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ABSTRACT

Positionally-sensitive nanoindentation was carried out in the freshly-cleaved nacre found in
the shell of the gastropod mollusk Trochus niloticus. Nacre is a hierarchical biocomposite
composed of mineral tablets of 95 weight % calcium carbonate (CaCO 3) in the aragonite
mineral form and a biomacromolecular organic matrix. Nanoindentation was carried out in
a pattern of square grids of 256 indents at maximum loads of 1 mN and 500 gN. The
average elastic modulus and hardness for the 1 mN indents were found to be 97.8 GPa +
6.41 GPa and 5.41 GPa ± 0.49 GPa, respectively, and for the 500 gN indents average
elastic modulus of 94.8 GPa ± 7.28 GPa and hardness of 4.89 GPa ± 0.53 GPa. Maps of the
2-D spatial distribution of elastic modulus and hardness for the indent areas were
generated. Tapping mode Atomic Force Microscopy was performed on the indented nacre
after a treatment of surface etching, which revealed the tablet boundaries in order to
correlate qualitatively the topographical features with the properties distribution. The
properties distribution maps revealed a non-uniform distribution of nanomechanical
properties as well as highly-localized regions in which the values of the properties differed
from the average values. Future studies may point to a direct correlation between structural
heterogeneity and the properties distribution.
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I. Introduction

Biological materials are of great interest to materials science because of the

inherent complexity, order, and self-assembly of biological systems. The nacre of mollusk

shells, for example, is a biological composite material that exhibits a hierarchical

architecture'. A hierarchically structured material has important features at multiple length

scales, and multiscale characterization of these materials must be carried out to gain a full-

spectrum understanding of their properties and structure2. It is believed that the structural

heterogeneity of nacre confers strong mechanical performance because of variety of

deformation mechanisms that in combination yield high energy-absorbing qualties1 . This

investigation seeks to map the two-dimensional (2-D) spatial distribution of Elastic

Modulus and Hardness as a function of indent position on the microtablets of Trochus

niloticus seashell nacre. Determining the properties distribution will shed further light on

the nanomechanical properties of key structural features. Future nacre-like materials would

need to simulate the nanomechanical properties distribution in order to mimic fully the

mechanical performance of nacre.

A. Background

The conical shell of the gastropod mollusk, Trochus niloticus, contains an inner

nacreous layer. This nacreous material is found in the bottom walls of the inner chamber,

beneath a prismatic layer (Figure 1). Previous studies of nacre show that it is composed of

layers of pseudohexagonal, polygonal, and rounded aragonite mineral tablets (95 weight %

orthorhombic CaCO 3) arranged in a brick-and-mortar fashion, with a biomacromolecular

organic matrix occupying the inter-tablet region3 (Figure 2). These mineral tablets have

dimensions ranging from 5 pm to 15 ptm along the a- and b-axes ([100] and [010]

crystallographic directions, respectively) and about 0.3-1.5tpm along the direction parallel



to the c-axis ([001] direction)3 ,4 . Scanning electron microscopy (SEM) and Atomic Force

Microscopy (AFM) reveal that each tablet has a distinct nucleation site at its center from

which tablet sectors radiate'. The tablet sectors are thought to be individual crystals of

aragonite that are separated by the organic matrix5'6. The mineral tablets differ in the

number and relative size of the sectors, each tablet typically having between two and ten

sectors. Protein studies of the organic matrix suggest that glysine-rich structural motifs may

be necessary to Ca2+ binding for tablet nucleation7 . The nanoscale morphology of the

surface of the tablets (the (001) crystallographic plane) consists of nanoasperities'. In

California red abalone nacre, these nanoasperities are 30-100 nm in diameter and about 10

nm in heights . High-resolution Tapping Mode AFM (TMAFM) amplitude images reveal

the presence of polymer fibrils in the valleys between neighboring nanoasperities'.

A. P. Jackson, et al. have previously characterized the continuum mechanical

properties of nacre. The average elastic modulus is has been found to range from 60 GPa

to 80 GPa9' 10, as determined by various methods of mechanical testing, including uniaxial

compression. It is useful to note for the sake of comparison that the elastic modulus of

purely crystalline aragonite is 76-144 GPa depending on the orientation", while that of

low-carbon steel is 200 GPa and that of aluminum is 68 GPa. Previous nanoindentation

studies of T. niloticus nacre have shown the modulus to range from 70 GPa to 100 GPa'. It

should be noted, however, that the nanomechanical properties of the nacre often vary.

These variations are due in part to the differing mechanical responses of nano- and

microscale structural features (e.g. tablet boundaries, nucleation sites, etc.)'.

B. Motivations and Methodology

The ultimate goal of this investigation is to deepen the understanding of the nano-

and microscale mechanical performance of nacre and to learn from nature. Natural



selection has driven the evolution of nacre and has harnessed the principles of hierarchical

design in order to extract robust mechanical performance from constituent materials that do

not exhibit particularly good mechanical properties in their native state. A fuller

understanding of nanomechanical performance in nacre will make possible the

development of materials and technology that can mimic the mechanical behavior of

biocomposites (biological organic-inorganic composite materials), such as nacre. The

energy-absorbing abilities of nacre, in particular, are of great interest. For example, nacre

has a fracture toughness ranging from 2.9 to 5.7 MPa.4m9, compared to that of aragonite,

which ranges from 0.1 to 0.2 MPa.4m".

The following issues were addressed in this investigation: what is the topographical

distribution of elastic modulus and hardness as a function of indent position on the mineral

tablets, and how does one develop a method for correlating indent position and

topographical features? In order to answer these questions, the following methodology was

used: (1) Positionally-sensitive nanoindentation in a square grid of indents was carried out

in the freshly-cleaved nacre of T. niloticus; (2) the values for the elastic modulus and

hardness for each indent curve were determined and (3) these values were used to produce

elastic modulus and hardness maps of the 2-D topographical distribution of these properties

over the indented area.

I. Materials and Methods

A. Sample Preparation

Nacre samples were cut from shells of mature Trochus niloticus (purchased from

Shell Horizons, Clearwater, FL). The shells were cut using a diamond-impregnated

circular saw (Buehler, Isomet 5000) at a blade speed of 975 rpm and cooled with a PBS-

buffered water solution (pH 7.3). Slices of nacre were harvested from the inner nacreous



chamber walls (Figure 1). These slices were then cleaned and sonicated in de-ionized

water for 10 minutes with an Ultramet ultrasonic cleaner. All samples used for

nanoindentation were cleaved in uniaxial compression in ambient conditions using a

Zwick-Roell mechanical tester (Model BTC-FR010TH.A50, 10-kN maximum load cell,

0.01 mm/min), with axis of loading parallel to the tablet layers (i.e. perpendicular to the

aragonite c-axis, Figure 3). This method of preparation produced cleavage between the

tablet layers, leaving a flat surface for nanoindentation. A sample was considered "freshly-

cleaved" if it was used within one hour of cleavage by uniaxial compression.

B. Nanoindentation

A Hysitron, Inc. ® Triboindenter nanoindenter was used to conduct

nanoindentation experiments in ambient conditions. A trigonal pyramidal Berkovich

diamond probe tip was employed for all calibrations and nanoindentation experiments.

Experiments were carried out at two maximum loads, 1 mN and 500 jtN, at a loading rate

of 50 gN/s. A square grid of 16 indents on each side was set as the indentation pattern for

a total of 256 indents per grid. Neighboring indents were separated by at least two microns

on each side, for the 1 mN indents, and by at least one micron for the 500 gN indents. The

entire grid, therefore, covered an area of 900 sq. gim (30 gim x 30 jm) for the 1 mN indents

and 225 sq. gtm (15 gm x 15 tm) for the 500 jiN indents. Four large positioning indents

were also done at a maximum load of 10 mN in a square grid of 25 gm x 25 gim for the 500

jN indents and a grid of 35 gm x 35 gm for the 1 mN indents in order to facilitate locating

of the indents upon AFM imaging. Nanoindenter operating parameters are given in section

A of the Appendix. Values for the elastic modulus were calculated by means of Oliver-

Pharr (O-P) analysis of the nanoindentation curves 12. The parameters for the O-P analysis

can be found in the Appendix.



C. Surface Etching and Alteration

A surface alteration method employing acid-base etching was developed in order to

reveal the tablet boundaries and other features, such as the biomineralization nucleation

sites and sector lines, and the position of these features relative to indents. Once the nacre

was indented, the sample was treated in order to partially deorganify the nacre. This

method of treatment was developed because the presence of the organic matrix occludes

the tablet features to a certain degree depending on the sample surface texture and quality,

which can vary even among different areas on a same nacre sample. It has been previously

determined that the concentration of organic matrix is highest in the region of the

nucleation site, in the region between tablets (heretofore referred to as the tablet

boundaries) and between tablet sectors (heretofore referred to as sector lines)'. The surface

etching selectively "attacks" these regions of high organic content'. In this way, the tablet

features that are of key interest in this study were made visible in AFM scans by the

outlines left behind by the removal of the organic matrix after surface etching.

First, the nacre sample was immersed in a droplet of ethylenediaminetetraacetic

acid (EDTA, 0.5 M) for 15 minutes to partially dissolve the organic matrix. The EDTA

was then suctioned off using a pipette, and the sample was gently flushed with tap water,

again using a pipette to suction away the excess water. Then, the sample was treated with

an aqueous solution of sodium hypochlorite (NaCIO, 13 volume % chlorine). The same

process was carried out as for the EDTA, using a pipette to suction off excess NaCIO, then

flushing with tap water. After the etching, the sample was allowed to dry in ambient

conditions prior to imaging.

D. Atomic Force Microscopy

In-situ high-resolution AFM imaging with a Quesant ® Q-scope 350 AFM of the



surface of the freshly-cleaved nacre sample was performed in ambient conditions prior to

nanoindentation, in order to isolate a perfectly flat and clean area for nanoindentation. The

indented area was imaged immediately after indentation and once more after etching.

AFM specifications and operating parameters are given in the section B of the Appendix.

HI. Results

A. Nanoindentation

1 mN-The average elastic modulus for the grid of 256 indents carried out at a

maximum load of 1 mN was found to be 97.8 GPa, with a standard deviation of 6.41 GPa.

The maximum and minimum moduli values were 115.9 GPa and 81.4 GPa, respectively.

The average hardness was found to be 5.41 GPa with a standard deviation of 0.49 GPa.

The maximum and minimum hardness values were 6.84 GPa and 4.16 GPa, respectively.

The average contact depth was found to be 65.4 nm.

500 yuN--The average modulus was found to be 94.8 GPa with a standard

deviation of 7.28 GPa. The maximum and minimum moduli values were 122.4 GPa and

65.92 GPa, respectively. The average hardness was found to be 4.89 GPa with a standard

deviation of 0.53 GPa. The maximum and minimum hardness values were 6.32 GPa and

3.41 GPa, respectively. The average contact depth was found to be 44.9 nm.

Figure 4 shows the averaged nanoindentation curves for the indents carried out at

maximum loads of 1 mN and 500 tN, as well as for a maximum load of 100 RpN for

purposes of comparison.

B. Atomic Force Microscopy

High-resolution tapping-mode AFM scans reveal the surface morphology of nacre

in great detail. Those areas free of debris were used for nanoindentation (Figures 5a and

5b). Scans of the grid of indents were taken before the surface etching treatment (Figures



6a and 6b). The images of the grid of indents after the surface etching treatment reveal the

deorganified array of mineral tablets. While in most cases the surface treatment was

effective in deorganifying the surface of the nacre in order to clearly expose the tablet

features (Figure 7b), in other cases the mineral tablets were removed from the indented

region (Figure 7a). Technical and experimental issues are discussed in more detail in

Chapter IV Discussion.

C. Mapping

Since for each indent a unique value of elastic modulus and hardness was extracted

using the Oliver-Pharr methodology briefly described above, it is possible to plot each of

these values of modulus and hardness against the set of x- and y-coordinates for each

indent position, using spreadsheet software. In this way, a two-dimensional (or flattened)

contour map can be produced that shows the spatial distribution of each property as a

function of indent position. For the region between neighboring data points, the software

employs a linear interpolation of these data in order to produce a continuous 2-D map of

the properties distribution.

Figure 8a shows a map of the 2-D spatial distribution of the elastic modulus as a

function of indent position for the grid of indents carried out at a maximum load of 1 mN.

The grid size is 30 jpm x 30 gtm. The x- and y-scales correspond to the positions of

individual indents in the grid, and the z-scale is elastic modulus in units of gigapascals

(GPa). The grid size is 30 pm x 30 gim. Figure 8b shows a map of the 2-D spatial

distribution of the hardness for the same grid of indents carried out at a maximum load of 1

mN.

A map of the 2-D spatial distribution of elastic modulus as a function of indent

position for the indents carried out at a maximum load of 500 jIN is shown in Figure 9a.



The grid size is 15 gtm x 15 jm. . Figure 9b shows a map of the 2-D spatial distribution of

the hardness for the same grid of indents carried out at a maximum load of 500 [tN.

The AFM images of the etched nacre were used to distinguish the tablet boundaries

and sector lines and overlay the traced outlines of these features onto the properties maps

(Figures 10 and 11). This was in order to correlate qualitatively the tablet outlines and

features with the 2-D spatial properties distribution.

IV. Discussion

A. Nanoindentation and Mapping

As was previously stated, the aim of this investigation was to produce maps of the

2-D properties distribution. As can be seen from the maps that were generated, the

properties distribution at this length scale exhibits a high degree of heterogeneity. While

regions of uniform modulus and hardness can be seen, noticeable, as well, are distinct and

highly-localized areas in which the modulus and hardness deviate substantially from the

average nanomechanical modulus and hardness as well as from the continuum values of

these properties as they are stated in the literature'. It can be seen in all four of the maps

that these highly-localized regions occur in close proximity to each other. On the 500 jN

map for instance, the nanomechanical properties can vary by up to 50% within less than 2

jlm. From the results of nanoindentation, there exists a general trend in the value of the

modulus and hardness with low standard deviations from the average. The structure of the

nacre would seem to suggest that the larger deviations from the macroscopic elastic

modulus are a result of the heterogeneity the topography and the heterogeneity of the

composite structure of nacre. The correlation between properties distribution and the

position of the indent with respect to tablet features is not immediately apparent. It is

prudent to note that the properties distribution for indents carried out in single-crystal



aragonite would yield trivial results as the modulus and hardness of single-crystal aragonite

would not be expected to change when indenting along the same crystallographic plane, as

was done in these experiments. Were the nanomechanical deformation of nacre similar to

that of single-crystal aragonite, i.e. if the structural heterogeneity of nacre had no effect on

the mechanical response, we would expect a less marked difference among the values of

modulus and hardness at different indent positions. We can reasonable conclude that the

heterogeneity of the properties distribution seen in the maps for these experiments seems to

be a direct consequence of the role of the heterogeneity of structural features seen in the

well-characterized architecture of nacre'. Finally, the fact that the mechanical properties

can vary widely even within 1 jgm, may indicate that the variation mechanical properties is

controlled at a smaller length scale, possibly on the length scale of assemblies of

nanoasperities, i.e. several hundreds of nanometers. Future studies that are concordant with

the question of map resolution are discussed in chapter five.

B. Technical and Experimental Issues

Nanoindentation - The aim of the nanoindentation grids was to indent an entire

mineral tablet and the surrounding vicinity. During the development of the experimental

protocol several issues arose that had to be addressed in order to optimize the experimental

conditions and parameters. Attempts were made to reduce the grid size as much as

possible in order to increase the area density of indents and thus the resolution of the

mechanical properties maps .Two of the main issues that arose out of the protocol for

nanoindentation were indent pile-up and drift of the indenter tip. Firstly, it became

apparent in early position-sensitive experiments that the pile-up around indents caused by

plastic flow during the deformation of nacre upon indenting was significant enough at low

indent spacing to yield inaccurate and unreliable values for the modulus and hardness.



This is because an indent performed in area that is already deformed will yield false values

of the mechanical properties since deformation in general alters the mechanical response.

Furthermore, since indents carried at different loads tend to differ in contact area and

contact depth, different indent spacings were needed for indents carried out at different

maximum loads. Consequently, it was necessary to optimize the indent spacing for both

the 1 mN and the 500 gLN grids of indents.

Moreover, from early indentation in a square grid the disparity between the

expected position of an indent and its actual position became even more apparent at low

indent spacing. For example, overlapping of indents (often one indent on top of another)

and irregular, distorted grids of indents were observed during the early experimental phase.

While the Hysitron 8 nanoindenter corrects for thermal drift in the piezoelectric tube that

actuates the motion of the indenter tip during indentation and while the spatial resolution of

the piezo-tube is on the order of a few nanometers (as stated in the Hysitron @

Triboindenter technical manual), a possible reason for the drift may be the fact that the

stage upon which samples rest during indentation does not have drift-correction features

and is actuated not by piezoelectric actuators but by bearing motors, which have lower

spatial resolution. The issue of drift was further exacerbated by the fact that indents were

performed in a square grid in which indents had between two and four nearest-neighbor

indents.

Finally, a trial-and-error methodology was used to optimize the indent spacing

taking into account the constraints of drift, pile-up, proximity of indents, and the objective

to indent on a sufficiently small grid to encompass at least one tablet.

Surface Etching - As previously mentioned, the surface etching protocol was

developed out of a necessity to reveal the tablet outlines in a repeatable fashion in order to



correlate tablet features with indent position (and ultimately nanomechanical properties).

The treatment times needed to be optimized to properly deorganify the surface of the nacre

(remove the organic matrix from the tablet and sector boundaries) while preventing the

demineralization of the tablets themselves, since EDTA, a chelating agent, and NaCIO, a

strong base, breakdown both the organic and inorganic components of nacre. The original

etching protocol only provided for the use of EDTA to deorganify, but since long treatment

times were needed, the protocol was expanded to include treatment with an alkaline

compound, aqueous NaCIO. While the surface treatment was largely successful in

accomplishing said objective, it is not possible to fully control the action of the surface

treatment on the nacre aside from changing concentrations of the solutions and the

treatment times. Despite the fact that the etching successfully deorganified the nacre, the

removal of whole sections of tablets or parts of tablets was observed on isolated occasions

(Figure 7b). This may be due to the fact that the surface etching removes the

biomacromolecular "mortar" that holds the tablet "bricks" in place thereby causing the

tablets to be washed away at times during flushing.

V. Future Studies

The ultimate objective of attaining a complete understanding of the nanomechanical

properties distribution would be furthered by a rigorous statistical analysis of the results of

this research. In order to fully correlate the properties distribution with indent position and

tablet features, and in order to determine the precise nature of that correlation, a full assay

of the positions of each indent and their proximity to tablet features of particular

significance, such as nucleation sites and tablet sectors, would need to be carried out in

order to produce a large set of meaningful statistical data with which to correlate position

and mechanical properties quantitatively. The specific type of statistical analysis to



conduct as well as its scope and depth are as-yet undetermined.

Although this research focused on generating a map of the 2-D spatial properties

distribution and only qualitatively attempts were made to correlate that distribution to the

tablet features, it may be possible to obtain a more palpable qualitative correlation by

indenting on a much smaller grid-which would require the maximum indentation load to

be much less. A comparison of the properties maps for the two maximum loads shows a

distinct qualitative difference in the properties distribution, namely that the map of the 500

pN indents appears to show greater heterogeneity. Likewise, by indenting on a much

smaller grid-perhaps fewer than 5 gtm x 5gtm, e.g. indenting individual nanoasperities--

the resolution of the maps would greatly increase and the structure-properties correlation

may be more apparent.
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VI. Appendix

A. Nanoindentation

Nanoindentation experiments were conducted in ambient conditions using a



Hysitron, Inc. (Minneapolis, MN) Triboindenter equipped with tapping mode atomic force

microscope (TMAFM, Quesant Q-Scope). The instrument is housed in a granite frame

environmental isolation chamber so as to minimize instabilities due to the ambient

background noise, active piezoelectric vibration control stages (Hysitron, Inc.), and a

thermal drift calibration step. The piezoelectric transducer was allowed to equilibrate for

660 seconds (the last 60 seconds with digital feedback) prior to each indent. The drift rate

of the transducer was automatically monitored by the software before indentation was

initiated. The applied load function was divided into five segments as follows. The first

segment consisted of a 3 second hold at zero force allowing for tip-sample equilibration.

Segment two was a constant loading rate of 10 tN/sec. Once the maximum set peak load

was reached, a third segment which was a hold period of 10 seconds would ensue. The

fourth segment decreases the load until reaching zero force with an unloading rate

equivalent to that of segment two. The fifth segment would conclude the experiment with

a 50 second hold at zero force, in order to calculate the final drift rate of the piezo. The

probe tip area function (A() which is the projected area of the Berkovichprobe tip under

load calculated from a 6th order polynominal fit accounting for nonideal tip geometry as a

function of the contact depth, he) and frame compliance were calibrated prior to each set of

experiments using a fused quartz samplet.

B. Atomic Force Microscopy

In-situ high-resolution AFM imaging was carried out on the nacre using a Quesant

Q-scope 350 AFM (attached to the Hysitron, Inc. Triboindenter nanoindenter) in tapping

mode with a piezoelectric tube scanning element (X-Y scan range -40 gm, vertical Z limit

-4.5 gtm) and Si3N4 Wavemode NSC16 cantilevers (rectangular shaped with conical probe

tip geometry, 1- 230 gtm, width - 40 gm, cone angle < 200, probe tip height - 15-20 gtm,



resonance frequency, w -170 kHz, k - 40 N/m, and RTTP -10 nm). A scan rate of 2 Hz

using a maximum sample size of 512 x 512 pixels was employed. The drive amplitude and

amplitude set-point (-0.25 V) were optimized prior to imaging and gains between 350 and

550 were employed"t.

C. The Oliver-Pharr Analysis Method

1 The procedure used to determine the reduced Young's Modulus Er and the

Hardness H of the material from nanoindentation curves is described below. the portion of

the unloading curve between 95 and 20 % of the maximum load to is fit to the power law

relation,

2P= B(h-hmx )m

where

P is the load

B is a constant to be determined

h is the indentation depth

h, is the maximal indentation depth

m is a constant to be determined

The derivative of the power law relation with respect to h is evaluated at the

maximum load to calculate the contact stiffness S,

C = (dP
dh

The contact depth, he, is calculated with the following equation:

h = h 3P
4S

The hardness H is calculated with:

H Pmax
A(hc)



where A(hc)is the projected contact area of the tip at the height . Practically, the area

function is calibrated before each set of experiments (see below).

3

The reduced modulus (see definition below) is calculated with:

2-fs

Tip-shape calibration is based on determining the area function of the indenter tip.

The method is based on the assumption that Young's modulus of elasticity is constant and

independent of indentation depth. Fused quartz with reduced Young's modulus of 69.6 GPa

is used as a standard sample for calibration purpose. An area function relating the projected

contact area (A) to the contact depth (he) is obtained. For an ideal pyramidal geometry

Berkovich tip, the projected contact area to depth relationship is given by:

A (hc )=24.5hc

In the general case,

A(hC) S4 Er
where the reduced modulus E, accounts for the fact that the measured displacement

includes contribution from both the specimen and the indenter. The reduced modulus is

given by:

1 1-v2 IV2

where E and v are the elastic modulus and Poisson's ratio of the specimen and the

indenter respectively.

To determine the area function, a series of indents at various contact depths (normal



loads) are performed on fused quartz specimen and the contact area (A) calculated using

the general equation above A plot of the computed area as a function of contact depth is

plotted and a fitting procedure is employed to fit the (A) versus (hc) to a sixth order

polynomial of the form:

A(hc) = Cohc2 + Coh, + Coh2/2+ Ch31/4 + Ch 4
1/8 + Ch1/16

Adapted from TriboScope® Users Manual, © 2003 Hysitron Inc.
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IX. Figures
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Figure 5b.
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X. Figure Captions

Figure 1: This sketch of a full-sized Trochus niloticus shell shows where the nacreous layer
is found.

Figure 2: The hierarchical structure of nacre can be seen in this diagram. Magnification
increases counterclockwise from the upper left.

Figure 3: A diagram of a nacre sample being cleaved in uniaxial compression. The axis of
loading is oriented perpendicular to the aragonite c-axis.

Figure 4: A graph of the averaged nanoindentation curves shows the general shape of the
Force vs. Displacement depth curves and the standard deviations for experiments carried
out a maximum loads of 1 mN (1000 gN), 500 jN, and 100 gN.

Figure 5a: 1 mN - Amplitude AFM image in tapping mode of the surface of freshly-
cleaved nacre before nanoindentation, 40 gm x 40 gm scan size.

Figure 5b: 500 jN - Amplitude AFM image in tapping mode of the surface of freshly-
cleaved nacre before nanoindentation, 40 gm x 40 jim scan size.

Figure 6a: 1 mN - Amplitude AFM image in tapping mode of the grid of 256 indents,
40 jim x 40 jim scan size.

Figure 6b: 500 gN - Amplitude AFM image in tapping mode of the grid of 256 indents,
40 gm x 40 gLm scan size.

Figure 7a: 1 mN - Amplitude AFM image in tapping mode of the grid of indents after
surface etching.

Figure 7b: 500 uN - Amplitude AFM image in tapping mode of the grid of indents after
surface etching.

Figure 8a: 1 mN - Map of the 2-D spatial distribution of elastic modulus as a function of
indent position, 30 Rm x 30 gm grid size.

Figure 8b: 1 mN - Map of the 2-D spatial distribution of hardness as a function of indent
position, 30 gm x 30 gm grid size.

Figure 9a: 500 pN - Map of the 2-D spatial distribution of elastic modulus as a function of
indent position, 15 Rm x 15 jim grid size.

Figure 9b: 500gN - Map of the 2-D spatial distribution of hardness as a function of indent
position, 15 gm x 15 jim grid size.

Figure 10a: 1 mN - Tablet boundaries overlain onto map of the elastic modulus
distribution, 30 gim x 30 jim grid size.



Figure 10b: 1 mN - Tablet boundaries overlain onto map of the hardness distribution,
30 gm x 30 lim grid size.

Figure 1 la: 500 jiN - Tablet boundaries overlain onto map of the elastic modulus
distribution, 15 gim x 15 gm grid size.

Figure 1 lb: 500 [iN - Tablet boundaries overlain onto map of the hardness distribution, 15
gim x 15 gm grid size.


