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ABSTRACT

This thesis explores the commercialization of germanium-based nanocrystal memories.
Demand for smaller and faster electronics and embedded systems supports the
development of high-density, low-power non-volatile electronic memory devices. Flash
memory cells designed for ten years of data retention require the use of a thick tunneling
oxide. This compromises writing and reading speed as well as endurance. A smaller
device size can be achieved and speed and can be improved by decreasing the oxide
thickness. However, significant charge leakage will occur if the oxide is too thin, which
will reduce the data retention time dramatically. This imposes a limit to the amount by
which the oxide thickness can be decreased in conventional devices. Research has shown
that by incorporating nanocrystals in the tunnel oxide, charge traps are created which
reduce charge leakage and improve endurance through charge-storage redundancy. By
replacing the conventional floating gate memory with one using Si or Ge nanocrystals,
the nonvolatile memory exhibits high programming speed with low programming voltage
and superior retention time, and yet is compatible with conventional silicon technology.

This thesis provides an analysis of competing technologies, an intellectual property
analysis, costs modeling as well as ways to improve nanocrystal memories in order to
compete with other forms of emerging technologies to replace conventional Flash
memories.

Thesis Supervisor: Carl V. Thompson
Title: Stavros Salapatas Professor of Materials Science and Engineering
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Chapter 1: Introduction

Demand for smaller and faster electronics and embedded systems supports the

development of high-density, low-power non-volatile electronics. Flash memory cells

designed for ten years of data retention require the use of a thick tunneling oxide. This

compromises writing and reading speed as well as endurance.

A smaller device size can be achieved and speed and can be improved by

decreasing the oxide thickness. However, significant charge leakage will occur if the

oxide is too thin and this reduces the data retention time dramatically. This imposes a

limit to the amount by which the oxide thickness can be decreased in conventional

devices.

Research has shown that by incorporating nanocrystals in the tunnel oxide, charge

traps are created which reduce charge leakage. By replacing the conventional floating

gate memory with one using Si or Ge nanocrystals, the nonvolatile memory exhibits high

programming speed with low programming voltage, superior retention time and yet is

compatible with conventional silicon technology.

In addition, nanocrystal based memories are also more resistant to defects in the

tunnel oxide. In conventional Flash cells, when there is a defect in the tunnel oxide,

charges stored in the floating gate will leak away, rendering the cell unusable. However,



for nanocrystal memories, a defect in the tunnel oxide will only affect the charges stored

in neighboring nanocrystals. As a result, nanocrystal based memories would normally be

able to function properly as long as the defect remains small and isolated.

1.1 History of Non-volatile Memory Structures

Memory can be classified as two main types: volatile and non-volatile. Volatile

memory loses its data after the supply current is turned off. Examples of this type of

memory include static random access memory (SRAM) and dynamic random access

memory (DRAM). Non-volatile memory retains its data even when it is not powered. The

main types of non-volatile memory include Electrically Erasable Programmable Read

Only Memory (EEPROM,) Erasable Programmable Read Only Memory (EPROM) and

Flash (also called Flash EEPROM).

Kahng and Sze proposed the first non-volatile floating gate memory in 1967. A

conventional Metal Oxide Semiconductor Field Effect Transistor was modified to include

an embedded metal floating gate as illustrated in Fig 1.1. The floating gate device looks

like an n-channel Metal Oxide Semiconductor Field Effect Transistor (MOSFET) except

that it has two gates: the floating gate and the control gate. The floating gate is able to

store charges that were injected from the substrate through the thin tunneling oxide. The

storage of charges changes the threshold voltage of the MOSFET and allows logic '0'

and '1' to be represented.'



A schematic of a floating gate device is as illustrated below:

Gate
Oxide

SiO 2 Inter-
polysilicon
Dielectric
(IPD)

Source Substrate Drain

Figure 1.1. Schematic of a Floating Gate Device

In this type of memory, electrons are transferred from the substrate to the floating

gate by tunneling through the thin layer of silicon dioxide. Storage of charges in the

floating gate can be adjusted between high and low levels to represent '1' and '0'. The

charges are retained even when the power is switched off.

In 1970, Frohman-Bentchkowsky demonstrated a floating polysilicon gate. The

electrons were injected through a thick gate oxide to the floating silicon gate and

removed using ultraviolet (UV) irradiation. This was also known as Electrically

Programmable Read Only Memory (EPROM).
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In 1980, an Electrical Erasable Programmable Read-Only Memory (EEPROM)

utilizing tunneling write/erase was developed by Intel. The Floating Gate Tunneling

Oxide (FLOTOX) technology proposed by Intel utilizes two transistors (a select

transistor and a memory transistor) to achieve selective bit programming through Fowler-

Nordheim (FN) tunneling. The select gate transistor is used to select or deselect floating

gate transistors for programming or erasing. The die size was further increased to include

error correction/redundancy circuitry, making them much larger than EPROMs.2

A single transistor EEPROM cell combining hot electron programming and FN

tunneling erase was introduced in the 1980s. This new generation of EEPROMs does not

have the select transistor and could only be erased by resetting the devices on the entire

chip or a large portion of the chip. This generally sets all bits in the block to 1. Starting

with a freshly erased block, any location within that block can be programmed. However,

once a bit has been set to 0, only by erasing the entire block can it be changed back to 1.

This chip is known as the Flash EEPROM. A smaller cell size can be achieved compared

to the normal EEPROM. This can be further scaled down by using a thinner gate

dielectric. However, of the gate oxide gets too thin, there will be current leakage

problems, causing data retention issues. This limits the scalability of the minimum

dimension of the memory cell.3 5

1.2 Working Principles of Conventional Flash Memory



Conventional state of the art Flash memory stores information in floating gates

transistors similar to that illustrated in Figure 1. Traditionally, each transistor or cell

holds one bit. However, newer Flash systems can hold multiple bits and are called multi

level cell devices. As mentioned earlier, information is stored inside the floating gate by

trapped electrons.

In a NOR flash cell, the floating gate is programmed by placing a large voltage at the

control gate. Electrons are sucked up and deposited at the floating gate via a process

called hot electron injection (HEI). In order to erase, a large negative voltage is supplied

at the gate and the electrons tunnel out by Fowler-Nordheim (FN) Tunneling. The high

voltage required is generated using an on chip charge pump. Most modern NOR flash

memory components are divided into erase segments, usually called either blocks or

sectors. All of the memory cells in a block must be erased at the same time. NOR

programming, however, can generally be performed one byte or word at a time. On the

other hand, NAND flash memory uses tunnel injection for writing and tunnel release for

erasing.

In NOR cells, the source or drain of the transistors are connected to a single bitline in

parallel. In NAND cells, the memory cells are connected from a single bitline in series.

This is as illustrated in Figure 1.2. The wordline, connected to the control and floating

gate, is stacked above the silicon substrate. Adjacent transistors share the same

source/drain.



Bitline

Bitlines

Figure 1.2: (Top) NOR Flash Memory and Wiring on Silicon. (Bottom)) NAND Flash

Memory and Wiring on Silicon.6



The parallel configuration of NOR Flash enables random access of data, enabling fast

read speed. Hence, NOR flash is ideal for applications which are frequent read-only or

perform-read operations such as code storage. NAND Flash enjoys higher cell density for

a given technology node. This translates to smaller chip size, lower cost-per-bit and faster

write/erase speed through programming blocks of data. Hence, NAND is ideal for

applications such as data storage which requires low cost, small size and which rewrites

data frequently. 79

1.3 Current and Future Non-volatile Memories

Flash memory is the dominant form of non-volatile memory in the market. In recent

years, there has been a drastic increase in demand for portable electronic devices such as

cellular phones, digital cameras and thumb drives. In addition, new markets for flash

memories are emerging. As prices fall, Flash memories are now able to compete with

magnetic and optical storage media, especially in areas where users are willing to pay a

premium for speed and performance' 0 15. Both developments contribute to skyrocketing

demand for Flash Memory.

Great efforts have been carried out to make Flash memory cells smaller and more

portable and at the same time faster and with lower power consumption. However, there

is a limit to which cell size can be scaled down. Current flash memory technology is

expected to be replaced or undergo some radical changes in the not-so-distant future'

There has been intense research interest into the various options available and various



new technologies have been mooted as potential successors to conventional Flash

technology. The major forerunners include Silicon Oxide Nitride Oxide Semiconductor

(SONOS), Ferro-electric Random Access Memory (FRAM), Magnetic Random Access

Memory (MRAM) and phase change memory (PCRAM). Predictions of their attributes

have been listed in the International Technology Roadmap for Semiconductors (ITRS) 19.

They are touted to be potential successors to conventional memory. A brief description of

their working principles is given below while a more in depth comparison between them

and nanocrystal based memories will be given in Chapter 2.

1.3.1 Silicon Oxide Nitride Oxide Semiconductor (SONOS)

Silicon Oxide Nitride Oxide Semiconductor (SONOS) "cells" consist of a

standard n-channel MOS transistor with additional layers of insulators on the gate. These

include the oxide layer (-2 nm), a silicon nitride layer (-5 nm), and a second oxide layer

(5-10nm). SONOS is similar to Flash Memory. However, it relies on the charge trapping

mechanism in which electrons are trapped in the nitride layer. SONOS offers a lower

power usage, improved cycling endurance, reduction in process complexity and

elimination of drain-induced turn-on. The SONOS memory device is more scalable than

the floating gate flash memory since the equivalent oxide thickness (EOT) of the gate

stack is thinner in the SONOS memory than in the floating gate memory.21 Moreover,

current manufacturing processes are simpler compared to flash manufacturing process as

they only require four additional non-critical masking steps over the basic logic processes

(flash floating gate requires eleven additional processes).22 Also, the trapped nitrides do



not leak away easily and hence SONOS is more radiation hard than conventional Flash

whose thin tunneling oxide is easily damaged by large ionizing doses, leading to charge

leakage. 23

Floating Gate SONOS
Structure ONO Structure ONO

cornmo .sit..LoMpoWDV
dielectdics

Q .

Figure 1.3: (Left) Schematic Comparison between a Floating Gate Structure and a

SONOS Structure (Right) A Transmission Electron Microscopy (TEM) Image of the

SONOS Structure. 20

1.3.2 Ferroelectric Random Access Memory (FeRAM)

A ferroelectric memory cell consists of a ferroelectric capacitor and a MOS

transistor. It is similar to the storage cell of a DRAM. However, the material between the

capacitor's electrodes has a high dielectric constant and can be polarized by an electric

field. When an external electric field is applied across a dielectric, the dipoles tend to

align themselves with the field direction, as a result of small shifts in the positions of

atoms and shifts in the distributions of electronic charge in the crystal structure. This type

of material is known as a ferroelectric material. Contrary to its name, this type of material

does not necessarily have to contain iron. The polarization remains even when the electric

n+ 1 n
P-.si



field is removed and remains until it gets reversed by an opposite electrical field. This

makes the memory non-volatile. The polarity and quality of stored data is dependent on

the direction and strength of the remnant polarization after the electric field is removed.

Ferroelectric memories can be written much faster than EEPROMs and operating

voltages are relatively small. FeRAM is also radiation hard.18 Today's FRAM uses lead

zirconate titanate (PZT); other materials are being considered. The main developer of

FRAM is Ramtron International. The main drawback of FRAM is incorporating

ferroelectric materials into current silicon manufacturing processes. 24 The International

Technology Roadmap for Semiconductors (ITRS) also highlighted that continued scaling

of the stack capacitor would be challenging and FRAM production is sensitive to

processing conditions and temperatures.19

1.3.2 Phase Change Random Access Memory (PCRAM)

Phase Change Memory (PCRAM) comprises of a transistor and a resistor made

from chalcogenide material alloys (eg. Ge2Sb2Te5) commonly used in rewritable compact

disks. Electrical charges are used to convert the phase of the material from crystalline,

which is conductive, to amorphous, which is resistive, vice versa. This is accomplished

though Joule heating. In this way, the resistance state of the material can be used to

represent logic '0' and '1'. Multi-state operations can also be achieved by programming

the cell to intermediate values. The energy required for phase transformation also

decreases with cell size, encouraging memory scaling. Erasable thermal phase change

recording at a storage density of 3.3Tb inch"2 has been shown and Samsung has produced



a working prototype of PCRAM that is comparable to the size of NOR Flash2 5-26. Issues

include reducing the reset current as cell size scales while maintaining writing capability

and reducing thermal cross-talk at higher densitiesl8'28

lower electrode
upper electrode

phase change
material -

&__
I c

thermal and in
electrical
insulator

Figure 1.4. Schematic of Phase Change Memory54

or
rystallisation
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effect

1.3.4 Magnetic Random Access Memory (MRAM)

In Magnetic Random Access Memory, the information is stored as the

magnetization direction of ferromagnetic elements. In MRAM, the elements are formed

from two ferromagnetic plates, each of which can hold a magnetic field, separated by a

thin insulating layer. It utilizes the tunneling magnetoresistive (TMR) effect. The

tunneling energy for electrons that are spin-aligned with both magnetic layers is less

than that for electrons that are spin-aligned with only one layer. When the orientation of



both magnetic layers is the same, spin-aligned electrons have a higher probability of

tunneling through the insulating layer. When the magnetic orientations of the layers are

opposed, the tunneling probability of both spin-up and spin-down electrons is reduced.

Due to the magnetic tunnel effect, the electrical resistance of the cell changes

depending on the orientation of the fields in the two plates. Two plates having the same

polarity indicate a logic state of "0", while two plates of opposite polarity indicates a

logic state of "1" as resistance is higher. Another type of MRAM consists of two

ferromagnetic plates separated by a magnetic, non metallic spacer layer. This utilizes

the giant magnetoresistive (GMR) effect. Free electrons are generated 'spin-up' and

'spin-down' in equal proportions. When the orientation of both magnetic layers is

parallel, only one type of electron is retarded. When the magnetic orientations of the

layers are anti-parallel, both spin-up and spin-down electrons suffer retardation. In this

way, resistance is varied to give logic "0" and "1". For both methods, one of the two

plates is commonly fixed to one polarity and the other's field will change to match that

of an external field 29 3 1. Issues with future development of MRAM includes disturbance

from neighbouring cells, stability issues concerning the tunneling barrier and the free

layer with increased scalingl8' 31-33
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Figure 1.5. A MRAM Cell During Read (Above) and Write (Below) Operations34

1.4 Nanocrystal Memory

Another area of active research is the use of nanocrystals to replace a single floating

gate as storage sites. This is similar to the use of nitride traps in SONOS memory. It is

I1Y·~··i·IC·ll~arrCI" f·YY



easy to integrate nanocrystal based memories into current CMOS processes. It also has

several other advantages. This will be discussed further in the next chapter.
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Chapter 2: Nanocrystal Memory

Nanocrystal memory has been an area under intense research since Tiwari et al.

demonstrated a Si nanocrystal memory that uses direct tunneling into three

dimensionally confined nanocrystals for bi-stability in the conduction of a transistor

channel l' 2 . Since then, memory effects of materials such as Germanium 3-8 and

transition metals such as Au, Ag, W, Pt and Sn9- 3 have been investigated by various

research groups worldwide.

2.1 Nanocrystal Memory Device

The memory devices demonstrated by Tiwari et al. are based on a Flash memory

structure (consisting of a MOSFET as illustrated in Figure 1) with floating islands of

silicon nanocrystals embedded in the gate oxide. This is illustrated in Figure 4. By

using electrically isolated charge storage sites, charge leakage via localized oxide

defects is reduced and a superior retention time can be achieved. As a result, a thinner

tunneling oxide can be employed. This relaxation in the tunneling oxide constraint

results in smaller operating voltages as well as lower power dissipation than current

Flash EEPROM. It also brought about faster programming and at low operating

voltage via direct tunneling mechanisms. 1' 2 Nanocrystal based memories are also

more resistant to defects in the tunnel oxide. In addition, nanocrystal based memories

are less complex to manufacture than conventional Flash memory. Conventional



memory requires 11 additional mask adders over the basic CMOS process while

nanocrystal memory requires only 4. The reduction in complexity is due to the

elimination of process steps to satisfy the high voltage requirements in conventional

Flash memory. The removal of high voltage requirements in nanocrystal memory also

enable nanocrystal memory to scale better than conventional Flash memory. This is

evident from Figure 2.2. Germanium as well as metal-nanocrystal-based transistors

work similarly to silicon nanocrystal memory.

I1
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Figure 2.1: Schematic of Silicon Nanocrystal Based Memory
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Process Step Logic Floating Gate Nanocrystal
Isolation Formation
High Voltage Wells 2 masks
NVM Array Well (lMask) 1 mask lmask
Tunnel Oxidation
Floating Gate Deposition/Patterning 1 mask
ONO/Nanocrystal Dep./Patterning 1 mask 1 mask
Low Voltage Wells
OGO Wells
High Voltage Oxidation/Patteming I mask 1 mask
OGO Oxidation Patterning
Low Voltage Oxide CGrowth
Gate Deposition
NVM Stack Patterning 1 mask
NVM Source Hole Implant I mask
NVM Drain Implant I mask I mask
Gate Patterning
High Voltage LDD Implants 2 masks
OGO LDD Implants
S/D and Backend Processing

Masking Step Adder +11 +4
Taken from:
R. Muralidhar et al, "A 6VEmbedded 90nm Silicon Nanocrstal Non-volatile Memory",
IEEE Int Conf, 31, 2004

Table 2.1 Mask adders required to integrate nanocrystal based non volatile

memory into a standard CMOS flow compared against conventional non volatile

memory14
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2.2 Synthesis of Germanium Nanocrystals

There are numerous ways of synthesizing germanium nanocrystals. These include

cosputtering5-7, chemical vapour deposition 15-17, ion implantation3,4, sol gel

techniques1 " oxidation and reduction of SiGe films19 and molecular beam epitaxy20.
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Figure 2.3: Schematic illustration of the density of supercritical particles as a

function of time after quenching.21

Figure 2.3 shows a schematic illustration of the density of supercritical particles

as a function of time after quenching. It can be observed that there are 4 stages of

growth; namely, incubation, steady-state nucleation, equilibrium saturation and

coarsening. In the incubation regime prior to the nucleation stage, the incubation time

can be obtained by extrapolating the steady-state nucleation slope to zero density. In

the nucleation stage, the steady-state nucleation rate can be predicted from the slope

of the curve in this steady-state regime. Nanocrystals form by nucleation and growth.



The density of the particles peaks in the equilibrium saturation regime. Subsequently,

coarsening or ripening of the particles occurs, where a decrease in the particle density

is observed. In this stage, the supersaturation of the matrix with respect to the solute

atoms is sufficiently small to make nucleation of new particles unlikely. Ostwald

ripening (coarsening) of nanocrystals will then occur.

The nanocrystal size is usually controlled by time and annealing temperature. In

the coarsening phase, the Lifshitz-Slyozov theory of coarsening in alloys is normally

used to describe the time evolution of the sizes of the particles of a phase coarsening

by mass transfer among particles in a matrix. The Lifshitz-Slyozov-Wagner (LSW)

theory predicts the rate of coarsening in alloys. It states that at large times t, the

critical dimension xc tends asymptotically to depend on time as t'13. At the same time,

the degree of supersaturation correspondingly falls as ft"3 and the number of grains as

t-1. Large particles grow while smaller ones shrink at the coarsening stage due to the

Gibbs Thomson effect. The Gibbs-Thomson effect relates the curvatures of the

spherical grains (represented by rl and r2) to their corresponding activities

(represented by al and a2) and hence solubilities in solution by the following

equation:

RTln(-) = 2Vm[o[1 -
a, r2 r,

R and T are the molar constant and the temperature, respectively. Vm represents the

molar volume of a certain phase and a represents the interfacial energy between two

phases. The difference in the solute concentrations for different curvature particles



sets up a concentration gradient that drives diffusion of matter from the smaller to the

larger particles 21,22

The material in which Ge nanocrystals are embedded is usually SiO2 although

other types of materials such as A120 3 are also investigated in research projects23.

2.3 Characterization of Nanocrystals

A variety of structural, optical and electrical techniques are commonly used to

characterize Ge nanocrystals.

For structural characterization, transmission electron microscopy (TEM) is

commonly used. It enables the size distribution, the spatial distribution, shape and

defect structure of the nanocrystals to be studied. X-ray photoelectron spectroscopy is

commonly used to investigate the chemical bonds that are present while Raman

spectroscopy is used to determine the crystallinity and size of the nanocrystals. In

addition, secondary ion spectroscopy (SIMS) allows a quantitative depth profiling of

the elements in a sample.

The most commonly used characterization method is photoluminescence (PL)

spectroscopy, especially in the study of quantum confinement effects. For electrical



methods, capacitance-voltage (C-V), capacitance-time (C-t) and current-voltage (I-

V), measurements can be made to characterize the charge storing capability of

nanocrystal-based transistor devices.

2.4 Charge Storage in Nanocrystal Memory Devices

There is an argument going on in the research community on the way in which

nanocrystals store charge. It has been suggested that the charges are stored at the

conduction band 1,2,24 or at deep traps 7,8,25. Recent research indicates that charges are

more likely linked to interfacial traps. Y.Shi et al. has highlighted that the band edge

of a Si nanocrystal is higher than that of the substrate due to three dimensional

quantum confinement effects. As a result, any electrons stored in the conduction band

can easily tunnel back to the substrate. This cannot account for the observation of

long retention times. He proposed that the injected electrons are stored at deep

traDping sites.
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Figure 2.4: C-V hysteresis loops for various annealed MOS capacitors. The inset is a

schematic of the MOS memory structure based on silicon nanocrystals 2 .

In order to investigate the effect of traps on charge storage, Shi et al. annealed

various MOS capacitors in an H2 ambient at 430 °C and in vacuum at 700 OC. The

former process effectively decreased the number of interface traps by H-passivation,

and the latter resulted in a high density of interface traps, especially Pb centers. Figure

2.4 shows the C-V characteristics for the treated samples as well as the as deposited

ones. The device annealed in vacuum exhibited the largest Vfb shift as it has the

highest trap density. The minimum Vfl shift is observed for the H2 annealed device

having the lowest trap density. This means that more charges are stored in the

nanocrystals synthesized by annealing in vacuum rather than in H2.
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Figure 2.5: Long-term charge retention characteristics in various annealed MOS

capacitors, measured using the constant-capacitance method at the flat-band point 25

Figure 2.5 shows the long-term charge storage characteristics of various devices

where the changes in the net charge stored in nanocrystals are proportional to the

shifts of the Vfb obtained under constant-capacitance conditions. The fastest rate of

electron loss is observed for the vacuum-annealed device while the H2-annealed

device has the slowest electron-loss rate. Therefore, a higher rate of charge loss is

obtained for a device with a higher density of traps. Furthermore, the temperature

dependence of the charge storage characteristics shows that the charge-loss rate

decreases slightly when the temperature changes from 300 K to 80 K. This implies
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that thermal activation is not dominant for the charge-loss processes in the tested

samples.

Efs Efm

Tunneling
Si 2 Gate SiO 2

Figure 2.6: Energy band diagram of the MOS memory structure at flat-band

condition for electron tunneling processes in the retention mode after injecting

electrons 25

Based on the above experimental results, Shi et al proposed a model whereby an

injected electron will first fill up the empty states in deep trap levels prior to filling up

shallower trap levels. There are two mechanisms in which electrons can be detrapped

and lost to the silicon substrate. The first is direct tunneling from the traps to the

interface states at the SiO 2/Si interface (process 2). Charge loss by this mechanism

can be reduced by reducing number of interface states. The second is the indirect

process involving the thermal detrapping of electrons to the conduction band (process

3) and then tunneling back to the substrate (process 1). A deeper trap level is



desirable for suppressing this kind of thermal activation. Shi et al. concluded from the

experimental observation of charge loss rates on interface trap density and

temperature that process 2 determines the long term charge retention in the samples.

He further notes that the traps and defects at the internal/surface of nanocrystals and

the interface states at the SiO2/Si substrate play different roles in the charge-loss

process. The traps and defects at the internal/surface of a nanocrystal determine the

amount of charge that can be stored. On the other hand, a smaller number of the

interface states in the Si/SiO2 interface would effectively result in a lower tunneling

rate and longer retention time 25

Chen et al also concluded that at least some of the electrons are stored in traps

after comparing experimental results with simulation data generated by another

research group 8,26

Unlike Shi et a125, King27 and Koh et al. 28 note a significant temperature

dependence in their Ge nanocrystal memory samples. Like Shi, they demonstrated

that the memory devices lose their memory effect after annealing in a hydrogen

ambient, thus showing that charges are stored in the interfacial traps rather than in the

conduction band. Koh et al 28 found good agreement of experimental data with

simulations (Figure 2.6). The simulated data was based on the temperature dependent

Shockley-Read-Hall (SRH) relationship developed by McWhorter et al. 29. The

thermal equilibrium emission constant of electrons can be derived as



e, = AT 2 exp(-qE, /kT),

where k is the Boltzmann constant, q is the electronic charge, T is the temperature, Et

is the trap energy level measured with respect to the conduction edge of the

nanocrystal and A is the temperature independent constant which can be expressed as

4 t60'gk2m . m is the effective mass of the electron, g is the degeneracy and

h is Planck's constant. Also, the drain current during the discharge phase is modeled

as

IDS(trans,ent) = q{n [1 - exp(-.t)] + n2 [1- exp(1 - exp(-A2t] },

where n, + n2 = n and n is the total number of nanocrystalline Ge charging sites. X1

and X2 represent the discharging rate constants for the two different discharging

mechanisms.
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Figure 2.7: Drain current (IDs) transient at a read voltage of 5V after a write

operation at 15V for 20s. The symbols represent the measured data and the lines are

fitted data from a simulation. The increase in Dlos for higher temperatures could be

explained by the larger carrier mobility and the higher intrinsic carrier concentration

of the substrate.28

By performing transient drain current (IDs) measurements, the trap energy levels

(Et) can be extracted. This is done by performing transient drain current

measurements at different temperatures and calculating the discharging time constant

(TD). TD is defined as the time corresponding to 90% of the IDS at steady state, when

the drain current gradually returns to steady state value. The electrons which are

detrapped during the discharge phase increase the drain current over its steady sate

value. Figure 2.8 indicates that for the samples, below 307.7K, the discharging

process is relatively temperature insensitive, which corresponds to Process 2 (direct

tunneling from the traps to the interface states at SiO2/Si interface) as described by

Shi et al. Above 307.7K, Process 1 + 3 (indirect process involving the thermal

detrapping of electrons to the conduction band and then tunneling back to the

substrate) is more dominant and the discharging process shows a strong temperature

dependence.28
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Figure 2.8: Inverse of discharging time constant (Y ) divided by the square of the

temperature plotted against the inverse of T. The graph is plotted based on the

calculations given by RD oc e, = AT2 exp(-qE, / kT). RD is the rate of discharge.28

Based on the above research observations, the following conclusions can be

made:

1. The discharge process is dominated by Process 1 + 3 at high temperatures and

Process 2 at low temperatures.

2. At low temperatures, decreasing the interface state at SiO2/Si substrate interface

will improve retention time. 25
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3. At high temperatures, controlling the deep level traps is crucial to increase the

retention duration of the memory device. Engineering the trap energy level can be

carried out by manipulating the material of the host matrix, doping with

impurities or changing the material of the tunnel oxide. The last method is based

on the assumption that the trap sites in the nanocrystals responsible for charge

storage are close to the Si substrate and such trap sites are affected by the close

proximity to the tunnel barrier. Koh et al were able to prove this by showing that

that nc-Ge/Al 20 3 has higher activation energies and hence deeper trap levels than

nc-Ge/SiO2. 28 Other than methods involving increasing trap levels, retention time

can also be increased by increasing the tunnel barrier, such as using

germanium/silicon (Ge/Si) heteronanocrystals, which will be discussed later.
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Figure 2.9: Trap energy level required for 10 year charge retention performance vs

nanocrystal diameter. The Ge band-gap widening due to quantum confinement effect

is also indicated. The conduction and valence bands edges at the boundaries of the



widened Ge band gap are given by Ec and Ev. (Ec- Ed = (Ej- Ev)=0.33eV in bulk Ge,

E, is the midgap energy of Ge.28

Figure 2.9 illustrates the trap energy required to meet the 10 year requirement

taking into account quantum size effects28 . We can see from Figure 2.9 that as the

size of nanocrystals decrease, Ec-Et increases, and deeper level traps are required. As

the size of the nanocrystals decreases, the barrier height is lower and it is easier for

the electrons to leak through the tunnel barrier. In order to compensate for this,

deeper-level traps are required.

It is important to note that there is a tradeoff between read/write speeds and

voltages with retention time. The thicker the tunnel oxide, the longer the retention

time, the lower the operating speeds and the higher the voltages required. By

improving retention time through other means, such as trap level engineering,

read/write voltages can be decreased and operating speeds improved by decreasing

the oxide barrier. Hence, other attributes such as operating speeds and voltages are

inextricably linked to retention time.

2.5 Optimum Nanocrystal Size

There is also a tradeoff between the reliability/memory window with the retention

time/programming speed. Generally, there is a need to fabricate nanocrystals as small



as possible in order to increase memory window and to reduce stress induced leakage

during retention to improve reliability.

However, when the nanocrystals decrease, retention time is degraded as quantum

confinement effects become significant. Confinement effects are strongly dependent

on nanocrystal diameter and scales inversely with the square of nanocrystal diameter.

In addition, coulomb blockage effects of small nanocrystals decrease tunneling

probabilities and reduce programming speed. Coulomb charging effects are inversely

proportional to the nanocrystal diameter. The two effects are evident from Figure

2.10. Retention time degrades as nanocrystal diameter decrease from 5nm to 2nm.

Also, programming time is faster for 5nm diameter nanocrystals compared to 2nm

diameter nanocrystals.

Neglecting effects of stress-induced leakage, we will attempt to estimate the

largest nanocrystals that satisfy the minimum memory window requirements. The

larger the size of the nanocrystals, the smaller the quantum confinement and coulomb

blockage effects. 30 32
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nanocrystal size on device performance30
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Figure 2.11: Plot of threshold voltage shfifs A VT and retention period r, as afunction

of tunnel oxide thickness.3'



Referring to Figure 2.11, for a ten year retention period, a tunnel oxide thickness of

3nm is required. This corresponds to a AVT of around 0.1V. This value can be used in

the following equation

Q,AV, = -R Q1 ,C
where R is a factor correcting for the non uniform coverage of the area by discrete

nanocrystals (assumed to be 0.4), Q' is the total charge density stored and C' is the

nanocrystal-gate capacitance per unit area.32 Also,

C,=C1= 
6

t

where s is the dielectric constant of the interpoly silicon oxide dielectric and is given

by 3.9 x 8.854 x 10-12 F / m and t is the interpoly silicon oxide thickness (assumed to

be 6nm).32 Assuming that one nanocrystal on average stores one charge,

Q'=-Ne = C'xA VT _ 5.755 x 10-3 x0.1
R 0.4

N= 9x10 5 / m2 = 9x10" l /cm 2

N is the nanocrystal density (N=9x10 15 /m2 =9x101 1 /cm 2 ) and e is the

electronic charge given by 1.6 x 10-19 C. 32
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Figure 2.12: Nucleation curve for nanocrystal deposited by CVD on SiO2 showing the

evolution of nanocrystal density and size with deposition time.33

Based on the above assumptions, the optimum nanocrystal size is 3nm. However, it

must be :noted that the optimum size is determined by factors such as the tunnel and

interpoly oxide thickness as well as the method in which the nanocrystals are

deposited (the nucleation curves for other methods of deposition, such as sputtering,

may differ from that of CVD).
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Figure 2.13: OrderedArray ofNanocrystals

If the nanocrystals are deposited in an ordered array as shown above, then

A=-I=1.11x10-6 m2

N

L = \ = 1.05 x 10-'m

Assuming that the spacing between the nanocrystal is equal to the nanocrystal

diameter, then

L
D = - = 5.27 x 10-9 m = 5.27nm

2

2.6 Comparison of Different Nanocrystal Memories
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The earliest work on quantum-dot Flash memories concentrated on

nanocrystalline silicon (nc Si) as a replacement for the floating gate. Since then,

numerous groups have proposed using nanocrystalline germanium (nc Ge) and metal

dots such as Au, Ag, W, Pt, and Sn 9-13. The main advantages of using metal

nanodots include a higher density of states around the Fermi Level, making them

more immune to Fermi Level fluctuations caused by contamination and ensuring

tighter threshold voltage control, and the creation of an asymmetrical barrier by

engineering the work function and thus inducing a smaller barrier for writing and a

larger barrier for retention. The potential well of the metal nanocrystals can be

carefully engineered to yield a small barrier for writing and a large barrier for

retention. The use of different types of metal nanocrystals with different work

functions opens the possibility of changing the barrier height by 2eV.9 However, the

introduction of metal nanodots to current silicon processing technology is a great

challenge. It is well known that the presence of contaminants vastly affects the

performance of the transistor and an in-depth feasibility study needs to be undertaken

before metal nanodots can be introduced to the baseline CMOS process. 10 Also, most

of the advantages of metal nanocrystals revolve around improving the retention time.

This can be achieved through other means using semiconductor nanocrystal memories

also as highlighted above.

There are no in-depth experimental studies comparing the performance of silicon

and germanium nanocrystal memory devices. However, researchers have pointed out

some theoretical advantages of Ge nanocrystals over Si. Ge has a smaller bandgap



compared to Si, which results in a higher confinement barrier for retention similar to

metal nanocrystals.34 Retention time could also be improved, especially if electrons

detrap by Process 1+3 as highlighted above.

2.7 Hetero-nanocrystal Memory

A novel MOSFET memory storage cell using Ge/Si hetero-nanocrystals has been

proposed 35. Simulation results show that the hetero-nanocrystals have superior charge

retention capability compared to Ge and Si nanocrystals alone. Ge has a smaller

bandgap than Si and by introducing a Si interface around the nanocrystal, it would

create an additional barrier height at the Ge/Si interface which makes it harder for

electrons to leak out. A staircase potential well is created and charges will have to

pass through both the potential barrier of Si nanocrystal and the tunnel barrier before

it can leak out. During writing and erasing, the movement of charges is mainly

affected by only the potential barrier of the tunnel oxide under the proper bias. Hence,

the retention time could be prolonged remarkably while the writing and erasing time

could be held to be approximately the same order of magnitude.3 5
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Figure 2.14: (Left) The schematic cross sectional of Ge/Si heteronanocrystal memory

half cell. (Right) The valence band diagram for (a) hole writing (b) retention and (c)

erasing. It is the effect of the compound barrier that prolongs the retention time of

device evidently.35

Two ways in which heteronanocrystal memories can be fabricated are: (1) using

porous alumina and (2) using diblock copolymers.
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alumina layer by
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Fig 2.15: Fabrication of ordered nanocrystal array using porous alumina using a two

step anodization process. The first anodization serves as a template for ordered hole

formation in the second anodization.36
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Fig. 2.15 illustrates one of the methods for fabricating porous alumina

membranes. The fabricated alumina membrane can then be used for the ordered
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deposition of heteronanocrystals or serve as masks for etching as shown in Figure

2.16. Experiments carried out using Ge nanodots show a highly ordered array.3

Figure 2.17: High magnification view of Ge nanodot array fabricated using alumina

membrane.3 7

Diblock copolymers have been used for the ordered deposition of Si

nanocrystals.3 8 It is likely that these could be extended to heteronanocrystals.
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Figure 2.18: Ordered formation of silicon nanocrystals using diblock copolymers.38
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In order to form vertical blocks of polystyrene, a copolymer solution comprised of

0.6 styrene and 0.4 methylacrylate is first coated onto the silicon substrate and on top

of the copolymers. At this proportion, the interfacial energy of styrene and the

solution is equal to the interfacial energy of polymethylacrylate (PMMA) and the

solution, resulting in vertical columns of styrene and methyacrylate being self

assembled. If the copolymer solution is not applied, methylacrylate will preferentially

wet the surface over styrene and horizontal blocks will result. If the top surface is not

coated, an inverted 'U' shape, as shown in Fig 2.21, will develop.
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Figure 2.20: Interfacial energies ysf and YMfas a function off 7sf = 7Mf atf - 0.6 (0.6

styrene and 0.4 PMMA).40
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Figure 2.21: Atomic force microscopic phase images. Images are from thin films of

P(S-b-MV[A) symmetric diblock copolymer with a random copolymer anchored either

a) to the substrate only or b) to the substate and air surface. Insets indicate the

orientation of the lamellar morphology.41

The TEMPO initiator shown in Fig. 2.19 binds the polymer solution to the silicon

oxide through -OH functional groups on the TEMP initiator. The polystyrene film

can then function as masks for deposition or etching as indicated in Figure 2.16.

2.8 Comparison between NC Memory and other Flash Replacement

Technologies

In the International Technology Roadmap for Semiconductors (ITRS) 2006

Update, the predictions for cell sizes of the different memory technologies are as

illustrated in figure 2.22. At the 80nm technology node, MRAM is -16 times the cell

size and FRAM is -12 times the cell size of Flash Memory. In the near future, Flash

and the closely related SONOS memories are still expected to have the highest chip

densities. A flash memory /SONOS memory cell consists of only one transistor. An



FRAM cell consists of a transistor and a capacitor while a MRAM cell consists of a

transistor and a magnetic tunnel junction. PCRAM consists of one chalcogenide and a

transistor/diode. From the ITRS, it seems like it will take some time and effort for

FRAM and MRAM technologies to catch up with flash/SONOS. On the other hand,

nanocrystal-based memories are expected to face fewer difficulties in scaling as the

architecture is similar to conventional Flash memories. Sizes comparable or less than

(due to elimination of high voltage requirement structures) conventional Flash

memories are expected.

Figure 2.22: Cell Sizes of Different Memory Technology Nodes in the ITRS42



Memory Flash- Flash FRAM MRAM PCRAM ONOS C

Type NOR VAND emory

Endurance 1.OOE+5 1.OOE+5 1.00E+13 >3.00E+161.OOE+12 1.OOE+7 1.OOE+7

(Erase/Write

Cycles)

Data 20 20 10 >10 >10 20 20

Retention

Read/ 2/10 2/18 1.5/1.5 3.3/3.3 0.4/1 2/5.5 1/6

Program

Voltage (V)

Read Time Fast Fast Fast/Medium Fast Medium Fast ast

Per Bit l Ons -50ns 30-60ns 5-70ns 70ns

Write Time Low Low Medium Fast Medium Low- Medium

er Bit -2 ms -0.4ms 30-60ns 5-70ns 100- Medium <10ps

500ns 1Ops

Erase Time Low Medium Medium Fast Medium Medium ow-

er Bit ~900 ms -2.0ms 30-60ns 5-70ns 100- lms Medium

500ns <100ms

Mask 11 11 2 3 5 4-7

4dders to

CMOS logic



Process

Technology Charge Charge Ferroelectric Magneti Phase Charge Charge

Tunneling Tunneling I.ation Transition Tunneling Tunneling

Table 2.2: Different Types of Memory Technologies ' -'

Table 2.2 compares some of the key attributes of nanocrystal memory with other

forms of memories. Care must be taken when making comparisons as most of the

emerging memories such as MRAM and nanocrystal memories are manufactured on

older technology nodes compared to conventional Flash. Others such as PCRAM have

not been mass manufactured at the time of writing and performances can only be

compared based on research papers as well as press releases.

Some of the other key advantages of Ge nanocrystal memories, in addition to ease

of scaling, include low read/write voltages and low manufacturing complexities. Si

nanocrystal memory manufactured by Freescale Semiconductors has shown a read

voltage of 1 V and a write voltage of 6V.44"5 Germanium based nanocrystal memory is

expected to have similar read/write voltages. Also, nanocrystal memory requires 4

additional mask adders to the baseline CMOS manufacturing process. This is low

compared to conventional Flash Memory's 11. In comparison to other emerging

memories on Table 2.1, its manufacturing complexity is still low. The main weakness of

nanocrystal based memories is expected to be the writing/erase speed. The thinner tunnel

barrier is expected to improve the writing/erase speed over conventional Flash memories.

However, its writing speed is slow compared to competitors such as MRAM. Although



the endurance of nanocrystal memories is lower than that of competitors such as PCRAM

and MRAM, it is still higher than conventional flash memory cells. AT present,

endurance is still not a major issue for non-volatile memories. Nanocrystal memory is

expected to face the strongest competition from phase change memory as Samsung has

recently announced that it has produced a working prototype of PCRAM that is

comparable to the size of NOR Flash.45 At present, there seems to be no clear cut

technical advantages of PCRAM over nanocrystal memories and vice versa based on

Table 2.2. It is also difficult to predict whether continued research will allow any of the

emerging forms of non-volatile memory to have a clear cut advantage over one another.

In order for phase change memory to scale further down than conventional flash memory,

other types of selectors other transistors should be used. Samsung is working on using

vertical diodes to replace transistors. For nanocrystal memories, continued research into

areas such as heteronanocrystals as well as trap engineering may help nanocrystal

memory to improve attributes such as endurance and read/write speed. Schemes such

double gate nanocrystal memories have also been proposed to improve retention. In

double gate nanocrystal memories, the devices are fabricated on a silicon-on-insulator

(SOI) substrate. The buried oxide below the SOI body is removed by dipping into

hydrogen fluoric acid (HF). After the tunnel oxide is thermally grown, silicon

nanocrystals, the control oxide, and a gate electrode of phosphorous-doped polysilicon

are deposited around the undoped SOI body using low pressure chemical vapour

deposition. In double-gate nanocrystal memories, the body potential is lifted up by

electrons in the opposite additional nanocrystals, reducing the potential difference and

discharge probability, improving retention time.51
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Figure 2.23: Schematic of double gate nanocrystal memories with ultrathin body

structure
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Figure 2.24: Energy band diagram in retention just after a write pulse5 '

2.9 Multi-bit Schemes
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Various multi-bit schemes have been proposed in order for more bits to be stored

per unit area.

+ VG

I S1I

Figure 2.25: Schematic on the use of discrete traps for charge storage to realise a

dual bit memory cell52

Figure 2.25 shows one such scheme for multi bit storage. As the nanocrystals are

well separated from one another with no or limited lateral diffusion. Charges stored

can be localized near the source or drain. In order to store charges in the nanocrystal

near the drain, a positive bias is applied to the drain during writing as shown in Figure

2.25. Similarly, charges can be stored in nanocrystals near the drain by applying a

positive bias to the source.52
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Figure 2.26: Difference of threshold voltage between the read with drain and with

source after programming by channel hot electron with high drain bias53

The programmed cell is read in the forward and reverse direction to determine

whether the charges are stored near the source or drain. Due to the asymmetric

distribution of charges, the threshold voltage for reverse reading is larger than the one

for forward reading.s3

Multi-level nanocrystal memories have also been proposed for multi-bit storage.

In multilevel nanocrystal memories, nanocrystal layers are deposited alternately with

tunnel oxide as shown in Figure 2.27.
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Two Layer Schematic

Control Oxide

Si Substrate

Three Layer Schematic

Figure 2.27: Two and three layer schematics ofmultilevel nanocrystal memories.54
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Figure 2.28: The dependence of the memory window on programming voltage. There

are three apparent stages observed for the three layer samples, and two stages for the

layer samples. 54

Distinct steps can be observed in the memory window and this can form the basis

for a multi-bit storage scheme.54 It is also possible to combine the above two multi-bit

schemes to increase the number of bits per transistor. However, continual research

work to increase the memory window and decrease fluctuations in the supplied

voltage is required to make this a reality.

References

1. S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe and K. Chan, "A

Silicon Nanocrystals Based Memory", Applied Physics Letters, vol. 68, no.

10, pp. 1377-1379, 1996.

2. S. Tiwari, F. Rana, K. Chan, H. Hanafi, W. Chan and D. Buchanan, "Volatile

and Non-volatile memories in Silicon with Nanocrystal Storage",

International Electron Device Meeting, pp. 521-524, 1995.

3. Y. C. King, T. J. King and C. Hu, "MOS memory using germanium

nanocrystals formed by thermal oxidation of Sil.xGex", International Electron

Device Meeting Technical Digest, pp. 115-118, 1998.



4. Y.C. King, T. J. King and C. Hu, "Charge-trap memory device fabricated by

oxidation of Sil-.Gex", IEEE Transactions on Electron Devices, vol. 48, no. 4,

pp. 696-700, 2001.

5. W.K Choi, W.K. Chim, C.L. Heng, L.W. Teo, V. Ho, V. Ng, D.A. Antoniadis

and E.A. Fitzgerald, "Observation of memory Effect in Ge Nanocrystals

Embedded in Amorphous Silicon Oxide Matrix", Applied Physics Letters,

Vol 80, No 11, pp. 2014-2016, 2002

6. L.W. Teo, W.K. Choi, W.K. Chim, V. Ho, C.H. Moey, M.S. Tay, C.L. Heng,

Y. Lei, D.A. Antoniadis and E.A. Fitzgerald i"Size control and charge storage

mechanism of germanium nanocrystals in a metal-insulator-semiconductor

structure", Appl. Phys. Lett., vol. 81, no. 19, pp. 3639-3641, 2002.

7. E.W.H. Kan, W.K. Choi, W.K. Chim, E.A. Fitzgerald and D.A. Antoniadis,

"Origin of charge trapping in germanium nanocrystal embedded SiO 2 system:

Role of interfacial traps?", J. Appl. Phys., vol. 95, no. 6, pp. 3148-3152, 2004.

8. J. H. Chen, Y.Q Wang et al, "Nonvolatile Flash Memory Device Using Ge

Nanocrystals Embedded in HfAlO High K Tunneling and Control Oxides:

Device Fabrication and Electrical Performance", IEEE Trans. On Electron

Devices, Vol 51., No 11., pp 1840-1848

9. Z. Liu, C. Lee, V. Narayanan, G. Pei and E.C. Kan, "Metal Nanocrystal

Memories - Part 1: Device Design and Fabrication," IEEE Trans. Electron

Devices, vol 49, pp 1606-1613, 2002



10. Z. Liu, C. Lee, V. Narayanan, G. Pei and E.C. Kan, "Metal Nanocrystal

Memories - Part 2: Electrical Characteristics," IEEE Trans. Electron Devices,

vol 49, pp 1614-1622, 2002

11. Nakajima, T. Futatsugi, N. Horiguchi, H. Nakao and N. Yokoyama, "Single

Electron Charging of Sn Nanocrystals in Thin Si02 Film Formed by Low

Implantation," Int. Electron Device Meeting, p 159, 1997

12. Chungho Lee, Tup-hung Hou and Edwin C. Kan, "Metal Nanocrystal/nitride

Heterogenous-stack Floating Gate Memory, " Device Research Conference -

Conference Digest, DRC, v 2005, 63rd Device Research Conference Digest,

DRC'05, 2005, p 97-98

13. C. Saragentis, K. Giannakop, A. Travolas, D. Tsamakis, "Fabrication and

Characterization of a Metal Nanocrystal Memory Using Molecular Beam

Epitaxy," Journal of Physics: Conference Series, v 10, n 1, 2005, p 53-6

14. R. Muralidlar, R.F. Steimle, R.F. Sadd et al, "An embedded silicon

nanocrystal non-volatile memory for the 90nm technology node operating at 6

V," Integrated Circuit Design and Technology, ICICDT'04 International

Conference on 2004, p 31-35, 2004.

15. Y.Q. Wang, J.H. Chen, W.J. Yoo, Y.C. Yeo, "Chemical Vapour Deposition of

Germanium Nanocrystals on Hafnium Oxide for Non-volatile Memory

Applications,", Materials and Processes for Non-volatile Memories

Symposium, Materials Research Society Symposium Proceedings, V830,

p269-274, 2005.



16. M.Kanoun, T. Baron, E. Gautier and A. Soufi, "Charging Effects in Ge

Nanocrystals Embedded in SiO2 Matrix for Non Volatile Memory

Applications", Materials Science and Engineering C, Biomimetic and

Supramolecular Systems, V 26, n2-3, p360-3, 2006.

17. Medeiros-Rierbeiro G,Bratkovski A.M., Kamins T.I, Ohiber D.A.A.,

Williams, R.S., "Shape Transition of Germanium Nanocrystals on a Silicon

(001) Surface from Pyramids to Domes", Science, V279, n5349, p 353-5,

1998.

18. M. Nogami and Y. Abe, "Sol-gel method for synthesizing visible

photoluminescent nanosized Ge-crystal-doped silica glasses", Applied Physics

Letters, vol. 65, pp. 2545-2547, 1994.

19. V. Craciun, A. H. Reader, D. E. W. Vandenhoudt, S. P. Best, R. S. Hutton, A.

Andrei and I. W. Boyd, "Low temperature UV oxidation of SiGe for

preparation of Ge Nanocrystals in SiO2", Thin Solid Films, vol. 255, pp. 290-

294, 1995.

20. A. Kanjilal, J. L. Hansen, P. Gaiduk and A. N. Larsen, "Structural and

electrical properties of silicon dioxide layers with embedded germanium

nanocrystals grown by molecular beam epitaxy", Applied Physics

Letters, vol. 82, no. 8, pp. 1212-1214, 2003.



21. S.M. Allen, Massachusetts Institute of Technology, MIT 3.205

Thermodynamics and Kinetics of Materials Lecture Notes Chapter 7-11,

2006.

22. C.V. Thompson, Massachusetts Institute of Technology, MIT 3.44 Materials

Processing for Micro and Nano Systems "Nanocrystal Growth and

Assembly", 2006

23. E.W.H. Kan, B.H. Koh, W.K. Choi, W.K. Chim, DA. Antonoadis and E.A.

Fitzgerald, "Nanocrystalline Ge Flash Memories: Electrical Characterization

and Trap Engineering", The 5t" Singapore-MIT Alliance Annual Symposium,

2005.

24. T. Kobayashi, T. Enoch, H. Fukuda, S. Nomura, A. Sakai and Y. Ueda, "Ge

Nanocrystals in SiO2 Films", Appl. Phys Lett. 71, 1195, 1997.

25. Y. Shi, , K. Saito, H. Ishikuro and T. Hiramoto, "Effects of Traps on Charge

Storage Characteristics in Metal-Oxide-Semiconductor Memory Structures

Based on Silicon Nanocrystals", Journal of Appl. Phys. 84, 2358, 1998.

26. C.M. Compagnoni, D. Ielmini, A.S. Spinelli, A.L. Lacaita, C. Geraldi, L.

Perniola, B. De Salvo and S. Lombardo, "Program/erase dynamics and

channel conduction in nanocrystal memories", IEDM tech. Digest, V2003,

pp549-552.

27. Y.C. King, Ph.D. Dissertation, University of California, Berkeley, CA, 1999.

28. B.H. Koh, E.W.H. Kan, W.K. Chim and W.K. Choi, D.A. Antoniadis and

E.A. Fitzgerald, "Traps in Germanium Nanocrystal Memory and Effect on



Charge Retention: Modeling and Experimental Measurements", J. of Appl.

Phys. 97, 124305, 2003.

29. P.J. McWorter, S.L. Miller and T.A. Dellin, "Modelling the Memory

Retention Characteristics of Silicon-nitride-oxide-silicon Non-vvolatile

Transistors in a Varying Thermal Environment", J. Appl. Phys, 68, 1902

,1990.

30. Min She and Tsu-Jae King, "Impact of Crystal Size and Tunnel Dielectric on

Semiconductor Nanocrystal Memory Performance", V50,N9, p1934, 2003.

31. Christian Monzio Compagnoni, Daniele lelmini, Alessandro S. Spinelli and

Andrea L. Lacita, "Optimization of Threshold Voltage Window Under

Tunneling of Program/Erase in Nanocrystal Memories", IEEE Transactions

on Electron Devices, V52, Ni1, 2005.

32. Christian Monzio Compagnoni, Daniele lelmini, Alessandro S. Spinelli and

Andrea L. Lacita, "Modelling of Tunneling P/E for Nanocrystal Memories",

IEEE Transactions on Electron Devices, V52, N4, 2005.

33. R.A. Rao, H.P. Gasquet, R.F. Steimle et al, "Influence of Silicon Nanocrystal

Size and Density on the Performance of Non-volatile Memory Arrays", Solid

State Electronics, 49, p1722-1727, 2005.

34. Teo Lee Wee, " Germanium Nanocrystal Charge Storage Device in Silicon

Oxide Matrix", pHD dissertation, 2004.



35. H.G. Yang, Y. Shi, S.L. Gu, B. Shen, P. Han, R. Zhang and Y.D. Zhang,

"Numerical Investigation of Chracteristics of p-channel Ge/Si Hetero-

nanocrystal Memory", Microelectron. J. 34, 71, 2003.

36. Hideki Masuda and Masahiro Satoh, "Fabrication of Au Nanodot Array Using

Anodic Porous Alumina as an Evaporation Mask," V35, L126, 1996

37. Z. Chen et al., "Synthesis of Ge Nanodots on Si Using Anodic Alumina

Membrane Mask," 268, p.560, 2004.

38. Guarini et al. ,"Low voltage, scalable nanocrystal FLASH memory fabricated

by templated self assembly", Technical Digest, IEDM, 2003

39. Thomas Thurn-Albrecht et al. Advance Mat. Communications, 12, 11, 787.

40. P.Mansky, Y. Liu, E. Huang, T.P. Russell and C. Hawker, Science, V275,

p1458, 1997.

41. E. Huang, L.Rockford, T.P. Russell and C.J. Hawker, Nature, 395, 757, 1998

42. The International Technology Roadmap for Semiconductors 2006 Update,

Process Integration, Devices and Structures

http://www.itrs.net/Links/2006Update/FinalToPost/04 PIDS2006Update.pdf

43. Betty Prince, "Trends in Scaled and Nanotechnology Memories", unpublished.

44. Kinam Kim and Gwan-Hyeob Koh, "Future Memory Technology including

Emerging New Memories", Proc 24 th Int. Cof on Microelectronics, Vol 1, 16-

19, 2004.

45. Min She, "Semiconductor Flash Memory Scaling," pHD dissertation, 2003.



46. Toshiba, "NAND vs NOR Flash Memory Technology Overview,"

http://www.toshiba.com/taec/components/Generic/Memory Resources/NAN

DvsNOR.pdf

47. Jiankang Bu and Marvin H. White, "Design Considerations in Scaled SONOS

Nonvolatile Memory Device", Unpublished

48. R. Muralidhar, R.F. Steinle, M. Sadd, R. Rao et al., "A 6V 90nm Silicon

Nanocrystal Non-volatile Memory," IEEE International Electron Devices

Meeting, p. 601, 2003

49. Physorg.com, "Freescale manufactures world's first 24 Mbit silicon

Memory," http://www.physorg.com/news8524.html

50. Samsung. "Samsung Introduces the Next Generation of Non-Volatile Memory

PRAM,"

http://samsung.com/PressCenter/PressRelease/PressRelease.asp?seg=2006091

1 0000286481

51. Kosuke Yanagidaira, Masumi Saitoh and Toshiro Hiramoto, "Enhancement of

Charge Storage Performance in Double Gate Si NC Memories with Ultrathin

Body Structure," IEEE, V26, N7, p473, 2005

52. S. Lombardo et al., "Multi-bit Storage through Si NCs Embedded in Si02",

Microelectronic Engineering, 72, p4 1 1, 2004

53. D. Corso et al., "Programming Options for NC MOS Memories", Material Sci

and Eng C 23, p687, 2003.



54. Lu, Alexe, Scholz, Taleaev and Zacharias, "Multilevel Charge Storage in Si

Nanocrystal Multilayers", 87, 202110, 2005



Chapter 3: Market and Intellectual

Property Analysis

As highlighted earlier, nanocrystal memory is considered as a potential

replacement for conventional Flash Memory, which is expected to reach its scaling limits.

Flash memory is currently the most dominant form of non-volatile semiconductor

memory. It is used in diverse applications ranging from thumbdrives and Secure Digital

Cards to Basic Input/Output System storage on computer mother boards. This chapter

will give a brief overview of the current state of the Flash memory market and

projections, existing and potential applications as well as a short description of

competitor and intellectual property analyses.

3.1 Market Overview

The flash memory market was valued at $10-16 billion in 2005. It is expected to

reach $18 to $40 billion by 2010.14 The traditional market for flash memory are diverse

and different applications are implemented using NAND or NOR, depending on

requirements of the particular application.

NAND Flash, which was designed with a very small cell size to enable a low

cost-per-bit of stored data, has been used primarily as a high-density data storage medium



for consumer devices such as digital still cameras and USB solid-state disk drives. NOR

Flash has typically been used for code storage and direct execution in portable electronic

devices, such as cellular phones and PDAs. However, applications for NAND and NOR

flash memories have become less distinct recently. For instance, new cell phone

controllers support NAND Flash in addition to NOR. In addition, new phone models

come with increased capabilities that incorporate video, pictures, music and games. These

applications require low cost data storage as well as high speed write erase which makes

NAND attractive for such purposes. Different types of memory are also satcked in Multi-

Chip Packages (MCP) to create a component. For instance, NAND as the main memory

can be stacked with dynamic random access memory (DRAM) which shadow runs the

program code.6
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Figure 3.1: Some Applications for NAND Flash6

Figure 3.2 shows the breakdown of Flash sales in 2004 according to type as well

as projections into 2010. Code flash refers to flash memory used to store executable code

such as operating systems in communications or consumer electronics products such as

Digital Video Disc players, computers. They usually have a fast read speed. Data flash

are commonly used for high density storage such as digital camera cards and thumbdrives

and have fast write speeds. Embedded flash combine flash with programmable logic. An

example would be micro-controller embedded with memory. Serial flash memories such

as those in VGA cards, wireless networking devices, usually have simpler interfaces,

store only a few blocks of data and have a smaller form factor.7
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Figure 3.2: (Top) Breakdown of global sales offlash memory in 2004 (Bottom) Projected

global sales in 2010. Embedded flash excludes revenue attributed to microcontroller,

digital signal processor and/or programmable logic components of an embedded flash

device7
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Figure 3.3: Projection of unit shipments of mobile electronic products with flash

memory.6

3.2 Market Growth

Growth in the flash memory market is caused by two factors:

1) Strong demand in traditional flash memory applications, especially in data flash

such as thumbdrives, camera cards and cell phone data storage. This is evident

from Figure 3.2 and also from Figure 3.3. In Figure 3.2 the growth of data flash

is so great than it dwarfs the growth of other segments of flash memory. From

Figure 3.3, we can observe that the demand for such electronic products will



continue into 2009 and beyond. Hence, we can expect the demand for Flash will

not dampen in the near future.

2) As prices keep decreasing, Flash memory has found applications in more areas.

For instance, thumbdrives are replacing rewritable compact disks (CD-RW) in

recent years. Projections from major flash memory manufacturers indicate that we

may expect to see a street price decline of 30-40% annually for a given capacity

and form factor of flash memory. Figure 3.4 shows a projection of the unit price

of compact flash form factor storage with a storage capacity of 1 GB. Figure 3.5

shows the weighted retail price index of a 1 GB thumbdrive which supports the

projection shown on Figure 3.4. There is an annual decline of 40% in the 1GB

memory in the year 2006-2007 as illustrated in Figure 3.5.
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Figure 3.5: Price-weighted index comprised of the average retail price of IGB Universal

Serial Bus (USB) Flash Memory. The index is normalized to a base value of 100 as of

October 1, 2005. The price index shows a 40% drop for a period of I year and a 65%

drop for a period of 18 months"

Samsung has also recently announced the introduction of "flashtops", laptops

which use Flash memory for storage instead of the traditional hard disk.9,10 Traditionally,

hard disks have much larger capacity and lower cost per megabyte compared to Flash

memory. Figure 3.6 illustrates the cost per megabyte of storage for hard disk drives,

dynamic random access memory, flash memory and paper/film. It is evident that hard

disks offer the lowest cost for storage." However, in recent years, the capacity of flash

drives has increased tremendously. Even though the cost per megabyte of Flash is still

higher than hard disks, consumers may be willing to pay a higher price for Flash memory

based systems in exchange for superior performance. Flash based systems are able to read

and write at much faster speeds and are more reliable due to the absence of mechanical
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arms and spinning platters. They are also lightweight, have lower power consumption,

and have lower heat dissipation. '10, 2 It is difficult to predict whether the cost per

megabyte of flash-based systems will ultimately be lower than that of traditional hard

disks or whether consumers will be willing to pay extra for the performance. There are

advocates and detractors on both sides of the camp.9- 5s However, there is one thing to be

certain of- Flash memory is becoming a serious competitor to both optical and magnetic

storage media.
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Figure 3.6: Price per megabyte of hard disk drives, dynamic random access memory,

flash memory and paper/film"

From the above, the market potential of Flash memory and its replacements seems

bright. Growing demand for existing Flash applications as well as new applications for

Flash as it matures will ensure that the whole Flash memory market will only grow

bigger with time.



3.3 Competitors

With a pie that is worth about $20 billion dollars currently and expected to get

only larger in the future, it is not surprising that everyone wants a slice of it. As

mentioned in Chapter 2 .and 3, SONOS, MRAM, PCRAM, FeRAM and nanocrystal

based memories are the major forerunners as successors to conventional Flash. There is

also intense research being carried out on other technologies such as probe based

memories, carbon nanotube based memories and molecular/organic switches, to name

just some examples. 16 Optical and magnetic storage manufacturers will also not be

passive and will continue to improve their product attributes to compete with Flash-

based systems.

Technology Companies

MRAM Freescale (Motorola), Cypress, Sony,

IBM, Honeywell, Renesas, Micron,

Infineon

PCRAM Intel, Ovonyx, Samsung, ST

Microelectronics, BAE Systems, Toshiba,

Macronix, Renesas, Elphida, Sony,

Matsushita, Mitsubishi, Infineon

SONOS Freescale (Motorola), Phillips

Nanocrystal Freescale (Motorola), IBM



FeRAM Ramtron, Texas Instuments

Table 3.1. Major memory technologies and companies with research on

3.4 Intellectual Property

Patent Number Filing Date Inventor Claims
6962850 1 Oct 2003 Choi et al Synthesis of

germanium nc
based Flash device
by LPCVD/PECVD
of silane, germane
and ozone/nitrous
oxide and RTA

6656792 1 Mar 2002 Choi et al Synthesis of
germanium nc
based Flash device
by cosputtering of
insulator and
germanium and
RTA

5783498 28 May 1996 Achuyt Dotta Synthesis of
germanium nc films
using APCVD of
Si-based organic
source, Ge-based
organic source and
ozone

7091130 25 June 2004 Rao et al. Synthesis of
memory device
with poly-silicon
nitride gate
materials
surrounding the
nanocluster
containing layer

6297095 16 June 2000 Muralidhar et al. Synthesis of
nanocluster
containing memory
device by nitriding
the nanoclusters
and tunnel oxide



6808986 30 August 2002 Muralidhar et al Synthesis of
nanocrystal for
using silane and
disilane (CVD)

6784103 21 May 2003 Muralidhar et al Synthesis of
nanocrystal on a
semiconductor
structure using
silane and disilane
(CVD)

6090666 30 September 1998 Ueda et al. Formation of
nanocrystal by heat
treating amorphous
thin films at
pressures below
atmospheric
pressure

970500 29 January 1997 Forbes Construction of
floating gate meory
using
nanocrystalline
silicon particles

5959896 27 February 1998 Forbes Construction of
multi state memory
cell using
semiconductor
crystals

5714766 29 September 1995 Chen, Wei Construction of
Smith, III, Teoren memory device
Perlee using
Tiwari, Sandip semiconductor

nanocrystals

Table 3.2: Selected patents relevant

devices

to fabrication of nanocrystal based memory

Table 3.2 shows a list of selected patents that are relevant to the fabrication of

nanocrystal-based memory devices. Out of this list, patent 536510 describes the

construction of a memory device using semiconductor nanocrystals without giving details

of a fabrication process. The earliest patent that is filed pertaining to Ge nanocrystals



with a specific fabrication method is patent 5783498 using atmospheric pressure

chemical vapour deposition (APCVD). Prof. Choi's patents describe the fabrication of Ge

nanocrystals using low pressure chemical vapour deposition/ plasma enchanced chemical

vapour deposition (LPCVD/PECVD) (patent 6962850) as well as co-sputtering

(6656792). The patents utilized by Freescale Semiconductors in their fabrication of

silicon nanocrystal memory device include 6297095, 6808986 and 6090666 by

Muralidhar et al.

3.5 Market and Intellectual Property Analysis Conclusion

In Chapter 3, we have analyzed the Flash memory market as well as competition

and intellectual property issues. Although the Flash memory market looks set to grow in

the next few years, Ge-nanocrystal-based memories face stiff competition from other

nanocrystal based memories, other technologies such as phase change memory and

magnetic random access memory as well as optical and magnetic data storage. From the

intellectual property analysis, we can see that no one has a monopoly and different

patents with different fabrication methods are held by different people. It is thus difficult

to erect a barrier to prevent others from manufacturing similar products. Any profit

gained from successful commercialization will induce others to produce similar products.

In addition, as there is no unique way, one-way-to-do-it path, it is extremely difficult to

start a purely intellectual property (IP) company based on the existing patents.
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Chapter 4: Cost Modeling

In this Chapter, we will attempt to analyze some of the ways in which nanocrystal

technology can be commercialized. First of all, we will look at some of industry trends in

chip fabrication. Next we will do up a cost model to compare the average costs between

nanocrystal memories to conventional flash as well as phase change memories.

4.1 Chip Industry Trends

The flash memory industry as well as the semiconductor industry in general is

well known for prohibitive costs of setting up a plant as well as relatively low profit

margins. The costs of setting up a wafer fabrication plant can come up to a few billion

dollars.1, 2 From Figure 4.1 it can be seen that the cost of a Fab has been increasing

exponentially over the years. At the same time, capital costs per unit output has been

decreasing, indicating productivity gains. Another measure of Fab affordability is to

compare the cost of a Fab to the size of the overall semiconductor industry. In 1960 the

average Fab cost represented 0.125% of the total industry revenue, by 2000 the latest

300mm Fabs have reached 1.28% of total industry revenue. As linewidths shrink, it also

becomes more expensive to purchase the necessary equipment. Figure 4.3 shows the

average cost of an exposure system over the years. Lithography systems used to cost

around $10,000. Now, a state-of-the-art Extreme Ultra Violet (EUV) system can cost up



to $100,000,000.' Variable costs, such as raw material costs, electricity costs and labour

costs, take up a relatively small proportion of the total unit cost.

WAFER FAB COST TREND
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Figure 4.1: Capital costs and normalized cost per unit output over the years
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Figure 4.2: Exposure system cost trend
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Figure 4.3: Wafer cost breakdown for a 300mm logic wafer. Much of the costs come from

depreciation of building and equipment costs, followed by costs of raw materials and

other consumables4

The high fixed costs and low variable costs tend to give rise to a monotonically

decreasing average cost curve as shown in Figure 3.3. Total fixed costs are independent

of actual production volume while total variable costs scales with production volume.

Total Fixed Costs
Average Fixed Costs =

Pr oduction Volume

Total Variable Costs
Average Variable Costs =

Pr oduction Volume

Total Average Costs = Average Fixed Costs + Average Variable Costs

At a low volume of production, the high fixed capital costs are shared between

relatively few outputs, leading to decreasing average fixed costs. Average variable costs

stay the same, independent of production volume. This gives rise to high average costs

Wde r Cost B reako~-- d
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Figure 4.4: Average cost curve of a typical Flash manufacturer.

At high production outputs, the astronomical fixed costs are shared by large

outputs. This leads to lower average costs. From the curve shown, we can expect

manufacturers to produce as far to the right of the curve as possible to enjoy economies

of scale reflected by lower prices. This leads to a natural monopoly in which new firms

entering the industry will face high average costs as their volume of production is small

and incumbent firms enjoy great economies of scale. Hence, it is not surprising to find

the flash industry being dominated by a few major players. From Table 4.1, we can see

that above 80% of the market is dominated by 5 companies. The flash memory industry is

ruthless, especially to small companies. In order to lower per-unit cost while dealing with

looming capital costs and aggressive competition, companies are forced to become more

efficient and innovative in order to survive.

production.
per
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Company Revenue (millions US $) % Market Share

Samsung 1376 33.3

Toshiba 614 14.8

Intel 528 12.8

Spansion 475 11.5

ST 295 7.1

Microelectronics

Others 884 20.5

Total 4132 100

Table 4.1: 2005 Rankings Top Suppliers of Flash Memories'

4.2 Cost Model of Building a Fabrication Plant

o of Masking Steps in Basic CMOS Process 26

o ofAdditional Mask Adders for Nanocrystal Memory 4

No of Additional Mask Adders for Conventional Flas 11

Memory

No of Additional Mask Adders for Phase Change

Memory

Capital Cost of Equipment per Masking Step $10.5 million

Process Cost per Layer per Wafer $1.25

Reticle Costs $15,000



Reticle Life

Wafer Costs

Building and Land

Accounting Life of Machine

Amortization Life of Building and Land

Table 4.2: Parameters used in cost analysisa'-'
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Cost Curves show Flash, Nanocrystal and Phase Change Memory at Different
Production Volumes
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Figure 4.5: Simulated cost curves for plant with annual production of360, 000.
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Figure 4.6: Simulated Breakdown of costs for a plant with capacity and annual

production of 360, 000 wafers per annum

A cost model was built with parameters listed in Table 4.2. It can be seen from

Figure 4.5 that the cost curves for conventional Flash memory, phase change memory

and nanocrystal memory are relatively close to one another. It is also noted that the shape

of the cost curves in Figure 4.5 are similar to that of Figure 4.4. However, nanocrystal

memories still enjoy some amount of cost savings compared to conventional flash

memory. The cost of phase change memory is slightly above nanocrystal memory.

Hence, nanocrystal memories enjoy some advantages in terms of costs in the aggressive

memory industry.

4.3 Cost Modeling Conclusions

The flash memory industry has high barriers to entry. New entrants suffer

prohibitive fixed costs. New entrants are also unable to compete with the dominant

Break Down of Costs at Current Capacity and Production Vol of
360,000 wafers/year

* Raw Material
w Process Costs
o Reticle Costs
o Equipment
m Land



players as their volume of production is lower. The flash memory industry is very

competitive. Comparing nanocrystal memories with conventional flash and phase change

memories, nanocrystal memories enjoy some cost savings due to fewer mask adders

required.
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Chapter 5: Conclusion

Germanium-based nanocrystal memory has been shown to have the potential to

replace conventional Flash memory. However, it faces serious competition from other

types of technologies. Phase change memory in particular poses a serious threat to

nanocrystal memory as it is backed by major flash manufactures such as Samsung. Use of

diodes instead of transistors will enable phase change memory to scale past the position

of conventional flash memory. In order for nanocrystal memories to compete with phase

change memory, continual research is essential. Retention time and other attributes such

as programming speed and voltages can be improved by trap level engineering, removal

of interfacial states at SiO 2/Si interface, use of heteronanocystals and novel schemes such

as double gate nanocrystal memory structures. A larger number of bits stored per

transistor can also be realized by using the discrete traps and multi-level schemes.

The commercialization of this technology is also hampered by similar patents held by

different companies/individuals. It is thus difficult to erect a barrier to prevent others

from manufacturing similar products. Any profit gained from successful

commercialization will induce others to produce similar products. For a company to

specialize in producing nanocrystal memory, it is crucial for the company to build up a

portfolio of patents, especially improvements on nanocrystal memories. With that, the

company can compete with other companies advocating phase change memory.

According to the cost models, the costs of manufacturing nanocrystal memories are



slightly lower than that of conventional flash or phase change memories. This might

prove to be an advantage of nanocrystal memory.
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