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ABSTRACT

This paper considers the problem of maximizing the energy or average
power transfer from a nonlinear dynamic source. The main
theorem includes as special cases the standard linear result
Y = Y*source and a recent finding for nonlinear resistive net--load source
works. An operator equation for the optimal output voltage v(.) is
derived, and a numerical method for solving it is given.
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I. Introduction

This paper addresses the problem of extracting the maximum energy or

average power from a nonlinear dynamic source with the topology shown in

Fig. 1. The main results are i) a simple iterative scheme for finding the

optimal output voltage waveform v() for any given current source waveform

is('); and ii) an expression for the (noncausal) optimal load admittance

operator in terms of the source admittance. The first result can be useful

in engineering practice because it specifies the optimal performance that

is possible in principle and because v(.) itself is a concrete design goal:

any load for which the output voltage closely approximates (.) will absorb

nearly the maximum possible energy or average power. The second result has

no immediate impact on applications because the optimal load is noncausal. But

it has some theoretical significance because it generalizes and unifies previous work:

the 1-port versions of thestandard result Yload Ysourcefor namic linear

time-invariant (LTI) systems [3] and a recent theorem for resistive nonlinear

systems [4] fall out as special cases.

The body of this paper addresses the topic rigorously by giving sufficient

conditions for existence, uniqueness and global optimality of the network

solution, along with a convergence proof for the iterative algorithm. But

the remainder of this introduction is utterly nonrigorous and enables the

reader to sample the results before (or instead of) delving into the mathe-

matics used to establish them.

1.1) Informal Description of Results

Restricting attention to sources with the special "Norton form" topology

1. Reference [3] actually deals with the dual network, where the source appears
in Thevenin form.
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shown in Fig. 1 makes it possible to derive a load admittance operator Gopt

that is optimal for any current source waveform is(.). The description of

Gopt involves the linearized behavior of the source admittance operator F

about any nominal voltage waveform vnom(.), i.e.,

F(Vnom( ) + 6v(-)) z F(vnom(')) + I hv (t,T)6v (T)dT , (1)
--O nom

to first order in v(.), where the second term on the right is linear in 6v(.)

and, in general, time-varying. Under certain assumptions on F described

later, the optimal load turns out to be

0o

Gopt(v()) = { hv(Tt)v ()dT . (2)

Note that:

i) in the causal LTI case where F is characterized by an impulse response

hv(t,T) = h(t-T) with Fourier transform Ysource(jw), Eq. (2) describes

an anti-causal LTI load with impulse response h(T-t) and thus an admit-

tance Yload = Ysource (jw) in agreement with the classical result [3];

ii) if the source is a nonlinear resistor, i = f(v), then the optimal load

is a nonlinear resistor i = vf'(v), in agreement with [4];

iii) hv(.,.) represents the behavior of F linearized about the independent

variable v() as a nominal input, so Gp t is nonlinear in general;

iv) for causal F, Gopt is unrealizable in all but the purely resistive case

since the roles of t and T in Eq. (2) are reversed from Eq. (1);

v) Eq. (2) is exact for large-signal behavior, despite the fact that Eq.

(1) is only a valid approximation for small 6v(.) ;

vi) first appearances notwithstanding, Gopt is time-invariant if F is; and
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vii) the optimal load admittance operator is a linear function of the source

admittance. Thus the optimal load for a parallel connection of source

admittances is the parallel connection of the optimal loads for each

source separately.

Given is(.), the optimal voltage v(.) is the solution to the network

in Fig. 1, i.e.,

is(.) = F(v(.)) + Gopt(V()) - H(v()) ,(3)

where H is the combined admittance loading the current source. And Eq.

(3) can be solved in practice by the iterative procedure,

Vj+l(.) = vj(.) + r(is() - H(vj(.)) , (4)

which is guaranteed to converge given any initial guess v(') if r > 0

is sufficiently small and certain technical conditions are satisfied.

The solution v(.) gives both the circuit behavior when optimally loaded

and the performance bound for average power transfer, which can be cal-

culated as

T

Pmax T v(t)[Gopt ()) (t) dt (5)

for a drive with period T.

In general, no causal load will produce the optimal output voltage

for every i( ), but in practice one frequently encounters the more

restricted problem of maximizing power transfer for some single iS().

In this case there may be a variety of causal loads that will do the job,

i.e., load admittances Gcausal such that Eq. (3) and

i (.) = F(v(.)) + Gcausal(v(')) (6)

have the same solution v(.) for the particular i () of interest. In
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designing a circuit to realize Gcausal, v(.) can serve as a design goal

and Pmax as a performance standard.

1.2) Example

Suppose the source takes the specific form shown in Fig. 2, with

the resistor curves given by i = gk(v) = vvik-1, k = 1,2,3, as shown in

Fig. 3. Then:
o

[Fk(('.))](t) = gk(v(t)) + l(t-T)e-(t-T) v(T)dT (7)
-oo

where 1(x) is the unit step function vanishing for x < 0. The optimal

load admittance is
coo

[Goptk(v(.))](t) = v( g(v(t)) + I(T-t)e-(T-t)v(T)dT . (8)

One can check that the resistor curves are, in fact, continuously dif-

ferentiable, with derivatives given by

gk(v) = kv k- l , k = 1,2,3 . (9)

The optimal output voltage v( ) was determined by numerically carrying

out the iterative procedure (Eq. 4), which in this case takes the

form

Vj+1(t)

r 6 sin(t) - (k+1)v.(t)lv (t)0 k- - e ' t-IV (T)dT] (10)

+ vj(t), k = 1,2,3

Since gl represents a linear resistor, it follows from the tradi-

tional linear theorem that v(t) = 2sin (t) for k=1, in agreement with

the numerical solution. Note that the instantaneous current drawn by
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the nonlinear source resistor increases in magnitude with k for Ivl> 1

but decreases for vi < 1. Thus it is intuitively reasonable that with

increasing k the optimal output spends a progressively greater percen-

tage of time in the region Ivl< 1, as seen in Fig. 4.

1.3) Generality and Limitations

The results in this paper extend ina straightforward way to the dual

case, i.e., "Thdvenin form" topology, consisting of an independent

voltage source in series with a circuit element characterized by an

impedance operator. The extension to multiport sources is also straight-

forward.

For source networks with the topology shown, the key restriction

is that H be monotone increasing, i.e., incrementally passive. But the

assumed topology is perhaps a greater restriction, since the results

have been shown to depend on this topology in a fundamental way [5]

and since there is no general nonlinear analog of the transformation

used to put any linear circuit in Thevenin or Norton form.

The difficult nonlinear version of the linear "broadband match-

ing problem" [6-9], in which the goal is to choose a causal load ad-

mittance that optimizes power transfer for a set of inputs, is not

addressed in this paper and remains entirely open, to the best of the

author's knowledge.
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II. Results

2.1) Notation and Definitions

Let L be any real inner product space and L any linear subspace of L.

An operator F: L - L is said to be

a) strictly increasing if

(F(y) - F(x), y-x> > O, x y L , (11)

b) uniformly increasing if for some 6 > 0 ,

(F(y) - F(x), y-x> > 6 y-xIl 2 Vx,y L , (12)

c) Lipschitz continuous if for some K 0O ,

IIF(y) - F(x)l -< Klly-x , Vx,y E L . (13)

Let L, L' be any real inner product spaces, and L(L,L') denote the space

of continuous linear maps from L to L', with the operator norm [10, p.316].

For AL(L,L'), let Aadj denote the adjoint of A.

The Hilbert space L2 is the set of all measurable, square-integrable

functions x: IR IR , equipped with the usual inner product (x,y> and

normilxl.

For each T > O, L2T is the set of all periodic measurable functions

x: IR +IR with period T such that the integral of x2 over one period is

finite. It is a Hilbert space with the "average power" inner product

T
<X,Y>T a { x(t).y(t)dt (14)

0

The norm on L2T is denoted

x II (<x,YT)1/2 .
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Linearization of the source admittance operator about a nominal input

waveform is conventionally accomplished using the Fr6chet derivative

[10, sect. 3.1], [11, sect. 2.1c]. Unfortunately, one cannot encompass

nonlinear resistors in a framework that requires differentiation on L2 or

L2T. It is a little known fact that if f: IR + IR and the memoryless operator

F: x(t) -. f(x(t)) maps L2 to L2, then F is not Frechet differentiable unless

f = ax + b [12, Appendix]. For this reason the theory in this paper is based

on the weaker Gteaux derivative [10, sec. 4.1], [11, sect. 2.1c].

Given L, L' as above, an operator F: L L', and x,hL, suppose there

exists an element denoted 6F(x,h) of L' such that

lim F(x+th)- F(x) -F(x,h) L = 0
t-O+ t L

Then 6F(x,h) is called the Gateaux variation of F at x for the increment h

[10,p.251]. If F(x,h) exists for all x,h~ L, and if for each x L the map

h 6F(x,h) is an element of L(L,L'), then F is said to be Gateaux

differentiable on L. In this case the map x - 6F(x,.) is called the Gateaux

derivative of F and denoted DF: L - L(L,L') [10, pp.255-256]. Similarly,

6F(x,.) is denoted DF(x)eL(L,L'), and F(x,h) is denoted (DF(x))hc L'.

2.2) Main Theorem

Theorem 1 (Maximum Average Power in Periodic Steady State)

Fix T > 0 and let Ns in Fig. 1 be characterized by an admittance oper-

ator F: LT LT, where2 LT is any linear subspace of LT . Suppose F is

Gateaux differentiable on LT and the associated operator H: LT LT,

2. Thus, if v(.) has period T and lies in LT , the steady-state response i()
of N cannot have subharmonics.

S
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given by

adj
H:v - F(v) + (DF(v)) v (15)

is strictly increasing.

Then for each iscH(LT) there is a unique solution 'v(is)ELT to

the network equation,

is = H(v) ,(16)

and the average power absorbed by the load,

P(v) <ioV>T = (is- F(v),v>T (17)

has a unique global maximum over LT, which is attained at v = VC(i ).

Corollary (Maximum Total Energy for Transients)

Let L be a linear subspace of L2 and substitute L for LT in the

assumptions of Theorem 1. Then the same conclusions4 hold, but with

V(is)EL maximizing the total energy E(v) A <is - F(v),v) over L.

Note that H is the sum of the source admittance F and the optimal

load admittance operator

Gopt(v) A (DF(v) (18)

as stated less formally in Eq. (2).

In applications one might wish to restrict attention to currents and

voltages in L2 with additional properties such as continuity or boundedness.

This is the reason for introducing LTCL2 inthe formulation of Theorem 1.

3. A more explicit, but cumbersome, notation would be P(v,is). Using it,
Theorem 1 states that Vv,i LT, P(v,i ) < P(v(i is) (is)

4. For the Corollary, the adjoint is of course taken with respect to the
inner product on L2 rather than ( T 
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The essential idea behind the theorem is that a solution () of Eq. (16)

is a stationary point of P: LT -IR, and the monotonicity assumption on H

guarantees that P is strictly concave. Details follow.

Proof of Theorem 1

Uniqueness of the solution to Eq. (16) follows from the fact that H is

strictly increasing. By the chain rule for the composition of Frechet- and

Gateaux-differentiable functions [10,p.253], P is Gateaux differentiable

and for all x,hE LT,

(DP(x))h = <is- F(x),h>T - <(DF(x))h,x>T =

<is - F(x) - DF(x))adj x,h>T =

<i - H(x),h>T 

(19)

Thus, if iEH(LT)

DP(v(is)) = OL(LT,LT)

given any x,y E LT, the

each X IR , and

map X -+P[x+X(y-x)] is differentiable at

H[x+X(y-x)], (y-x)>T c) d [x+X(y-x)] = is -

To show that v(is) globally optimizes P, fix iscH(LT), let = (i ),

and choose any vLT, v v . Then

P(v) - P(v) =

(20)T[v+X(v-v)] - (v-v) X )]

1
f {dx [y+X(v-)]} dX .

0

a)

b)
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Using c), the integrand above is

(i - H[v+X(v-v)]. VV>-T =

(since i = H(v))

<H[V+X(v-V)] - H(v), [v+X(v-v)] - [v]>T, V>O 

and the integrand vanishes at X=O. The inner product above is strictly

positive for XfO since H is strictly increasing by assumption. Thus, the

integrand in Eq. (20) is negative for X>O and zero for X=O, so P(v) < P(v)

as claimed. I

The proof of the Corollary is essentially identical and hence is omitted.

2.3) Iterative Algorithm for Determining v(.)

Equation (19) shows that is - H(v) is the gradient [10, p.196],

[11, sect. 2.5], [13, p.54ff] of Pat v. This suggests that

we attempt to maximize P by a simple "hill-climbing" algorithm of the form

xj+1 = r(is- H(xj)) + xj A M(xj) (21)

for some r>O. Note that under the assumptions of Theorem 1, if {v} converges

to some VE:LT and H is continuous, then is = H(v) and v globally maximizes P.

By tightening the assumptions a little further, we can guarantee convergence

for all sufficiently small positive r.

Theorem 2

Strengthen the assumptions of Theorem 1 by supposing further that LT

is closed and H is uniformly increasing and Lipschitz continuous on LT.

Then for any i LT, any initial guess vocLT, and any rE(O, 26/K2), the
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sequence generated by Eq. (21) converges to (is).

Note that Theorem 2 also guarantees existence of a solution to Eq. (16)

for all isE LT, i.e., H(LT) = LT. The proof is a straightforward application

of [14] and is similar to that in [15]. It is given in detail in [2] and

will be omitted here.

Note that the example in Sect. 1.2) satisfies all the assumptions of

Theorem 2 except that of global Lipschitz continuity, since the derivatives

92'( ) and 93 (') are unbounded. (Because they are bounded on every bounded

subset of IR, a more detailed argument, omitted here, shows that the solutions

obtained maximize over LTn L, which is certainly sufficient in

practice.)

IV. Concluding Remarks

The interested reader may wish to compare these results with those ob-

tained by a describing function method in [16].
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Figure Captions

Fig. 1 The optimal nonlinear source admittance, given in Eqs. (2) and (18),

is independent of the current source waveform i (@) and extracts

the maximum power from the source for every is(.). Although Gopt
is noncausal in general, it can be useful in designing a realizable

load that maximizes power for some particular i(.).

Fig. 2 Theorem 2 enables one to numerically determine the optimal output

voltage v(.) for this circuit when the resistor curves are as shown

in Fig. 3.

Fig. 3 The three resistor curves for the circuit in Fig. 2 are

gk(v) vvlkj 1, k=1,2,3, with g1(O) 0
gk~~~~~ 

Fig. 4 One period of the optimal output voltages for the circuit in Fig. 2.
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