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Chapter 1

Introduction

1.1 Overview and Objectives

The need for extremely compact light emitters capable of delivering high

optical power in narrow, collimated beams has, in recent years, generated

a lot of research interest worldwide in developing such emitters. These

devices would find potential applications in optical recording, intersatellite

communications, medicine and solid-state laser pumping.

One of the approaches that has received a lot of attention over the years

in making these high power devices involves fabricating parallel-element

laser arrays on a monolithic semiconductor. The laser elements are made

sufficiently close to one another so that the evanescent waves propagating

between them cause the elements to interact, thus leading to' mutual cou-

pling. The devices are said to be phase-locked if the coupling causes them

to operate as a single, coherent source. Typically, however, the far-field

emission patterns of these devices have been characterized by dual lobes

which sometimes degenerate into complex, multi-lobed patterns [1,21.
j t lo~~A I ·1·lt ^^^^+t~l ^^~~ ?rr 1:^"?1- .^k^- :... -_:k 1k_ * _ 

& %A , C fLJap lzl.zC4al, wavy: 4Cuu!l1 ane mlu & JUed uescriUed, wiere is no e[-
inite control of how much electromagnetic energy can be coupled from one
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CHAPTER 1. LINTRODUCTION

laser guide to another. This lack of control is so severe that the phase re-

lationship of a wave coupled from one guide to its nearest neighbor cannot

be determined a priori. As will be discussed later, the phase relationship

between nearest-neighbor-elements of the array is the key ingredient in a

phase-locked, single-lobed operation of these devices.

The objective of this thesis was to develop a technique, possibly in a

new device geometry, where control of the phase relationship of the coupled

waves could be established and predetermined. Concomitant with this goal

was a need for a systematic study of the semiconductor heterostructures out

of which the devices would be fabricated. It was proposed at the inception

of the project that the devices would be fabricated out of quantum well

heterostructures.

1.2 A Historical Perspective

During the late 1970's, there evolved a need for -V semiconductor lasers

capable of emitting light powers in the range of 20 to 70 mW. The first

generation of these high power devices were the so-called large optical cavity

(LOC) lasers [3,4]. For the most part, they were operated in a pulsed mode.

These devices, though capable of meeting the needs of the time, were still

limited in how much ultimate power they could deliver. This is because

the highest optical power any semiconductor laser can deliver is limited by

the catastrophic mirror damage.

Another class of high power lasers were the facet coated lasers. The

outputs of ordinary laser diodes were increased by appropriately coating

one facet of the device with anti-reflection coatings. The improvements

gained by this method are not very significant in view of the difficulties

involved in the deposition of these coatings.

s~~~~~___ ___,_._~~~ 
~r~.-·- ---..-- 
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·
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CHAPTER 1. INTRODUCTION

The precursors of the monolithic laser arrays were the discrete arrays.

In these devices, a series of individual diode lasers are laid side-to-side

and electrically connected in series. The devices were separated from one

another by a few millimeters. Optical peak powers in excess of 4 W were

achieved from the discrete arrays of this kind [5].

The devices just described satisfied the need for high power. They did

not, however, meet the requirement for narrow, collimated beams. Beam
forming optics still had to be used to collimate the optical outputs of these

devices. This meant that the range of applicability was limited.

The principles of the solution of the problem of obtaining beams with

narrow spatial extent in semiconductor lasers are intimately linked to the

physics of diffraction in narrow apertures.

The overall size of the ordinary semiconductor laser dictates the spatial

extent of the beam emanating from it. In order to circumvent this phys-

ical restriction, methods have to be found to increase the lateral effective

aperture from which most of the radiation is emitted. It was with this

motivation that linear monolithic arrays were developed. If the individ-

ual array elements are phase-locked, narrower beams could be achieved.

This follows directly from the physics of diffraction. The first evanescently-

coupled linear arrays were studied by Ripper and Paoli [6j. These early

studies established mutual interaction amongst the elements of the array.

The possibilities of phase-locking and beam-stearing were demonstrated at

Xerox PARC by Scifres et al. [7]. For the majority of the evanescently-

coupled devices reported, operation in a narrow, single-lobe has been more

of an exception than the rule [81. This is mainly because there is a lack of

control of the phase relationship required for a collective coherence of the

array elements. The implementation of a deliberate control mechanism for

this phase relationship is crucial for the operation of the devices as a single

13



CHAPTER 1. INTRODUCTION

coherent source. The exploration and discussion of a method of controlling

this relationship are the subject of this thesis.

1.3 Scope of the Thesis

The foregoing sections provided the necessary bacikground and historical

perspective of the subject of this work.

In this section, we outline the major topics covered in the sequel. Chap-

ter 2 discusses quantum well heterostructures. The basic physics of these

structures is outlined. The optical characterization techniques used are

discussed and some of the results are illustrated. In Chapter 3, the conse-

quences of incorporating the quantum well structures in the active cavities

of lasers are discussed. A theoretical discussion of the optical gain in quan-

tum well lasers is given. The threshold current densities of quantum well

laser devices are calculated based on a strict k:conservation model and com-

pared to experimental results. A brief discussion of the gain broadening

mechanisms for these lasers is also given in this chapter. In Chapter 4,

the elements of phase-locking in monolithic laser structures are covered.

The principles of optical wave guiding in these lasers are discussed. This

chapter also introduces the major contribution of this thesis- a new struc-

ture for achieving phase-locking in monolithic laser arrays. This structure,

the mixed-mode phase-locked (M 2PL) laser array, is a member of a class

of diffraction-coupled laser arrays. The quantative condition for in-phase

locking is established and the principle of operation of the M 2PL laser array

is discussed. In Chapter 5, the experimental results of this work are pre-

sented and discussed. An analytic model which explains the characteristics

of the observed far-field patterns is presented in this chapter. This model

is developed from a premise with experimental basis. Chapter 6 summa-

_ -·� L�---,- --- �-�------- ··--1---·I--�--i,--·-- ;-r----------�----- `��-' � -- �·_�r--_-_,�-. ·-·- "
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CHAPTER 1. INTRODUCTION 15

rizes the work presented in this thesis and gives a discussion of possible

future directions based on it. This thesis has two appendices. Appendix A

gives a derivation of the confinement factor used in Chapter 3. Appendix

B is a technological appendix. The details of the use of a molecular beam

epitaxy system are given here. The necessary crystal growth details are

also discussed. The second half of this appendix gives a discussion of the

processing steps used in the fabrication of the laser devices. No claim is

made to the optimality of any of the steps or techniques discussed here.

These techniques and steps, however, are the ones found most suitable for

the facilities available for this kind of work at MIT.

Finally, the chapters in this thesis are written to be self-contained. The

necessary background needed in order to follow the presentation is devel-

oped in the course of each discussion.





Chapter 2

Fundamentals of Quantum
Wells

As a prelude to discussing quantum wells and their applications in lasers,

we first give a simple overview of what is meant by an electronic quantum

well in practice.

In the textbook case, an electronic carrier is said to be confined within

an energy well when it is in a region of space with low potential energy

surrounded by walls of infinitely high potential energy. In this chapter, we

will concern ourselves with practical quantum wells. The demonstration

and achievement of these type of wells is intimately linked with the science

and technology of crystal growth. In recent years, crystal growth techniques

[9] and processing methods have advanced to such a state that it is now

routinely possible to obtain ultra-thin and pure solid films that exhibit

quantum size effects (QSE). Quantum size effects become operative in solid

layers when the film or surface depth dimension is comparable to the de

Broglie wavelength (A = hp L,,) of the electronic particle or to its

mean free path in the layer. These effects also lead to changes in some

very basic physical quantities of the semiconductor. Such quantities as the

16
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CHAPTER 2. FUNDAMENTALS OF QUANTUM WELLS 17

Bohr radius and the Rydberg constant acquire new values in structures

containing quantum wells. In the m-V semiconductor compounds, the

Bohr radius then ranges from 10 to 500 A with the corresponding effective

Rydberg constants ranging from 100 meV to 1 meV.

When quantum size effects occur, they produce changes in the macro-

scopic properties of the layer, film or surface. And it is these changes,

particularly in the optical and electrical properties of the solid, that are

taken advantage of in the design of semiconductor lasers.

2.1 Heterostructure Quantum Wells

The formation of a heterostructure quantum well involves- the epitaxial

growth of two semiconductor crystals with approximately the same lattice

parameter but different band gap energies. In Fig. 2.1, we. show the (Al,

Ga)As and GaAs semiconductor heterostructure system. The GaAs ma-

terial, which has a smaller band gap than the (AI,Ga)As, is sandwiched

between two layers of the (AI,Ga)As material to form the quantum well.

The crystal growth details will be discussed in Appendix B.

The distribution of electronic carriers in a semiconductor with a quan-

tum well is markedly different from that in the bulk crystal. The physical

nature of the quantum well imposes a quasi two-dimensional behavior on

the carriers. The energies, for example, that each carrier may have are

discretized in a prescribed manner. The prescription of the allowed en-

ergy levels is governed by quantum mechanics. In a quantum well, such as

the one formed in the (AI,Ga)As/GaAs crystal system, we may determine

the particular energies that are permitted for occupation by the carriers

by solving the Schrodinger wave equation. The Hamiltonian (in the single

particle approximation) that is used in this calculation is assumed to be
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separable in the cartesian coordinate system. Therefore, for the quantum

wells shown in Fig. 2.2, the relavant component of the Hamiltonian would

be the y-component which is normal to the epitaxial layer. The lateral

component would give rise to the usual, unconfined Bloch carrier states.

We write down the Schr6dinger equation to be solved for the problem

in Fig. 2.2 as

2m, ay2 + EC(Y)] (Y) = Eln(Y) (2.1)

where A E,(y) is the static crystal potential energy with a zero of energy at

the conduction band edge. The E, are the eigen-energies and the ,.(y)

are the associated eigen-functions. The carrier effective mass, m,, is to

be distinguished in the GaAs and the (AI,Ga)As regions as m, and mb,

respectively. This equation is written for the conduction band quantum

well. An analogous equation can be written down for the valence band

quantum well. In the valence band, however, the usual degeneracy of the

bands for most -V semiconductors at the Brillouin zone center, is lifted

for quantum well structures. It is therefore necessary to take into account

both the light and the heavy holes. This will be explained in detail in a

later section.

For the two regions of Fig. 2.2, Eq. 2.1 can be split into two auxilliary

parts; for region 2,

dy
with the relevant solutions being

*§,(y) = AeC'

ANN -- `--- Y-iCYI -·W I- .-P^ ^------
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Epi-layers Energy Baond Structure

(Al, Go)As

GaAs

(Al, Ga)As

Figure 2.1: The configuration of a GaAs single quantum well sandwiched
between two (AI,Ga)As confining layers.
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,,(y) = De-" y > Lw (2.4)

!O= .2m...(AEc-E (2.5)

A and D are arbitrary constants of integration. In region 1, the Schr6dinger

equation is

+ k 2',(y) = O (2.6)

and the solutions take the form

, (y) = B cos ky + C sin ky lyI < L. (2.7)

k |/2m=wE,, { (i.8)

The quantities B and C are the arbitrary constants of this integration. By

requiring that the eigen-functions of Eqs. ( 2.3), ( 2.4) and ( 2.7) and their

first derivatives be continous at the hetero-interfaces, i.e. at y = ±L,, we

obtain the system of equations

-C-AL- cos kL, -sin kL, 0 A
-ruecl" ksin L, k co kL, 0 B
0 cos kL, sin kL, -ew C (2.9)
0 -ksinkL, k cos L., e " i l D

From this system of equations, we derive the eigen value conditions that

ktan kL, = A+D#0, B0O

g ·~~~~~,S·L~a · l·-a

(2.10)
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Figure 2.2: The schematic energy band diagram of a single GaAs quantum
well in both the conduction and valence bands.
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k cotkL, = - A-D # 0, C # 0 (2.11)

These conditions cannot be satisfied simultaneously. Therefore, if at one

time Eq. ( 2.10) is true, it can be shown that the corresponding eigen-state

is-

·,0,(y) = (B cos kL,)e '(v+L.) y < -Lj (2.12)

O .(y) = B cosky IyI < L, (2.13)

i§,(y) = (B cos kL,)e - (v' ) y > L. (2.14)

This state is said to have even parity. On the other hand, when Eq. (2.11)

is valid and Eq. ( 2.10) is not, the correct eigen-state is given by

,,,(y) = (-Csin kL,,)(y+Lv) y < -L, (2.15)

9,(y) = C sin ky IYI < L, (2.16)

u,3(y) = (C sin kL,)eC- ( -L' ) y > Lw (2.17)

This state has odd parity.

Since the eigen-states of Eqs. ( 2.12- 2.14) and Eqs. ( 2.15- 2.17)

represent bound electron states in the well, the arbitrary constants B and

C can be determined by imposing a normalization condition such that

f Jl,(y)fdy = 1 (2.18)

-'- - , - -, .. - - ------- ?-7. - ?- ---- -- cn-* 7--- -;-- -*-
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The eigen-energies, E,, for the bound states in the quantum well are

determined from Eq. ( 2.10) for n even and from Eq. ( 2.11) for n odd.

From the definition of ir in Eq. ( 2.5) and k in Eq. ( 2.8) and the eigen-value

of Eq. ( 2.10) and Eq. ( 2.11), we can write a single eigen-value equation

implicitly for the system as

im,*v -En] = | tan (m,,L E)/(2 (2.19)
me -En t~ -cotv /(m WLr E)/(2 ) .19)

where V.(= AE,) is the well depth, L, is the well width, E,, is the n-th

eigen-energy, m,, and m, are the electron effective masses in the well and in

the barrier, respectively. Eq. ( 2.19) can be transformed into dimensionless

form by writing

P2 = (m"L2vo)l(/2.2
? = (m,,,L2E,)/2 2 (2.20)

With this transformation, Eq. ( 2.19) becomes

m,.._Ab ,= { = -cot (2.21)

Eq. ( 2.21) is now in a form that can be solved graphically. If we plot

the left hand side of Eq. ( 2.21) as a function of and the right hand

side also as a function of f, the intersections specify values of f which are

solutions to Eq. ( 2.21). By use of Eq. ( 2.20), we can then determine the

eigen-energies, E,.

For a typical quantum well width of L=125 A, we have plotted the

solutions of Eq. ( 2.21) for the even eigen-states of a confined electron in a

conduction band quantum well. These solutions are shown in Fig. 2.3. The

electronic band parameters used are listed in Table 2.1. The complete set of

eigen-energies for the Alo.:Gao.sAs/GaAs/Alo.2Gao.sAs single well structure

I

_ _ ,_1 ~.-~--~- - -- --- -- - - -
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with a width of 125 A is shown on Fig. 2.2.

Table 2.1: Electronic Band Parameters

m (x) = (0.067 +0.08 3x)m,

mhh (X)= (0.450+0.140x)me,

E,(x)=1.424+1.247x eV

AE0=0.62AE,

Vo=AE,(AE,)

mh (x) = (0.087+0.063x) m,

mO=9.109x 10-31 kg

AE,=E,(x)-E,(O) eV

AE,=0.38AE,

L,,-125 A

x=0.2

2.2 Multiple
tices

Quantum Wells and Superlat-

The major difference between a multiple quantum well system and a super-
lattice is the relative magnitude of the barrier layer thickness Lb, and its

relationship to the wave function penetration depth L,, into the barrier. In
multiple quantum wells, the barrier thickness L, is much bigger than the
wave function penetration depth L, (i.e. Lb >> L,). Therefore, the wave

functions of adjacent wells do not overlap, and the physical properties of
the multiple quantum well system are those of an independent set of wells.
Most of the physics of these systems can therefore be studied in a single
quantum well and is not restricted to the multiple quantum well systems.

As a practical matter though, the signal-to-noise ratio is much better in

_Y_·· Il.---------YI-� C-LI��-�--_IUII�

-- - -
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CONFINED ELECTRON STATES
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Figure 2.3: A graphical solution of the eigen value energy equation for the
even states in a single quantum well.
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multiple quantum well systems for any given experiment on these struc-

tures. This is one of the main reasons for working with multiple quantum

well structures rather than a single quantum well structure.

In superlattices, which in principle, are any set of infinite, periodic lay-

ers, the barrier thickness Lb, is much less than the wave function penetra-

tion depth L,; this means that the wave functions of adjacent wells interact

and the confined particles are delocalized. The physical properties of these

structures therefore depend on the super periodicity superimposed on top

of the lattice periodicity. The energy distribution of the delocalized carriers

in the superlattice takes on a new form. The discrete energy distribution

characteristic of isolated quantum well structures changes into mini-bands

separated by mini-gaps. We illustrate in Fig. 2.4, the periodic form of the

potential energy a particle would see in the vertical direction of epitaxial

growth (y-direction) for a superlattice. We have only shown the conduction

band energy profile. This is the Kronig-Penney potential energy profile.

The Hamiltonian for a carrier in this type of potential, in the single

particle approximation, is

H = p2/2m, + AE,(y) (2.22)
aEC(y) = aE.(y + )

The parameters have their usual meanings, a, however, is the period of the

superlattice. The eigen-functions of such a Hamiltonian come in product

form and they are a consequence of Bloch's theorem 112]. These eigen-

functions are written as

,0.(y) = c-iu(y) (2.23)

The conditions that the eigen-functions I,, satisfy are very similar to those

satisfied by the eigen-functions of the single quantum well discussed earlier.

~-~i~ldS~(~t~B~aC~T~i~~- ~_~*;I~9^~r~7 ~e ~ -g~p~r~j~r;I~~l 1 Z . _-~t~~I- s _ 
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Figure 2.4: The periodic potential energy profile seen by a particle in the
conduction band of a superlattice structure.
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t,,(y) and its derivative must be continous and periodic. In region 1 of
the well domain of the potential,

~me(y) = Aei' v + BilV
kl, = E )/ y < L (2.24)

In region 2 of the barrier,

*.(y) = Ceih" + De - jk
k2 = /2m,(AE - Em.)/ LL.+L=a

(2.25)

The continuity conditions mentioned earlier can be applied to Eq. ( 2.24)

and Eq. ( 2.25). In an exactly analogous way to Eq. ( 2.9) we can derive

the 4 x 4 coefficient matrix that represents these continuity conditions. The

vanishing of the determinant of this matrix gives the eigen-value equation

which is also the dispersion relation (a bit of algebra is involved in deriving

this result). This relation is

cos ka = sin klL, sinh k2Lb + cos kIL,. cosh k 2L, (2.26)
2klk2

with the parameters kl and k2 given as in Eq. ( 2.24) and Eq. ( 2.25) re-

spectively. Eq. ( 2.26) can be solved graphically to determine the allowed

eigen-energies for the superlattice structure. By separately plotting the left

hand side and the right hand side of Eq. ( 2.26) on the same graph, we de-

termine from the intersections, the allowed eigen-energies. The wavevector

k has real values when -1 _ coska < I1 and it is in this range of k values

that the eigen values of E,, are defined.

We illustrate in Fig. 2.5, a computer generated solution of Eq. ( 2.26).

In the solution of this equation, for values of E,, > AE,, the hyperbolic

--- n � ---
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sine and cosine functions revert back to normal trignometric sine and cosine

functions. In Fig. 2.5, we have also shown the allowed and forbidden energy

bands characteristic of a superlattice structure. This particular superlattice

is composed of quantum wells exactly the same size as the single quantum

well treated earlier. The barrier thicknesses, however, are only Lb = L,/15.,

We have therefore used the same electronic band parameters in Table 2.1.

From the graphical solution, we extract the information that the eigen-

energies occur in four discrete ranges given by

0.06<Ec1LAE.e 0.2
0.33<Ee2 /AEe<0.82 (227
0.94<Es/AEc<1.84
1.93<E,4 /AE,<3.27

These mini-bands are shown in Fig. 2.6. The energy levels of a single

quantum well are also shown alongside the superlattice mini-bands. For

the same well size, the mini-bands of the superlattice lie in the ranges that

correspond to the discrete energy levels of the single quantum well. We

note, however, that a new feature absent in the single well energy spec-

trum appears in the superlattice energy quantization. Whereas the energy

spectrum of a single well outside the potential well is characterized by a

continuum of states, that outside the periodic potential of the superlat-

tice is still discretized into mini-bands. Resonances due to the mini-bands

outside the periodic wells have recently been observed [13].

We have just quantitatively discussed the main differences between a

superlattice and a multiple quantum well system. The properties of a su-

perlattice are primarily due to particle delocalization which leads to the

creation of allowed and forbidden energy mini-bands. This feature is true

for both the conduction and valence bands. Because of the degeneracy of

the valence band, however, the effect is a little bit more complicated.

^·II·L I ..�n-L--.C;rr^-·L·IL·pru�- - -----t �-·· -- -- --i-� ---
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ENERGY SPECTRUM OF A SUPERLATTICE

1 2 3 4 5

Figure 2.5: The energy spectrum of a superlattice.
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81.8

21.0

SL SQW

Figure 2.6: The energy band diagram of a superlattice alongside that of a
single quantum well structure. The energies in the superlattice split into
minibands with forbidden minizones between the allowed sub-bands.
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In bulk m-V compounds, the valence bands consist of the two degener-

ate levels which are due to the J = 3/2 momentum multiplet at the center

of the Brillouin zone. The spin-orbit interaction of the electrons results into

a split-off band for J = 1/2. Using k.p perturbation theory, Dresselhaus

[10] showed that the energy expression expected for the J = 3/2 multiplet

is

E,(k) = Ak' [B2k' + C 2 (k2k2 + k2k2 + k,2k2) 1 / (2.28)

which is a fluted ellipsoidal energy surface. The z, y and z refer to the

crystallographic directions. Since for the GaAs wafers we use, the quan-

tum wells are parallel to the (100) crystallographic direction, Eq. ( 2.28)

becomes

E,(k) = (A i B)k2 (2.29)

In the Luttinger Hamiltonian [111 description of the energy dispersion rela-

tion, the parameters A and B in Eq. ( 2.29) have been related to the Lut-

tinger parameters y1I and 72 through the relationship AB (2'y 2)/m.

where m. is the free electron mass [14]. This relationship defines two differ-

ent masses for the degenerate bands. Because the two masses are different,

the effects of confinement in the y-direction for each one of them are differ-

ent. At the zone center, the degeneracy is lifted and the result is a creation

of two distinct valence band eigen-states for each allowed qauntum number.

2.3 Density of States for Quantum Well Struc-
tures

In bulk II-V compound semiconductors where the energy dispersion rela-

tions are approximately parabolic near the Brillouin zone center, the joint

~ - '.We~ -WT. - ~. - I -V.
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density of occupiable electronic states can be shown to be given by [151

2 dS~--3
D,.(E) = 28f J| dS E 1 = 2mhm 1) /

V,(E - E) IE mt + m= /
(2.30)

In quantum wells, the carriers are constrained to move in the plane

parallel to the layers. If y is the direction of confinement, then motion is

only possible in the z - z plane. The joint density of states in this case is

given by

D4 I Vi,(E.-) I.- (2.31)

The operator 7k,, is the directional second derivative of the energy difference-
function parallel to the epi-layers. This joint density of states as given here

is per unit range of energy per unit area. For a quantum well of width L.,

the joint density of states per unit range of energy per unit volume can be

expressed as

D, (E) = () (E - En) (2.32)

where u.-(E - AEn) is the unit step function and AE, = E,, - E. is the

energy difference between two allowed conduction and valence band states.

We note that the confinement of carriers in the quantum well structure

produces a distinctly different density of states function from what is usual

in a bulk crystal. The major differences stem from the energy independence

of the two-dimensional density of states for a given energy range. Also, the

two-dimensional density of states has a step-like functional dependence.

The differences lead to markedly contrasting observable optical properties.

In the next section, we discuss our experimental observations of some of

these properties.
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2.4 Experimental Characterization of Quan-
tum Wells

The basic tools we used to characterize the quantum well structures in
this study were: high resolution scanning electron microscopy (SEM), ab-
sorption measurements and photoluminescence. Each one of these tools
contributes a unique piece of information to the overall program of study.
We cover some of the experimental details in what follows.

2.4.1 Scanning Electron Microscopy

Because of the extremely small (sub-micron) dimensions involved in the
quantum well structures, techniques such as optical microscopy of the
cleaved and chemically stained epi-layers, cannot be of any use. In some
cases even the resolution of the SEM is not good enough. In these cases,
transmission electron microscopy (TEM) must then. be used. The high
resolution SEM photo-micrographs are useful for examining the hetero-
interfaces of the structures. They are also useful for determining the thick-
nesses of the grown hetero-layers.

In Fig. 2.7, we show an SEM photo-micrograph of a superlattice buffer
layer grown on top of a GaAs buffer. From this photograph, it is possible
to resolve and follow the evolution of a defect structure originating from
the substrate. Notice how the defect structure smoothes out with each
additional superlattice layer grown. This kind of information can only be
obtained by use of the SEM. In the next photo-micrograph, Fig. 2.8, we
show a full single quantum well (SQW) laser structure. A higher resolution
photomicrograph of the SQW is shown in Fig. 2.9. It is evident from this
picture that the hetero-interfaces at the SQW are not very smooth. Also,
there are variations in the well thickness across the wafer. These variations

~E~::.:_ .. ;LC~. ._. ;-. I _ _-. -. II_ · Li.- i- --I - -AYY IC( 



CHAPTER 2. FUNDAMENTALS OF QUANTUM WELLS

manifest themselves in the photoluminescence spectra.

2.4.2 Optical Absorption Measurements

Optical absorption measurements are generally performed to determine the

energy thresholds that correspond to the electronic transitions between the

highest nearly filled band and the lowest nearly empty band. In general,

absorption is very small for photon energies below the band edge and it

increases rapidly for values above the band gap.

The simplest and most direct way of observing the fundamental absorp-

tion edge is to determine the absorption from transmission measurements.

This is the method we use.

Absorption, as the name suggests, involves the promotion of electronic

carriers from low energy states to high energy states by the absorption of

some energy from incident photons. The process is quantum mechanical in

nature and its full quantitative description involves electromagnetic field-

quantization theory [16j. We discuss here, however, the semi-qualitative

arguments that explain our experimental results. From the definition just

given, for photon absorption between two discrete states, the absorption

coefficient is given by

a(E) = B1 :(f1 - f)(nff 1 /c) (2.33)

where fi and f2 are the Fermi occupation probabilities for the low and high

energy states, (c/n,fl) is the photon velocity in the material as modified

by the index of refraction n,t. B 12 is a constant of proportionality; in fact

it is the Einstein B-coefficient which is the probability that the transition

can occur. This transition probability can be calculated by use of Fermi's

'Golden Rule". The rule involves the calculation of the interaction Hamil-
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n-GaAs/AIGaAs SLB (50% Al)

Figure 2.7: An SEM photomicrograph of a superlattice.
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nOGiAA Buffer Layer.

n-(3AS/AIGaAs SLB Layer

(50% Al)

--- n-AIlaAs Cladding Layer

(sO5 Al)

AAIGaAs Wavegulde Layer

(graded)

40- GQaAs SOW Layer

- AlGaAs Waveguide Layer

Coraded)

(undoped)

Figure 2.8: An SEM photomicrograph of a single
GaAs/(AI,Ga)As quantum well laser structure.
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GaAs SQW
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Figure 2.9: A high resolution SEM photomicrograph of the active region of
a SQW laser structure.
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tonian by solving Schrodinger's equation with a perturbation harmonic in

time [171. Since this result is well documented in the literature, we shall

not derive it here. For bulk semiconducotrs, the transition probability is

usually given as [181

B 12 m2eon2 (E ) (2.34)

where MI is the momentum matrix element. The other symbols have their

usual meanings. The matrix element M is defined as

M = (t;(r)plt'(r)) (2.35)

T;(r) and 2 (r) are the particle wave functions for the low and high energy

states. The momentum is utilized in its quantum mechanical operator

form. For quantum well structures, we have to modify the functions tP (r)

and P 2(r) to include the effects of the two-dimensional confinement. We

do this by writing, for example,

;'I(r) = ~; (y)u'(r) (2.36)

where .n is the envelope function that describes carrier confinement in

the direction of epitaxial growth. These class of functions was described in

Section 2.1. The function u'(r) is the regular Bloch function.

In the absorption process, when more that two energy states are in-

volved, we must include the density of those other occupiable states. The

density of these states was derived earlier for quantum well structures.

From Eq. (2.32) and Eq.( 2.33), the absorption coefficient is given by

a(E) =f B 1 2 (fh -- f2) Fm' 1+ m u 1(E - AE,)(n. 1/c)dE

(2.37)

r I
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with B 12 given as in Eq. ( 2.34).

The step-like nature of the density of states derived earlier and used in

Eq. ( 2.37) should give the absorption spectrum a similar dependence.
Experimentally, the samples used consist of either a single quantum

well or a set of multiple quantum wells sandwiched between two layers of

cladding material, each about 1.5 Am thick. Fig. 2.10 shows the structure

and composition of a typical wafer used in this experiment. Since the
structures are grown on GaAs substrates, these and the other buffer layers

must be removed before the absorption measurement is performed. The

wafer is glued, with substrate side up, on an optically fiat sapphire window.

This is done with an epoxy resin whose index of refraction is matched to the

sapphire window. Care must be taken during the process to avoid any stress

on the wafer. The wafer is then mechanically and chemically polished down

to approximately 3 Am. In order to avoid Fabry-Perot etalon reflections

during the measurement, the top surface of the wafer is made slightly rough.

The experimental set-up is shown in Fig. 2.11. It is, for the most

part, self-explanatory. The optical absorption is measured by registering

the transmitted light and comparing it with that obtained from a bare sap-

phire window of the same thickness placed in the path of the light. The

light transmitted is analyzed by a spectrometer and stored in an optical

multi-channel analyzer (OMA). The OMA makes comparison of the stored

signals in non-real time easy and straight forward. Fig. 2.12 shows the

room temperature absorption measurement for a single quantum well sam-

ple. Similar results are obtained for multiple quantum well structures. The

step-like nature of the absorption is fairly evident. The steps in the ab-

sorption spectrum correspond to absorption due to the different quantized

energy levels. This type of absorption is consistent with the concept of two-

dimensional carrier confinement and the quantization of the energy in the
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Figure 2.10: The structural composition of a typical sample
absorption and photoluminescence studies.

used in the
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direction of confinement. Results similar to these have been obtained in the

InAs-GaSb material system for cryogenic sample temperatures 119]. And

more relavant to the material system used here, similar results have been

reported for the (AI,Ga)As/GaAs system [20,211. Recently, exitonic effects

have also been observed in room temperature experiments in addition to

the step-like nature of the absorption [22].

2.4.3 Photoluminescence

The most common, rapid and straight forward method of assessing the

optical quality of direct gap semiconducotrs is photoluminescence. This

method is especially useful when the epitaxial layers are intended for use in

photonic devices. The technique of photoluminescence involves the optical

radiation emitted by an irradiated semiconductor (irradiated usually with

a coherent laser light).

The major processes that take place in this excitation include:

* creation of electron-hole pairs by the absorbed light,

* radiative recombination of the electron-hole pairs and

* escape of this recombination radiation from the sample.

There are two types of electronic transitions that lead to radiative re-

combination in an optically irradiated sample. The first type of transition

involves what is known as intrinsic transitions. These are transitions in-

volving the recombination of an electron from the conduction band with

a hole in the valence band. The second type of radiative recombination

involves the recombination of say an electron trapped at an impurity site

just below the conduction band with a hole in the valence band. An analo-

gous recombination can also occur between an electron returning from the

_~____
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optical fiber

Figure 2.11: A schematic diagram of the absorption measurement set-up.
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Figure 2.12: A room temperature spectrum of the absorption of a quantum
well structure.
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conduction band with a shallow impurity site just above the valence band.

These types of transitions are known as extrinsic transitions

The character of the transitions involved in quantum well structures is a

little different from those that occur in bulk crystals. In quantum wells, the

transitions occur between selection rule-allowed states. For the schematic

energy band diagram shown in Fig. 2.13, the selection rule is An = 0 for

the quantum wells. What is meant by this rule is the fact that transitions

are only allowed between states in the conduction and valence band with

the same quantum number. This figure also shows the contrasting way in

which transitions in the bulk material occur.

A typical photoluminescence experimental set-up is shown in Fig. 2.14.

The samples are mounted with vacuum grease on a copper mounting block.

The excitation source is a cw Helium-Neon (6238 A) laser with an output of

15.mW. This power intensity is reduced somewhat on the sample surface

depending on the chopper frequency. Generally, less than about 10 mW

actually hits the sample. The beam is focused to a spot size of less than a

square millimeter on the sample. The photoluminescent light is analyzed by

a 0.5 meter scanning spectrometer. The resulting signal is then processed

with a lock-in amplifier synchronized to the chopper frequency. Emission

intensity and spectral spread are recorded on a chart recorder.

In order to minimize the self-absorption of the radiative recombination

light from the quantum well(s) (see Fig. 2.10), the thickness of the top

cladding layer of the sample is etched down so that the quantum well(s)

is (are) only 1000 A from the surface. In Fig. 2.15, we show the room

temperature photoluminescence spectrum of a bulk GaAs layer and that of

a multiple quantum well structure with a superlattice buffer layer incorpo-

rated. The reasons for the superlattice buffer are explained in Appendix

B. Notice that the emission peak of the multiple quantum well structure
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saw MOa's
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(a) SQW and Maw's Optical Transitions

0
V

REAL SPACE

(b) Bulk AIxGal-.As Optical Transitions

Figure 2.13: The band diagram of a single and a multiple quantum well sys-
tem showing the allowed transitions. Also shown in (b) are the transitions
in a bulk crystal.
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Figure 2.14: The schematic diagram of the photoluminescence set-up used
in this work.
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is shifted from that of the bulk layer. This shift is due to the carrier con-

finement effect. The emission of the multiple quantum well structure is

predominantly due to the n = 1 sub-band transition. This is the electron

to heavy hole (e - hh) transition. The electron to light hole (e - h)

transition is also clearly identifiable.

In an earlier section, we performed sub-band energy calculations for a

single quantum well with a width of 125 A. In Fig. 2.16, we show the

luminescent spectrum of a particular single quantum well structure with a
well width of 125 A and an aluminum composition of 0.2 in the cladding

layers. From the theoretical calculations, we showed that the le - hh

transition involves an energy change of 1.4491 eV which corresponds to an

emission wavelength of A -8557 A. This value is in good agreement with

the experimental photoluminescence peak assignment of this transition to

A ~8530 A. The calculated le -- , Ih transition involves an energy change of

~1.4601 eV which corresponds to A -8493 A. This value again is in good

agreement with the observed value of 8500 A.
In the light-hole region, there is additional structure. The peaks in this

region are separated from each other by - 7.9 meV. These peaks could

arise from fluctuations in the quantum well width. The nonuniformity

postulated could be as depicted in Fig. 2.17. If this were the case, then

the quantized energy levels as given in the previous sections would split

into additional levels due to the fluctuations. The energy change due to a

small change in well width can be estimated as follows. Since the structure

is on the electron--*light hole region, one would assume that the fluctuation

mostly affected this transition. The emission energy of this transition in
the absence of any perturbations can be written as

a4

� ____
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WAVELENGTH (A)

Figure 2.15: The room temperature photoluminescence spectrum of a mul-
tiple quantum well structure and that of a bulk crystal.
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8000 8200 8400 8600 8800 9000

WAVELENGTH (A)

Figure 2.16: The room temperature photoluminescence spectrum of a single
quantum well structure.
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E.,h E + 2L2 [,+ (2.38)

where E, is the band gap. This expression uses the simple particle in a

box" approximation. From Eq. (2.38), we see that for a small change in

well width, AL,

m + mmlh A L (2.39)
Ls' L mmh J

For a monolayer fluctuation, AL = ao/2 (a monolayer is defined as one half

the lattice constant, a,) the corresponding energy change is 2.9 meV.

The parameter values used are those in Table 2.1. The separation energy

of the peaks observed in Fig. .2.16 would correspond to a fluctuation of

~ 2.7 monolayers.

The subject of interface disorder and well width fluctuations, has re-

ceived a lot of attention recently [23J- [311. Fluctuations ranging from half

a monolayer to two monolayers have been reported. In the extreme case

where the disordering of the interface is thought to be due to alloy cluster-

ing [241, multiple quantum well systems have been reported to have merged

and change the expected emission spectra. It has also been claimed that the

reported alloy clustering can be avoided by use of the AlAs/GaAs system

[25]. In another report, it is thought that the growth of (Al,Ga)As/GaAs

quantum wells at high substrate temperatures (> 690 °) leads to more dis-

order and fluctuations in the quantum well widths [30].

The most common manifestation of the well width fluctuations is a

broadening in the photoluminescence emission spectrum. This broadening

is often accompanied by the appearance of additional peaks in the spectrum.

Our own results in this respect are consistent with what has been reported.

Not all of our samples exhibited broad emission peaks. This leads one to

I I~~~~~~~~~~~~~~~~~~~~~
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Figure 2.17: A postulated nonuniformity in the width of a single quantum
well structure.
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believe that the results of Fig. 2.16 are probably for a worst case sample".

It was stated earlier that the technique of photoluminescence is used to

assess optical quality. In Table 2.2, we summarize the photoluminescence

results of some of our structures.

Table 2.2: Photoluminescence Results

Intensity FWHM FWHM Doped
Buffer Structure T=298 K T=298 K T=77 xK

SLB SQW 10Io 46 meV 15 meV Yes
SLB MQW 42Io 23 meV 7.8 meV Yes

GaAs MQW 8Io 19.8 meV 6.7 meV No
GaAs Bulk GaAs Io 27.9 meV 9.2 meV No

As a qualitative measure of intensity, we have used the room temperature

luminescence intensity of bulk GaAs as a reference standard. As can be

seen, the MQW structure with a superlattice buffer layer represents the

'best" sample in terms of the relative intensity and spectral emission width.

This type of structure is the one out of which the lasers used in this work

are fabricated. The details of the synthesis of these structures are covered

in the Technological Appendix.

I

53



Chapter 3

Laser Gain and Threshold
Current

In the preceding chapter it was experimentally demonstrated that quantum

well heterostructures exhibit more efficient luminescence intensities than

bulk crystal heterostructures. In this chapter we show theoretically that

incorporation of these structures in the active regions of laser devices leads

to lasers with very low threshold current densities.

3.1 Graded Index Waveguide Structures

In the basic p-n junction laser structure, the two measurable parameters

that characterize the quality of the device are the threshold current density

and the external quantum efficiency. These parameters can be optimized

by a modification of the basic structure to include other layers that enhance

the optical and the carrier confinement properties of the device as a whole,

thus increasing the efficiency and lowering the threshold current density.

The active region of the basic structure investigated in this work con-

sists of either a single quantum well or a system of multiple quantum wells.

As discussed in the proceding chapter, optical transitions in quantum wells
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occur between discrete conduction and valence sub-band energy states. The

presence of a quantum well in the active region, therefore, allows one to

tailor the dominant wavelength (energy) of emission by appropriately ad-

justing the well width and depth. The density of the electronic states that

are involved in the discrete transitions can be increased by several times

that available in a bulk material. We saw earlier that the joint density of

states in a single quantum was given by

DvE\= m +E ), , Eu_l(E - AE.) (3.1)

One of the reasons why laser devices with quantum well structures in their

active regions have lower threshold current densities than their bulk coun-

terparts is because of the higher joint density of states available in quan-

tum well structures. This will become clear when we discuss the inter-

relationships of the gain, density of states and current in a later section.

We already saw in Chapter 2 that this high density of states also leads to

a high photoluminescent efficiency.

The device active region, which is composed of the quantum wells, is

surrounded by confining graded (AI,Ga)As layers. These confining layers

feature parabolically graded energy slopes down which the electronically

injected carriers slide before tumbling into the quantum well(s). Such a

structure was first proposed theoretically by Kazarinov t al. [321. Because

of the simultaneous variability of the band gap and the index of refrac-

tion in this structure, efficient carrier confinement in the active region can

be achieved; optical confinement of the propagating mode in the direction

transverse to the p-n junction is also simultaneously achieved. The illus-

tration in Fig. 3.1 shows the schematic of the generic device structure

investigated and the inter-relationships of the other parameters designed
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into it. In this illustration, we have only shown a structure with a single

quantum well. Most of our experimental results, however, were obtained

from multiple quantum well structures. The details of the typical structure

used are shown in Fig. 3.2. Since the basic physics of multiple quantum

well structures is similar to that of a single quantum well, we shall only

discuss in detail, a single quantum well.

Another desirable feature of quantum wells and the graded band gap

confining layers surrounding them is the formation of a barrier that pre-

vents carrier motion out of the active region once they have been injected

into that region. A good fraction of the carriers, thus tightly confined, re-

combine radiatively in the active volume leading to lower threshold current

densities than in conventional double heterostructure lasers. The parabolic

index variation in the direction perpendicular to the p-n junction forms a

transverse optical waveguide which confines the optical mode very close. to

the active volume. This particular form of the waveguide structure was cho-

sen because when the transverse wave equation is solved with the parabolic

index profile in it, the allowed solutions are Hermite Gaussian functions

with the fundamental solution having a minimum full width at half maxi-

mum intensity. If the thickness of the confining layer is judiciously chosen,

only the fundamental Gaussian mode will be excited.

All these features taken together, contribute toward minimizing the

threshold current density and maximizing the differential external quan-

tum efficiency.

It is worth noting that the cladding layers adjacent to the waveguide

-layers in the devices studied here are composed of 50 % Al. This com-

position of the ternary compound has a wider band gap than the cladding

layers traditionally used in double heterostructure lasers. Our purpose here

was twofold. First, by having these Alo.sGao.sAs layers which have indirect
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Figure 3.1: The structural composition of a quantum well laser, including
the inter-relationships of the. important parameters.
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optical transitions, we decrease the probability of radiative recombination

outside the waveguide region. Secondly, the high band gap material has

a correspondingly low index of refraction. This has implications for the

waveguiding properties of the graded index region. It means that the op-

tical mode is tightly confined to propagate in the graded region only. The

wide band gap material has another useful property which is not germane

to the issues discussed here. This property is utilized in the formation of the

Schottky barrier scheme used in confining the current to the longitudinal

guides. We discuss this further in Appendix B.

3.2 Optical Gain in Quantum Well Lasers

The effects of carrier confinement in quantum well heterostructures and

the attendant energy quantization that goes with it have enabled us to

prepare lasers with very low threshold current densities (200 A/cm2 ) and

narrow gain spectra. Other useful characteristics that have been reported in

the literature include: polarization-dependent gain [331 and less threshold

current sensitivity to temperature 34].

In this section, we wish to discuss the factors that influence the threshold

current density in quantum well lasers. The general empirical observation

is that these lasers have much lower threshold current densities than regular

double heterostructure lasers. Various methods of calculating the optical

gain in these structures have been reported [35,36,371. These methods,

however, use the traditional dipole matrix element utilized in lasers with

bulk material in the active region [381. This dipole matrix element is incor-

porated in the gain expression which is then used in the threshold current

relationship. Although this method is correct in principle, the use of the

bulk matrix element underestimates the probabilty of transition. Because

___ I
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of the energy quantization in the well, the allowed k vectors in the direction
of quantization are discrete. Therefore, the averaging of the dipole moment
over k-space is performed in an entirely different way. This in turn leads to
a different effective dipole matrix element. Asada et al. [39j have recently
performed a gain calculation in which they recognize this fact.

3.2.1 The Dipole Moment

In a semiconductor, the probability of a downward transition from the
conduction band to the valence band is proportional to the absolute square
of the momentum matrix element. For a quantum well, the momentum
matrix element may be defined as

MqIW = (. (r) | j I | (t)) (3.2)

where the functions i',. (r) and S ,,k (r) represent the final and the initial
eigen-states of the carriers involved in the transition. The momentum, p,
is utilized in its quantum mechanical operator form. For quantum well
structures, the function nk.(r) is given as

cr = (r) = ,(y)Uc(y) exp (k, (3.3)

C,,(y) is an envelope function that describes the effect of carrier confine-
ment in the quantum well. This class of functions was introduced in Chap-
ter 2. u,(r) is the cell-periodic part of the Bloch function of bulk crystals
as long as the thickness of the quantum well is many elementary cells wide.
The subscripts c (or v) and n=1,2, 3 ..... denote the conduction (or valence)
band and the number of quantized sub-band level in the well, respectively.
k, and r represent the electron wave vector and the position vector, re-
spectively. From Eq.(3.3), the matrix element formed by an electron in
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sub-band n and a hole in sub-band m, is given by

Ml, = [I| * (y) ()dy] M, (3.4)

where

M. = L t, cul U(r),U(r)dr (3.5)

The integral in the brackets is very close to 6, (n = m) because of the

symmetry of the potential wells in the conduction and valence bands. The

deviation from unity is caused by the different effective carrier masses and

also because of the differences between the conduction and valence band

discontinuities (0.62/0.38). The second integral over the unit cell must

be calculated using the k.p method developed by Dresselhaus [40 and

Kane [411. The functions u,(r) and u(r) are expressed in terms of the

atomic s- and p-functions which have the properties of the tetrahedral group

under symmetry operations. Following Kane [42], we represent the s-like

function with S and the p-like functions with X, Y and Z. In forming the

basis functions to obtain a diagonal Hamiltonian, we must remember that

because of the energy quantization, the k vector used in the computation

of the Hamiltonian is inclined at an angle of 8 to the cartesian coordinate

y-axis as shown in Fig. 3.3. This brings about a complication in that the

basis functions have to- be rotated. When this rotation is performed, the

correct basis functions for the unit cell in a region close to .the Brillouin

center (small k) are:

IS) I) or 11) (3.6)

for the conduction band and for the heavy hole valence band this function

is
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1
X - Y + Z IT) or 11) (3.7)

where

X = (cos sin i j cos ) j X) (3.8)

y = sin l Y) (3.9)

Z = (cos cos . j sin ) Z) (3.10)

The angles 8 and 0 represent the directions of the electron k vector

in polar coordinates. IT) and I.) are the spin functions of the electron.

We shall ignore the wavefunction for the light hole on the ground that the

contribution of the light holes to the matrix element is small. The rotation

is performed in a manner analogous to that suggested by Kane [42].

In performing the matrix element calculation, we use the experimen-

tal fact that the radiation and hence the gain of a quantum well laser is

polarization-dependent [331. The emitted light can be resolved into TE

and TM polarizations. In the context of Fig. 3.3, this means that the

electric field is parallel to the z-direction in the TE case and parallel to

the y-direction in the TM case. The momentum operator components that

lead into these polarizations are the p- and p-components. Therefore,

from Eq. (3.6) and Eq. (3.7)

M, = (S p + p, I(X - y + Z) (3.11)

where X, y and Z are as defined previously. With the aid of symmetry

arguments for the p-like functions, we evaluate the squared momentum

t
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matrix elements of Eq. (3.11). When averaged over the angle X, these

matrix elements evaluate to

M 2 = 3M2(1 + cos2 8)

M2 = 3 222Mbi sin'

for TE modes

for TM modes

A factor of 1/2 is included in these expressions to account for electron

spin. The parameter Mb2 is the conventional matrix element for III-V bulk

materials and from Kane's [42] analysis, it is given by [38]

12m, E + (2/3)A (3.14)

where m, is the free electron mass, m, is the electron mass in the particular

III-V semiconductor under consideration, E. and A are, respectively, the

energy gap and the spin-orbit splitting. If we use GaAs parameters in Eq.

(3.14), the value of M2 - 1.33mE,.

The components of the electron k-vector are related to the angle and

the energy of the electron in the conduction band quantum well by the

expression

k2 E. E.
cos =k2 (h 2 k2/2m,) + En Etn

where En is the n-th quantized eigen-energy in the y-direction and

the total energy of the electron in the n-th sub-band. (h 2'k)/(2m,)

electron energy parallel to the quantum well.

We are now in a position to give the momentum matrix elemer

quantum well. This quantity, expressed as a multiple of the dipole 

(3.15)

Et, is

is the

it in a

matrix

and

(3.12)

(3.13)
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element in a bulk material, is given by combining our results from Eqs.

(3.4), (3.12), (3.13) and (3.15):

M = 4Mb(1 + E,/Et,) for TE modes (3.16)

Close to a sub-band edge, most of the energy of the confined carrier is due

to the confinement effect and the parallel component is very small; in this

case one can approximate Eq. (3.16) by

M2 - 2M for TE modes (3.17)

In the light of the experimental evidence that the gain in quantum

well lasers [33,431 is polarization dependent and that the field emission is

predominantly of the TE kind, we shall, henceforth, concern ourselves only

with the TE field. The mechanics of the analysis for the TM field are,

mutatis mutandis, the same.

3.2.2 Band-to-Band Transitions with k-Conservation

In this model, it is assumed that when an electron makes a transition, say

from an initial energy state Ei in the conduction band to a final energy

tate Ej in the valence band, this transition is made with no change in

momentum (p = hk). The energy of the electron in the conduction and the

valence band is then given, respectively, by

E, = E, + (3.18)

- 2 (3.19)
2where E are the band edges; k is the ector representing the

where E, and E, are the band edges; k is the vector representing the

conservation of momentum. The zero of energy is at the edge of each band

1 _
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such that energy is measured positive up into the conduction band and

positive downward into the valence band.

The conservation of k-vector implies that Eqs. (3.18) and (3.19) can be

rewritten as

Ei = E + [ ] (E-E) (3.20)

E,=E.- [ 7 +] (E-El) (3.21)

where E is the photon energy of the transition and E, is the band gap".

The expression for the optical gain in a semiconductor has been given

by Lasher and Stern in their classic paper 441 as

g(E) =[ rmcnE DV.(E)[f(E) - f(E)J (3.22)

where D,,(E) is the joint density of electronic states, f(E) and f (E) are

the Fermi occupation probabilities of the upper and lower states. This

expression is written for the case of k-conservation and it is in MKS units.

The original expression was written in cgs units.

For a quantum well, the joint density of states was derived in Chapter

2 and given by Eq. (3.1). The matrix element (M)2 , must be replaced by

the expression given in Eqn. (3.17). The Fermi functions f,(E) and fi(E)

are given by

(E) m (E-(E + E,, + E)) F (323)
fi(E) + exp{ m k + )) mF. (3.23)IMh + mI kT kT

-m -(E+ E,:, + E,,) F. -
f(E)=1-[1 + exp{ (E E T (3.24)

M, + h kT

..

---- ��-11_11�-� -1._·
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where F, and F, are the quasi-Fermi levels in the conduction and valence

bands, respectively. The parameters E,, and E,, are the quantized eigen-

energies of the respective sub-bands as discussed earlier. In writing these

equations, use has been made of the expressions given in Eqs. (3.20) and

(3.21).

The quasi-Fermi levels, F and Fu, are related to the injected carrier

densities through the expressions

N = jp(E)f,(E)dE (3.25)

P = ,,(E)f(E)dE (3.26)

where p(E) and p,(E) are the densities of the states in the conduction

and valence bands. These functions are not to be confused with the joint

density of states function given in Eq. (3.1). In the conduction band for

example,

Pe(E) = m U. 1 (E-hE) (3.27)
i 2 L, ,

A similar expression can be written down for p, (E). The functions f,(E)

and f (E) are the ordinary Fermi functions. The quasi-Fermi levels F4 and

F, are best determined by numerically solving Eqs. (3.25) and (3.26). Fig.

3.4 illustrates a typical curve for a 12.5 nm quantum well. From a curve

such as this, one can determine the quasi-Fermi level for electrons for a

given injection level.

With the foregoing considerations for quantum well structures, the rel-

evant modified gain expression is given by

I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-
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g(E) = [(Maq) E m+mh I [f (E) - fi(E)] (3.28),=1 Com~cntEL. m, + mh

The numerical evaluation of this equation involves a modest amount of

computation which is best done on a computer. An algorithm, which has

been implemented into a computer code, has been developed. The basic

idea of the algorithm is to rapidly determine the optical gain for given

injection levels. If this information is given in the form of a current density,

it is first converted to a carrier density which is then used to compute the

quasi-Fermi levels. The quasi-Fermi levels, which represent the injected

carrier densities, enter the gain expression via Eqs. (3.23) and (3.24).

As an example, we illustrate in Fig. 3.5 the gain spectra of two different

well sizes at the same injected carrier density of 2 x 1018 cm-3 . In this

particular calculation, we have assumed that the main lasing transition is

due to the lowest confined particle states in the conduction and the valence

bands. This assumption is based on the experimental evidence discussed in

Chapter 2 on the photoluminescence emission of quantum well structures.

It was demonstrated there and confirmed by calculation that the main

photoluminescence emission from quantum well structures is primarily due

to the electron -+ heavy hole (le - hh) ground state transition. The

electron -+ light hole (le -_ Ih) transition will be neglected here because

the density of states of the light holes is much lower in comparison to

that of the heavy hole sub-bands. The pholuminescence emission due to

this band was also shown to be relatively low in Chapter 2. The well

sizes in question are L,=12.5 nm and 20.0 nm. We note that the gain is

zero below a certain energy corresponding to the gap" of the first sub-

band for each well size; it vanishes again for photon energies larger than

F, - Fo, which satisfies the Bernard-Duraffourg condition [451. The higher

I
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gain of the narrower quantum well can be understood in terms of the high

density of optical states available in narrow size wells (see Eqs. (3.1) and

(3.27)). In general, the optical gain of a quantum well structure, for a

given carrier injection level, will increase with decreasing well size until a

point is (L <5 nm) reached where the separation between the electron

or hole energy and the corresponding quasi-Fermi level begins to decrease

such that the Fermi inversion factor (f,(E) - fi(E)), in the gain equation

becomes small. Beyond this point, despite the increase of the density of

states with decreasing L,, the gain will decrease. In terms of the current

density, this means that it will decrease to a minimum for a given well size

and injection level and begin to rise again for well sizes smaller than the

critical minimum. This theoretical prediction is in agreement with reported

experimental observations [46].

3.3 Threshold Current Density Calculations

The threshold gain, gth, for a given laser diode with an optical confinement

factor, r, is the gain required to overcome all the losses in the active cavity

before the onset of lasing. This quantity is related to the other parameters

in the laser cavity by the well known expression [471

gth = (l/r) [i + (1/L) ln(l/R)] (3.29)

where ai is the total internal losses mostly due to free carrier absorption and

diffraction losses. The parameter L is the cavity length and R is the facet

relectivity. We take for values, ai = 12 cm-1 (the free carrier absorption

part of a, is estimated from the formula for free carrier absorption). L is

chosen to be'= 350p4m, a typical value for the broad area lasers studied in

this work. The reflectivity is estimated from Fresnel's formula which relates
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the index of refraction n to the reflectivity, R. Thus for n = 3.6, we have

R (n 1) 0.32 (3.30)
(n + 1)2

The confinement factor, r, is given by the approximate relationship r -

L,,/2wo. See Appendix A for the derivation of this formula. L is the

quantum well width. In this case L,. = 12.5 nm. The parameter wo is the

gaussian beam radius for the fundamental field solution to the transverse

wave equation. The dimension w, is estimated by using Eq. (A.2) in

Appendix A to determine the confocal parameter which is then used in the

calculation of w 0. For a single quantum well structure surrounded by a

200 nm graded barrier waveguide, wo0 164.7 nm, r = 0.038. With these

numerical values, we obtain through use of Eq. (3.29) that 9th = 1170 cm- '.

The carrier density that is necessary to achieve this gain is computed by

the algorithm discussed earlier.

The threshold current density, Jth, is written as

Jo= qL.NNth (3.31)
rap

where q is the electronic charge, L, is the well size, N. is the number of

wells, Nth is the computed carrier density corresponding to gth and rap is

the spontaneous radiative carrier life time. This life time has recently been

measured in quantum well structures to be - 2.8 x 10- 9 seconds [481. For a

single quantum well, with the parameters given here, the threshold current

density is calculated to be -450 A cm -2 . The best measured threshold

current density of our SQW devices was about 650 A cm- 2. We have also

measured values as high as 1.0 kA cm ' 2 and worse. Tsang [491 has reported

experimental threshold current densities of 810 A cm - 2 for 20.0 nm-wide

single quantum well lasers. And threshold current densities of ~410 A

72



CHAPTER 3. LASER GAIN AND THRESHOLD CURRENT

cm- 2 have also been reported in the literature [50] for SQW lasers. The

agreement between the theoretical value and our best experimental result

is fair. Our results are also consistent with what has been reported in the

literature.

In the calculation of the threshold current density for a multiple quan-

tum well (MQW) laser structure, the effect of the other wells on the confine-

ment factor must be considered. We have calculated the threshold current

density for a MQW device with the following structure in the acitve layer:

5 quantum wells, each 12.5 nm wide, separated by 25.0 nm barriers. The

MQW region is surrounded by a waveguide whose thickness is 200.0 nm.

the effective thickness of the quantum wells is Lf! = 5L,. In the same

spirit, the beam radius, w,f - 187.3 am. These modified dimensions lead

to an increased confinement factor, r - 0.170. Assuming that the losses

remain the same as in the SQW case, we obtain, for the same cavity length

and reflectivity as before, a threshold gain, gth -258.4 cm- l. Further cal-

culations show that the corresponding threshold current density, Jth -500

A cm - 2. The average experimentally determined value for our best MQW

devices was about 200 A cm - 2. The agreement between theory and experi-

ment, again is fair. We caution, however, that the value for the confinement

factor used in this case may actually be smaller than what it should be, in

which case the agreement should even be better for more accurate r va-

ues. This issue arises because the approximation used in the derivation (see

Appendix A) of the confinement factor is really for a SQW device where

the contribution of the well to the index profile is neglected. For the MQW

case, the approximation of the MQ W and barrier contribution to the index

may not be accurately reflected. In this particular case, the profile has been

averaged in this region.

We recall here also that the gain model in this calculation does not
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include the TM contribution. It is expected that the calculated values will

agree very closely with the experimental values when this component is

included. These results should therefore be viewed as first order calculations

within the approximations made.

3.4 Gain Broadening Mechanisms

It is customary when discussing laser gain, to include in the discussion some

mention of the mechanisms that prevent ideal behavior above threshold.

In this thesis, however, since no spectral measurements as a function of

pumping intensity were conducted, tho discussion here will be limited to a

comment-in-passing.

The gain model discussed in this work for the calculation of the thresh-

old current density incorporates only the most essential features necessary

in the calculation. Mention was not made of the other processes that might

affect the gain spectrum at the onset of lasing. This is partly because, in

retrospect, the simple model is adequate in explaining the results of our

measurements. The other reason is that theoretical difficulties still remain

in a complete quantitative understanding of these mechanisms. The mech-

anisms we speak of are the many-body effects of scattering for example,

by carrier-carrier, carrier-lattice interactions. These mechanisms are inti-

mately linked to the transportation phenomena in semiconductors. What

one is then faced with is a problem of having to treat both particle trans-

port and optical transition in the injection laser by having to define the

position, r, and the wave vector k of a carrier at the same time. The si-

multaneous definition of the position and the wave..vector of a carrier is, in

general, very difficult. It raises the philosophical difficulties discussed, for

example, by Heisenberg [51j.

------- -------- 1_11__-~-r--
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It is generally thought that semiconductor lasers are homogeneously

broadened [52,531. This means that all injected carriers have an equal op-

portunity to participate in the lasing emission of photons with energy E,.

Because of rapid scattering rates, the carriers are assumed to be indistin-

guishable and thus the inverted population depletion and the saturation of

the gain is "uniformly spread" over the whole energy spectrum of the avail-

able carriers. Depending on the interaction kinetics, however, a different

state of affairs can exist. Assume for example, that photons with energy

E, are only coupled to states separated by an energy E,,,. Then for the

gain to saturate uniformly, the rate at which carriers are being consumed

from the lasing states by stimulated emission must equal the rate at which

carriers are being replenished into those states by intraband scattering. If

the consumption rate exceeds the replenishment rate, then a local deple-

tion will be found in the lasing states. This is the origin of the concept of'

"spectral hole burning". An elegant exposition of it has been rendered by

Nishimura [541 using the semiclassical density matrix method.

Because of the many-body effects (scattering) we spoke of earlier, the-

oretical studies have been conducted to extend the laser gain theory to

include these effects [55,56j in the regular double heterostructure laser de-

vices. The lasing energy spectrum is thought to be broadened by scattering.

The assumed broadening lineshape is Lorentzian with an energy uncertainty

given by h/rR where rR is the scattering time or the energy relaxation time.

The entire emission line function is then inhomogeneous and it is given by

the sum of all the homogeous lines of the individual lasing lines. Quan-

titatively, this means that Eq.(3.22) is modified in the manner indicated

below.

75



CHAPTER 3. LASER GAIN AND THRESHOLD CURRENT

g(E) ~= [( 2 qnAEL ] I m f 0 d& [f,() - f(- E)J W(k, E)
n EmcnhELj +E,+,

(3.32)

where = Es + E, + E,,,

m, m + m (3.33)
m, + mh

and

W(k,E) = f dkL.(k, )L(k, -E) (3.34)

The functions L,(k, E) and L(k,ES) are the respective spectral weight
functions that account for the broadening of the energy levels in the con-

duction and valence bands. The general spectral weight function is given

by

1 " /%
(k, C) + m -y2 (3.35)(E - ( 2k2)/2m) + L (3 35)

where 'YL = hl/TR is the width of a broadened discrete individual energy

level. The discussion here follows closely the arguments given in Ref. 551.

The treatment here, however, has been specialized to the case of quantum

well lasers. In particular, we note that this broadening effect could be

significant if the energy L = h/rR is on the order of the separation of the

eigen energies in the quantum well. The energy level separation between

the first and the second eigen states in our typical 12.5 nm well is -60 meV

in the conduction band. This means that if the electron scattering processes

are extremely fast, 1.1 x 10-14 seconds, the energy quantization in the

quantum well will be washed out. These times, however, are estimated to

be larger than this [561.
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We propose here that because of the fluctuations inherent in quan-

tum well thicknesses, the quantized eigen-energies may have an additional

broadening due to these fluctuations. Consequently, the energy 'YL would

have a contribution from these effects.

3.5 SQW versus MQW Laser Structures

From the calculations of Section 3.3 , there does not appear to be any

overwhelming theoretical reason for a choice of either a SQW or a MQW

laser structure. Both structures are ideally capable of yielding low threshold

current densities. The SQW structure, however, requires a much higher

threshold gain. This is simply because the confinement factor, r, is small

for this structure.

The experimental results of the structures studied in this work and else-

where [57,581, however, favor the MQW structure. The practical difficulties

associated with current MBE technology in achieving a uniform thickness

in a quantum well, we believe, make it very hard for a single quantum well

structure to approximate the ideal conditions necessary for a low thresh-

old current density on a routine basis. In the MQW structures, the first

one or two quantum wells deposited may not necessarily be uniform but

as the evidence discussed in Chapter 2 on the growth of superlattices sug-

gests, the subsequent wells are more uniform. These are the wells that

would closely approximate the ideality of perfection required for the low

threshold conditions. And as the photoluminescence results of that chap-

ter also demonstrated, the MQW structures have inherently better emission

efficiencies because of the increased density of states available for optical

transitions. For these experimental reasons, therefore, the phase-locked

laser arrays discussed in this thesis were made out of MQW structures.
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Chapter 4

Phase-Locking in
Semiconductor Lasers

This chapter provides the theoretical framework within which we shall dis-

cuss the lasers fabricated from the structures discussed in the preceding

chapters. This background is needed for the next chapter. In what follows

we discuss the principles of operation of phase-locked laser arrays. We be-

gin by outlining the basic ideas of wave-guidance in passive guides and then

make a connection to how the unguided evanescent waves can be used to

induce phase-locking. Following this, we introduce the mixed-mode phase-

locked laser array. In this type of array, phase-locking is caused by coupling

through diffraction.

4.1 Principles of Phase-Locking

The basic ideas of phase-locking are best understood by considering a simple

linear array of ideal radiators (antennas) of electromagnetic energy. We

shall consider, as an example, a row of equally spaced emitters. Suppose

that each one of the emitters can launch a wave of the same frequency

(wavelength). This can be arranged, for example, by devising a method for
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connecting all the emitters to the same master oscillator. Suppose also that

each emitter can produce a random intrinsic phase, (t), for each wave

it launches. The phase, pn(x,t), is a function of the spatial coordinate x

and time t. Since the individual phases of the emitters are uncorrelated

with one another, the emitters are said to be incoherent. Such an array of

emitters would produce a random interference pattern in space, one which

fluctuates rapidly and whose time average is independent of the angle of

observation.

If the array of emitters is as shown in Fig. 4.1, the angle of observation

0, is the angle subtended by a line from an emitter to the point O and the

normal to the row of emitters. An incoherent array of emitters serves no

practical purpose. What would be much more useful is a set of coherent

emitters. By a coherent set of emitters we mean ones that maintain a

definite phase relationship with one another. The radiation as observed at

the point 0, would then have a distinct pattern to it.

Consider for simplicity that we are able to force (by some mechanism

whose origin it is not important to know) all the emitters to add no intrinsic

phase to the waves each one of them launches. What we now have is a set of

phase-locked emitters. The radiation pattern of such emitters as observed

at point 0, has some very interesting and desirable features. We discuss

these features below.

Let us assume that each radiator emits radiation of frequency w with

phase p = O. Far away from the emitters, at the observation point 0, the

total electric field amplitude is

E=i5Cf(w)[e(Wt-kr) + e i(wtk-1 +- ... + e(Wt-* "rNL) (4.1)
r
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E = Cz f(w)tt ) + (- + r.) + e-j- + e) + .. + (4.2)

where

f(w) = e[jk/ sin zdz (4.3)

C is a complex constant, k, = 2r/,, is the propagation constant, r is the

average distance from a radiator to the point 0 and 6 = k(rl - r,) =

k,$ sin 9 is the phase difference between neighboring emitters as observed

at point 0. The integral f(w) expresses the spatial Fourier transform of

a single emitter in the array. The parameter w is the width of the spatial

extent of each emiter. Eq. (4.2) contains a geometric series which can be

summed; and if we also perform the indicated integration, we get

=i Csin{(kuw/2) sin} I - e- iN 1 d(,-k.,,) (4.4)
r (kw/2) sine 1 - e-j

The intensity of radiation at 0 is given by

I= (E.>) (4.5)

where the angle brackets denote time-averaging over one cycle of oscillation.

Performing the operation indicated in Eq. (4.5) gives

I = Io sin{(kw/2) sin a} 2 1 - cos(Nk0o sine) (4.6)

(k[,w/2) sin 1 - cos(kjsin (4)6)

where I0 is a constant and N is the total number of emitters in the array. We

can make some remarkable observations from Eq. (4.6).1 First, we notice

that the second term of Eq. (4.6) after the constant Io is the expression for

IThe theoretical discussion here parallels the treatment that is generally used in dis-
cussing the diffraction grating. The relevant details of the arguments can be found in any
good optics text (e.g. Born and Wolf).
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Figure 4.2: Far-field radiation characteristic of one ideal emitter.
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Figure 4.3: Far-field radiation pattern of ten coherent ideal radiators.
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diffraction from a single aperture. The third term is the expression due to

the interference effects between the apertures of the emitters in the array.

In order to appreciate the effect and advantage of an array of coher-

ent emitters, we illustrate the far-field intensity patterns for two cases in

Figs. 4.2 and 4.3. In the first case, we only have one emitter (N=1). The

expression for the far-field intensity pattern reduces, in this case, to

I = O [sin{(kow/2) sin (4.7)
Io [ (k~w/2)sini J (4.7)

The parameter values used in Fig. 4.2 are A, = 0.86 Aim, w = 3 /Am. In the

second case, there are ten (N = 10) emittters in the array with a center-to-
center spacing of 3=7 ;Am. The far-field intensity pattern shown in Fig. 4.3

is two orders of magnitude (N 2) stronger than that from the single emitter;

this pattern is also narrower than the previous one. The importance of

a coherently operating set of linear radiators lies in the fact that fori a

large number of them, the radiation emitted can be concentrated into a

very narrow, intense lobe. This has practical applications. If the radiators

are radar antennas, it gives one the ability to scan the lobe spatially by

introducing a phase factor. What is important to note here is that the

concepts of coherence and phase-locking discussed above can be extended

to semiconductor lasers. After all, lasers are generators of electromagnetic

radiation at optical frequencies.

The notion of phase-locking in semiconductor lasers can be implemented

if, by some means, one can contrive to place individual lasing elements

within a close proximity of one another. An individual semiconductor laser

by itself generates coherent radiation. However, because of inhomogeneities

in the lasing medium and irregularities in the photon generation process

across the entire medium, it may not be possible that an array of lasing
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elements will always be collectively coherent. Therefore, some means of

forcing collective coherence has to be implemented so that all the elements

of the array have the same relative phase.

The method of inducing phase-locking that we use in this work involves

coupling a fraction of the radiation propagating in one guide to another

adjacent to it and vice-versa. This is done across the entire array of el-

ements. When the conditions are right, the individual elements will all

operate with the same phase. The method of evanscent wave coupling is

the simplest technique of phase-locking adjacent laser elements. This tech-

nique depends critically on the ability to delineate waveguides on the laser

structure. Therefore, wave guidance is important in the array elements.

We discuss waveguiding in the phase-locked lasers fabricated for this thesis

in the next section.

4.2 Wave Guidance in Phase-Locked Lasers

The laser arrays we fabricated featured both lateral and transverse mode

confinement. The transverse electromagnetic mode confinement is auto-

matically built into the laser structure by the several hetero-epitaxial lay-

ers that constitute a wave guide in that direction. In Fig. 4.4, we have

abstracted a simple model of the laser array. In this model, we have only

retained the epitaxial layers that are necessary for the guidance of an op-

tical mode in the structure. The structure in Fig. 4.4a shows the n-type

AlGal_,As and the top p-type A1, Gal_,As cladding layers. Sandwiched

between them is a single quantum well active layer surrounded by a parabol-

ically graded Al=Gal-zAs waveguide. Fig. 4.4b shows two of the ridge

waveguides necessary for lateral confinement of the modes. The ridge of

index n, is surrounded by a medium of index no (in this case air). For this
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analysis, we shall assume (temporarily) that the waveguides are passive.

This assumption allows us to choose the guided modes of such a structure

to be essentially of the TE or TM kind with two families: E' and En,,

where m and n are the mode label indices.

Before proceeding with the analysis, we extract further, another model

from Fig. 4.4. This new model of the ridge waveguide is shown in Fig. 4.5.

Consider the structure shown in the lower illustration and the suggested

equivalent structure viewed from the top above it. This structure is sym-

metric about the x-axis and can be thought of as an equivalent guide that

provides confinement in the 2-direction. The effect of the extra ridge thick-

ness t, is to create a region of effective index N,, higher than that of the

outer regions, N,.

In order to avoid confusion later, we will say a few things about the

index of refraction n, and the effective index of refraction N. The indices

of refraction of the original ridge waveguide structure are n,, n3 and n,. In

this case n. > n, and n > n,. Out of this guide, we derive the equivalent

planar guide shown in the top illustration of Fig. 4.5a. This guide has

effective indices of refraction defined by N = 3/k through a transcendental

dispersion relation which we derive later. The method of analysis we use

here is the effective index method [59].

In Fig. 4.5, the effective indices of refraction N, and N, are redefined

for convenience in regions 1, 2 and 3 of the equivalent guide as follows:

n Ng = n3 (4.8)

n, = N,. (4.9)

Notice that nl = n 3 for this particular structure because of the symmetry
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inherent in the ridge waveguide about the z-axis.

In what follows, it will be understood that any undefined quantity as-

sociated with a field has its usual meaning in electromagnetic field theory.

For an assumed E v field distribution of the form

E,(Zz, t) = e(z)e(w'-') (4.10)

we find from Maxwell's equations that

H, (z, z, t) = -4 (z)ej(Wt-) (4.11)

H,(x,z,t) = E(4.12)

The lateral field distribution, ,(zx), can be asssumed to be of the form:

4y(Z) = Ae {(z+" 2/) z < w/2 (4.13)

4,(z) = Bejh2 + Ce-jh ' |xi < w/2 (4.14)

4(z) = De-P(' -' /2) z > w/2 (4.15)

where A, B, C and D are constants to be determined by imposing conti-

nuity conditions on the tangential electric and magnetic fields at the guide

interfaces. The constants q, h and p are the lateral propagation constants

in the different regions of the waveguide.

Application of the continuity conditions to Eqs. (4.13), (4.14), (4.15) and

to a similar set derived from (4.12) leads to a system of linear equations

whose determinantal equation, when set to zero, immediately yields the

eigenvalue equation
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hw = tan-'( ) + tan- '() + mr, m = 0, 1, 2,... (4.16)

where m is the lateral mode number. Substitution of the field quantities
in Eqs. (4.13), (4.14) and (4.15) into the wave equation results in the addi-
tional relationships

q = 32 - (nk.o)2

h = (nA2k-o), 32

(4.17)

p = /-;2 (n3ko)2

k, = 2r/A

where A is the free-space wavelength of propagation.

Before proceeding further, we introduce normalizations that combine
several guide parameters. Let us define a normalized width W by

W = kw /n- . (4.18)

Also, let us define the normalized guide index b related to the effective
index N (and I) by

N2 - 2

= .2- i' (4.19)

This normalized index takes on values between zero and unity. Using the
expressions of Eq. (4.17) and the normalizations of Eqs. (4.18) and (4.19),
we can rewrite the eigenvalue equation (4.16) in the form

WvI- = tan- ' + tan 1-b =-bmt. - (4.20)
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This equation can now be solved graphically. The graph thus obtained is

used to determine the guide width, w, from the effective indices N, and N,.

Fig. 4.6 shows the graphical solution of Eq. (4.20) for the m = 0 mode or

the fundamental mode.

The effective index, N¢, requires us to find the equation that governs the

transverse guided mode. We do this by considering the transverse guide as

defined in Fig. 4.4. The pertinent regions are as labeled in the figure. In

a manner exactly analogous to before, we seek solutions for the transverse

confined modes. Using Maxwell's equations and matching the tangential

field components at the interfaces, we obtain the transcendental eigenvalue

equation governing the propagation characteristics in the transverse direc-

tion. This equation is similar in form to Eq. (4.16). It is

k 2d = tan'(k) + tan- kl + e-- + mr, m = 0,1,2,...

(4.21)

where tl is defined as

=73 7- . (4.22)
'7 + '74

The transverse propagation constants in each layer are given by

4 = p32 - (kn)I

3= 2- (k.n,)2
(4.23)

k = 2(kon)2 - 2

ma = 62 - (kn,)2

I
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Figure 4.6: Normalized dispersion curve of the ridge waveguide laser.
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where ko = 2r/Ao as before. We can define normalizations as before. Let

the normalized thickness of the guide be

D = k d- (4.24)

and the normalized guide index p be given by

N 2 - 2
- -n2 (4.25)

The effective index is still defined through

N = /k (4.26)

Using these normalizations and the expressions of Eqs. (4.22) and (4.23),

we can recast the eigenvalue Eq. (4.21) in the form

~/ p + tan_1 _ -e - 2k . v p t

DJ - = tan-' 1- + tan-' p +e+2mr (4.27)

where t is redefined as

7= V -+ TP (4.28)

and a and a are constants defined by

2 2
a- n - n(4.29)

(4.29)
2 2ao 2 _ n

The normalized index of Eq. (4.25) ranges between zero and unity. As

before, we can solve Eq. (4.27) graphically. The ridge thickness, t, appears

as a parameter that can be set to any desired value. As expected, this

thickness controls the effective index, N,. The effective index N,, in regions
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1 and 3 in Fig. 4.5 is obtained by setting t = 0. In Fig. 4.7, we show the

graphical solution of Eq. (4.27) for the fundamental transverse mode for

two different ridge thicknesses.

4.2.1 A Numerical Example

The analysis performed in Section 4.2 and the resulting curves of Fig. 4.6

and Fig. 4.7 constitute the major design tools used in the determination

of the appropriate waveguide dimensions in this study. As an example, we

illustrate the use of these curves in the design of a typical ridge waveguide

laser. Assume that only the fundamental (m = 0) transverse and lateral

modes are allowed in the guide and that the wavelength of oscillation is

A. = 0.86 pm. Let the active region be a layer of GaAs, 250 A thick

surrounded by an optical waveguide of A10.s8Ga. 82As whose thickness is

4400 A. The total composite guide thickness, d, is 4650 A. For an AlAs

mole fraction of 0.18 in the waveguide, ng _ 3.469 for lYl < d. suppose that

the cladding layers have an AlAs mole fraction of 0.35; then n, = 3.353.

This cladding layer is etched down to form a ridge waveguide whose height

is t = 0.8nm. From these values, we can obtain the transverse normalized

guide thickness from

D = dvn- n 3.05. (4.30)

With this value of D, we determine the corresponding normalized guide

index, p, from Fig. 4.7 (using the curve with t = 0.8Mm), and this is p =

0.65. Through use of Eq. (4.25), we get the effective index value of N, =

3.429. By using the curve for t = 0, we obtain the effective index value of

Ng = 3.411.

We are now in a position to use the effective index values of N, and
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Ng as if they were the ordinary indices used in Eqs. (4.18) and (4.19) in

order to help determine the guide width, w in the lateral direction. Any

combination of normalized width W and normalized index b that lies on the

graph in Fig. 4.6, will give parameters for the fundamental lateral mode.

For any one free parameter we choose, (as long as its value is on the curve)

we can determine the others by using Eqs. (4.18), (4.19) and Fig. 4.6.

4.3 Phase-Locking by Evanescent Coupling

The simplest and most extensively studied method of phase-locking semi-

conductor lasers is evanescent wave coupling. By fabricating the laser array

elements sufficiently close to one another, the evanescent wave propagating

in the interguide space can overlap with a guided wave in another guide.

The idea here is that after several roundtrips in the cavity, the individ-

ual guided modes will eventually acquire a common phase because of the

cross-coupling over the entire array.

The fraction of field energy coupled evanescently into a guide depends on

several guide parameters. We discuss below the nature of this relationship.

The field expressions of Eqs. (4.13), (4.14) and (4.15) can be rewritten

in terms of an arbitrary amplitude, A, so that:

vy(Z) = Ae(QS+ / ) z < -w/2 (4.31)

4(z) = A sin(hz) + cos(hz)] 1 < w/2 (4.32)

g(z) = A sin( 2 ) + cos( ) e - p( ' -w/ 2 ) > w/2 (4.33)

S



CHAPTER 4. PHASE-LOCKING IN SEMICONDUCTOR LASERS 97

The constant A is chosen in such a way that the field E4(z) in the previous

equations corresponds to a power flow of one unit (per unit width in the

y-direction) in a mode. This normalization condition can be expressed as

- J EH 2= w oo [Ev (z)Jd = 1 (4.34)

where m denotes the m-th confined lateral mode. Substitution of Eqs.

(4.31) through (4.33) into (4.34) results (after a bit of algebra and setting

qm = Pm) in

A = 2h, [m( + l)(h +P)] (4.35)+ pP) 1`" (4.35)

The coupling coefficient from one guide to another is normally defined

through the electric polarization perturbation. It can be shown that this

coefficient, n+L,n is given by [601

a2 00
C12 = 21 = 2W at2 0 PPrt (Xt)y(x)dx (4.36)

Pp,,(, t) is the polarization perturbation that leads into the coupling. By

use of the index of refraction in the guide and the fields propagating in the

two guides, we can rewrite Eq. (4.36) as

x12 = -21 = - I ;()e, (N2 - )2y,(z)d (4.37)4 J00-

where N, and N, are the effective indices of the guide as defined previously.

Using the field expressions of Eqs. (4.31) through (4.33) and the value

for the constant A in Eq. (4.35), we can perform the integration of Eqn. (4.37).

In the field expressions for the second guide, it should be noted that the

expressions are shifted by w + , where w is the guide width and i is the
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interguide center-to-center separation. After a fair amount of algebra, we
arrive at the result

-12 = 21 (W +2)(h +p] eP (4.38)

Notice that this result has been particularized to the fundamental, sym-
metric lateral mode ( the subscript o is an indication of this fact). The

physical meaning of this equation is intuitively obvious. It says that the

coupling between the laser guides increases exponentially as the guides are

brought closer to one another.

Although the evanescently coupled lasers have been studied extensively,

it has not been possible to consistently achieve phase-locked operation. In
the majority of the cases reported in the literature [611-[691, the arrays
have tended to operate in a mode that leads to a double-lobed far-field

intensity pattern. It is speculated [70,71,72] that this mode of operation is

favored whenever adjacent lasers in the array maintain a phase difference

between them of r radians. This phase difference has been attributed to
loss between the active elements of the array [73,74,75]. At the moment,

there does not seem to be a method to correct this phase difference in the

parallel-element geometry.

Recent efforts in this field have now shifted to exploring other device

structures that might yield narrow, single-lobe far-field patterns. Research

in new device structures that is being conducted concurrently with our own
effort is going on at the University of California at Berkeley, the California

Institute of Technology and Spectra Diode Laboratories. The groups at
UC Berkeley and Cal Tech are working on a technique of coupling based
on diffraction. In their structure, a region where the modes are not guided
is included just before one of the laser mirrors. After reflection from the
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mirror, the portion of radiation that returns is coupled into more than one

guide [76,771. The group at Spectra Diode is refining a technique originally

used by Scifres et al. (781. This technique involves coupling via a Y"-

branching guide [791. In the next section, we introduce and discuss the

structure for phase-locking that has been studied in this thesis.

4.4 Mixed-Mode Phase-locking

The motivation behind the mixed-mode phase-locking (M 2PL) technique

was to provide another method of coupling the lasers. The basic idea

is to retain the usual parallel-element array guides but to incorporate a

section in the middle of the device where the modes are unguided. This

middle section forms the mode-mixing region. It allows the eigen-modes

from each individual guide to mix because of diffraction, thus promoting

phase-locking. If indeed there is loss between the guides, the presence of

this uniformly pumped region will also minimize this loss. We illustrate in

Fig. 4.8 the schematic of the M 2PL laser array.

This novel laser design allows the possibility of coupling to more than

just nearest adjacent neighbor. Unlike the structure being studied by the

groups at Berkeley and Cal Tech, our design offers the feature of simulta-

neous bidirectional coupling. The M 2PL laser is also capable of much more

efficient coupling than the other structures. In the Berkeley structure, hav-

ing the coupling region adjacent to the facet makes it susceptible to the

intrinsic absorption losses at the facet and also to the normal losses due to

transmission at the mirror. One major disadvantage of the Berkeley struc-

ture is that it is not easy to control the length of the coupling region during

the mirror-cleaving process. The magnitude of this length, of course, is of

prime importance in determining in-phase coupling. We shall discuss this
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further in the next section. In the M2PL laser, having the mode-mixing

region in the middle of the device means that it can be predetermined and

defined accurately by photolithography. This length is then guaranteed not

to change during all the subsequent device processing steps. If desired, the

M 2PL laser can also be designed to retain the evanescent wave coupling

property of the previous laser structures. This, however, is not absolutely

necessary as sufficient coupling can be attained by use of the mode-mixing

region.

4.5 Theory of Mixed-Mode Phase-Locking

In Section 4.2, we assumed that the ridge waveguides that form the M 2PL

laser arrays were passive. This assumption allowed us to calculate the

important parameters of the waveguides without the added complication

of the gain and loss processes that are intrinsic to the operation of a laser.

In this section, we wish to modify the assumption to include gain and loss.

Ordinarily, the quantitative determination of the allowed mode structures

for waveguides that include gain and loss is a prohibitively difficult task. In

the analysis we will undertake here, however, we shall appeal to empirical

evidence to bypass the complicated calculations.

In has been demonstrated experimentally [801 that for a well behaved

lasing mode, where the lateral extent of the mode is determined by a stripe

width, the near- and far-field scans of the lowest order mode is Gaussian in

form. The Gaussian modal distribution of the emitted radiation is a result

of the complex photon-carrier interactions in the cavity. These interactions

manifest themselves macroscopically as gain and loss. Given these facts,

it is reasonable to assume that the individual guided modes in the ridge

waveguides we use here are Gaussian. Furthermore, each guide (as analysed

*
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Figure 4.8: The schematic structure of the M 2PL laser array.
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in Section 4.2) can be chosen such that it supports only the fundamental

mode.

We begin our analysis of the MZPL lasers by formulating a simple model.

Having assumed that the allowed mode structure in each guide is Gaussian,

we write the paraxial scalar wave equation describing the propagation char-

acteristics of the mode:

V 2u + k 2u = 0 (4.39)

where u is a field component and k = 2rn,///A. is the propagation con-

stant in the medium; n, is the effective index of refraction. For light

propagating in the z-direction, let

u(z, y,z) = (x, y, z) exp(-jkz) (4.40)

where (z,y,z) is a slowly varying complex function that represents the

nonuniform field intensity distribution, the beam expansion as a function

of propagation distance and also phase front curvature. Substitution of Eq.

(4.40) into Eq. (4.39) results into

a2e a2e aE
a- -- + a - 2jk =0 (4.41)

where the function & (x, y, z) is assumed to have a slow variation with z and

therefore we have neglected the second derivative of g (z, y, z) with respect

to z in comparison to the other terms. Eq. (4.41) has the form of the

time-dependent Schr6dinger equation in two dimensions, where z plays the

role of time [81]. The solution to this equation has the form

(z, y,z) = exp -j (z) + 2q() r2 (4.42)
2q(z)
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where r2 = :2 + y2. We have also introduced the q-parameters" for the

description of Gaussian beam optics [82,83,841. The parameter P(z) is

complex and represents the phase shift associated with the propagation of

the light, q(z) is also complex and describes the Gaussian variation of the

mode intensity with distance r from the optic axis. When we substitute

Eq. (4.42) into Eq. (4.41), we obtain

(k)r '- 2j()- k2r2() - 2kP' = 0 (4.43)

where the prime denotes differentiation with respect to z. Eq. (4.43) is true

when the different coefficients of all powers of r equal to zero so that

( )2 +() = (4.44)
q q

p' = -j (4.45)
q

It can be shown that Eq. (4.44) integrates to (83]

q(z) j . + z (4.46)
AO

An imaginary constant of integration, q = (j'wn,f/A,), has been in-

cluded in this result. The choice of this constant leads to physically mean-

ingful waves whose energy is closely confined to the z-axis.

Inserting this result into Eq. (4.45) and performing the required inte-

gration yields the complex phase parameter

P(z) = j In /1 + (zA0/iru'nf1;) 2 - tan-' (A,z/rw2n,ff). (4.47)

The constant of integration has been conveniently chosen to be zero. The

only consequence of doing this is a shift in the time origin of the field
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solutions. When we substitute the expressions of Eq. (4.46) and Eq. (4.47)

into Eq. (4.40) via Eq. (4.42) we obtain the desired functional dependence

of the fundamental Gaussian beam shape in the guide:

'tL(ZYZ) -ex -_ 4
DJ) _.IX + YI)

U,(W,y,Z) = w(z) -( - -() + ( 2R(z)

(4.48)

This is our basic result with the following parameter definitions: the di-

mension 2wo is the minimum diameter of the Gaussian beam, called the

beam waist. For ideal conditions, we shall assume that this parameter is on

the order of the guide width.

L [1C(Irw,~t,0(z) = 1 + ( w ) (4.49)

A,z

v(z) = tan-'( 2 (4.51)

The parameter w(z) gives the expansion of the beam diameter as a function

of z in the medium without wave guides; R(z) is the radius of curvature of

the Gaussian wavefront at z. The angle by which the beam spreads from

the optic axis is given by p(z).

Now consider the illustration depicted on Fig. 4.9. The figure shows

three parallel lasers with a mode-mixing region at the center of the struc-

ture. The guided modes of the structure, when they reach the mode-mixing

region, will spread in a manner described by Eq. (4.48). This spreading,

depending on the length of the mode-mixing region zl will couple a fraction

of the radiation guided in guide 2 to guide 1 and vice-versa. In order for
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radiation from one guide to couple coherently to its nearest neighbor, the

phase difference between the phase fronts of the modes emanating from the

two guides in question must be an integral multiple of 27r. This is another

way of saying that the optical path difference of the coupled wave must be

an integral number of wavelengths. If this is true for all guides across the

laser array, then we have the necessary condition for phase-locking. From

Eq. (4.48), we observe that after traveling a distance z, a mode acquires a

phase given by

+(z) = kz - Vp(z) (4.52)

The condition for collective coherence as stated above can be expressed

thus:

A = x (4.53)27r

where Ab is defined only for integer values. From Eqs. (4.52), (4.53) and

the geometry of Fig. 4.9, we obtain

2t tan 2
AO 2ir or2nf 2t l neff

(4.54)

By solving Eq. (4.54) graphically, one can determine the correct length of

the mode-mixing region for collective coherence in order to achieve phase-

locking. Note that the inter-guide center-to-center separation, a, appears

as a parameter in this equation and it can be set to any reasonable value.

Fig. 4.10 depicts a graphical solution of this equation for several values of

the inter-guide separation, i. Given this value, the right length, zl, for the

mode-mixing region can be established by a quick reference to the figure.
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Figure 4.9: An illustration of the diffraction-coupling scheme of the M:PL
laser array.
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Figure 4.10: The relationship of the phase-locking condition to the length
of the mode-mixing region.
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Chapter 5

Discussion of Device Results

This chapter presents and discusses the experimental results of the mixed-

mode phase-locked laser arrays studied in this thesis. Some of the theoreti-

cal and analytical aspects of the work discussed earlier are unified with the

experimental device results. We begin the chapter by showing, in Fig. 5.1,

a photomicrograph of the device whose results are to be discussed. Each

guide in this figure is 3 sm wide and the center-to-center spacing of the

guides is 7 am. The central mode-mixing region is 75 jam long and the

waveguide regions on either side are approximately 100 m long.

5.1 Current Versus Voltage Characteristics

The measurement of the current versus voltage (I-V) characteristic of a laser

device usually represents one of the very first measurements done on the

device. Fig. 5.2 shows a representative I-V characteristic of an M 2PL laser.

The forward turn-on voltage is ~1.1 V, a typical value for (AI,Ga)As/GaAs

laser diodes. The reverse characteristic of the I-V displays a very sharp

breakdown at a voltage of 19.0 V. The sharpness of the breakdown point

is an indication of the abruptness of the p-n junction. An estimate of

108

S



CHAPTER 5. DISCUSSION OF DEVICE RESULTS

the background doping, NB, of the active layer can be made through the

formula

V: = 60(EO/1.1) 3 -/2 (NB/10 6) 3/4 (5.1)

where VB is the breakdown voltage and Eg is the 'band gap" of the active

layer. This approximate universal formula for abrupt junctions was first

derived by Sze and Gibbons [85j.

For the breakdown voltages of 19-20 volts encountered in our lasers, we

estimate the background doping to be about 7.0 x 1016 cm- 3 . This value is

reasonable for unintentionally doped GaAs layers grown by molecular beam

epitaxy. The diffusion of Be (a p-dopant) from the top cladding layer may

actually account for the slightly high value of the background. The active

layer of this particular device is composed of an undoped system of multiple

quantum wells surrounded by an undoped waveguide layer several hundred

angstroms thick. It is therefore a complicated matter to determine the

exact location and extent of the depletion layer. The background carrier

density as determined here, is at most, an upper limit. What is important

to realize here is that a low background carrier density is essential in the

active region to minimize excessive free carrier optical absorption during

the operation of the laser device.

The general sharpness of the turn-on and breakdown points of the I-V
; -tL____v_:_-r:_ _-, A_ :_s:__;~ _ATP make; and A.,:,- JOAB Gd L-., -:_cnaractermulc are a mulrec prou bna une uevce uVs4 nLu nla.c auu-

tional unwanted current paths. This fact is borne out by the low threshold

currents measured for these devices.

Another piece of valuable information obtainable from the I-V charac-

teristic is the quality of the ohmic contacts to the device. One can assess

the quality of the ohmic contacts by measuring the forward series resistance

I
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Figure 5.1: A photomicrograph of the mixed-mode phase-locked laser array.
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I-V Characteristics

Figure 5.2: Current versus voltage (I-V) characteristics of a typical
mixed-mode phase-locked laser array.
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of the diode. This resistance is very simply the reciprocal of the differential

slope of the I-V curve. Fig. 5.3 shows the measurement of this resistance

performed on a commercial parameter analyzer. The measured differen-

tial series resistance is about 4.5 nf. In order to correctly evaluate this

resistance, one must first measure the resistance introduced by the sam-

pling probes. In our case, this resistance is about 3 nf. Therefore, the true

differential series resistance of the M 2PL lasers is about 1.5 fl. Although

this value is reasonable, it can and must be made lower if long term cw

operation is desired.

5.2 Light Versus Current Characteristics

In the basic p-n junction laser structure, the two important parameters that

characterize the quality of the device are the threshold current density and

the external differential quantum efficiency. The threshold current density

is a relative measure of how many electron-hole pairs have to be injected to

overcome the spontaneous emission process and the associated cavity losses

before the onset of lasing. The lower the threshold, the better the device.

The major factors that control the threshold current density were outlined

and discussed in Chapter 3.

For the lasers studied during the course of this project, the threshold

current density as a measure of quality only has meaning when it is used in

connection with broad area lasers. During the initial phase of the project,

broad area lasers fabricated from regular double heterojunction structures

exhibited threshold current densities of about 2.5 kA/cm2 . With improve-

ments in crystal quality (largely attributed to growth techniques) and a

change to quantum well structures, we were able to obtain lower thresh-

olds. For a multiple quantum well structure, the best threshold current
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Figure 5.3: Measurement of the forward series resistance, r,, of an M 2PL
laser diode.
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density obtained was about 200 A/cm2. This is an order of magnitude

decrease over our previous results. This value is in good agreement with

other state-of-the-art values reported [86,87,88,891 for lasers of similar con-

struction.

In the phase-locked arrays, because of the way the devices are con-

structed, the pumping current is not uniform over the entire structure. It

is therefore more difficult to talk about threshold current densities. Specif-

ically, for the M 2PL lasers, the regions of low resistance over the ridge

waveguides pass more current through them than the high resistance inter-

guide regions. For these lasers, the threshold current (measured in units of

amperes) replaces the current density. In multiple parallel-stripe devices,

this measure is often quoted as the threshold per stripe.

The fact that lower threshold current densities are measured for devices

fabricated from multiple quantum well structures is consistent with the

photoluminescence results reported in Chapter 2. The physical basis of the

reasons why this should be so were further discussed in Chapter 3. It was

shown theoretically that low threshold current densities are to be expected

for lasers fabricated from these structures.

The other measure of quality, the external differential quantum effi-

ciency, is a reflection of the conversion efficiency of injected electron-hole

pairs to photons. Since what is actually measured is affected by sponta-

neous emission, cavity and mirror losses, it is called the external efficiency.

This is to distinguish it from the internal efficiency which we cannot mea-

sure. The internal efficiency is the fraction of injected electron-hole pairs

converted into stimulated emission. The external efficiency does provide a

good indication of this parameter. Quantitatively, this parameter is defined

as

f
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n = Al ) (5.2)
where AP,,t is a change in optical intensity for a corresponding change in

excitation current, Al. The change AI must be beyond the lasing threshold

current, Ith.

Since the spontaneous emission intensity is clamped at threshold, the

total emission intensity above threshold maybe represented as [90]

qPpt = Fp7.,plth + Fti(l - Ith) (5.3)

where F,p and F,,t are, respectively, the photon escape probabilities for

spontaneous and stimulated emission. The efficiencies for the corresponding

photon conversions are denoted by ir,p and Is. This expression is intuitively

obvious from Fig. 5.4. It then follows from Eq. (5.3) according to the

definition of Eq. (5.2) that

Tezt = Fst,,i (5.4)

The probability for stimulated photon escape, F,t, is the ratio of the exter-

nally measured optical power to the total optical power generated internally.

This is given by

F,, = Po,,/(Po,, + Pb.,) (5.5)

where Potw is the output power at both facets and Pb. is the total optical

power lost to other mechanisms such as free carrier absorption and diffrac-

tion at the optical cavity interfaces. The output power, P,, is generally

considered as a 'loss" from the cavity. This is because the photons in P,,t

can no longer contribute to stimulating others in the cavity. This external

loss term is expressed as (1/L) In(l/R) [91,921. The internal cavity losses

.t
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are lumped together and designated as oA. Collecting these facts together

and using Eq. (5.5) in Eq. (5.4) gives us the expression for the differential

quantum efficiency:

c (/L) In(ll/R)
n cxt j m + (i/L) In(1/R) (5.6)

where L and R are as defined previously in Chapter 3. From Eq. (5.6), it is

clear how to vary the device parameters in order to get a high differential

external quantum efficiency. For high external efficiencies, the internal loss

term, c,, must be minimized. This term can be minimized by making sure

that there is little free carrier absorption of the photons. This is done by

assuring a low background doping in the active layer. The diffractional

losses at the hetero-interfaces are minimized if these regions are smooth.

The cavity length L and the facet reflectivity R must be chosen judiciously

because although long cavities and large reflectivities should lead to smaller

(1/L) ln(l/R) and high ir;,t, the total cavity losses will increase with length.

The number of longitudinal modes also increases so that more of them

have to compete for the available gain. This in turn may actually raise the

threshold current density.

The typical external differential efficiency measured for the M 2PL lasers

was about 0.24 Watts/Amperes per facet. These devices had room temper-

ature threshold currents that ranged from about 300-480 mA for 7-element

arrays. The guides are 3.0 Am wide with a center-to-center spacing of 7.0

Am. The average length of most devices tested is about 300 Jm. Fig. 5.4

shows a typical light versus current (L-I) characteristic of an M 2PL la.er.

Two features of this figure are noteworthy. First, we notice that the char-

acteristic is linear. This linearity is very important for devices of this class

and we will discuss it further below. Secondly, we observe that the device
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seems to have two threshold currents. This behavior was observed in all

the devices tested. By monitoring the near-field pattern on an infra-red

vidicon, it was possible to observe the onset of the lasing process. During

the first threshold, it was noticed that some of the devices in the array were

not as brightly lit as the others; on increasing the current further, the entire

array was uniformly lit and this point corresponded to the second thresh-

old. The other point to notice about Fig. 5.4 is that this device displays

very little amplified spontaneous emission (or super-radiance), i.e. below

threshold, there is little emission.

The stability and linearity of the L-I characteristic is of prime impor-

tance if the laser devices are to be used in fiber-optic communications where

the light might need to be modulated. This stability can only be obtained

from laser devices that have real index-guiding for the lateral modes. In

lasers with non-linearities (kinks) in their L-I curves, it has been found that

the non-linearities lead to mode profile deformation and even lateral shifts

[94,95] which could lead to very unstable far-field patterns. Also, such un-

desirable features like relaxation oscillations [96] are enhanced in devices

with non-linearities in their L-I curves.

In other studies on lasers where the lateral mode confinement is deter-

mined solely by the pumping current (i.e. gain), the light emerging from

the devices is often found to have astigmatic properties (focusing to more

than one point) [97].

Our devices did not exhibit any of the features discussed above. It is our

belief that the strong index-guiding designed into the arrays contributed to

the stable charactristics.
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5.3 Emission Spectra

The spontaneous emission spectrum of a typical M 2PL laser below thresh-

old is shown in Fig. 5.5. This spectrum suggests the presence of several

longitudinal modes, each separated from the other by 2.5 A. The mode

separation is given by the expression

2n, . L

where AO is the free space lasing wavelength, n,f, is the effective index of

refraction and L is the cavity length as before. If desired, this expression

can be used to calculate the effective index of refraction, nf/. All the other

parameters in Eq. (5.7) are readily measurable.

For a cavity length L 275 Am, and the center wavelength of 0.864 Am

shown in the figure, the value of n 1 ,f - 5.43. This value is reasonable and

it compares quite well with that extrapolated from the data of Marple [981

given for GaAs at room temperature. The value estimated from Marple's

data is a little over 5.6. It should be recalled that the active layers of the

devices studied here are composed of multiple quantum well systems. The

effective index therefore is expected to be lower than that of pure GaAs.

Our estimate is therefore consistent with this fact.

The spectrum in Fig. 5.5 is typical of quantum well lasers. The Fabry-

Perot modes are superimposed on top of a well-defined and narrow sponta-

neous emission line. This line has a full-width at half-maximum of 10 A.

This width is to be contrasted with that of a normal double heterojunction

laser of about 200 A or more. The superiority of the quantum well lasers

is clearly evident from these facts.

Using a technique developed by Hakki and Paoli [99], the spectral gain

of lasers can be experimentally determined from spectra similar to that in

t ',~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Fig. 5.5. We have performed such an experiment. In our measurements,

the desired wavelength resolution is attained by operating the 0.75 meter

spectrometer used with slit widths of < 30 Sm.

Very simply, the gain is obtained by measuring the depth of the modu-

lation caused by the Fabry-Perot resonances in the emission spectrum. The

gain at any wavelegth is obtained by first averaging two successive peaks,

(I, + I+1)/2, in the emission spectrum of Fig. 5.5 and then dividing by the

intermediate valley, Vi. The modulation depth, r, is therefore

i i+i+1 (5.8)

The net gain is then obtained from the relation [1001

GA= In H + I R (5. 9)

where, as before, L is the cavity length and R the facet reflectivity.

From a spectrum very similar to the one shown here, we have calcu-

lated the gain spectrum of an M 2PL laser below threshold. This spectrum

appears in Fig. 5.6. Our result indicates that the loss rapidly drops to a

minimum at around 8640 A from the short wavelength side of the spec-

trum. The loss spectrum narrows as this wavelength is approached. The

loss (gain) spectra of quantum well lasers narrow much more dramatically

than those of regular double heterostructure lasers as the lasing threshold

is approached. This is because of the higher electronic density of states and

the discrete nature of the transitions involved.

At the lasing threshold, the longitudinal mode competition for gain
; r 1YAIInf~·f Sty~ ts orM hree tn;n~nr mAta Theis mZAAm t allnwe
', W J~r U UYv 'J& baso u.vJ1LA,LAI A.LAJ'. w Avs aU , &-vM A,

wavelengths of oscillation, acquire all the gain that the medium is capable of

delivering. The particular modes chosen depend on the length of the optical
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cavity and the gain linewidth. In essence, the lasing modes are determined

by a convolution of the Fabry-Perot etalon modes and the gain line function

of the medium from which the laser is fabricated. From Eq. (5.7), we

note that the separation of the Fabry-Perot modes can be made large by

decreasing the cavity length, L. By doing this, the laser medium linewidth

samples only a few Fabry-Perot modes, thus improving the chances of mode

selectivity.

The lasing spectrum of an M 2PL laser is shown in Fig. 5.7. The spec-

trum is taken at 1.3Ith. The active region of this device is composed of

a multiple quantum well system. The general features of the spectrum

bear some similarity to the spectrum obtained from a laser with a single

quantum well. Such a spectrum is shown in Fig. 5.8. Both spectra ex-

hibit two major peaks. These spectra are notably different from others

reported in the literature [101] for phase-locked devices. Our spectra dis-

play clean, well-resolved 2 to 3 major longitudinal modes whereas those of

Ref. [101] exhibit several longitudinal modes. The emission wavelength is

predominantly centered around 864-864.6 nm, a value smaller than that

corresponding to the intrinsic band gap of pure GaAs. Excluding band

filling effects, this emission is attributed to transitions from the quantized

energy levels in the quantum wells. The center wavelength is slightly dif-

ferent from that due to a photoluminescence transition from the le - lhh

level found in Chapter 2, possibly because of the tilted band configuration

in a laser device when it is forward biased.

Closer examination of the spectra reveals that in fact a family of 2 to 3

longitudinal modes exist in these lasers. An envelope curve can be drawn

over each of the families. These mode families are attributed to oscillations

occuring in non-axial modes in the laser cavity. In general, they are unde-

sirable and a lot of research effort has gone into developing structures that
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CHAPTER 5. DISCUSSION OF DEVICE RESULTS

operate in a single longitudinal mode. Examples of such structures include

the DFB laser structures [102,103] and the C 3 laser configuration (104].

The existence of multi-longitudinal modes in phase-locked laser arrays

further complicates the problem of achieving single-lobed far-field emission

patterns. Since the far-field pattern is essentially a Fourier transform of

the near-field, this means that each longitudinal mode (wavelength) of os-

cillation will give its own unique transform with a different intensity. The

result in the far-field pattern is a complicated emission lobe. We purse this

point further in the next section.

5.4 Near- and Far-Field Radiation Patterns

The radiation characteristics of multiple element lasers are studied by ex-

amining the near- and far-field patterns. The near- and far-field regions of

radiation are defined respectively, as the regions in space where the Fresnel

and Fraunhofer diffraction regimes are in force [112]. Quantitatively, the

demarkation line between the two regions is usually taken to be the line

at the distance z = 2W2/,, where W is the width of the total emitting

aperture and A. is the free space wavelength of the radiated light. To be

specific, this means that the near-field is between the emitting facet and

the distance z < 2W2/A 0. The far-field is at any distance beyond 2W 2 /Ao.

The far-field diffraction regime is simpler to treat mathematically. This is

because at distances many times the wavelength of propagation, the light

waves can be ragarded as plane waves.

The technique we use to observe the near-field involves the use of an

appropriate microscope objective to image the laser facet onto an infra-

red vidicon camera. The image of the emitting facet is then displayed

on a TV monitor. We show in Fig. 5.9 the near-field image of an M 2PL
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laser array just below the lasing threshold. One can clearly resolve and

identify the individual lasing elements of this array. In this case, there are

seven emitting spots corresponding to our standard 7-element array. The

nonuniform transverse extent of the image is an artifact of the imaging

optics.

The definition of the lasing facet into seven emitting elements as ev-

idenced in this infrared vidicon image proves two very important points.

First, despite the existence of the mode-mixing region where the light is

unguided, the overall laser structure provides sufficient wave guidance in

the waveguides to assure discrete, coupled element operation. Secondly, we

have demonstrated that the Schottky barrier scheme (the details of which

are covered in Appendix B) of current confinement to the guides works. By

observing the infra-red vidicon image as the bias current of the device is

increased, one can also monitor the onset of the lasing threshold. We have

already alluded to this fact in an earlier section.

The experimental arrangement we use to measure the far-field radiation

pattern is shown schematically in Fig. 5.10. The concept is self-explanatory

for the most part. The distance between the laser facet and the light-

collecting end of the optical fibre is at least 1 cm (the absolute minimum

distance possible with our experimental set-up is 7.0 mm). This distance

represents a compromise between the ease of optical alignement of the ele-

ments involved and the level of signal detected. In any case, the distance

satisfies the far-field diffraction criterion. With a fiber core diameter of 50

usm, a resolution of 0.4' and better can be achieved.

We display in the next three illustations, the variety of the far-field

patterns exhibited by the M:PL lasers. Fig. 5.11 shows the narrowest far-

field pattern obtained for the M 2PL lasers. This pattern is obtained a little

above threshold (1.2Ith). The overall pattern is an overlap of two unresolved

I

fr
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Figure 5.9: A near-field image of a phase-locked laser array below lasing
threshold as observed with an infra-red vidicon camera.
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peaks. Its width is 2.1 ° wide at the half-maximum intensity point. This

width is not diffraction-limited. By a diffraction-limited width we mean

that the angular spread of the beam at the half-maximum intensity point

is approximately given by the free space wavelength of propagation divided

by the effective width of the emitting aperture. The theoretical diffraction-

limited width for these devices is about 1.1 °. For the theoretical calculation,

we have taken the free space wavelength emitted by the array to be 0.86 Am

and the effective width of the emitting aperture to be 45 jAm. The effective

width for this calculation is simply the total widths of the 7 waveguides and

their interguide spacing.

We show, in Fig. 5.12, the evolution of the far-field pattern as a func-

tion of increasing bias current. The next illustration, Fig. 5.13, also shows

similar characteristics for a different device. Both these figures manifest

two singular properties of the M 2PL lasers. We observe that at low bias

currents, the far-field patterns do not possess clean" single lobes. In addi-

tion to the major lobe, each pattern has some minor structures to it. The

second observation is that with increasing bias current, the pattern defi-

nitely evolves into a single lobe. Accompanied with this evolution, however,

is a mechanism that tends to broaden the angular spread of the far-field

intensity pattern.

In Chapter 4, we introduced the notion of collective coherence for laser

arrays. In this section, we suggest that partial collective coherence may be

responsible for the experimental observations discussed above. By this is

meant an occurence where not all the array elements maintain the same

relative phase amongst themselves. It is postulated that a few of them

could have a slightly different phase from the others. This difference would

be sufficiently small so that for the most part, the array is still phase-locked.

It is then only a degree of the collective coherence that is in question. In
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CHAPTER 5. DISCUSSION OF DEVICE RESULTS 132

this case, the array is said to have partial collective coherence. When one

has full collective coherence, the far-field pattern should look better than

what shown in Fig. 5.11, that is to say, with only one narrow lobe.

As a consequence of the foregoing discussion, it is natural to wonder

about the origin of the partial collective coherence. There are several con-

siderations that could lead to this state of affairs. The two most likely ones

are: perturbations in the longitudinal path of the propagating wave, and

an incorrect length for the mode-mixing region. Both the perturbation and
the incorrect length could cause a wave in a particular guide to acquire

an incommensurate relative phase. Another consideration would also be a

possible element-to-element variation of the field amplitudes. The implica-

tions of such a variation are discussed in the analytic model developed in

the next section.

For all the M 2PL laser arrays characterized, most of them showed far-

field intensity patterns similar to those illustrated in Fig. 5.12 and 5.13. In

some instances, the amplitudes of the side structures on the envelope of

the major lobe were somewhat more pronounced than what is shown here.

In no case, however, was the distinct two-lobed pattern [1061 characteristic

of the usual parallel-array guides observed. The two-lobed far-field pat-

tern has been attributed to an array operating with a r radian phase-shift

between its neighboring elements. This interpretation has recently been

given credence by the coupled-mode theory [107,1081. We point out that

this theory is a passive waveguide theory for weakly coupled guides. It pre-

dicts a multiplicity of allowed modes of operation and makes no provision

for determining which of the possible modes will actually be excited. The

appeal in this theory lies in the relative ease with which closed-form solu-

tions can be obtained. The approximations (of weak coupling) that have to

be made in deriving the basic equations might not be valid for the M 2PL
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Figure 5.12: Evolution of the far-field pattern of a mixed-mode phase-locked
laser array as a function of pumping current.
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lasers because of the relatively strong coupling in these devices.

5.5 An Empirical Model of the Far-Field

In Chapter 4 we discussed the conditions for phase-locking in both evanes-

cently-coupled laser arrays and in the diffraction-coupled M2PL laser ar-

rays. For the most part, ideal conditions were assumed. It was assumed, for

example, that all the array elements emitted with uniform field amplitudes

and with the same relative phase. The inevitable theoretical conclusion

reached with such a premise is that for N phase-locked laser elements,

the far-field intensity pattern is directed into a clean', narrow, single lobe

beam. The experimental results presented and discussed in the last section,

however, do not support this theoretical premise.

In this section we seek to develop a model which explains our exper-

imental measurements of the far-field patterns. The assumptions used in

this model are abstracted from experimental observations of both the near-

and far-field patterns. In the observations of the near-field patterns with

an infra-red vidicon camera, it was often found that there was an intensity

variation from element-to-element across the array in some of the devices.

This fact has been mentioned in an earlier section of this chapter. For de-

vices that showed significant intensity non-uniformity across the array in

their near-fields, it was found that the far-fields were complicated and and

often exhibited several peaks. This observation then supports a hypothesis

that the non-uniform intensity distribution contributes to the multi-lobed

far-field patterns.

In the model to be developed here, we shall assume that: (1) each

array element is an extended source and not a point source, (2) the field

distribution across an element peaks at the center and tapers to zero at
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the edges, (3) the peak field amplitude may vary from element to element,

(4) the field in each element has a phase which may vary across the spatial

extend of the element and (5) the element-to-element phase variations do

not have to be the same.

With the foregoing considerations, the field distribution across the aper-

ture of a single element, E(x), may be expressed as

El(z) = Eof(z)e- i '" ( ) (5.10)

where Eo0 is the peak amplitude, fi(z) is the spatial dependence of the field

distribution and p(z) is the phase as a function of space. For an array of

N elements, the total near-field distribution is given by

N

E(x) = E [E(x) * uo0( - l) (5.11)
L=1

where uo(i - 15) is the impulse (delta) function and is the inter-element

center-to-center spacing. Eq. (5.11) expresses the convolution of the single

element field with an impulse function. This is a mathematical way of

stating the fact that the field distribution is periodic across the entire array

facet. Before proceeding, we define a spatial frequency u = k sin 8. This

parameter is related to the parameter 6 defined in Chapter 4 as 6 = k sin .

This relationship is expressed as 6 = u.

The far-field pattern is related to the near-field by the Fourier transform

integral. From the fundamental properties of Fourier transforms in linear

system theory [109,1101, we can transform the near-field in Eq. (5.11) into

the far-field. This operation yields

E(u) = Ce-i"E(u) (5.12)

where

I

� �1�1�
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El(u) = El (z) eid (5.13)

For simplicity, we shall assume that the near-field distribution of a single

element of the array is Gaussian with a linear phase variation. Thus

E(!)= E o ()/' "1" (5.14)

where wot is the Gaussian beam radius and Polt is the phase per unit length

in the -th element. This assumption is consistent with experimental ob-

servations and measurements of the near- and far-field patterns of single

stripe lasers [111. Substituting Eq. (5.14) into Eq. (5.13), we obtain the

Fourier transform of the near-field for the -th element:

E, (u) = Eolo,7e"- ("- ot" ' (N/ ') (5.15)

This distibution is the far-field pattern of the -th element. The far-field

intensity pattern of the entire array of N elements is given by

I(u) = E(u)l2 (5.16)

Substituting Eq. (5.15) into Eq. (5.12) and using it in Eq. (5.16) we get

1(u) = Io + 2 E E /o oo,,, (5.17)
l l<m m

where

to, = [(EoLwo,/V)e-(u-'f)2(f"'/2)2] (5.18)

lIon = ~ [(Eo.WOn e-(u-wf")2twl2)] (5.19)

and

III I

i,

I
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'm = (m - )u5 - (ol + POm)i (5.20)

Eq. (5.17) is the general formal expression for the far-field intensity pattern

of an array. 1 This equation has a multitude of free parameters. In order to

get some insight into how the far-field pattern varies with field amplitude

and phase, we specialize the expression into the case of only two phase-

locked laser elements. For this case the expression simplifies to

1(u) = Ioo + Io1 + 20/7 o 7 ~cos [ui - (oo + oil)i] (5.21)

where

0oo = [Eootoo\/; e-(U-"'"n):(q"'/2)'] 2 (5.22)

and

Iol =[Eolol w /je -(u-9hL) 2(tl/2) 2] 2 (5.23)

Eq. (5.21) is simple enough that the effect of varying the amplitude or

the phase of one or both of the laser elements can be studied graphically

by plotting the resulting intensity as a function of the observation angle.

Recall that u = ksine and k = 2/A. where A is the wavelength of

propagation in free space.

A computer program which handles the changes possible in the am-

plitude and phase in the two laser elements has been developed. For the

Gaussian field distributions, each field amplitude has a corresponding beam

waist, 2wol. In Fig. 5.14, we illustrate the far-field intensity pattern of two

lasers that are slightly off the in-phase condition for phase-locking. The

'We have ingored some multiplicative factors which should be included in this expres-
sion. These factors, however, do not change the general features of the far-field pattern.
See Ref.[1121 for details.
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Figure 5.14: A theoretical simulation of the effect of a non-commensurate
variable phase on the far-field radiation pattern of two nominally
phase-locked laser devices. The two devices are initially slightly off the
in-phase locking condition.
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next illustration, Fig. 5.15, shows the effect of changing the amplitude

(and the corresponding beam waist) of one of the lasers and also violating

the phase-locking condition. The illustrations we have presented here were

intentionally made to simulate the far-field patterns we observed in our ex-

perimental results. It is possible to simulate any desired pattern using the

code derived from Eq. (5.21). The substructures exhibited by the exper-

imental result of Fig. 5.12 are remarkably reproduced by our simulations

using the model developed here (cf. Fig. 5.12 and Fig. 5.15). This fact is

strong evidence for the validity of the model.

We have also studied, analytically, the effects of large phase deviations

from the phase-locking condition. We find that in general, the larger the

deviation, the more pronounced the side peaks are on the intensity pattern.

One can also scan the pattern away from the array center by appropriately

selecting the phases. This is a property well known to radar designers. In

fact, the techniques of intentional amplitude and phase variations are well

established in that field [1131. Fenner and Kingsley [1141 have previously

used the argument of variable amplitudes to explain the far-field intensity

patterns from filamentary emission in GaAs broad area lasers.

This analysis suggests that the peak amplitudes of the lasers in an array

can indeed vary from element to element. This is not a desirable feature

for phase-locked operation. It is therefore important to design the array

elements such that the same constant peak amplitude is maintained by each

member. Adverse conditions that could lead to the element-to-element field

amplitude variation include: non-uniform electrial pumping of the guides

and perturbations in the laser facets. These situations can be avoided by

careful attention to the fabrication process. The amplitude variations of the

fields in each element could also arise from the different longitudinal modes

emitted by the element. Each oscillation mode would lead to a different
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Figure 5.15: The effects of unequal amplitudes on the far-field radiation
pattern of two lasers that are initially slightly off the in-phase locking con-
dition. This illustration is generated from the model calculation.
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intensity and if the modes are uniformly distributed across the the array,

the effective amplitudes would also vary. This is a much more difficult

problem to solve. Techniques to restrict the longitudinal oscillations to a

single mode (frequency) would have to be developed for the array geometry.

The conclusion of this section is that, contrary to previous assumptions,

the amplitudes of most (if not all) array elements can vary and that they

are just as important as the phases in determining the overall array pattern.

Any theoretical model developed for realistic phase-locked laser arrays must

therefore address the issues raised by the experimental observations which

led to the empirical model used in interpreting the results presented here.

I
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Chapter 6

Conclusion

6.1 Summary of Results

This thesis has presented the experimental study of quantum well het-

erostructures in the I-V compound semiconductor system of (AI,Ga)As/-

GaAs. This study was conducted with a view to applying these structures

in heterostructure lasers; specifically, phase-locked laser arrays.

It was demonstrated, experimentally, that under the appropriate crys-

tal growth conditions (by the technique of molecular beam epitaxy), single

and multiple quantum well structures grown with superlattice buffer layers

exhibit better optical properties than those grown without these buffers.

Photoluminescence emission spectra of these samples showed well-resolved

structure due to radiative recombination from the first confined electron

state in the conduction sub-band to the first confined heavy hole state in

the valence sub-band (le - lhh). The electron to light hole (le - lh)

transition was also clearly resolvable. The high photoluminescent efficiency

and the narrow spectral spread at room temperature are evidence of high

quality material. Further evidence was provided by the broad area lasers

fabricated from the quantum well heterostructures. These lasers exhib-
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ited low threshold current densities. The lowest value measured was 200

A/cm2. This value compares very well with the state-of-the-art values

reported in the literature for lasers of similar construction. Theoretical

calculations of the gain and threshold current densities predict the low

values measured experimentally. The calculations are based on a simple

k-selection model.

The single most important contribution of this thesis was the develop-

ment of the mixed-mode phase-locking (M 2PL) laser structure. This novel

structure is a member of a class of diffraction-coupled phase-locking struc-

tures. Phase-locking is achieved through coupling by diffraction in a region

where the electromagnetic waves are unguided. The light propagates in

parallel-element waveguides on either side of the mode-mixing region. The

length of the mode-mixing region is pre-determined for the condition of in-

phase locking amongst adjacent waveguides. It is then defined accurately

by lithography.

The new structure consistently exhibited a far-field pattern which is

directed into a single major lobe. The device showed no evidence for the

dual-lobed far-field pattern seen, for example, in evanescently-coupled ar-

rays. The development of a structure favoring emission in a single-lobed

far-field pattern was a major objective of this effort and the results pre-

sented here demonstrate the validity of the M 2PL design concept toward

this end.

An empirical model which explains our observations of the far-field pat-

terns has been developed. The success of this model depends on making

assumptions with experimental basis.

f
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6.2 Possible Future Work

A very interesting and useful future project would be to develop a single

mode (frequency) M 2PL laser by perhaps incorporating a grating in the

active layer. The grating structure could be similar to that used in the

distributed feedback lasers. Of course this would raise the issue of the effects

of the grating on the quantum well microstructures. Techniques on how best

to incorporate it without affecting the pristine crystalline order required for

the quantum size effect would have to be developed. An alternative would

be to use standard double heterostructures for the lasers.

This thesis introduced the concept of 'collective coherence" as applied

to the whole phase-locked array of lasers. It would be very useful if this con-

cept could be quantified so that one would speak of a 'degree of collective

coherence" as a measure of quality for these devices.

Experimentally, a series of structures with a systematic variation- in the

mode-mixing lengths need to be studied to determine the most optimal

length which would give a diffraction-limited far-field beam. While con-

ducting this study, one could also use the M 2PL laser guides as ordinary

passive waveguides to measure the coupling coefficients. This measurement

would give a crude estimate of the coupling lengths in this structure since

it would be performed under passive conditions. Such estimates would

provide data to guide further theoretical investigations.

Another interesting experiment to perform on these devices would be to

injection-lock them. The effects of the injection-locking wavelength on the

far-field pattern could yield potentially useful information for the theoreti-

cal studies of these devices specially if the far-field patterns are spectrally

resolved to determine the modal contributions to the overall pattern. The

spectrally resolved far-field measurements could also be done in their own
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right without the injection-locking.
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Appendix A

Confinement Factor

The transverse field component of the waveguide formed by the graded

index region of the laser structure (see Figs. 3.1 and 3.2) satisfies the

one-dimensional scalar wave equation

+ k (y)] E(y) = 0 (A.1)

where

e(y) = n2 (y) = Eo([ - (y/y,)21 (A.2)

(y) is the dielectric constant which is the square of the index of refraction.

The normalized fundamental field solution of this equation is a Gaussian

which we take to be

E,(y) = (1/w,o)'/(1/2f) 1/4-(y/2"n) 2 (A.3)

The electric field, as written above, is normalized such that the total in-

tegrated power flow in the active region along the y-direction is 1 Watt.

The parameter wo is the Gaussian beam radius given by wo = (Ayo/rn) 1 2.

y, is the confocal parameter and can be estimated from the actual index

(dielectric) profile used in the graded waveguide region. We use Eq. (A.2)
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to calculate y, and then compute the Gaussian beam radius. For the thick-

nesses of the active layers and the waveguide regions we deal with here, w

is on the order of the total thickness of the transverse waveguide.

The computation of the confinement factor involves the derivation of

the relations that follow. Basically, we seek to calculate the field intensity,

10, which is the integral of the square of the field given in Eq. (A.3). The

fraction of the field intensity, r, which propagates in the active region of

the quantum well is the quantity of interest.

JW 1 2L. 1 1
Io = Ej(y)d =- ,-(/,,)d,'dy= (y )'/'(o()

(A.4)

where

Jo(y) = |L. c(v/wn) 2 dy (A.5)

and L, is the thickness of the quantum well.

After converting to polar coordinates, we get

J d@ rd-(,/d,..),'.rr (A.6)

So

10 = L, (A.7)
2wo

And finally, the confinement factor, r, is given by

r = /2 E(y)d ~, (A.8)
f. E(y)dy 2wo

__
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Appendix B

A Technological Appendix

This appendix, which in some respect, is the backbone of the thesis, dis-

cusses the process of crystal synthesis by the technique of molecular beam

epitaxy. The components that make up the system are described and their

use explained. We then next describe sample preparation before growth

and the growth process itself. The last half of the appendix describes the

technology of fabricating lasers out of the mbe-grown crystals. This tech-

nology is what has been developed for the facilities available for this kind

of work at MIT.

B.1 The Molecular Beam Epitaxy Process

In recent years, the crystal growth technique of molecular beam epitaxy

has emerged as a leading method of preparing thin, high purity semicon-

ductor layers of extremely uniform composition. The process itself is akin

to previous vacuum evaporation methods. It owes its name, however, to

the fact that crystal growth is achieved in an ultra-high vacuum enviroment

through the chemical reaction of multiple molecular beams of differing flux

densities with a heated monocrystalline substrate.
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The general topic of molecular beam epitaxy (MBE) of compound semi-

conductors is very broad [115,1161. We will therefore confine ourselves here

only to those aspects of the process that relate directly to the growth of

the (AI,Ga)As/GaAs system. The general features of the method for this

semiconductor are very similar to those of the other III-V compound semi-

conductors. The MBE process in its most generic form for the growth

of (AI,Ga)As is illustrated in Fig. B.1. The components shown in the

illustration are enclosed in an ultra-high vacuum system. Inside each fur-

nace is a crucible which contains the constituent chemical element (in solid

form) of the desired film. The temperature of each furnace can be controlled

to give a vapor pressure of the material inside its crucible that is sufficiently

high to generate molecular beams by free evaporation. The furnaces are

so arranged that the central portion of each molecular beam strikes the

surface of the substrate. Epitaxial growth is achieved on the substrate by

choosing the appropriate substrate and source material temperatures. By

interposing shutters between the substrate and each furnace, control over

the growth process can be achieved.

The growth kinetics of compound III-V semiconductors are -complex

and it is not at once obvious that a means of growing stochiometric ma-

terial exists. However, fundamental studies of the adsorption-desorption

process by Arthur [1171 demonstrated that stochiometric growth of the III-

V compound semiconductors can be achieved by a control of the group III

element as long as there is an excess of the group V species in the growth

enviroment. The growth rate is therefore determined by the arrival rate

of the group III element. By appropriately controlling the temperature,

the arrival rate of these atoms can be slowed down considerably to achieve

extremely low growth rates which are necessary for monolayer resolution.

__
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Figure B.1: A schematic illustration of the molecular beam epitaxy process.
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B.1.1 The MBE System

The practical implementation of the MBE process is considerably more

complex than Fig. B.1 would lead one to believe. Fig. B.2 shows the sys-

tem at MIT and is composed of various components which we describe

below. The ultra-high vacuum system is comprised of two main chambers.

The first chamber is the load-lock exchange chamber. This houses the

Auger analytical gun and the relevant optics that go with it. The Auger is

primarily used to study techniques for obtaining oxygen- and carbon-free

substrate surface prior to epitaxy. The load-lock is also used for degassing

the substrates before introduction into the epitaxy chamber. The load-lock

exchange chamber is continuously pumped with a titanium sublimation

pump and an an ion pump after it has been roughed down by a mechanical

and a sorption pump. The second chamber is the epitaxy chamber. This

chamber is bigger and has most of components necessary for epitaxy. The

minimum of components required here include:

o A system of pumps to evacuate the chamber.

* Multiple furnaces (with crucibles inside them).

* Furnace shutters.

* Furnace baffles for liquid nitrogen.

* A flux gauge.

* A heated substrate holder.

* Epitaxy control instrumentation.

A HEED gun for substrate surface studies.

t
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Figure B.2: An illustration of the MBE system at MIT used in this work
(after Instruments SA/ Riber MBE Division).
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* An infra-red optical pyrometer for substrate temperature monitoring.

A mass quadrupole spectrometer.

In the next few sections, we outline the necessity of having these compo-

nents in the growth chamber.

B.1.2 The Ultra-high Vacuum System

The need for the ultra-high vacuum system stems from the low growth

rates typical of the MBE process and also because in general, the grown

films are required to have negligible unintentional impurity levels. The base

pressures routinely achieved in the system at MIT are in the low 10-10 to

mid 10-11 Torr range (this was true at the time of writing but things have

since gotten worse). These pressures increase somewhat during deposition

to the 10-6-10-5 Torr range. Under these conditions, the excellent wafers

produced by the MBE process also owe their purity to the fact that the

unwanted residual gas species have very low sticking coefficients. The design

of an MBE system also focuses on minimizing total background pressure,

thus eliminating unwanted gas species with high sticking coefficients.

After the system has been baked out at 2500 C (including the source ma-

terials) for an extended period of time (8-24 hours) to accelerate outgassing,

pumping is achieved by a combination of pumps. The rough pumping prior

to the baking is done by a mechanical vane pump aided by liquid nitrogen

cooled sorption pumps. To attain ultra-high vacuum conditions, a titanium

sublimation pump in conjunction with a sputter ion pump and a closed-

cycle helium cryo-pump are employed. To maintain the ultra-high vacuum

conditions, the growth chamber is very seldom open to the atmosphere.

The sample transfer is done through a load-lock which makes it unneces-
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sary to ever open up the growth chamber to the atmosphere, except during

source reloading and system repair.

B.1.3 The Furnaces, Shutters and Baffles

During evaporation, the intensity of the molecular beams arriving at the

substrate is determined by the vapor pressures of the source materials and

to a lesser extent, by the geometry of the crucible and the line-of-sight

distance from it to the substrate. If the crucible is of a Knudsen type

[118,119] with a diameter of 2r, the flux density incident on the substrate

i.e. the number of atoms (molecules) arriving per unit area per unit time

is given by

F = Tr2P(T)A()N (B.1)
2rMRT(B.1)

where P(T) is the pressure in the crucible, r 2 is the area of the crucible

aperture, A(9) represents the angular distribution of the flux for different

angles measured from the crucible axis, N is Avogadro's number, M is

the element molecular weight, R is the universal gas constant and T is

the temperature in degrees Kelvin. For a line-of-sight distribution = 0

(: A(8) = 1), and if the distance from the aperture to the substrate is 1,

after substitution of the known numerical values for the other constants,

Eq. (B.1) becomes

r = 1. 1022 x 2 2rP(T) (B.2)

where r represents the number of atoms (molecules) arriving at the sub-

strate per second per unit area. The relationship between the pressure and

the temperature has been found empirically to obey the rule

I_· _ I �____I
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log P(T) = A +B log T- C (B.3)

where A, B and C are constants specific for a given element. Using the

data of Honig and Kramer [1201, we find that for Ga

P(T) = 10(- "'"2 1 +7to- 1542} (B.4)

For the Riber system we have at MIT, I = 12 cm, 2r = 2.5 cm. The

typical Ga temperature we use is about 945 C (or 1218 K). This value

gives a pressure of P = 1.35 x 10- 3 Torr. The corresponding molecular flux

arriving at the substrate as given by Eq. (B.2) is 1.75 x 1015 Ga atoms cm -2

sec-1 . From our actual growth rate measurements, this arrival rate corre-

sponds to a growth rate of 1m/hr of GaAs for a substrate temperature

of < 6400 C.

The.furnaces in our MBE system are resistively heated with direct

current power supplies. Each furnace is mounted on its own vacuum

flange which contains the heater and a tungsten-rhenium alloy thermo-

couple which makes a physical contact with the crucible. The crucibles are

made of pyrolytic boron nitride (PBN).

There are multiple radiation shields designed into each furnace to im-

prove the temperature uniformity and the thermal efficiency of the heaters.

These shields also serve the dual role of preventing the heating and sub-

sequent outgassing of the reactor system walls. Other measures taken to

prevent chemical cross-contamination and to minimize thermal radiation

heating of the system walls include baffling and cryopanelling. During op-

eration, the baffle enclosures are continuously cooled with liquid nitrogen.

This has the additional desirable effect of reducing the residual partial pres-

sures of any deleterious gases in the growth chamber.

f
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B.1.4 Epitaxy Control Instrumentation

For reproducible growth, it is important to be able to control the substrate

temperature accurately; this control must also be exercised over the molecu-

lar beam fluxes. The instrumentation that is generally used involves a ther-

mocouple feedback signal to a rate-proportional controller. The controller

decides, depending on the feedback signal, when to increase or decrease the

power to either the substrate heater or the furnace of the crucible. For the

substrate heater, stability of better than ±1 ° can be routinely obtained.

Control of. the molecular beam fluxes is a little bit more complicated.

The molecular beam flux emergent from any given crucible tends to de-

pend on how much solid source is left in the crucible. This makes long

term reproducibility quite impossible. What is generally done, therefore,

is to measure the flux with a nude ion gauge rotated into the substrate po-

sition before epitaxy. The value thus measured, is reproducible for several

growths before a new re-calibration is necessary. The ion gauge measure-

ment of the flux applies only to the group III and V elemental sources. The

dopant sources have such low vapor pressures that the ion gauge is not

sensitive enough to register them. Although the control of the molecular

beam fluxes is definitely difficult, it is not impossible and excellent lattice-

matched epitaxy of InP-based epi-layers can still be grown. The stringent

requirements of the flux values required for the InP-based layers just mean

that flux measurements have to be carried out before each growth to set

the right values for lattice-matching to the InP substrate.

The temperature-related stability of the Ga (or for that matter any

group III element) molecular beam flux achievable by the rate-proportional

controller can be estimated from Eq. (B.4) as

hL-. _
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P(T)IAT = 2.3 11021.9 + 3.0 ( .$)
P(T) T T

So for the Ga cell operating at 945"C (1218 K)

Pp = 0.024AT (B.6)

Therefore a 1° variation in the temperature will lead to a 2.4% variation

in molecular beam flux. Since a temperature stability of less than a degree

is achievable, flux stability of better than i1% is attainable. This in turn

translates into excellent control over the composition of films deposited by

the MBE process.

B.1.5 The Substrate Holder

In order for the thermal molecular fluxes impinging on the substrate. to

be adsorbed and chemically react with it to form an epitaxial layer, the

substrate has to be held at the right temperature. This is done by a heated

substrate holder. The holder is made of a molybdenum block which has a

high thermal conductivity. The block is heated electrically from the back

with a flat tantalum sheet. This assures a temperature uniformity across

the substrate which is good for reproducibility. The temperature of the

block is monitored by a thermocouple mounted in a hole at the back of the

block. The substrate is held on the block by indium which is molten at the

growth temperature and the substrate is therefore held on by the surface

tension effect. During growth, the substrate surface temperatrure can be

monitored by use of an infra-red optical pyrometer. The emissivity setting

of the pyrometer must be adjusted correctly for the particular window used.

This measurement is approximate and is only used as a guideline (don't ever

swear by it or the gurus will be mad at you).

l
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B.1.6 The Quadrupole Mass Spectrometer

In modern MBE systems, the mass spectrometer is not an absolutely nec-

essary piece of equipment. If present, however, it can be conveniently used

as an element-specific leak detector. Its other use is detection of residual

vacuum gases which are inherent to the system and those that are associ-

ated with the effusion cell furnaces and the substrate heater. The readings

taken by a mass spectrometer are only relative since they depend on so

many instrument parameters.

In our work at MIT, the mass spectrometer is only used during the first

few days after a system bake-out. The bake-outs are generally carried out

after the system vacuum has been broken for source re-charging. During

this period, we use it to monitor the level of CO, CO2 and H20 and any

other residual impurity elements in the system. When the relative levels of

these gases have decreased to an acceptable background, then the system

is ready for epitaxy.

B.1.7 The High Energy Electron Diffractometer

The high energy electron diffractometer (HEED) is the most useful in situ

analysis tool available in the MBE ultra-high vacuum enviroment. The

method of surface analysis in the context of MBE systems was pioneered by

Cho [123J. The arrangement he used and it is the standard today, involves

a glancing angle ( 2) reflection of electrons. A beam of high energy (3-10

keV) electrons is reflected off a substrate at a glancing angle. The reflected

beam then impinges on a phosphor screen where the surface diffraction

pattern is observed. This geometry allows the molecular beams to still be

able to arrive at the substrate surface unobstructed while simultaneously,

the surface diffraction pattern is analyzed.
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The diffraction pattern observed before and during epitaxy depends

(for the III-V substrates) on the substrate surface orientation and on the

azimuth at which the electrons are incident. It also depends on the existing

surface conditions; this ultimately means that the substrate temperature

is important. During the pre-epitaxy stage, the substrates are generally

covered with a native oxide. Before growth can be initiated, this oxide has

to be cleaned off. For GaAs and InP substrates, this is done by gradually

heating the substrates to slightly above the temperature at which epitaxy

is initiated. As the oxide is cleaned off, the HEED pattern undergoes a

series of transformations which correspond to the oxide desorption process.

In order to prevent evaporation and disintegration of the substrate, an As2

or As 4 overpressure must be maintained over the substrate.

In Fig. B.3 we show HEED patterns with the electron beam along the

[1101 azimuth from an InP(100) surface. The initial thermal cleaning, done

under As4 overpressure, produces a spotty diffraction pattern, indicating

that the substrate is not clean yet. With additional heating, the pattern

becomes sharper and fairly well-defined. Finally, when the substrate is

clean: i.e. when all the oxide is desorbed, the pattern becomes elongated

and additional lines appear between the original diffraction features. This

pattern is generally refered to as the C(2 x 4) surface reconstruction and

it is As-stabilized. When the electron beam is along the [T10j azimuth,

a different pattern is observed. For orientations intermediate between the

[1101 and the [1101 azimuths, complicated diffraction patterns are observed.

The HEED gun can be left on during the deposition process if it is

desired to monitor the evolution of the monolayer growth process. Recently,

oscillations of the signal collected from the HEED screen by a light pipe

and detected by a photomultiplier tube have been observed [124,1251. These

oscillations have been attributed to the process of a monolayer growth. At
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the beginning or the end of monolayer coverage, the oscillation is at its peak,
and it is at a minimum when just about half a monolayer has been grown
[126J. These oscillations have provided another technique for calibrating
the growth rates in real time.

The usefulness of the HEED techniques cannot be denied. We have
found, however, that during the growth of epi-layers for optical studies, it is
best to minimize the time during which the HEED gun is left on. Extended
periods of the HEED operation tend to degrade the optical quality of the
layers. Our experience in this regard corroborates Cho's findings [127] that
the gun may actually introduce contaminants into the enviroment. It is
also believed that too high an electron beam current could polymerize any
residual hydrocarbon gases; this would result in carbon contamination of
subsequent epitaxial layers.

B.1.8 Growth Mechanism

It is generally accepted that crystal growth by molecular beam epitaxy does
not take place in a thermodynamic equilibrium. The conditions prevailing
during the process are such that reactants and products are each at their
own temperatures and application of theoretical thermodynamic principles
becomes unwieldy. No quantitative models exist for the MBE process. The
currently accepted qualitative model was formulated by Foxon et al. [128j
and it is based on transient response studies conducted by Arthur [117 on
the surface chemical processes involved during the growth of GaAs. The
importance of Arthur's work lies on the demonstration that the growth of
lm-v compound films from beams of the elements is kinetically controlled

by adsorption of the group V element, while the growth rate is controlled
by the arrival rate of the group III element.

As a vehicle for discussing the growth of III-V compounds by molecular
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RHEED PATTERNS
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Figure B.3: The in situ oxide desorption process as monitored by 1HEED
diffraction patterns along the [1101 azimuth from an InP (100) surface.
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beam epitaxy, we use the binary compound of GaAs. During the growth

process, the Ga and As populations on the substrate surface depend on

both the substrate temperature and the relative fluxes of Ga and As reach-

ing the surface. The Ga is supplied as a monomer by evaporation of the

liquid and it has a close to unity sticking coefficient on a GaAs surface over

the range of normal temperatures used during growth. At high substrate

temperatures (> 6500C), such as are required for layers grown for opti-

cal studies or optical devices, the Ga has a sticking coefficient of 0.8 or

slightly less. The As is usually supplied as a dimer, As 2; or as a tetramer,

As4, from the solid. When the GaAs is grown from Ga and As2, a first-

order dissociative chemisorption reaction occurs. The dimer splits into free

As atoms which are adsorbed by the Ga atoms. The sticking coefficient of

AS2 is proportional to the arrival rate of the Ga atoms. Any excess As 2 is

re-evaporated and therefore stochiometric GaAs is grown. When the GaAs

is grown from Ga and As4, pairs of As 4 molecules react on next-neighbor

Ga atoms resulting in a second-order process. That is to say, for any two

As 4 molecules, four As atoms are incorporated into the GaAs lattice and

another four desorb as an As 4 molecule. The desorption rate of As4 'de-'

pends on the adsorption rate at low As coverages. The maximum sticking

coefficient of the As4 tetramer. is 0.5. The two different mechanisms of the

growth processes involved can influence the properties of the films differ-

ently for otherwise identical conditions. It has been found empirically, for

example, that GaAs layers grown from Ga and As2 species have superior

optical properties than those grown from Ga and As 4 species for substrate

temperatures below 640 ° [129j. This problem can, however, be remedied

by raising the substrate temperature to values above 640°C (< 7100 C). At

these elevated temperatures, the As4 dissociates into As 2 so that the fa-

vored first-order chemisorption reaction occurs. The disadvantage of the
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high substrate temperatures is that the Ga begins to re-evaporate and the

growth rate decreases.

With the exception of actual growth details, these then are the models

that explain the process of molecular beam epitaxy. Some of the necessary

details include considerations like the optimum group V to group III flux

ratios needed for particular substrate temperatures. In special cases like

during the growth of lattice-matched InP-based epi-layers, the flux ratios

of the constituent group III elements needed must be carefully measured

and determined for a particular composition. The other important consid-

eration of course is the substrate temperature.

B.1.9 Incorporation of Intentional Dopants

In order to be able to fabricate devices from the epitaxial layers grown by

MBE, it is necessary to incorporate impurities which will render the layers

either p- or n-type. Normally, intrinsic MBE-grown epitaxial layers are

p-type. It has been inferred from low temperature photoluminescence [1301

studies that the unintentional dopant is carbon. It is not clear yet whate

the origin of the carbon is. But it is thought to be a result of some reaction

of the residual carbon monoxide or dioxide. In this respect, it becomes

important to reduce the density of any residual carbon-containing species

in the chamber.

The intentional impurities that have been used as dopants successfully

in the MBE growth process have sticking coefficients that are very close

to unity. these dopants include: Si, Ge, Sn, Mn, Ge and Te [115]. The

dopants we use in our system are Si and Be. The silicon dopant tends to

be an amphoteric impurity in GaAs. However, in MBE-grown layers the

Si-donor behavior dominates the compensation process and n-type carrier

concentrations of from 1016 to 1018 cm-3 can be routinely obtained. The
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Si flux required for the doping process is obtained by a direct sublimation

of the solid Si source. The density of Si atoms required for this process is

relatively low compared to the densities of Ga and As. The Si flux required

is therefore in the low 1011 atoms cm- 2 . This number is so low that the

sensitivity of the ion gauge is not high enough to detect it.

For p-type doping, beryllium is used. Like silicon, the sticking coefficient

of Be is also unity during the growth of GaAs or (AI,Ga)As. Extremely

high doping densities have been reported [1311 for suitably adjusted growth

conditions. In our laboratory, we can routinely obtain intentional acceptor

concentrations in the range of 1016 to 6 x 1019 cm -3 without deleterious
a qia atK . kn t r'Pt.41 @11 V

4
%, maay p1U LL

B.2 Crystal Growth

The process of growing high quality crystals .by molecular beam epitaxy

is, at the moment, more of an art than a science. The properties of the

final layers grown depend on the initial substrate cleaning procedure, the

substrate temperature used and the group V to group III element flux
! _ ! m - r t _ _ l · r !L I · '' t L! _I _ _ ..... .

ratios. inis noies true lI tne concentration o tne resiauai oacKgrouna
gases is negligibly low and the vacuum is ultra-high.

B.2.1 Substrate Preparation

There are many substrate preparation procedures in existence; each is

unioue to a particular laboratory or individual. We describe here the pro-

cedure used at MIT for the preparation of GaAs substrates. The same

procedure can be used with a slight modification for InP substrates.

The substrates are usually obtained with one side already chemically

polished from the manufacturer. Initially, the substrate is boiled in trichloroethy-

as
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lene for five to ten minutes, it is then rinsed twice in warm acetone and

then in methanol. The cleaning in organic solvents is intended to remove

any organic contaminants. Before the next sequence of steps which involves

cleaning in inorganic solutions, the substrate is rinsed in deionized water.

The native oxide covering the substrate surface is removed by etching in

HCl for four minutes. This is followed by a quick rinse in deionized water

after which the substrate is decanted in concentrated H 2SO4. A few mi-

crons are then etched off the substrate in a solution of H 2SO4:H 20 2:H20

(4:1:1) at room temperature. The actual etching is done for four minutes.

The substrate is again rinsed in deionized water for four minutes and then

etched in HCI for the same amount of time. Finally, it is rinsed in deionized

water to passivate it and blow-dried with ltered nitrogen gas. The last

step is to mount the substrate on a preheated molybdenum sample holder

with indium solder (this technique is rapidly becoming obsolete and then

load it immediately into the MBE system.

B.2.2 The Growth Process

Usually after the substrates have been loaded into the load-lock/preparation

chamber, the system is allowed to pump overnight to a base pressure of

- 1 x 10-9 Torr in the load-lock chamber and I x 10-10 Torr in the

growth chamber. Before transferring a substrate into the growth chamber,

it is outgassed in the load-lock chamber for 30 minutes at 300 ° C. During

this time, the growth chamber cryo-panel is cooled with liquid nitrogen and

the sources in the effusion cells are brought up to the desired temperatures.

When the substrate is in the growth chamber, the passivating oxide

maybe thermally desorbed under As2/As 4 overpressure. For GaAs, this

desorption occurs between 580°-610 ° C. The process is monitored by the

HEED as explained earlier in Section B.1.7. Epitaxy is immediately initi-

�h� --
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ated once all the oxide is desorbed. In general, 0.5-1.0 Am of GaAs buffer

layer is grown first at a low substrate temperature (< 640°C). The GaAs

buffer layer is followed by a superlattice buffer (SLB) layer. This struc-

ture is composed of alternating layers of GaAs/(AI,Ga)As. We find that

samples which incorporate the SLB layers have excellent optical proper-

ties. An earlier treatment of SLB layers has already been given in Chapter

2. For the samples grown for this study, subsequent layers were grown at

710°C. Samples grown at this temperature exhibit very high photolumines-

cence efficiencies. The typical group V to group III element flux ratios used

ranged from 8 to 15. These ratios guarantee an As-stabilized surface at the

particular substrate temperature chosen.

B.3 Sample Characterization

The details of the techniques of characterization used will not be covered
1 L__ ^:-^- +;--I -^* ; '* J ^ -
here since they constitute minor aiboel essential) side ssues n tne context

of this thesis. The main techniques used incuded: Hall measurements for

the carrier concentration determination, photoluminescence for the radia-

tive efficiency, double crystal x-rays analysis for the mole fraction determi-

nation in the (AI,Ga)As layers, SEM for growth rate calibration, thickness

determination and surface morphology analysis.

B.4 Laser Fabrication

This section, although relegated to the appendix, should not be regarded

as the least important. In many respects, it is the backbone of the thesis.

It is intended to answer some of the questions most frequently asked by

new-comers into the field of semiconductor lasers, especially those who are

id
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not content to just learn the theory of how these devices work but are

also interested in the technology. The procedures we describe here are not

necessarily the most optimal but they are the best-suited for the facilities

available at MIT at the time this work was done. The steps described

below are for the fabrication of lasers that have some lithographic features

on them. Broad area lasers maybe fabricated in a similar fashion but with

the lithographic steps omitted.

B.4.1 Post-Epitaxy Sample Cleaning

After a sample has been removed from the molybdenum block used to hold

it during the MBE growth, the indium solder must be removed from its

back. For GaAs, the wafer is glued backside up onto a microscope glass

slide with black wax (Apezione Wax) pre-melted on a hot plate. It is then

diped into a 1:10 solution of DI-H20:HCI at room temperature. When.all

the indium has has dissolved, the wafer is rinsed in deionized water and

melted off the glass slide. It is then cleaned in warm trichloroethylene,

acetone and methanol. Finally, it is rinsed in iso-propyl alcohol and blow

dried with pre-filtered nitrogen gas.

If the wafer had been an InP-based semiconductor, then the indium

solder cannot be removed in the manner described above because HCI etches

InP. The indium must be removed by etching in a solution made of 70

gm of HgC12 (mercury chloride) and 200 ml of HCON(CH 3) 2 (dimethyl

formamide).

Before lithography, the wafer must be lapped down on a lapping jig to

about 15-18 mils. This is important because the uneven back side must be

made smooth and parallel to the front epitaxial layer side.
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B.4.2 Photolithography

Before the photoresist is spun on, the wafer must be cleaned again. This

time, it is cleaned in buffered HF for two minutes and rinsed in deion-

ized water. It is then blow-dried with pre-filtered nitrogen gas. Now the

photolithographic procedures can be started. The mask aligner is a high

precision Suss (trade name) aligner. We list the steps below.

1. Dehydrate the wafer at 200' C for 45 seconds.

2. Spin on C-20 primer (manufactured by Kodak) at 6000 rpm for 30

seconds.

3. Spin on photoresist number 3000-26 (manufactured by Kodak) at

6000 rpm for 30 seconds.

4. Softbake (pre-bake) the wafer with'the photoresit on it at 90 C for

25 minutes.

5. Align the mask features desired and expose. This step is very critical.

Experiments must be done to determine the best exposure time. The

exposure time depends on the lamp energy, lamp life, photoresit type

and the soft-baking time.

6. After the exposure, the features maybe developed in developer num-

ber 305 (manufactured by Kodak).

7. Assuming the development process is satisfactory, the wafer must be

hard-baked now for 30 minutes at 1300 C.

The final step in the photolithographic procedures is to gently etch

(Ndescum") the wafer in a very low power oxygen plasma. This etching

I1
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removes any resist not removed by the 305 developer. Care should be

taken not to remove the resist where it is desired as a mask.

B.4.3 Wet Chemical Etching

The ridge waveguide structures on the lasers are chemically etched with the

photoresist acting as a mask. The chemical solution used for the etching is a

mixture of H 2SO4:H20 2:H20 (1:8:8) at room temperature. Its etching rate

must be determined for the particular (AI,Ga)As composition to be etched.

Before etching, the wafer must be rinsed in buffered HF and deionzed water.

This is crucial because if the native oxide covering the wafer is not removed,

the etching will proceed nonuniformly.

After the etching, the masking photoresist is removed by plasma-etching

in oxygen plasma.

B.4.4 Contact Metallization

The p-contact metallization for the devices made in this study consists of

titanium, platinum and gold. The reason for the use of these refractory

metals is that Schottky barrier contacts can be made at the regions where

ohmic contacts are not desired. We will explain the mechanism of this

process in a later section.

The preparatory step before metallization is the removal of any oxides

on the wafer surface by cleaning in buffered HF and rinsing in deionized

water. After blow-drying in filtered nitrogen gas, the wafer is immediately

loaded into the E-beam (electron beam) evaporator. The base pressure of

the evaporator should be < 3 x 10- t Torr before the liquid nitrogen trap

is filled. Pressures lower than this can be achieved when the trap is cold.

The metals evaporated are: 400 A of Ti, 200 A of Pt and 3500 A of Au.
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The first layer of Ti deposited adheres well to the semiconductor. It is

used as an adhesive ("glue") for the other metals. It also forms a good

Schottky barrier to the lightly-doped (AI,Ga)As layer between the ridges.

The Pt layer forms a diffusion barrier [132] to prevent the Ti-Au reaction

from occuring [133J. The combination of the three metals together forms

a good ohmic contact to the heavily-doped GaAs layer. The thicknesses

deposited represent a compromise between the ease with which the wafer

can be cleaved into individual laser devices and the degree of difficulty in

hondnin a nIl wire tn the tnn Au metal.

B.4.5 The Ohmic and Rectifying Properties of the
p-Contact

The metallization on the p-type side of the laser structure performs the dual

roles of facilitating the easy flow of current through the ridge waveguides

and minimizing its flow between the guides. We describe below the unique

properties that make this possible.

The properties of the metal-semiconductor junction depend on the Schot-

tky effect [134,1351. This effect is used to explain what happens when a

metal is brought into intimate contact with a semiconductor. The ohmic

or rectifying nature of the contact depends on the work functions ,m and

, of the metal and the semiconductor, respectively.

?t The ohmic and rectifying properties of the p-contact are used for the

lateral current confinement in the laser arrays. Lateral current confine-

ment can also be achieved in a variety of ways which involve the use of

complicated equipment and procedures [136,137]

I

171

·lyllllUII · I ��·II III II -III III ILI YLIII)I



APPENDIX B. A TECHNOLOGICAL APPENDIX 172

B.4.6 The p-Ohmic Contact on the Ridges

The top p-type semiconductor layer onto which the metallization is de-

posited is a low band gap GaAs layer which is degenerately (highly) doped.

For this particular situation, the first contact metal, the Ti, is chosen be-

cause its work function ,,,, is larger than the GaAs work function, ,.

Fig. B.4 illustrates the situation before and after contact has been made

between the metal and the semiconductor. The other parameters defined

in the figure are: the energy separation between the vacuum level, X,, and

the semiconductor conduction band level. This energy is often called the a

electron affinity. E,=Eg+X is the depth of the semiconductor valence band

from the vacuum level.

Before contact, the semiconductor Fermi level is above the metal Fermi

level by an amount bm,- b,. After contact, there is a transfer of charge

(electrons) from the semiconductor to the metal until equilibrium is estab-

lished such that positive charge is left on the semiconductor surface and

negative charge is formed on the metal side. At this point, the Fermi levels

line up. Holes in the semiconductor can readily cross over to the metal and

be neutralized by the high concentration of electrons existing there. For

a positive voltage applied at the metal, holes formed there can move onto

the metal very easily. This contact is therefore ohmic.

B.4.7 Rectifying p-Contact Between the Ridges

Between the ridges is exposed a large band gap, low-doped, p-type (AI,Ga)As

layer. In this situation, because of the large band gap, the semiconductor

work function b,, is larger than the Ti metal work fuction, m,. Before con-

tact, if we assume that all the acceptors are ionized, then the Fermi level

of the semiconductor is below that of the metal by an amount , - 4,. As
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shown in Fig. B.5, electrons ow from the metal to the semiconductor until

equilibrium is established. When the Fermi levels line up at equilibrium,

there is established a potential barrier for hole motion from the semiconduc-

tor to the metal of height k,- m,. This barrier can be lowered or raised by

application of an appropriate voltage across the metal-semiconductor junc-

tion. Application of a negative voltage at the metal corresponds to positive

potential at the semiconductor. This means that the barrier, (, - 0), to

the flow of holes from the semiconductor is lowered to (, - -b . VF) so

that holes can flow easily from the semiconductor to the metal. A positive

applied voltage at the metal, however, corresponds to a negative potential

at the semiconductor. This raises the hole barrier at the semiconductor to

(1b,- b, + VR). With this barrier raised, very few holes, if any, can flow

across the junction to the metal. Therefore depending on the polarity of

the applied voltage, the metal-semiconductor contact acts as a diode (rec-

tifier) allowing hole current to flow readily in only one direction and not in

the other. The barrier to the flow of any holes from the metal to the semi-

conductor is fixed to the value of E, - m,=Eg(z) + X. - O,. We can make

this value as large as we desire by varying the band gap of the (AI,Ga)As

layer. It is therefore obvious now that for a positive voltage applied to the

metal contact (as in the case of a forward biased laser diode), the metal-

semiconductor contact at the Ti-(AI,Ga)As surface acts as a reverse-biased

diode.

B.4.8 n-Contact Metallization

The n-contact metallization is done in a regular thermal evaporator. The

major preparatory step before this evaporation involves lapping the wafer

down from the backside to a thickness of about 4 mils ( 100/m). This

step is necessary so that it is easy to cleave the wafer into individual dis-
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crete devices later. The lapping is performed on a lapping jig with A130 2

(aluminum oxide) grit of varying sizes. Since the wafer is so thin at this

point, extreme care and patience must be exercised in order not to break it.

When the wafer has been lapped down to the 4 mils, it is cleaned in

deionized water, etched in bromo-methanol slightly, rinsed in methanol

and iso-propyl alcohol and loaded into the evaporator immediately. After

a pump down to base pressures better than 5 x 10- Torr, the following

metals are deposited: first, 800 A of Au-Ge then 120 A of Ni and finally

1800 A of Au. The Au-Ge increases the conductivity of the substrate; the

Ni acts as an adhesive and the three layers together form a good n-type

ohmic contact to the substrate.

Before further processing, the wafer is sintered to improve the ohmic

contacts. The sintering is done in a furnace with a forming gas atmosphere

where the wafer can be placed with n-side down on a carbon strip heater.

The sample is sintered for 30-40 seconds at 400°C.

B.4.9 Laser Mirror Formation and Chip Separation

In order to make the laser facet mirrors, the wafer must first be mounted

on a thin, stainless steel shim stock ( 5 mils thick) with some wax. The

shim stock (with the wafer on it) is then mounted, under a microscope,

onto an apparatus (a home-made gizmo) that has X, Y and Z micro-

positioners on it. The apparatus has a precison surgeon's blade affixed to

it. Using the blade and the micro-positioners, a series of short scratches

parallel to the <110> cleavage direction are made on the edge of the wafer.

These scratches are spaced by 250 - 300 Am. They will form the cavity

lengths of the lasers. The shim stock sheet is then bent around a cylindrical

object, e.g. a beaker or a measuring cylinder. The scratches on the wafer

should propagate along the [1101 cleavage planes. These cleavage planes

i 
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form the mirror facets of the lasers. The 250 - 300 ,/m wide laser bars must

now be saw-cut or scribed into individual discrete devices. This is done by

mounting the bars onto a silicon wafer with wax and then scribing (sawing)

at 200-250 sm intervals. The laser devices are cleaved in one direction and

scribed (sawed) along the other so that during operation, only one set of

cavity modes is excited to lasing thresholds. This set is the longitudinal

one which is a result of the electromagnetic waves traveling back and forth

between the parallel mirrors. The transverse set is suppressed because there

are no mirrors in this direction.

The individual laser devices can now be cleaned in warm trichloroethy-

lene, acetone, methanol and iso-propyl alcohol. The last step in the fabri-

cation process is the testing of the devices for the quality of their current-
voltage (I-V) characteristics before mounting and bonding for optical char-

acterization.

B.5 Mounting and Bonding

The individual laser devices must be tested for the quality of their current-
voltage (I-V) characteristics before mounting onto the final device package.

Only those devices that exhibit sharp forward turn-on and reverse break-

down voltages are selected for mounting. The packages onto which the

devices are mounted must be gold-plated. In our case they were made of

OFC-grade copper plated with at least 5 Am of gold.

To mount the devices onto the package preform, we use a two component

silver filled epoxy (manufactured by Epoxy Technology, Inc. in Billerica,

MA). The epoxy is very carefully spread on an area no bigger than the

surface area of the device to be mounted. The thickness of the epoxy should

be less than 15 m (< 0.5 mil).. This is necessary in order to avoid any
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excess epoxy from creeping up to the device facets (mirrors). The whole

process is carried out under a microscope (of course). Once the device is

placed on the area where the epoxy is, the preform is carefully put on top of

a hot plate at 1500 C. The preform and the device are cured for 30 minutes.

At the end'of the curing cycle, the device is ready for bonding. The

bonding process is done on a standard microelectronic bonder. The special

precautions that must be observed for lasers include: (1) making sure that

the top device metallization has at least 3000 A of gold, (2) the bonder

is set for a minimum bonding pressure (otherwise one is likely to punch

through to the active layer) and (3) as far as possible, to carry out the

whole process patiently and slowly!

The packaged and bonded device must now be cleaned in detergent

and deionized water in order to lift off any dirt from the facets. The I-V

characteristics are re-checked to make sure they'did not change. After this

step, the device is ready for further optical characterization.

__
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