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ABSTRACT

Computational methods, including density functional theory and the cluster expansion
formalism, are used to study materials for hydrogen storage.

The storage of molecular hydrogen in the metal-organic framework with formula unit
Zn,0(0,C-CH(-CO,); is considered. It is predicted that hydrogen adsorbs at five sites near
the metal-oxide cluster, in good agreement with recent experimental data. It is also shown
that the metal-oxide cluster affects the electronic structure of the organic linker, qualitatively
affecting the way in which hydrogen binds to the linker.

Lithium imide (Li,NH), a material present in several systems being considered for
atomic hydrogen storage, is extensively investigated. A variation of the cluster expansion
formalism that accounts for continuous bond otientations is developed to search for the
ground state structure of this material, and a structure with a calculated energy lower than
any known is found. Two additional discrete cluster expansions are used to predict that the
experimentally observed phase of lithium imide is metastable at temperatures below
approximately 200 K and stabilized primarily by vibrational entropy at higher temperatures.
A new structure for this low-temperature phase that agrees well with expetimental data is
proposed.

A method to improve the predictive power of cluster expansions through the
application of statistical learning theory is developed, as are related algorithms. The Bayesian
approach to regularization is used to show that by taking advantage of the prior expectation
that cluster expansions are local, the convergence and prediction properties of cluster
expansions can be significantly improved. A variety of methods to generate cluster
expansions are evaluated on three different binary systems. It is suggested that a2 good
method to generate cluster expansions is to use a ptior distribution that penalizes the ECI
for larger clusters more and has few parameters. It is shown that the generalized cross-
validation score can be an efficient and effective substitute for the leave-one-out cross-
validation score when searching for a good set of parameters for the prior disttibution.
Finally it is shown that the Bayesian approach can also be used to improve the convergence
and prediction properties of cluster expansions for surfaces, nanowires, nanopatticles, and
certain defects.

Thesis advisor: Gerbrand Ceder
Title: R. P. Simmons Professor of Computational Materials Science
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1.3. Introduction

This thesis has been divided into four chapters. The first chapter contains an ovetview
of the thesis, and the last is a list of teferences. The middle two chapters contain the bulk of
the research. In this introduction, I will briefly, and informally, provide the story behind the
research in these middle chapters.

The second chaptet is an exploration of materials for hydrogen storage, with a focus on
mobile fuel-cell applications. This is a pressing problem that remains one of the key
obstacles that must be ovetcome for the commercialization of mobile fuel-cell technology.
Based on initial repotts of positive experimental results, the storage of molecular hydrogen
in nanoporous metal-organic frameworks was investigated. Later experiments showed that
these materials do not have as much promise for hydrogen storage as initially thought, which
is consistent with the calculations in this thesis.

Subsequently the focus of my research shifted to atomic hydrogen storage in systems
based on lithium, nitrogen, and hydrogen (Li-N-H). A glaring problem in the study of Li-N-
H-based systems is the fact that the structure of a key material, lithium imide (Li,NH), was
unknown. Numerous attempts to identify the structure of this material have all arrived at
different conclusions. In the end, I found two new structural phases for this material: one
that is a likely candidate for the ground state at OK, and another that is expected to be
entropically stabilized at room temperature and metastable at lower temperatures. These
results resolve discrepancies between calculations and experiments in previous studies and
should help researchers better model hydrogen storage systems that contain lithium imide.

The cluster expansion methodology was repeatedly useful in the study of lithium imide.
Cluster expansions have been used to successfully address a variety of materials science
problems, but it is difficult to parameterize cluster expansions that have a large number of
degrees of freedom. This is essentially a problem in function learning, a mathematical
problem that has been studied in depth in the field of statistical learning theory. In an
attempt to improve the parameterization of cluster expansions, I applied some of the general
concepts in statistical learning theory to develop new methods for building cluster
expansions. Because these methods are relatively unproven, I evaluated them on several sets

of test data. The insights provided by statistical learning theory proved useful, as the new
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methods repeatedly outperformed more traditional methods of building cluster expansions.
A bonus is that the new methods are fairly easy to implement. Although many of the new
methods presented in this thesis were developed in the context of the study of lithium imide,

I am hopeful that researchers find them useful for other problems in materials science.
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II.1. Background and motivation

As the global demand for hydrocarbon-based fuels rises and the supply of natural
hydrocarbons falls, there has been a growing effort to develop alternatives to traditional
power sources. Fuel cells, in which fuel is electrochemically converted into electricity, have
emerged as leading contenders due to their high theoretical efficiency, low pollution relative
to combustion technologies, and quiet operation. A large number of fuel cell systems have
been developed based on a variety of fuels, electrodes, electrolytes, and operating
environments. It is beyond the scope of this thesis to review these systems, but the cutious
reader can find thorough reviews in references [1-4].

A potential application of fuel cell technology is in the transportation sectot, where
cleaner, quieter, and more efficient alternatives to traditional internal combustion engines are
sought [2-4]. If fuel cells are to be used for transportation (“on board” fuel cells) they will
need to meet challenging technical requirements, including but not limited to the following
[5]:

e High power density
e Shortt refueling time
e Long lifetime
®  Quick startup

Based on these requirements, fuel cells that use proton exchange membrane (PEM)
electrolytes are thought to be well suited for use in transportation [1-4]. PEM fuel cells
operate at temperatures of about 80 °C, but no higher than approximately 100 °C, so they
can be quickly started in normal atmospheric conditions. At the anode of a PEM fuel cell
hydrogen is separated into protons and electrons. The electrons travel through an electrical
circuit to the cathode, and protons diffuse to the cathode through a polymer membrane. At
the cathode, the protons and electrons are typically combined with oxygen from the
atmosphere to form water, which is the only waste product if pure hydrogen is used as a fuel
[1-3]. For a PEM fuel cell to function, the fuel must contain hydrogen atoms to provide the

required protons.
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Before PEM fuel cells can be considered a viable alternative to combustion engines
there are several technical challenges that must be overcome. One of the most significant of
these challenges is the development of a means of storing hydrogen for use in these fuel
cells. At atmospheric pressure, pure hydrogen is a gas above 21 K. If hydrogen is to be
stored as a fuel for on-board fuel cells, it must be physically and/or chemically compressed.
This storage system will add weight and cost to the overall fuel cell, making the choice of
storage system critical for the overall fuel cell efficiency. In the following section, the

current state of hydrogen storage research will be summarized.

I1.1.1. Department of Energy targets

The United States Department of Energy (DOE) has set forth technical tatgets for on-

board hydrogen storage [5]. Some of the key targets are as follows:

Target Year 2007 2010 2015
Gravimetric density (Usable H,
weight as a percentage of total 4.5% 6% 9%
storage system weight)
Volumetric capacity (kg usable H, 0.036 0.045 0.081
per liter of system volume) ) ' )
Operating ambient temperature 20 to 50 30 to 50 40 to 60
range (°C)
H, delivery temperiture from tank 20 to 85 30 to 85 40 1o 85
range (°C)
System fill time for 5 kg H, 10 3 25
(minutes) '
Cost ($US / kg usable H,) 200 133 67

Table 1 Some of the technical targets for on-board hydrogen storage set by the U.S.
Department of Energy

It is important to recognize that these are system targets, not material targets. It is
estimated that depending on the final system, the hydrogen storage material capacities

should be 1.2-2.0 times the given system target capacities [6].
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I1.1.2. Potential hydrogen storage systems

To meet the DOE targets, researchers are investigating a wide variety of hydrogen
storage methods. These different approaches will be briefly discussed here, and a more

thorough discussion of the alternatives can be found in referenced review articles [7-10].

I1.1.2.1. Compressed and cooled hydrogen

The hydrogen could be stored as pure liquid H,, but it is difficult to maintain hydrogen
in its liquid form without boil off, and there is typically a 30% energy loss duting to the
cooling process [2, 9]. Alternatively, hydrogen could be stored in compressed tanks, but
current solutions are expensive [8] and unable to achieve the DOE 2010 goals for volumetric
storage capacity [2, 9]. This is not surprising, considering the 2010 target for volumetric
density is 64% the density of liquid hydrogen at its condensation temperature and 1 atm
pressure. The 2015 system target is 114% the density of liquid hydrogen, and it is unlikely
that either liquid hydrogen or compressed hydrogen will be able to efficiently achieve this
goal.

I1.1.2.2. Chemical hydrogen storage

It is possible to chemically store hydrogen as part of a molecule, such as methanol
(CH;OH), that is a liquid at fuel cell operating conditions. An on-board reformer would
extract the hydrogen from this liquid when it is needed by the fuel cell. The disadvantages to
this approach are the cost and additional weight of the on-board reformer, the release of
gaseous pollutants, and the need for off-board regeneration of the liquid fuel if it is to be
sustainable (although this may or may not be more efficient than the off-board generation of

pure hydrogen) [3].
I1.1.2.3. Adsorption of molecular hydrogen

The adsorption of molecular hydrogen in porous materials and carbon-based
nanostructures has also been extensively investigated. Although the kinetics of hydrogen
storage in these structures is very good, with full uptake occutring in minutes, hydrogen
uptake is generally not as exothermic as it is in materials that store atomic hydrogen, and the

gravimetric densities tend to be too low. Early positive reports on hydrogen storage in
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carbon nanotubes and nanofibers have not been reproducible, and it is believed that these
materials hold a maximum of about 1 wt% hydrogen [8, 9]. Activated carbons have been
more successful, achieving gravimetric storage densities of about 2% at 77 K and 1 bar [8,
11]. Gravimetric densities of up to 4.2% have been reported for collapsed BN nanotubes at
room temperature 10 MPa pressure, but the hydrogen is only released at temperatures above
300 °C [12]. Initial reports of high hydrogen storage in a class of nanoporous materials
known as metal-organic frameworks have been discounted in more recent expetiments, and
the best results to date are for less than 3 wt% gravimetric storage density at 77 K and 1 atm
[13-15]. At pressures of 20 atm, storage capacities of over 6 wt% have been reported [15].
None of the solutions described above have reached the 2010 DOE targets for either
gravimetric or volumetric storage densities, and remains unclear which, if any, type of

hydrogen storage system will be able to reach these targets [2].

I1.1.2.4. Storage of atomic hydrogen

The remaining alternatives for hydrogen storage are based on solid-state materials.
Metal hydrides can reversibly store hydrogen in the interstitial sites of the host metal, but the
hydrides used to date store hydrogen at insufficient gravimetric densities (e.g. LaNi;H, at
1.37 wt%) and / or thermodynamically release hydrogen at temperatures that are too high
(e.g. MgH, at 1 bar and 300 °C) [7-9]. Higher gravimetric densities can be achieved through
the use of complex metal hydrides. Some of these, such as sodium borohydride (NaBH,) do
not store hydrogen reversibly, and produce solid waste products that must be removed for
off-boatrd recycling [16, 17]. Sodium alanate (NaAlH,) doped with Zr- and Ti- based
catalysts, can treversibly store 3.7 wt% hydrogen at temperatures as low as 33 °C, although
with very slow kinetics. At higher temperatures (around 100° C), an additional 1.8 wt% can

be desorbed [17]. The two-stage reaction is as follows:

NaAlH, — 1/3 Na,AlH, + 2/3 Al + H, <> NaH + Al + 3/2H, Equation 1

There are a wide variety of combinations of reactants and products that may combine to
release hydrogen. The entropy of hydrogen gas at room temperature is approximately 130 J
/ mol K, meaning that for hydrogen release to occur thermodynamically at room

temperature the reaction enthalpy should be approximately 40 k] / mol H, [7]. The
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approximate reaction enthalpies of a large number of possible reactions have been calculated
by Alavati et al. {18, 19], yielding a variety of candidates for new hydrogen storage systems
that are awaiting experimental verification. However, they limited their calculations to
systems for which the structures of all reactants and products are known.

A two-stage reversible adsorption process was discovered for lithium amide (LiNH,)
[20]:

LiNH, + 2LiH « Li,NH + LiH + H, < Li,N + 2H, Equation 2

The first step in this process releases a theoretical maximum of 6.5 wt% hydrogen
(ignoring the unmodified LiH), and the second step releases a theoretical maximum of 5.5
wt% (ignoring the already released H,). The total process could release 10.4 wt% hydrogen,

although in practice only about 6 wt% can be desorbed at temperatures below 300 °C.

I1.1.3. Thesis research

In this chapter, computational methods have been used to study two of the more
promising solid-state hydrogen storage systems: metal-organic frameworks, and Li-N-H

based systems. Some of this work has been published in references [21, 22].
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I1.2. Hydrogen storage in metal-organic frameworks

It is difficult to achieve the required storage densities in porous materials that adsorb
molecular hydrogen due to the weak interaction of H, with most surfaces and the difficulty
in creating stable high-surface area materials [23, 24]. To increase the density of molecular
hydrogen that can be stored in porous materials, it is necessary to maintain a sufficiently
strong interaction between hydrogen and the pore surfaces and keep the ratio of the overall
volume and weight of the material to the pore surface area to a minimum. In other words, it
is necessary to find a material with high gravimetric and volumetric surface area densities. In
éddjtion, if the pores are sufficiently small, the attractive interactions between hydrogen and
the opposing surfaces of the pore can facilitate multi-layer adsorption of hydrogen within the
pore. For these reasons, although achievable volumetric hydrogen storage densities may be
low, a class of materials known as metal-organic frameworks have been investigated for
hydrogen storage [13, 25-28].

Metal-organic frameworks are formed by using organic ligands to connect small metal-
based clusters of atoms, forming a periodic framework. The resulting frameworks are
typically nanoporous materials with high surface area densities. Some are stable with empty
potes up to several hundred degrees Celsius [25, 29, 30]. Frameworks of similar
morphologies can be synthesized using a variety of organic linkers, providing the ability to
tailor the nature and size of the pores. Several frameworks have been experimentally
investigated for their abilities to store hydrogen, but to date none are able to do so at high
enough densities to be useful for fuel cell technology [13, 26-28]. By learning more about
how hydrogen interacts with these frameworks it may be better determined if their
limitations are intrinsic or if frameworks can be designed that store H, at higher densities.

In this section @b initio calculations are used to examine the storage of hydrogen in the
metal-organic framework known as MOF-5 [29]. MOF-5 is formed by using 1,4-
benzenedicarboxylate (BDC) to link together Zn,O clusters. The resulting framework with
formula unit Zn,O(BDC); consists of cubic pores, where BDC forms the edges of the cubes
and the Zn,O clusters form the vertices. The width of each pore is approximately 13 A In
half of the pores the face of the carbon rings faces towards the center of the pore, and in the

remaining pores the edges of the carbon rings face the center, so that there are two formula
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units per primitive cell. (See Figure 1) Experiments indicate that MOF-5 is capable of
achieving a gravimetric hydrogen storage density of 1.3% at 77 K and 1 atm [13]. Although
this is significantly less than the minimum target of 6% set by the United States Department

of Energy, it is worth exploting how MOF-5 stores the hydrogen to determine if it is

possible to design other framework structures with higher H, capacity.

BDC
Linker

Figure 1 (a) The pore type that is surrounded by the edges of the BDC rings. (b) The pore
type that is surrounded by the faces of the BDC rings. (c) The two pore types combined to
form an eight-pore section of the framework. The atoms are colored as follows: Grey = Zn,
Red = O, Brown = C, White = H.

I1.2.1. Methodology

MOF-5 has a highly symmetric periodic structure with 106 atoms per primitive unit cell.
Because it is computationally expensive to perform calculations on systems of this size, it is
tempting to model MOF-5 by looking only at a finite piece of the framework. For example,
the computational cost of studying the BDC linker alone is significantly smaller than that of
studying the BDC linker in the context of the framework. Later it will be argued that such
an approach can give misleading results. In addition, studying only a part of the framework
may bias the results to specific adsorption sites and overlook other important interactions
between the framework and H,. For these reasons the full periodic structure has been

modeled.
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Modeling the interaction between molecular hydrogen and MOF-5 is a difficult task
because a significant portion of the interaction may be caused by non-local electronic
correlation. Ab initio methods that accurately evaluate this type of interaction typically scale
pootly with system size, making them computationally expensive for systems such as MOF-5
with large unit cells. On the other hand, methods that scale well with system size, such as
Density Functional Theory [31] (DFT) with the Local Density Approximation (LDA) or the
Generalized Gradient Approximation (GGA), often fail to accurately calculate the
magnitude of weak interactions because of the strong dependence of such interactions on
electron correlation. Studies on weak van der Waals complexes show that LDA usually
significantly overestimates the magnitude of these interactions [32-35]. The results for GGA
depend strongly on which exchange-correlation functional is used [32, 34, 36, 37].
Functionals that obey the Lieb-Oxford bound, such as Perdew-Wang 1991 [38] (PW91) and
Perdew, Burke and Ernzerhof [39] (PBE) are best able to model the weak interaction [32,
34]. Of these two the PBE functional usually gives the best results. For example, in two
studies of the binding energies of rare-gas atoms into a dimer, the mean absolute error for
PW91 was 7.7 meV [32] and 7.1 meV [35], whereas the mean absolute error for PBE was 2.5
meV [32] and 3.6 meV [35]. For these reasons DFT with the PBE exchange-correlation
functional has been used for all calculations in this section.

All calculations were performed using the plane-wave DFT code from the Vienna A4b-
initio Simulation Package (VASP). The Projector Augmented Wave [40, 41] (PAW) method
was used, simplifying the problem to solving for the wavefunctions of 468 valence electrons
pet unit cell. Real-space projectors were used to evaluate the projected wavefunction
character. For static calculations and relaxations an energy cutoff of 520 meV was used, and
for molecular dynamics calculations, for which accurate enetgy evaluations are less
important, a cutoff of 400 meV was used. Due to the large size of the unit cell, the only k-
point used was the gamma point. Using an evenly spaced 2x2x2 gamma-centered k-point
grid reduces the relaxed energy per 106-atom unit cell by 3.1 meV, or 0.03 meV per atom,
supportting the use of only one k-point. The FFT mesh used is sufficiently large to prevent
wrap-around errors.

To find the optimal structure for the MOF-5 framework with empty pores, the ions

were relaxed at a series of lattice parameters with increasing and decreasing increments of
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0.1% of the expetimental lattice parameter of 25.9109 A [42]. The shape of the unit cell was
fixed for these calculations. The graph of the five lowest structural energies as a function of
the lattice parameter was fit to a parabola using a least squares fit. One final relaxation was
performed in which the lattice parameter was fixed to the value cotresponding to the
minimum of this parabola. The ionic positions for the resulting structure were used for all
calculations in which hydrogen was adsorbed to the pores. Because this assumption does
not account for the relaxation of the framework atoms due to H, adsorption, the interaction
strengths reported in this section should be slightly weaker than those that would be
obtained if full relaxation were allowed.

To calculate the interaction energies of hydrogen molecules three different reference
energies were considered. The first is the energy of the system in which a single hydrogen
molecule is placed in the center of the pore surrounded by the faces of the carbon rings.
The second is the energy of the system in which a hydrogen molecule is in the center of the
other pore. The third reference state is the sum of the energy of the relaxed empty
framework and the energy of an array of hydrogen molecules placed on the same lattice as
the framework but without the framework ions. All of these reference states ate within 0.1
meV of each other, and for the values given in this section the third option is used. All

interaction energies given in this section are per hydrogen molecule.

I1.2.2. Structural results

The calculated lattice parameter of the framework with empty pores is 26.137 A, which
is less than 1% greater than the experimental lattice parameter of 25.911 A. Similarly, the
calculated values for the Zn-Zn bond length, the C-C bond lengths, and the H-H bond
length in the H, molecule are approximately 1% greater than their experimental values (see
Table 2). Errors of this type are typical when using a GGA functional. The O-C-O bond
angle is calculated at 126.1°, which is 0.2% greater than the experimentally measured value of
125.8° [42].
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Experimental Calculated Ratio

Lattice parameter 25911 A 26.137 A 1.009
Zn-Zn bond length 3.181 A 3.220 A 1.012
C-C distance in carbon ring 1.396 A 1.404 A 1.006
O-C-O bond angle 125.8° 126.1° 1.002

H, bond length 0.741 A [43] 0.750 A 1.012

Table 2 Experimental and calculated values for structural parameters of MOFE-5 [42] and Ha.!

I1.2.3. Hydrogen adsorption sites

The pore surfaces of MOF-5 contain numerous distinct sites at which hydrogen might
adsorb. Rather than guessing which sites hydrogen might interact with most strongly, a
molecular dynamics simulation was performed to determine the areas of high average
hydrogen density. Seventeen hydrogen molecules per formula unit were included, which is
approximately the density of hydrogen originally thought to adsorb in MOF-5 at 1 atm and
77 K [26]. This result has since been corrected, and it is currently believed that under these
conditions MOF-5 adsorbs 5 hydrogen molecules per formula unit [13]. The molecular
dynamics simulation was performed with a timestep of 2 fs using velocity rescaling to
maintain the temperature at 77 K.

To initialize the molecular dynamics simulation, the pores were randomly populated
by hydrogen molecules so that the centers of any pair of molecules were no closer than 2.3
A from each other. The molecules were assigned random orientations and initial velocities.
After four picoseconds, the simulation had achieved dynamical equilibration as measured by
the frequency and magnitude of the fluctuations in total energy. The simulation continued
for another 17.5 picoseconds, during which time the average hydrogen density was recorded.

A smoothed hydrogen density distribution p(x) was calculated at each timestep using

Equation 3, where #; is the center of the ith hydrogen nucleus and ¢ = 0.5 A

! 'The values for MOF-5 wete measured at 30 K.
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p() =2 pi(x)

l(x—n,- )2
c

- Equation 3
pi(x)=4¢

|x = n,.l <3c
0 |x - n,.| >30
The average density was calculated by averaging p(x) over all timesteps after the initial
four picoseconds.
The results of this simulation are shown in Figure 2. The density is greatest near the
Zn,0 clusters. Figure 3 shows the isosurfaces of the highest hydrogen density. There are
three distinct local maxima near the Zn,O clusters. Two of these are where they might be
expected, at the high-symmetry sites located in the corners of the cubic pores. These sites
are labeled as sites I and II, where site I is in the corner of the pore surrounded by the edges
of the BDC linkers and site II is in the corner of the other pore. The third, labeled as site
I11, is not as intuitive; it is a low-symmetry site located in between the other two. This is
potentially the most significant of the three sites because there are three times as many of

sites in the framework of type III as there are of sites of type I or type II. The locations of

these sites are given in Figure 3.
L/

I T e

Figure 2 (a) Hydrogen density on a plane in MOF-5 as calculated using first-principles
molecular dynamics. The color scale that linearly corresponds to density is shown below the
plot, with blue corresponding to zero hydrogen density. The five adsorption sites investigated
in this thesis are marked in this plane. (b) The plane shown in the context of the three-
dimensional MOF-5 structure. The datk lines correspond to the BDC linkers.
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Figure 3 Isosurfaces of high hydrogen density near the Zn4O cluster. The three adsorption
sites I, II, and III are labeled. In the coordinate axes shown, where the origin is at the center
of the Zn4O cluster, the coordinates of the three sites are approximately as follows, in
angstroms: Site I: (3.4, 3.4, -3.4). Site II: (2.6, 2.6, 2.6). Site III: (4.4, 4.4,-1.3).

Whereas the molecular dynamics simulation indicates the areas to where hydrogen is
attracted, ground-state relaxation calculations are required to get accurate interaction
energies and to reveal the preferred orientation of hydrogen in these regions. To calculate
the binding energy of hydrogen at each of these three sites it was necessary to try several
different orientations. For sites I and II, an intuitive orientation is for the hydrogen
molecule to be aligned along the body diagonal passing through the center of the Zn,O
cluster and the center of the pore. In Table 3 these orientations are labeled I(A) and II(A)
respectively. 'To find the optimal location for the center of the molecule along this diagonal,
a series of static calculations were performed at increments of 0.1 A. Along this direction
the minimum was found by fitting a parabola to the points with the lowest energies. The
hydrogen bond length was not allowed to change; rather, it was fixed at the calculated value
of the relaxed isolated hydrogen molecule, which is 0.7501 A.

Other orientations at sites I, IT, and III were also considered. (See Table 3) Unlike for

orientations I(A) and II(A), the molecular centers for these otientations do not necessarily lie
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on a fixed axis of symmetry. Because of this, the molecule was dynamically relaxed by
calculating the forces on the atoms instead of doing a series of static calculations. Relaxation
was stopped when the energy difference between two successive relaxation steps was less
than 0.2 meV per unit cell. This same method was used to examine the interaction energy at
various orientations near site III. In all these calculations the final bond length of the
hydrogen molecule is within 10° A of the bond length of an isolated molecule, supporting
the use of the frozen bond length for the static calculatons. The results for these
calculations are shown in Table 3. The adsorption energy is lowest (most negative) at site I,
followed closely by site III. Site II has the highest (least negative) adsorption energy of the
three sites, and is the only one for which the two hydrogen atoms are equidistant from the

center of the Zn,O cluster in the lowest energy orientation.
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Site and . Hydrogen Adsorption
. . Diagram ; energy
orientation locations (A)
(meV)
(3:65, 3.65, -3.65)
IA) 217
(322, 3.22, -3.22)
(3.11, 3.18, -3.11)
I(B) -19.9
(3.42,3.79, -3.42)
(3.11,3.79, -3.1 1)
1© 125
(3.42, 3.18, -3.42)
(3.00, 3.4, -3.00)
1D) -20.2
(3.53, 3.53, -3.53)
(3.53, 3.48, -3.00)
IE) 14.8

(3.00, 3.48, -3.00)
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s Adsorption
S.1te an.d Diagram Hyc.lrogexz energy
orientation locations (A) (meV)
(2.88, 2.88, 2.88)
II(A) -9.5
(2.45, 2.45, 2.45)
(2.56, 2.24, 2.56)
II(B) -13.6
(2.67, 2.98, 2.67)
(2.46, 2.92, 2.46)
II(C) -17.9
(277,230, 2.77)
(235, 2.66, 2.35)
II(D) -13.3
(2.88, 2.57, 2.88)
(2.35,2.61, 2.35)
II(E) -17.9

(2.88, 2.61, 2.88)
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Site and - o Hydrogen Adsorption
orientation i locations (A) iﬁf:\g,)y

(4.09, 4.09, -1.25)

III(A) 0.8
(4.62, 4.62, -1.30)
(4.62, 4.09, -1.31)

I1I(B) 75
(4.09, 4.62, -1.31)
(4.35, 4.35, -0.94)

III(C) 119
(4.32,4.32, -1.68)

Table 3 The orientations considered near sites I, II, and III and the calculated adsorption
energies for those orientations.?

Around each Zn,O cluster thete are a total of 20 sites that are of type I, II, or IIL
Given the proximity of some of the sites to each other it may not be energetically favorable
to populate all of these sites at the same time. A calculation was performed in which all sites
of types II and III around a given Zn,O cluster were populated with hydrogen in
otientations II(C) and III(A) (see Figure 4). The interaction energy between the framework
and the sixteen hydrogen molecules is 9 meV stronger than the sum of the interaction
energies with hydrogen at the individual sites, meaning that on average the attraction

becomes stronger by a little more than 0.5 meV per site as the vertex saturates with H,. This

2 The colors are the same as those used in Figure 1, and the adsorbed hydrogen is shown in yellow. The
coordinates of each adsorbed hydrogen atom are given in the coordinate system shown, which is the same as
the coordinate system used in Figure 3.
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is not the case when hydrogen is placed at sites of type I and II. When sites of type II are
populated in orientation II(C), the adsorption energy for site I in otientation I(A) increases
from -21.7 meV to -6.3 meV. When sites of type II and III are populated, the adsorption
energy at site I in orientation I(A) is -4.5 meV. It is unlikely that more than sixteen sites can
be populated around any Zn,O cluster without significantly adversely affecting the

interaction energy of additional hydrogen molecules on the cluster.

@)-

Figure 4 (a) Sites I and III simultaneously occupied with hydrogen in its lowest-energy
orientation. (b) Sites II and III simultaneously occupied with hydrogen in its lowest-energy
orientation.

Two symmetrically distinct areas of high hydrogen density are located near the BDC
linker. One of these areas is located directly above the face of the carbon ring, and the other
is located to the side of the carbon ring. (See Figure 5) These are labeled as sites IV and V,

respectively.
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) e
? i)
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Figure 5 Hydrogen density along a plane that slices through the centers of two BDC linkers.
Sites IV and V are labeled. The color scale that linearly corresponds to density is shown
below the plot.

The density of molecular hydrogen at these sites is lower than the density near the Zn,O
cluster. This is reflected in the weaker interaction energies at these sites. At site IV, five
symmetrically unique otientations were considered for the hydrogen molecule. The optimal
distance from the center of the carbon ring was determined in the same way the optimal
center was found for orientations I(A) and II(A): by fitting a parabola to a series of static
calculations. Similar calculations were done for three orthogonal orientations at site V. The

results of these calculations are shown in Table 4.
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Site and Distatice Rotational Adsatption
orientation from BDC angle (°) energy
center (A) g (meV)
N/A.
V() 350 | Ohogonal |y
plane.
IV(B) 3.45 90 4140
VO 3.46 60 10.6
V(D) 3.50 30 99
IV(E) 3.52 0 95
N/A.
Orthogonal
e i to BDC 126

plane.
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Site and : PHNRATIGE Rotational e
orientation Diagram from BDC angle () energy
center (A) (meV)
- ‘ . B | h
B ‘ ‘ l . - ’ N

Table 4 Adsorption energies and at different orientations at sites IV and V.3

I1.2.3.1. Comparison with other studies

Hydrogen adsorption on the linker is weaker than adsorption near the Zn,O cluster.
This is consistent with the results of Sagara et al., in which second-order Moller Plesset
theory (MP2) was used to compare interaction energies on benzene to interaction enetgies
on Zn,O(HCO,), [44].

In an analysis of Inelastic Neutron Scattering (INS) data taken from hydrogen stored in
MOF-5, Rosi et al. observe two distinct adsorption sites. They associate one of the sites
with Zn, and the other with the BDC linker [26]. The results presented in this thesis suggest
an alternative explanation: these could be two of the sites on the Zn,O cluster. For example
hydrogen might first adsorb at the sites of type I, and as the hydrogen density is increased
the hydrogen coverage at sites of type II and III might increase. Any increase in hydrogen

coverage at sites of type III would likely come at the expense of the coverage at sites of type

L

3 The distance between the center of the BDC linker and the center of the Hz molecule is given along with the
orientation of the Hz molecule. Unless otherwise noted, the Hz molecule is parallel to the plane of the BDC
linker, and the angles given are measured from the axis running between the centers of the two carboxyl
groups. The colors are the same as those used in Table 3.
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There have recently been several expetimental studies that also support this result.
Rowsell et al. used x-ray diffraction on argon adsorbed in MOF-5 to identify potential
adsorption sites that are remarkably similar to the ones discovered in this thesis [45]. (Figure
6) The ranking of the adsorption energy for the sites was believed to be, from strongest to
weakest, II >> I > III > IV = V, which is similar to the rankingof IR III > II > IV =V
calculated in this thesis. The notable difference is that Rowsell et al. suggested a stronger
relative binding energy for Ar on site II than the energy for H, calculated in this thesis.
Initially, Rowsell et al. believed that hydrogen preferentially bound to site II, followed by site
IIT due to its higher multiplicity. In a later paper, based on single-crystal Laue neutron
diffraction of H, adsorbed in MOF-5, this was revised to site II followed by site I [46].

Figure 6 The five main argon adsorption sites identified by Rowsell et al. The sites
correspond to the sites identified in this thesis in the following way: «=II, =1, y=III, 8=1V,
e=V. Figure from reference [47].

Using neutron powder diffraction, Yildirim and Hartman were able to experimentally
map the hydrogen density in MOF-5 [48]. They identified the same adsorption sites near the
metal-oxide cluster and the organic linker, and a similar hydrogen density pattern to the one

calculated in this thesis (Figure 7).
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Figure 7 (a) The hydrogen density in MOF-5 as calculated in this thesis plotted on a plane.
(b) The hydrogen density calculated experimentally using neutron powder diffraction in
reference [48]. In both plots, blue represents an area of low density and red is an area of high
density, but the scales are not the same.

I1.2.3.2. Discussion

It has been experimentally shown that replacing the BDC linker with other organic
linkers influences the ability of the metal organic frameworks to adsorb hydrogen [13]. This
indicates that at least some of the hydrogen experimentally adsorbs on the linker. However
none of the linkers tested caused the framework to store fewer than four molecules of
hydrogen per formula unit at 1 atm and 77K, suggesting the possibility that four molecules
of hydrogen adsorb on each of the Zn,O clusters and the remaining hydrogen is associated
with the organic linker.

The molecular dynamics simulation indicates an area of high hydrogen density near the
center of pore surrounded by the edges of the BDC linkers (Figure 2). This may be a result
of the pair correlation of molecular hydrogen. The first peak in the pair cotrelation function
indicates the distance that most commonly separates two hydrogen molecules. As hydrogen
adsorbs on the side of the pore, other hydrogen molecules in the pore will stay

approximately this distance away from the adsorbed hydrogen. For the pore surrounded by
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the edges of the BDC linker, the first peaks in the pair correlation functions from the
adsorption sites on the edges of the pore overlap at the center of the cell, yielding the
observed increase in hydrogen density there. For the larger pore, the peaks do not quite
ovetlap the center of the cell, resulting in the observed ring of locally high hydrogen density.
Similar results have been observed experimentally for argon adsorbed in MOF-5 [45].

Pores of the smaller type are surrounded by twelve sites of type V. When each of these
sites is populated with hydrogen in orientation V(A), the energy for a hydrogen molecule in
the center of the pore decreases by about 12 meV. The adsorption of hydrogen on the
edges of the pores creates a new adsorption site near the center of the pore. This type of
interaction suggests that under sufficiently high pressures hydrogen could condense to a
liquid-like state in the pore.

The adsorption energies can be interpreted in the context of a simple thermodynamic
model of adsorption in the pore. Under conditions of constant temperature and pressure, a
hydrogen molecule can be expected to enter the framework when the chemical potential of
the hydrogen in the pote is no greater than the chemical potential of free hydrogen gas. If it
is assumed that the Gibb’s free energy is a homogeneous function of the number of

particles, the chemical potential of free hydrogen gas is given by the following expression:

ﬂexr = eext + - Tsext

Do Equation 4

where u represents the chemical potential, e represents energy, p represents density, T
represents temperature, and s represents entropy. The subscript ext is used to describe
values external to the framework, and lower-case letters are used to represent values that
have been normalized by the number of molecules.

Likewise, the chemical potential of hydrogen inside the framework is given by the
following expression:

P
Mgy = €y +— —Tsint

P Equation 5

The condition for adsorption of a gas to a given density within the framework is

therefore:
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P P
€ + -T Sint < € T —Ts ext Equation 6
p int ,0 ext

Equation 6 can be re-arranged to produce:

1 1
eim - eext < p_ - p_j - T(Sext - sint) Equation 7
ext int

The first term on the right can be thought of as the tequired wotk to compress the
hydrogen to a given density at a given pressure. The remaining terms describe the change in
Helmholtz free energy when the hydrogen molecules enter the framework. Adsotption will
occur when the change in Helmholtz free energy offsets the work that must be done.

In this approximate analysis it will be assumed that the electronic and vibrational
contributions to the difference in chemical potentials are small relative to the translational
and rotational contributions. Under the classical assumption that the kinetic energy and
potential energy can be separated, the change in the average kinetic energy upon adsorption
is zero, leaving only the difference in average potential energy. For an ideal diatomic gas

Equation 7 can thus be written [49]:

3/2
Au<kT - 3ur- k:rln((z’""sz ) eij “Ts, +Ts.,
pint h P

Equation 8

where Au is the average potential energy of a molecule inside the pore relative to outside
the pore, m is the mass of a hydrogen molecule, e is Euler’s number, and s,,, is the nuclear
and rotational contribution to the entropy for a free H, rotor.

Every term on the right-hand side of Equation 8 is known with the exception of s, .
Two cases will be considered: one in which s, =0, the minimum possible value, and one in

which s, achieves its maximum possible value. The maximum value of s;, would occur if

int

the potential enetgy surface of H, in the framework were completely flat, and is given by the

expression for the entropy of an ideal gas:

3/2
s = ng KT ln[( 2’”””} ¢ J +Ts,

int, max 2 Equation 9
h p int



41

Inserting the minimum and maximum entropy expressions into Equation 8 produces
expressions for the upper and lower bound of the average adsorption energy inside the pote

required for adsorption to occut:

3/2
n =L 3k ln(( 2”}’:’2” ) %J ~Ts,,
pint

Equation 10

Au —kT-L kT 1n(%)
p int P

The bounds in Equation 10 are plotted in Figure 8 and Figure 9 for both 1 atm of
pressure and 40 atm. Figure 8 shows the bounds for the adsorption energy required to
adsorb five molecules per formula unit (~1.3 wt%), which is approximately what is obsetved
experimentally at 77 K and 1 atm [13]. It appears in Figure 8 that the maximum entropy
bound increases with increasing temperature. This is due to the fact that at these
temperatures and pressures, the natural density of free hydrogen gas is greater than five
molecules per formula unit of MOF-5.

Because there are few sites where there is significant adsorption energy, it might be
expected that the required adsorption energies are closer to the minimum-entropy bound
(solid line) than the maximum-entropy bound (dashed line). Given the calculated adsorption
energies, it may be surprising that any adsorption at all is experimentally observed at 77 K.
There are a couple of explanations for this. The first is that the energies calculated by GGA
may underestimate the true strength of the interactions. For example, GGA using the PW91
functional estimates the adsorption energy between molecular hydrogen and graphite to be
about -21 meV [36], whereas experimental values range from -36 to -52 meV [50, 51]. It has
also been suggested based on experiments that the hydrogen adsotption enetgy on site 11 in
MOF-5 is in the range of approximately -40 to -52 meV [52, 53]. In addition the hydrogen,
even when adsorbed, has not lost all translational entropy and likely moves between
adsorption sites. This lowers the required interaction energy. For example, in a simple
configurational model in which five hydrogen molecules populate sixteen equivalent and
independent adsorption sites, at 77 K the entropic contribution to the free energy would be
11 meV per molecule in addition to the contribution of any entropy due to center-of-mass

motion at each adsorption site.
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Figure 8 Bounds for the required average adsorption energy per molecule for adsorption of 5
molecules per formula unit to occur at 1 atm (blue) and 40 atm (green). The bounds were
generated under the minimum entropy assumption (solid) and the maximum entropy
assumption (dashed). (a) From 25 to 400 K (b) From 25 to 125 K.
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Figure 9 Bounds for the required average interaction energy per molecule for adsorption of
ten percent hydrogen by weight (~38 molecules per formula unit) to occur at 1 atm (blue) and
40 atm (green). The bounds were generated under the minimum entropy assumption (solid)
and the maximum entropy assumption (dashed). (a) From 25 to 400 K (b) From 25 to 125 K.
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A more realistic maximum entropy bound might be constructed if the density of
hydrogen in the free volume of the framework is used instead of the density of hydrogen in
the full framework. Experimentally, it is estimated that 61% of the framework is free
volume [29]. In the molecular dynamics simulation H, molecules passed within 1.5 A of
approximately 73% of the volume of the framework. If it is assumed that hydrogen is
confined the free volume, the maximum entropy bound gets closer to the minimum entropy
bound. For example, at 40 atm and 300 K, the average adsorption energy can be no greater
than -49.7 meV for 10 wt% hydrogen to adsorb. If only 73% fre¢ volume is considered, the
average adsorption energy must be lower than -57.3 meV.

Figure 9 shows the bounds for the adsorption energy required to adsotb 10 wt%
hydrogen, which is approximately the DOE material target for 2010 [6]. This density
corresponds to approximately 38 hydrogen molecules per formula unit, which is greater than
the number of adsorption sites identified. It is clear from Figure 9 that much lower
adsorption energies would be requited to adsotb 10 wt% hydrogen at 1 atm and 300 K. At
high pressures and 77 K, it might be possible to store close to 10 wt% hydrogen in a
microporous framework, which is supported by recent experiments [54]. However, the cost
and extra weight of a storage vessel that can maintain the material at such lower

temperatures and high pressures must be taken into account.

I1.2.4. The effect of the framework on the BDC linker

It is possible to modify the nature of the pores in a metal-organic framework by
changing the linker used to synthesize the framework. If it were possible to predict how
these frameworks would interact with hydrogen by using what is known about the
standalone linkers, it would facilitate the process of determining which linkers might form
the most promising framewotks. In addition, the computational problem could be
simplified to one of studying the just the linkers without the need to model the entire
periodic framework. This would greatly reduce computational cost. The key is that the
linker must have the same properties in the framework that it has outside the framework.

To investigate this, calculations were petformed on the BDC linker without the
surrounding framework. For the first calculation a linker was selected from the unit cell of

the periodic system and all other atoms were removed. The coordinates of the atoms of the
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linker were frozen and the electronic structure was calculated using exactly the same
parameters used for the entire framework. The charge density of the standalone linker was
then subtracted from the charge density of the full framework to determine how the
framework influences the electronic structure of the linker. The results are shown in Figure
10. As might be expected, the Zn,O clusters contribute charge, which resides principally
around the oxygen atoms in the carboxyl groups of the linker. This causes a redistribution
of charge over the rest of the linker from the carbon g’ orbitals to the carbon p_ and

hydrogen s orbitals.

Figure 10 Isosurfaces of the change in the electronic density around the BDC linker when it
is placed in the framework. (a) The charge added by the framework. The isosurface is drawn
at 0.0075 qc / A3. (b) The charge removed by the framework. The isosurface is drawn at
0.001 qe / A3

To test whether these small changes in the charge density have any meaningful effect on
the interaction between BDC and the hydrogen molecule, the adsorption energies were
calculated for hydrogen located at site IV for the standalone BDC linker in orientations
IV(A), IV(B), and IV(E). (See Table 5) The adsorption energy changes by up to 6 meV, and
the order of the preferred orientations is reversed. The reason for the change in the
preferred orientation can be inferred from Figure 10. Placing the linker in the context of the
framework increases the density of hydrogen above the carbon atoms and decreases the

density near the center of the ring. This means there is less electronic repulsion for the
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hydrogen molecule in otientation IV(A), but more in orientations IV(B) and IV(E). The
adsorption energy for orientation IV(E) suffers the most because of the repulsion caused by
the extra charge around the cartboxyl groups. The change in adsorption energy is small in

absolute terms but is significant relative to the already small adsorption energies.

H, Site and Orientation V(@A) | IV(B) | IV(E)

Interaction energy in MOF-5 (meV) -14.3 -11.0 -9.5

Adsorption energy for standalone BDC with coordinates

-7.9 -119 | -124
frozen to match those of BDC in MOF-5 (meV)

Table 5 The adsorption energies for BDC in and out of the context of the framework.

If instead of freezing the coordinates of the atoms, the standalone BDC linker is
allowed to relax, the angle of the O-C-O bond decreases from 126° to 113°. The
coordinates of the carbon and hydrogen atoms change slightly, but remain within 0.05 A of
their frozen positions. This shift also influences the hydrogen interaction energy, changing it
from 7.9 meV to 10.4 meV in orientation IV(A).

Thus the framework influences the interaction between BDC and hydrogen in two
ways: by changing the electronic structure and by changing the physical structure of the
linker. With these results in mind, it may be prudent to consider the interaction between
molecular hydrogen and the linker in the context of the framework rather than in a
standalone manner. If it is necessary to use a standalone molecule to represent the
framework, care should be taken to ensure the molecule accurately reflects the relevant
properties in the framework.

The way in which the interaction is changed also suggests how the adsorption energy of
hydrogen on the linker can be lowered. The carboxyl groups tend to draw charge from the
rest of the organic linker, reducing the strength of the hydrogen adsorption on the linker.
Putting the linker in the framework counters this effect and increases the strength of the
interaction between the linker and hydrogen. The effect of the carboxyl groups may be

further reduced if a larger linker is used, or if the linker is doped with an element that injects
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electron density into the linker. Hiibner et al. have studied the effects of modifying benzene

through substitution and arrive at a similar conclusion [55].

I1.2.5. Summary and Conclusion

Density functional theory has been used to investigate the adsorption of hydrogen in
the metal-organic framework known as MOF-5. A molecular dynamics simulation indicates
that there are five distinct adsorption sites on the edges of the pores. Hydrogen adsorbs
most strongly at the three sites near the Zn,O cluster, and least strongly at the sites near the
BDC linker, indicating that observed hydrogen adsorption might occur near the metal-oxide
cluster rather than on the organic linker. Although there are a total of twenty adsorption
sites on each Zn,O cluster, the ability of these clusters to adsorb hydrogen falls off sharply
after sixteen of the sites are populated.

The way in which placing the BDC linker in the framework changes the electronic and
physical properties of the linker and how these changes affect the interaction between the
linker and molecular hydrogen have also been investigated. The framework contributes
charge to the linker, increasing the interaction between hydrogen and the linker and
changing the preferred orientation of hydrogen adsorbed above the aromatic ring.

The calculated interaction energies are weak, but this may be due to the fact that GGA
is often not able to calculate the exact magnitude of weak interactions accurately.
Nonetheless the calculations indicate that there would likely need to be a significant
strengthening of the interaction between molecular hydrogen and the pores of the
framework for a metal-organic framework to be a viable material for hydrogen storage. It
may be possible to do this by using intelligently functionalized linkers or by enhancing the
interaction energy of hydrogen on the metal-based clusters that connect the linkers [26].
Despite numerous attempts to design metal-organic frameworks with enhanced hydrogen
storage capacity, gravimetric capacities remain below 3% at 1 atm [15, 54]. Gravimetric
capacities of up to 7.5% have been reported for frameworks at pressures above 70 bar [54],
but the need for a high-pressure storage container must be taken into account when

considering such a system for on-board hydrogen storage.
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11.3. Lithium imide

Chen et al. have observed that the combination of lithium amide (LiNH,) and lithium
hydride (LiH) releases hydrogen in a two-step reaction [20]:

LiNH, + 2LiH < Li,NH + LiH + H, < Li;N + 2H, Equation 11

The first step in this reaction, in which lithium amide reacts with lithium hydride to
form lithium imide (Li,NH), is of interest as a hydrogen storage system because it releases up
to 6.5 wt% hydrogen and is reversible at temperatures below 300°C [20]. Lithium imide is
also believed to be a reactant in related hydrogen storage systems, such as Li-Mg-N-H [56]
and Li-B-N-H [57]. The structures of lithium amide and lithium hydride are well
characterized, but despite the recent high levels of interest in lithium imide a consensus on a
complete specification of its structure remains lacking.

Using X-ray diffraction, Juza and Opp concluded that lithium imide is most likely anti-
fluorite with lithium cations and nitrogen anions, but they were unable to resolve the
positions of the hydrogen ions [58]. Several studies since have indicated that each hydrogen
nucleus is bonded to a nitrogen nucleus to form an imide (N-H) anion [59-64] though the
orientation of these N-H groups is unknown. Using neutron powder diffraction (NPD),
Ohoyama et al. proposed a structure in which hydrogen randomly occupies one of four
symmetrically equivalent sites around the nitrogen ion [59]. Based on synchrotron X-ray
diffraction results, Noritake et al. supported another structure, in which the hydrogen
randomly occupies one of twelve sites around the nitrogen ion [60]. Zhang et al. treated the
hydrogen nucleus as a quantum mechanical particle and found that when nitrogen and
lithium ions are fixed at their anti-fluorite positions the wavefunction of a hydrogen nucleus
is centered at the nitrogen nucleus with density maxima along the <100> directions [62].

Herbst and Hector, based on experimental work by Balogh et al. [63] and density
functional theory [65] (DFT) calculations, have proposed a fully occupied low-symmetry
structure in which one in eight lithium ions have moved to the empty octahedral sites
between nitrogen ions [61]. They calculated the enthalpy of formation of their proposed
structure to be approximately 17 to 38 k] per mol formula unit (f. u.) higher than the

expetimentally derived enthalpy of formation for lithium imide, as opposed to a difference
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of 3 kJ per mol f.u. for LiNH, {61]. This suggests that although the structure they propose
produces diffraction patterns similar to those observed experimentally it may not be the
energetic ground state. Recently Magyari-K6pe et al. discovered several structures with
significantly lower calculated energies than any previously suggested structure [64].

It is worth considering whether lithium imide might be thermally disordered at room
temperature. Ohoyama et al., find no evidence of a structural phase transition between 10 K
and room temperature [59], suggesting that if the structure is disordered at room
temperature the disorder persists to a very low temperature. A differential thermal analysis
(DTA) study of lithium imide indicates that there is a second-order phase transition at about
356 K, which has been attributed to an order-disorder transition [66]. Balogh et al. have
found a similar result [63]. These results suggest that the hydrogen positions in lithium imide
are fully or partially ordered at room temperature.

Kojima et al. have shown that lithium imide shows two broad N-H stretching peaks in
the infrared, unlike lithium amide for which the absorption peaks are sharp [67]. Although
the authors suggest that the peak broadening could be due to small crystallite size or thermal
disorder, their results might also indicate a wide variety of local environments for N-H

groups, implying either partial disorder or a large unit cell for the imide.

I1.3.1. An antifluorite model of lithium imide

There is a widely shared belief that the average positions of the Li and N atoms form an
antifluorite structure, but very different assignments of the H positions have been proposed
[59-64]. The distinction between structural models is significant, as ab #nitio calculations
indicate that the energy of the imide depends rather strongly on the H positions [61, 63, 64].
Hence a good structural model and insight into the factors that determine the arrangement
of hydrogen nuclei in these imides is required. In this section a model to obtain the effective
H-H interaction in Li-imide is developed and used to obtain a structure with lower energy
than any previously proposed structure.

Under the assumption that lithium imide has an antifluorite-like structure, the challenge
in determining the ground state structure is primarily one of determining the lowest-energy
otientations for the imide groups. The N-H bond length varies little; its average length in 99

relaxed structures calculated for this section is 1.038 A and the standard deviation is 0.003 A.
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However the orientation of one N-H bond substantially affects the orientations of N-H
bonds in neighboring cells. To perform a thorough search of possible ground states and to
clarify the interaction between N-H bond orientations, an effective Hamiltonian has been
developed for N-H bond orientations in lithium imide. The objective is to write the energy
of the system directly in terms of the orientation of the N-H groups with the other degrees
of freedom implicitly relaxed to local minima. The model is parameterized with ab initio
calculations and used to predict a new structure with lower calculated energy than any

structure known to date.

I1.3.1.1. Methodology
11.3.1.1.1. The effective Hamiltonian

The effective Hamiltonian for the N-H orientations is based on a modification of the
cluster expansion [68, 69] formalism to include continuous variables describing the imide
group orientation. The N-H bond orientation on the /# imide group can be characterized

with a polar and azimuthal coordinate, (Q,¢,) The objective of the model is to find an

expression for the function

F(919 ¢l’ 02a ¢2>033 ¢39-~) Equation 12

where F' is the enetrgy of the system with the N-H groups in the specified orientations and
all other coordinates (e.g. the N-H bond length and the Li positions) relaxed. This coarse-
grained energy function is similar to the cluster expansion for configurational disorder in
alloy theory where displacements (and sometimes vibrations) are coarse-grained over to

obtain an energy expression solely in terms of site occupation variables [68-70].

For each domain (9,,¢,) a local basis of functions f, (6,¢,) is defined, where S

indicates the nth basis function for the ith imide group. The tensor product of these local

bases forms a basis for the function F':

F0,90.)-3] 1TT1,0.9) Equadon 1

where 7 is a vector of basis function indices in which the ith element is #,. The sum is

over all possible 7, and V, are coefficients to be determined later.
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For example, if F is square integrable over imide group otientations, f, can be chosen
as spherical harmonics. As with a discrete cluster expansion, it is convenient to choose f,

such that f; is a constant for all i. The function F can then be expanded as a linear

combination of functions of the otientations of single imide groups, functions of the
orientations of pairs of imide groups, etc.:
F0-4:-)=V+ L3116 8) + 2 301,687, (6,))+... Bauasion
i om0 i,j n#0,n;20
The symmetry properties of the crystal can be used to group terms that share the same

coefficient. Hence, it is more convenient to choose basis functions f, that form closed

otbits under the operations in the space group of the crystal. One result of this step is that
terms that are anti-symmetric with respect to the symmetry operations of the crystal
disappeatr.

The expansion in Equation 14 is in principle an exact representation of Equation 12,
but to reduce this to a finite problem it is necessary to make approximations based on
physical intuition. As with a discrete cluster expansion, it is assumed that Equation 14 will
be dominated by the constant term and terms representing the interactions between
physically small clusters of imide groups. In this study, only terms representing single imide
groups and imide pair interactions up to the next-next-nearest neighbor are included.

For continuous domains there are an infinite number of basis functions f, in the

complete basis. In practice only the basis functions that should have the most physical
relevance are included. For example, for a basis of spherical harmonics one might truncate
the basis at a certain angular momentum. For lithium imide a -truncated basis from

hybridized spherical harmonics has been generated:
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where x; =cos@;sing,, y, =siné sing, and z, =cos¢,. The full truncated basis used can

Equation 15

be generated by applying the cubic symmetry operations to these functions and keeping the

ones that are lineatly independent.
To determine the coefficients V, of this expansion a library of 98 relaxed structures

with different relative N-H orientations was calculated using the projector augmented
wavefunction [40] (PAW) method with the Perdew-Burke-Ernzerhof [39] (PBE) generalized
gradient approximation (GGA) to DFT as implemented in the Vienna .Ab-initio Simulation
Package (VASP) [71]. The standard hydrogen and nitrogen PAW potentials and s-valence Li
PAW potentials in VASP were used with a plane-wave cutoff energy of 520 eV. Calculations
were considered converged when forces reached less than 80 meV / A. Fora primitive cell
calculation, total energy convergence within 1 meV per formula unit was reached with a
7x7x7 Monkhorst-Pack [72] &-point grid shifted to include the gamma point. For supercell
calculations this grid was scaled down proportionately to the size of the supercell.

The coefficients were evaluated using a least-squares regression, where structures were

given weights defined by

1

w; &« m Equation 16

where AE, is the difference in eV between the calculated formation energy of the ith

structure and the lowest calculated formation energy. To help prevent overfitting the
coefficients were fit to both the energies in eV per formula unit and the forces in eV / A,
with the energies given ten times the weight of the forces. To more accurately represent
low-energy interactions, structures with lower energy were assigned higher weights. To

ensure the cluster expansion had predictive power a Metropolis algorithm [73] was used to
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find a subset of terms in the expansion that had a low leave-one-out cross-validation score
[74]. The coefficients for this model generated from the original library of 98 structures and

the newfound orthorhombic structure are given in Table 6.

Cluster Site 1 Site 2 Terms per Vi (k] / mol fu.) Vi (meV / mol
function | function | formula unit f.u.)
Empty 1 1 1 -179.73607 -1862.78463
Point fa(-x) 1 6 0.91880 9.52246
fi(xy) fi(xy) 6 0.38115 3.95020
fi(xy) fa(x) 2% 0.04595 0.47620
fi(xy) f3(x,2,y) 24 0.01690 0.17514
£1(x,2) f(y,2) 12 0.11320 117316
fi(x,2) fi(-2) 48 -0.06256 -0.64833
f2(x,y,2) f3(%,y,2) 6 0.31453 325979
£(xy,2) fi(-2) 24 -0.08269 -0.85699
f2(x,y,2) f3(zy.%) 24 -0.05846 -0.60589
Neatest f4(-x) fi(-x) 24 0.07591 -0.78672
Neighbor fi(-%) f4(-y) 24 0.18900 1.95885
fa(x) 6,%,2) 24 0.06545 0.67832
fa(-z) fa(-2) 12 0.33858 3.50904
fa(-2) f(2) 12 -0.35140 -3.64189
fi(-z) f3(x,y,2) 48 -0.03802 -0.39408
fi(-2) B2y, 48 0.11254 -1.16640
fa(x) f3(y,x,2) 24 -0.09816 -1.01732
f3(x,2,y) f3(x,2,y) 12 0.16971 1.75887
£3(x,2.) £(y,5,2) 24 -0.05320 -0.55134
f(xy,2) f(x,y,2) 12 -0.09459 -0.98028
Next- f1(xy) fi(xy) 6 -0.17086 -1.77076
Nearest fi(xy) f(y) 24 -0.04874 -0.50514
Neighbor fix,y) f3(y,x,2) 12 -0.05271 -0.54629
f1(y,2) fi(y,2z) 3 0.24773 2.56743
f15,2) fa(x,y,2) 6 0.07267 0.75319
fa(-y) fy(x) 24 0.21403 2.21818
£4(y) fi(-y) 12 0.16783 1.73940
fa(-y) f5(x.y.2) 24 0.11144 1.15501
f3(x,2,y) £3(x,2,y) 6 0.06158 0.63821
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Cluster Site 1 Site 2 Terms per Vi (k] / mol fu.) Vi (meV / mol

function | function | formula unit f.u.)
£5(y,2,%) f(y,2,%) 6 -0.13240 137220
fi(xy) f(x,y,2) 48 -0.01022 -0.10591
f1(xy) fo(x) 48 -0.06696 -0.69393
fi(xy) fo(z) 48 -0.02955 030624
fi(xy) fi(2) 48 -0.02770 -0.28705
fixy) f3(x,2,y) 48 -0.03402 -0.35262
fi(xy) £5y,2,%) 48 0.03412 ~0.35366
fix,y) f3(z,x,y) 48 0.03978 0.41224
f1(y,2) fi(y,2) 12 -0.10254 1.06277
fi(v,2) fi(x) 24 0.02594 0.26880
D) 6,25 48 20.03278 2033972
fa(x) f(y) 48 -0.05105 0.52904
Fo(x) 6(7,2,%) 48 -0.02563 ~0.26559
fa(-y) fo(-x) 48 0.06118 0.63411

Next-
£i(y) £(y) 24 20.23445 2.42980

Next-
£.(y) f(x.y.2) 48 0.06373 0.66049

Nearest

_ f(y) £(y,%,2) 48 0.05022 0.52049

Neighbors
fo(%) fa(x) 12 20.07956 0.82452
£(x) £y,%,2) 48 0.02032 0.21061
£(x) £(y,2,%) 48 0.04955 0.51353
) fi(-2) 24 0.10778 1.11707
£(v) B(5,2y) 48 0.02108 0.21842
£4(y) H(zZy,%) 48 0.06593 0.68325
£(y) Hz,xy) 48 20.02153 20.22311
f(x,2y) 65(x,5.2) 24 0.03629 037610
) £(y,%,2) 48 0.01857 0.19244
£(5,2,y) £3(y,2,%) 48 20.03569 -0.36987
£(y,%,2) fzy.%) 48 70.03856 -0.39968
£(y,%,2) f(z%,y) 24 0.05823 0.60350
£7,2,%) (zy,%) 24 0.02714 -0.28129

Table 6 The parameters for the model Hamiltonian. Each row lists a sample term from an
included orbit of functions and the coefficient for functions in that orbit. The imide groups
for the sample functions, in conventional anti-fluorite reduced coordinates, are located at (0, O,
0) for site 1 and (0.5, 0.5, 0) for site 2 for nearest neighbors, (0,0,0) and (1, 0, 0) for next-
nearest neighbors, and (0, 0, 0) and (1, 0.5, 0.5) for next-next-nearest neighbors. The
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1 1
functions are: fl (a,b)= E\BOab , f2 (a,b,c) = EVZIOabc )
1
f3(a,b,0) = Z( 1750 ~63a + V105a(b? — ), and

5 1]5 1 3
f4(a) = g‘ﬁ(x4 +y4 + 24 )+ ;J%(Liaz —1)+E\/§a _E”ﬁ . All functions symmetrically

equivalent to those listed were included in the Hamiltonian.

11.3.1.1.2. Enthalpies of formation

The enthalpies of formation of several low-energy structures were calculated. To ensure
accurate results the electronic energies were recalculated using hard hydrogen and nitrogen
PAW potentials and the cutoff energy was increased to 900 eV. Calculatons were
considered converged when the forces on the ions were less than 1 meV / A. Vibrations
within the harmonic approximation were evaluated within the linear response approach as
implemented in ABINIT [75] with the PBE GGA exchange-correlation functional. The
Fritz-Haber Institute pseudopotentials provided with ABINIT were used, and the cutoff
energy was 35 Ry. For the electronic supercell calculations a 4x4x4 k-point gtid including
the gamma point was used, and interatomic forces were calculated on a 2x2x2 grid. For the
layered structure a 6x6x6 electronic k-point grid and 3x3x3 interatomic force grid were used.
Ideal gas behavior was assumed for the standard state of the reference molecules H, and N,.
The values for H, and N, reference molecules were calculated in cubic cells with length 15
A. It was found that increasing the size of the cell to 17 A changed the calculated energies
by less than 0.01 meV.

I1.3.1.2. Results

11.3.1.2.1. Effective interactions

Within the model Hamiltonian, the interaction between a single pair of nearest-neighbor
imide groups is represented by

27,1, (60 8) + 2. 1,00 )+ 2Tt (62801, 6. 8)  Bquationts

where the contributions from single-imide terms have been included as well. A sample

nearest-neighbor interaction can be visualized in Figure 11. This figure clearly shows that if
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the hydrogen nuclei from two nearest-neighbor imide groups are near the same tetrahedral
site, the interaction is unfavorable. On the other hand, an anti-parallel alignment between

two nearest-neighbor imide groups is favorable.

S @

Figure 11 An example of an effective nearest-neighbor interaction in the model Hamiltonian.
The green balls represent lithium nuclei at ideal tetrahedral sites, and they form a cage of four
octahedral sites. The blue ball on the left represents a nitrogen nucleus in the front left
octahedral site, and the white ball is a hydrogen nucleus that is bound to it to form an imide
group. The multi-colored sphere represents a nearest-neighbor imide group in the back right
octahedral site. The colors on the sphere represent the effective interaction energy between
the two imide groups as a function of the orientation of the N-H bond in the imide group on
the right.

The minimum of Equation 17 represents the most favorable nearest-neighbor imide
group orientations and can be visualized in Figure 12(a). This interaction will be referred to
as the “preferred” nearest neighbor orientation. Similar to the observation made in Ref. [64],
it is found that neighboring imide groups tend to align anti-parallel to one another. The

nitrogen and hydrogen nuclei are coplanar with the two lithium nuclei between the imide
groups in the (ITO) plane, and a N-N-H bond angle of 36.3°. The hydrogen nucleus on
each group tilts towards the nitrogen of the other group, possibly to form a hydrogen bond.

In practice the apparent unfavorable proximity between the hydrogen ions and the lithium
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ions between groups is resolved as these lithium ions move towards nearby empty octahedral

sites. Because this leaves behind a vacancy at a tetrahedral site, it results in relaxation fowards

octahedral sites unlike the full displacement suggested in Ref. [61].

Figure 12 (a) The “preferred” nearest neighbor orientation. The lithium ions are shown in
the ideal anti-fluorite positions for reference. Both N-H bonds are in the (l TO) plane, which
is shown. (b) The more high-symmetry “near-preferred” nearest neighbor orientation in
which the N-H bonds are aligned along [T 1 1] in the (l TO) plane. Dotted lines indicate the

lithium ions to which the N-H bonds point. Large sphetes represent nitrogen, medium
represent lithium, and small represent hydrogen.

Figure 13 A tetrahedron of nearest-neighbor imide groups. The lower right group is in the
near-preferred nearest neighbor orientation with each of the other three groups, but as a result
these groups are not in the near-preferred orientation with each other. Large spheres
represent nitrogen, medium represent lithium, and small represent hydrogen.
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It is impossible for a single imide group to be in the preferred orientation with more
than one of its nearest neighbors. To see this, let one imide group, “group A”, be in the

preferred orientation with a nearest neighbor imide group, “group B”, with the vector from

group A to group B in the [l 10] direction. Let group B be oriented such that it is at an

angle of 1.1° to the [TT 1] direction (Figure 12(a)). All ways in which group B can be in the
preferred orientation with any of its nearest neighbors can be generated by applying the 48
FCC point symmetry operations at group B to imide groups A and B. It is only possible for
imide group B to be in the preferred orientation with two different imide groups
simultaneously if an operation leaves the orientation of group B unchanged but maps group
A onto a different nearest neighbor. The only operation that results in group B having the
exact same otientation is reflection about the (1T0) plane, but this maps group A onto
itself. This frustration can be partially resolved if the N-H bonds rotate slightly so that they
are aligned in the high-symmetry [TTI] direction (Figure 12(b)). This is still a low-energy
orientation because of the ability for the lithium ions to relax towards the empty octahedral
sites. This will be referred to as the near-preterred orientation. If groups A and B are in the
near-preferred orientation, the symmetry operations corresponding to 120° rotations about
the [T 1 1] axis all map the orientation of group B onto itself, but maps group A onto three
different nearest neighbors. This allows group B to be in the near-preferred orientation
relative to three nearest neighbors at the same time (Figure 13). For every imide group to be
in the near-preferred orientation relative to three nearest neighbors, the structure must
consist of {111} planes of alternating anti-parallel imide groups where the imide groups in
each plane are aligned orthogonally to the plane. This structure, after relaxation with DFT,
becomes the one shown in Figure 14. Nuclear coordinates for the relaxed structure, which

will be referred to as the “layered” structure, are given in Table 7.
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Figure 14 A 2x2x1 supercell of the layered structure with the unit cell highlighted. Large
spheres represent nitrogen, medium represent lithium, and small represent hydrogen.

Element X Y Z
Lithium 0.980 0.405 0.258
Lithium 0.674 0.202 0.905
Nitrogen 0.653 0.090 0.203

Hydrogen 0.364 0.956 0.640

Table 7 The reduced coordinates of the layered structure. All atoms are at Wyckoff position
2i for space group #2 (P-1). a=3.57 A, b=3.58 A, ¢=6.80 A, « = 77.83°, =82.23°, and
y=59.91°.

11.3.1.2.2. A new low-energy structure

In addition to providing insight into the effective N-H interactions, the cluster
expansion can also be used to very rapidly search for low energy structures of lithium imide.
A search for the ground state of this model was performed with Monte Carlo simulation in
all supercells up to 8 formula units. The lowest energy configuration is shown in Figure
15(a). A DFT calculation relaxes this structure to the one shown in Figure 15(b), which will
be referred to as the “orthorhombic” structure. This structure, although not in the initial
library of structures used to fit the coefficients, was added when determining the preferred

orientations. The lithium ions in the relaxed structure have moved significantly from their
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ideal anti-fluorite positions. The new structure has an orthorhombic unit cell, with
coordinates given in Table 8 and calculated lattice parameters of 5.12, 10.51, and 5.27
Angstroms, although these are probably overestimated by a few percent as is typical in the
GGA approximation [76-78]. The space group of the structure as determined by ABINIT is
Pbca (#61). Every imide group in this structure is involved in a nearest-neighbor pair
interaction resembling the preferred nearest-neighbor orientation, although the imide groups
are rotated 25.4° from the preferred nearest-neighbor orientations to be in the low-symmetry

[0.79, 0.58, 0.20] and equivalent directions. The existence of nearest-neighbor orientations

similar to the preferred orientation suggests that preference for this type of nearest-neighbor

orientation remains high even in an infinite crystal.

Figure 15 (a) The imide group orientations with the lowest predicted energy after searching
structures with up to 8 formula units per unit cell. Lithium ions are shown in the ideal anti-
fluorite sites for reference. (b) The structure after relaxation with density functional theory.
Large spheres represent nitrogen, medium represent lithium, and small represent hydrogen.
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Element X Y Z
Lithium 0.372 0.540 0.651
Lithium 0.480 0.256 0.191
Nitrogen 0.297 0.370 0.451

Hydrogen 0.363 0.610 0.066

Table 8 The reduced coordinates of the orthorhombic structure. All atoms are at Wyckoff
position 8c for space group #61 (Pbca). 2a=5.12 A, b=10.51 A, and c¢=5.27 A.

The formation energies for the layered and orthorhombic structures and the lowest-
energy structures proposed in Refs. [61, 64] have been calculated using DFT. The results of
these calculations are in Table 9. The calculated formation energy for the new orthorhombic

structure is significantly lower than that of the any other known low-energy structure.

Structure AR Evibration AE
0K 298.2K 0K 298.2K

Ret. [61] 1835 (1.902) | 467 (0484) | 566 (0.587) | -166.3 (1.724) | -173.6 (-1.799)
ReE. [64] 1866 (1.934) | 47.5(0492) | 569 (0.590) | -168.6 (-1.748) | -176.4 (-1.829)
Layered T186.3 ((1.931) | 47.0 (0487) | 56.3 (0.584) | -168.8 (-1.750) | -176.7 (-1.831)
Structure -

Orthothombic | -1883 (-1.952) | 47.2(0489) | 566 (0.587) | -170.7 ((1.769) | -178.4 (-1.849)
Structure ’

Table 9 The calculated electronic and total formation energies and vibrational energies for
the structures proposed in Refs. [61, 64] and the layered and orthothombic structures
presented in this thesis. The values are given in k] / mol f.u. (€V / mol f.u.).

The density of the orthorhombic structure, 0.028 formula units per A, is approximately
8 to 10 percent lower than the experimentally derived density for lithium imide [59, 60, 63].
A portion of this density difference is likely due to the use of GGA, which typically
overestimates the lattice parameter of matetials by 1 to 2 percent [76-78]. More significant is
the fact that this structure has different symmetry than that indicated by diffraction studies

[59, 60, 63]. A comparison between published experimental diffraction patterns and
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calculated diffraction patterns for the orthorhombic structure can be seen on the following

pages in Figure 16 - Figure 24. Based on these comparisons, the orthorhombic structure is

most likely not the experimentally observed structure.
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Figure 16 The neutron powder diffraction pattern for deuterated lithium imide (Li-ND) at
100K from Ref. [63].
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Figure 17 The neutron powder diffraction pattern for deuterated lithium imide (LixND) at
400K from Ref. [63].
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Figure 18 The neutron powder diffraction pattern for LiND in the orthorhombic structure,
as calculated by CrystalDiffract. The wavelength is the same as that used in Ref. [63] (Figure
16, Figure 17).
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Figure 19 The x-ray powder diffraction pattern for deuterated lithium imide (Li,ND) at room
temperature from Ref. [63].
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Figure 20 The x-ray powder diffraction pattern for LiND in the orthorhombic structure, as
calculated by CrystalDiffract. The wavelength is the same as that used in Ref. [63] (Figure 19).
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Figure 21 The neutron powder diffraction pattern for lithium imide at room temperature

from Ref. [59]. The points marked with open circles are attributed to Li;O, and the closed
circle is unexplained.

2007

Figure 22 The neutron powder diffraction pattern for lithium imide in the orthorhombic
structure, as calculated by CrystalDiffract. The wavelength is the same as that used in Ref. [59]
(Figure 21).
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Figure 23 The synchrotron x-ray powder diffraction pattern for lithium imide at room

temperature from Ref. [60]. The points marked with circles and triangles are attributed to
Li>O, and the square is attributed to LizNCN.
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Figure 24 The x-ray powder diffraction pattern for lithium imide in the orthorhombic
structure, as calculated by CrystalDiffract. The wavelength is the same as that used in Ref. [60]

(Figure 23).
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There are several potential reasons why the data for the experimentally observed
structure does not correspond to the orthorhombic structure. While the structure search
was extensive it is not exhaustive, and it is possible that structures with even lower energy
exist which are in better agreement with the experimentally measured diffraction pattern. It
is possible that these were not found because of the limits on the search space or the limits
of the model Hamiltonian. Because the nearest-neighbor interactions and their topology in
the fluorite structure lead to some frustration, it is possible that more complex ordering
patterns with larger unit cells have even lower energy as often is the case for frustrated
systems.

It is also possible that the experimentally observed structure is not the energetic ground
state but is stabilized by equilibrium finite-temperature entropy effects that are not captured
by the harmonic approximation. Similarly, it may be instead a higher-symmetry metastable
state with some level of frozen-in disorder. This state may be a partially disordered variation
of the structure proposed in this thesis, or it may be an entirely different structure.

It is also worth considering that GGA is not accurate enough for this material.
However the energy difference between the orthorhombic structure and the next-best
known is about 5 meV per atom. For a compatison between similar structures, this would
be an unusually large error for GGA.

Better agreement with experiment might be achieved by determining a more complete
solution of the hydrogen nuclear wavefunction. Even at low temperatures there may be
rapid tunneling of the hydrogen atoms between low-energy sites, similar to that proposed by
Zhang et al. [62] The potential energy surface of one hydrogen nucleus is affected by
location of nearby nuclei, so it is likely that any motion of hydrogen ions is locally cotrelated
and dependent on lithium and nitrogen positions at low temperatures.

In the next section, the discrepancy between the expetimental data and the calculated

ground state will be examined in more detail.

I11.3.2. The low temperature phase

Based on their own neutron and x-ray diffraction data, Balogh et al. conclude that the

low-temperature phase has an FCC lattice, with Fd3m symmetry and a lattice parameter of

approximately 10.1 A. The size of this unit cell corresponds to a 2x2x2 supercell of
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conventional anti-fluorite unit cells. They note that this indexing also explains the previously
unexplained peaks in Ref. [59] (Figure 21). However, they note that there were not any
unexplained peaks in Ref. [60] (Figure 23), suggesting that the material in Ref. [60] was in a
different phase, possibly due to contamination [63]. In this section, it will be assumed that

the neutron and x-ray diffraction data in Refs. [59, 63] are correct, and that the low-

temperature phase has a structure that closely resembles an FCC structure with Fd3m
symmetry and a lattice parameter of approximately 10.1 A.

Based on the diffraction work by Balogh et al. [63], Herbst and Hector proposed an
ordered structure for the low-temperature phase [61]. The structure proposed by Herbst
and Hector differs from the antifluorite model of lithium imide in that not all tetrahedral
sites are populated with lithium ions [61]. It belongs to a class of structures in which one in
eight tetrahedral sites is vacant, and the N-H bonds are oriented so that four hydrogen nuclei

surround each vacant tetrahedral site. With the eight lithium vacancies, structures in this

class have the experimentally observed Fd3m symmetry, as shown in Figure 25. Because

this is the same space group as spinel, structures in this class will be referred to as “spinel-

like” structures. In general the Fd3m symmetry is broken when the stoichiometry is

restored by placing the eight displaced lithium nuclei in vacant sites.



69

8a 48t 32e 8b 32e 16¢

Figure 25 The important sites for spinel-like lithium imide structures. The blue balls are
nitrogen, the white are hydrogen, and the green three different lithium sites. The pale green
(8a) are lithium sites that are as far as possible from the 8b vacancy. The medium green (48f)
are lithium sites corresponding to the tetrahedral antifluorite sites. The dark green (16¢) are
the octahedral lithium sites. In each unit cell, eight of the indicated lithium sites must be
vacant.

In the structure proposed by Herbst and Hector, the eight displaced lithium nuclei are

placed in alternating layers of 16¢ sites. Although this structure does not have the Fd3m

symmetry predicted expetimentally, it agrees very well with the observed diffraction patterns
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[61, 63]. The formation energy of the structure proposed by Herbst and Hector at room
temperature is calculated to be about 50 meV per formula unit higher than that of the
orthorhombic structure (Table 9). Despite this relatively high formation energy, it is the
lowest-energy proposed structure that agrees well with the observed diffraction patterns.

The refinement of the diffraction data by Balogh et al. suggests that the lithium ions in
the octahedral sites are located not at the ideal 16c¢ sites, but at nearby 32e sites that are
between the 16c and 8a sites [63]. There are two 32e sites near each 16c¢ site, and the refined
proximity of these sites to each other (approximately 1.10 A — 1.37 A) suggests that both
cannot be populated at the same time. For this reason, the lithium in the 32e sites can be
considered to be effectively associated with a single octahedral 16c¢ site.

The distance between the octahedral lithium nuclei and nearby tetrahedral lithium nuclei
in the structure proposed by Herbst and Hector, calculated as desctibed in section 11.3.1.1.2,
is between 2.2 A and 2.3 A. In solid lithium metal, the distance between nearest-neighbor
lithium ions is calculated to be 2.98 A, which is close to the experimental value of 3.04 A
[79]. In contrast, Balogh et al. refine the distance between the octahedral lithium site and the
8a site to be between 1.50 A and 1.64 A [63]. The proximity between these sites makes it
unlikely that both are simultaneously occupied. Because it is necessary for some of the
octahedral sites to be occupied with lithium ions displaced from the 8b sites, this suggests
that the nearby 8a sites are vacant.

Based on the above analysis of the expetimental data, a general model for the spinel-like
structure of lithium imide can be developed. The 8b sites are vacant and surrounded by
hydrogen nuclei, as in the structure proposed by Herbst and Hector. However, unlike this
structure, the 8a sites may be vacant as well. The lithium ions displaced from the 8a and 8b
sites are near the octahedral 16c¢ sites, most likely relaxed towards a nearby vacant 8a site. In
the following sections, a cluster expansion based on this model will be used to search for

new ground state structures and calculate the configurational contribution to the free energy.

I1.3.2.1. Methodology

Some of the techniques used to generate the cluster expansion for the spinel-like
structures are developed and explained in the second part of this thesis. It will be assumed
that the reader is familiar with these techniques.
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Per conventional unit cell, there are 24 possible sites for 16 lithium nuclei, which means
that the composition of the 8a and 16¢ sites should be 2/3 lithium. The analytical method
for cluster expansions at a fixed composition was used to calculate the domain matrix for
this cluster expansion, and a Monte Carlo algorithm was used to find fifteen structures that
complemented the set of twenty-four manually generated spinel-like structures. The energies
for all structures were calculated using DFT as described in section 11.3.1.1.1.

Candidate clusters for the expansion were the eleven smallest pair clusters and three-
site, four-site, five-site, and six-site clusters up to the third nearest neighbor. To fit the ECI,
energies were expressed relative to the energy of the structure in the data set with the lowest
known energy. Gaussian prior distributions defined on the ECI with a hierarchical width
generating function were used, and a grid search was used to find the parameters that
minimized the leave-one-out cross-validation score. After the ECI were fit once, the clusters
with ECI below 0.1 meV per formula unit were removed from the set of candidate clusters,
and the procedure was repeated until no clusters with ECI below 0.1 meV remained.

A Metropolis algorithm [73] was used to search for the structure with the lowest
predicted energy. To calculate the configurational free energy, the following thermodynamic

relationship was used:

Pr

F(T)B=F(T,)8,+ [(E(B)dB Equation 18

Bo

where F(T) is the Helmholtz free energy at temperature I' and S =ﬁ, where kj is
' B

Boltzmann’s constant. (E(ﬂ)) is the average energy as calculated using a Metropolis
algorithm run on a 6x6x6 supercell of the 128-atom conventional unit cell. 7j is a reference

temperature, and f, is defined accordingly. For the purposes of the integration in this

section the high-temperature reference limit was used, in which £, =0 and Ff, = —i—m ,

B

where §, is the entropy at infinite temperature.
It was observed that in the calculated structures some lithium nuclei relaxed so that they
ended up closer to sites other than their initial sites. Because the cluster expansion is a

model of the local minima of the potential energy surface, the sites closest to the relaxed
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nuclei were used when determining the occupation variables. To prevent the calculation of
excess configurational entropy, decorations representing structures in which the nuclei relax
to other sites should be excluded from configuration space. To approximately identify such
decorations, the local configurations of nuclei in the candidate clusters were examined in the
initial and relaxed structures. A local configuration was considered to be unstable if it was
present no more than one third as often in relaxed structures as in initial structures.
Structures with unstable local configurations were excluded from thermodynamic sampling.
Because of the existence of the unstable structures, the high-temperature entropy limit per

primitive unit cell can be estimated by:

S, 2 .(2) 1. (1 . (In(x)

—==6|-—In| = [-=In| = |+ lim | —* Equation 19

ks [ 3 (3] 3 (3) ~‘,M(Ns,.,es H qnaten
where x is the fraction of stable configurations in structures with N, independent 8a or

16¢ sites. The factor of six represents the fact that there are six possible sites per primitive

cell.

I1.3.2.2. Results
11.3.2.2.1. Local interactions

The fitting procedure resulted in eleven clusters with non-zero ECI (Table 1). The
leave-one-out cross-validation score for the fit is 4.6 meV per formula unit. As expected, the
pair interaction between nearest-neighbor 8a and 16¢ sites favors different nuclei on each
site. The most favorable interaction is a vacancy on the 8a site next to a lithium ion on the

16c¢ site.
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Reduced coordinates | Wyckoff Maximum Multiplicity ECI (meV /
of sites positions distance per ptimitive | formula unit)
between sites cell
A
{0, 0, 0} 16¢ N/A 4 9.50102
{0.125, 0.125, 0.125} 8a N/A 2 14.87512
{0, 0, 0} 16¢
2.20143 8 5.46169
{0.125, 0.125, 0.125} 8a
{0, 0, 0} 16¢
3.59492 12 0.59523
{0, 0.25, 0.25} 16¢
{0.125, 0.125, 0.125} 8a
4.40286 4 0.22825
{-0.125, -0.125, -0.125} 8a
{0, 0, 0} 16¢
6.22658 24 0.87240
{-0.25, -0.5, 0.25} 16¢
{0, 0, 0} 16¢
7.18984 12 1.05321
{-0.5, -0.5, 0} 16¢
{0, 0, 0} 16¢ .
7.18984 12 0.11260
{0.5, 0.5, 0} 16¢
{0, 0, 0} 16¢
8.03848 24 0.42894
{-0.75, 0.25, 0} 16¢
{0, 0, 0} 16¢
{0.25, 0.25, 0} 16¢ 3.59492 12 1.15799
{0.125, 0.125, 0.125} 8a
{0, 0, 0} 16¢
{0.25, 0.25, 0} 16¢ 3.59492 8 0.831504
{0, 0.25, 0.25} 16¢

Table 10 The clusters with non-zero ECI. The coordinates are given in terms of reduced

coordinates of the conventional unit cell for the Fd3m space group with origin 2. In the
cluster expansion, occupation with lithium was given a value of +1, and vacancies were given a

value of -1.
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Using the method described in section II.3.2.1, it was determined that two local
configurations are frequently unstable. The first configuration, shown in Figure 26(a), is a
vacancy at an 8a site adjacent to a vacancy at a nearest-neighbor 16c site. Upon inspection

of the calculated structures, the instability can be explained by considering the following

situations:

1) Another nearest-neighbor 16c¢ site adjacent to the 8a site is occupied, in which
case the nucleus at that 16c¢ site will frequently relax to the 8a site. If all four:
16¢ sites surrounding an 8a site are occupied, this does not happen as the
lithium nuclei at the 16c¢ sites repel each other from relaxing to the center of the
tetrahedron.

2) There are no other lithium ions in the four 16c¢ sites next to the 8a site. In this

situation, there is a cluster of five vacancies, creating a lithium void in the
structure. The void tends to attract lithium from other nearby sites.

The consequence of this instability is that stable configurations will typically have either
an occupied 8a site or a vacant 8a site that is surrounded by a complete tetrahedron of
occupied 16¢ sites. By inspecting the ECI, it is apparent that local configurations in which a
vacant 8a site is surrounded by four occupied 16¢ sites should have low energy.

The second unstable local configuration (Figure 26(b)) is closely related to the first. In
the second configuration, there is a vacancy at an 8a site and a vacancy at one of its nearest
neighbor 8a sites. In between the two 8a sites is a single 16¢ site. If the 16c site is vacant,
the configuration is equivalent to the first unstable configuration. If the 16¢ site is occupied,
the lithium nucleus on the 16c¢ site tends to relax to the 32e site in between the 16¢ site and
one of the 8a sites. The other 8a site sees a vacancy on the 16c¢ site as the lithium ion relaxes

away, creating a situation similar to the first unstable configuration.
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Figure 26 (a) The first unstable local configuration. (b) The second unstable local
configuration. The colors are the same as in Figure 25. The green tetrahedra have at their
centers 8a sites, an on each vertex a nearest-neighbor 16c site. The red crosses represent
vacancies, and the dark arrows show how nearby nuclei might relax.

11.3.2.2.2. Ground state search

The cluster expansion was used to search for new low-energy structures. As might be
predicted by inspecting the largest ECI, the lowest-energy structures were all ones in which
every lithium ion is on a 16¢ site adjacent to a single vacant 8a site. Every 8a site is in turn
surrounded by a complete tetrahedron of occupied 16c¢ sites. To narrow down the search
for low-energy structures, the configuration space was reduced further to structures which fit
this description. The only remaining variable is the ordering of the vacant 8a sites. Because
each vacant 8a site is coupled to four occupied 16c¢ sites, exactly 1/3 of the 8a sites must be
vacant to preserve stoichiometry. To avoid the second unstable local configuration (Figure
26(b)), none of the vacant 8a sites can be nearest-neighbors with each other.

A second cluster expansion was developed to more accurately model the ordering of the
vacant 8a sites under the constraints described above. Candidate clusters included 2-site, 3-
site, 4-site, and 5-site 8a clusters with sites up to 9 A apart. The leave-one-out cross-
validation score for the final cluster expansion was 3.5 meV.

Because of the numerous constraints on the system, there are only 323 possible

structures with fewer than 384 atoms per unit cell. The energies of all 323 structures were
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predicted using the second cluster expansion, and one structure had lower predicted
formation energy than all others. The predicted energy of this structure was 3.2 meV per
formula unit lower than the energy of the structure with the second-lowest predicted energy,
and 4.9 meV per formula unit lower than the energy of the structure with the third-lowest
predicted energy.

To check the predictions, the electronic energies of the two structures with lowest
predicted energy were calculated using DFT. The DFT-calculated energy of the structure
with the second-lowest predicted energy is 1 meV per formula unit higher than the predicted
value. The DFT-calculated energy of the structure with the lowest predicted energy is 0.6
meV per formula unit lower than the predicted value, and is the lowest of all spinel-like
structures. These results, along with the cross-validation score, suggest that the structure
with the lowest predicted energy also has the lowest DFT-calculated energy of all 323
structures. It is proposed that this structure is the ground state of the spinel-like phase.

The space group of the proposed spinel-like ground state, as determined by ABINIT, is
I4,/amd (#141). The lattice parameters are a=b=7.16 A and ¢=30.38 A, and the nuclear

coordinates are given in Table 11. The electronic formation energy of the proposed spinel-
like ground state, calculated as desctibed in section 11.3.1.1.2, is -1.932 eV / formula unit, or
-186.4 kJ / mol. This value is about 30 meV / formula unit, or 2.9 kJ / mol, lower than the
calculated energy of the structure proposed by Herbst and Hector. However it is about 20
meV / formula unit, or 1.9 kJ / mol, higher than the calculated energy of the antifluorite-like

orthorhombic structure.
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Element | Wyckoff |  x Y | z
Position

Lithium 8e 0 0.25 0.1246
Lithium 8e 0 0.75 0.0333
Lithium 8e 0.5 0.25 0.0349
Lithium 8e 0.5 0.75 0.0414
Lithium 16g 0.2715 | 0.0215 0.125
Lithium 16h 0.1746 0.75 0.0954
Lithium 32i 0.2685 | 0.5042 | 0.0390
Nitrogen 16h 0 0.9754 | 0.0882
Nitrogen 16h 0.5 0.9800 | 0.0817
Nitrogen 16h 0.7392 0.75 0.0022
Hydrogen 16h 0 0.0837 | 0.0657
Hydrogen 16h 0.5 0.3851 | 0.0943
Hydrogen 16h 0.8444 0.25 0.0213

Table 11 The reduced coordinates of the spinel-like ground state structure, in terms of space
group I 4;/a m d (#141) orientation 2. a=b=7.16 A and ¢=30.38 A.

A conventional unit cell of the relaxed nuclear positions of the proposed spinel-like
ground state is shown in Figure 27. The structure is simpler than it might initially appear.
The structure can be created by starting with the ideal spinel-like structure shown in Figure
25, and placing vacancies in the 8a sites of every third row of lithium ions. Lithium nuclei

are then place in each of the four 16c sites around the 8a vacancies.
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Figure 27 A conventional unit cell of the spinel-like ground state structure. The colors are
the same as in Figure 25 The grey tetrahedral are vacant 8b sites that are surrounded by
hydrogen nuclei, and the green tetrahedral are vacant 8a sites surrounded by lithium nuclei in
the 16c¢ sites.

The calculated distance between vacant 8a sites and the octahedral lithium is 1.54 A, in
excellent agreement with the 100K value 1.52 A resolved by Balogh et al. [63], considering
that GGA typically underbinds. This distance is much closer than the calculated distance of
22 A - 23 A in the structure proposed by Herbst and Hector. The calculated lattice
parameter in the c direction for 12 layers of lithium nuclei is 30.38 A, meaning that the lattice
parameter per four layers of lithium nuclei in the ¢ direction is 10.1261 A. The calculated
lattice parameter per four layers of lithium nuclei in the directions orthogonal to the ¢
direction is 10.1288 A. These values are in good agreement with the isotropic 100 K lattice
parameter of 10.0873 A resolved by Balogh et al. [63]

The predicted x-ray and neutron diffraction spectra for the proposed spinel-like ground
state, and the structure proposed by Herbst and Hector, are given in Figure 28 to Figure 35.
These spectra can be compared directly to the experimental data in Figure 16, Figure 17,
Figure 19, Figure 21, and Figure 23. The patterns for the proposed spinel-like ground state
and the structure proposed by Herbst and Hector are similar, with the proposed spinel-like
ground state generally having slightly sharper peaks. This is positive for the proposed spinel-
like ground state, as the structure proposed by Herbst and Hector is known to agree well
with experimental data [63]. The proposed spinel-like ground state appears to agree slightly

better with some experimental data, such as the peaks near 20=130° in Figure 28.
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Figure 28 The neutron powder diffraction pattern for LiND in the proposed spinel ground
state, as calculated by CrystalDiffract. The wavelength is the same as that used in Ref. [63]

(Figure 16, Figure 17).

Figure 29 The neutron powder diffraction pattern for LiND in the structure proposed by
Herbst and Hector [61], as calculated by CrystalDiffract. The wavelength is the same as that
used in Ref. [63] (Figure 16, Figure 17).
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Figure 30 The x-ray powder diffraction pattern for LiND in the proposed spinel ground
state, as calculated by CrystalDiffract. The wavelength is the same as that used in Ref. [63]

(Figure 19).
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Figute 31 The x-ray powder diffraction pattern for LiND in the structure proposed by
Herbst and Hector [61], as calculated by CrystalDiffract. The wavelength is the same as that
used in Ref. [63] (Figure 19).
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Figure 32 The neutron powder diffraction pattern for lithium imide in the proposed spinel
ground state, as calculated by CrystalDiffract. The wavelength is the same as that used in Ref.
[59] (Figure 21).

=
e —
—

30 40 0 60 70 80 160 110 1 130 140
28(1

Figure 33 The neutron powder diffraction pattern for lithium imide in the structure
proposed by Herbst and Hector [61], as calculated by CrystalDiffract. The wavelength is the
same as that used in Ref. [59] (Figure 21).
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Figure 34 The x-ray powder diffraction pattern for lithium imide in the proposed spinel-like
ground state, as calculated by CrystalDiffract. The wavelength is the same as that used in Ref.
[60] (Figure 23).
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Figure 35 The x-ray powder diffraction pattern for lithium imide in the structure proposed
by Herbst and Hector [61], as calculated by CrystalDiffract. The wavelength is the same as
that used in Ref. [60] (Figure 23).
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11.3.2.2.3. Finite-temperature behavior
The proposed spinel-like ground state has a significantly higher calculated energy than

the antifluorite-based orthorhombic structure. However, the spinel-like structure agrees
much better with experimental data. It is possible the orthorhombic structure is preferred at
very low temperatures, but the spinel-like structures are entropically stabilized at slightly
higher temperatures. This entropic stabilization could be caused by vibrational and/or
configurational entropy.

The configurational free energy of the spinel-like phase was calculated by
thermodynamic integration as described in section 11.3.2.1. The high-temperature entropy
limit was approximated using Equation 19 with x calculated by sampling 1.5 * 10"
decorations from a 3x3x3 supercell of the 32-atom primitive unit cell. The high-temperature
configurational entropy per formula unit, in units of k; (Boltzmann’s constant), was
estimated to be 2.87 * 0.03. The configurational energy and free energy are plotted in
Figure 36. The difference between the two is the entropic contribution to the
configurational free energy. There is a calculated phase transition at around 450K, in which

the proposed spinel-like ground state disorders.
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Figure 36 The values of the average and free energies of the proposed spinel-like ground
state relative to the energy of the orthorhombic structure. The difference between the two
lines is the contribution of configurational entropy to the stabilization of the spinel-like phase.



84

As the temperature is increased from 100K to 300K, the experimenté\lly observed
occupation of lithium in the 32e (octahedral) site decreases from 32% to 26% [63]. (Because
there are two 32e sites per octahedral site, and they cannot both be occupied at the same
time, this corresponds to octahedral occupations of 64% to 52%.) In the structure proposed
by Herbst and Hector, the occupation of the 32e sites is 25%. Based on this structure,
Balogh et. al suggested that the higher-than-expected octahedral occupation might be due to
excess lithium [63]. However this explanation should be reconsidered in the context of the
proposed spinel-like ground state. In the proposed spinel-like ground state, 33% of the 32e
sites are occupied, which is more consistent with the low-temperature 100K measurement of
32%. Because the average occupation of the 8a and 16¢ (octahedral) sites is 2/3, it should
be expected that the high-temperature limit of occupation of 32e sites should also be 33%
lithium. However, at 300K, it is experimentally observed that the occupation decreases to
26%.

A possible reason for this decrease is that experimentally observed decorations are
metastable. Decorations that are unstable are likely very short-lived, and the lithium nuclei
spend most of their time close to the local minima in the potential energy surface. If
decorations that are expected to be unstable are disallowed, the calculated occupation of 32e
sites decreases with increasing temperature to a limit of about 26.1%. Intuitively, this occurs
because vacancies at 8a sites are generally only stable if surrounded by a complete
tetrahedron of occupied 32e sites. As the temperature increases, these tetrahedra begin to
break up, which causes lithium nuclei to collapse from 32e sites to nearby 8a sites (Figure
26). The more tetrahedra are broken up, the more nuclei move to 8a sites, reducing the
percentage of lithium on the 32e sites. A comparison of the calculated occupation with

experimental observations is shown in Figure 37.
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Figure 37 A comparison of the experimental and calculated lithium occupation of the 32e
sites. The occupation decreases to a limit of about 26.1% due to the instability of vacant 8a
sites adjacent to fewer than four occupied 32e sites.

The reduction in 32e occupation is calculated to occur at a higher temperature than
experimentally observed. A better fit to the expetimental data might be achieved if a more
complex model were used to predict which decorations represent unstable structures. In
addition, the 8a sites might become more favorable with increasing temperature due effects
not considered here, such as volume expansion or greater vibrational entropy for structures
with more highly occupied 8a sites. Compatison with experimental data suggests that the
phase transition to a disordered spinel-like structure might occur at a lower temperature than
calculated, which could significantly reduce the configurational free energy below what is
shown in Figure 37, especially for temperatures between 100K and 1000K.

To estimate the vibrational entropy of spinel-like structures, the vibrational entropy of
the structure proposed by Herbst and Hector is used as a prototype. The calculation was
done as described in section I1.3.1.1.2. ‘The vibrational entropy difference between the
antifluorite-based orthorhombic structure and the spinel-like structure is shown in Figure 38.
The vibrational entropy is higher in the spinel-like structure, likely because the ability for

lithium ions to move between 8a and 16c¢ sites without a potential barrier favors soft modes.
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There is a loss in configurational entropy due to disallowing unstable decorations, but this is
partially offset by the increase in the vibrational entropy. Intuitively, there are fewer local
minima, which reduces the configurational entropy, but the local minima are wider, which

increases the vibrational entropy.

1.2

o
(o] —_

\

AS/kb (eV/Kf.u.)
© . g
S
|

o
N
|
\

50 100 150 200 250 300 350 400 450 500

0.2 |
Temperature (K)

Figure 38 The vibrational entropy of the structure proposed by Herbst and Hector relative to
the vibrational entropy of the orthorhombic structure.

The extra vibrational entropy in the spinel-like phase, combined with the relatively low
enetgy of the proposed spinel-like ground state, suggests that the spinel-like phase may be
entropically stabilized. A plot of the estimated free energy, including vibrational effects, of
the spinel-like phase relative to that of the orthorhombic structure is shown in Figure 39. It
can be seen that the spinel-like phase is estimated to become more stable at temperatures
above about 225K. If configurational entropy is included, the transition is predicted to be
slightly lower. By comparing the obsetved and calculated occupations of the 32e sites as a
function of temperature (Figure 37), it can be inferred that the calculated configurational

entropy might be too low in this temperature range. In this case, it can be expected that
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spinel-like phase becomes more stable at an even lower temperature. This could explain why
the antifluorite-like orthorhombic structure is not seen experimentally. At the temperature
at which the transition to the orthorhombic structure should take place, the kinetics might

be very slow, effectively trapping the material in a metastable spinel-like state.
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Figure 39 The estimated vibrational free energy of the spinel-like phase relative to the
vibrational free energy of the orthothombic structure. The spinel-like phase becomes more
stable above approximately 225K. The combined configurational and vibrational free energy
difference is also shown.

11.3.2.3. Discussion

An explanation for the discrepancy between the expetimental data and the calculated
ground state structure has been proposed. The orthorhombic structure introduced in
section 11.3.1.2.2 remains the most likely ground state structure, but at low temperatures a
spinel-like phase becomes entropically stabilized. The existence of this phase agrees very
well with published diffraction data. The orthorhombic structure most likely has not been
seen experimentally because lithium imide is typically synthesized above the temperature at
which it becomes thermodynamically unstable. It is possible that even at temperatures
below the transition temperature, slow reaction kinetics have prevented the observation of

the ground state structure.
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Experiments indicate a second-order phase transition in lithium imide near 360K [63,
66]. Above this transition temperature, diffraction data indicate that lithium imide
transitions to more of an antifluorite structure. It is likely that the high temperature phase
involves disorder among the imide group orientations as well as continuing disorder in the
positions of the lithium nuclei. The free energy of lithium imide above this temperature
must be even lower than the free energy curve for the spinel-like phase. Lithium, nitrogen,
and hydrogen are key elements in a variety of potential hydrogen storage systems. These
results suggest that the configurational and vibrational contributions to the free energy
should be considered when determining reaction products and equilibrium temperatures in

such systems.
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II1.1. Background and motivation

Approximate values for many material properties can be calculated using the Born-
Oppenheimer approximation [80], in which atomic nuclei are treated as classical particles, if
the potential energy surface of the material is known. The potential energy sutface is an
expression of the potential energy of the material as a function of the positions of the atomic

nuclei:

V({;': »S; }) Equation 20
where 7, is the position of the ith nucleus and s, is a discrete variable representing the

number of protons and neutrons in the ith nucleus. Among the important material
properties that can be derived from the potential energy surface are:

¢ The ground-state structure. This is the atomic arrangement the material would

achieve if it were left at a very low temperature for an infinite period of time. It

corresponds to the global minimum on the potential energy surface.

® Free energy of the material. This can be calculated statistically by sampling the

potential enetgy surface with a sample weight that is a function of the potential
energy.

The calculation of these and other material properties requires sampling or searching

the potential energy surface. Because the domain of {i';,s,.} grows eiponentia]ly with the

number of particles in the system, effective searching or sampling of the potential energy

sutface for systems with more than a few unique atoms requires the ability to rapidly

evaluate V ({7, s, })
Evaluating V({i‘;,si }) exactly within the Born-Oppenheimer approximation would

require solving the multi-electron Schrodinger equation. Because no analytical solution to
the Schrédinger equation is known for any system with more than one electron, a variety of
methods for calculating approximate solutions to the Schrddinger equation using numerical
methods have been developed. In general, the more accurately a method approximates a
solution to the Schridinger equation, the worse the method scales with the number of

electrons in the system. For example, using one of the most popular methods, density
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functional theory [31], calculating a reasonable approximation for V({i‘;,si }) on a modern

x86 processor might take on the order of CPU-houts for a system with twenty unique nuclei.
Effective sampling or searching of the potential energy surface of such a system using
density functional theory is computationally infeasible. However, frequently it s
.computau'ona]ly feasible to use a small sample of accurate, but expensive, calculations to
parameterize an effective potential function that can be rapidly evaluated. Such an approach
often strikes a good balance between the needs for speed and accuracy.

Many of the important properties of materials can be well approximated by considering
only the /local minima of the potential energy surface. It is therefore often sufficient to
develop an effective potential that only models these local minima. One form of such
effective potentials that has been successfully used to model a variety of systems is the
cluster expansion [69, 81]. Like all potential functions, the success of the cluster expansion
depends on its ability to accurately predict the values of the potential energy surface. The
focus of this chapter will be on the development of methods to efficiently develop cluster

expansions that accurately predict these values.

III.1.1. The cluster expansion

In this section a brief introduction to the cluster expansion formalism and some of its
important properties will be presented. A more thorough review of the cluster expansion
and its applications can be found in references [69, 81].

In the cluster expansion, it is assumed that structures which correspond to local minima
on the potental energy surface are ones in which all nuclei are at or near a fixed set of low-
energy sites. It is assumed that there is neatly a one-to-one mapping between the different
ways in which these sites can be occupied by the atomic nuclei and the low-energy local
minima on the potential energy surface. For example, the low-energy local minima might all
correspond to ways in which atomic nuclei can be arranged on a cubic lattice.

If the low-energy local minima are assumed to correspond to different nuclei occupying

a fixed set of sites, the problem of evaluating V({i'; ,S.}) at the local minima can be replaced
with the problem of evaluating V({c, 1), where ¢, is a discrete “occupation variable” that

represents the type of nucleus present on the kfh high-symmetry site (one value could
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represent the existence of nothing on the site). For simplicity, {ck} will be represented with

the vector symbol ¢ :

V(©)=V(cpcy.) Equation 21

The multi-variable function ¥ (c,,c,...) can be expanded in a set of basis functions [69]. To
build this basis, single-variable bases for the occupation variables at each of the sites are first

created. Let the jth basis function for the kth occupation variable be denoted ¢, , (). The

complete multi-variable basis can be constructed by taking the tensor product of the single-
variable bases. The function ¥ (c,,c,...) can be expanded in terms of these tensor product

basis functions:

Vie,cp.) = Z le:[¢jk,k(o-k) Equation 22
J

whete j represents a particular product of single-variable basis functions and j, is the kth
element of j . The sum is over all possible J .
It is convenient use single-variable bases in which @, =1 for all k. This allows the

expansion of Equation 22 in terms of products of a finite number of basis functions:

Viener-) =V, + 2V 18ule)+ Vil 14ule) - pquation23

jeh K jehy Tk
where J, is the vector of all 0’s and J,, is the set of all j with exactly #n non-zero elements.
The non-zero elements in j represent the sites for which the occupation affects the value of
the cluster function, and set of such sites can be thought of as the cluster represented by J .
The coefficients V; are known as the effective cluster interactions (ECI). The first term

represents the average potential energy, the second term represents the effect the occupation
of single sites has on the potential energy, the third term represents the effect of pairs of
sites, etc.

The expansion in Equation 23 is known as the “cluster expansion”, because it expands

the potential energy into contributions from clusters of sites. The product H¢jlr k(ck) will
k

be referred to as a “cluster function”. Each cluster function is defined by a given vector j
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and represents an interaction between all sites for which j, #0. The variable @, defined

by

?; (5) = 1:1 b, (Ck ) Equation 24
will be used to represent a cluster function.
Combining Equation 23 and Equation 24 it can be seen that the cluster expansion is an
expansion of V(c,,c,...) into a linear combination of cluster functions:

V(c,cyp..) = V;O + ZV}¢7 (E)'*' Z Vj¢7 (5)"' Equation 25

jeJy jets
Often the arrangement of sites in a cluster expansion is symmetric. To take advantage
of this symmetry, the same single-variable basis functions and occupation variables must be
used at symmetrically equivalent sites. By doing this, orbits of symmetrically equivalent

cluster functions can be created. Because all functions in a given orbit are symmetrically

equivalent, they must all have the same coefficient V. Let & represent a set of vectors j

corresponding to symmetrically equivalent cluster functions, and V, be the common

coefficients for these functions. Equation 25 can be re-written in terms of these common

coefficients:

V(c,cp.) = V;o + ZVaZ% (5)“' Z Va2¢j(5)+-" Equation 26

aeA, jea aeA; jea

where A4, is the set of all different orbits @ for which the vectors j € @ have n non-zero

elements.

Let N, be defined the number of elements in @, and the “correlation” <¢>a be

defined by
Z Y (E) Equation 27
gy =21 quation
{ple)), =25
Substituting Equation 27 into Equation 26 results in
Viey,cp)=V; + Z V.N, <¢(E)>a + z VaNa<¢(E)>a *e.. Equation 28
aeh, acA,;

Often the value of interest is not the potential energy of the entire structure, but the

average potential energy per some symmetrically repeated group of sites. This is especially
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true for cluster expansions defined on infinite crystal lattices, where only the averaged
potential energy is necessarily finite. Let the average value of a quantity x per symmetrically

repeated group of sites be denoted by (x) . Using this notation, the multiplicity of a

unit

cluster orbit m, will be defined as

m,=(N,),. Equation 29

From Equation 29 and Eciuation 28, the average potential energy can be expressed as
(V(c1,c2...)> e = <V,0 >Um + Z;‘Vama (¢(E:‘»a + ZAVama ((o(E))a +.. Equation 30

For simplicity, the first term in the expansion as is defined as ¥;,. This term is referred

to as the coefficient for the empty cluster function. This substitution results in

(V(c1’02“')>Unil =W+ ZVamw <¢(E)> a T ZVama <¢(E)>a e Equation 31

aecAy acA;

Equation 31 can be expressed in a more familiar form, by defining the following

vatiables:

x, ={p(e)),

ﬂa = Vama .
Equation 32
b=V

By defining B as the vector of all B, and ¥ as the matrix of all x,, Equation 31 can

be written in vector form:

V(epcp)y,, =B-% Equation 33
Up to this point the expansion is exact. The correlations x, are properties of a

particular decoration €, and the coefficients £, are unknown. Approximate values for S,

are typically derived from calculations performed using a relatively accurate method, such as

density functional theory.
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I11.1.1.1. Effective cluster interactions (ECI)

The coefficients V, are known as the effective cluster interactions, or ECI. The ECI

for a given cluster function orbit indicates the degree to which interactions between the
nuclei in the clusters affect the potential energy. To analyze the ECI, it is convenient to use

orthonormal single-variable bases, where orthonormality is defined by:

Z_;‘éa,k (Clc,i )¢b,k (ck,i)

N,

-5, Equation 34

where the sum is over all N, possible values of the occupation variable ¢, .

If the single-variable bases are orthonormal, it can be shown that the cluster functions

must also be orthonormal:

:Vg%(z'i H g (ck,i )¢j',, ,k(ck,r) HN eod'x

= k_i=1 :6__ .
N, N, N, o

4 c c

Equation 35

Equation 35 can be used to derive an exact expression for the ECI by projecting the

known potential energies onto the cluster functions. For example, to calculate the value of

V., where J' represents a particular cluster function, first multiply both sides of Equation

V(E)¢,‘-v( ) V,,,(”,u ZV¢‘(C)¢ (c)+ZV¢1 )(P (c * Equation 36

jeJ, jedo

Next sum over all possible decorations

SV (@)e,(6)=V zmc )+zvz¢ 2 )0, @)+ 37,3.0,6)0,()+ . Equation 37

=1 jeh =1 jety i=1

The orthonormality condition (Equation 35) allows this expression to be simplified:

Ny
Y VE)9;(E)=Vi NG 5+ D ViNG; 5 + > V.N5; 5 +..=V.N, Equation 38

=1 jehy jeJ2

Re-arranging the terms produces the desired result:

> V()@
7' N.

c

Equation 39
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Equation 39 is known as direct configuration averaging. Because it involves a sum over

all possible site decorations, it generally cannot be used. However it does provide a better

understanding of the ECL. Because @; @)=1, V;, is just the average potential energy over

all decorations, and the remaining ECI represent the covariance between the potential
energy and the cluster functions. The single-site terms (also known as “point” terms) are the

main effects, and the multi-body cluster functions are interactions.

I11.1.2. A new approach to developing cluster expansions

They key to the successful application of the cluster expansion formalism is the
determination of values for the ECI that accurately reproduce the values of the local minima
in the potential energy surface. Physically, it is expected that the ECI will become smaller as
the cluster functions include more sites. In addition, it is physically expected that the closer
sites are to each other, the more the occupations of those sites will affect the potential
energy. For these reasons, the ECI should be largest for cluster functions containing a small
number of physically proximate sites.

In this chapter, this well-known insight will be used in cohjunction with Bayes’ theorem
to develop new methods for generating cluster expansions. The first half will focus on the
theory and algorithms behind these methods, and in the second half these methods will be

applied to different binary systems and evaluated relative to more traditional methods.
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III.2. Bayesian Regression

In this section Bayesian regression will be derived in the context of a cluster expansion,
and the relationship to Tikhonov regularization [82] will be briefly discussed. More details

on Bayesian regression can be found in refs. [83] and [84].

I11.2.1. Derivation of Bayesian regression

Let there be a set of input values and output values, where the i set of input values

will be labeled ¥; and the i” output value will be labeled y,. Assume that the output value
is an unknown function fop,(-) of the input values, plus some random etror €, (the tilde

indicates that ¢, is a random vatiable). The error €, will be referred to as the noise.

Vi = fom (J_C,-)‘*' € Equation 40
The noise is a random value drawn from a distribution #, with mean O and variance o,".

Assuming the samples are independent, the probability of the training output can be

calculated, given the training input and a trial function f(:).
P(f(X)"'? =7l X,j},ii)z HP()’i - f(%)=21%,5.n,) Equation 41

where ¥ is a column vector which has y, as the ith element, 7 and € are similarly defined,
and X is a matrix with X; as the ith row. The product is taken over all training samples.

For the remainder of this section, it will be assumed that the training data (X and y) and

the etror distributions (7) are given, and explicit statement of this assumption will be

dropped from the equations for clarity.

An intuitive way to estimate the hidden function fopt(-) might be to search for the
function that maximizes P(f (X)+¢ =j5). Because the natural log is a monotonically
increasing function, this is the same as maximizing lnI_P(f (X )+§ = P)J Combining this

with Equation 41 produces the following expression:
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fom()= arg max > n[P(y, - f(z)=¢)] Equation 42

where the carat symbol () is used to indicate an estimated quantity.
Equation 42 is known as empirical risk minimization, with the empirical loss function

defined by
15 [f()] = _Z ln[P (yi -f (55;) = E:)] Equation 43
For example, suppose the distributions #; are Gaussian, i.e.:

(yi—f(ii))z
P(yi —f(fi)=5,» If(-),f,.,y,-,n,.)= O_ime 207 Equation 44

The loss function becomes
I [f()]= ln(a i‘/z_”')'*' %Z%(yi - f®)f Equation 45
where C is some constant. This is just the squared loss function, where each sample is given
a weight of 7,2 .

Depending on the function space from which functions are selected, empirical risk
minimization may be ill-posed [82]. In other words, it may not satisfy the following
conditions:

1) For every set of input and output values, there is a unique minimum to the loss

function.

2) Small changes in the input and output values result in predictably small changes in

the function that minimizes the loss function.

An alternative approach for selecting a function is to try to find the function that is

most likely to be f,, () given the training data. Using Bayes’ rule [85], the probability of a

0,

function f(-) being Jopt () given the training data is:

R0 o 01 1 ()55 = 5)= P11 E =170 = £ OPL0= 1, ()

P(fop:(X +?=;) Equation 46

The optimization problem now becomes
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P (X)+ =51 /0= PP O)= £, ()

Sayes () = argflg)lax ( 7 ( X) 5= ) Equation 47

Because the logarithm is monotonically increasing, Equation 47 can be re-written

InP(f,,(X)+& =51 70)= £,,0))
Fooe)=argma +n[P(f()=£,,.())
~[P(f,,(x)+& =)

The last term on the right is not dependent on f (), so it can be dropped.

in[P(f,,(x)+& = 7| f(-)=1:,,,(-))1} .
fBayea() argf ( [P(f() f,,p,( )] Equation 49

Combining Equation 49 with Equation 41 and Equation 43 produces:

.i Bayes () =arg min(l s [f()] - ln[P (f() = ./;pt ())]) Equation 50

If —lnl_P( ()= fop, )J is appropriately defined (e.g. a norm of the function space

hl

Equation 48

containing f" ()), Equation 50 is equivalent to Tikhonov regularization. Such a problem is
guaranteed to be well-posed [82].
The advantage to deriving regularization this way is that it gives some meaning to the

regularization term, in the form of the prior distribution P( ()= op,()). The prior
distribution is a probability disttibution over functions that assigns to every function f(-) a

probability that it is f° () ap,() before the training data is taken into consideration. The

distribution P( 7()= fopr()| fop,( )+e = )7') on the left-hand side of Equation 46 is known
as the posterior distribution. Like the ptior distribution, this is a distribution over functions

that assigns to every function f(-) a probability that f ()=f, (). The difference is that

opt
using Bayes’ rule, the posterior distribution takes into account the training data. The
postetior distribution provides a useful way to evaluate candidate functions, but it is
dependent on the prior guess.* In the following sections prior distributions will be examined

in more detail.

4 In this text the terms “prior distribution” and “posterior distribution” will occasionally be shortened to
“prior” and “posterior” respectively.
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I11.2.2. Prior distributions

The choice of prior distribution is an important factor in determining how quickly the
predicted function, fsayes(')’ converges to fop,(-). The important attributes to consider

when choosing a prior distribution are the mean of the priot, the shape of the priort, and the
width of the prior. In the following sections each of these attributes will be investigated

both generally and in the context of cluster expansions.

I11.2.2.1. The mean of the prior distribution

Physical insight might provide a sense of what values the ECI are expected to have.
Perhaps typical ECI values for similar systems are known, or approximations for the ECI
have been analytically calculated. These expected ECI values will be used as the mean for

the prior distribution. Specifically, this is written as

-7;)() = f P () + 7 A () Equation 51
where 7[, () is a function drawn from the prior distribution of functions, fp(-) is the mean

of the prior distribution of functions, and f, () represents the variation from the mean.
The mean of the prior distribution can be treated in a straightforward way if it is

- assumed that the loss functional [ s[f()] can be written as [/ S[f(X )—}7] Equation 50

becomes: .
e ()= arg, glin(l S (x)-51-mlP(£()=£,,0)) Equation 52
If Equation 51 is substituted into Equation 52, the fact that f, (-) is 2 known function

can be used to write the minimization in terms of fA()

f,,m(-)=f,,(-)+ar§Ar3in(Is[f,,(X)+fA(X)—f]—ln[P(f,,(-)+fA(-)= £n0)) Equation

Making the following vatiable substitution:

Va=y-1, P (X ) Equation 54

and re-arranging Equation 53 produces
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jBayes () = fp () +arg min(ls [fA (X) — Y ] - 1n[P( \ () = fopt () - fp ())]) Equation

fA(') 55
The minimization problem in Equation 55 is equivalent to the one in Equation 52 with

variable substitutions. The training output y has been replaced with y,, and the prior
distribution with mean f, () has been replaced by a distribution with a mean of zero. In the

following sections the shape and the width of the prior distribution will be investigated,
under the assumption that the variables have been transformed so that the mean of the

distribution is zeto.

IT1.2.2.2. The shape of the prior distribution

Given that the problem has been transformed so that the prior distribution has zero
mean, it should be expected that the constant zero function has the highest prior probability.
The ptior should also ideally be chosen so that it is computationally convenient. In the
following two sections, two shapes for prior distributions for cluster expansions that meet

these criteria will be investigated.

111.2.2.2.1. The Gaussian prior
A common form for the prior distribution might be:
"fA (j\ ~nf0,5,?) Equation 56
where "“ is a function space norm and n(0,0'pz) is a normal distribution with mean 0 and

. 2 . . . .
variance 0,”. The prior distribution can be written as

1 202 .
P( A(') = -f;pt ()— fp ()) = > \/Z e 7 Equation 57

Plugging Equation 57 into Equation 55 produces:

ParamN

fmc):fp<->+argmin[’s[ (0)-5,]+ 12U
) 20

A P

+ ln(O' N2rm )J Equation 58
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Because the last term on the right does not depend on f" (), it can be dropped.

Defining 4, = Lz , Equation 58 can be written as
o
p

fBayes() f()"’arg]if)lm(l [fA( ) )7A]+%/1p"fA(-1|2) Equation 59

Equation 59 can be applied to the cluster expansion. For example, consider using the
L, norm for a cluster expansion. The L, norm for a function defined over the discrete space

of occupation variables is defined by

W Equation 60
Substituting Equation 25 into Equation 60 produces
Ny
oy, - B ) Equation 1
N;
Equation 61 can be re-arranged as:
N,
I C),, = ZZV poim 2-1:% ey e) Equation 62

If an orthonormal basis is used, Equation 35 can be combined with Equation 62 to

"V('lle = JZVJ‘Z Equation 63
j

Equation 25 and Equation 63 can be combined to express the regularization term as a

arrive at the final result:

function of the cluster expansion ECI:

Vawes )=V, ()+ argf(r;m(l 7, (x) Z J Equation 64

A

where V7 N Vj— - V;-,,, and Vj— » is the mean of the prior disttibution for V] )

If Gaussian error distributions are assumed, Equation 45 can be combined with

Equation 64 to produce
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I}Bayes () = Vp () +arg r(I;in(%Z%(VA (5; ) - yA,,-)Z + -;—ip Z VJ‘AZJ Equation 65
v ( o. 3

One problem with this approach is that the regularization term penalizes errors in all

i Y

ECI equivalently. Physically, it is expected that ECI representing interactions between sites
that are far apart, or interactions between a large number of sites, should be very small. The
root of this problem can be seen by combining Equation 63 with Equation 57 to produce an
expression for the prior distribution of functions, assuming a Gaussian distribution of the L,

norm:

2
-z V?,A
Jj

20,” Equation 66

1
PV.)=V )=V ()=
( A() op () p()) Gp@e
The sum in the exponent can be expanded into a product:

2
Vi

P(VA () =V, ()— v, ()) = . }27 I;[e 20,° Equation 67

Within a normalization constant, this can be written as:

P(VA () = Vopt () - Vp ()) o H P(I/jA) Equation 68
J
where
‘Vf.Az _(V7 _V]‘-P)z
2, Equation 69

1 20 2 1
PV. . )= e’’’ =——7m——e
( "’A) o,N2r o,N2r
Thus using the L, norm is equivalent to expressing the prior probability of a particular

function as the product of independent prior probabilities on the individual ECI. The prior

distribution for a given EC1 V; is Gaussian, with mean V; | and variance o,". It is because

the width of the prior distribution for each cluster function j is identical that the
regularization is physically unrealistic. A more realistic prior would have narrower

distributions for the variables for which the difference V; —V;  is expected to be smaller. It
is straightforward to create such a prior by replacing the universal o, with o, which is

dependent on the cluster function represented by j:
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2
‘V}.A

P(VA () = Vop, () - Vp ()) oc Heﬁ Equation 70

The optimization problem can now be expressed as

i

5 (1 1 ~ 1 )
V payes () =V, () +arg mm(_ Z 2 (VA (Ci )_ Ya )2 t5 Z Zj"V’j—.,Az J Equation 71
no \27 0 25

where

/1; =— Equation 72

If the average potential energy is of interest, prior distributions over the correlation

coefficients B, can be similarly defined:

5 . (1 1 ~ 1
Ve )=V, () + argmm(EZ—o_—z(VA(ci)— yAy,.)2 + —Z—Zﬂaﬂa'Az) Equation 73

v A(‘) i i
where the sum is now over cluster function orbits @ instead of the individual cluster

functions. This can be expressed in matrix-vector notation:

5 (= 2\, = (1= ~ _ ~\ = - .
VBayes(x)Z Vp(x)+x -argﬁmln(i(yA -—XﬁA)TW/V(yA _XﬂA)"'ﬂATAVﬂA) Equat10712

A

where the matrix W, is diagonal, with elements defined by:

W::,ii =7 Equation 75

Avoe =4 =—3 Equation 76

. . 2 . .
To know the values for the noise variances, o, , would require knowing how well the
model can reproduce the actual data. In general, this is not known, which makes the weight
matrix W, impossible to specify. However, the desired magnitude of the noise variance for

a given sample relative to other samples can be specified. ‘This is accomplished by defining a

mattix W by
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Wi=—% Equation 77

. 2 . .
for some unknown variance o, . This has the desirable property that

2
w. W,. o,
e T Equation 78
W, W, o

but no assumptions about the magnitude of the noise variances ate necessary. ‘The term
2 . . , . .
o, can be thought of as the uniform variance of the noise for a regression performed with

input values XW"? and output values W25, .
If a matrix A is defined by

A =5 Equation 79

Equation 74 can be re-written as

I}Ba,ves (f) = Vp (‘i)+ X arg_mln(% ()_/A - XBA),W(?A - XBA )+ BATAEA) Equation 80
B

A

Equation 80 is a weighted regularized least-squares regression on the output vector y,

with regularization matrix A. The solution for this problem is known, and is given by:

I}Bayes()_f ) = V,,(J_C~ )+ x (X WX + A)_1 X"wy, Equation 81
Through Equation 77 and Equation 79, all of the unknowns from the probability

distributions have been transferred to the matrix A. Later ways to find good values for A
will be discussed.

I11.2.2.2.2. The Laplace prior

An alternative to Gaussian priors on the coefficients for cluster functions would be to
use a Laplace prior. The prior distribution is expressed as:

_lﬂa.A l"[z- 1 _|ﬂa —ﬂn.PlJz—
% ____ __ %a Equation 82

_aaﬁe

1
Pbos)= 53¢

'The optimization problem becomes
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i i

. 1 1 _
 sapes ()= v, ()+ ar%rgm[—z— Z?(VA(ci)— yA’,.)2 + Zﬂalﬂa, AI] Equation 83

where

A,=— Equation 84

Because of the discontinuity in the first derivative of the absolute value, it is more
difficult to efficiently solve this problem. This problem can be written in matrix-vector
notation as follows:

=7, - srgmin 105, W5~ 18,)+5,7M, ) Bqvainss

A

where §, is a vector whose ifh has an absolute value of 1 and the same sign as the ith

element of B,. Under the assumption that all diagonal elements of A are non-zero, the
following variable transformations can be made:
BA,T = ABA
X, =w"* X\ Equation 86
7 =",

These transformations produce the following minimization problem:

Ao N L (1 I .
Vaayes(x)= Vp(x)+ x: ar%mm(-z-"yr —XTﬂA,T" + (sﬁ” Par )) Equation 87
using the fact that 5§, =5, as long as all diagonal elements of A are positive. The

regression method that is expressed by Equation 87 is commonly known as LASSO (least
absolute shrinkage and selection operator) [86]. One of the advantages to this method is
that in general, the minimizing function will have only a finite set of non-zero ECI. Thus
the optimal set of cluster function orbits to be included in the fit are automatically selected.
Efron et al. recently produced an algorithm that finds the minimum in Equation 87 with the
same computational efficiency as a least-squares fit [87]. In the discussion of their algorithm,

they assume that the input data has been transformed to fit the following assumptions:

2. 7=0 Equation 88

i
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vj Zx,..j =0

vj Zx,.’jz =1

These assumptions are restrictive, as they prevent regularization of the constant term

and the last assumption is incompatible with the second transformation in Equation 86.

However, none of these assumptions are actually required for the detrivation of the

algorithm; they are only required for analysis and comparisons to similar algorithms.

The algorithm as presented by Efron et al,, applied to the transformed vatiables, can be

summarized as follows:

1)
2
3)

4

3)

0)

7)

8)

9)

10) Let 7=n§5{ [

Let BA'T =0, a vector of all zeroes.
Let ¢ = X;" (3 - X, Byr)
Let C= max(lc /l)

Let A={i:|cj|=C}.

~

1:¢, >0
Let s, = ) where A, is the ith element of A.
-1:¢, <0

Let X;, be the matrix composed of columns s,X;, where X ; is the jth

column of X, and A, is the ith element of A.

Let 4, =— — where -‘iA is a vector of all 1’s with length |A|

_ T 12
Let w, = 4,(X, /X, ) ..
Let d=X; Xy W, -
C-c; C+g

, , where min® means the minimum is over only
Ay—a; A, +a;

positive elements.

swij=A

11) Let d; ={ , where A, is the ith element of A.

0:jegA
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12) Let 7, =——d“i.
J

13) If there are some j € A for which 7, >0, then

a. Letj= argmin(}/j).

jeAy;>0
b. If y; <7 ,then
i. Remove j from A.
il. Sety=yp;.

14) Let BA,T = BA,T + ft?
15) Goto 2).

There is one thing missing from this algorithm: a break condition. To derive this

condition, start with Equation 5.22 from reference [87]:

— 8, Xy T (Fr = Xy \SBuimar )+ SaTa =0 Equation 89
where §, is a diagonal matrix whose ith diagonal element is s,, ﬁmin‘ ar is the minimizing

set of coefficients as defined in Equation 87, and the fact that 4 =1 in Equation 87 has been

used. Using the definitions given in the above algorithm, this formula can be written as

-+ S N 1 |, = 0 Equation 90
where C;, is the vector ¢ corresponding to the minimizing solution. Re-arranging and pre-
multiplying by S, yields

i, =C

min

Equation 91

where C_; is a vector of length IAI whose elements are given by C;, =|c This

min, j| *
shows that the algorithm reaches the minimizing solution when C =1. Equation 2.16 in

reference [87] says that for each step, C can be expressed as the following function of ¥:

C(}’ ) =Cy— M, Equation 92
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where C, is the value of C at the beginning of the step. The minimizing value of y for a

given step can therefore be expressed as:

Vmin = (Co - 1)AA_1 Equation 93

Equation 93 provides the break condition for the algorithm . Steps 14) and 15) are
replaced with:

14) Let 7, =(C-1)4,”
15) If y_, <7 then

a. ,BA,T = ﬁA,T + 7ming

b. End.
16) Let BA,T = BA,T +7ﬁ-
17) Goto 2).

A limitation of this algorithm is that all diagonal elements of A must be non-zero.
Otherwise, the columns of X; corresponding to the elements with value of zero would be
infinite. It is possible to get around this restriction by re-writing the algorithm in a way that
never involves infinity. Start with the observation that any vatiables for which A, =0
should be automatically included in the “active set” A because there is absolutely no penalty
for doing so. This is equivalent to noting that their correlations, ¢;, will be infinite as long
as they are non-zero. Therefore the LASSO solution must always be one that forces the
correlations for these vatiables to be zero. This is done by including these vatiables in A
and ensuring that every “update vector” u is orthogonal to the columns representing
vatiables for which A, =0.

Once these variables are included in A, the rest of the algorithm can be written in

terms of terms of X, , defined as

X, =w"x Equation %4

Including some optimizations, the new algorithm becomes:
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1) Define the set of positive-regularized vatiables as PR = {j A >0}. Let the its
complement, the set of zero-regularized variables, be ZR. For je€ZR, let S, ; be
the coefficient determined using a least-squares fit to the variables in ZR. For

jePR,let B, =0.

2) Let =X, (3, — X, B.).

3) LetC= max[—lf—’l]

jePR
J A P

4) Let A={j:H=C}uZR.
A

/)

1:¢, 20
5) Let s, = . where A, is the ith element of A.
-1:¢, <0

6) Let X, , be the matrix composed of columns X, , where X, ; is the jth
column of X, and A, is the ith element of A.
7) Let 4, = L — where A, is a vector of length |A| and the ith
- T -
VA B, X )

elementof 4, is s;A, 5 -

_ 1~
8) Let w, = AA(XW,A’XW,J Ay

9) Let d=X"X, W,.

C; C.

C- A—l C+—L

10) Let y= mit{ f , aji , where min" means the minimum is over only

je . )

A ——L 4, L

A, “TA,

positive elements.
Aysw i j=A,

11) Let d, ={ , whete A, is the ith element of A.

0:jeA
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12) Let 7, =@ for jeA.

J

13) If there are some j € A for which y, >0, then

a. Letj= argmin(;/j )

jeAy,>0
b. If y; <7, then
i. Remove j from A.
. Set7=yp;.
14) Let 7 =(C-1)4,”
15) If y_, <7 then

a. BA,T = BA,T + 7min£i

b. End.
16) Let BA,T = BA,T +7d.
17) Goto 2).

This algorithm can be made more efficient by noting that each update of the matrix

1
(X W, ATX . A) can be accomplished in OQAIZ) time using one of a variety of incremental

update methods for matrix inverses.

I11.2.2.3. The width of the prior distribution

In previous sections, solutions for Equation 50 were examined for two different shapes
for the prior distribution: a Gaussian shape and a Laplace shape. With the transformed

variables, the mean of the prior disttibutions will be zero. If only Laplace and Gaussian
shapes are considered, this leaves only the problem of determining &, the width of the
ptiot distribution for each vatiable. In this section different generating functions for o, will

be discussed. In the next section ways parameterize these generating functions will be

investigated.
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I11.2.2.3.1. Cluster selection

In theory, for a periodic system there are an infinite number of cluster orbits that can be
included in a cluster expansion. Determining the ECI for all of these cluster orbits is a
computationally intractable problem, but this is usually not necessary. One of the
advantages to the cluster expansion is that for clusters of atoms that are far apart, or for
clusters of many atoms, the ECI are expected to be small. In a Bayesian sense, this means

that the width of the prior disttibutions for the ECI for these clusters should be small. At
some point, the prior becomes so small that o, =0 is a reasonable approximation for
cluster orbits containing clusters larger than a given size. This approximation allows the
exclusion of large clusters from consideration in the fit, reducing the problem to one of a
finite number of variables. The cluster orbits for which &, is not set to zero will be referred
to as “candidate cluster orbits.”

From the set of candidate cluster orbits, a common strategy for determining the ECI is
to choose of subset of the candidate orbits and perform a least-squares fit on this subset.
This is equivalent to choosing a prior distribution with the constraint that o, € {O,oo}.
Although this is of course an unrealistic constraint, it is computationally and conceptually
simple and is widely used to develop cluster expansions. The parameters for this prior
distribution are binary variables that determine whether each cluster orbit is included in the
fit.

In the following sections forms for prior distributions for which the prior widths can

take on a continuous range of values will be investigated. In all forms o, = is used for

the empty cluster function.

II1.2.2.3.2. Constant width

A common strategy for determining the prior distribution is to assume the same prior
distribution on the ECI for each cluster, so that A=A/ for some A. It is a simple and
popular form for the prior, because it only requires the determination of one parameter.

This prior is equivalent to saying that the expected magnitude of the ECIs for all
candidate clusters is the same. In the case of a cluster expansion, this is an unrealistic

statement. It suggests that the ECI for larger clusters are expected to get smaller not in a
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continuous manner, but as a step function. For candidate clusters the width of the ptior is a
constant &, and beyond some cutoff point the width of the prior distributions is set to 0.

Physically, the width of the prior distributions should shrink more continuously.

I11.2.2.3.3. Independent widths

An alternative to using a constant width is to set the width of the prior distribution for
each variable independently. This is equivalent to trying to find the best set of non-negative
diagonal elements for A. This form of a prior, applied to cluster expansions, was recently
suggested by Drautz and Diaz-Ortiz [88].

One of the challenges with using independent widths is that determining the “best” A
can be computationally expensive. It is an optimization problem on a continuous m -
dimensional search space, where m is the number of candidate clusters. It is possible to use
a local minimization algorithm to find a good value, but this makes the result dependent on
the initial conditions.

Another concern with this approach is that with so many degrees of freedom available
to choose the prior distribution, there is a risk of over-fitting the data. The parameters of
the prior distribution are usually chosen based on a given set of training data, and there is a
risk that a given set of parameters work well for the training data but not in general. This
risk increases as the number of degrees of freedom in the prior parameter space is increased.
Although this might be a reasonable approach for a system for which there is no insight into
the expected magnitude of the ECI, it is perhaps excessive for the cluster expansion. There
is a general physical expectation for what a cluster expansion should look like: smaller
clusters are more likely to have large ECI than larger clusters. In the next two sections

distributions that take advantage of this insight will be investigated.

I11.2.2.3.4. The exponential width function

For the cluster expansion, it makes sense to incorporate physical insight into the width
of the prior distribution:
1) As the number of sites in a cluster increases, the width of the prior distribution on

the ECI for that cluster should decrease.
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2) As the distance between sites in a cluster increases, the width of the prior
distribution on the ECI for that cluster should decrease.

3) The cluster expansion should converge with respect to the size of the clusters in the

expansion. To define convergence, let V, ,, () be the cluster expansion with the “true” ECI

(as defined in Equation 39) for all clusters with fewer than n,, sites and no two sites further

cut

apart than 7,,, and ECI of zero for all other clusters. Convergence is then defined as

cul >

follows:

¥e>0,3{nr} 52 E(V,@)-V, @) )< Equation 95

By this definition, every cluster expansion for a material with a finite number of sites
converges because the cluster expansion that includes all possible clusters can perfectly
reproduce VA(E). For this reason, it will be assumed in the rest of this discussion that

systems with an infinite number of sites are being considered.

Equation 25 can be substituted into Equation 95 to get

2
V€>03{m,m}stE[z A¢/ ] <¢ Equation 96

I cut
where J,,, is the set of clusters with non-zero EClin ¥, Cu,() and V;, is used instead of
V; as a reminder that the mean of the prior expectations of the ECI is zero. The structure-

dependent part of the expectation value can be factored out to get

ZE([ 2V _ JJZ Equation 97

Ve>0,3{n s1. el <e

cut’ cut} ° N—

c

where the sum is over structures.
The square can be expanded to get

22 2Vis ;@)

i T8 T e
cut’ cut} s.t. N

4

Equation 98

Ve>0,3{n <&

Re-arranging Equation 98 produces the following expression:
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205 )e;(e)
V8>O,3{ncm,rm} s.t. Z Z E\ V. Vi~ <& Equation 99

T8 cur 7’8 N, g

The orthonormality condition (Equation 35) yields the following expression:

Ve>0,3{n,,,r.,} st _ZE (V;’A2)< £

Equation 100
J2J e

Because the expected values of the V; , are zero, Equation 100 can be written in terms

of the vatiances of the ptior distributions on the ECI:

Ve>0,3{n,,.r7,} st. Zaj.z <e&

) Equation 101
j ‘qut

The term 20'72 will in general be very large unless 0';2 gets very small. In particular,
JJcu

using the constant prior implies that the prior expectation is that the cluster expansion does
2 ’ . .
not converge. How small o;" must become as a function of cluster size can be

approximated by considering the density of clusters of a given size. By expressing the
variance of the prior distributions be a function of cluster size, the following continuous

approximation can be used:

20'72 ~ f Tp(n,r)dz(n, r)dr Equation 102

jE"cul N=Neyy r

where p(n,r) is the approximate density of clusters with 7 sites and 2 maximum radius of

r,and o? (n,r) is the variance of the prior distributions expressed as a function of 7 and

r. Under this approximation, the convergence criterion becomes

Ve>0,3 {ncu,,rcu,} st z mj‘xp(n,r)cr2 (n, r)dr <& Equation 103

=Ny r

A sufficient condition to satisfy Equation 103 is

Tp(n, rlo? (n, ridr<a™ Equation 104

for a>1.
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A function O'Z(n, r) that satisfies Equation 104 can be found by calculating an upper
bound for p(n,7) in the limit of large 7 and 7. The maximum number of sites that can be
selected such than the distance between any two sites is no greater than r grows as r,
where d is the dimensionality of the structure. The number of clusters with 7 sites and a
distance of no more than r between sites grows at a rate less than 7™ . Therefore, 7™ is an

upper bound on p(n, r) in the limit of large r and n, yielding

Tp(n, r)O'2 (n, r)dr < Tr"“’cr2 (n, r)dr Equation 105

Consider the following form for o (n,r):

o*(n,r)= Ar—t Equation 106
where 4>0. Combined with Equation 105, this produces

Tnax

j pln,r)o?(n,r)dr < ArTr‘““dr < (rf T Equation 107

e

With the appropriate choice of A, the approximate convergence criterion in Equation 104
can be satisfied.

Although this analysis is based on rough approximations, it suggests a useful form for
O'Z(n, r). The prior distribution for the ECI for a cluster with n sites and a maximum

distance of 7 between sites has a width given by:

o?(n, r)= A (Apr + A + 1) Equation 108
where the A, are non-negative parameters to be determined (for example, by cross-

validation). For a cluster of only one site, set ¥ =0. This form allows for prior disttibutions
that will converge, although it doesn’t force such distributions. It also guarantees that as »
and r get larger the widths of the prior distributions on the ECI get smaller (or stay the
same). Because it depends on only five parameters, it reduces the tisk of over fitting the data
relative to the individual prior. Equation 108 will be referred to as the exponential width
function. A similar approach was introduced by Laks et al. to treat problems of long-range

lattice strain, although it was only applied to pair functions [89].
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111.2.2.3.5. The hierarchical width function

The exponential width function is just one of many width-generating functions that
allow the prior expectaton to be that the cluster expansion converges. The exponential
width function assigns a width to the prior distribution of the ECI for a given cluster based
on two parameters: the number of sites in a cluster and the maximum distance between
those sites. Width-generating functions can use a richer set of data. For example, it might
make sense to consider the distances between all sites in a cluster when determining the
width of the prior distribution on the ECI. It also might make sense to consider what types
of sites are included in a cluster. The following form takes these factors into consideration:

12, \ 24

o*(@)=| Y| 4 [10+4r,) Equation 109

sea s'ea,s'#s
where s and s' label sites in cluster & and r, . is the distance between sites s and s'. The
non-negative parameters A, are site-dependent, and all symmetrically equivalent sites share

the same A_. These, and the non-negative parameters A, and 4,, are to be determined.

The form given in Equation 109 ensures that as sites are added to clusters, and as the
distance between the sites grows, the width of the prior distribution decreases. It also takes
into account, through the A, parameters, the possibility that the types of sites contained in a
cluster may affect the ECI. The distances between every pair of sites in the clusters are

accounted for through the 7, terms. For point terms, the expression reduces to

O'S2 =/15_2. Because thete are so few parameters in this form, and the point terms are
special in that they involve no interactions between sites, it might make sense to introduce a
new parameter A, to explicitly deal with the point clusters. This is the approach used in this
thesis. Because this form determines the width of the prior distribution in a way that
considers the properties of the components of a cluster, and it ensures that all clusters have

narrower priors than their subclusters, it will be referred to as the hierarchical width

function.
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I11.2.2.4. Parameterizing the width-generating functions

All of the width-generating functions discussed have parameters that need to be
determined. This is known as model selection, and there are a variety of known ways to
approach this problem. In this section two common approaches, leave-one-out cross-

validation (LOO-CV) and generalized cross-validation (GCV), will be investigated.

111.2.2.4.1. Leave-one-out cross-validation

In leave-one-out cross validation, one sample is removed from the training set and a
model is built from the remaining training samples. This model is used to predict the value
for the sample that was left out. This is repeated for each of the samples in the training set.
The leave-out-out cross-validation score is the root mean squared error for the predictions.
This technique was introduced for cluster expansions by Van de Walle and Ceder in the
context of cluster selection [74].

Leave-one-out cross-validation can also be used to evaluate ptior distributions. The
lower the leave-one-out cross-validation score is for a given prior, the better the models
generated using the prior are at predicting the values of the left-out samples. A reasonable
way to choose parameters might therefore be to find the set of parameters that gives the
lowest leave-one-out cross-validation score.

Calculating the leave-one-out cross-validation can be expensive, as it requires fitting up
to as many models as there are samples in the training set. In the case of the Gaussian prior,
a more computationally efficient solution can be found. Start by transforming the input

variables:
XW — W1/ 2 X
Vr= w2 (j’ - XBp) Equation 110
j’T = W1/2 (I}Bayes(X)— Vp(X))
Next substitute these variables into Equation 81:
= ( T 1y T2 i
yT=XW XW XW+A)- XW Vr Equation 111
Let X, ,, bea matrix in which each row is a sample being left out of the training set.

Let X}, be the matrix consisting of the remaining samples. Similarly, let Yr.» be the set
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of transformed output values corresponding to the input values in X , . Let y, , and

;T,om be defined similarly. Let ):)T,ou,,c,, be the transformed output values for samples left

out of the training set, predicted by a model trained only on the samples left in the training

set. Equation 111 then becomes

= 1 — .
yT,out,CV = XW,out (XW,inTXW,in + AT XW,inTyT,in Equatlon 112

Equation 112 can be re-written in terms of X, X, ,,, ¥y, and y; .

3 T T 1 T T Equation
yT,out,CV =XW,out(XW XW +A_XW,aut XW,out)_ (XW yT_XW,om yT,out) q 113

For readability, it is convenient to define a new matrix :

Q=X,"X,+A Equation 114

After applying the Sherman-Morrison-Woodbury formula [90] and doing a bit of

algebra, the following expression is derived:

= - T ~—1 1= ~ .
Yroucr = Vrow = (I - XW,OMI Q XW ,out) (yT,uul —Yy T,out) Equatlon 115

The cross-validation score is then given by:’

2

CV = @Vg “.i} T,out,CV - j; T ,out Equation 116

where the average is taken over different sets of samples left out of the fit. For leave-one-

out cross-validation, usually the average is taken by leaving every sample out of the fit, one at
a time. For leave-k-out cross-validation, the number of possible terms in the average grows
roughly exponentially with k as long as k is significantly less than the size of the training set.
For this reason, it may be preferable not to leave out every possible combination of samples
for leave-k-out cross-validation.

Equation 115 is similar to a well-known method for calculating the leave-one-out cross-
validation score for least-squares fits (see e.g. [74]). The advantage to this approach is that it

only involves solving for 7, once, using the full set of training data. The incremental cost

5 Often the cross-validation and generalized cross-validation scores are given as the squares of the scores
presented in this thesis. The form in this thesis was chosen to make units of the score equivalent to the units
of the output data.
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of using Equation 115 for each set of k samples left out is dominated by the cost of

inverting the k x k matrix (I -X, . QX W,W,). For leave-one-out cross-validation, this is

W ,out
very fast.
For the Laplace prior, the straightforward method of fitting # models for a training set

of size n will be used to calculate the leave-one-out cross-validation score.

II1.2.2.4.2. Generalized cross-validation

It can be shown that the leave-one-out cross-validation score is dependent on the basis
used to represent the input data X . A widely used alternative that does not have this
dependency is known as generalized cross-validation (GCV) [91]. It is equivalent to the
leave-one-out cross-validation score for a system in which the input data have been rotated
to a standard form. For systems in which the prior is Gaussian, the generalized cross-

validation score is given by:

N|):)T - yr||2
i -x,’Q"'x, )

where N is the number of training samples and Q is given by Equation 114. In addition to

GCV — Equation 117

being basis-independent, the GCV score has the advantage of being faster to compute than
the leave-k-out cross-validation score.

For the Laplace prior, Tibshirani has suggested using a form similar to Equation 117, in
which Q is given by

Q=X,"X, +B'A Equation 118

where B is a diagonal matrix with elements given by B, =|ﬂAJ| [86]. Although an

approximation, Equation 118 is much faster than calculating the leave-one-out cross-
validation score.

For the Gaussian prior, an interesting interpretation of the generalized cross-validation
score can be derived. This derivation uses some definitions were made previously, but are

repeated here for clarity:

Xy = w'x Equation 119
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Q=X,"X, +A
7, =W1/2()7_XB,,)
$r =W 2P (X)-7, ()

Bayes

Combining Equation 119 with Equation 81 and re-arranging yields:

Jr=Vr= (XWQ“XW’ - I)j/, Equation 120

If the training data have not been generated, the values for y; are unknown. Therefore
Yr can be treated as a random vector, denoted j:i'T . By making use of the prior distribution
for y,, an expression for the prior distribution for ()3, - ;T) can be derived:

~

r,=Vr = (X LQ7X, —1 )V” 2(X§A + 5,,) - Equation 121

where [, is a vector of variables drawn from the ptior distributions of coefficients, €, is a
vector of variables drawn from the prior distributions for the noise. The fact that the
expectation of every element of y; is zero has been used to derive Equation 121. Taking

the squared magnitude of each side produces:

- = 112 = = = o :
5. -5 ~ Tr[(XWQ‘1XWT s, 3 B 45 e(x,e0x, - 1)} Equation
The expectation value of each side can be calculated, using Equation 77 and Equation

79 and the fact that EA and a are uncorrelated:

E(";T B y’lr) - O'szr[(XWQ‘1XWT - IXXWA—1XWT + IXXWQ‘1XWT - I) Equati;;l;

Simplifying Equation 123 produces the following expression:
O G 2 Ay T
E(“J’r - J’T" )= O, T"[(I - X, Q7 X, )] Equation 124
Therefore, for a given positive diagonal matrix A,

. ".;ST _5}7"2 2

i -x,97'x,7 ||

Equation 125
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Comparing this to the GCV score produces

2
e

2)_ w
E (GC v )— % Tr[(l _x,Q XWT )] Equation 126

The numerator reflects the noise of the model; it is the error that cannot be recovered
no matter how well the model parameters are fit. In the cluster expansion, this is the etror
introduced by the fact that not all possible clusters are included in the expansion. The
denominator is a measure of the degrees of freedom of the model [92]. If no regularizer is
used, this is simply the number of samples minus the number of variables. The regularizer
serves to decrease the effective number of variables in the fit. This suggests that the GCV
score is a way of quantifying the intuition that the fewer degrees of freedom required to

build a model with little noise, the better the predictive power is expected to be.
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II1.3. Sample generation

Although the generation of sample data for a cluster expansion can be expensive, the
expected computational cost can be reduced by an intelligent choice of which samples are
generated. In this sense, fitting a cluster expansion is a problem in active learning. To
reduce the computational expense of building a cluster expansion, it is useful to consider
how to best choose the structures that should be included in the training set.

Van de Walle and Ceder argued that when the correlation coefficients are determined

using a least-squares fit, the predictive power of the fit over the universe of all structures

should be approximately proportional to the trace of (X D¢ y [74]. Here this idea will be

expanded upon to develop a method for structure selection that works for a Bayesian cluster
expansion and requires fewer approximations.

The derivation begins by calculating the covariance matrix for the correlation
coefficients in the case of regularized regression based on Gaussian prior distributions. The

correlation coefficients are given by:

BA = Q‘1XWTJ‘}T Equation 127

where B, is a vector of the estimated correlation coefficients, and Q, X, , and y; are

defined in Equation 119. The output variables can be written in terms of the “true”

coefficients f,, and a vector of random noise, €,. The tilde over B, is used to represent

the fact that the coefficients are drawn from a prior distribution. Equation 125 then

becomes

BA = Q_1XWTW1/2(X§A +§”) Equation 128
The difference between the predicted and “true” coefficients is
B - ﬁA = (Q‘1XWTXW -1 )ﬁA +Q7'x, W% Equation 129

This is the sum of two random, uncorrelated variables. The covariance matrix is given
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Cov(ﬂA ﬂA) [( _1X Xy -1 _1(X X, Q" - ])+ Q' XWT X, Equatilgz(';

where the facts that Cov(ﬁA)= O_sz_1 and Cov(a)= O'WZW'1 have been used. This

expression can be simplified to

Cov( B, - BA) =0,’Q" Equation 131
For a given input vector X, the difference between the predicted output and the actual
output is given by
Pri=vr=w 2% B, - (w,."zxf B, +w" 26) Equation 132
Rearranging produces
j}T,i —Vri = wi1/2fiT(BA - BA ) - W,-VZE,- Equation 133

The first term on the right is the variance of the fit, and the second is the noise. Once
again, the right side is the sum of two uncorrelated random variables. Taking the covariance

of each side produces

Epy, - yr, F =0, w270 5w +1) Equation 134

Recognizing that the term on the right is the trace of a 1x1 matrix, and using the cyclic

property of the trace, the following expression can be derived:

A 2 A= = .
E(y, i yT’,.)2 =0, Tr(Q 1x,.w,.x,.r )+ 0'w2 Equation 135
It is desirable to minimize the expected squared error over the entire domain of

structures, which will be referred to as the “test set” or “test domain”. Equation 135 can be

generalized for any set of test data.

= - 2 2[~-1 Ty .
E (“y Tyest — VT fest " ) =0, [Q - X W test W rest T test] Equation 136

¢

where N, is the number of structures in the test set, and Q7'-X Wwaes: 15 the

W test
Frobenius inner product (the sum over element-wise multiplication) of the matrices Q™' and

T P - .
Xy s~ This is a product between px p matrices, where p is the number of

X

W test

distinct cortrelation coefficients to be determined. .
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The expected squared prediction error per structure can be written as

2

D et = Vs
E p-. tN Ll =g 2l D+ Equation 137
test
where the matrix D is defined by
Xyt X
D =Wt = Wiest Equation 138
N Test

This provides a useful method for trying to select structures that minimize the
prediction error over the entire function domain. The term &, is a function of the model

selection, which has been discussed in the previous section. It is independent of the
structures that are included in the training set. Therefore the expected squared prediction
error, as a function of structures included in the training set, is proportional to Q™' -D+1.
By minimizing this term, the expected error can be minimized. Specifically training

structures that minimize Q™'+ D, which is proportional to the error due to variance, need to

bé selected. Note that if Q= X, WTX w and D =1, Van de Walle and Ceder’s approximation
is recovered.

There are now two problems to address: The first is to calculate the matrix D so that it

represents the universe of all test structures. Because this matrix is 2 compact, pxp

representation of the relevant information about the function domain, it will be referred to

as the domain matrix.
The second problem is finding a computationally efficient way to select training

structures so that Q'-D is minimized. In the next two sections these problems will be

addressed.

I11.3.1. Estimating the domain matrix

Thetre are several methods available to estimate the domain matrix. In this section a few
simple methods, and the situations in which each method might be appropriate, will be

evaluated.
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II1.3.1.1. Direct enumeration

Perhaps the simplest method of estimating the domain matrix is to enumerate a large set
of unique structures in the test domain, and directly calculate the matrix. For cluster
expansions with a large number of sites, such as those for infinite crystals, the challenge can
be enumerating a set of unique structures that is large enough to be representative for a
domain. In this section an efficient algorithm for accomplishing this in the case of cluster
expansions on infinite crystals will be developed.

An infinite crystal is created by starting with a set of sites, known as the basis, and
repeating the basis over an infinite Bravais lattice. The set of all sites in a crystal that is

petiodic in d dimensions can be defined by

—_ - d . - T
Vb, ,VaeZ i, b,+a'L,,

Equation 139

where b, are the coordinates of the basis sites, Z? is the set of all d -dimensional integer

is a matrix whose rows are d linearly

vectors, 7, ; is the coordinate a crystal site, and L,
independent primitive vectors of the Bravais lattice. For a crystalline cluster expansion,
every site has the same occupation variable domain and single-variable basis functions as the
basis site from which it was generated. In this section it will be assumed that the smallest
possible basis has been chosen to represent the crystal of sites. The corresponding Bravais
lattice will be called the “site lattice”.

Often, low-energy structures (site decorations) are also crystalline. The Bravais lattice
for a crystalline structure may be different from the “site lattice”, depending on the
occupancies of the sites. The lattice for the occupied sites will be called the “structure
lattice.” The site lattice has been defined so that it represents all lattice transformations that
map sites onto symmetrically equivalent sites. Because of this, the lattice vectors for the

structure lattice must be linear combinations of integer multiples of the lattice vectors for the

site lattice. Mathematically, this can be written:

Lstmcture = SLsite Equation 140

where the rows of L, . are linearly independent primitive vectors for the structure lattice,

and § is a dxd matrix with all integer elements. The absolute value of the determinant of
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S is the ratio between the number of sites in the basis of the structure lattice and the
number of sites in the basis of the site lattice. This means that the number of sites in the
basis for the structure must be an integer multiple of the number of sites in the cluster
expansion basis. This integer multiple will be referred to as the “size” of the structure lattice.

It is possible for two lattices to be equivalent. This occurs when the primitive vectors
of one lattice can be expressed as a linear combination of integer multiples of the primitive
vectors of the other, and both lattices have bases of the same size. This type of lattice

equivalence will be represented by the symbol ~, and defined mathematically as

L ~L, iff AT st. L,=TL, Equation 141
whete T is a unimodular matrix (a square matrix with integer elements and determinant of 1

or -1). Because T is unimodular, it is straightforward to derive the transitive property of

lattice equivalence:

L~L, & L,~L,=>L ~L, Equation 142

Because of lattice equivalence, there are a finite number of possible different structure
lattices with a given basis size.

For a cluster expansion defined on an infinite lattice, there may be symmetry operations
in addition to translations. The cluster expansion space group will be defined as the group
of all operations that leave the sites, allowed occupancies, and single-variable basis functions
unchanged. Every one of the operations of the space group can be expressed as a “point”
operation, which leaves the lattice origin unchanged, combined with a translation. Every
space group has a finite number of point operations. Because the point operations must
map lattice points to lattice points, they can be expressed as integer matrices operating on
lattice vectors. These point operations may cause two lattices to be symmetrically equivalent.
For example, if a cluster expansion is defined on a 2-dimensional square lattice, then the
reflection operation that maps the x-coordinate to the y-coordinate and vice-versa is a point
operation. Because of this operation, the structure lattice with primitive vectors of (2, 0) and
(0, 1) is equivalent to the structure lattice with primitive vectors of (1, 0) and (0, 2).

A template for an algorithm to enumerate structures can now be written. Often the

structures of interest have relatively small bases, so the algorithm starts by enumerating
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structure lattices with a size of 1. This is repeated for lattices with a size of 2, then with size
of 3, etc. For each size, all structure lattices at that size are enumerated with the constraint
that no two enumerated lattices are lattice equivalent. Lattices that are symmetrically
equivalent based on the point group of the cluster expansion are also removed. For each -
lattice, all possible decorations of the sites in the corresponding basis are enumerated, with
the constraint that no two decorations representing symmetrically equivalent structures are
enumerated. The algorithm is terminated at some pre-defined point, usually a size at which
the computational expense outweighs the benefit of additional structures. In the following
sections, the details of a rapid implementation of an algorithm that follows this template will
be fleshed out.

I11.3.1.1.1. Enumerating structure lattices

Every structure lattice can be generated from a given site lattice using Equation 140,

with a different matrix S for each structure lattice. Let two lattices L, and L, be defined by

L1 =8 1Lsite
Equation 143
L,=8§ 2Lsite
By Equation 140, and the fact that L, is invertible, it follows that
L~L, iff §,~8, Equation 144

The problem of finding a maximal set of lattices that are not lattice-equivalent can therefore
be transformed to the problem of finding the maximal set of integer matrices that are not
lattice-equivalent.

To proceed further, the concept of Hermite normal is introduced [93]. An integer
matrix in Hermite normal form is lower—triangﬁlars, with the requirements that the diagonal
elements are all positive, no elements are negative, and the maximum element in each
column is located on the diagonal. If two matrices in Hermite normal form are different
from each other, then they are not lattice-equivalent. On the other hand, every integer
matrix is lattice-equivalent to exactly one matrix in Hermite normal form. Because a matrix

in Hermite normal form is diagonal, the size of a lattice represented by a matrix in Hermite

normal form is given by the product of the diagonal elements. If H (S ) represents an

¢ Equivalently, often upper triangular mattices are used.
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operation that reduces an integer matrix to Hermite normal form, lattice-equivalence can be

written as follows:

L ~L, iff H(S,)=H(S,) Equation 145

Enumerating all non-equivalent structure lattices of a given size is therefore the same as
enumerating all matrices in Hermite normal form with a given determinant. The algorithm

for enumerating all unique d -dimensional supetlattices is as follows:

1) Let k be the desired size of the structure lattice.
2) Calculate all possible factorizations of k consisting of d factors.
3) For each factorization:

a. Calculate all unique permutations of the factorization.
b. For each permutation:

i. Place the factors, in the order of the permutation, along the diagonal
of 2 d xd matrix.

ii. Enumerate all possible ways of populating the lower triangular part
of the matrix, such that the elements of the lower triangle are non-
negative integers, and the maximum of each column lies along the
diagonal.

iii. Use each enumerated matrix as the matrix S in Equation 141 to

generate the superlattice vectors.

For example, the set of all symmetrically distinct supetlattices with primitive cells that
are three times the size of the base primitive cell can be generated from the following integer

‘matrices:
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3 00||3 00|]|3 00
010,010,010
0 0 1)[1 0 1]|2 0 1]
3 0 0][3 0 0][3 0 0]

110,110,110
0 0 1}{1 0 1}{2 0 1]
[3 0 0][3 0 0][3 0 O]

Se<l2 1 042 1 0|,|2 1 O,r Equation 146

0 0 1]|1 0 1]|2 0 1]
(1 0 O0][1 0 O][1 O O]
0 3 0,0 3 0,0 3 0},
0 0 1] LO 110 2 1]
(1 0 0]

010
10 0 3] )

The matrices in Equation 146 have been arranged in a logical order. The three different
permutations of {3,1,1} are explored in order (for example, from greatest to least when
written out as numbers in base k+1). For each permutation the off-diagonal elements are
explored in a similar order, with the constraint that no off-diagonal element can be larger
than the diagonal element in the same column. With this approach, it is straightforward to

rapidly calculate the index of each matrix in the set, and to calculate the matrix that belongs

at each index. Let §; be the matrix in Hermite normal form cotresponding to index i, and

let i(S) be the function that maps a given integer mattix to the approprtiate index.

The possibility remains that the generated structure lattices are symmetrically equivalent
due to the point operations of the cluster expansion. For example, if the cluster expansion
has cubic symmetry, the structure lattices represented by the first, tenth, and last matrices in
Equation 146 would be symmetrically equivalent. In general, the criterion for two structure

and L, =S,L

site 3

lattices, given by L, =S,L

site

to be symmettically equivalent (denoted by

=)is
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L=L, iff IF€G,, st. SFL,, ~S,L,, Equation 147

where G, is the set of integer matrices representing point operations for the cluster

expansion. Remembeting that H (S ) is the operation that reduces an integer mattix to

Hermite normal form, Equation 147 can be re-written:

LizL, iff IF €G,, st. H(S,F)=H(S,) Equation 148

The full algorithm for generating symmetrically distinct structure lattices is as follows:

1) For a given size k, first calculate how many matrices exist in Hermite normal

form with a determinant of k. Call this number N, .
2) For the indices i=1...N:
a. Generate the corresponding matrix S; in Hermite normal form.
b. For each cluster expansion point operation F;:
i. Calculate j= i(H (S,.Fj. ))
ii. If j<i, then a symmetrically equivalent matrix has already been

generated; Set i =i+1, and go to 2).

c. Use Equation 140 is used to generate the new structure lattice.

This algorithm runs in O(N,) time and uses only integer operatons and very little

memory. As an example of the performance of this algorithm, on a 2.0 GHz Pentium M
processor all 9537 symmetrically distinct structure lattices up to size 64 for an FCC cluster

expansion were found in 49 seconds.

I11.3.1.1.2. Enumerating structure basis decorations

For every structure lattice generated, it is necessary to generate all of the ways in which
the basis sites for the structure can be decorated. Calculating the possible decorations is
trivial: simply list all of the basis sites in some arbitrary order, and then loop in an ordered
fashion over all possible combinations of occupation variables. Much like the matrix

enumeration in the previous section, this provides a way to map every possible decoration to
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a unique index, and for a given index to quickly calculate the corresponding decoration. Let

the vector d; represent the decoration corresponding to index i, and i, (d ) be the function

that maps a given decoration dtoa unique index.

It is still necessary to eliminate symmetrically equivalent decorations. Two decorations
are symmetrically equivalent if one of the operations in the space group of the cluster
expansion can be applied to a structure built from one decoration to arrive at the other
decoration. Applying a symmetry operation to a decoration maps each site in the basis to
another site in the basis. In this way, each symmetry operation is equivalent to a
permutation of the basis sites. There are a finite number of permutations corresponding to

symmetry operations in the cluster expansion space group. The set of all such permutations

will be called G,,,,,. A statement can then be written that is analogous to Equation 148:

d=d, if FeG,,, st i,(d)=i,(Fld,) Equation 149
The enumeration algorithm proceeds similarly to the algorithm for the enumeration of
structure lattices:

1) Calculate the total number of allowed decorations, N, .
2) Fori=1.N,:
a. Generate the decoration d, corresponding to that index.

b. Foral FeG,,,
i. Calculate j=i,(F(d)).
ii. If j<i, then a symmetrically equivalent mattix has already been
generated; Set i =i+1, and go to a).
c. Add the current decoration to the list of structures generated.

There are two more details to work out in the above algorithm. The first is that a given
decoration might create a structure for which there is a smaller basis. For example, for a
structure lattice of size k&, if all sites in the basis are decorated with the same occupation
variable, then the resulting structure can be expressed as one with a structure lattice of size

1. Such a structure would have already been generated when structutes of size 1 were

generated. To avoid generating duplicate structures, it is necessary to make sure that there is
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no translation, other than translations in the structure lattice, which maps a structure with a
given decoration onto itself. This can be accomplished by listing the full set of site lattice
translations so that no two site lattice translations differ by a structure lattice translation.
These translations are just special cases of the symmetry permutations listed eatlier. Each of
these site lattice translations are applied to each candidate decoration, and if any of them
map the decoration onto itself then the decoration is ignored and the next decoration is
considered.

The other remaining detail is the performance of the algorithm. The algorithm should

run in O(N,) time, where for a binary cluster expansion and a structure with m basis sites,

N, =2". The exponential dependence on m this algorithm cannot be removed, but it may

be possible to reduce the exponent. The iteration over decorations will often involve
changing the occupation vatiable of only one site between decoration i and decoration i+1.
Because of this, if decoration i is symmetrically equivalent to a previous decoration, there is
a good chance that decoration i+1 will be equivalent to another previous decoration.
Evaluating all decorations until one is found that is symmetrically different from previous
decorations may be time consuming. A more efficient approach would be to directly
examine the permutations, and figure out the index of the next allowed decoration. It is
then possible to skip directly to this index without generating the intermediate decorations.
This version of the algorithm can run in as little as O(N,,) time, where N, is the number
of symmetrically unique decorations. The advantage for structures with a large basis and
high symmetry can be substantial.

For example, for a binary FCC cluster expansion, there are approximately 2.8*10"
possible decorations of structure lattices with a size of 31, but only about 1.9%10 are
symmetrically unique. ‘This gives N,, ~1.58". Using the algorithms described in this

thesis, all structures with a basis of up to 31 sites were found for this system in less than

eight hours on a 2 GHz Pentium M processot.
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IT1.3.1.2. Analytical methods

An alternative to direct enumeration is to evaluate the domain mattix analytically. For
this section, assume all structures as equally weighted. Each element of the domain matrix

can be calculated as follows:

%XiaXiﬂ
Daﬂ — i=1 N

fest

Equation 150

Substituting Equation 32 into Equation 150 produces the following expression:

N!e.ﬂ
D - ; (ple.)),(olc.) s Equation 151
i test
Substituting Equation 27 yields
N,
D - 2,520, ;@—- este) Equation 152
“ N, aN ﬂN test

In the following sections, Equation 152 will be considered in two cases: when the test
set is the domain of all possible structures, and when the test set consists only of structures

at a given composition.

II1.3.1.2.1. All possible structures

If the test set is the domain of all allowed structures, N, = N.. If an orthonormal

test — V¢
basis is assumed, Equation 152 can be combined with Equation 35 to yield the following
expression:

I

—Jeajeh Equation 153
" N,N,

Evaluating the sums yields

Oup
Daﬂ = _]V_ Equation 154

a

Equation 154 is an interesting result: the domain matrix is diagonal, and the only non-

zero elements for the domain matrix are for the cluster orbits that contain a finite number of
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clusters. For an infinite crystal, there is only one cluster orbit that fits this definition and has
a finite number of sites for which j, #0. This is the orbit for the empty cluster, to which
an index of zero is assigned. Thus the domain matrix has only one non-zero element,
D,, =1. Plugging this into Equation 137 yields

2

E ”ﬁ T test j} T Jtest
N,

ltest

=0’ [(Q“ ho + 1] Equation 155

This might seem to be a strange result, because it removes much of the information
about the non-empty clusters. This is due to the fact that the distribution of all structures is
sharply peaked at a point at which all correlations are zero except for the correlation for the
empty cluster. Thus the prediction error, on average, will be dominated by errors in the ECI
for the empty cluster. Equation 155 reflects the importance of getting the ECI for the

empty cluster correct.

I11.3.1.2.2. Fixed composition

Although the entire universe of structures is sharply peaked around structures with zero
correlations, the entire universe might not be of interest. For example, sometimes the
structutes being studied have a fixed composition of elements, such as 30% silver and 70%
gold. In the limit of an infinite crystal, this is equivalent to assigning probabilities to each of
the possible values of the occupation variables. Equation 152 can be re-written as

PIPACACH"ACH Y

D —isai<s Equation 156
i N,N,

where (x,.>Test is used to indicate the average value of quantity X over the entire test set.

Combining Equation 156 with Equation 24 yields the following expression:

55 ($ 0.0k kb))

jeajep\i=1 k
D —

af
NN,

Equation 157

where, as a remindet, ¢, is the occupation variable for the kth site and the ith structure,

Ji is the kth element of j,and @, , is the jith single-variable basis function for site k.
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If p,, is defined as the probability that the occupation variable of the kth site is the

mth allowed value, then in the limit of an infinite number of sites Equation 157 can be

written:

5 513, ot

D =jeaj‘eﬁ k m=1

af
N,N,

Equation 158

where ¢, ,, is now the mth allowed value for the occupation variable for the kth site.

If there are an infinite number of sites, but the prior guess only allows clusters with a
finite number of sites to have non-zero ECI, then the odds of two clusters ovetlapping are

essentially zero. Taking advantage of this fact, Equation 158 becomes:

2 Z( I1 ﬁpk’""bfhk o )J( 11 ip bt e )J Equation 159

D = Jjea j'eB\ k:j#0 m=1 k:j'y#0 m=1

ap
NaNﬂ

Because the terms in parenthesis are going to be the same for all clusters in the same

- orbit, Equation 159 can be written:

D af = ( H Z pk,m¢jk,k (Ck,m )J[ H Zk: P,,,,,,¢j-h,, (Ck,m )] Equation 160

k:j,20,jea m=1 k:j#0,/'ef m=1

Another way of writing Equation 160 is

D= <f><f>T Equation 161

where

(55)“ = (‘xa> = H Zk pk,m¢jk,k (Ck,,,,) Equation 162

k:j, #0,jea m=1
This formula can be used to calculate the domain matrix at any composition. Consider

the special case of a binary alloy, with the following domain and basis:

Vk ¢, e{-1,1}
Vk b, (ck ) =1 Equation 163
Vk ¢, (ck ) =C
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where occupation with species A corresponds to ¢, =—1 and occupation with species B

corresponds to ¢, =1. Let the percentage of sites occupied by species A be fixed at p. For

an infinite crystal, from Equation 160 becomes:

D af = [1 - 2p ](n,,,+nﬂ) s Doo =1 Equation 164
where 7, is the number of sites in each cluster function j € @ for which j, #0, and ng is

defined similarly. From Equation 164, it can be seen that fixing the concentration at 50%
leads to Equation 155. This is because the result for systems not constrained to a given
composition is due to the sharply peaked density of structures at 50% composition.

In general, the distribution of compositions for structures in the test set is not sharply
peaked at 50%. For example, suppose there is an equal interest in predicting the properties
of structures at all compositions. The domain matrix for this situation can be calculated by

integrating Equation 164 over all compositions:

1
1 . n, +ngeven
D, = I[1 _ 2p}"a+"ﬁ)dp = ina +ng+ 1; d Equation 165
=0 0:n,+n,0dd

Noticing that along the diagonal of the mattix, n, +n, is always even, some similarity to

Van de Walle and Cedet’s trace approximation becomes apparent.
The formulas derived in this section are exact in the limit of infinite crystal petiodicity,
and should work best for structutres that do not necessarily have small crystal bases. In this

sense, the analytical method may be consideted complementary to the direct enumeration
method.

I11.3.1.3. Statistical methods

There are some situations in which the distribution of structures on the test domain is a

function of the occupation variables themselves. In general, there may be some probability
distribution P(J?i) representing the likelihood of a given structure appearing in the test set

with

Z P (xi ) =1 Equation 166
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If P(J'c",.) (or a close approximation) is known, Equation 150 can be approximated by

statistically sampling the test domain. For example, a Metropolis algorithm [73] might be
used. '

An example of when this approach could be useful would be if the thermodynamic
properties of a material in a given range of temperature and chemical potential are of
interest. For example, for a binary compound at a given temperature, T, with the chemical
potential difference between species given by 4, statistical mechanics states that in the
grand canonical ensemble

V) v,
e kT

})T,pA (f:) =TTV G N, Equation 167

e
i

where N, is the total number of nuclei of species A, and the total number of nuclei in the

system is assumed to be fixed.

The probability function in Equation 167 can be used along with statistical sampling to

estimate the domain matrix at a given temperature and chemical potential, D(T i,). The
key is that it is necessary to have a good estimate for V(J'c",.), which is the original problem.

A reasonable estimate for this function might be the prior estimate. Equivalently, if some
training data have already been generated, the most likely function in the postetior
distribution could be used. Alternatively, and perhaps mote accurately, the parameters of the
function can be treated as random variables themselves. The sampling would then be over
not only occupation variables, but over values for the ECI distributed according to the
posterior distribution.

The domain matrix over a range of chemical potentials and temperatures can be
estimated by numerically integrating over the domain matrices at fixed potentials and

temperatures:

D[Tmin’Tmax ]-[/‘a.min s/‘a.max] = J. ID(T ’ ﬂA )dﬂadT Equation 168

Tmin Ha min

This method for calculating the domain matrix, combined with Equation 137, provides

a quantitative method for measuring the key property in a training set: the degree to which
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structures are both.thermodynamically likely and informative about the potential energy

function.

II1.3.2. Selecting the training set

Once a domain mattix has been calculated, a training set can be generated to that gives a
low value for the expected squared etrot, represented by Equation 137. Generally, the
problem of building a training set can be viewed as one of choosing which structures to add

to an existing set of training data. Equation 137 then becomes

E |j)”“']; i —5 2 [(Qo,d v XX, ) D+ 1] Equation 169

test

where

Q.= Xa,dTXo,d +A - Equation 170
The matrix X, is the set of input data that has already been added to the training set, and
the matrix X, is the set of input data that is being considered for addition to the training
set. If Q_, is assumed to be invertible, which it generally should be as long as a good

regularizing matrix A has been chosen, the Sherman-Mottison-Woodbury formula can be

used to re-write Equation 182:

2

ly Totest ~ VT test

N o Equation 171

E

O.wz [(glola'-1 - Qold-1XnewT (I + X, Q2 _1XnewT )\1 )(newglald—‘I ) D+ 1]

new™ “old

Using the properties of the Frobenius inner product, Equation 171 can be re-written:

- 2
E “y T test y T test " _
N B Equation
test 172

awz[ﬂo,d'1-D+1]—0'w2Tr[X 0,0, X, 1+ X,.0 “X,WTT]
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The first term on the right is the expected squared prediction error of the known

training set. ‘The improvement due to the additional training samples is given by the second
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term on the right. The problem of choosing new structures can therefore be reduced to the

problem of finding a set of structures that minimizes the following expression:

—Trl_X Q. DQ, "X T(I+X 0, 'x,. T J Equation 173

new" “old new new™ “old

The expression in Equation 186 term can be calculated in 0(p2 + Nm,?’) time, where

P is the number of coefficients to be fit and N,,,, is the number of new training samples to

be added to the training set. Finding sets of structures to minimize Equation 186 is a can be
addressed with any number of well-known minimization heuristics.

The fact that different structures have different computational costs has not yet been
addressed. Generally, it is desirable to find the best set of structures within a given
computational cost. Van de Walle and Ceder suggest addressing this problem by finding the
(5

C(z)

cost of calculating the output for X, and AV(fi) is proportional the reduction in estimated

structure that maximizes the absolute value of , Where C(J'c',.) is the computational

variance by adding the correlations X; to the training set [74]. A similar approach could be
used along with the formulas in this thesis, with the only difference being that Equation 1
would be used to calculate AV(Z,).

An alternative, but related approach, is to treat this as a penalized minimization
problem, similar to the problem of Tikhonov regulatization. In this method, a penalty

parameter A is chosen, and the objective is to minimize following expression:

—TrlX Q,,'D0,, X, ([+X,.0,7%,.) J+ AC(X,,,) Equation174

new™ “old new™ “old new
The parameter 4 can be adjusted manually to balance the tradeoff between computational
cost and improved predictive power. Once again, heuristic minimization algorithms can be

used to find structures that give low values for Equation 174.
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I11.4. Experiments

A good measure of the quality of a cluster expansion is the ability of the cluster
expansion to predict properties of materials that were not included in the training set. When
used to calculate thermodynamic averages, it is most important that the cluster expansion get
the energy of low-energy structures correct. For phase diagrams, it is important that the
cluster expansion correctly ranks the structure with the lowest formation energy at a given
composition. Rather than focusing on specific applications, in this thesis a more general
property of the cluster expansion that is important to many applications is tested: the ability

to calculate the potential energy of structures that were not included in the training set.

[I1.4.1. Sample data

To evaluate the various methods discussed in this thesis for generating cluster
expansions, sample sets have been generated for three different binary material systems: Si-
Ge, Ag-Au, and Pb-Ir. Each method was evaluated by selecting a training set from the
much larger sample set and using the training set to fit a cluster expansion. The predictive
power of the cluster expansion was then evaluated over the full sample set. To more
accurately reflect the distribution of structutes over the test domain, multiple distinct but
symmetrically equivalent structures were allowed in the sample set. (This was accomplished
by weighting each structute proportional to the number of distinct structures that were
symmetrically equivalent to it, and then removing the symmetrically equivalent structures.)

In this section the generation of the test and training data will be described.

I11.4.1.1. Calculating input values

I11.4.1.1.1. Generating the sample structures

Two of the systems tested (Ag-Au and Pb-Ir) were modeled by cluster expansions with
face-centered cubic (FCC) symmetry. The training sets for these cluster expansions
consisted of all structures with up to nine atoms in the structure basis. Using the methods

described in this thesis, 1135 symmetrically distinct structures were found.
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The remaining system, Si-Ge, was modeled by a cluster expansion with diamond cubic
symmetry. All structures with up to fourteen atoms in the structure basis were included, for

a total of 9631 structures.

I11.4.1.1.2. Selecting training structures

For each set of input data, training sets with 15, 30, 45, 60, and 75 structures were
evaluated. All training structures were selected from the sample set by using a greedy
algorithm to find the structures that minimized Equation 1. The domain matrix was
calculated directly from the entire sample set, and the regularization matrix was assumed to
be zero for the purpose of selecting training structures. Because the regulatization matrix
was set to zero, it was necessaty to ensure there were always at least as many training
structures as clusters used for the structure selection algorithm. Otherwise, the matrix Q in
Equation 1 is singular. To meet this requirement, the set of considered clusters for structure

selection was increased as the set of training structures was increased.

I11.4.1.2. Calculating output values

The cluster expansion method is generally used to model calculations that are otherwise
computationally expensive. To avoid taking on an impractically large computational burden,
the data sets used in this thesis were generated using fast multi-body potential models that
are known to reproduce the properties of materials reasonably well. This section contains
descriptions of the models used to generate the data. The General Utility Lattice Program
(GULP) [94] was used to calculate the energies for the datasets using the potential models.

For all structures, the mean of the prior distribution for the potential energy was
calculated as the linear average between the energies of the pure elements. This is equivalent
to fitting the formation energies for the structures. For example, for all structures that were
25% silicon and 75% germanium, the mean for the prior distribution on the energy per atom
was 25% of the energy per atom for pure silicon plus 75% of the energy per atom for pure

germanium.

111.4.1.2.1. The embedded atom potential

The embedded atom potential is a simple multi-body potential that is well-suited for

some metallic systems. The intuition behind the potential is that in addition to the pair-wise
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interactions between nuclei, the nuclei also interact with the local electronic density due to
neartby atoms. The local electronic density is calculated as a linear combination of
contributions from nearby atoms, and the strength of the interaction with the electronic

density is proportional to the square root of the density. The general form for the potential

is:

Equation 175

where 7; is the distance between nuclei i and j, and ¢, ¢, g;

ij s 1,

4> M, are parameters
that are dependent on the elements of nuclei i and j. In this thesis the pafametets
published by Sutton and Chen [95] have been used. Sutton and Chen list only self-
interaction parameters for the elements. For interactions between different elements, the

following combination rules used were used:
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One of the challenges with the embedded atom model is that there is no distance at
which the interaction between two atoms becomes zero. To make evaluation of the
embedded atom method feasible, a cutoff radius may be chosen. Beyond this radius it is
assumed that atoms have no interaction. In this thesis, a cutoff radius of 12 A was used.
The use of the cutoff radius can cause discontinuities in the potential energy surface, which
may cause issues with convergence when searching for local minima.

The embedded-atom potential was used to generate data for two systems studied in this
thesis. The first, face-centered cubic (FCC) Ag-Au, is an alloy between two elements with
similar lattice parameters, and all systems relaxed to their local minima with forces converged
to 1 meV / A. The second system, FCC Pb-Ir, is an alloy of two elements with a
significantly different FCC lattice parameters in their pure forms. In an attempt to resolve

this lattice mismatch, there were more significant relaxations for Pb-Ir alloys. No effort was
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made to check that the relaxed structures resembled the initial FCC structutes, so there may
have been significant reconstruction for some structures. There were 32 structures in which
the forces did not converge within 1 meV / A, but all converged within 10 meV / A It
should be expected that the cluster expansion converges significantly better for the Ag-Au

system than for the Pb-Ir system.

111.4.1.2.2. The Tersoff potential

The Tersoff potential is a bond-order potential, in which the strength of the interaction
between two atoms is dependent on the “order” of the bond between the atoms, which in
turn is dependent on the positions of other nearby atoms [96]. It is 2 many-body potential
that works well for diamond cubic materials such as silicon, germanium, and carbon in its

diamond form. The form of the potential is given by:
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where all variables except 7; and 7, are element-specific parameters provided by Tersoff.

The Tersoff potential was used to calculate the energy of the Si-Ge structures. Because
of the fc() term, there are no first-order discontinuities in this potential, and all calculations

converged so that the maximum force was less than 1 meV / A.

II1.4.2. Model selection

For all cluster expansions, parameters were chosen by attempting to minimize either the
leave-one-out cross-validation (LOO CV) or generalized gross validation (GCV) scores.

Selecting the set of parameters that minimizes one of these scores is in general a global
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optimization problem which can not be analytically solved. The technique used to find a
good set of parameters depended on the type of prior disttibution.

For cluster selection, a rule was enforced that if a cluster was included in the fit, all
subclusters must be included as well. This constraint can be compared to the constraint in
the continuous prior distributions that clusters must have smaller prior widths than any of
their subclusters. It was found that this constraint significantly improved the quality of the
fit. For cluster expansions in which there were fewer than 30 candidate clusters, the set of
clusters that minimized the score was found by an exhaustive search of all possible sets of
clusters to include in the fit. For cluster expansions with more than 30 candidate structures,
a Metropolis algorithm was run to search for the ground state. The Metropolis algorithm
was run in multiple stages, with the number of attempted changes in each stage equal to 200
times the number of candidate clusters. Between stages, the temperature was dynamically
adjusted to bring the ratio of successful flips closer to 10%. The algorithm was stopped
when the ratio of successful flips was within 30% of 10%.

For the exponential, hierarchical, and constant width-generating functions, parametet
selection was done in a two-stage process. The first stage of the process was a grid search
for a local minimum on a logarithmic grid, in which neighboring grid points represented
parameters that differed by a factor of 2. All parameters were initialized with a value of 1.
The grid search was ended when the improvement in the score between neighboring points
was less than 1E-4 eV. When the grid search was completed, a conjugate gradient algorithm
was used to more finely resolve the local minimum. The conjugate gradient algorithm was
stopped when the gradient of the score with respect to the natural log of the parameter
values was less than 1E-5 eV.

For the individual width-generating function, the same method was used as the
exponential, hierarchical, and constant width generating functions if there were fewer than
six parameters. For situations in which there were six or more parameters, the multi-
dimensional grid search rapidly becomes computationally expensive. In such situations, the

grid search was skipped and only the conjugate gradient step was used.
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I111.4.3. Cluster expansion options

To evaluate different methods for generating cluster expansions, a set of cluster
expansions were generated by exploring all possible combinations of the options listed in
Table 12. A total of 60,000 possible cluster expansions can be generated from the
combinations of these options. The algorithm used to fit cluster expansions that use the
Laplace prior requires that the input data be linearly independent, which restricted the

number of cluster expansions that were successfully fit to 56,480.

Option Allowed Values Description
The binary material for which the input
Data set Pb-Ir, Ag-Au, Si-Ge
and output data were generated.
Whether the nuclei should be allowed to
Nuclear positions Initial, relaxed relax to nearby local minima when
calculating energies.
The number of structures in the training
Training set size 15, 30, 45, 60, 75
set
The “candidate clusters” which were
{1,0,0},
allowed to have non-zero ECI. Each set
{2’ 2’ 2}’
3,0,01 on the corresponds to the maximum
{3’ 2’ 0}’ distance between sites for pair clusters,
{3’ 3’ 3}’ triples, and quads, respectively. A value of
Candidate cluster sets S “0” means none were included, a value of
{4, 3,0},
“1” means all clusters with no two sites
{4’ 4, 4}’
5.0,0) further than next-nearest-neighbors were
T allowed, “2” means all clusters with no two
{5, 4,0},
5.5.5) sites further than next-nearest-neighbors
T were included, etc.
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Whether a random noise term, drawn from

a Gaussian with standard deviation of 2

Add noise True, false
meV, should be added to the calculated
energy.
Whether structures should be assigned a
Weight by symmetric
True, false weight proportional to the number of
degeneracy

symmetrically equivalent structures.

Ptior distribution

Cluster selection,
The Laplace prior,
Gaussian priofs,

Tterated Gaussian

What type of prior distribution should be
used. “Iterated Gaussian priors” is a
method in which the Gaussian prior is
used to fit the data, then all clusters with
correlation coefficients below 0.1 meV

were removed from consideration. This

priors .
process was repeated until no clusters had
cotrelation coefficients below 0.1 meV.
The width-generating functions are
Constant, . ) ) '
) . . described in this thesis and were used to
Width-generating independent, _ . .
) ) determine the width of Gaussian and
function exponential, o
_ _ Laplace prior distributions. For cluster
hierarchical ) ) o _
selection, this option is not valid.
Whether the prior distribution applied to
ECI,
‘ ) the ECI or the correlation coefficients.
Regularized variable | correlation _ _ o
) For cluster selection, this option is not
coefficients

valid.

Cross-validation

method

Leave-one-out cross-

validation, generalized

cross-validation

For the Laplace prior, the approximate
generalized cross-validation score

suggested by Tibshirani [86] was used.

Table 12 The different options used to generate cluster expansions evaluated in this thesis.
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I11.4.4. Results

Because of the large number of cluster expansions generated, there are many ways in
which the results can be analyzed. In this section the impact of the options and noteworthy

combinations of options used to generate the cluster expansion will be examined.

I11.4.4.1. Prior distributions

Of the four different shapes of prior distributions considered, the combination of the
Laplace prior with the independent width-generating function produced cluster expansions
with anomalously poor predictive power (Figure 40). Because of the large number of
parameters required for the independent width-generating function, minimization of the
score typically relied on the conjugate gradient algorithm. However with the Laplace prior,
the derivative of the score with respect to individual parameters is zero for parameters
representing variables that are not in the active set, and it is discontinuous at the point at
which the variables join the active set. It is possible that the conjugate gradient algorithm

had difficulty navigating this surface for the Ag-Au and Si-Ge data sets.
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Figure 40 The average root-mean-square prediction error, relative to the data standard
deviation, for different combinations of prior shapes and width-generating functions. The
averages were taken over the calculated data with no additional noise added.
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The speed at which the cluster expansion can determine the value of a given data point
is determined by the number of clusters in the expansion with non-zero ECL. The cluster
expansions based on the Gaussian prior tended to produce the most clusters with non-zero
ECI (Figure 41). However, this number could be reduced significantly by using the iteration
procedure to remove all ECI with values below 0.1 meV. For the Si-Ge and Ag-Au data
sets, this method produced cluster expansions with about the same number of non-zero ECI
as cluster selection. For the Pb-Ir data set, the iteration method did not trim the number of
clusters as much, probably because the ECI for this data set were on average larger. Cluster
expansions based on the Laplace prior tended to produce the fewest non-zero ECI. When
combined with the independent width-generating function for the Ag-Au and Si-Ge data
sets, very few clusters were assigned non-zero ECI. This helps explain why the prediction
error of these cluster expansions is so poor, and is consistent with the conjugate gradient

algorithm having a difficult time finding clusters that minimize the score.
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Figure 41 The average number of cluster orbits with non-zero ECI for different
combinations of prior shapes and width-generating functions. The averages were taken over
the calculated data with no additional noise added.

Although the Laplace prior distribution produced the smallest cluster expansions, it also

on average produced those with the worst predictive power. Some cluster expansions which
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used the Laplace prior could not be fit because of constraints on the fitting algorithm.
Because of the discontinuous nature of the Laplace prior, it is more general more difficult to
work with analytically. For these reasons, the remainder of the results presented in this
thesis will exclude all cluster expansions that relied on the Laplace prior. This is more likely

to give meaningful data across a variety of cluster expansion options.

I11.4.4.2. Regularized variable

The prior distribution can be defined on either the ECI or the cortelation coefficient,
with the only difference between the two of them being a factor of the multiplicity of the
cluster orbit. Cluster expansions with both types of prior distributions were evaluated, and
the predictive power of these expansions is given in Figure 42. There is little difference
between defining a prior distribution on the ECI or the cortelation coefficient, with the most
significant impact occurring for the independent and constant width-generating functions.
The result for the independent width-generating function is particularly interesting, because
for this width-generating function the multiplicity factor should not affect the space of
allowed prior distributions. Thus it is likely that the difference is due to the cross-validation
minimization procedure starting at differenf initial points and navigating differently-scaled
cross-validation score surfaces. This highlights the importance of evaluating different initial
conditions and convergence criteria, especially for the constant and independent width-

generating functions.
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The average root-mean-square prediction error, relative to the data standard

deviation, for different width-generating functions applied to either the correlation coefficients
or the ECL. The averages were taken over the calculated data with no additional noise added.

111.4.4.3. Data sets

The standard deviations of the formation energies per atom in the data sets used for the

cluster expansion are given in Table 13. The standard deviations vary significantly, with the

Pb-Ir system having the largest standard deviation by far. This system was chosen because

of the large difference between the parameters in the embedded atom potential for Pb and

It, so it is not surprising that there is so much variation in the formation energies. On the

other hand, the Si-Ge system is almost perfectly described by the mean of the prior

distribution, resulting in very little standard deviation in the formation energies.

An

interesting result is that in both the Si-Ge and Pb-Ir systems, the relaxed structures had

lower standard deviation than the unrelaxed systems. The near-linear correlation between

energies and composition in these relaxed systems suggests that volume effects may

significantly contribute to the energetics.
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Standard Deviation (eV / atom)

. Initial 0.0029

i Weighted Relaed 0.0020
2 R Initial 0.0033
Wes Relaxed 0.0024

. Tnitial 0.0110

Sk - Relaxed 0.0123
gan S_—_— Initial 0.0131
WEE Relaxed 0.0144

. Tnitial 0.6294

4 Winightec Relazed 0.4662
& Unweishted Initial 0.7392
WEs Relaxed 0.5332

Table 13 The standard deviations of the formation energies in the different test sets used.
Values are given for the formation energies without any noise added.

Because the standard deviations for the different data sets vary so widely, results will in

general be presented relative to the standard deviation for the given test set. If the cluster

expansion is replaced by a simple function that returns the average formation energy of the

test set, the root-mean-squared (RMS) prediction etror of the cluster expansion should be

equal to the standard deviation of the test set. In general, cluster expansions should petform

much better than this. An unexpected result, likely due to the low standard deviation for the

relaxed Si-Ge system, is that on average the RMS prediction error for the cluster expansions

on the relaxed Si-Ge system was close to the standard deviation of the formation energies

(Figure 43). In contrast, the cluster expansion performed very well on the Si-Ge system with

the nuclei in ideal diamond-cubic lattice positions.
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Figure 43 The average root-mean-square prediction error relative to the standard deviation
of the data. Values are given for the formation energies without any noise added. A
logarithmic scale is used.

One possible explanation for the unexpectedly poor fits for the relaxed Si-Ge data is
that in the relaxation process, there is a certain amount of noise that cannot be modeled by
the clusters considered for the fit. Because the standard deviation of the relaxed Si-Ge
system is so small, this noise becomes relatively more apparent. To support this hypothesis,
the results for Si-Ge fit to the calculated data, and the calculated data plus manually added
noise (drawn from a Gaussian of with 2 meV), are shown in Figure 44. The addition of the

noise makes the results appear more similar to the results of the relaxed structure.
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Figure 44 The average root-mean-square prediction error relative to the standard deviation
of the data for the Si-Ge system. Results are plotted for both nuclei in their initial and relaxed
positions, and for the data with and without the addition of noise drawn from a 2 meV wide
Gaussian. A logarithmic scale is used.

The addition of the noise is clearly most significant in Si-Ge, as opposed to the others in
which the noise is smaller relative to the inherent fluctuations in the data (Figure 45). Within
a given data set, the addition of noise generally makes the fit worse overall, and seems to
affect the cluster selection method the most. In particular, the addition of noise seemed to
be most detrimental to the cluster selection method for the Ag-Au data set. This may be due
to the fact that the noise is neither too small to be very noticeable (as in Pb-Ir), nor so large

that is overwhelms the data (as in Si-Ge).
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Figure 45 The effect of adding noise to the formation energies on the RMS prediction error,
relative to the standard deviation, in each of the data sets.

I11.4.4.4. Weighting

Often all training structures for a cluster expansion are given equal weight. For a variety
of reasons, structures may be assigned unequal weights in an attempt to improve the
predictive power of the fit. For example, it might make sense to assign a weight to a
structure in the training set that is proportional to the number of symmetrically equivalent
structures in the test domain. A structure with very high symmetry will generally have fewer
distinct symmetrically equivalent structures in the test domain, whereas a structure with low
symmetry will have many distinct symmetrically equivalent structures.

Cluster expansions were generated from both the situation in which all training
structures had equal weights and the situation in which all training structures are given
weights proportional to the number of symmetrically equivalent structures. These cluster
expansions were then evaluated against two test sets:

1. A test set in which all structures up to a certain size were included, even if

multiple structures were symmetrically equivalent.
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2. A test set in which structures were removed so that no two structures in the set

were symmetrically equivalent.

The predictive power of these cluster expansions are shown in Figure 46. In both the
FCC training sets, the weighted fits outperform the unweighted fits, whereas in the Si-Ge
training set the unweighted fit does better. However, the data do not paint a clear and

consistent picture of how assigning weights to the structures affects the quality of the fit.
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Figure 46 The average root mean square prediction error, normalized by data standard
deviation, for cluster expansions generated from both weighted and unweighted training sets.
The unweighted prediction error was evaluated on test sets in which only one representative
from each orbit of symmetrically equivalent structures was included. Values are given for the
formation energies without any noise added.

I11.4.4.5. Convergence

Because training data can be so expensive to generate, one of the key challenges for a
cluster expansion is to rapidly converge to a model with good predictive power. The average

predictive power of cluster expansions, as a function of training set size, is shown in Figure
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47. The average is taken over all data sets, for which the trends were similar. In this chart

the advantages of the more physically meaningful width-generating functions start to

become more apparent.
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Figure 47 The average root mean square prediction error, normalized by data standard
deviation, for cluster expansions as a function of training set size. The averages were taken
over the calculated data with no additional noise added.

A more detailed breakdown of the relative predictive power of the cluster expansions as
a function of training set size, the set of candidate clusters, and the width-generating
function used is given in Table 16 - Table 21. Some of the key results are summarized in
Table 14, Table 15, and Table 22.

The average predictive power for cluster expansions built using the exponential and
hierarchical width-generating functions is the best across all data sets (Table 14). The
exponential and hierarchical width-generating functions perform similarly to each other,
which is not surprising considering their similar form. Cluster selection and the independent
width-generating function were the next best on average, about 10% worse than the

exponential and hierarchical width-generating functions. The constant width-generating
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function performed the worst, about 20% behind the exponential and hierarchical width-

generating functions.

No noise 1.072 1.345 1.026 1.000 1.114

8 Noise 1177 1.191 1.021 1.000 1122
Nonoise | 1.117 1.280 1.000 1.013 1.169

3 Noise 1.103 1.281 1.000 1.011 1.168
No noise | 1.027 1.059 1.000 1.001 1.011

Noise 1.071 1.022 1.000 1.001 1.044

o 1.091 1.191 1.004 1.000 1.101

Table 14 The average relative root mean square prediction error of cluster expansions
generated using each of the width-generating functions, for each of the data sets.

The cluster selection method most frequently had the best predictive powet, followed
by the hierarchical, exponential, and constant width-generating functions (Table 15). The

independent width-generating function rarely had the best predictive power.

Cluster

2 Constant  Exponential  Hierarchical Independent
selection

No noise 50% 16% 14% 14%
Noise 38% 14% 12% 36% 0%
No noise 34% 18% 18% 30% 0%
Noise 32% 18% 20% 30% 0%
No noise 14% 28% 16% 10% 32%
Noise 6% 20% 44% 22% 8%
Average 29.00% 19.00% 20.67% 23.67% 7.67%

Table 15 The percentage sets of candidate clusters for which the given width-generating
function produced the cluster expansion with the lowest average root mean square prediction
error.
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Training | Pair | Triple | Quad
setsize | cutoff | cutoff | cutoff | Cluster
selection
NN | None | None
3NN | 3NN | 3NN 1.046
4NN | None | None
4NN | 3NN | None
15 ANN | 4NN | 4NN
5NN | 4NN | None
5NN | 5NN | 5NN 1.151
6NN | None | None
6NN | 5NN [ None 1.604
6NN | 6NN [ 6NN 1.593
Average for training set of 15 1.219
NN [ None | None
3NN | 3NN | 3NN
4NN | None | None
4ANN | 3NN | None
30 4NN | 4NN | 4NN
5NN | 4NN | None
5NN | 5NN | 5NN 2.505
6NN | None | None
6NN | 5NN | None
6NN | 6NN | 6NN 1.621
Average for training set of 30 1.057
NN None | None
3NN | 3NN | 3NN
4NN | None | None
4NN | 3NN | None
45 4NN | 4NN | 4NN
5NN | 4NN | None
5NN [ 5NN | 5NN 1.249
6NN | None | None
6NN | 5NN | None
6NN ONN 6NN 2.269
Average for training set of 45
60 NN None | None
3NN | 3NN | 3NN
4NN | None | None
4NN | 3NN | None
4NN | 4NN | 4NN
5NN | 4NN | None

Constant | Exponential | Hierarchical | Independent

3.615

1.052
3.734
2:511
1.122
1.072
1.088

1.044

1.055

1.172

1.102

1.087

1.084

1117

1.034

2.054

Minimum
RMS
prediction
error /
data
standard
deviation
0.962
0.471
0.197
0.212

0.156

1.064

0.065

4.296

2.134

0.072

0.065
0.058

6.315

0.074

1.351

2.495

4.134

0.238
0.881
0.452
0.188
0.208
0.128
0.063
0.059
0.064
0.040
0.053

11519

1.031

1.266

3.055

0.215
0.855
0.448
0.174
0.198
0.109
0.060
0.051
0.060
0.038
0.039

1.042

0.205
0.834
0.434
0.165
0.186
0.108
0.059




Training
set size

RMS prediction error relative to row minimum

75

Pair Triple Quad
cutoff | cutoff | cutoff CIUSt_er
selection
5NN | 5NN [ 5NN
6NN | None | None
6NN | 5NN | None
6NN | 6NN | 6NN
Average for training set of 60
NN | None | None
3NN | 3NN | 3NN
4NN | None | None
4NN | 3NN | None
4NN | 4NN | 4NN
5NN | 4NN | None
5NN | 5NN | 5NN
6NN | None | None
6NN | 5NN | None
6NN | 6NN | 6NN

Average for training set of 75

Average over all trials

Constant

Exponential | Hierarchical | Independent
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Minimum
RMS
prediction
error /
data
standard
deviation

0.046

Table 16 The relative prediéti’ve powers for the Ag-Au data set, with no noise added, for the
five different width-generating functions as a function of training set size and candidate cluster
sets. This table may be read in the following way: In each row, the first four columns specify
the combination of training set size and candidate cluster set. The next five columns are the
average RMS prediction error for each of the different width-generating functions, expressed
relative to the minimum RMS prediction error for the row. Green cells are the minimum
values for the row, and blue cells are within 3% of the minimum. Red cells are the worst value
for the row, as long as the worst value is not within 3% of the minimum. The final column
gives the value, relative to the data standard deviation, of the minimum RMS prediction error
for the row.
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Training | Pair | Triple | Quad
setsize | cutoff | cutoff | cutoff | Cluster
selection
NN None | None
3NN | 3NN | 3NN 1.034
4NN | None | None
4NN | 3NN | None
15 4NN | 4NN | 4NN
5NN | 4NN | None 1.067
5NN | 5NN [ 5NN 1.985
6NN | None | None
6NN | 5NN | None 1.456
6NN | 6NN | 6NN 1.650
Average for training set of 15 1.242
NN None | None
3NN | 3NN | 3NN
4NN | None | None
4NN | 3NN | None
30 4NN | 4NN | 4NN 1.095
5NN | 4NN | None
5NN | 5NN | 5NN 2.404
6NN | None | None
6NN | 5NN | None 1.044
6NN | 6NN [ 6NN
Average for training set of 30
NN None | None
3NN | 3NN | 3NN
4NN | None | None
4NN [ 3NN | None
45 4NN | 4NN | 4NN 1.037
5NN | 4NN | None
5NN | 5NN | 5NN 1.545
6NN | None | None
6NN | 5NN | None
6NN 6NN 6NN
Average for training set of 45 1.155
60 NN | None | None
3NN | 3NN | 3NN
4NN | None | None
4NN | 3NN | None
4NN 4NN 4NN
5NN | 4NN | None

Constant

2.079

1.434

2.797
1.222

2.519

Exponential | Hierarchical | Independent

1.036
1.773

1:037
1.519
1.084

1.037

1.044

1.038

1.057

1.842

Minimum
RMS
prediction
error /
data
standard
deviation

0.988
0.513
0.271
0.323
0.289

1.041

0.220

2229

2472

0.227
0.201
0.203

0.216

1.264

1.075

1.916

2129

0.350
0.904
0.484
0.267
0.303
0.243
0.194
0.202
0.190
0.191
0.210

1.141

1.036

1.678

1.639

0.320
0.883
0.473
0.250
0.279
0.219
0.190
0.190
0.189
0.187
0.189

1.086

0.306
0.855
0.457
0.242
0.263
0.217
0.188




Training
set size

RMS prediction error relative to row minimum

Constant

75

Pair | Triple | Quad
cutoff | cutoff | cutoff Clust.er
selection
5NN | 5NN [ 5NN
6NN | None | None
6NN | 5NN | None
6NN | 6NN | 6NN
Average for training set of 60
NN None | None
3NN | 3NN | 3NN
4NN | None | None
4NN | 3NN | None
4NN | 4NN | 4NN
5NN | 4NN | None
5NN | 5NN | 5NN
6NN | None | None
6NN | 5NN | None
6NN | 6NN | 6NN

Average for training set of 75

Average over all trials

| 1177

Exponential | Hierarchical | Independent
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Minimum
RMS
prediction
error /
data
standard
deviation

0.188

Table 17 The relative predictive powers for the Ag-Au data set, with noise added, for the
five different width-generating functions as a function of training set size and candidate cluster
sets. This table may be read in the following way: In each row, the first four columns specify
the combination of training set size and candidate cluster set. The next five columns are the
average RMS prediction error for each of the different width-generating functions, expressed
relative to the minimum RMS prediction etror for the row. Green cells are the minimum
values for the row, and blue cells are within 3% of the minimum. Red cells are the worst value
for the row, as long as the worst value is not within 3% of the minimum. The final column
gives the value, relative to the data standard deviation, of the minimum RMS prediction etror
for the row.
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Training | Pair | Triple | Quad
setsize | cutoff | cutoff | cutoff | Cluster
selection
NN | None | None
3NN | 3NN [ 3NN 1.054
4NN | None | None
4NN | 3NN | None
15 4NN | 4NN | 4NN
5NN | 4NN [ None 1.032
5NN | 5NN [ 5NN 1.879
6NN | None | None
6NN | 5NN | None 1.649
6NN | 6NN | 6NN 1.498
Average for training set of 15 1413
NN | None | None
3NN | 3NN | 3NN
4NN | None | None
4NN | 3NN | None
30 4NN [ 4NN | 4NN
5NN | 4NN | None
5NN | 5NN | 5NN 2.697
6NN | None | None
6NN | 5NN [ None 1.054
6NN | 6NN | 6NN 2.569
Average for training set of 30 1.219
NN None | None
3NN | 3NN | 3NN
4NN | None | None
4NN | 3NN | None
45 4NN | 4NN | 4NN 1.037
5NN | 4NN | None
5NN | 5NN [ 5NN 1.728
6NN | None | None
6NN | 5NN | None
6NN | 6NN | 6NN 2:522
Average for training set of 45 1.133
60 NN | None | None
3NN | 3NN [ 3NN
4NN | None | None
4NN | 3NN | None
4NN | 4NN | 4NN
5NN | 4NN | None

Constant

1.055

1.049

1.037

Exponential | Hierarchical

1.051

1259

1.062
1.232

1.058
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