situation in which all training

structures had equal weights and the situation in which all training structures are given

weights proportional to the number of symmetrically equivalent structures. These cluster

expansions were then evaluated against two test sets:

1. A test set in which all structures up to a certain size were included, even if

multiple structures were symmetrically equivalent.
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2. A test set in which structures were removed so that no two structures in the set

were symmetrically equivalent.

The predictive power of these cluster expansions are shown in Figure 46. In both the

FCC training sets, the weighted fits outperform the unweighted fits, whereas in the Si-Ge

training set the unweighted fit does better. However, the data do not paint a clear and

consistent picture of how assigning weights to the structures affects the quality of the fit.
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Figure 46 The average root mean square prediction error, normalized by data standard
deviation, for cluster expansions generated from both weighted and unweighted training sets.
The unweighted prediction error was evaluated on test sets in which only one representative
from each orbit of symmetrically equivalent structures was included. Values are given for the
formation energies without any noise added.

111.4.4.5. Convergence

Because training data can be so expensive to generate, one of the key challenges for a

cluster expansion is to rapidly converge to a model with good predictive power. The average

predictive power of cluster expansions, as a function of training set size, is shown in Figure

0 Average of Normalized RMS
prediction error - No weights

U Average of Normalized RMS
prediction error - Weights

* Average of Normalized unweighted
RMS prediction error - No weights

U Average of Normalized unweighted
RMS prediction error - Weights
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47. The average is taken over all data sets, for which the trends were similar. In this chart

the advantages of the more physically meaningful width-generating functions start to

become more apparent.
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Figure 47 The average root mean square prediction error, normalized by data standard
deviation, for cluster expansions as a function of training set size. The averages were taken
over the calculated data with no additional noise added.

A more detailed breakdown of the relative predictive power of the cluster expansions as

a function of training set size, the set of candidate clusters, and the width-generating

function used is given in Table 16 - Table 21. Some of the key results are summarized in

Table 14, Table 15, and Table 22.

The average predictive power for cluster expansions built using the exponential and

hierarchical width-generating functions is the best across all data sets (Table 14). The

exponential and hierarchical width-generating functions perform similarly to each other,

which is not surprising considering their similar form. Cluster selection and the independent

width-generating function were the next best on average, about 10% worse than the

exponential and hierarchical width-generating functions. The constant width-generating
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function performed the worst, about 20% behind the exponential and hierarchical width-

generating functions.

1.072
1.177
1.117
1.103
1.027
1 071

1.091

1.345
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1.281
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1 03Y

1.191

1.026
1.021
1.000
1.000
1.000
1 000

1.004

1.000
1.000
1.013
1.011
1.001
1 001

1.000

1.114
1.122
1.169
1.168
1.011
1 04I

1.101

Table 14 The average relative root mean square prediction error of cluster expansions
generated using each of the width-generating functions, for each of the data sets.

The cluster selection method most frequently had the best predictive power, followed

by the hierarchical, exponential, and constant width-generating functions (Table 15). The

independent width-generating function rarely had the best predictive power.
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Table 15 The percentage sets of candidate clusters for which the given width-generating
function produced the cluster expansion with the lowest average root mean square prediction
error.
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Pair
cutoff

Triple
cutoff

Quad
cutoff Cluster

selection Constant Exponential Hierarchical Independent

NN None None
3NN 3NN 3NN 1.046 1.044
4NN None None
4NN 3NN None
4NN 4NN 4NN 3.615 1.055 2.054
5NN 4NN None 1.052 1.064
5NN 5NN 5NN 1.151 3.734 4.296
6NN None None
6NN 5NN None 1.604 1.172 2.134
6NN 6NN 6NN 1.593 2.511 6.315

age for training set of 15 1.219 1.122 1.351
NN None None

3NN 3NN 3NN
4NN None None
4NN 3NN None
4NN 4NN 4NN
5NN 4NN None
5NN 5NN 5NN 2.505 1.102 2.495
6NN None None
6NN 5NN None
6NN 6NN 6NN 1.621 1.087 4.134

age for training set of 30 1.057 1.119

NN None None

3NN 3NN 3NN
4NN None None
4NN 3NN None
4NN 4NN 4NN 1.072 1.084 1.031
5NN 4NN None
5NN 5NN 5NN 1.249 1.117 1.266
6NN None None
6NN 5NN None
6NN 6NN 6NN 2.269 1.088 3.055

age for training set of 45 1.042

NN None None
3NN 3NN 3NN
4NN None None
4NN 3NN None
4NN 4NN 4NN 1.034
5NN 4NN None

160

Training
set size

15

Aver

Aver

Aver
60

row inimumr
I

RMS prediction crul~~rrorreatvet Minimum
RMS

prediction
error /

data
standard
deviation

0.962
0.471
0.197
0.212
0.156
0.065
0.072
0.065
0.058
0.074
0.238
0.881
0.452
0.188
0.208
0.128
0.063
0.059
0.064
0.040
0.053
0.215
0.855
0.448
0.174
0.198
0.109
0.060
0.051
0.060
0.038
0.039
0.205
0.834
0.434
0.165
0.186
0.108
0.059
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Constant Exponential Hierarchical Independent

5NN 5NN 5NN I 1.059 1.062

Training
set size

Avera

75

Avera
A

Pair
cutoff

Table 16 The relative predictive powers for the Ag-Au data set, with no noise added, for the
five different width-generating functions as a function of training set size and candidate cluster
sets. This table may be read in the following way: In each row, the first four columns specify
the combination of training set size and candidate cluster set. The next five columns are the
average RMS prediction error for each of the different width-generating functions, expressed
relative to the minimum RMS prediction error for the row. Green cells are the minimum
values for the row, and blue cells are within 3% of the minimum. Red cells are the worst value
for the row, as long as the worst value is not within 3% of the minimum. The final column
gives the value, relative to the data standard deviation, of the minimum RMS prediction error
for the row.

Triple
cutoff

Qu
cut,

ad
off Cluster

selection

6NN None None

6NN 5NN None

6NN 6NN 6NN 1.796 1.667

tge for training set of 60
NN None None
3NN 3NN 3NN
4NN None None
4NN 3NN None
4NN 4NN 4NN 1.034
5NN 4NN None
5NN 5NN 5NN
6NN None None
6NN 5NN None
6NN 6NN 6NN 1.866 1.043 1.347

ge for training set of 75
verage over all trials 1.072 1.114

RMll peition error rlaltie to roxN l unln
I

Minimum
RMS

prediction
error /

data
standard
deviation

0.046
0.059
0.037
0.034
0.197
0.819
0.428
0.159
0.184
0.109
0.057
0.041
0.059
0.036
0.032

0.194
0.210

I



Quad
cutoff Cluster

selection Constant Exponential Hierarchical Independent

NN None None

3NN 3NNN N Nn 1.034 1.038
4NN None None
4NN 3NN None
4NN 4NN 4NN 2.079 1.057 1.842
5NN 4NN None 1.067 1.036 1.041
5NN 5NN 5NN 1.985 1.773 2.229
6NN None None
6NN 5NN None 1.456 1.434 1.037
6NN 6NN 6NN 1.650 1.519 2.472

ae for training set of 15 1.242 1.084 1.264
NN None None
3NN 3NN 3NN

4NN None None
4NN 3NN None
4NN 4NN 4NN 1.095 1.075
5NN 4NN None
5NN 5NN 5NN 2.404 1.916
6NN None None
6NN 5NN None 1.044
6NN 6NN 6NN 2.797 1.037 2.129

age for training set of 30 1.222 1.141
NN None None
3NN 3NN 3NN
4NN None None
4NN 3NN None
4NN 4NN 4NN 1.037 1.036
5NN 4NN None
5NN 5NN 5NN 1.545 1.044 1.678
6NN None None
6NN 5NN None
6NN 6NN 6NN 2.519 1.639

age for training set of 45 1.155 1.086

NN None None
3NN 3NN 3NN
4NN None None
4NN 3NN None
4NN 4NN 4NN
5NN 4NN None
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Pair
cutoff

Triple
cutoff

Training
set size

Aver

Aver
60

II~bd mnrmS pcditio cror -cltiýe t ro miimuI Minimum
RMS

prediction
error /

data
standard
deviation

0.988
0.513
0.271
0.323
0.289
0.220
0.227
0.201
0.203
0.216

0.350

0.904
0.484
0.267
0.303
0.243
0.194
0.202

0.190

0.191

0.210

0.320

0.883
0.473
0.250
0.279
0.219
0.190
0.190
0.189
0.187
0.189
0.306
0.855
0.457
0.242

0.263
0.217
0.188

Aver
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Training
set size

Avera

Avera
A

Pair
cutoff

Triple
cutoff

Qu:
cut(

ad
)ff Cluster

selection
Constant Exponential Hierarchical Independent

5NN 5NN 5NN 1.186 1.268
6NN None None
6NN 5NN None
66N N N 6NN 2.400 1.571

Lge for training set of 60 1.113 1.054
NN None None
3NN 3NN 3NN
4NN None None
4NN 3NN None
4NN 4NN 4NN
5NN 4NN None
5NN 5NN 5NN 1.079 1.138
6NN None None

6NN 5NN None

6NN 6NN 6NN 2.119 1.465

Ige for training set of 75 1.085 1.038
verage over all trials 1.177 1.122

Table 17 The relative predictive powers for the Ag-Au data set, with noise added, for the
five different width-generating functions as a function of training set size and candidate cluster
sets. This table may be read in the following way: In each row, the first four columns specify
the combination of training set size and candidate cluster set. The next five columns are the
average RMS prediction error for each of the different width-generating functions, expressed
relative to the minimum RMS prediction error for the row. Green cells are the minimum
values for the row, and blue cells are within 3% of the minimum. Red cells are the worst value
for the row, as long as the worst value is not within 3% of the minimum. The final column
gives the value, relative to the data standard deviation, of the minimum RMS prediction error
for the row.

I~ bo~Rl R Spectoero caietrN iiiitii ISI I
Minimum

RMS
prediction

error /
data

standard
deviation

0.188
0.189
0.183
0.186
0.298
0.837
0.453
0.239
0.259
0.216
0.185
0.185
0.187
0.180
0.184
0.293
0.313



Pair
cutoff

Triple
cutoff

Quad
cutoff Cluster

selection
Constant

NN None None
3NN 3NN 3NN 1.054 1.047
4NN None None 1.058
4NN 3NN None 1.036

4NN 4NN 4NN 1.051 1.489 2.290
5NN 4NN None 1.032 1.055 1.163
5NN 5NN 5NN 1.879 1.259 2.467
6NN None None 1.049 1.075
6NN 5NN None 1.649 1.062 1.519
6NN 6NNNN N 1.498 1.232 2.537

ge for training set of 15 1.113 1.031 1.367

NN None None
3NN 3NN 3NN
4NN None None 1.030
4NN 3NN None
4NN 4NN 4NN
5NN 4NN None
5NN 5NN 5NN 2.697 1.038 2.075
6NN None None
6NN 5NN None 1.054 1.037 1.030
6NN 6NN 6NN 2.569 3.076

age for training set of 30 1.219 1.223

NN None None
3NN 3NN 3NN
4NN None None
4NN 3NN None
4NN 4NN 4NN 1.037 1.051 1.053

5NN 4NN None
5NN 5NN 5NN 1.728 1.257

6NN None None
6NN 5NN None
6NN 6NN 6NN 2.522 1.042 2.595

age for training set of 45 1.133 1.116

NN None None
3NN 3NN 3NN
4NN None None
4NN 3NN None
4NN 4NN 4NN 1.051 1.033

5NN 4NN None
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Exponential Hierarchical

Minimum
RMS

prediction
ependent error/
ependent data

standard
deviation

Training
set size

30

Aver

Aver
60

0.558
0.323
0.392
0.247
0.266
0.188
0.275
0.376
0.264
0.259
0.334
0.519

0.302

0.352

0.221
0.197

0.176

0.172

0.351
0.180
0.179
0.266
0.508
0.297
0.330
0.219
0.160
0.176
0.154
0.333
0.173
0.147
0.251
0.489
0.290
0.325
0.217
0.151
0.175
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Training
set size

Aver:

Pair
cutoff

Triple
cutoff

Quad
cutoff Cluster

selection
Constant Exponential Hierarchical Independent

5NN 5NN 5NN 1.113 1.125
6NN None None

6NN 5NN None
6NN 6NN 6NN 2.064 1.454

qe for training set of 60 1.061 1.036
NN None None
3NN 3NN 3NN
4NN None None
4NN 3NN None
4NN 4NN 4NN
5NN 4NN None
5NN 5NN 5NN 1.055 1.079
6NN None None

6NN 5NN None

6NN 6NN 6NN 1.852 1.219
age for training set of 75 1.047

Lverage over all trials 1.117 1.169

Minimum
RMS

prediction
error /
data

standard
A i ti

0.148
0.312
0.176
0.136

0.244
0.480
0.282
0.312
0.213
0.150
0.174
0.139
0.310
0.174
0.128
0.237
0.266

Table 18 The relative predictive powers for the Pb-Ir data set, with no noise added, for the
five different width-generating functions as a function of training set size and candidate cluster
sets. This table may be read in the following way: In each row, the first four columns specify
the combination of training set size and candidate cluster set. The next five columns are the
average RMS prediction error for each of the different width-generating functions, expressed
relative to the minimum RMS prediction error for the row. Green cells are the minimum
values for the row, and blue cells are within 3% of the minimum. Red cells are the worst value
for the row, as long as the worst value is not within 3% of the minimum. The final column
gives the value, relative to the data standard deviation, of the minimum RMS prediction error
for the row.
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Constant Exponential Hierarchical

EM7Minimum
RMS

prediction
error /

Independent 
erdarta

standard
deviatinn

NN None None
3NN 3NN 3NN 1.055 1.048

4NN None None 1.057

4NN 3NN None 1.037

4NN 4NN 4NN 1.266 1.377 2.283

5NN 4NN None 1.030 1.055 1.155

5NN 5NN 5NN 1.615 1.254 2.490

6NN None None 1.050 1.075

6NN 5NN None 1.338 1.070 1.524

6NN 6NN 6NN 2.059 1.221 2.488

age for training set of 15 1.137 1.372

NN None None
3NN 3NN 3NN
4NN None None 1.030

4NN 3NN None

4NN 4NN 4NN

5NN 4NN None

5NN 5NN 5NN 2.636 2.092

6NN None None

6NN 5NN None 1.050 1.038 1.030

6NN 6NN 6NN 2.193 3.082

age for training set of 30 1.191 1.225

NN None None

3NN 3NN 3NN

4NN None None

4NN 3NN None

4NN 4NN 4NN 1.050 1.055

5NN 4NN None

5NN 5NN 5NN 1.459 1.2736NN None None
6NN 5NN None

6NN 6NN 6NN 1.905 2.334

age for training set of 45 1.079 1.102

NN None None

3NN 3NN 3NN

4NN None None

4NN 3NN None

4NN 4NN 4NN 1.054 1.035

5NN 4NN None

0.559

0.323

0.393

0.247

0.267

0.189

0.276

0.376

0.262

0.262

0.333

0.519

0.302

0.353

0.221

0.197

0.177

0.173

0.350

0.180

0.180

0.266

0.508

0.297

0.330

0.219

0.160

0.176

0.154

0.333

0.173

0.148

0.252

0.489

0.290

0.325

0.217

0.151

0.175
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RM pe ic oi Ir-o real' oIOx 1 ii

Constant Exponential Hierarchical

Minimum
RMS

prediction
error /

Independent data

standard
rlviatinn

5NN 5NN 5NN 1.103 1.120
6NN None None

6NN 5NN None

6NN 6NN 6NN 1.834 1.430

age for training set of 60 1.047 1.035
NN None None
3NN 3NN 3NN
4NN None None
4NN 3NN None
4NN 4NN 4NN
5NN 4NN None
5NN 5NN 5NN 1.053 1.081
6NN None None

6NN 5NN None

6NN 6NN I 6NN 1.746 1.273

age for training set of 75 1.042
.verage over all trials 1.103 1.168

0.148
0.312
0.176
0.136
0.244
0.480
0.282
0.313
0.213
0.150
0.174
0.140
0.310
0.174
0.128
0.237
0.266

Table 19 The relative predictive powers for the Pb-Ir data set, with noise added, for the five
different width-generating functions as a function of training set size and candidate cluster
sets. This table may be read in the following way: In each row, the first four columns specify
the combination of training set size and candidate cluster set. The next five columns are the
average RMS prediction error for each of the different width-generating functions, expressed
relative to the minimum RMS prediction error for the row. Green cells are the minimum
values for the row, and blue cells are within 3% of the minimum. Red cells are the worst value
for the row, as long as the worst value is not within 3% of the minimum. The final column
gives the value, relative to the data standard deviation, of the minimum RMS prediction error
for the row.

Pair
cutoff

Triple
cutoff

Quad
cutoff Cluster

selection

Training
set size

75

Avera
A

Aver



Pair
cutoff

Triple
cutoff

Quad
cutoff Cluster

selection

p
I

Constant Exponential Hierarchical Independent

NN None None

3NN 3NN 3NN 1.065 1.106 1.084

4NN None None

4NN 3NN None

4NN 4NN 4NN 1.206 1.071

5NN 4NN None

5NN 5NN 5NN 1.292 1.116

6NN None None

6NN 5NN None 1.051 1.044 1.064

6NN 6NN 6NN 1.259 1.186

,ge for training set of 15 1.076 1.034

NN None None

3NN 3NN 3NN

4NN None None

4NN 3NN None

4NN 4NN 4NN

5NN 4NN None

5NN 5NN 5NN 1.145

6NN None None

6NN 5NN None

6NN 6NN 6NN 1.588 1.042 1.224

age for training set of 30 1.047

NN None None
3NN 3NN 3NN

4NN None None

4NN I 3NN None

4NN 4NN 4NN 1.036 1.062

5NN 4NN None

5NN 5NN 5NN 1.056

6NN None None

6NN 5NN None

6NN 6NN 6NN 1.227 1.053 1.102

age for training set of 45

NN None None
3NN 3NN 3NN
4NN None None
4NN 3NN None
4NN 4NN 4NN 1.0435NN 4NN None
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Training
set size

Avers

Aver
60

I RMS predictnlnori error rlaiv t ro mmi"Ili Minirnum
RMS

rediction
error /

data
standard
deviation

0.874
0.645

0.579

0.572

0.589
0.470

0.469

0.475
0.472

0.459

0.568

0.921

0.703

0.576

0.570

0.525

0.477

0.431

0.486

0.445

0.447

0.562

0.900

0.692
0.569

0.570

0.491

0.481

0.395

0.472

0.434
0.456

0.553

0.918
0.702
0.565

0.564
0.476
0.467

Avera
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Training
set size

Avera
A

Pair
cutoff

Triple
cutoff

Quad
cutoff Cluster

selection Constant Exponential Hierarchical Independent

5NN 5NN 5NN 1.048
6NN None None
6NN 5NN None
6NN 6NN 6NN 1.042

age for training set of 60
NN None None
3NN 3NN 3NN
4NN None None
4NN 3NN None
4NN 4NN 4NN 1.038
5NN 4NN None
5NN 5NN 5NN
6NN None None
6NN 5NN None
6NN 6NN 6NN

age for training set of 75

.verage over all trials

Table 20 The relative predictive powers for the Si-Ge data set, with noise added, for the five
different width-generating functions as a function of training set size and candidate cluster
sets. This table may be read in the following way: In each row, the first four columns specify
the combination of training set size and candidate cluster set. The next five columns are the
average RMS prediction error for each of the different width-generating functions, expressed
relative to the minimum RMS prediction error for the row. Green cells are the minimum
values for the row, and blue cells are within 3% of the minimum. Red cells are the worst value
for the row, as long as the worst value is not within 3% of the minimum. The final column
gives the value, relative to the data standard deviation, of the minimum RMS prediction error
for the row.

IR icm, tisoii error clmtinet rN11m11111l1111I Mlinimum
RMS

prediction
error /

data
standard
deviation

0.374
0.474
0.443
0.402
0.540
0.927
0.721
0.566
0.562
0.456
0.465
0.369
0.480
0.444
0.364
0.537

0.554

Avera



Pair
cutoff

Triple
cutoff

RMS. pred.ctt eglrro ,torwmrI

Quad
cutoff Cluster

selection Constant Exponential Hierarchical Independent

INN None None
3NN 3NN 3NN 1.032 1.055 1.058

4NN None None
4NN 3NN None
4NN 4NN 4NN 1.136 1.211
5NN 4NN None
5NN 5NN 5NN 1.087 1.197
6NN None None
6NN 5NN None 1.142 1.154
6NN 6NN 6NN 1.110 1.246

ge for training set of 15 1.040 1.082

NN None None
3NN 3NN 3NN
4NN None None
4NN 3NN None
4NN 4NN 4NN
5NN 4NN None

5NN 5NN 5NN 1.240 1.115
6NN None None
6NN 5NN None 1.036 1.034

6NN 6NN 6NN 1.162 1.413

age for training set of 30 1.033 1.073

NN None None
3NN 3NN 3NN
4NN None None
4NN I 3NN None
4NN 4NN 4NN
5NN 4NN None
5NN 5NN 5NN 1.048 1.053

6NN None None

6NN 5NN None
6NN 6NN 6NN 1.298 1.159

age for training set of 45 1.039
NN None None
3NN 3NN 3NN
4NN None None
4NN 3NN None
4NN 4NN 4NN
5NN 4NN None
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Training
set size

15

Avera

Aver:
60

i Ii
Minimum

RMS
prediction

error /
data

standard
deviation

1.080
0.895
0.859
0.835
0.875

0.795
0.859
0.859
0.849
0.883
0.887

1.082
0.940
0.836
0.820
0.829
0.812
0.755
0.798
0.805
0.807

0.850
1.029

0.921

0.825

0.817

0.822

0.807
0.750
0.769

0.775

0.791
0.831

1.033
0.928
0.819
0.806
0.810

0.792

Aver
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Minimum
RMS

Training Pair Triple Quad prediction

set size cutoff cutoff cutoff Cluster Constant Exponential Hierarchical Independent error /
selection data

standard
deviation

5NN 5NN 5NN 0.746
6NN None None 0.762
6NN 5NN None 0.763
6NN 6NN 6NN 1.070 0.805

Average for training set of 60 0.827
NN None None 1.020
3NN 3NN 3NN 0.941
4NN None None 0.816
4NN 3NN None 0.806

75 4NN 4NN 4NN 0.790
5NN 4NN None 0.789
5NN 5NN 5NN 0.737
6NN None None 0.757
6NN 5NN None 0.769
6NN 6NN 6NN 1.098 1.053 1.056 0.743

Average for training set of 75 0.822

Average over all trials 1.044 0.844

Table 21 The relative predictive powers for the Si-Ge data set, with no noise added, for the
five different width-generating functions as a function of training set size and candidate cluster
sets. This table may be read in the following way: In each row, the first four columns specify
the combination of training set size and candidate cluster set. The next five columns are the
average RMS prediction error for each of the different width-generating functions, expressed
relative to the minimum RMS prediction error for the row. Green cells are the minimum
values for the row, and blue cells are within 3% of the minimum. Red cells are the worst value
for the row, as long as the worst value is not within 3% of the minimum. The final column

gives the value, relative to the data standard deviation, of the minimum RMS prediction error
for the row.
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Although the cluster selection method most frequently had the best predictive power, it

was not as consistent as the exponential and hierarchical width-generating functions (Table

22). The exponential function was particularly impressive, getting within 3% of the best

predictive power across a wide variety of cluster expansions 89% of the time.

065o0

64%
70%
70%
82%
74%

71.33%

06 o5

62%
68%
68%
84%
76%

71.00%

5 ZS7o
86%
88%
90%
84%
96%

88.67%

/I /o

96%
76%
80%
86%
96%

85.33%
76%

68.00%

Table 22 The percentage sets of candidate clusters for which the given width-generating
function produced a cluster expansion with root mean square prediction error within 3% of
the best.

The above averages somewhat understate the performance of the exponential and

hierarchical width-generating functions. The average performance of a cluster expansion

across a variety of candidate cluster sets is not as interesting as the best performance of a

cluster expansion. The average RMS prediction error for cluster expansions is plotted as a

function of candidate cluster set size in Figure 48. As the number of candidate clusters is

increased, the prediction error decreases for both the exponential and hierarchical width-

generating functions, with the exception for a slight up tick in the Si-Ge data set. On the

other hand, the RMS prediction error increases past a certain point for cluster expansions

based on cluster selection and the constant and independent width-generating functions.

For the largest candidate cluster size, which in theory should be capable of generating the

best cluster expansions, the hierarchical and exponential width-generating functions are

significantly better than the others in all data sets.

70%
56%
56%
82%
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Figure 48 A comparison of the average root mean square prediction error and the leave-one-
out cross-validation score for four different sets of candidate clusters. All values are
normalized relative do the standard deviation of the data. Each column on the bottom of the
chart represents a set of candidate clusters and indicates, from top to bottom, the maximum
distance between sites in a two-point cluster, a three point cluster, and a four point cluster,
and the number of total candidate clusters. The data sets are (a) Ag-Au, (b) Pb-Ir, (c) Si-Ge.

It might seem that the sensible thing to do is find the candidate cluster set with the

lowest cross-validation score, and use that set. This approach is problematic for cluster

selection and the independent width-generating function, because the cross-validation score

decreases with increasing candidate cluster set size, even as the actual prediction error is

increasing. There is no way, based on the cross-validation score, to determine the optimal

set of candidate clusters. If an overly small or overly large set is used, a cluster expansion

with poor predictive power will be produced. The cross-validation score is more useful for

cluster expansions based on the constant width-generating function. Although the score

tends to overestimate the prediction error, it is a reasonable indicator of the trend in

prediction error.

The problem with the cross-validation score for cluster selection and the independent

width-generating function is illustrated in Figure 49, in which the average ratio between the
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root mean square prediction error and the cross-validation score is plotted. For the three

width-generating functions with five or fewer independent parameters, the cross-validation

score is a reliable indicator of the prediction error. For the remaining two, the cross

validation score tends to significantly underestimate the actual prediction error, especially for

situations in which there are many candidate clusters. It should be noted that this problem is

not isolated to the leave-one-out cross-validation score; the generalized cross-validation

score shows similar behavior. Overall the generalized cross-validation score performed

similarly to leave-one-out cross-validation (Figure 50).

l uuuu

1000

100

10

1

0.1

m Average of RMS predictive error /
LOO CV Score

U Average of RMS predictive error /
GCV score

Figure 49 The average ratio between the root mean square prediction error and the leave-
one-out cross-validation (LOO CV) and generalized cross-validation (GCV) scores. The scale
is logarithmic.
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Figure 50 The average root mean square prediction error for cluster expansions in which the
parameters are chosen to minimize the leave-one-out cross-validation (LOO CV) or
generalized cross-validation (GCV) scores.

The problem of choosing the optimal number of candidate clusters is not very

important for the independent width-generating function, as the poor performance and large

computational expense of this function make it unlikely that it will ever be used. However

cluster selection is a widely used method, and it performs relatively well under the constraint

that all subclusters of every selected cluster must also be selected. Although no hard rule

exists for choosing the correct number of candidate clusters, a heuristic can be developed by

studying the behavior of the optimal number of candidate clusters as a function of training

set size. If the number of candidate clusters is large, but no larger than the number of

training structures, reasonably good results can be expected (Table 23). In general, this

heuristic tends to produce candidate sets that are a little too large.
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15 7 13 1.744 1.106
30 19 28 3.028 1.651

Ag-Au 45 19 28 2.734 1.470
60 19 53 2.693 1.214
75 19 53 2.351 1.109

15 13 13 2.383 1.000

30 13 28 2.358 1.111
Pb-Ir 45 28 28 1.988 1.000

60 28 53 1.739 1.074
75 53 53 1.569 1.000

15 12 12 1.758 1.000

30 22 15 1.476 1.071
Si-Ge 45 31 31 1.333 1.000

60 54 31 1.066 1.066

75 54 54 1.000 1.000

Table 23 A comparison of different methods for selecting the best candidate structure set for
the cluster selection method. The rightmost column represents the average RMS prediction
error for candidate sets selected by using the heuristic that the largest set smaller than the
training set was chosen. The errors are expressed relative to the error for the best candidate
set.

111.4.4.6. Discussion

The cross-validation scores are reasonably successful in estimating the predictive power

of cluster expansions generated using the exponential, hierarchical, and constant width-

generating functions. These functions also have the fewest number of parameters to be

determined. On the other hand, for cluster selection and the independent width-generating

function, which have as many parameters as there are candidate cluster orbits, the cross-

validation scores become poor predictors of the predictive power of the cluster expansion as

the number of parameters increases. This leads to a situation in which improving the cross-

validation score does not necessarily improve the predictive power of the cluster expansion,

and cluster expansions with poor predictive power are selected. These data suggest that the

correlation between the predictive power and the cross-validation score is best maintained

when there are few parameters in the width-generating function. This is consistent with the

I r 1, t I RMS

ILI, I % -,A I\
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idea of over fitting the cross-validation score: the more degrees of freedom are allowed, the

more likely over fitting becomes. For this reason, it is suggested that width-generating

functions with few parameters should be preferred.

The constant width-generating function has the fewest parameters, but it performs

poorly for the cluster expansions evaluated. The reason it performs poorly is not likely due

to a problem with the cross-validation scores; the scores predict its poor performance. The

constant width-generating function represents a prior distribution that is inconsistent with

the physical expectation for these systems. The physical expectation is that as clusters

increase in size, their ECI are expected to approach zero. This expectation is captured in

both the hierarchical and exponential width-generating functions, which perform

significantly better than the constant width-generating function. The expectation is also

captured, in a different way, in the cluster selection method as long as the constraint is

imposed that every subcluster of a selected cluster must also be selected. If this constraint is

turned off, the RMS prediction error for the cluster-selection method increases on average

by 45%, 44%, and 5% for the Ag-Au, Pb-Ir, and Si-Ge data sets respectively.

Based on the tests in this section, the hierarchical and exponential width-generating

functions have the following advantages over traditional cluster selection methods:

* They more frequently produce cluster expansions with very good predictive

power.

* The cross-validation scores for these methods are more reliable indicators of the

true predictive power.

* They tend to get better (or at least not get much worse) as the number of

candidate clusters is increased.

* They produce more consistently good cluster expansions from small training

sets.

* Model selection by searching for a low cross-validation score involves a search

over an approximately five-dimensional continuous space, as opposed to a

search over a binary space of as many dimensions as there are candidate clusters.
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Although the exponential and hierarchical width-generating functions have been

successful for the data sets tested, other width-generating functions may be more successful

for other data sets. The better the prior distribution represents the true values, the better the

cluster expansion should converge. The results in this thesis suggest a recipe for a generally

good cluster expansion:

1. Use the Gaussian prior, or iterated Gaussian prior if the number of non-zero

ECI is a concern.

2. Select a width-generating function that penalizes large clusters and has few

parameters. Functions similar to the exponential or hierarchical functions might

work well. A possible advantage to the hierarchical width-generating function is

that in the tests in this thesis, it converged much more quickly to a local

minimum than the exponential function.

3. Use the generalized cross-validation score instead of the leave-one-out cross-

validation score for improved speed.

4. Select a reasonably large number of candidate clusters.

5. Weighting the training structures may or may not help.

6. Decide whether to apply the prior to correlation coefficients or ECI.

7. Select a reasonable initial guess for the parameters for your width-generating

function. You may want to try several different guesses to see how the cross-

validation scores change.

8. Use a local minimization algorithm to find a set of parameters that produces a

low cross-validation score.

The combination of the Gaussian prior, the hierarchical width-generating function, and

the generalized cross-validation score may be the fastest way to generate cluster expansions

with consistently good predictive power.

One of the advantages of using the Gaussian prior and a simple width-generating

function is that the mathematics of fitting the cluster expansion are relatively straightforward

to implement. Nonetheless, considering the historical popularity of cluster selection, it can

be expected that this method will continue to be used. If it is used, it is strongly
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recommended that the clusters are selected with a constraint that forces all subclusters of

selected clusters to also be selected, and that the set of candidate clusters is smaller than the

number of training structures. It is recommended that the generalized cross-validation score

is used instead of the leave-one-out cross-validation score, as the generalized cross-validation

score is faster and produces results that are approximately the same on average.
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111.5. Further Considerations

This chapter has provided a basic foundation for the application of Bayesian learning to

the problem of potential fitting, with a specific focus on cluster expansions. With the

fundamentals of this method in place, it is worth exploring some other potential benefits of

the Bayesian approach.

111.5.1. The posterior distribution

The key to the Bayesian approach for building a cluster expansion is that the fit cluster

expansion is chosen to be the maximum of the posterior distribution. Other properties of

the posterior distribution, such as its shape and width, have been for the most part ignored

in this chapter. (The discussions of the variance of the ECI and prediction errors touched

upon these properties indirectly.) There is potentially valuable information in these

properties. For example, the posterior distribution can be used to calculate confidence

intervals for predictions made by the cluster expansion. Indirectly, it can be used to calculate

confidence intervals on material properties as well.

It is often the case that the maximum of the posterior distribution is also its mean. For

this reason, there may be little additional value in calculating the "average" cluster expansion.

However, many material properties are non-linear functions of cluster-expanded values. For

example, imagine there is a material property A that is the function of the output vector

Ytest over the entire test domain.

A = A(Ytest )= A(V(X,,test)) Equation 178

The average value for A can be written as an average over the posterior distribution of

ýtest :

(A)= JP(V(-))A(V(X,,te))V(-) Equation 179

where the integral is over all possible functions V(.) and P(V(.)) is the posterior distribution

over functions. In the cluster expansion, a given function V(.) is represented by the vector

V, and Equation 179 becomes
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(A) = P()A(XtestV) V Equation 180

Unless A(Ue,) is a linear function (which it generally is not), it is worth noting that in

general

(A) A ([P(V)XtestPdP ) Equation 181

For the calculation of the average, or even most likely, values of non-linear properties it

may be best to calculated the distribution in the values of the property from the posterior

distribution of cluster expansions.

111.5.2. Continuous potential energy surfaces

The focus of this chapter has been on the discrete cluster expansion potential model

because it is both useful and relatively simple to analyze. However much of the theory

developed in this chapter also applies to potential energy functions defined over a

continuous domain of position variables. The mean for the prior distribution for such

functions might be empirically derived potential functions, such as the embedded atom

potential. This would reduce the problem to that of learning the difference between the

actual potential energy surface and the empirical potential function. The norm of this

difference is a natural regularization term. Kernel-based methods could then be employed to

find the maximum of the posterior distribution. With this general approach, the Bayesian

method may be of similar benefit to the development of continuous potential functions as it

is to the cluster expansion. Further development and evaluation of this approach is beyond

the scope of this thesis.

111.5.3. Applying the Bayesian cluster expansion to surfaces

The cluster expansion tends to work best when applied to systems with high symmetry,

such as crystals with infinite periodicity in all directions.7 Because of symmetry only the ECI

for orbits of symmetrically equivalent cluster functions, rather than the ECI for every cluster

function individually, need to be determined. There are many situations, however, in which

7 Of course, no crystal is truly infinite. However, when determining the properties of a bulk material, the
surface is usually assumed to be so far away relative to the distance between atoms that it has a negligible effect
on the local physics. In this situation, infinite periodicity is a safe and usually highly accurate approximation.
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symmetry is broken, significantly increasing the number of ECI that need to be determined.

For example, the region of interest for a particular material might be the material surface. At

the surface, it is typically only safe to assume infinite periodicity in the directions parallel to

the surface. This greatly complicates the cluster expansion, as atoms on the surface need to

be treated differently from atoms one layer from the surface, which are different from atoms

two layers from the surface, etc. A similar problem arises when studying nanowires and

nanoparticles.

A common approximation in these situations is as follows: beyond a certain distance

from the surface, atoms are approximately symmetrically equivalent. For example, it might

be safe to approximate that an atom n layers from the surface is equivalent to an atom n +1

layers from the surface if n =10. The smaller n, the fewer unique cluster orbits there are,

and the easier it is to fit the cluster expansion. There is a trade-off between making n small

to reduce the computational cost, and making n large to increase the accuracy of the cluster

expansion.

In this problem there is a prior expectation that the further an atom is from the surface,

the more it will resemble an atom in the bulk. Phrased this way, surfaces seem to be natural

candidates for a Bayesian treatment. The key, as always, is how to express the prior

expectation in a way that is both realistic and allows for efficient estimation of the ECI.

To construct a prior for a surface, it is necessary to find a way to directly translate

physical intuition into a probability distribution. The expected absolute difference between

the ECI for a given cluster function and the ECI for the same cluster function in the bulk

limit should decrease as a function of the distance from the surface. If a Gaussian

distribution is assumed, the following expression can be written:

V N(VBk, 0a2 ('1)) Equation 182

where KV is the ECI for some cluster labeled j, VKu k is the ECI for an equivalent cluster

in the bulk limit, and rS is some measure of the distance between cluster j and the surface.

N(ViB,02 (ri)) is a normal distribution with mean VYBuk and variance, 0 2 , which is a

function of r-. It would be expected that 02 (r-) - 0 as - o 00.
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Now consider another cluster function that is symmetrically distinct from cluster

function j due to the presence of the surface, but is symmetrically equivalent in the bulk

limit. Label this cluster function i . The counterpart to Equation 182 is

V NVBulk O2(r)) Equation 183

where V, Bulk V=,Bulk • Combining Equation 182 with Equation 183, and using the known

properties of the normal distribution, results in:

-R N (, 2 ~ a2(r) 2 (r) Equation 184

Equation 184 says that for any two cluster functions that are equivalent in the bulk, the

difference between their ECI should get smaller (approaching zero) the farther they are from

the surface. An advantage to Equation 184 is that V7Bulk has disappeared, leaving o2(r) as

the only unknown. Equation 184 should begin to look familiar. If it is added to the

Gaussian prior distribution for the ECI (Equation 70), the new prior becomes:

P(VA(.)= Vopt (.)- V (.)) c e 2 2  4 e4 2 2r r  2(r

]keJa,,,
Equation 185

where Jbulk is the set of all cluster functions that would be symmetrically equivalent to j in

the bulk.

The minimization problem in Equation 71 becomes

VBayes() Vp(.)+ argmin Equation 186

- i 07 Vi

+ V 2 V - V
2 7_2 2 + U2

2 4 J k"jEjhk u'2(r,•)- -
" (r•)

Equation 186 can be expanded to get
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L 2 J kr~a2brlk o2 +U2(r

Equation 187 can be written concisely in matrix-vector notation:

Bayes()= V, (_)+ Xargmin A - XPA W A - )+ ATA Equation
2  /188

where .A, X, W, and A are defined as earlier. The only thing that is different between

Equation 188 and Equation 74 is the definition of the matrix A. Previously, only

considered the case in which A is a diagonal matrix was considered. Now A is defined by:

A aa= 12 ,2 2 (ra)+a2

m, (for Equation 189

a - 7y, abulk = bulk

where abulk and ybulk are bulk-material equivalents to orbits a and orbit y, and ma and

mr are the multiplicities of cluster function orbits a and y respectively. The multiplicities

are necessary because Equation 189 is written in terms of correlation coefficients Pl, where

Pa = ma Va. The diagonal variance terms 0 a can be parameterized in one of the ways

discussed previously. All that remains is to develop a parameterized expression for a 2 (r).

The first step in developing an expression for a
2 (ra) is to define ra. This is a measure

of how far cluster functions in orbit a are from the surface. Using the intuition that having

even one site on the surface can significantly affect the ECI for a cluster function, let ra be

defined as the distance between the surface and the site in the cluster orbit that is nearest to

the surface. Therefore, for any clusters orbits containing sites on the surface, r, = 0.

185

Equation
187

/
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It is helpful to list some desired properties of the function a.2 (r"). As r, oo, it is

expected that 0.2 (r) --+0, due to the clusters becoming nearly indistinguishable from bulk

clusters. The function should be monotonically decreasing, and it should be capable of

having a large, distinct peak at ra = 0, where it is expected that the ECI may differ

substantially from bulk ECI. As usual, it is desirable to keep the number of parameters to a

minimum and retain a form that is invariant to length and energy scales. A simple form that

fits this description is

0.2 (r)= e - 4 r  Equation 190

where there are only two unknown positive parameters, 2. and 22.

From this point on, the problem is identical to problems that have been treated

previously in this chapter. The solution to Equation 188 is still Equation 81, and

determining the parameters for the prior distribution is still done using a model-selection

method such as minimizing a cross-validation score.

This is a mathematically simple, but powerful technique for fitting cluster expansions

for surfaces, nanoparticles, or nanowires. It is not hard to imagine developing a similar

method for cluster expansions near crystal defects. The problem of having to determine the

ECI for a large number of cluster orbits is mitigated by placing realistic soft constraints on

the ECI that reduce the effective number of degrees of freedom in the model. These

constraints are more flexible than methods that impose artificial symmetry on the problem,

as they allow ECI for slightly different cluster functions to be slightly different, but

discourage them from being very different.

III.5.3.1. Example: Si-Ge nanowire

As a simple test of the above approach, it has been applied to the calculation of the

energy for a Si-Ge (silicon-germanium) nanowire. For bulk Si-Ge, including all interactions

up to second-nearest-neighbor pairs in the cluster expansion requires four cluster orbits. For

a two nanometer wide nanowire in the <111> direction, including all interactions up to

second-nearest-neighbor pairs requires eighty-six cluster orbits. This material, with dilute

germanium composition (5-18%), is of interest in the field of thermoelectrics. Here it is

used as a test system for the above method.
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The sample data was generated as follows: using the Tersoff potential, a set of energies

were calculated for eighty-eight nanowire structures.8 The first eighteen structures in the set

are high-symmetry structures that were generated manually, and the remainder of the set was

generated automatically to minimize the expected prediction error over the composition

range of interest.

To evaluate cluster expansion methodologies on this data, one structure at a time was

drawn from the sample data and added to the training set. Cluster expansions were then

trained on this set using each of the methodologies of interest, and for each methodology

the root-mean-square (RMS) prediction error was calculated for the structures left out of the

training set. The methodologies tested are as follows:

1) Cluster selection: A Monte Carlo algorithm is used to find a subset of clusters

that gives a low leave-one-out cross-validation score. The ECI for the clusters

in this subset are determined by using a least-squares fit, and the remaining ECI

are set to zero.

2) Regularized: The ECI are determined using regularization with the

exponential prior. The parameters of the prior were determined by using

gradient descent to minimize the leave-one-out cross-validation score.

3) Regularized and coarse grained: The ECI were determined in the same way

as for the regularized fit, but the ECI for all cluster functions that would share a

common bulk orbit (jBulk) were constrained to be the same as long as the

clusters had no surface sites.

4) Regularized and coupled to the bulk: The ECI were determined by solving

Equation 188, with 0, 2 given by the exponential prior and 2(r,) = _ for

some parameter A1 . The parameters for the priors were determined by using

gradient descent to minimize the leave-one-out cross-validation score.

5) Regularized and coupled to the bulk with exponential decay: This is the

same as the previous method, but with U 2(r,) = Ale -' a.

8 Thanks to John Reed at Sandia National Laboratories for calculating these energies.
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Figure 51 The root-mean-square prediction error for cluster expansions fit using different
methods, plotted logarithmically as a function of the size of the training set.

The results for these calculations are given in Figure 51. It can be seen that cluster

selection does relatively poorly, with a few situations in which the expansion had a low leave-

out-out CV score but terrible predictive power. This is despite the fact that this

methodology was more time-consuming than any of the others. It could be argued that the

Metropolis algorithm used did not find the optimal set of clusters, but in general this is a risk

of the cluster selection technique when there is a large set of candidate clusters. It could also

be argued that the number of candidate clusters was too large, given the number of

structures included in the training set. It is possible that if the set of candidate structures

were reduced, this method would produce better results. Unfortunately it is not always clear

which clusters should be included in the set of candidate clusters. It should be noted that

despite the poor predictive power of the cluster selection technique, it generally had the

highest computational cost and produced the lowest leave-one-out cross-validation scores

(Figure 52).
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Figure 52 The ratio between the actual root-mean-square prediction error and the leave-one-
out cross-validation score for the different methods evaluated. A value of 1 would be idea.

Regularization with the exponential prior does much better. As expected, the predictive

power of the regularized fit converges much more smoothly than cluster selection as

structures are added to the training set. Still, regularization struggles with a small number of

structures.

Regularization with coarse graining does much better than straight regularization for a

small number of structures, but it appears to hit a wall and actually ends up doing worse than

cluster selection for a large number of structures. This is likely because of the constraint that

all non-surface clusters of the same type must have the same ECI. This constraint is overly

restrictive, and there is no value for the common ECI that can make up for the fact that the

"true" ECI should be slightly different from each other.

The best methods are the two in which there is regularization with a coupling between

clusters as described above. Both methods return similar results, regardless of the form used

for o2 (ra). This is somewhat surprising, but it may be due to the fact that for this

particular system, in which there are not many layers, there ends up being little practical

difference between the methods. These methods tend to capture the best of both worlds:

for a small number of structures, they perform about as well as coarse-graining, beating the

other two methods by nearly an order of magnitude. For a large number of structures they

1000
0

S 100
SL

a.
Co

1o

o 0.1
0
0

-IN.
~



190

perform as well as regularization, beating cluster selection and coarse graining by nearly an

order of magnitude.

The best techniques have difficulty improving significantly after about forty structures

are added to the training set. This could be due to inherent noise in the training data, or due

to multi-body interactions that cannot be captured by a cluster expansion that only goes up

to next-nearest-neighbor pairs.

It is interesting to observe that all techniques appear to get significantly better after

about 20 structures are added to the training set. This is the point at which the machine-

generated structures start to be included. A likely explanation is that the manually created

structures insufficiently sampled some regions of phase space, and the variance-reduction

algorithm recognized this and filled these regions in with the structures near structure #20.

As these regions filled in, the predictive power of all methodologies significantly improved.

It is encouraging that the results are generally consistent with what would be expected.

The Bayesian approach should enable faster and more accurate generation of cluster

expansions for surfaces, nanowires, and nanoparticles. A similar approach may also work

well for certain types of crystal defects.
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