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Abstract

As optimal control problems become increasingly complex, innovative numerical methods are
needed to solve them. Direct transcription methods, and in particular, methods involving
orthogonal collocation have become quite popular in several field areas due to their high
accuracy in approximating non-analytic solutions with relatively few discretization points.
Several of these methods, known as pseudospectral methods in the aerospace engineering
community, have also established costate estimation procedures which can be used to verify
the optimality of the resulting solution. This work examines three of these pseudospectral
methods in detail, specifically the Legendre, Gauss, and Radau pseudospectral methods, in
order to assess their accuracy, efficiency, and applicability to optimal control problems of
varying complexity. Emphasis is placed on improving the Gauss pseudospectral method,
where advancements to the method include a revised pseudospectral transcription for prob-
lems with path constraints and differential dynamic constraints, a new algorithm for the
computation of the control at the boundaries, and an analysis of a local versus global imple-
mentation of the method. The Gauss pseudospectral method is then applied to solve current
problems in the area of tetrahedral spacecraft formation flying. These optimal control prob-
lems involve multiple finite-burn maneuvers, nonlinear dynamics, and nonlinear inequality
path constraints that depend on both the relative and inertial positions of all four space-
craft. Contributions of this thesis include an improved numerical method for solving optimal
control problems, an analysis and numerical comparison of several other competitive direct
methods, and a greater understanding of the relative motion of tetrahedral formation flight.
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Chapter 1

Introduction

Optimal control problems date back to the 17th century with Johann Bernoulli's famous

brachystochrone problem. 125 Greek for "shortest time", Bernoulli posed this problem to

his contemporaries, which attempts to find the path along which an object moves between

two points in a vertical plane under its own weight in the shortest time. Several esteemed

mathematicians including Wilhelm Gottfried Leibniz, the Marquis de l'H6pital, Isaac Newton

and both Johann and Jakob Bernoulli submitted solutions to the brachystochrone problem,

marking the beginnings of optimal control theory.

With over 300 years of research in this area, many significant advancements have been

made. Highlights of these advancements include the creation of calculus of variations, first

elaborated by Euler in 1733 in the Elementa Calculi Variatonum32 from which it got its

name. Also, in the 1950's, Richard Bellman pioneered work in dynamic programming73

which led to sufficient conditions for optimality using the Hamilton-Jacobi-Bellman equation.

Lev Pontryagin's development of the maximum (minimum) principles2 in 1962 provided a

method to determine the optimal control for constrained problems, often resulting in "bang-

bang" solutions. The availability of commercial computers in the 1950's fundamentally

transformed the field by enabling efficient numerical solutions.21 Present-day numerical

methods for solving optimal control problems are plentiful and vary greatly in their approach

and complexity. These methods discretize the continuous-time problem in some fashion and

solve the resulting approximate, finite-dimensional problem to a specified tolerance.

Numerical methods for solving optimal control problems fall into two general categories:



indirect methods and direct methods. In an indirect method, first-order necessary conditions

for optimality are derived from the optimal control problem via the calculus of variations 73

and Pontryagin's minimum principle.82 These necessary conditions form a Hamiltonian

boundary-value problem (HBVP), which is then solved numerically for extremal trajecto-

ries.3 The optimal solution is then found by choosing the extremal trajectory with the lowest

cost. The primary advantages of indirect methods are a high accuracy in the solution and

the assurance that the solution satisfies the first-order optimality conditions. However, in-

direct methods have several disadvantages. First, the HBVP must be derived analytically,

which can often be non-trivial. Second, because indirect methods typically have small radii

of convergence, an extremely good initial guess of the unknown boundary conditions is gen-

erally required. Furthermore, many indirect methods require an accurate initial guess of the

costate, which is often non-intuitive and difficult to obtain. Finally for problems with path

constraints, it is necessary to have a priori knowledge of the constrained and unconstrained

arcs or switching structure. BNDSCO so is a commercial program for solving multipoint

boundary value problems that implements an indirect multiple shooting algorithm.

In a direct method, the continuous-time optimal control problem is transcribed directly to

a nonlinear programming problem (NLP) without formulating an alternate set of optimality

conditions. The resulting NLP can be solved numerically by well developed algorithms, 10,45

which attempt to satisfy a set of conditions (called Karush-Kuhn-Tucker (KKT) conditions)

associated with the NLP. Direct methods have the advantage that the first-order necessary

conditions do not need to be derived. Furthermore, they have much larger radii of con-

vergence than indirect methods and thus, do not require as good an initial guess, and do

not require an initial guess for the costate. Lastly, the switching structure does not need

to be known a priori. However, many direct methods have the disadvantage of providing

either an inaccurate costate or providing no costate information whatsoever, meaning it

is uncertain whether the optimal solution to the NLP is truly an optimal solution to the

original optimal control problem. Well-known software packages employing direct meth-

ods include Optimal Trajectories by Implicit Simulation (OTIS),11 9 Sparse Optimal Control

Software (SOCS),1 1 Graphical Environment for Simulation and Optimization (GESOP), 122

Direct Collocation (DIRCOL), 121 Nonlinear Trajectory Generation (NTG), 78 79 and Direct



and Indirect Dynamic Optimization (DIDO).95

The category of direct methods is quite broad and encompasses some very different tech-

niques.64 In particular, the choice of what quantities to discretize and how to approximate

the continuous-time dynamics varies widely amongst the different direct methods. Two

of the more common types of direct methods are control parameterization and state and

control parameterization1 1 5 techniques. In a control parameterization method,16,102,109,130

the control alone is approximated and the differential equations are solved via numerical

integration. Examples of control parameterization include shooting methods and multiple

shooting methods. In state and control parameterization methods, 14,37,56, 57,81, 107 the state

is discretized within the NLP as well as the control, and the continuous-time differential

equations are converted into algebraic constraints. These constraints are then imposed in

the NLP formulation, which avoid the sensitivity issues of direct shooting methods at the

expense of a larger NLP.

In recent years, considerable attention has been brought to a class of state and control

parameterization methods called pseudospectral23,33,43 or orthogonal collocation26 ,1 16 meth-

ods. In a pseudospectral method, a finite basis of global interpolating polynomials is used

to approximate the state and control at a set of discretization points. The time derivative

of the state in the dynamic equations is approximated by the derivative of the interpo-

lating polynomial and is then constrained to be equal to the vector field of the dynamic

equations at a set of collocation points. While any set of unique collocation points can be

chosen, generally speaking an orthogonal collocation is chosen, i.e., the collocation points are

chosen to be the roots of an orthogonal polynomial (or linear combinations of such polyno-

mials and their derivatives). Because pseudospectral methods are generally implemented via

orthogonal collocation, the terms pseudospectral and orthogonal collocation are essentially

interchangeable (thus researchers in one field use the term pseudospectral4 3 while others use

the term orthogonal collocation116). One advantage to pseudospectral methods is that for

smooth problems, pseudospectral methods typically have faster convergence rates than other

methods, exhibiting so called "spectral accuracy". 112 For non-smooth problems or problems

where modeling changes are desired, the optimal control problem can be divided into phases

and orthogonal collocation can be applied globally within each phase. A vast amount of



work has been done on using pseudospectral methods to solve non-smooth optimal control

problems (see Refs. 27,34,38,85,92,95).

Pseudospectral methods in optimal control arose from spectral methods which were tra-

ditionally used to solve fluid dynamics problems.23,4 3 Meanwhile, seminal work in orthogonal

collocation methods for optimal control problems date back to 1979 with the work of Ref. 87

and some of the first work using orthogonal collocation methods in engineering can be found

in the chemical engineering literature. 27 More recent work in chemical and aerospace engi-

neering have used collocation at the Legendre-Gauss-Radau (LGR) points,41,71,72 which is

termed the Radau pseudospectral method (RPM) in this thesis. Within the aerospace en-

gineering community, several well-known pseudospectral methods have been developed for

solving optimal control problems such as the Chebyshev pseudospectral method (CPM), 117, 11

the Legendre pseudospectral method (LPM),33 and the Gauss pseudospectral method (GPM).'

The CPM uses Chebyshev polynomials to approximate the state and control, and performs

orthogonal collocation at the Chebyshev-Gauss-Lobatto (CGL) points. An enhancement to

the Chebyshev pseudospectral method that uses a Clenshaw-Curtis quadrature was devel-

oped in Ref. 40. The LPM uses Lagrange polynomials for the approximations, and Legendre-

Gauss-Lobatto (LGL) points for the orthogonal collocation. A costate estimation procedure

for the Legendre pseudospectral method was developed by in Ref. 39 and recently updated

in Ref. 49. Recent work by Williams shows several variants of the standard LPM. The Jacobi

pseudospectral method' 26 is a more general pseudospectral approach that uses Jacobi poly-

nomials to find the collocation points, of which Legendre polynomials are a subset. Another

variant, called the Hermite-LGL method, 128 uses piecewise cubic polynomials rather than La-

grange polynomials, and collocates at a subset of the LGL points. These new methods have

not yet become mainstream optimization techniques because of their novelty, but the new

software tool DIRECT127 could expedite this process. Lastly, in the Gauss pseudospectral

method, the state is approximated using a basis of Lagrange polynomials similar to the LPM,

and the optimal control problem is orthogonally collocated at the interior Legendre-Gauss

(LG) points. Much of the analysis done in this thesis centers on pseudospectral methods

and their accuracy and efficiency in numerically solving optimal control problems.



1.1 Motivation for Research

The research presented in this thesis is motivated by fundamental questions in two different

areas.

1.1.1 Advancement of Numerical Methods for Optimal Control

Problems

The Gauss pseudospectral method in its current form is one of the newest numerical ap-

proaches in the literature today,8 although it bears resemblance to work done in 1979.s 7 The

current method was originally developed for problems with integral dynamic equations, and

was then adapted to accommodate differential dynamic equations. The critical contribution

by Benson, which distinguishes the GPM among the other pseudospectral methods, was to

show that for an optimal control problem with either integral or differential dynamics, the

Karush-Kuhn-Tucker (KKT) conditions of the NLP are exactly equivalent to the discretized

form of the first-order optimality conditions of the HBVP. Hence, a solution to the NLP also

satisfies the optimality conditions traditionally used in indirect methods, thereby eliminating

one of the primary disadvantages of direct methods. Benson also showed that this equiv-

alence for the integral formulation existed in the presence of path constraints, but did not

explicitly show equivalence for problems with both path constraints and the more common

differential dynamic constraints. Therefore the first motivation for this thesis is to complete

the equivalence proof for the general formulation of the optimal control problem involving

both differential dynamic constraints and path constraints.

Costate Mapping using GPM

When analyzing the solution to optimal control problems, it is desirable for the solution

to include not only state and control approximations, but a costate approximation as well.

The ability to obtain accurate costate estimates is useful for verifying the optimality of

solutions, determining the sensitivity of the state with respect to cost, and performing mesh

refinement. 14 Indirect methods naturally include the costate in their problem formulation, so

any indirect solution contains a costate estimate. However, direct methods do not explicitly



approximate the costate since the HBVP equations are not formulated. Despite this, a

costate estimate can be determined for many direct methods in several ways. Some of

these estimates are based on solving an approximation to the costate dynamics in post-

processing.5 8 ,76 Other estimates are based on relationships between the KKT multipliers of

the NLP and the continuous costate found by a sensitivity analysis,10 3 or relating the KKT

conditions of the NLP to the continuous costate dynamics. 5 5,10 7 Or, for some pseudospectral

methods, the KKT multipliers can be algebraically mapped to the discrete costate via a

simple computation. Costate mapping procedures have been documented in Ref. 71 for

the RPM, Refs. 39,49 for the LPM, and Ref. 8 for the GPM. Although an exact mapping

between the KKT multipliers and the discrete costate has not been proven for the RPM and

LPM, research has been done on these pseudospectral methods that discusses the (rapid)

convergence rates of the NLP solution to the solution of the continuous-time optimality

conditions. 48, 49,71 Benson developed a costate mapping procedure for the GPM and proved it

was an exact map due to the equivalence between the KKT conditions and HBVP optimality

conditions. The aforementioned equivalence in the GPM brings about a certain mathematical

elegance that can possibly contain some undiscovered properties. Another motivation for

this research is to simply explore what additional benefits can be gleaned from the costate

mapping.

Analysis and Comparison of Various Pseudospectral Methods

With so many different approaches to solve optimal control problems, it is clear that the

academic community is fragmented on which approach may be the best for a general problem.

And it is likely that no one method works the best on all problems. However, very few

papers have been published that compare the performance of various methods. Survey

papers, such as Ref. 12, stop short of providing comparisons between various methods.

Numerical comparisons between methods are often difficult to perform fairly because many

direct methods are integrated with a specific NLP solver, thereby making it difficult to

distinguish between differences between the methods and differences due to the NLP solvers.

However, some research has been done that compares direct methods. Ref. 81 is primarily

focused on presenting enhanced mesh refinement and scaling strategies, but contains a brief



comparison of the accuracy of direct implicit integration schemes (like Hermite-Simpson

integration) and pseudospectral methods. Williams created the software tool DIRECT in

order to more effectively compare various trajectory optimization algorithms. The results

of a thorough comparison involving 21 test problems of several different direct methods

is presented in Ref. 127. Ref. 42 presents a comparison between several pseudospectral

approaches, but uses unorthodox variants of pseudospectral methods that are inconsistent

with a large majority of the literature. Based on this very limited body of research, there

exists a greater need to examine the accuracy and efficiency of these direct methods from a

numerical and theoretical standpoint.

Analysis and Comparison of Local versus Global Orthogonal Collocation Meth-

ods

Interestingly, when the Gauss pseudospectral method was first introduced to the academic

community, it received quite a bit of resistance and skepticism. Critics noted that historically,

local methods, i.e., those that approximate the dynamics locally using piecewise polynomials,

have been prosperous due to their property of local support,14 which bounds the maximum

error that can be generated locally along the trajectory. Consequently one can determine the

maximum error between the exact optimal solution and the computed solution for the entire

trajectory. While local methods have a long history in solving optimal control problems,

recent research in pseudospectral methods suggests that local collocation may neither be the

most accurate nor the most computationally efficient approach.8 ,48 ,66 ,68 ,89 Instead, recent

work has shown great success in the application of global collocation (i.e., collocation using

a global polynomial across the entire time interval as the basis for approximation). By

using appropriate discretization points and interpolating polynomials, one can also bound

the maximum error generated by the global polynomial approximation, shown in Chapter

2. In fact, Ref. 81 specifically compares global pseudospectral methods to other local direct

collocation methods, and also experiments with the order of the local collocation methods

(i.e., the number of collocation points per segment) and its effect on the solution accuracy.

In light of the recent results that promote global orthogonal collocation and the long history

of the use local collocation, it is important to gain a better understanding as to how these



two different philosophies work in practice.

Computation of the Boundary Control Using the Gauss Pseudospectral Method

Other critics have highlighted the fact that since the Gauss pseudospectral method per-

forms collocation at the interior LG points, there is no explicit value for the control at the

boundary points. Consequently, the value for the boundary control can be quite arbitrary.

Moreover, traditional extrapolation techniques (such as spline extrapolation 14 or Lagrange

extrapolation 71 ) may violate control path constraints and certainly will be sub-optimal. Fur-

ther motivation for this research lies in the need to improve the accuracy of the boundary

control for the Gauss pseudospectral method.

1.1.2 Optimization of Formation Flying Maneuvers

Spacecraft formation flying is defined as a set of more than one spacecraft whose states are

coupled through a common control law. 10 1 Formation flying has been identified as an enabling

technology for many future space missions.1 00 In particular, space missions using multiple

spacecraft, as compared with using a single spacecraft, allow simultaneous measurements to

be taken at specific relative locations, thereby improving science return. An important aspect

that is critical to the successful implementation of formation flying missions is trajectory

design (also called path planning or guidance10 0 ). An excellent survey of methods used

to design formation flying trajectories can be found in Ref. 100, which also provides an

extensive list of references on formation flying guidance. Formation flying trajectory design

has two main categories: stationkeeping, i.e., to maintain a relative spacecraft formation

for a specified portion of the trajectory and reconfiguration, i.e., to maneuver a spacecraft

formation from one configuration (involving the formation geometry, relative motion, and/or

orientation) to a second configuration.

A particular class of Earth-orbit formations that have been studied extensively are those

involving four spacecraft.17, 25, 47, 53, 62 66 67 Four-spacecraft formations are desirable because

they use relatively few spacecraft yet are still capable of taking measurements in three-

dimensions at relatively large inter-spacecraft distances (e.g., a spacing of several kilome-



ters). However, because of complex mission constraints, it is often difficult to determine

feasible trajectories and controls. Because of the already difficult task of determining feasi-

ble solutions, it is even more of a challenge to determine solutions that minimize a specified

performance metric (e.g., trajectories that minimize fuel). Fuel-optimal solutions (if one can

be found) are often non-intuitive, but are very worthwhile as they can lead to significant fuel

savings which can result in a longer mission duration or increased payload capacity.

Several papers have attempted to solve tetrahedral trajectory optimization problems

similar to the ones considered in this research. Ref. 75 uses a two-step approach that begins

with genetic algorithms (a global heuristic optimization method) and afterwards refines the

problem using Lawden's primer vector theory.5 Ref. 54 also uses a two-step approach, but

combines a direct SQP method with a genetic algorithm. Ref. 113 employs a three-step

approach that uses simulated annealing (another global heuristic method) as its initial step.

In each of these previous works, the problem is separated into steps where, in general, one

step optimizes the orbital transfer portion of the trajectory and the other step optimizes the

relative position constraints in a sequential but separate optimization procedure that uses

the trajectory from the first step. While dividing the problem into parts and optimizing each

part separately makes the problem more tractable, it also reduces the solution search space.

In this work the entire problem is formulated as a single unified numerical optimization

procedure. Other papers use a single numerical optimization procedure, but necessitate

significant simplifying assumptions on either the dynamic model"11 or the search space6 o in

order to make the problem more manageable. Lastly, Refs. 18, 19 use linearized dynamics,

but incorporate them into an MPC format, exhibiting a capability for real-time optimization

of formation flying maneuvers.

The formation flying problems posed in this thesis are based on the proposed NASA

Multi-scale Magnetospheric (MMS) Mission, which will attempt to make fundamental ad-

vancements in the understanding of the Earths magnetosphere and its dynamic interaction

with solar wind by measuring magnetic and electric fields. 62 ,63 The mission intends to have

a four-spacecraft formation that forms a tetrahedral geometry when taking science data.

Very little is known about the characteristics of the fuel-optimal maneuvers for this type

of mission, so this research is primarily interested in gaining a better perspective on the



location, number, and duration of maneuvers needed to optimally reconfigure the spacecraft

between different configurations while simultaneously satisfying certain nonlinear geometric

path constraints along some region of the orbit.

1.2 Contributions & Thesis Summary

This section briefly describes the contents of the chapters in this thesis, and specifically

highlights the significant contributions.

In order to better understand the theoretical contributions in this thesis, there are several

mathematical concepts that are worth describing in detail within the thesis. Chapter 2

not only presents this material in a concise manner, but also discusses the rationale and

advantages for using these mathematical constructs.

Chapter 3 presents the Gauss pseudospectral method in its most current form. This

has been slightly modified from the original formulation in Ref. 6 in order to simplify the

notation, and provide a more complete NLP solution, which includes both path constraints

and differential dynamics in the optimal control problem formulation. Next, the equivalence

between the KKT conditions and the HBVP first-order optimality conditions is proved for

this new formulation, and a corresponding costate mapping theorem is derived. Lastly, this

chapter provides a discussion on past and present attempts to prove the convergence of

the NLP solution towards the exact optimal solution as the number of discretization points

increases towards infinity.

Chapter 4 directly addresses some of the critics' concerns that the Gauss pseudospectral

method is an ill-conceieved approach because it does not provide an explicit value for the

boundary control from the NLP. Traditional methods involving extrapolation are presented,

along with a new procedure for computing a highly accurate boundary control from the NLP

solution. These approaches are compared on several example problems including a complex

multi-stage launch vehicle problem.

Chapter 5 directly addresses some of the other critics' concerns regarding local versus

global approaches to optimal control problems, as mentioned earlier in this chapter. This

chapter outlines the rationale and procedure for each approach and references the current



work in both approaches. The comparison is conducted using the Gauss pseudospectral

method, which is implemented in both a local and global fashion. The comparison is made

on two example problems that have characteristics that might suggest the use of a local

approach. The computational accuracy and efficiency are analyzed for both examples.

In Chapter 6, a comparison is made between three commonly used pseudospectral meth-

ods: the Legendre, Radau, and Gauss pseudospectral methods. In order to provide a fair

comparison, in this study the NLP solver SNOPT45 is used for each of the discretizations.

Furthermore, all three methods are implemented using the same version of MATLAB® and

the initial guesses provided for all examples are identical. Using this equivalent setup for all

three methods, the goal of the study is to assess the similarities and differences in the accu-

racy and and computational performance between the three methods. Three examples are

used to make the comparison. The first two examples are designed to be sufficiently simple

so that the key features of each method can be identified and analyzed. The third example,

a commonly used problem in aerospace engineering, is designed to provide an assessment as

to how the three methods compare on a more realistic problem. A great deal of the emphasis

of this study is to understand when one method may perform better than another method

and to identify why such an improved performance is attained in such circumstances.

Chapter 7 considers several spacecraft reconfiguration problems. The first problem is

what's typically known as an orbit insertion problem or initialization problem,7 5 meaning the

four spacecraft must optimally maneuver from an initial parking orbit to the desired mission

orbit and satisfy certain formation configuration constraints upon reaching the mission orbit.

As formation flying missions continue throughout their mission lifetime, disturbances will

cause the spacecraft to naturally drift apart from one another, thus creating a "degraded"

formation. The second scenario addresses this issue by examining the problem of optimally

reconfiguring a four-spacecraft formation from an initial degraded formation to a formation

that satisfies a set of mission constraints along a region of the orbit (representing the scientific

area of interest for the mission). Both the orbit insertion problem and the reconfiguration

problem are posed as optimal control problems. These complex optimal control problems

are highly nonlinear and have no analytic solutions. Consequently, they are transcribed into

an NLP using the Gauss pseudospectral method. A greater understanding for the relative



motion of spacecraft formations, the location of minimum-fuel maneuvers, and minimum-fuel

tetrahedral geometries is developed in this chapter.

Finally, Chapter 8 summarizes the significant contributions of this thesis and suggests

potential future research directions.



Chapter 2

Mathematical Background

This chapter introduces several of the theoretical and mathematical concepts used in this

thesis. Many of the advancements in this thesis are founded on optimal control theory,

and a significant portion of this chapter explains the fundamentals of optimal control. This

work also largely relies on numerical approximations, and several approaches to function

approximation and quadrature approximation are described in detail.

2.1 Optimal Control

As explained concisely by Kirk in Ref. 73, the objective of an optimal control problem is to

determine the control signals that will cause a process to satisfy the physical, geometric, or

design constraints and at the same time minimize (or maximize) some performance criterion.

This section describes the optimal control problem in a more mathematical framework, and

discusses common approaches to solving optimal problems.

2.1.1 Continuous Bolza Problem

Consider the following general optimal control problem. Determine the control, u(t) E Rm,

that minimizes the Bolza cost functional

J = 1(x(to), to, x(tf), tf) + g(x(t), u(t), t)dt (2.1)



involving the state, x(t) E Rn, the initial time, to, and (free or fixed) final time, tf, subject

to the dynamic constraint

x(t) = f(x(t)(t),Ut), t), t E [to, tf] (2.2)

the boundary condition

O(x(to), to, x(tf), tf) = 0 (2.3)

and inequality path constraint

C(x(t), u(t), t) < 0. t E [to, tfl (2.4)

In Eqs. (2.1)-(2.4), the functions (, g, f, 4, and C are defined as follows:

I : R" x Rx R"xR- W R

g : Rn x x R xR ý

f : "x xRm xR-- R" (2.5)

S: R" xRxR" x R-I Rq

C : Rnx Rm x R- R

The problem of Eqs. (2.1)-(2.4) is referred to as the continuous Bolza problem.

The Bolza problem is defined on the time interval t E [to, tf]. Certain numerical tech-

niques (like pseudospectral methods) require a fixed time interval, such as [-1, 1]. The

independent variable can be mapped to the general interval T E [-1, 1] via the affine trans-

formation
2t tf + to7= -+- (2.6)

tf - to tf - to

Note that this mapping is still valid with free initial and final times. Using Eq. (2.6), the

Bolza problem can be redefined as follows. Minimize the cost functional

J = ((To), to, X(f). tf) + - to g(x(T), U(7), T; to, tf)dT (2.7)
S2 TO



subject to the constraints

dx t - to- - f(x(-), u(-), 7; to, tf) (2.8)d7 2

p(x(To), to, X(Tf), t) = 0 (2.9)

C(x(T), u(,), 7; to, tf) < 0 (2.10)

The problem of Eqs. (2.7)-(2.10) is referred to as the transformed continuous Bolza problem.

2.1.2 Indirect Approach

The transformed Bolza problem of Eqs. (2.7)-(2.10) historically has been solved using a

branch of mathematics called calculus of variations to obtain a set of first-order necessary

conditions for optimality. 20 ,73,74 A solution to the optimality conditions is called an extremal

solution, and second-order conditions can be checked to ensure that the extremal solution is

a minimum. The fundamental theorem of the calculus of variations is 73

If x* is an extremal, the variation of the cost, J, must vanish on x*; that is,

6J(x*, 6x) = 0, V admissible 6x (2.11)

The first-order necessary conditions are found by taking the first-order variation of the

augmented cost functional, which is created by adjoining the constraints to the cost functional

via adjoint variables (i.e., costate, A(') E Rn) and Lagrange multipliers, v E Rq and I(-) C

Rc as

Ja = ((X(To), to, X(Tf), tf) - vT(x(To), to, X(Tf), tf) + tf to (x(), (T), ; to, t
AT(t) - f(x(T), u(), ; to, tf )) - T(T )C(x(T), u(T), r; to, tf)] dr-

(2.12)

The variation with respect to each free variable is then set to zero, as in Eq. (2.11) and

results in a set of first-order necessary conditions for optimality. This approach is commonly

called "indirect", as it indirectly solves the original problem by formulating and solving



this alternate set of optimality conditions. Often, the first-order optimality conditions are

simplified by defining an augmented Hamiltonian functional, 7R, as

T(x, A, tt, u, T; to, tf) = g(x, U, T; to, tf) + ATf(x, U, T; to, tf) - TC(x, UT; to, tf) (2.13)

which includes the costate, A(T) E Rl , and Lagrange multiplier function associated with

the path constraint, /p(T) E R~. For brevity, the explicit dependence on time, T, for the

state, control, costate, and Lagrange multiplier has been dropped. The first-order optimality

conditions are also referred to as the Hamiltonian boundary value problem (HBVP):

dxt - to t - to OR
x- tf -to fT(x, U, T7; to, tf1) = 0dT 2 2 dA

dAT tf - to (g AT Of + A T • tf-to O
dT 2 Ox Ox Ox) - 2 Ox

Og AT Of TC -TO t
Ou Ou Ou Ou

(X(To), to, X(Tf), ty) = 0

A(T0)T( VT 0
OX(To) OX(To) (2.14)

(f TT 
00

Ox(7r) 8x(Tf)

R (to) = 0___• _ T
at o  ato

p[j(T)=0, when Cj(x,u,T; to,t) < 0 j= ,...,c

Pj(T) < 0, when Cj(x,u,T;to,tf) =0, j= 1,...,c

where v E Rq is Lagrange multiplier associated with the boundary condition /. For some

problems, the control cannot be uniquely determined, either implicitly or explicitly, from

these optimality conditions. In such cases, the weak form of Pontryagin's minimum principle

can be used which solves for the permissible control that globallly minimizes the augmented

Hamiltonian in Eq. (2.13). If U is the set of permissible controls, then Pontryagin's minimum



principle 73 states that the optimal control, u* E U, satisfies the following:

Hl(x*, u*, A*, Tr*,7; to, tf) < K-(x*, u, A*, *, -; to, tf), Vu E U, T E [-1, 1] (2.15)

Note that the equations described in this section constitute a set of necessary conditions for

optimality, but they are not sufficient conditions. A second order sufficiency check can be

implemented to confirm that the extremal solution is the desired minimum or maximum.

The necessary conditions for optimality involve not only the state and control, but the

costate as well, emphasizing the importance of the costate in an extremal solution. Without

a costate, one cannot check the necessary and sufficient conditions to ensure that an optimal

solution has been found. Furthermore, the costate provides information regarding the sensi-

tivity of the minimum cost with respect to the corresponding extremal state.73 Specifically,

let 6J*(x*(T), T, 6x(r)) denote the first-order approximation to the change in the minimum

cost that results when the state at time T deviates from x*(r) by an amount 6x(T). Then

6J*(x*(7) T, 6x(T)) = A*T(T)6X(r) (2.16)

Thus the sensitivities represented by the costate are often used to redesign the original

optimal control problem if the constraints on the problem are flexible.

2.1.3 Direct Approach

The optimality conditions of Eq. (2.14) are often not trivial to formulate. Furthermore,

numerical methods that solve these equations generally require an accurate guess for the

costate, which is often non-intuitive. For these reasons and others suggested in Chapter 1,

direct methods have become a very popular alternative to indirect methods in recent years.

Rather than formulate a set of optimality conditions, direct methods transcribe or convert the

infinite-dimensional optimal control problem into a finite-dimensional optimization problem

with algebraic constraints, also known as a nonlinear program (NLP).

As explained by Betts in Ref. 14, a direct transcription method has three fundamental

steps:



1. convert the dynamic system into a problem with a finite set of variables and algebraic

constraints, then

2. solve the finite-dimensional problem using a parameter optimization method, then

3. assess the accuracy of the finite-dimensional approximation and if necessary repeat the

transcription and optimization steps.

Some direct methods discretize only the control, and propagate the dynamics across

the interval using the control approximation. Any additional constraints are checked to

ensure feasibility, and along with the cost, help determine the search direction for NLP.

These methods are called "shooting methods", named after the early application of aiming a

cannon such that the cannonball hit its target. 14 Other methods discretize both the state and

control, and are hence called state and control parameterization methods. These methods

are further subdivided into local and global methods. Local methods break the dynamics

into subintervals at the points to < tI,, . .. t,..., tN < tf, and attempt to find the state and

control that satisfy

i+1 = x, + f (x, u, t)dt (2.17)

where the integral is then replaced with some quadrature approximation:

i+1K

Sti j=1

Euler, Runge-Kutta, Trapezoidal, and Hermite-Simpson methods are all popular one-step

local methods. Adams schemes, such as Adams-Moulton and Adams-Bashforth schemes are

multi-step methods, meaning their integration steps involve more than just xi and xi+l.

Multi-step methods have the general form:

k-1 k

Xi+k = jxz-i+j + h Y3 f••+j (2.19)
j=0 j=0

where cj and Oj are known constants. Global schemes go even further than multi-step

schemes in that they span the entire problem interval. Global, or pseudospectral methods



are extensively used in the numerical solution to partial differential equations, with the most

common types of methods being Galerkin, Tau, and Collocation methods. 23 Pseudospectral

methods, as explained by Fornberg in Ref. 43, approximate the solution, x(t), by a finite

sum, X(t) = EM, akqk(t). The two main questions that arise are then:

1. from which function class should k (t), k = 1,... , M be chosen, and

2. how should the expansion coefficients ak be determined.

The #k(t), k = 1,..., IM are called trial functions23 (also called expansion or approximating

functions), and are the basis for the truncated series expansion of the solution. These

trial functions are most commonly trigonometric functions or orthogonal polynomials such

as Legendre polynomials. The ak's are determined from test functions, which try to to

ensure that the differential equations are satisfied as closely as possible. Tau, Galerkin, and

Collocation methods each use different test functions to determine the expansion coefficients.

In a Tau method, the expansion coefficients are selected so that the boundary conditions

are satisfied and the residual, RM(t) = X(t) - f(X(t), U(t), t) is orthogonal to the basis

functions. In other words, the inner product between the residual and the basis functions is

zero, as

<RM(t), i(t) > Io RM(t)(t)dt= 0, Vi = 1,...,M (2.20)

In a Galerkin method, the original basis functions are combined into a new set, qi(t), i =

1,..., M, in which all the functions satisfy the boundary conditions. The expansion coeffi-

cients are those in which the residual is orthogonal to the new basis functions, or

< RM(t), i(t) > = 0, Vi = 1,..., M (2.21)

Finally, in a collocation method, the test functions are the Dirac delta functions. Rather

than requiring the residual to be orthogonal to the basis functions, the residual must equal

zero at a suitably chosen set of collocation points, as

Ru(tk) = 0, Vk = 1,...,M (2.22)



The expansion coefficients are selected so that Eq. (2.22) is satisfied, in addition to the

boundary conditions. The Gauss pseudospectral method is a collocation method.

Unlike indirect methods, in direct methods there is no need to discretize and approximate

the costate. However, if an accurate costate estimate can be generated, this information

can help validate the optimality of the solution from a direct approach. Consequently,

many direct methods attempt to produce a costate approximation based on the Lagrange

multipliers involved in the NLP. One of the key attributes of the Gauss pseudospectral

method is that it produces unusually accurate costate estimates as compared to other direct

methods. This is explained in detail in Chapter 3.

2.2 Numerical Approximation Methods

Analytic solutions to optimal control problems are often limited to simple, well-understood

problems. Consequently, most optimal control problems are solved numerically. In a direct

method, the original infinite-dimensional optimal control problem is discretized and approx-

imated. In an indirect method, the HBVP is discretized and approximated. However, both

formulations require numerical approximation techniques. Since this thesis focuses on pseu-

dospectral methods, this section describes the mathematics of the approximation methods

used specifically in pseudospectral direct transcription methods.

2.2.1 Global Polynomial Approximations

Pseudospectral methods employ global interpolating polynomials to approximate the state

across the entire interval, r E [-1, 1]. For the pseudospectral methods considered in this

thesis, the approximations use Lagrange interpolating polynomials as the basis functions.

These polynomials are defined using a set of M support points T,1 ... , TAr on the time in-

terval rT [-1, 1]. The state, control, and costate of the optimal control problem can be

approximated as28

M

y(7) Y(T) = Z I(T)Y(ri), (2.23)
i=1



where Y(T) is a (M - 1)th order polynomial approximation and £i(T), (i= 1,..., M) is the

set of Lagrange interpolating polynomials, defined as

M

Li()= J(-J) 9T- (2.24)
j= ,jTi - T3  ( - T )

where g(T) creates the trial function that determines the locations of the support points

(often this trial function is related to Legendre or Chebyshev polynomials) and g(T) is the

time derivative of g(T). Lagrange polynomials work well for collocation methods, since it

can be shown that

=i (j) =j (2.25)
0, ifY

resulting in the property that y(Tj) = Y(rj), (j = 1,..., M), i.e., the function approxima-

tion is equal to the true function at the M points. In many pseudospectral methods, the

state may be approximated with one basis of Lagrange polynomials, while the control may

be approximated with a different basis of Lagrange polynomials. In fact, the Gauss pseu-

dospectral method does not even use the same number of support points for the state and

control. This is explained in detail in Chapter 3.

When discretizing the continuous-time interval, an intuitive discretization scheme is to

break the interval at equidistant support points. However, for polynomial approximation,

a uniform mesh has some very undesirable properties. As mentioned earlier, the (M -

l)th order polynomial approximation uses M support points. One would hope that as the

number of support points increases, the error between the polynomial approximation and

the true function decreases. However, for uniform support points, this is not the case. As the

order of the polynomial approximation increases for uniformly spaced support points, the

Runge phenomenon surfaces, meaning the approximation error near the boundaries actually

increases as the order increases. Fig. 2-1 depicts the Runge phenomenon for a Lagrange

approximation to the function 1/(1 + 16x 2) using 25 equidistant points, where it is clear

that the approximation is quite poor near the boundaries. Fortunately, there exist sets

of non-uniform points that eliminate the Runge phenomenon and can guarantee that the

polynomial approximation error monotonically decreases as the number of support points
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Figure 2-1: Lagrange polynomial approximation to the function 1/(1+16x 2) using 25 equidis-
tant points on the interval [-1, 1].

is increased. Support points based on the roots of Legendre and Chebyshev polynomials

have this property, and have the characteristic that the spacing between the support points

is denser towards the boundaries. As is explained in Chapter 3, the support points of the

Gauss pseudospectral method are based on the roots of Legendre polynomials. As illustrative

examples, a comparison is shown between equidistant points and the points used in the GPM

for two functions in Figs. 2-2 and 2-3. The function in Fig. 2-2 is t9 and the function in Fig. 2-

3 is et. In these figures, it is clear that for large numbers of support points, the approximation

error using uniform spacing actually increases, while the support points based on Legendre

polynomials remains at machine precision accuracy.

2.2.2 Quadrature Approximation

In addition to the choice of support points used to approximate the state, control and

costate, pseudospectral methods use another set of points to accurately approximate the

dynamic aspects of the optimal control problem. For example, the integral within the cost

functional of Eq. (2.7) and the dynamic constraints of Eq. (2.8) must be discretized and
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approximated as accurately as possible. Consequently, the points are chosen to minimize the

error in the quadrature approximation 29 to an integral. The general form for the quadrature

approximation in pseudospectral methods is

b K

f (r)d mT wif(7Ti) (2.26)

where rT1,..., TK are the quadrature points on the interval T E [-1, 1] and wi, (i = 1,..., K)

are quadrature weights. For an arbitrary set of unique points T1, . . . , TK, the quadrature

approximation is exact for polynomials of degree K - 1 or less. However, by appropriately

choosing the points, the accuracy of the quadrature can be improved greatly. It is well-

known that the quadrature approximation with the highest accuracy for a given number

of points K is the Gauss quadrature. In particular, the Gauss quadrature is exact for all

polynomials of degree 2K -1 or less. In a Gauss quadrature, the K quadrature points are the

Legendre-Gauss (LG) points, defined as the roots of the Kth-degree Legendre polynomial,

PK(t) where

PK(T) dK (72 )K (2.27)
2KK! d

-TK

These non-uniform points are located on the interior of the interval [-1, 1], and are clustered

towards the boundaries, as depicted in Fig. 2-4. The corresponding Gauss quadrature weights

are then found by the formula

w Li (T7)dT 2 2 (i = 1, ... ,K) (2.28)

1 (1 _ Ti2) PK (T i )

where PK is the derivative of the Kth-degree Legendre polynomial.

Another approach is to use Legendre-Gauss-Radau (LGR) points, which lie on the interval

T E [-1, 1). By forcing one of the points to lie at the boundary, the degree of freedom is

reduced by one, thus making this choice of points accurate to 2K - 2. The K LGR points

are defined as the roots of PK(T) + PK-1(T), or the summation of the Kth and (K - 1)th



order Legendre polynomials. The corresponding weights for the LGR points are

2
K 2 ' 1 (2.29)Wi = i = 2 ... Kwi (1- Ti) [PK_1 (Ti)] 2 ' i "(

The standard set of LGR points includes the initial point but not the final point. This set

of LGR points works well for infinite horizon problems.4 2 For finite-horizon problems, the

LGR points (and corresponding weights) are often flipped on the interval,7 2 meaning the set

includes the final point but not the initial point (T E (-1, 1]). This set of LGR points can

be found from the roots of PK(7) - PK-1 ().

A third set of points often used in pseudospectral methods is the set of Legendre-Gauss-

Lobatto (LGL) points, which lie on the interval r7 [-1, 1]. In this approach, quadrature

points are forced to lie at both boundaries, reducing the degree of freedom by two degrees,

thus making this quadrature scheme accurate to 2K - 3. The K LGL points are the roots of

(1-7 2)PK_1 (T) (where PK-1(T) is the derivative of the (K-1)th order Legendre polynomial,

PK-1(T)). The corresponding weights for the LGL points are

2 1
wi = K(K- 1)(i = 1 ... , K) (2.30)

An example of the point locations for the LG, LGR, and LGL points is shown in Fig. 2-4,

where each set includes 10 points. Furthermore, the quadrature approximation accuracy of

the LG points, LGR points, and LGL points can be seen in Figs . 2-5 and 2-6. Fig. 2-5

shows the quadrature approximation accuracy for the example function t9 . As seen in this

figure, the approximation to this 9 th order polynomial achieves machine precision accuracy

for 5 LG points (2K - 1), 6 LGR (2K - 2), and 6 LGL points (2K - 3). Fig. 2-6 shows

the quadrature approximation error for the function et for all three previously mentioned

Legendre points. Notice the rapid convergence of the error, even for C"O functions such as

et . This rate of convergence is called spectral, meaning that the rate of convergence for an

Nth-order approximation is O(N -m ) for every m for C" functions. Pseudospectral methods

exploit this rapid convergence rate to obtain very accurate solutions with a few number of

points.
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Figure 2-6: Accuracy of the quadrature approximation to et using LG, LGL, and LGR points
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2.2.3 Orthogonal Collocation

Pseudospectral methods, like all direct methods, transform the dynamic equations into alge-

braic conditions. Pseudospectral methods accomplish this by orthogonal collocation, mean-

ing they collocate the derivative of the state approximation (Eq. (2.23)) with the vector field,

f(x(t), u(t), t) of Eq. (2.2), at a set of points along the interval corresponding to the roots of

orthogonal polynomials (e.g., Legendre polynomials). Let us assume there are K collocation

points and M points used to approximate the state. Mathematically, the derivative of the

state approximation at the k-th collocation point, Tk, is

M M

k(Tk) - X(Tk) = Z -i(Tk)X(TI) = DkiX(Tk), (k = 1, ... , K) (2.31)
i=1 i=1



where the differentiation matrix, D E R KxM, is defined as

(Ok) if k # i
Dki .= - T)(Ti) (2.32)

&0 if k = i

Note that because the derivative of the state approximation is an algebraic expression, the

differential equation is replaced by a set of algebraic conditions evaluated at the collocation

points. The continuous dynamics of Eq. (2.8) are then transcribed into the following set of

K algebraic equations (or residuals) via orthogonal collocation:

RkfDiX( tOf(X(), U(Tk), ; to, t) = 0, (k = 1,...t K) (2.33)Rk= ZDkiX(Ti) 2(
i=1

which can then be implemented in the nonlinear program. The specific details and theory

behind the Gauss pseudospectral method is presented in the next chapter.



Chapter 3

The Gauss Pseudospectral Method

The Gauss pseudospectral method was originally developed by Benson6 in an effort to im-

prove the costate estimation of the Legendre pseudospectral method. It was originally for-

mulated for optimal control problems involving integral dynamic constraints, but was later

adapted to be used with the more common differential dynamic constraints.

This chapter describes the Gauss pseudospectral method in detail, where the notation

has been streamlined and expanded to include problems with state and/or control path con-

straints. Specific attention is drawn to the costate estimation procedure, and an equivalence

between the NLP multipliers and the discretized costate of the HBVP is mapped out. Fur-

thermore, a new estimate for the boundary control is presented and analyzed. Lastly, the

issue of the convergence of pseudospectral methods is addressed.

3.1 Direct Transcription Formulation

The Gauss pseudospectral transcription converts the transformed continuous Bolza problem

of Chapter 2 into a nonlinear program. This is accomplished using many of the mathematical

approximation tools expained in the second half of Chapter 2.

The Gauss pseudospectral method, like all pseudospectral methods, approximates the

state using a basis of global interpolating polynomials. These global polynomials are based

on a set of discrete points across the interval. One of the primary distinctions between pseu-

dospectral methods is the choice of discrete points used in the NLP formulation. Specifically



for the Gauss pseudospectral method, let K: = {Ti,..., TK} be the set of K Legendre-Gauss

(LG) points which correspond to the roots of the Kth degree Legendre polynomial, PK(T),

defined in the previous chapter. These LG points points lie on the interior of the interval

(-1, 1) such that T1,..., TK are strictly increasing. Next, suppose that, for a given value of

K, one can create a superset, ICo, that appends the point To = -1 to the set KI, for a total of

K + 1 points on the interval [-1, 1). Let x(r) be the state as a function of the independent

variable T where T G [-1, 1], as seen in the transformed continuous Bolza problem. An

approximation to the state, X(r), is formed with a basis of K + 1 Lagrange interpolating

polynomials £i(7) (i = 0, ... , K) as follows:

K

x(-r) X() = Li(T)x('i) (3.1)
i=0

where
K

=i(T) H T - Tj (3.2)
Ti - Tj

j=O,j$i

The use of Lagrange polynomials results in a state approximation that is equal to the true

state at all the points within KIC, or mathematically, x(Ti) = X(TT), (i = 0, ... , K).

Note that the time interval in the transformed optimal control problem spans T E [-1, 1],

yet the state approximation of Eq. (3.1) does not specifically include a discrete point at

the terminal time, T• = 1. Optimal control problems often include constraints involving

the terminal state, so it is advantagous to include a discrete variable Xf in the nonlinear

program. Therefore, in order to fully discretize the time interval for the NLP, another set

of points, called discretization points or nodes, is created as a superset of ICo. The set of

nodes, AN, includes the K interior LG points, T1,..., TK, the initial point, To - -1, and the

final point, Ty - 1. The state at the final time, Xf, is included in the NLP discretization,

although it is not specifically part of the state approximation of Eq. (3.1). Since Xf is absent

in the state approximation, it must be constrained in other ways to ensure that it satisfies

the state dynamic equations of Eq. (2.8). This is accomplished by including an additional

constraint that relates the final state to the initial state via a Gauss quadrature. According



to the state dynamics,

x(-rf) = x(•) + f (x(T), u(T), T)dT (3.3)

which can be discretized and approximated as

x -•) - x(0) K
X(rf) - X(To) - 2 Z wkf(X( •k), U (Q), Tk;tO,f) = 0 (3.4)

k=1

where wk are the Gauss weights and Tk are the LG points. At first glance, the non-intuitive

handling of the terminal state seems unnecessarily complicated, however by formulating the

problem in this manner, unique mathematical properties can be derived which allow for a

very accurate approximation to the costate. This is presented more formally in the next

section.

Eq. (3.4) forces the terminal state to satisfy the dynamic constraints, but additional

constraints must be posed to ensure that the entire discrete state satisfies the dynamic

equations. This is accomplished via orthogonal collocation, as described in Chapter 2. Col-

location methods require the dynamic equations of Eq. (2.2) to be satisfied exactly at a set

of collocation points. The left-hand side of the dynamic equations is approximated by differ-

entiating the state approximation of Eq. (3.1) at the Legendre-Gauss points in the manner

of Eq. (2.31) as follows:

K K

c(rk) X(-k) = E i(-k)X(Ti) = E DkiX(Tk), (k = 1,..., K) (3.5)
i=O i=O

The differentiation matrix, D EE RKx(K+1), can be determined offline from Eq. (2.32), where

g(T) = (1 + T)PN(T).

(1 + T)PK(k) + PK(Tk)

(Tk - Ti)[(1 + Ti)PK(Ti) + PK(7Ti)]
Dki = ·Ci(7rk)= (3.6)(1 + Ti)PK(Ti) + 2PK(Ti) i (3.6)

2 [(1 + Ti)PK(Ti) + PK(Ti)]

where rk, (k = 1,..., K) are the points in the set IC, and -r, (i = 0, . . ., K) are the points in



the set KIC. Unlike many pseudospectral methods, the Gauss pseudospectral method does not

collocate at every point in the discretization set, A. To emphasize this point, the set of LG

points, KIC, is termed the set of collocation points. Recall the discretization set (KN) contains

the LG points plus the initial point and final point. Therefore, for the Gauss pseudspectral

method, there are two more discretization points than collocation points (K = N - 2). The

K collocation equations require Eq. (3.5) to be equal to the right-hand side of the dynamic

equations at the collocation points:

Dki tf - t f(X(k), U(Tk), Tk;to, tf) = 0 ,  (k= 1 K) (3.7)
i=O

As is shown shortly, collocating strictly on the interior of the interval leads to a unique

mathematical equivalence used to approximate the costate.

A discrete approximation for the control, Uk, (k = 1,... , K) is required for the col-

location constraints of Eq. (3.7) as well as the quadrature constraint of Eq. (3.4). The

time derivative of the control is not approximated, so the control approximation need not

be of the form Eq. (2.23). In fact, any approximation that has the property u(Tk) = Uk,

(k = 1,... , K) is an equivalent control approximation in the eyes of the NLP. However, for

consistency, this work approximates the control at the K collocation points using a basis of

K Lagrange interpolating polynomials 4i(T), (i = 1,..., K) as

K

u(T) U(T) = Z4(T)U(Ti) (3.8)
i=1

where 7i, (i = 1,... , K) are the LG points belonging to the set K.

Lastly, the integral term in the cost functional of Eq. (2.7) can be approximated with a

Gauss quadrature as before, resulting in

K

J = I(Xo, to, Xf, tf) + f wkg(Xk, Uk, Tk; to, tf) (3.9)
k=1



3.1.1 Gauss Pseudospectral Discretization of Transformed Con-

tinuous Bolza Problem

From the previous discussion, the Gauss pseudospectral discretization of the transformed

continuous Bolza optimal control problem in Chap 2 can now be stated formally. Determine

the discretized state, Xi, i E AN, control, Uk, k E IC, initial time, to, and final time, tf that

minimizes the cost function

J= (I(Xo, to, Xf, tf) + 2 wkg(Xk, Uk, Tk; to,tf) (3.10)
k=1

subject to the algebraic collocation constraints expressed as a residual function,

K

Rk E DkiX t- f(Xk, Uk, k;to, tf) = 0 (k = 1,..., N) (3.11)
i=O

quadrature constraint expressed as a residual,

RI =- x I - x o - tf - to K (3.12)R X - X - wkf(Xk, Uk, ; to tf) =0 (3.12)
k=1

boundary constraint,

O(Xo, to, Xf, tf) = 0 (3.13)

and path constraint,

C(Xk, Uk,, k; to, tf) 5 0 (k = 1,..., N) (3.14)

The cost function of Eq. (3.10) and the constraints of Eq. (3.11)-(3.14) define an NLP whose

solution is an approximate solution to the continuous Bolza problem.

To recap, the variables that are used in the GPM discretization are as follows:

NLP Variables Corresponding to State: (Xo, Xl,... , XK, Xf)

NLP Variables Corresponding to Control: (U 1,..., UK)



Similarly, the constraints in the GPM are as follows:

Constraints Corresponding to Dynamics: (R, ... , RK, Rf )

Constraints Corresponding to Path Constraints: (C1, ... , CK)

Constraints Corresponding to Boundary Conditions:

3.1.2 A Comment on the Final State: Xf

As seen in the previous section, the state is discretized at all N discretization points, but

the actual state approximation of Eq. (3.1) includes only N - 1 points in the set ]Co. The

final state is not explicitly in the state approximation. It is, however, implicitly in the state

approximation due to the quadrature constraint of Eq. (3.4). Although it is not immediately

obvious, the inclusion of the quadrature constraint produces the same value for Xf as one

would get by extrapolating the state approximation of Eq. (3.1) to tf. In this section,

it is shown mathematically that these two expressions are consistent with one another.

Specifically, it is shown that the NLP final state, Xf is the same as the extrapolated state

X(tf):

Lemma 1. Using the Gauss pseudospectral transcription for an optimal control problem, the

following two formulations for Xf are equivalent:

tf - to (315)Xf = X 0 + wkf (Xk, Uk, Tk; to, t) (3.15)
k=1

and
K

Xf = X(t) = E X(ti)i (tf), (3.16)
i=O

Proof of Lemma 1. Beginning with Eq. (3.15):

Xf = Xo + to wkf(Xk, UkTki;to ) (3.17)
k=1

From the collocation constraints of Eq. (3.11), the vector field at the Gauss points is equal

to the derivative of the state approximation, therefore f(Xk, Uk, Tk; to, tf) can be replaced in



Eq. (3.17):

Xf = Xo + k E X()Dki (3.18)
k=1 i=0

Recall that Dki = I,(Tk). Hence, Eq. (3.18) is a Gauss quadrature for a polynomial of degree

less than 2K - 1 and can be replaced exactly with an integral

1 K

X, = X0 + J X(Ti), (-)d (3.19)
-1 i=O

This integral can be evaluated, resulting in

K K

Xf = x 0 + •X (i)A (TO ) - X(~) i (TO) (3.20)
i=O i=O

According to the definition of Lagrange polynomials in Eq. (3.2), the final term in Eq. (3.20)

is equal to Xo, so the first and last terms cancel, resulting in

K

Xf = X(•i)Li (-f) (3.21)
i=O

which simplifies to

X, = X(tf) (3.22)

from Eq. (3.16).

The state approximation and the quadrature constraint are consistent with one another

and do not produce conflicting values for the state at the final time.

It is noted that in his original formulation, Benson did not explicitly include Xf or

Eq. (3.12) into the NLP, but rather used Eq. (3.12) to eliminate Xf from the problem. This

has the benefit of reducing the number of NLP nodes by one, but also makes the other

constraints more complicated. For example, if Xf is not explicitly in the discretization,

then any simple terminal constraint on the state would be a function of the state at all the

discretization points in the NLP according to Eq. (3.12). Because simple terminal constraints



are often found in optimal control problems, this work retains that simplicity by explicitly

including Xf and Eq. (3.12) in the NLP formulation.

3.1.3 Discontinuities & Phases

Some optimal control problems have known discontinuities in either the state or control.

Common examples are a mass drop during a launch vehicle ascent problem, or a "bang-

bang" control solution. The spectral accuracy described in Chapter 2 only applies to smooth

problems, meaning the primary advantage of using a global polynomial approximation is

eliminated for discontinuous problems. Chapter 5 discusses this effect in more detail. How-

ever, for problems with known discontinuities, a common procedure to recover the spectral

accuracy is to divide the trajectory into phases, where the dynamics are transcribed within

each phase and then connected together by additional phase interface (a.k.a linkage) con-

straints.8 5 '95 Other approaches involve using a smoothing filter 34 to eliminate the oscillatory

Gibb's phenomenon often associated with a polynomial approximation to a discontinuous

function.

The Gauss pseudospectral method has been used to solve several multi-phase problems

(see Ref. 6,66, 68). The extension to a P-phase problem involves repeating the structure for

the one-phase formulation P times. In addition, the terminal constraints for the first phase,

the initial and terminal constraints for the interior phases, and the initial constraints for the

Pth phase are re-characterized as interior point constraints. These interior point constraints

include any continuity conditions in the state or time between adjacent phases. For our

formulation, it is assumed that the control is allowed to be discontinuous across phases, but

this too can be constrained if necessary. Eq. (3.13) of Section 3.1.1 can then be replaced by

the following set of equations:

L (1) (X(1), t ) ) = 0,

L (r+l)(X(r) tr), X r + l), t(r+ l)) = 0, (3.23)

L() (X(), t)) =0

where r = 1,..., P - 1 phases. It is noted that these phases do not need to be sequential,



and can in fact be parallel. The incorporation of parallel phases is utilized in the formation

flying problems of Chapter 7, but is represented simply as 4 for the rest of this chapter in

order to simplify the equations.

3.2 Costate Approximation

As mentioned previously in the discussion on optimal control theory, the costate, A(T) from

the HBVP equations of Eq. (2.14), plays a very important role in determining the optimality

of a given solution. This section describes the mathematics behind the costate approximation

for the Gauss pseudospectral method. Specifically, the optimality conditions for the NLP are

developed, which involve a set of Lagrange multipliers. Next, the discretized HBVP equations

are formulated, which include a discrete costate. The Lagrange multipliers are shown to have

an exact mapping to the discrete costate, thus proving the equivalence between the NLP

optimality conditions and the HBVP optimality conditions. Benson originally showed this

equivalence for a simplified problem in Ref. 6. This section advances Benson's work by

showing equivalence for problems with state and control inequality path constraints. The

expanded results shown here were published in Ref. 8.

Although the costate is not an explicit variable in the NLP formulation of the previous

section, an interpolating polynomial is defined to represent it. Recall that the state approx-

imation, X(T) involved the support points in the set ACo, which included the K collocation

points and the initial point, To. The costate approximation, A(T), utilizes the points in a

new set, KCf, which includes the K collocation points and the final point, Tf . A basis of K + 1

Lagrange interpolating polynomials, I C (T-) (i = 1,..., K +1) and (T-K+1 - Tf), approximates

the costate as
K+1

A(T) -Ar) = A(T4C(T) (3.24)
i=l

where
K+1

L!- (T) (3.25)
Ti - 7jj=-1,j$i

As with the state approximation, Eq. (3.24) can be differentiated to determine an approxi-

mation to A(-). The costate is approximated using K+ 1 points, yet collocation is performed



at the K collocation points using

K+1

A(Tk) A(Tk) A(Tj)Di (k = 1, ... , K) (3.26)
i=1

where Di = ~ t (Tk) represents the elements of the differential approximation matrix Dt E

RKx K +± . Dt is referred to as the adjoint of the differential approximation matrix D. Gauss

weights are used to prove the following lemma that relates elements of the differential ap-

proximation matrix, D, to elements of the adjoint differential approximation matrix, D t , as

originally shown in Ref. 6:

Lemma 2. [6] The relationship between elements in the differential approximation matrix

D and elements in its adjoint D t is

Dik = -- Dki (i, k = 1,..., K) (3.27)
wi

where wi and wk, (i, k = 1,..., K) are the Gauss weights.29 Notice the elements of D cor-

responding to the initial point, To (the first column of D), and elements of Dt corresponding

to the final point, Tf (the last column of Dt), are omitted in this relationship.

Proof of Lemma 2 (6). Consider the integration by parts formula for the product of p(T)

and q(T) with r E [-1, 1] where p(T) and q(T) are defined to be polynomials of degree K, i.e.,

-1 -1 1

Because p(T) and q(T) are polynomials of degree K, the functions p(T)q(T) and p(T)q(T) are

polynomials of degree 2K - 1 and, thus, can be replaced exactly by a Gauss quadrature.29

Then, using the exact derivatives of the polynomials 3(rT) and ci(T) at the Gauss points in

Eqs. (3.5) and (3.26), respectively, the integration by parts formula is replaced exactly by

E [ Djlp(TI) q(Tj) wj K

j=1 l1=0
(3.28)

[p(1)q(1) - p(-1)q(-1)] - 1p(Tj) Djq(71l) wj
j=1=

60



Because Eq. (3.28) must hold for all polynomials p(T) and q(Tr) of degree K or less, it must

hold for the set of Kth degree Lagrange interpolating polynomials Ip(T) (p = 0,..., K) and

£L(7) (q = 1,..., K+1) as defined in Eqs. (3.2) and (3.25). To show the relationship between

the elements of the differential approximation matrix D and the elements of the adjoint Dt,

a subset of these Lagrange polynomials, £k(7r) and £() (i, k = 1, .. , K) from Eqs. (3.2)

and (3.25), respectively, are substituted into Eq. (3.28) to obtain

K K

= = K K1 (3.29)
[ .k(1)I( 1)_ -k(--1)L(- 1)t k(TJ) D ILK(Tl) wj

j=1 L 1=1

Now from the properties of Lagrange polynomials in Eq. (2.25) it is seen that

k(-1) = 0 (k=1,...,K)

(1) 0 (i=1,. K)

Eq. (3.29) then simplifies to

KK K K

EEDj1 k k(T)I (Tj)Wj = - : EZ Dlk (Tj)I l )w j  (3.30)
j=1 1=1 j=1 1=1

Then, once again using the Lagrange polynomial properties of Eq. (2.25) in Eq. (3.30), it can

be seen that the product £k(I flr I(F) is zero unless k = 1 and i = j. Similarly, the product

£k(Tj)LC(T1) is zero unless k = j and i = 1. Therefore, the following result is obtained at the

Gauss points:

Di = -D k (i,k = 1, K) (3.31)

Rearranging Eq. (3.31) yields Eq. (3.27).

The following relationships involving the differentiation matrix are also important in the

costate analysis of the Gauss pseudospectral transcription method, originally shown in Ref. 6.



Lemma 3. [6] The elements of the differential approximation matrix, D, corresponding to

the LG points are related to the elements D corresponding to the initial time, To, by the

equation
K

Di,o = - Dik (3.32)
k=1

Proof of Lemma 3 (6). This relationship can be shown by examining the derivative of a

constant function, f (t) = c. Applying the differential approxmation matrix results in

K

f(ti) = cDi,o + c E Dik = 0 (3.33)
k=1

This relation is exact for all values of K because the function f(t) = c is a polynomial of

degree 0. The result can be simplified to Eq. (3.32).

A similar relationship can be drawn for the adjoint differentiation matrix, Dt.

Lemma 4. [6] The elements of the adjoint differential approximation matrix, Dt, corre-

sponding to the LG points are related to the elements D t corresponding to the final time, Tf,

by the equation
K

Dt,K+1 = - Dtk (3.34)
k=1

Proof of Lemma 4 (6). This relationship can also be shown by examining the derivative

of a constant function, f(t) = c. See Lemma 3.

El

3.2.1 KKT Conditions of the Transcribed NLP

The solution to a nonlinear program satisfies a set of first-order optimality conditions called

the Karush-Kuhn-Tucker (KKT) conditions. The KKT conditions corresponding to the NLP

described in Section 3.1.1 can be obtained using the augmented cost function or Lagrangian. 9

The augmented cost function is formed using the Lagrange multipliers Aik E ]R', k E R' ,



k = 1,..., K, AF E R', and 9 E R q as

t f _ t o K(X o t oJa = 4(Xo, to, Xf, tf) + wkg(Xk, Uk, Tk; to, tf) - (Xo, to, , t)
k=1

K K -T Ktf - to

k=1 k=1 i=O

- T 
tT - to-AF X - Xo - 2 Ewkf(Xk, Uk, Tk; tO tf)

(2 (k=1
(3.35)

where the tilde notation is used to highlight multipliers related to the solution of the NLP.

The KKT conditions are found by setting equal to zero the derivatives of the Lagrangian

with respect to Xo, Xk, Xf, Uk, Ak Mk, /'AF, 9, to, and tf.9

First, setting equal to zero the partial derivatives of the Lagrangian with respect to the

Lagrange multipliers, Ak, Ak, AF, and 9 results in Eqs. (3.11)-(3.14). Next, suppose

C(x, u, 7; to, tf) =

C1

C2

cc

(3.36)

Then, applying the complementary slackness condition,9

Ajk = 0, when Cjk < 0

(j = 1,...,c), (k= 1,..-,K) (3.37)
Ijk < 0, when Cjk = 0

where Cjk Cj(Xk, Uk, Tk; to, tf) and pijk is the jth component of jik.
The partial derivative of the augmented cost function with respect to the state at the kth

LG point, Xk, k = 1, ... , K, is given as

OJa tf - to 9gk _,TOCk K T
W= - - Wk - k Dik i

dXk 2 dXk Xk (3.38)
=1 (3.38)

tf -_ to T fk tf - t -T fk
S k• + Wk F2 aXk 2 aXk



where simplifying notation gk g(Xk,Uk,7k;to, tf), fk f(Xk,UkTk;to, tf), and Ck

C(Xk, Uk, rk; to, tk) is used. Setting Eq. (3.38) equal to zero and dividing through by wk

results in

0 T tf - to

2
9gk

aXk
2 [ITCk

tf - t0 Wk DXk

K t -T
Applying Lemma 2 to Eq. (3.39) and adding and subtracting the term Dki AF, results in

i=1

oT tf - to
2
K /A T

+ D tk ii= ( Wi

K
K j-T

-- DkiAF
i=1

Applying Lemma 4 to the last term in Eq. (3.40) results in

oT tf-to a9gk
2 &Xk
K /A T

+1 \WSD Wi

2 aCk
tf - t o Wk aXk

(3.41)
+ T + D T

+ F + Dk,K+1 F

The next KKT condition is found by computing the partial derivative of the augmented cost

function with respect to the control Uk as

0ak
aUk

tf - to g9k

2 w Uk
tf - to !•T 0f

Setting2 and mult

Setting Eq. (3.42) equal to zero and multiplyir

~T Ck

I tf+ to ~-T k 9fk

-k 2 WkAF &k

2
lg through by 2 gives

(tf - to)wk

Sfk 2 iiT Ck
&Uk tf - to wk WUk

(+ (+ )( T~k F

+ k
Wk

T)
+ ýF

0fk
IXk

K- -T

Diki
Wk

(3.39)

9gk 2 [1 OCk
aXk tf - to Wk dXk

+ Ak
( Wk+ & x -fk1

(3.40)

( T
Wke

&fk
OXk

(3.42)

oT - 0gk
OUk (3.43)



The next KKT condition is found by computing the partial derivative of the augmented cost

function with respect to the initial state, Xo, as

JWa
aXo

ax0 - T XaX019X0

K
- T + T

- Dk, k + F
k=l

(3.44)

Applying Lemmas 2 and 3 to Eq. (3.44),

ax0OT --

0 Xo

Adding and subtracting the term

OT = a
aXo

T Wi W--ZT + D k T

k=1 i=1

K K

SWi E DJikAF in Eq. (3.45) yields
i=1 k=1

T -To + 1
8Xo

Wk i

(3.45)

(3.46)K T

k=1

Applying Lemma 4 to Eq. (3.46) results in

ax00 T =
8Xo

a 0 -T-- Y +
8XoF

K K
- wi D k

i=1 -k=1

(T
Wk

+ DKt Ti,K+1 F

Suppose now that the new variable, Ao, is defined as

-T a T _9
)

ao = x ax8Xo 8Xo

Then, replacing the term in the square brackets in Eq. (3.47) using (3.41) produces

- T ~T
OT = - o + AF

+tf - t0w [9i+ wi a2 aXji= 1

2 ,IT C•
tf - to wi aXi

A -T
+ -+ A

Wi F
ax]f

K K

-Ewi iDk
i=1 W k=1

(3.47)

(3.48)



The next KKT condition is found by taking the partial derivative of the augmented cost

function with respect to the final state, Xf, as

OXf
4Xf

8X,
-T A- T

X, "
(3.50)

The last two KKT conditions are found by computing the partial derivatives of the aug-

mented cost function with respect the initial and final times. First, computing the partial

derivative of the augmented cost function with respect to the initial time results in

K K
Ja A) 1 tf - to E 9k -T (9

- wk9k +k- - &tato - to 2 2 k to 9to
k=l k=l

K K1 E Tfk + tf -to
2 A fk

k=l k=1

K K
T tf - t o kT f k

-- 1 2 Fto

Note that the functions

transformation from t E

g, f, and C are now explicit functions of to and tf due to the
1 -T2

[to, tf] to - E [-1, 1] in Eq. (2.6). The term t o Wki 2 t Ak Ck
k=1 tf - to Wk

(which equals zero due to the complementary slackness condition of Eq. (3.37)) is added to

Eq. (3.51). The resulting equation is

0= A- T 9
ato  ato

tf - to

2 k=l

1
2

K
wk gk +

k=1

9 gk
Wk aato

+ Tk

· k iT

-T
Ak

Wk

2 -

StWk

F at 2 k-t aCk
tf - to Wk ato

Similarly, computing the partial derivative of the augmented cost function with respect to

66

K
-E

k=1

-TOCkIk ato -T 
0fkk-to (3.51)

(3.52)

=; £ =; -



the final time produces

K Kta J O t 1K t k - to 099k&f t- + 2 k9k + 2 tf
k=1 k=1

K

- -
k=l

+ E fk
k=1

1 T tf -t o
+2 fkF tf t2

k=1

+ tf - to
k=l

T &fk

T• fkW k F-•

Combining terms and subtracting the complementary slackness term results in

0= -- +

K
tf - to K

+ 2 Wk=l
k=1

1 K

2 Wk
k=1

- T

A + ;'k
( Wk

9tk + k
atf Wk

+ )kf
_ )

+&T Ofk
f) t

2t to Ck
tf -tO Wk

2 a 4Ck
tf - to Wk &tf

The solution to the NLP of Eqs. (3.10)-(3.12) must satisfy the set of KKT conditions

-T a
&tf

(3.53)

(3.54)



described below:

XDkitf - to
i=0

A
Wi + T D i FDT K+t+ A k D F D k,K+ 1 -

tf

K

- to 9k

Sag2 OXk

OUk

k F T

k + T
WAk F
Wk

)
(3.56)

2 T tCk
tf - to wk aXk

Ofk
aUk

2 -T Ck
tf - to wk aUk

4(Xo, to, Xf tf) = 0

0 Xo OXo

* ax, xf
K

tf to

k=1

tf - to
2

Wk 0 1 K

k=l

K i atf

k =I

1+•
K

k=l

ato0 to

Otf
-T a+v" atf

Ck < 0

jk =0 , when Cjk <O

Ijk < 0, when Cjk = 0

Xf = X 0 +

K

Z k
k=1

a9k
aXk

(tf - to)
2 wkfk

k=1

ST
Wk

T)
+ :,T

afk
aXk

2 Ck
tf - to Wk aXk

where the shorthand notation gk g(Xk, Uk, k; to tf) fk -  f(Xk, Uk, ; tOk tf), '-k

N(Xk, Ak , g1k Uk, Tk; to, tf), and Cjk = Cj(Xk, Uk, Tk; to, tf) is used. Note that the discrete

augmented Hamiltonian, Hk, is defined here as

(Tk + fk
-2 Ttk Ck

tf - to Wk

(3.55)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)
-T ~ + tf - to
AF=A 2

(fk
8Xk

7k = gk + (3.68)



3.2.2 Gauss Pseudospectral Discretization of the First-Order Nec-

essary Conditions

This section describes in detail the discretized equations resulting from the Gauss pseu-

dospectral transcription of the first-order necessary conditions of the HBVP in Chapter 2.

In practice this step is not necessary in order to solve the problem, but by transcribing the

HBVP, one can extract a mapping between this set of equations and the equations in the

previous section. The entire set of continuous-time necessary conditions of the transformed

Bolza problem in Eq. (2.14) are discretized as follows. The state, control, and costate are

approximated using Eqs. (3.1), (3.8), and (3.24), respectively. The continuous-time first-

order optimality conditions of Eq. (2.14) are discretized using the variables Xo - X(To),

Xk - X(Tk) G I n , (k = 1,...,K), and Xf E X(Tf) for the state, Uk - U(Tk) E t m , (k =

1,..., K) for the control, Ao - A(To), Ak - A(Tk) E Rn , (k = 1,..., K), and Af _ A(Tf)

for the costate, and IPk -- ,(Tk) k Rc, (k = 1,..., K), for the Lagrange multiplier associated

with the path constraints. The other unknown variables in the problem are the initial and

final times, to E R, tf E R, and the Lagrange multiplier, v E RqQ. The total number of

variables is then given as (2n + m + c)K + 4n + q + 2. These variables are used to discretize

the continuous necessary conditions of Eq. (2.14). Recall that the derivative of the state is

approximated using Lagrange polynomials based on K + 1 points consisting of the K LG

points and the initial time, To, while the derivative of the costate is approximated using La-

grange polynomials based on K +1 points consisting of the K LG points and the final time,

T•. The resulting algebraic equations that approximate the continuous necessary conditions



are given as

K tf - to
XDki= i

i=0

0gk
OXk

- AT fkAk • k

+T •Ck

(3.69)

(3.70)

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)

(3.76)

(3.77)

(3.78)

.,K and j = 1,..., c. Note that the augmented Hamiltonian, Nk, is defined asfor k = 1,..

09k
wk-

ato

~k
8ty

K

2 EZWkk-
k=1

1 V WkHk __0+2 Yd atf
k=-

t0  v aOt
8to Oto

+ VT

oatf

(3.79)-k - gk + A fk k- k Ck

The final two equations that are required are

K
tf - to KX = Xo + 2 Wkfk

k=1
-Ktf - to

k=1
Wk ( a9k

aXk

(3.80)

(3.81)AfT fk

Equations (3.80) and (3.81) are required in order to link the initial and final state and

costate with the interior points. The total number of equations in Eqs. (3.69)-(3.81) is

(2n + m + c)K + 4n + q + 2 (the same as the number of unknown variables). The solution to

AK T D Dt tf - toA Dki A Dk,K+
i=1

0T ag9k +AT fk T - Ck
-Uk k auk - k OUk

(Xo, to, Xto , tf) = 0

S=X 0 
+  ax

A T - V TX

K
tf - to

k=1

K
tf - to

ki=l

Pjk = , when Cjk < O

,jk < 0 when Cjk = O

T O k+ Ak O~



these nonlinear algebraic equations is an indirect solution to the optimal control problem.

Note that Eqs. (3.75)-(3.76) were derived from the original necessary conditions using

the relationships:

S t - to l Ol 1
H2(to) = 2 dt + - NdT (3.82)

2 -1 ato 2 i-

H(tf) = dr + - Rd (3.83)2 _-1 at 2
3.2.3 Costate Mapping Theorem

A costate estimate for the Bolza problem results from a comparison of the discretized nec-

essary conditions from Section 3.2.2 to the optimality or Karush-Kuhn-Tucker conditions

of the nonlinear programming problem in Section 3.2.1. The theorem presented here is an

expansion of the one developed in Ref. 6 and is published in Ref. 8.

Theorem 1 (Gauss Pseudospectral Costate Mapping Theorem). The Karush-Kuhn-

Tucker (KKT) conditions of the NLP are exactly equivalent to the discretized form of the

continuous first-order necessary conditions of the Bolza problem when using the Gauss pseu-

dospectral discretization. Furthermore a costate estimate at the initial time, final time, and

the Gauss points can be found from the KKT multipliers, Ak, Ak, AF, and F,

Ak = A+ AF
Wk

2 ik
tf - to wk (3.84)

"=--

A0 = A• o, A(t) = ;iF

Proof of Theorem 1. Using the substitution of Eq. (3.84), it is seen that Eqs. (3.55)-(3.67)

are exactly the same as Eqs. (3.69)-(3.81).

Theorem 1 indicates that solving the NLP derived from the Gauss pseudospectral tran-

scription of the optimal control problem is equivalent to applying the Gauss pseudospectral



Figure 3-1: Flow diagram of the Gauss pseudospectral transcription (both direct and indirect
approaches).

discretization to the continuous-time, first-order optimality conditions. Fig. 3-1 shows the

solution path for both the direct and indirect methods. In the indirect path, the optimal

control problem is converted into a continuous-time Hamiltonian boundary-value problem

(HBVP) using the first order necessary conditions. The continuous-time HBVP is then dis-

cretized via pseudospectral transcription at the LG points. Conversely, along the direct path,

the optimal control problem is discretized via the Gauss pseudospectral transcription at the

LG points, which results in an NLP. The solution to the NLP satisfies the KKT conditions.

The costate mapping relates exactly the KKT conditions from the direct method to the dis-

cretized necessary conditions from the indirect method. Note that in the proof of Theorem

1, it is assumed that Pontryagin's equation(Eq. (2.15)) is not necessary to determine the

control.

To show equivalence, Theorem 1 uses the KKT multipliers Ak, Ak, AF, and Fi, as well

as a created variable, o0 , defined in Eq. (3.48). Defining &F in this manner makes the

equivalence easier to see, but if one were to use Eq. (3.48) in practice, it would require

formulating the transversality condition, which may involve complicated partial derivatives.

Instead, it can be shown that an estimate for the initial costate can be computed directly



from the other NLP multipliers, Ak and AF, thus eliminating the need for Eq. (3.48).

Lemma 5. This relationship between the initial costate approximation and the NLP multi-

K

Ao = AF - EDioAi (3.85)

Proof of Lemma 5. This relationship can be derived by examining the KKT conditions in

Section 3.2.1. It was shown in Eq. (3.56) that the following condition holds for the derivative

of the augmented cost function with respect to the state at the Gauss points:

+ Dki + FD k,K+ 1

(3.86)
2 jT aCk

+ tf - to wk axk (k= 1,..., K)

Using Lemmas 2 and 4 to convert D t into D results in

T)
+ AF

- +wi=1(T09k (Ak
8Xk w

-T
AF

Wi
Dik +

wk

afk
aXk

K

F

i= 1

Wi
i Dik

Wk

2 --To Ck
+ tf k atk

tf - to Wk 89Xk ) I
(3.87)

(k = 1, . ..,K)

Canceling like terms on the left-hand side of Eq. (3.87), results in

2 k _ aCk
tf - to Wk Xk

(k= 1,... K)

(3.88)

Furthermore, it was shown in Eq. (3.67) that AF and Ao are related as

+T) ]ifk

Eq. (3.88) can be substituted into Eq. (3.89) to obtain

K K T

AF = Ao - k Dik

k=1 i=1

pliers is:

K i

i=1 Wi

tf - to

2
9gk

OXk

(T
Wk

+)
+ ALT

tf - to
2

K ~T

SDik =
wk

tf - to
2

Ogk
OXk

Ak +
Wk 

F

9gk
8Xk

KT = T tf - to
AF  0 2 E2k

kc=1

kT

Wk
2 fi tCk

tf - t0 Wk JXk(3.89)

(3.90)

Ofk
8Xk

0fk- + +

Wk (



which can be rewritten as
K K

AF = o - AiDik (3.91)
k=1 i=1

Note that &A is independent of the summation over the index k. Consequently, Eq. (3.91)

further simplifies to
K K

AF = Ao - i E Dik (3.92)
i=1 k=1

Then, applying Lemma 3 gives

K

AF = A + iDo (3.93)
i=1

Rearranging,
K

Ao = AF - Z A2 Dio (3.94)
i=1

This approximation for the initial costate has a very small computational cost associated

with it, and is preferred in practice over the transversality condition of Eq. (3.48).

3.3 Convergence

The equivalence described in the previous section provides a way to relate the discrete direct

transcription with the discrete indirect transcription of the optimal control problem. Yet

what is still missing is a proof that shows that a solution to the discrete NLP converges to

the optimal solution of the original, continuous-time optimal control problem. This is by no

means a trivial proof, and is currently being studied by several researchers. 36'49, 71

Most discussions on convergence in the literature refer to the ability of a numerical inte-

grator to converge to the true solution when integrating a system of differential equations.

Euler, trapezoidal, and Runge-Kutta methods all have certain convergence properties. 2' 44

However,, convergence of an integration method does not necessarily mean that the same

discretization scheme will converge when used to solve an optimal control problem. Hager 56

showed that a "convergent" Runge-Kutta method may not actually converge to the contin-



uous optimal solution when used to solve an optimal control problem. Conversely, Betts15

showed that a "nonconvergent" scheme could be used to solve inequality constrained opti-

mal control problems. The inclusion of a cost function adds an interesting but frustratingly

difficult aspect to convergence proofs for optimal control problems.

Kameswaran and Biegler 71, 72 have attempted to show convergence for their pseudospec-

tral method. Their method is essentially the Radau pseudospectral method implemented in

a local fashion, meaning the trajectory is broken into segments and each segment is pseu-

dospectrally approximated. By implementing the RPM in a local manner, they are able to

use the more traditional approach to convergence, namely that the segment step size dimin-

ishes to zero in the limit. However, this formulation is limited in the sense that they are able

to show convergence, but not "spectral" convergence.

For global pseudospectral approaches, there is only one segment, so some other approach

to convergence must be used. Rather, one can show convergence as the number of dis-

cretization points increases to infinity. This approach is commonly seen in the literature

for the convergence of methods used to solve partial differential equations. 23, 120 Interest-

ingly, there is a large body of research that discusses convergence of pseudospectral methods

for boundary value problems involving PDEs. 51, 52,61,83,108 Canuto proved in Ref. 23 that

pseudospectral methods converge spectrally for elliptic boundary value problems when using

Legendre polynomials. However, there is still no mention of solving optimal control problems

using pseudospectral methods.

Recall that the Gauss pseudospectral method is able to show equivalence between the

KKT conditions of the NLP and the first-order optimality conditions of the discretized

HBVP. This HBVP is very similar to the boundary value problems that are formulated in

Canuto's book, as initially discussed in Ref. 90. Currently, it remains unclear if it is possi-

ble to formulate the HBVP in a manner that can properly use Canuto's approach to prove

convergence. However, as the connection between pseudospectral BVPs and pseudospec-

tral discretizations to OCPs grows stronger with further study, a better understanding of

convergence may be uncovered.

Lastly, Gong & Ross take an entirely new approach to convergence which seems to work

quite well for showing the convergence of the primal solution.4 8 This method is based



on Polak's theory of consistent approximations and assumes that there exists a quantity

called an accumulation point.4 9 This assumption is verified by their formulation of the

optimal control problem. However, they use this same assumption to show the convergence

of the costate, yet there is no justification for a costate accumulation point in their problem

formulation. Hence, the convergence of the primal solution is valid, but convergence of the

dual solution (i.e., costate) is under dispute.

3.4 Summary

This chapter describes a reformulated version of the Gauss pseudospectral method originally

proposed in Ref. 6. This differential form can handle a more general optimal control problem

with inequality state and/or control path constraints. The key properties of the Gauss

pseudospectral method have been identified. In particular, the KKT conditions from the NLP

obtained via the Gauss pseudospectral discretization are derived and shown to be identical to

the first-order optimality conditions of the general continuous-time optimal control problem

discretized via the Gauss pseudospectral method. As a result, the KKT multipliers of the

NLP can be used to obtain an accurate estimate of the costate and an updated costate

mapping procedure is presented.



Chapter 4

Improving the Boundary Control

As mentioned in Chapter 3, the GPM discretizes the control only at the LG points and

does not disctretize the control at either the initial or the terminal point. Consequently, the

solution of the NLP defined in the previous chapter does not produce values of the controls at

the boundaries. The ability to obtain accurate initial and terminal controls can be critical in

many applications, particularly in precision guidance and real-time computations. Control

schemes like model-predictive control99 (MPC) implement only the first portion of the control

profile before the optimal control profile is recomputed at the next time step. Consequently,

the accuracy of the initial control when using MPC is extremely important. Thus at first

glance, the lack of an explicit initial control for the Gauss pseudospectral method would

limit the effectiveness of this method. This chapter discusses traditional methods and a

novel approach to generating accurate values for the initial control.

In order to implement the control from an NLP, the discrete control must be transformed

into a continuous-time control via an interpolation scheme. There are several interpolation

techniques commonly used in practice. For example, direct methods such as the trapezoidal

method or Hermite-Simpson method, 14 use piecewise polynomial splines30 to represent the

continuous-time control profile, where it is required that the spline approximation, U(t),

equal the NLP control at the M grid points:

U(tk) = Uk, Vk = 1,...,M (4.1)



If the grid points do not involve the boundary points (as in the GPM), the lack of control

information at the boundaries can be overcome simply via extrapolation of the control at the

LG points. For example, the Radau pseudospectral method discretizes the control only at

the Radau points, meaning that one of the boundary points (either the initial or final point)

is not an explicit point in the discretization. As seen in Eq. (6.16), the continuous-time

control is commonly determined from a Lagrange polynomial extrapolation 71 , 72 rather than

a spline approximation.

So which interpolation scheme should be used to determine the boundary controls for the

GPM? In fact, multiple reasons exist that suggest any polynomial extrapolation may not be

the best approach. First, since the GPM discretization of the control assumes no particular

functional form, it is unclear which extrapolation would be the best function to use. Seccond,

any reasonable extrapolation of the control may violate a path constraint which, in general,

will render the extrapolated control infeasible. Third, even if the extrapolated control is

feasible, it will not satisfy the required optimality conditions at the boundaries (i.e., the

control will be suboptimal with respect to the NLP). The previously mentioned traditional

extrapolation approaches suffer from these deficiencies. Consequently, it is both practical

and most rigorous to develop a systematic procedure to compute the boundary controls. The

next section develops an approach to compute the boundary controls from the primal and

dual solutions of the NLP arising from the Gauss pseudospectral method.

4.1 Algorithm for Computation of Boundary Controls

This section proposes an algorithm for the computation of the initial and final control. Rather

than simply extrapolating a continuous-time approximation to the boundaries, as done in

the traditional approaches, this algorithm utilizes the mathematical equivalence between the

optimality conditions of the NLP and the HBVP to solve for the boundary control. Using

accurate boundary state and costate estimates from the NLP, one can solve for the optimal

control at the boundaries. Because the approach for computing the initial control is identical

to the approach for the terminal control, this section focuses on the computation of just the

initial control.



First, the augmented Hamiltonian, 7 1a, for the continuous-time optimal control problem

is defined (in shorthand notation) as

ia(x, u, A, t) - g + ATf - TC (4.2)

Recall that, from the minimum principle of Pontryagin, at every instant of time the optimal

control is the control u*(T) E U that satisfies the condition

H.H(x*, u*, A*, ,*) • •a(x*, U, A*, ,A*) (4.3)

where U is the feasible control set. Consequently, for a given instant of time T where

x*(T), A*(T), and *(7) are known, Eq. (4.3) is a constrained optimization problem in the

u(T) E Rm . In order to solve this constrained optimization optimization problem at the

initial time, it is necessary to know x*(ro), A*(To), and i*(70).

Consider now the information that can be obtained by solving the NLP associated with

the GPM. In particular, the primal solution to the NLP produces X(To) while the dual

solution to the NLP can be manipulated algebraically to obtain the initial costate, A(To).

However, because the NLP does not evaluate that path constraint at the boundaries, there

is no mapping to the Lagrange multiplier t(To). This apparent impediment can be overcome

by applying the minimum principle in a manner somewhat different from that given in

Eq. (4.3). In particular, let H be the Hamiltonian (not the augmented Hamiltonian), where

hI is defined as

-(x, u, A) -g + ATf (4.4)

It is seen in Eq. (4.4) that the term involving the path constraint is not included. The

Hamiltonian can be used in place of the augmented Hamiltonian in Eq. (4.3) due to com-

plementary slackness, which states that the term with the path constraint is zero at the

optimal solution. The path constraint is instead incorporated into the feasible control set.

In particular, let Vo

Vo = u nCo (4.5)

which is the intersection of the original set of feasible controls at time To, denoted U, with



the set of all controls at time To that satisfy the inequality constraint of Eq. (3.14), denoted

Co. Under the assumption that an optimal solution does exist, the set V must be nonempty.

Then, using the values of X(To) and A(To), the following modified optimization problem in

m variables U(To) E Rm can be solved to obtain the initial control, U(To):

minimize H7-(X(To), U(To), A(To), To; to, tf) (4.6)
U(To) E Vo

It is noted that, because Vo is restricted by the inequality path constraint at ro, the solution

of U(To) is equivalent to the solution of the following problem:

minimize 7t(X(0o), U(ro), A(To), 70; t0 , tf)
U(To) E U
subject to (4.7)

C(X(To), U(To), T0; to, tf) < 0

Interestingly, if the constraint is active, then the initial path constraint multiplier, ft(To),

will also be determined by the minimization problem of Eq. (4.7). Finally, as alluded to

above, the control at the terminal time, U(Tf), can be obtained by solving the minimization

problem of Eq. (4.7) at T = Tf, i.e.,

minimize H-(X(rf), U(Tf), A(Tf), Tf; to, tf)U(Tf) EU
subject to (4.8)

C(X(Tf), U(Tf), Tf; to, tf) 0

4.2 Applications of Boundary Control Algorithm

The minimization problem posed in the previous section is now applied to three example

problems. The problems considered include a problem with no path constraints, a problem

with equalty path constraints, and a multiple-phase launch vehicle problem with equality

and inequality path constraints.

These examples employ three different control interpolation schemes to convert the dis-

crete NLP control to continuous time. Recall that any interpolation scheme is valid, as long



as it is collocated with the NLP control values at the K LG points. The first approach uses a

summation of K Lagrange polynomials, similar to the state approximation, denoted as "La-

grange" in Figs. 4-2-4-4. The second approach uses piecewise polynomial splines, computed

using the "interpl" command in MATLAB 77 with the "spline" option. The third technique

uses the boundary control algorithm to compute the initial and final control, and then fits a

summation of K + 2 Lagrange polynomials through those points. This approach is denoted

as "Pontryagin" in Figs. 4-2-4-4. The accuracy of these three methods is compared, as well

as the rate at which the accuracy improves as the number of nodes, N, increases (recall from

Chapter 3 that N = K + 2).

Another metric to measure the accuracy of the control interpolation is to actually imple-

ment the continuous-time control according to the dynamic equations and then evaluate the

resulting cost. A desirable control law would produce a propagated cost that is close to the

analytic cost.

4.2.1 Unconstrained Problem

Consider the following optimal control problem with two states and one control:

minimize J = x2(tf) (4.9)

subject to the dynamic constraints

(4.10)

X1 = 2+u12

and the initial conditions

Xz(0) =1, X2 (0) = 0 (4.11)

where tf = 5. This problem was taken from Ref. 72, and the solution to this problem is

shown in Fig. 4-1. The analytic solution is



Figure 4-1: Solution for the unconstrained problem.

(t) = 2 e3/2t + e-3/2t
2 + e3  2+e 3

x2(t) = 2(e 3t - 1) e6 (e- 3t - 1) (4.12)
(2 + e3 )2  (2 + e3 )2

u(t) 2 e3/2t 2e3  -3/2t
2 + e3  2 + e3

Fig. 4-2 depicts the error in the initial control for all three types of control interpolation

as the number of nodes is increased. It is clear from the figure that using the boundary

control algorithm ("pontryagin") improves both the accuracy of the initial control for a

given number of nodes and the convergence rate. Similar results are shown for the final

control in Fig. 4-3.

The error in the propagated cost is shown in Fig. 4-4. Again, the interpolation scheme

involving the boundary control algorithm outperforms the other two approaches. Notice also

that the spline interpolation method has a much slower convergence rate. This phenomenon

is shown in the next example as well, and suggests that for some problems, a Lagrange

interpolation scheme leads to more accurate solutions than the more common practice of

using splines. Put in another light, this also suggests that, when using the boundary control

algorithm, fewer nodes are needed to discretize the problem in order to get the same level of

accuracy in the result.
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Figure 4-2: Error in the initial control as the number of nodes is increased for a spline extrap-
olation, a Lagrange extrapolation, or by using Pontryagin for the unconstrained problem.
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Figure 4-3: Error in the final control as the number of nodes is increased for a spline extrap-
olation, a Lagrange extrapolation, or by using Pontryagin for the unconstrained problem.
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Figure 4-4: Error in the propagated cost as the number of nodes is increased for a spline ex-
trapolation, a Lagrange extrapolation, or by using Pontryagin for the unconstrained problem.

4.2.2 Problem with a Path Constraint

Consider the following optimal control problem with three states and two controls:

minimize J = -xl (tf) (4.13)

subject to the dynamic constraints

X= VUl

(4.14)i2 = Vu 2

VT = a- gu 2

u2 + u2 = 1

84
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and the boundary conditions

X1(0) = x2(0) = V(O) = 0
(4.16)

X2(tf) = 0.1

where tf = 2, g = 1, and a = 0.5g. Commonly known as the "max range" problem, where

x1 is the downrange direction, this problem was taken from Ref.22. The NLP solution is

compared to the boundary value problem solution using "bvp4c" in Matlab.7 7 The state

solution is shown in Fig. 4-5(a). The control solution is presented in Fig. 4-5(b).

H

Xl t

(a) State Solution (b) Control Solution

Figure 4-5: Solution for the path constrained problem.

Since there are two elements of control in this problem, Figs. 4-8 and 4-9 depict the

error in the initial controls as the number of nodes is increased for all three types of control

interpolation. Again, the boundary control algorithm improves the initial control by several

orders of magnitude. Similar results are shown for the final controls in Figs. 4-10 and 4-11.

Recall in the boundary control algorithm presented in Section 4.1, the control path

constraint is enforced at the boundaries as well. If one were to simply extrapolate the

control using either splines or Lagrange polynomials, there would be no guarantee that

the path constraint would be satisfied, and therefore one could potentially end up with

an infeasible initial or final control. The boundary control algorithm guarantees a feasible

boundary control. Figs. 4-6 and 4-7 show that for small values of N, the path constraint is

indeed violated at the boundaries if "spline" or "Lagrange" extrapolation is used. However,
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Figure 4-6: Error in the equality path constraint at To as the number of nodes is increased
for a spline extrapolation, a Lagrange extrapolation, or by using Pontryagin in the path
constrained problem.

by using the "Pontryagin" approach presented in this chapter, the path constraint is always

satisfied at the boundaries, regardless of the number of nodes used.

The error in the propagated cost is shown in Fig. 4-12. As seen in Example 1, the

boundary control algorithm ("Pontryagin") is the best performer, although for this example,

the improvement over the standard Lagrange interpolation is slight. However, the spline

interpolation method significantly underperforms, suggesting that splines are not the best

interpolation scheme to use for this type of problem.

[h]

4.2.3 Launch Vehicle Ascent Problem

The problem considered in this section is the guidance for a Delta III launch vehicle during

its ascent to orbit. The objective is to maneuver the launch vehicle from the ground to the

target orbit while maximizing the remaining fuel in the upper stage. This problem has been

rigorously studied and results are documented in Ref. 6.
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Figure 4-9: Error in the initial control, u2(to), as the number of nodes is increased for a spline
extrapolation, a Lagrange extrapolation, or by using Pontryagin in the path constrained
problem.

Vehicle Properties

The Delta III expendable launch vehicle has two stages along with nine strap-on solid rocket

boosters. The flight of the vehicle can be divided into four distinct phases. The first phase

begins with the rocket at rest on the ground and at time to, the main engine and six of

the nine solid boosters ignite. When the boosters are depleted at time t1 , their remaining

dry mass is ejected. The final three boosters are ignited, and along with the main engine,

represent the thrust for phase two of the flight. These boosters are then ejected once their

fuel is exhausted at time t 2, and the main engine alone creates the thrust for phase three.

The fourth phase begins when the main engine fuel has been exhausted (MECO) and the

dry mass associated with the main engine is ejected at time t3. The thrust during phase

four is from a second stage, which burns until the target orbit has been reached (SECO) at

time t4 , thus completing the trajectory. The specific characteristics of these rocket motors

can be seen in Table 4.1. Note that the solid boosters and main engine burn for their entire

duration (meaning t 1, t 2, and t3 are fixed), while the second stage engine is shut off when
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Figure 4-10: Error in the final control, u (tf), as the number of nodes is increased for a spline
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the target orbit is achieved (t4 is free).

Table 4.1: Properties of the Delta III launch vehicle

Solid Boosters Stage 1 Stage 2

Total Mass (kg) 19290 104380 19300
Propellant Mass (kg) 17010 95550 16820
Engine Thrust (N) 628500 1083100 110094

Isp (sec) 284 301.7 462.4
Number of Engines 9 1 1

Burn Time (sec) 75.2 261 700
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Dynamic Model

The equations of motion for a non-lifting point mass in flight over a spherical rotating planet

are expressed in Cartesian Earth centered inertial (ECI) coordinates as

Sr=v

p Tv = r + -u +
IrjI3 mr (4.17)

where r(t) = is the position, v = [vX(t) vY(t) vz(t) ] is the Carte-

sian ECI velocity, p is the gravitational parameter, T is the vacuum thrust, m is the mass,

go is the acceleration due to gravity at sea level, Isp is the specific impulse of the engine,

u = u[ u Z uz is the thrust direction, and D = [ D

The drag force is defined as
1

D = -CDArefPI|Vrel IVrel2

DY Dz ]T is the drag force.

(4.18)
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Figure 4-12: Error in the propagated cost as the number of nodes is increased for a spline
extrapolation, a Lagrange extrapolation, or by using Pontryagin for the path constrained
problem.

where CD is the drag coefficient, Aref is the reference area, p is the atmospheric density, and

vrel is the Earth relative velocity, where v,,e is given as

Vrel = v - w x r (4.19)

where w is the angular velocity of the Earth relative to inertial space. The atmospheric

density is modeled as the exponential function

p = poe - h /ho (4.20)

where Po is the atmospheric density at sea level, h = Irll - Re is the altitude, Re is the

equatorial radius of the Earth, and ho is the density scale height. The numerical values for

these constants are found in Table 4.2.

^-2



Table 4.2: Constants used in the Delta III launch vehicle problem

Constant Value
Payload Mass (kg) 4164

Aref (m2) 47
Cd 0.5

P0o (kg/m 3) 1.225
h0 (km) 7.2

tl (s) 75.2

t2 (s) 150.4
t3 (s) 261

Re (km) 6378.14
VE (km/s) 7.905

The launch vehicle starts on

the ECI initial conditions are

the ground at rest (relative to the Earth) at time to, so that

r(to) = ro = 5605.2 0 3043.4 1

v(to) = vo = 0 0.4076 0 ]T kr

m(to) = mo0 = 301454 kg

i/s

km

(4.21)

which corresponds to the Cape Canaveral launch site. The terminal constraints define the

target geosynchronous transfer orbit (GTO), which is defined in orbital elements as

af = 24361.14 km,

ef = 0.7308,

if = 28.5deg,

Qf = 269.8 deg,

wf = 130.5 deg

(4.22)

The orbital elements, a, e, i, R, and w represent the semi-major axis, eccentricity, inclina-

tion, right ascension of the ascending node (RAAN), and argument of perigee, respectively.

Note that the true anomaly, v, is left undefined since the exact location within the orbit is

Constraints



not constrained. These orbital elements can be transformed into ECI coordinates via the

transformation, To2c as shown in Ref. 114.

In addition to the boundary constraints, there exists both a state path constraint and

a control path constraint in this problem. A state path constraint is imposed to keep the

vehicle's altitude above the surface of the Earth, so that

Irl > Re (4.23)

where Re is the radius of the Earth, as seen in Table 4.2. Next, a path constraint is imposed

on the control to guarantee that the control vector is unit length, so that

lul|2 = 1 (4.24)

Lastly, each of the four phases in this trajectory is linked to the adjoining phases by a

set of linkage conditions. These constraints force the position and velocity to be continuous

and also account for the mass ejections, as

r(P)(tf) - r(p+l)(to) = 0,

v(P)(tf)- v(P+ 1)(to) = 0, (p = 1,.. .,3) (4.25)

m(P)(tf) - m) - m(- l )(to) =

where the superscript (p) represents the phase number.

The optimal control problem is then to find the control, u, that minimizes the cost

function

J = -m(4)(tf) (4.26)

subject to the conditions of Eqs. (4.17), (4.21), (4.22), (4.23), and (4.24). Lastly, it is noted

that this problem is scaled canonically in order to make the NLP more tractable. Distances

are scaled by the radius of the Earth, Re, velocities are scaled by the Schuler period (the

circular orbit velocity at the radius of the Earth, VE), and mass is scaled by the total vehicle

mass.



Results

This optimization problem was transcribed into an NLP via the Gauss pseudospectral tran-

scription of Section 3.1.1 using 20 nodes in each phase. The NLP was then solved in MAT-

LAB using the new software GPOCS8 6 in conjunction with SNOPT.45 The optimal altitude

profile is shown in Fig. 4-13. The burn duration of the final stage is 665.3 seconds out of a

possible 700 seconds, resulting in 668.2 kg of fuel remaining in the second-stage tank. The

profiles for the three components of control are shown in Fig. 4-14.
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Figure 4-13: Optimal altitude profile for the Delta III launch vehicle example.

There is no analytic solution to this problem, so the NLP solution cannot be compared

to an exact solution. However, it appears from Fig. 4-14 that the control profile should be

continuous. Since there are no linkage constraints that require the control to be continuous

at the phase boundaries, the extrapolation techniques can be examined to see which ones

are closer to being continuous at the phase boundaries. For this example, two approaches

are used. First, the control in each phase is extrapolated to the boundaries using a spline

extrapolation. Second, the control at the boundaries is computed using the approach of

Section 4.1. At the three interior phase boundaries (tt, t2 , and t3), the extrapolated final

.................I . ..................................
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Figure 4-14: Profile of the three components of the optimal control for the Delta III launch
vehicle example.

control from one phase is compared to the extrapolated initial control of the next phase, or

|Ui(tk), - Ui(tk)+J, where ui, (i = 1, 2, 3) are the three components of control and tk, (k =

1, 2, 3) are the three phase interfaces. The difference in extrapolated controls are shown for

the spline extrapolation in Fig. 4-15 versus the number of nodes per phase. A similar graph

is shown for the Pontryagin extrapolated controls in Fig. 4-16. In the spline extrapolation,

the difference between the extrapolated controls is roughly 10- 3 when using 10 nodes, and

gradually becomes more accurate as the number of nodes increases. Using Pontryagin, on

the other hand, produces extremely similar boundary controls (- 10-6) for small numbers of

nodes, which is a significant improvement over the spline approach. The results of Fig. 4-16

hover around the optimality tolerance of 10-6 for all the simulations tested.

4.3 Summary

This chapter described a method to obtain more accurate information about the control at

the boundary through post-processing. A post-optimality computation is performed where

-:: :~
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Figure 4-15: The difference in spline-extrapolated control, lui(tk)- - ui(tk)+l, at all three
interior phase interfaces in the launch vehicle example. Some differences are significantly
greater than the optimality tolerance of le - 6.
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Figure 4-16: The difference in Pontryagin-extrapolated control, lui(tk) - Ui(tk)+ , at all
three interior phase interfaces in the launch vehicle example. Almost all differences lie below
the optimality tolerance of le - 6.
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the Pontryagin minimum principle is applied at the boundary points in order to obtain a more

accurate control approximation at the initial and final times. The results show signifcant

improvement in simulation when compared with a control approximation that uses various

extrapolation techniques to compute the boundary control.
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Chapter 5

Local versus Global Orthogonal

Collocation Methods

Orthogonal collocation methods are traditionally global in nature, meaning that a global

interpolating polynomial spans the entire problem interval. However, orthogonal collocation

methods have been used locally,27,72 meaning the problem interval is divided into segments

and a "global" interpolating polynomial spans the width of each segment. The segments are

then connected by various linkage conditions, similar to the concept of phases presented in

Chapter 3. The conceptual difference between phases and segments are that phase interfaces

usually represent a physical event (such as a mass drop in a launch vehicle problem), whereas

segment interfaces are simply a construct of the numerical approximation procedure, and

tend to be more numerous. Furthermore, phases may occur in parallel, while segments are

sequential in the independent variable (as seen in Chapter 7).

This chapter compares the theory and implementation of a global and local approach

for the Gauss pseudospectral method. Proponents of the global approach tout the "spectral

accuracy" (see Chapter 2) of the method for smooth problems, while proponents of the local

approach claim the benefits of "local support". These two approaches are compared on two

example problems. The first example is a smooth problem with nonlinear dynamics and a

quadratic cost, while the second example is a "bang-bang" problem that is discontinuous in

the control. Each method is evaluated on accuracy of the NLP solution, convergence rate,

and computational efficiency.



5.1 Local GPM Approach: Segments

First, the description of the Gauss pseudospectral transcription of Chapter 3 is slightly

modified to reflect the partitioning of the optimal control problem into segments. This

local application of the GPM is a similar approach to that found in Refs. 26, 71,104. The

continuous Bolza problem of Eqs. (2.7)-(2.10) is transcribed to a nonlinear programming

problem using the local Gauss pseudospectral method as follows. First, the original time

interval I = [to, tf] is divided into S sub-intervals (or segments) Is, (s = 1,..., S) such that

I, = [t.-1, t] and

S

= 0
s=1

S

U Is= I
s=1

where 0 is the empty set. Within each sub-interval, the time, 0t( ), is transformed to the

interval [-1, 1] via the affine transformation

T() = 2t(s)  t5 + ts 1I (5.1)
ts - ts-l ts - ts-1

where -(') e [-1, 1] and denotes the transformed time in I,. Each sub-interval Is, is dis-

cretized according to the GPM. For example, the state is approximated using a basis of N +1

Lagrange interpolating polynomials, i(-r), (i = 0, ... , K), as in Eq. (3.1):

K

x(T) X()) = X ()LX(T) (5.2)
i=0

where K is the number of Legendre-Gauss points. The resulting NLP is as follows: Minimize

S f S) S) (5.3)
J= '(x,•) t, (s) s)) E 2 W(s) g(Xk), U(S) -ts)l, ts)  (5.3)

s=1 k=1

100



subject to the dynamic constraint

K t() (8)

D X - 2 o (S) Xk (S) •s); t- 1, t8) = 0,
i= 2 (5.4)

(k = 1,...,K), (s = 1, .. ,S)

and the Gauss quadrature

t(s) -t () K
X + 2 E Wks) s) ')kf( ),k Tk s) ;-1, ts), (S = 1, ... , S) (5.5)

k=1

where X(s)  X( s) )  I •n and Uks)  U( (s)) E R m . Next, the boundary constraint of

Eq. (2.9) is expressed as

O(X(1)~ fo, X S ) t (s ) ) = 0 (5.6)

Furthermore, the path constraint of Eq. (2.10) is evaluated at the LG points in each segment

as

C(X),U s ) s )  s)0 (k = 1... K) (8= 1... S) (5.7)

Lastly, the state can be constrained to be continuous across segment boundaries by including

the following linkage conditions:

L (X81) ), ), , XS+) +1) 0, (s = 1,.. ., S-1) (5.8)(8) kff f 0

The cost function of Eq. (5.3) and the algebraic constraints of Eqs. (5.4), (5.5), (5.6), (5.7),

and (5.8) define an NLP whose solution is an approximate solution to the continuous Bolza

problem.

In the case where one sub-interval is used (i.e., S = 1), the GPM is employed as a global

collocation method. Conversely, in this analysis it is assumed that any case where S > 1, to

be a local application of the method (although, strictly speaking, this is untrue). In the latter

case, the sub-intervals are connected via linkage conditions on the state, the independent

variable, and, possibly, the control. The analysis that follows compares the GPM in both

global collocation (i.e., S = 1) and local collocation (i.e., S > 1) for a given number of total
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discretization points.

5.2 Global and Local Applications of the GPM

In this comparison, the Gauss pseudospectral method is applied as both a global and a

local collocation method on two examples. As a global collocation method, the number of

segments is set to unity (i.e., S = 1) and the accuracy is assessed as a function of the number

of collocation points, N. As a local collocation method, the number of collocation points in

a given sub-interval is fixed and the number of sub-intervals is varied. In the local approach,

five nodes (three LG points plus two boundary points) are chosen for each sub-interval and

the width of each sub-interval is constrained to be equal. Fig. 5-1 depicts the distribution

of nodes and collocation points for both the global and local approaches using a total of 20

discretization points. Recall from Chapter 2 that the LG points are more dense near the

endpoints than in the middle, which is readily apparent in Fig. 5-1. It is emphasized that, for

both approaches, once the number of LG points per interval is determined, the location of

each point inside the interval is immediately fixed. All examples in this chapter were solved

using the TOMLAB ® version 59 of the sparse NLP solver SNOPT 45 with default tolerances

and comparable initial guesses for both the local and global approaches. A Pentium 4,

3.2 GHz desktop computer was used for all computations and any documented computation

times are in reference to this machine.

5.2.1 Modified Hicks-Ray Reactor Problem

Consider the Hicks-Ray reactor probleml 04 where it is desired to minimize the quadratic cost

functional

O [ai(C(t) - 0)2 + a2(T(t) - T) + a3 (U(t) - U)2] dt (5.9)
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Figure 5-1: Distribution of nodes and collocation
proaches (N = 20).

subject to the nonlinear dynamic constraints

0(t)

T(t)

segment 3 segment 4
.. i. ...... ® • ...... ® ......

o global nodes
* global collocation points
O local nodes
* local collocation points

Ii ii · ··· i: .. ... M I. M

points for both the global and local ap-

=- 0 -t kloC(t)e
-t / T (t )

yf - T(t) + k1oC(t)e-t/T(t)

-a(T(t) - yc)U(t)

and the initial conditions
C(0)
T(0)

= 0.1367

= 0.7293

The two states are denoted by C(t) and T(t), the control is denoted by U(t), and all other

parameters are constants. This problem has no analytic solution, however, this analysis

compares the NLP solutions to a highly accurate extremal solution of the Hamiltonian

boundary-value problem (HBVP) associated with Eqs. (5.9)-(5.13). This HBVP solution

was found using the MATLAB boundary-value problem solver BVP4C77 and is shown in

Fig. 5-2. Finally, it is noted that the traditional form of this example includes the (active)
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path constraint U(t) > 0. However, due to the increased difficulty in accurately solving a

path-constrained HBVP and the fact that this is simply an illustrative example, the path

constraint was omitted for this analysis.

The results obtained by solving the Hicks-Ray reactor problem using GPM as both a

global and a local collocation method are shown in Figs. 5-3 and 5-4, respectively. The

"error" in these figures represent the maximum absolute error between the NLP state and

the HBVP state across the discretized trajectory for a given number of nodes, N. Fig. 5-3

shows the error for the global approach as the number of nodes increases. It is seen from

Fig. 5-3 that the error decreases at a spectral rate43 as N increases and attains a minimum

just below the feasibility tolerance of 10-6 for discretizations with at least 21 nodes. This

rapid convergence is typical for pseudospectral methods and is one of the primary motivations

for using a global approach. As for the local approach, Fig. 5-4 shows the error in the state

as a function of the number of segments where five nodes (three LG points) were used per

segment. The state errors using local collocation converge at a much slower rate than seen

in the global approach. Notice that the data shown for the global approach end at 30

nodes while the data for the local approach extend to 25 segments, or 125 total nodes. For

comparison, the vertical line in Fig. 5-4 represents the largest number of nodes used in the

global scenario. Thus for 30 total nodes, the global method has an accuracy better than

10- 6 (Fig. 5-3), while the local method produces an accuracy of - 10- 3 (Fig. 5-4). Often

in practice, it is desirable to know how many nodes are required to achieve a certain level

of accuracy. The data in this example show that to achieve an accuracy of 10- 5, one would

need 16 nodes in the global approach and more than 125 total nodes in the local approach.

Although the global method outperforms the local method in accuracy, one must also

consider the computational efficiency between the two approaches. First, it is noted that,

for the same number of nodes, the global method results in a much more dense constraint

Jacobian as compared to the local method since the collocation equations are a function of

the state and control across the entire interval in the global method. However, as seen from

Fig. 5-4, for a certain required accuracy, the local approach needs many more collocation

points as compared to the global approach. This results in a much larger, albeit sparser

Jacobian for the local approach. Table 5.1 summarizes the performance of each method
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for a desired accuracy. Specifically, Table 5.1 shows that, for a desired accuracy, the local

method requires significantly more computational effort as compared to the global approach

both in terms of CPU time and major iterations of the NLP solver. Table 5.1 also shows

that the larger, sparser Jacobian of the local approach results in a higher number of nonzero

elements than the smaller, more dense counterpart in the global approach, which is the

likely contributer to the higher computational expense. This result is not intuitive, as one

might expect the sparse NLP solver to perform faster on the large, sparse approach. For this

example, the extremely high accuracy of global polynomials outweighs the more numerous

but relatively inexpensive computations of the local approach.

Table 5.1: Computational expense for both the global and local approach in the Hicks-Ray
reactor problem

Global
Approach

Accuracy Nodes Non- Jacobian CPU Major Minor

Required Zeros Density (%) Time (s) Iterations Iterations
le-3 10 248 46 1.343 29 45
le-4 12 348 44 1.234 31 55
le-5 16 596 41 5.047 113 144
le-6 21 996 40 6.531 115 171

Local

Approach
Accuracy Nodes Non- Jacobian CPU Major Minor

Required Zeros Density(%) Time (s) Iterations Iterations
le-3 35 512 6.6 8.890 43 100
le-4 80 1178 2.8 49.86 56 174
le-5 165 2436 1.4 148.3 44 285

5.2.2 Problem with Discontinuous Control

In this problem, it is desired to minimize the cost functional

J = tf (5.14)
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Figure 5-2: BVP solution to the Hicks-Ray reactor problem.

subject to the dynamic constraints

= x2(t

= (t)

the boundary conditions

X,(0)

X1(tf)

= Xo

-o0

X2(0)

X2(tf)

- X20

=0

and the inequality control constraint

u(t) <_ 1

The key difference between this example and the previous example is that, for a wide variety

of initial conditions, the optimal control for this problem is "bang-bang", i.e., it switches

from either its maximum value to its minimum value (or vice-versa) at a time tb (where
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Figure 5-3: Convergence of Hicks-Ray Problem via global approach as a function of the
number of nodes, N.

o < tb < tf). Because of the discontinuity in the optimal control, it would appear at first

glance that a global approximation would be much less accurate than a local approximation.

However, the two methods are surprisingly comparable in their solution accuracy for this

problem.

Example 2 Solved without Knowledge of Discontinuity

The discontinuity in the control can drastically affect the accuracy of each approach depend-

ing on where the discontinuity is located. In order to fully assess the accuracy of solutions,

two different sets of initial conditions are considered. The first set of initial conditions is as

follows:

x1o = 3, X2 0 = 2 (5.18)

For the initial conditions of Eq. (5.18) the optimal switch time of the control is tb ; 4.2361,

which is designed to lie on the interior of a segment in both the global and local approaches,
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Figure 5-4: Convergence of Hicks-Ray problem via local approach as a function of the number
of segments, S (5 nodes per segment).

as opposed to on a segment boundary. Figs. 5-5 and 5-6 show the solutions for these initial

conditions which employ 40 nodes for the global GPM and 8 equally-spaced segments with

5 nodes per segment (40 nodes total) for the local GPM. Furthermore, Figs. 5-7 and 5-8

show the errors in the state (xl and x 2) and costate (A1 and A2) obtained from the global

and local GPM methods, respectively. Naturally, for both approaches the largest error in

the state occurs at the switch time. Note that the error in these figures is the absolute

difference between the NLP solution and exact analytic solution. Figs. 5-5-5-8 show clearly

that the results from both approaches are strikingly similar, and that the global approach is

slightly more accurate. Critics of global methods claim that by shifting the nodes towards

the boundaries, the sparsity of nodes in the middle of the trajectory degrades the accuracy

of the approximation. However, despite a reduced density in the center of the interval, the

maximum error is actually smaller with the global approach.
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- Exact u

--- GPM A,
+ GPM A2

- Exact A1

---- Exact A2

0 1 2 3 4 5 6

Figure 5-5: Solution to double integrator problem for initial conditions of Eq. (5.18) using
global LG collocation with 40 nodes.

Example 2 Solved with Knowledge of Discontinuity

It is important to note that both the global and local applications of the GPM assumed no

prior knowledge of the control switching time, tb. As is often the case, even if a disconti-

nuity in the solution is expected, the exact location of the discontinuity may be unknown.

Therefore in general, the switch time will not coincide with a segment interface when using

the local approach. However, one of the benefits of the local approach is that, if a switching

time is known, a segment interface can be located to coincide with this switch time. Yet this

concept can be applied to the global approach as well. The global approach then becomes

a semi-global approach where the number of segments is one greater than the number of

known discontinuities. This semi-global approach has been developed for different classes of

optimal control problems using the Legendre pseudospectral method 38 ,85 ,92, 95 and the Gauss

pseudospectral method. 66-68

In order to assess how a priori knowledge of the discontinuity can improve accuracy in
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Figure 5-6: Solution to double integrator problem for initial conditions of Eq. (5.18) using
local LG collocation with 8 segments of 5 nodes each.

both the global and local approaches, consider the following initial conditions:

x10 = -1 X20 = 2 (5.19)

The initial conditions of Eq. (5.19) has the interesting feature that the switch time in the

control is exactly tb = 3 and the optimal final time is t} = 4. Consequently, when a local

approach is employed with 8 equally spaced segments [i.e., the same number of segments

used with Eq. (5.18)], the switch time of the control lies at the boundary between the sixth

and seventh segments.

Using the initial conditions of Eq. (5.19), the GPM is employed in the following two

ways. First, the semi-global GPM is employed using two segments of 20 nodes each, where

the segment interface occurs at t = 3. The local GPM is employed as before with 8 segments

and 5 nodes per segment. The results of these two cases is shown in Figs. 5-9- 5-12. The

accuracy of both methods is improved dramatically. Comparing Figs. 5-11 and 5-12 it is

seen again that for all relevant quantities, the error using the local GPM is slightly larger
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Figure 5-7: Error in state and costate for the double integrator problem using initial condi-
tions of Eq. (5.18) and global LG collocation with 40 nodes.

than the corresponding error using global GPM. Although it isn't clear from Figs. 5-11 and

5-12 , the state is accurate to within the NLP tolerances due to the fact that the solution

is a piecewise polynomial expression and can be approximated exactly with at least three

collocaion points per phase.

5.3 Summary

A comparison was made between a global and a local implementation of the Gauss pseu-

dospectral method. The purpose of the comparison was to determine the accuracy and

computational efficiency of each approach. Employing the GPM as a local method, the

number of collocation points within each segment was held fixed at a small number (e.g.,

three collocation points) while the number of segments was varied. In global collocation

form, a single segment was used and the number of collocation points was varied. Analysis

of the examples in this chapter suggests that for smooth problems, global collocation is sig-
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Figure 5-8: Error in state and costate for the double integrator problem using
tions of Eq. (5.18) and local LG collocation with 8 segments of 5 nodes each.

initial condi-

nificantly more accurate than local collocation for a given number of total collocation points.

For nonsmooth problems, the accuracies of global and local collocation methods were found

to be comparable, and if the discontinuities are known a priori, a semi-global approach is

the most accurate approach. Furthermore it was found that, for a desired accuracy, the

global approach was computationally more efficient for smooth problems . These claims

were supported by two example problems which had features that might lead one to prefer

the use of a local method.
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Figure 5-9: Solution to the double integrator problem with the initial conditions of Eq. (5.19)
and semi-global LG collocation with two segments of 20 nodes each.
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Figure 5-10: Solution to the double integrator problem with the initial conditions of
Eq. (5.19) and local LG collocation.
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Chapter 6

Comparison between Three

Pseudospectral Methods

This chapter analyzes the performance of three pseudospectral methods: the Gauss,8 Radau,7 2

and Legendre33 pseudospectral methods. All three approaches are global in nature and imple-

ment orthogonal collocation based on Legendre polynomials. The key distinctions between

these methods lie in the choice of both the discretization points and collocation points. This

chapter introduces these differences, discusses the mathematical implications of each set

of points, and numerically compares the three methods with respect to the accuracy and

convergence rates of the resulting NLP state, control, and costate solution.

6.1 Continuous Mayer Problem

Without loss of generality, consider the following optimal control problem in Mayer form.

Determine the control, u(T) E R•m, that minimizes the cost functional

J = 1'(x(Tf)) (6.1)

subject to the constraints

dx tf - to
dx _ t - to f(x(T), U(T)) E R" (6.2)
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(x(To), x(Tf)) = 0 E R q

The optimal control problem of Eqs. (6.1)-(6.3) is referred to as the continuous Mayer

problem. It is noted that, in order to simplify the analysis and provide a clear comparison, this

chapter considers optimal control problems with fixed terminal times and without algebraic

path constraints. As in Chapter 2, the time interval T E [-1, 1] can be transformed to the

arbitrary time interval t E [to, tf] via the affine transformation of Eq. (2.6).

6.2 First-Order Necessary Conditions of Continuous

Mayer Problem

Following a similar procedure to the continuous Bolza problem of Chapter 2, the indirect

approach to solving the continuous Mayer problem of Eqs. (6.1)-(6.3) is to apply the calculus

of variations to obtain first-order necessary conditions for optimality.7" These variational

conditions are derived using the Hamiltonian, N7, defined for the Mayer problem as

N(x, A, u) = ATf(x, u) (6.4)

where A(T) E R n is the costate. Note that, for brevity, the explicit dependence of the state,

control, and costate on 7 has been dropped. Assuming that the optimal control lies within

the feasible control set, the continuous-time first-order optimality conditions are

dxT tf - to fT(X, )

dT 2

dAT' tf - to AT Of
dT 2 Ox

df
0T = ATOf

du

(x(To), x(Tf))

Ox(T0o)

tf - to O7-
2 OA

tf - to 0NH

2 Ox
0-

Ou

= 0

Ox(Tf) Ox(Tf)
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where v E R•Q is Lagrange multiplier associated with the boundary condition 0. The opti-

mality conditions of Eq. (6.5) define a Hamiltonian boundary value problem (HBVP).

6.3 Descriptions of the Pseudospectral Methods

The three pseudospectral methods in this comparison approximate the state using a finite

basis of global polynomials, which are created by first discretizing the problem into N nodes

along the trajectory (described in Chapter 2). However, the points within the node set, /',

are unique to each method, along with the choice of basis polynomials. These differences

are explained in detail in this section. Furthermore, all pseudospectral methods transcribe

the dynamic equations into algebraic conditions, which are evaluated at a set of collocation

points, IC. This set of collocation points is also unique to each method and may or may not

be the same as the node set. The locations of nodes and collocation points, as well as the

choice of basis functions are key features that distinguish these methods from each other.

There are many different types of pseudospectral methods, but this comparison is limited

to three methods: the Legendre, Radau, and Gauss pseudospectral methods, since these are

the three methods with published costate approximation procedures. The Gauss method has

already been described in detail in Chapter 3, so this chapter provides only a brief overview.

The Legendre and Radau direct transcription methods are described here in more detail and

the key differences between the methods are highlighted. It is noted that the indexing in this

section may be slightly different than the indexing contained in the references. This is done

in order to create some commonality between the three methods in terms of their indices,

and to create NLPs that are equivalent in size. Therefore, in all methods, N represents the

total number of discretization points (nodes) used in the NLP, which is kept the same among

all methods for the numerical comparisons in this chapter. Moreover, in general, the index j

is used to represent the j-th node, while the index k is used to represent the k-th collocation

point.
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6.3.1 Legendre Pseudospectral Method (LPM)

The Legendre pseudospectral method (LPM), like all pseudospectral methods, is based on

approximating the state using a finite set of interpolating polynomials. The state is ap-

proximated using a basis of N Lagrange interpolating polynomials, i(T) (i = 1,..., N), as

defined in Eq. (2.23).
N

x(T) X x(7) = - 4i(T)X(Ti) (6.6)
i=1

In the LPM, the location of N nodes are described by the Legendre-Gauss-Lobatto (LGL)

points on the interval T E [-1, 1] which were defined in Chapter 2. Note that the endpoints

-1 and 1 are included in the state approximation.

Next, all pseudospectral methods transcribe the dynamic equations by collocating the

derivative of this state approximation with the vector field, f(x, u), at a set of points along

the interval. Let us assume there are K collocation points. In the LPM, the LGL points are

both the nodes and the collocation points, meaning the two sets are equivalent (.Af = IC).

Naturally, the number of points in both sets is the same as well (N = K). Mathematically,

the derivative of the state approximation at the k-th LGL point, Tk, is

N N

x(Tk) - X(Tk) = (k Tk)X(TI) = DkiX(·), (k = 1,.... K) (6.7)
i=l i=1

where the differentiation matrix, D E RKN, is defined as

PA- 1 (•) 1 if k f i
PN- (Ti) Tk -Ti '

(N-1)N if k = i = 1
Dki = 4 (6.8)

(N-1)N if k = i = N4

0, otherwise

The continuous dynamics of Eq. (6.2) are then transcribed into the following set of K alge-

braic equations via collocation described in Chapter 2 by Eq. (2.33):

N

fDkiX() f (X(rk), U(Tk)) = 0, (k = 1, .. ., K) (6.9)
i=1
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The approximated control, U(r), is defined in a similar manner as the state:

N

u(r) U(-) = • £(T)U(Ti) (6.10)
i=1

where Ti, i = 1, ... , N are the LGL nodes. Again, it is emphasized that in the LPM, the

LGL points are both the discretization points and the collocation points. These two sets of

points are not the same for the other methods presented in this thesis.

Next, the continuous cost function of Eq. (6.1) is approximated simply as

J= = (X(TN)) (6.11)

where TN B 1 for the LPM. Lastly, the boundary constraint of Eq. (6.3) is expressed using

TN and T1 - -1 as

O(X(Tr), X(TN)) = 0 (6.12)

The cost function of Eq. (6.11) and the algebraic constraints of Eqs. (6.9) and (6.12) define

an NLP whose solution is an approximate solution to the continuous Mayer problem.

6.3.2 Radau Pseudospectral Method (RPM)

The Radau pseudospectral method has been primarily used in the chemical engineering

community. 27,71 The location of the nodes in the Radau method are based on the flipped

Legendre-Gauss-Radau (LGR) points, which lie on the interval T E (-1, 1]. Recall from

Chapter 2 that this set of points includes the final point but not the initial point. When

discretizing optimal control problems, it is desirable that the discretization span the entire

interval, including both endpoints. Therefore, in order to complete the full discretization of

the time interval, the N discretization points are found using N - 1 flipped Radau points

plus the initial point, To0  -1. The state approximation is constructed exactly the same as

the Legendre pseudospectral method, using a basis of N Lagrange polynomials:

N-1

x(r) - X(T) = £4 i(T)X(T2) (6.13)
i=O
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where Eq. (6.13) uses a slight index modification from (i = 1,..., N) in the LPM to (i =

0,..., N - 1). This new index highlights the fact that the nodes i, i = 0,..., N - 1 are the

initial point plus the N-1 LGR points.

Unlike the Legendre pseudospectral method, the Radau method uses a different number

of collocation points, K, than discretization points, N. Specifically, the collocation points

are the N - 1 LGR points, while the discretization points are the LGR points plus the

initial point, To. Therefore, K = N - 1 and K C A. The K collocation equations are then

described as

N-1
DkiX() - 2 tf(X(Tk), U(k))= 0, (k = 1,... , K) (6.14)

i=O

where Tk are the LGR points and

(Tk) if k -f i

if k = i

where the function g(Tj) = (1 + T) [PK(Ti)- PK-1(-i)] and TT, (i = 0, ., K) are the K LGR

points plus the initial point. Since the collocation equations involve the control solely at the

Radau points, the control is approximated using N - 1 Lagrange polynomials, Ck(r) (k =

1,...,N - 1), as
N-1

u(T) - U(7-)= E £k(T)U(Tk) (6.16)
k=1

where Tk again are the LGR points. This control approximation uses one less point than

the state approximation meaning there is no control defined at the initial point. See Table

6.1 for more details. In practice, the initial control is simply extrapolated from Eq. (6.16).

The discretization of the rest of the optimal control problem is similar to the LPM. The

continuous cost function of Eq. (6.1) is approximated as

J = 'I(X(TK)) (6.17)
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Recall that in the Radau method, the final LGR point TK = 1. Lastly, the boundary

constraint of Eq. (6.3) is expressed as a function of the initial point and the final point as

O(X(To), X(TK)) = 0 (6.18)

The cost function of Eq. (6.17) and the algebraic constraints of Eqs. (6.14) and (6.18) define

an NLP whose solution is an approximate solution to the continuous Mayer problem.

6.3.3 Gauss Pseudospectral Method (GPM)

This section largely echoes Chapter 3, however slight differences in index notation are in-

duced to highlight nuances between this method and the Legendre and Radau pseudospectral

methods. Recall from Chapter 3 that the location of the nodes in the Gauss pseudospectral

method are based on Legendre-Gauss (LG) points, which lie on the interval T E (-1, 1).

This set of points includes neither the initial point nor the final point. Therefore, in order to

fully discretize the time interval, the N discretization points are (N - 2) interior LG points,

the initial point, To _ --1, and the final point, TF - 1. The state is approximated using a

basis of N-1 Lagrange interpolating polynomials, which is slightly smaller than the previous

two methods,
N-2

x(T) - X(7) = E Pj(r)X(Tj) (6.19)
i=O

where Ti (i = 0,... , N-2) are the initial point plus the (N-2) LG points. Note that the final

point, although it is part of the NLP discretization, is not part of the state approximation.

This results in a state approximation that is one order less than the previous methods, but is

necessary in order to have the equivalence property between the KKT conditions and HBVP

conditions. As in the Radau pseudospectral method, the Gauss pseudospectral method uses

a different number of collocation points, K, than discretization points, N. Specifically, the

collocation points are the LG points, while the discretization points are the LG points plus

the initial point and final point. Therefore, K = N - 2 and K C c K. The K collocation
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equations are then described as

N-2

N-2DkiX() tf - tf(X(Tk), U(k)) = 0 (k = 1, ... , K) (6.20)
i=0

where T k, (k = 1,..., K) are the LG points. This equation is exactly the same as Eq. (3.7)

in Chapter 3 except for a slight change in indices to show the relationship of this collocation

approach to the others presented in this chapter. Note that there is no collocation at either

boundary. The control is approximated at the (N - 2) collocation points using a basis of

(N - 2) Lagrange interpolating polynomials ·Ci(7), (i = 1.. .,N - 2) as

N-2

u(7) = U() = UT i()U(i) (6.21)
i=1

where 7i, (k = 1, ... , N - 2) are the LG points. Table 6.1 lists all the Lagrange polynomial

expressions described in this work.

As explained in Chapter 3, an additional constraint must be added to the discretization

in order to ensure that the the final state obeys the state dynamics. This is enforced by

including a Gauss quadrature to approximate the integral of the dynamics across the entire

interval (Eq. (3.4)):

x()-x t - to K

X(F) - X(o) - t Wkf(X(Tk), U(Tk)) = 0 (6.22)
k=1

where 'Wk are the Gauss weights and Tk are the LG points. Lastly, the cost function is

approximated by

J = I(X(TF)) (6.23)

and the boundary constraint is expressed as

0(X(ro), X(TF)) = 0 (6.24)

The cost function of Eq. (6.23) and the algebraic constraints of Eqs. (6.20), (6.22), and (6.24)

define an NLP whose solution is an approximate solution to the continuous Mayer problem.
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Table 6.1: Definitions of Lagrange interpolation polynomials used in this work
# of Basis Polynomials Application Symbol Index

N LPM (x,u,A) £i (7) i = 1,... , N
N RPM (x) £L(T) i = 0,..., N -1

N-1 RPM (u, A) 4i (7) i = 1,..., N - 1
N-1 GPM (x,A) 4(rT) i= 0,..., N - 2
N-2 GPM (u) 4i(T) i= 1,..., N-2

6.4 Costate Estimation

All three aforementioned pseudospectral methods have established costate estimation proce-

dures. In particular, a mapping between the KKT multipliers of the NLP and the costates

of the continuous-time optimal control problem has been derived for all three methods. This

section describes the costate estimation procedure for each method.

Legendre Pseudospectral Method

As explained in Chapter 3, the KKT conditions of the NLP are derived by defining an aug-

mented cost function, which brings the NLP constraints into the cost function via Lagrange

multipliers. For LPM, the augmented cost is

K tf - to

J = (XN) - i 4 (X, XN) -- A  DkiXi f(XkUk) (6.25)
k=1 i=1 2

The KKT multipliers in Eq. (6.25) are k, (k 1,... ,K), which are associated with

the collocation equations of Eq. (6.9) and P, which relates to the boundary condition of

Eq. (6.12). Without going into detail, the mapping from the KKT multipliers to the HBVP

variables is:39

Ak = , (k=1,..., K)
Wk (6.26)

=P=
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The HBVP variables Ak, (k = 1,..., K), and v, now defined in terms of NLP multipliers,

can be substituted into the HBVP equations to determine if the optimality conditions have

been met. It has been documented in the literature49,128 that this mapping for the LPM

does not provide an exact equivalence between the KKT conditions and the HBVP condi-

tions. Specifically, the HBVP costate differential equations are not naturally collocated at

the boundaries, meaning the boundary KKT conditions result in a linear combination of

two HBVP conditions: the boundary costate dynamics and the transversality conditions.

Although all the KKT conditions are not derived here, the conflicting KKT condition is

shown, which is found by taking the partial derivative of the augmented cost function with

respect to the initial state:

t-t f 1 (A T T 1
k A Dk ; - A + (6.27)

Notice that the left-hand side of the equation resembles the discretized costate dynamics and

the right hand side resembles the transversality condition from the HBVP in Section 6.2. If

these conditions were to map exactly to the HBVP equations, each side of Eq. (6.27) should

equal zero. However, Eq. (6.27) is inseparable in the LPM. Similarly, the KKT condition

corresponding to the final state is

K
K ADT D + tf - toT afN 1 (AT +4 vTT (6.28)

k= N T 2 8XN WN OXN 8 XN)

where again, the left-hand side is the discretized costate dynamics and the right-hand side

is the transversality condition corresponding to the terminal state. It is impossible to get

an exact mapping from the KKT conditions to the HBVP conditions without being able

to separate these mixed conditions. Recent research 49 suggests that by applying relaxation

techniques, linear independence constraint qualification, and an additional set of conditions

called "closure conditions", one can show that there exists a costate approximation that

converges to the true costate in the limit. From Ref. 49, the most recent closure conditions
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are

- 8I x X (x , 1 N1

S 00 (6.29)
AN N (X;,X*v)- (XI, X~v) v* - 6D

where X*, A*, and v* represent a solution that satisfies Eq. (6.29) and the KKT conditions.

5D is a dual feasibility tolerance. These conditions are essentially the discretized HBVP

transversality conditions." The covector mapping theorem49 states that there exists an N

large enough so that the closure conditions and the KKT conditions are satisfied to a specified

tolerance, 6. Upon close examination of Ref. 49 (and the references therein) any algorithm

attempting to solve the combined KKT conditions and closure conditions must solve a mixed

primal-dual feasibility problem. By including the closure conditions of Eq. (6.29) to form the

"augmented optimality conditions", both the state and costate are now variables to be solved.

This procedure significantly increases the computational complexity required to estimate the

costate. To be thorough, both LPM costate approximations described here (Refs. 39 and 49)

are considered in this chapter. The LPM costate is computed first according to Eq. (6.26),

and then by formulating the primal-dual feasibility problem which attempts to satisfy the

augmented KKT conditions according to some tolerance, 6. It is noted that improving the

LPM costate approximation is an ongoing research topic, and better methods may be found

in the future.

Similar to the LPM state approximation, the continuous-time costate approximation is

represented by a basis of N Lagrange interpolating polynomials as

N

A(T) - A(T) = A(ri) i(T) (6.30)
i=1

Radau Pseudospectral Method

The augmented cost function corresponding to the Radau pseudospectral method is given

as
_ K t I - toK

Ja = #(XK) - T(Xo, XK) - Ak DkiX f (Xk, U) (6.31)
k=1 i=0
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The KKT multipliers resulting from the NLP using the Radau pseudospectral method are

Ak, (k = 1, ... , K), associated with the collocation equations of Eq. (6.14) and iý, associated

with the boundary conditions of Eq. (6.18). The mapping from the KKT multipliers to the

HBVP variables is described as follows:

Ak
Ak = k (k=1,...,K)

Wk (6.32)
V --

The K discrete costates Ak, (k = 1,..., K), and the HBVP multiplier v are now defined in

terms of the KKT multipliers. As in the LPM, it is understood that there is an imperfect

match between the KKT multipliers and the costate.72 The Radau method has a similar

conflict of HBVP equations when the partial derivative of the augmented cost function is

taken with respect to the final state:

KK A ± tf - toAT 0fK_ 1 (AT 0 T (6.33)
Sk=•k2 K XK - WK K OXK 8XK

However, recent work 71 72 has demonstrated rapid convergence rates of the costate approxi-

mation using Eq. (6.32) as the number of nodes increases. The discrete values of the costate

are used to construct a continuous-time approximation to the costate, which is represented

by a basis of N - 1 Lagrange interpolating polynomials, as in the control: 72

K

A(7) - A(·)= ( A(-T)j i(7) (6.34)
i=1

where Tk, (k = 1,..., K) are the LGR points. Note that since there is no collocation at

the initial point, there is no initial costate estimate that is directly output from the NLP.

However, the initial costate can be approximated by extrapolating Eq. (6.34).
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Gauss Pseudospectral Method

The augmented cost function corresponding to the Gauss discretization of the Mayer problem

is

-X K K- tof(Xk U
Ja = ((X) - T((X, XF) - Z DkiX - 2f(Xk, Uk))

Sk=1 i=o (6.35)

-AF  XF - X - 2 kf(Xk, Uk)
k=1

The KKT multipliers resulting from the NLP using the Gauss pseudospectral method are

Akk (k = 1, ... , K), associated with the collocation equations of Eq. (6.20), AF, associated

with the quadrature constraint of Eq. (3.4), and f, associated with the boundary conditions

of Eq. (6.24). The mapping from the KKT multipliers to the HBVP variables is described

in Chapter 3 and repeated here for clarity:

A k
Ak -- + F, (k=1,...,K)

wk

V = , (6.36)

Af = AF

The variables Ak, Af, and v, now defined in terms of NLP multipliers, can be substituted into

the HBVP equations to ensure the optimality conditions have been met. The discrete costate

is then used to construct a continuous-time costate approximation, which is represented by

a slightly different basis of N - 1 Lagrange interpolating polynomials, defined as

K+1

A(r) ,• A(r) = A(ri)4i(r7) (6.37)
i=1

where Tii, (i = 1,... , K + 1) are the LG points plus the final point, TF. Recall that the

state is approximated using (N - 1) Lagrange polynomials based on the LG points and the

initial time, while the costate, A(-), is approximated using (N - 1) Lagrange polynomials

consisting of the LG points and the final time. This discrepancy is required to preserve the

mapping, as expained in Chapter 3. As. in the Radau method, an approximation for the
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initial costate, Ao, cannot be pulled directly from a corresponding multiplier in the NLP

because no such multiplier exists. However, an accurate approximation to the initial costate

can be determined from the following equation:

K

A0o A - Z DkOAk (6.38)
k=l

which is shown in Chapter 3,to satisfy the HBVP transversality condition

A0 = V (6.39)

resulting in a perfect match between the HBVP equations and the KKT conditions. Fur-

thermore, one could simply extrapolate Eq. (6.37) to To, which would produce an equally

accurate initial costate. All three methods for determining the initial costate are equiva-

lent. The remainder of this chapter focuses on comparing these pseudospectral techniques in

terms of their computational efficiency, approximation accuracy, and solution convergence

rates with respect to the state, control, and especially the costate.

6.5 Comparison of Pseudospectral Methods

The three pseudospectral methods described in this chapter: GPM, RPM, and LPM, are

compared on several examples of increasing complexity.

6.5.1 Single State Example

As a first example, consider the following one-dimensional optimal control problem. Minimize

the cost functional

J = -y(tf) (6.40)

subject to the constraints

y(t) = y(t)u(t) - y(t) - U2(t) (6.41)
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and the initial condition

y(to) = 1 (6.42)

where y(t), is the state, u(t) is the control, and tf = 5 is the final time. The exact solution

is

y*(t)

A*(t)

u*(twhere a

where a

1 + 3et
= ae(21n(1+3et)- t )

= .5y*(t)
-1

(e- 5 + 6 + 9e5 )

(6.43)

(6.44)

(6.45)

(6.46)

(6.47)

A*(t) is the costate associated with the optimal solution. The exact solution is depicted in

Fig. 6-1.

1 2 3 4

Figure 6-1: Exact solution for the single state example

This problem is solved by all three pseudospectral techniques mentioned previously. Each
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method transcribes the optimal control problem into an NLP that consists of 10 nodes

(N = 10). The resulting NLP is then solved with SNOPT4 5 using the default feasibility

and optimality tolerances (10-6). In Fig. 6-2, the absolute value of the error between the

NLP state and the exact solution (IY(ri) - Y*(Ti)I, i = 1,... ,N) is plotted for each node

and all three approaches. Note that the error in initial state is not included since the

SNOPT satisfies state equality bounds (i.e., the initial conditions) to double precision (10-16).

When comparing the state accuracy of the three methods in this example, there is no clear

method that outperforms the other two across the entire interval. In fact, the only noticeable

difference in Fig. 6-2 is that both the GPM and RPM formulations produce an extremely

accurate terminal state. It is hypothesized that the highly accurate terminal state for the

GPM is due to the additional quadrature constraint in the NLP.

io6

107

108

1 n1ic
0v
(

Figure 6-2: State error for the single state example.

The control error is plotted in Fig. 6-3. As described in Section 6.3, each method approx-

imates the control using a different number of points. The LPM discretizes the control at all

N discretization points, while Radau discretizes the control at the (N-1) Radau points, and

the Gauss method discretizes the control at the (N-2) Gauss points. In the Radau discretiza-
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tion, the initial control is missing. Similarly, in the Gauss discretization, the control at both

the initial and final time are missing. These missing control values can be computed by a

variety of techniques. The approach often outlined in the literature33 ,71 is to extrapolate

the control approximation equations, Eqs. (6.10), (6.16) and (6.21). However, in practice

it is more common to use a simple spline extrapolation."4 Thirdly, a technique involving

the HBVP equations 67 at the boundaries has been developed for the Gauss pseudospectral

method in Chapter 4, but this technique is not used in this section. Since the extrapolated

controls are not explicit variables in the NLP, one would assume that they would be less

accurate than methods that include the boundary controls in the formulation of the NLP,

such as the LPM. In Fig. 6-3, the boundary control estimate for the Gauss method is in-

deed the least accurate. Likewise, the accuracy of the initial control estimate for the Radau

method is similar to the GPM value. However, it is interesting that while the largest error

for Gauss and Radau are at the boundaries, the LPM has a larger error at one of the interior

points. In this example, the benefit of an accurate initial control for the LPM is offset by

the inaccurate interior control.

A more appropriate way to determine the effect of the control error is to actually propa-

gate the state dynamics according to the control estimate from the NLP, as done in Chapter 4.

In this comparison, the state dynamics are propagated using the Matlab function ODE45,

where the control approximations are represented using Eqs. (6.10), (6.16), and (6.21). The

resulting propagated state error is shown in Fig. 6-4. Clearly, the LPM propagation error is

the largest despite the relatively accurate boundary controls.

The largest discrepancy between the methods is seen in the costate comparison of Fig. 6-

5. The LPM costate approximation is several orders of magnitude worse than the other

two methods across all values of N. This example highlights a common problem4 9 with the

original LPM costate approximation3 9 where the approximation tends to "wiggle" about the

true solution, shown clearly in Fig. 6-6. Furthermore, note that the largest error in the LPM

costate occurs at the boundaries due to the conflicting constraints (explained in Section 6.4).

The GPM, which has no constraint conflict, provides extremely accurate boundary costates,

while the RPM produces an accurate initial costate (no conflict) but a less accurate final

costate (which has a conflict explained in Section 6.4).
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Figure 6-3: Control error for the single state example.

In pseudospectral methods, like most direct methods, the solution accuracy can be im-

proved by increasing the number of nodes used to discretize the problem.112 Furthermore,

the rate of convergence to the true optimal solution is extremely important as it can help

determine how many nodes are needed in order to adequately approximate the solution. The

convergence rates of the state and costate are shown in Figs. 6-7 and 6-8, respectively. In

these figures, each method was solved repeatedly while the number of nodes in the problem

was increased from 5 to 50. The error shown in these figures is the maximum absolute error

over all the nodes in the problem ( lX(Ti) - x*(Ti) oo, VTi E [-1, 1]). As seen in Figure

6-7, the state convergence rate for all three methods is quite similar. The steep convergence

rate depicts the "spectral" convergence that is characteristic of pseudospectral methods. 43

Naturally, once the error drops below the tolerances of the NLP, the error stops improving.

The convergence rate for the costate is shown in Fig. 6-8. The Gauss and Radau methods

show rapid convergence rates for the costate, which even outperform the state. Fig. 6-8

also shows the apparent lack of convergence for the costate using the LPM. It is clear that

increasing the number of nodes does not improve the costate error by any significant amount
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Figure 6-4: Error in the propagated state for the single state example.

for this example. As mentioned previously, Gong and Ross have devised a modified covector

mapping theorem to improve the costate approximation for the LPM. This covector map-

ping theorem includes a set of "closure conditions" that is assumed to be implemented in a

mixed primal-dual feasibility problem where the variables are the state, control, and costate.

The constraints in this primal-dual feasibility problem are the KKT conditions of the NLP

and the additional closure conditions. When this alternate NLP is posed and solved, the

resulting costate convergence rate in Fig. 6-9 is indeed much better, although not as rapid

as either the Gauss or Radau methods. As mentioned previously, this increased accuracy

comes at a significant computational burden in post-processing. Due to the large number of

extra steps necessary to produce this result, further computation of LPM costates involves

only the original costate estimation procedure of Eq. (6.26), since this is the likely method

to be used in practice.

Lastly, Fig. 6-10 depicts the convergence rate of the error in the final control, u(tf). For

this figure, the final control in the GPM was computed following the approach described in

Chapter 4, and the final control for the RPM and LPM methods are simply output from the
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Figure 6-5: Costate error for the single state example.

NLP. This graph shows the improved accuracy in the boundary control that one can achieve

when using the approach in Chapter 4, even when compared to methods that explicitly solve

for the boundary control in the NLP.

6.5.2 Two State Example

As a second example, consider the following two-dimensional optimal control problem. Min-

imize the cost functional

J = y2(tf) (6.48)

subject to the dynamic constraints

=1(t) = 0.5y (t) + u(t) (6.49)

(t) = y(t) +0.5u 2(t) (6.50)

134



Figure 6-6: LPM costate error for the single state example.

and the boundary conditions,

yl(to) = 1 yi(tf) = 0.5 (6.51)

(6.52)y2(t0) = 0

where tf = 5. Note that this problem contains a terminal bound on the first state, yl(tf).

The exact solution is of the form

y;(t)

A (t)

u*(t)

Sal e 1.5t + a2e-1.5t
=ale + aae

= a3(el.5t) 2 - a4(e-1.5 t) 2 + C1,

= a5 e 1.5 t + a-1.5t
=ase + a~e

=1,

=-Atl(t)

(6.53)

(6.54)

(6.55)

(6.56)

(6.57)

The exact solution can be seen in Fig. 6-11. Again, all three methods are compared using 10
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Figure 6-7: State convergence for the single state example

nodes. The error plots are formulated in the same manner as the previous example problem.

Fig. 6-12 shows the state error at each node for all three methods. Recall that the error for

the states involving the boundary conditions is 0(10-16), and therefore outside the range of

the plot. As in the single-state example, all three methods are relatively comparable in state

accuracy. Moreover, the GPM and Radau formulations again show an increase in accuracy

for the unconstrained terminal state.

The control error is plotted in Fig. 6-13. Interestingly, for this problem, the LPM control

estimate is worse than both GPM and RPM, even at the boundaries. The NLP control for

each method is used to propagate the state equations, and their resulting state accuracy is

compared in Fig. 6-14 for both states. In this example, the RPM produces the most accurate

propagated solution, followed by the GPM, and lastly LPM.

Reconfirming the results in the first example, the largest discrepancy between the meth-

ods is seen in the costate comparison, and specifically with the second costate, shown in

Fig. 6-15. The LPM method produces the worst costate approximation for both A• and
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Figure 6-8: Costate convergence for the single state example

A2. Although it is not shown, this large error in A2 exhibits the same "wiggle" phenomenon

around the true costate as seen in the first example. In terms of boundary costates, the GPM

method provides the most accurate boundary costates, and the Radau method provides a

relatively accurate initial costate, but an inaccurate final costate, as expected from the the-

oretical analysis. In the Radau method, the final costate is consistently the least accurate

costate, suggesting that the conflicting HBVP equations described in Section 6.4 degrades

the performance of this method.

The convergence rates of the state and costate are shown in Figs. 6-16 and 6-17, respec-

tively. Each approach was solved repeatedly while the number of nodes in the problem was

increased from 5 to 30. The error shown in these figures is computed in the same manner

as the previous example. Fig. 6-16 displays both states, yl and Y2, and there is a noticeable

difference between the convergence rate of yl and Y2 for the GPM and RPM. However, for the

LPM approach, both states converge at the same (slower) rate. The state convergence rate

of the RPM is the fastest for this example. It is hypothesized that this slight improvement
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Figure 6-9: Improved LPM costate convergence via closure conditions for the single state
example.

over the GPM state approximation is due to the one order reduction in the state approxima-

tion for the GPM. Similar results are seen in the costate convergence plot of Fig. 6-17. The

second costate is constant in this example, and both the GPM and RPM approaches can

approximate this first order polynomial quite well, even using only a few nodes, as expected

with pseudospectral methods. However, the LPM approach displays the wiggle phenomenon

and thus has a much slower convergence rate for A2. In terms of the first costate, the GPM

has the fastest convergence rate.

6.5.3 Orbit-Raising Problem

Consider the problem of transferring a spacecraft from an initial circular orbit to the largest

possible circular orbit in a fixed time using a low-thrust engine. The state for this problem is

composed of the spacecraft radial position, r(t), radial velocity, u(t), and tangential velocity,

v(t). The control, 0(t), is the angle between the thrust vector and the tangential velocity.
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Figure 6-10: Convergence of the final control, u(tf), for the single state example.

The optimal control problem is stated as follows. Minimize the cost functional

subject to the dynamic constraints

r =u

v2

r

J = -r(tf)

uv T cos o
i = --- +

r mo - Irlt
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Figure 6-11: Exact solution for the two state example.

and the boundary conditions

r(0) = 1, r(tf) = free

u(O) = 0, u(tf) = 0, (6.60)

v(0)= =v(tf) =,
V 'r (0) V r(tf)

where p is the gravitational parameter, T is the thrust magnitude, mo is the initial mass,

and rh is the fuel consumption rate. These parameters are given as follows in normalized

units:

T = 0.1405, rh = 0.0749, mo = p = 1, tf = 3.32 (6.61)

This problem does not have an analytic solution, but it has been solved numerically many

times6,20 so it's solution is well known. The results of each method was compared against

the solution to a boundary value problem solution using the Matlab function BVP4C with

a tolerance of 10- 9. For brevity, an error analysis is presented for only the first state and

costate, r(t) and Ar (t). The remaining state and costate errors look very similar to the
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Figure 6-12: State error for the two state example

one presented. Fig. 6-18 shows the state error throughout the trajectory. The RPM has a

slightly better state accuracy than the other two methods, although they all have very similar

maximum state errors. Interestingly, in Fig. 6-19, the RPM also has a slightly better costate

approximation than the other two methods and does not exhibit the usual reduced costate

accuracy at the terminal time. As in the previous examples, the LPM costate convergence

rate is significantly worse than the other two methods, shown in Fig. 6-20. Note that the

convergence rates for the Radau and Gauss methods are slower than in the previous examples

due to a discontinuity in the optimal control profile.

6.6 Rationale for Choosing a Method

Based on the results of all three example problems and a detailed analysis of the mathematics

of each method, there may be certain circumstances under which each method should be

chosen. Inaccurate boundary costates in the LPM method are attributed to boundary costs

or constraints in the problem. However, if the original problem has no boundary constraints
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Figure 6-13: Control error for the two state example.

or costs, then the conflicting HBVP equations disappear and LPM would be an appropriate

method. The RPM costate inaccuracy only occurs at the terminal time, so problems without

terminal constraints would likely mitigate the errors in the final costate. The GPM has a

perfect mapping with the HBVP equations, and therefore creates accurate costate estimates

for general problems with both initial and final constraints.

Lastly, Table 6.2 presents NLP computation times for all three examples and all three

methods. The results listed correspond to a Pentium 4, 3.2 GHz machine, where the con-

straint Jacobian was computed using numerical derivatives. All three methods have very

similar computation times, which is expected since the methods are very similar in terms

of their problem density. Note that the codes used in this analysis are not optimized for

computational efficiency. Streamlined coding, analytic derivatives (or automatic differentia-

tion), and a transition to faster programming languages like C or Fortran would significantly

improve the computation times of all three methods.
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Figure 6-14: Error in the propagated state for the two state example

Table 6.2: CPU Times for each example and each method, in seconds

LI GPM RPM LPM]I
Ex 1 (N = 50) 4.265 4.203 4.750
Ex 2 (N = 30) 2.203 2.296 2.688
Ex 3 (N = 40) 3.969 4.046 5.156

6.7 Summary

This chapter compared three established pseudospectral methods that are used to numeri-

cally solve optimal control problems. In particular, the Legendre, Radau, and Gauss pseu-

dospectral methods have been compared in terms of their accuracy in the state, control,

and costate. Three examples are used in the study to identify the key differences between

the three methods. The results of this comparison indicate that the accuracy of the Radau

and Gauss methods are very similar in accuracy, and both of these methods significantly

outperform the Legendre method in terms of costate accuracy. Furthermore, it is found that

the computational efficiency of all three methods is comparable.
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Figure 6-18: Error in state r(t) for the orbit raising problem
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Figure 6-19: Error in the costate Ar(t) for the orbit raising problem
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Figure 6-20: Convergence of costate Ar for the orbit raising problem
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Chapter 7

Tetrahedral Formation Flying

This chapter applies the Gauss pseudospectral method to a novel research area within

aerospace engineering: spacecraft formation flying. Relatively little is known about the

trajectories of satellites flying in formation, and even less is known about fuel optimal tra-

jectories. The problems considered in this chapter are in reference to the Magnetospheric

Multiscale (MMS) misson, which is an Earth-orbiting formation of four spacecraft working

in close proximity of each other in order to study the Earth's magnetosphere. Two forma-

tion flying problems are posed in this chapter: an orbit insertion problem, simulating the

fuel-optimal transfer from a parking orbit to the desired mission orbit, and a reconfiguration

problem, where the formation has been significantly degraded and must optimally maneuver

in order to meet the formation constraints created by the science users and minimize the total

fuel used. The problems are solved using the Gauss pseudospectral method and the results

are analyzed that provide new insight into the relative motion of tetrahedral formations.

7.1 Overview of Spacecraft Formation Configuration

Problem

Consider the problem of maneuvering a fleet of four spacecraft from an initial parking orbit

to a terminal reference orbit where the formation must attain a desired tetrahedral shape at

a specified point in the terminal reference orbit. For simplicity, assume that each spacecraft
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Figure 7-1: Schematic of trajectory event sequence for the orbit insertion problem

is initialized at the same point, (i.e., deployed simultaneously) on a circular parking orbit of

altitude ho = 600 km and inclination io = 28 deg. The desired terminal reference orbit is

600 km by 7000 km elliptic orbit with an inclination of 28 deg. Scientific data is taken at

apogee of this reference orbit, meaning that the spacecraft must be in the desired tetrahedral

formation upon reaching apogee. Constraints are placed on both the size and shape of

this tetrahedral formation. Furthermore, it is desired that the spacecraft return to this

tetrahedral formation repeatedly at every apogee.

The trajectory is divided into five phases per spacecraft with the following phase sequence:

coast, burn, coast, burn, and coast. Naturally, the dynamics are different for the coast and

burn phases: there is no thrust during the coast phases, and in the burn phases the thrust is

constant at its maximum value Tmax. At each phase interface the state must be continuous

while the control can be discontinuous. Note that the initial and terminal times of all phases

are free (with the exception, of course, of the first phase where the initial time is fixed to zero).

Fig. 7-1 shows a schematic of the trajectory event sequence. This five-phase trajectory clearly

has two maneuver opportunities. The specifics of the configuration problem are explained

in the following three sections.
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7.2 Spacecraft Model and Equations of Motion

7.2.1 Spacecraft Model

This problem considers four identical spacecraft each with a dry mass of 200 kg and a fuel

mass of 300 kg. The maneuvers are assumed to be non-impulsive, with the maximum thrust

level of the engine set to 7.015 kN and the engine specific impulse set to 285.7 s. It is noted

that these physical parameters are typical of a standard apogee kick motor.1 23

7.2.2 Dynamic Model During Thrust Phases

During all thrust phases the state of each spacecraft is modeled using modified equinoctial

elements. The three degree-of-freedom equations of motion for a spacecraft moving over a

spherical nonrotating Earth are given in modified equinoctial elements as5

2p p
P = - -a

Pa = -ar cos L + [(w + 1) sinL + P1] a +[Q2 sin L - Q cos L] P2a

a2 r sin L + [(w + 1) c os L + P 2 a, 2 Sin s (L ) - Q
1 
cos L ] P a-

S = 2Q sin s(L) -- Q cos LI _-(j +ncosL

where p is the semi-latus rectum, P1 , P2, Q1, and Q2 have no geometric definition, and L

is true longitude. Additionally, w = 1 + P1 sin L + P2 cos L, S2 = 1 + Q2 + Q2, and ar, a0 ,

and an are the perturbing accelerations in the directions of er, ee, and e. where er is the

unit vector in the radial direction, en is the unit vector in the direction normal to the orbital

plane, and eo = en x er (thereby completing the right-handed system {er, ee, en}). For the

application under consideration here, the perturbing accelerations are due entirely to thrust
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and can be written as

T T Tar = -ur, ao = -uo, an = -un, (7.2)
m m rn

where T is the thrust magnitude, mn is the spacecraft mass, and ur, uo, and un are the er,

ee, and en components, respectively, of the thrust direction. Finally, the mass flow rate of

the engine is governed by the equation

T
il = T (7.3)

YOsp

where go is the sea level acceleration due to gravity and I•, is the specific impulse of the

engine.

7.2.3 Dynamic Model for Coast Phases

By assuming a spherical Earth gravity model, the only equinoctial element that changes with

time during a coast phase is the true longitude, L. In particular, the differential equation

for the true longitude can be written as

dL 2dL 2 (1 + PsinL + P2 cosL)2 = f(L,p, P1, P2) (7.4)dt p2
Observing that all quantities except L in Eq. (7.4) are constant results in a separation of

variables in Eq. (7.4) to give
dL

dt = (7.5)
f(L,p, Pi, P2 )

Integrating both sides of Eq. (7.5) produces

tf - to = f(L, (7.6)
Jo f (L, p, Pi, P2)

where to and tf are the initial and terminal time, respectively, of the coast phase while

L(to) = Lo and L(tf) = Lf are the initial and terminal true longitude. Since all other states
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are constant during a coast phase, the dynamic model for each spacecraft is given as

tf o f(L,p,- to -P) = 0, i = 1,..., 4 (7.7)

All other components of the state (i.e., p, P1, P2, Q1, Q2, and m) are treated as constant

optimization parameters. It is noted that, due to additional terminal constraints, the above

model is not used for the final coast phase.

7.2.4 Dynamic Model for Terminal Phase

The terminal constraints in this problem focus largely on the relative position of the space-

craft, and are easily expressed in Cartesian Earth-centered inertial (ECI) coordinates. There-

fore it makes sense to use a dynamic model that is consistent with the mathematical form of

the constraints. Consequently, as opposed to modified equinoctial elements, the dynamics of

each spacecraft in the final coast phase are described using ECI coordinates. This transition

is by no means necessary, but it both reduces the complexity of the analytic derivatives of

the equations of motion and exemplifies the versatility inherent in the Gauss pseudospectral

method. The new dynamic model is given below as

rv = , = -11 (7.8)

where r is the position vector measured from the center of the Earth, v is the inertial velocity,

and p is the gravitational parameter. In order to maintain continuity between the phases,

the Cartesian variables are transformed to modified equinoctial elements at the start of the

final phase and are set equal to the elements at the final time of the previous phase via

linkage conditions, 14, 57 explained in the next section.

7.3 Constraints

This section describes the many constraints imposed in the orbit insertion problem. Some

constraints are a direct result of the posed problem, while others are specific to the application
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of the GPM to this problem.

7.3.1 Initial Conditions

All four spacecraft start in the same circular orbit at time t = 0. The initial conditions

corresponding to this orbit are given in orbital elements as

= Re + ho ,

= 28 deg

= 0

e (0)= 0
w(O) = 270 deg

v(0) = 270 deg

where a is the semi-major axis, e is the eccentricity, i is the inclination, w is the argument

of perigee, Q is the longitude of the ascending node, v is the true anomaly, Re is the radius

of the Earth, and ho = 600 km is the initial altitude. It is noted that the initial argument

of perigee, w(0), is chosen to be the same as that of the terminal reference orbit while the

initial true anomaly, v(0), is arbitrary. The orbital elements in Eq. (7.9) are then converted

to modified equinoctial elements using a transformation To2e (see for example Ref. 5) to

obtain the initial state in modified equinoctial elements as

P(i) (to)
p(i) (to)

p(i (to)

QM (to)

L(i) (to)
L0) (to)

= Po

= P1 ,o

= P2,0

= Q1,o

Q2,0

SLo

(7.10)

where i is the ith spacecraft. Furthermore,

maximum value, i.e.,

m( i) (to) = mmax

the initial mass of each spacecraft is equal to its

(7.11)

where mm,,ax = 500 kg. Lastly it is noted that for this preliminary analysis, it is reasonable

to assume that all four spacecraft can start at the same initial point without any conflict.

However, if more realism is added to the problem, issues such as collision avoidance must be
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i(O)

Q(0)

(7.9)
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addressed.

7.3.2 Interior Point Constraints

In order for the state to be continuous at each phase interface, it is necessary to enforce

linkage conditions at the phase boundaries. These linkage conditions are enforced on the

modified equinoctial elements, mass, and time as

p(i') (t4))

Q(i) (Wj))

Q(i) (4?j)

ti) U)f

(7.12)

Pi) (t+l)

=p,(i)(t~oJl))

2M ((j+1)

= mi)(ti+l))S(i)t (j +l ) )

(i) (t+1))= 0
= t(oi) ( t +l )

where j is the jth phase and P is the number of phases in the problem (in this case P =

5). Finally, in order to ensure that time is increasing during the trajectory, the following

inequality constraint is placed on time during each phase:

t (i) () i) ) > 0-f 0 >0, (7.13)

7.3.3 Path Constraints

The following two path constraints are imposed on the four spacecraft. First, during the

thrust phases of the trajectory it is necessary to constrain the thrust direction to be unit

length. Defining the thrust direction as uT = [ur Uo un]T , the following constraint is imposed

on UT:

UT UT = 1 (7.14)

Second, during flight the mass of each spacecraft cannot fall below the vehicle dry mass.

Defining the dry mass of each vehicle as mdry, the following inequality constraint is imposed
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on the mass of each spacecraft during the each phase of the trajectory:

m(i)(t) > nmdry (i = 1,..., 4) (7.15)

7.3.4 Terminal Constraints

The position of the mesocenter of the formation is defined as

4

r= r(i) (7.16)
i=1

where r (i) is the position of the ith spacecraft as measured from the center of the Earth. At

time tf, the mesocenter must coincide with the apogee of the terminal orbit. Defining the

position of the terminal orbit apogee as ra, this constraint is given as

r(tf) = ra (7.17)

Similarly, velocity of the mesocenter of the formation is defined as

4

V v (i )  (7.18)
i=1

where v(') is the velocity of the ith spacecraft. Since six orbital elements are necessary to

completely define an orbit's characteristics, constraining both the position and velocity of

the mesocenter at t = tf ensures that the mesocenter is on the reference orbit for that instant

in time. Defining the velocity of the reference orbit apogee as Va, the constraint imposed on

the velocity of the formation mesocenter is given as

v(tf) = Va (7.19)

Next, the formation must form a tetrahedron upon reaching apogee of the final orbit. To

ensure the quality of this tetrahedron, a set of constraints are formed that take into account

both the formation size and shape. First, it is noted that the spacecraft must be within
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a certain distance of each other to take useful measurements. Although an average inter-

spacecraft separation of 10 km is considered ideal, acceptable science return is still possible

for average separations ranging from 4 km to 18 km.62'63 For this application, the formation

size is constrained by placing bounds on the formation's average side length, L.

4 <L < 18 km. (7.20)

In addition to the formation size, the formation shape must meet certain performance criteria.

The metric used to determine the quality of the shape of the formation is called the QRS

Geometric Factor,8 8 and is given as

QRM = Va/V* (7.21)

where Va is the actual volume of the tetrahedron, and V* is the (ideal) volume of a regular

tetrahedron whose side length is L. It is seen that the QR8 metric contains no sensitivity

to the size of the tetrahedron. For this work, values of QR8 greater than 0.9 are considered

acceptable. Consequently, the following terminal constraint is enforced:

QR8 > 0.9 (7.22)

See Ref. 88 for details on how to compute the QR8 Geometric Factor. Next, in the absence

of perturbations, a spacecraft's orbit period is solely a function of semi-major axis. In this

case, spacecraft with equal semi-major axes (and therefore equal periods) will return to

their relative positions exactly one period later. Consequently, the entire formation will be

periodic if all spacecraft involved have the same semi-major axis.

a(l)(t (P ) = a(2)(t (P)) =a(3) (t (P ) a(4) (t P )) (7.23)

Finally, it is required that the trajectories of all four spacecraft terminate at the same time,

i.e.,

(1) (P) (2) (P) (3)(P) (4)(P)
ty = t = t = t (.4
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where tf is free.

7.4 Spacecraft Orbit Insertion Optimal Control Prob-

lem

The spacecraft configuration optimal control problem is now stated formally. Using the

aforementioned trajectory event sequence, determine the thrust profile that maximizes the

sum of the terminal masses of each spacecraft, i.e., maximize the cost functional

4

J = •m• (t()) (7.25)
i=1

subject to the differential equation constraints of Eq. (7.1) and Eq. (7.3), the initial con-

straints of Eq. (7.10) and Eq. (7.11), the interior point constraints of Eq. (7.12) and Eq. (7.13),

the path constraints of Eqs. (7.14) and (7.15), and the terminal constraints of Eq. (7.17),

Eq. (7.19), Eq. (7.20), and Eqs. (7.22)-(7.24).

7.5 Numerical Solution via Gauss Pseudospectral Method

The spacecraft configuration problem as described in Sections 7.1 - 7.4 is solved using the

aforementioned Gauss pseudospectral method described in Chapter 3. The optimization was

implemented using the MATLAB mex interface of the NLP solver SNOPT4 6 with analytic

first-order derivatives for both the constraint Jacobian and the gradient of the objective

function. Furthermore, the optimal control problem is scaled canonically from SI units to a

set of units such that the length scale is the radius of the Earth, the time scale is one Schuler

period, and the mass scale is equal to the initial spacecraft mass. For this problem, 15

nodes (i.e., 13 LG points) were used to approximate the trajectory in the burn phases. Since

the first two coast phases utilize either static variables or a simple quadrature constraint,

a pseudospectral approximation is not necessary for those phases. The quadrature can be

computed numerically from the initial and final state; therefore only two nodes were needed

in these coast phases. The final coast phase, which is calculated in ECI coordinates instead
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of equinoctial elements, requires a pseudospectral approximation. Because the duration of

the final coast phase is unknown a priori, 40 nodes (i.e., 38 LG points) were used in the final

coast phase. Note that these node amounts were chosen in order to accurately approximate

the solution yet still maintain a reasonably sized NLP. In the future it is likely that the

number of nodes per phase could become an optimization variable itself. In fact, some more

mature optimization software codes such as SOCS 14 do have this feature, but this ability

has not been developed for the GPM.

7.6 Results

The key results of the configuration problem are discussed in this section. The first sub-

section summarizes the results for the two-maneuver configuration problem, and the second

subsection summarizes the results for a single-maneuver configuration problem, where each

spacecraft is given only one maneuver opportunity. Lastly, the third subsection provides a

detailed post-optimality analysis of the single-maneuver solution.

7.6.1 Two-Maneuver Solution

Recall that the formation must attain a geometry that is within 10% of a regular tetrahedron

(measured by the quality factor) and have an average inter-spacecraft distance between 4 and

18km at the terminal time. Furthermore, the spacecraft mesocenter must have a position and

velocity that corresponds to the apogee of the reference orbit, and the spacecraft must have

equal semi-major axes and terminal times. The solution from the NLP does indeed satisfy all

these constraints, and interestingly, the minimum-fuel formation resides at the lower bound

for both the volume constraint and average inter-spacecraft distance. This result is largely

intuitive, since maneuvering the spacecraft to a larger separation distance would naturally

require more fuel, and is counter-productive to the given cost function. Fig. 7-2 provides a

three-dimensional perspective of the terminal tetrahedron where x, y, and z represent the

standard Earth-centered inertial coordinate system.24

Notice in Table 7.1 that, despite the presence of two maneuver opportunities, only one

spacecraft actually thrusts twice. Three of the four spacecraft are able to complete the
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Figure 7-2: Three-dimensional view of optimal terminal tetrahedron for two-maneuver prob-
lem

Table 7.1: Maneuver durations for the two-maneuver problem

Burn Duration (s) \ Spacecraft Number 1 2 3 4
First Burn 65.1965 65.2958 65.2960 65.1584

Second Burn 0 0 0 0.0356

transfer and maintain equal semi-major axes with only the first maneuver. The fourth

spacecraft, however, uses a slight corrective maneuver later in the orbit, at a true anomaly

of approximately 90 deg. Interestingly, as seen in Fig. 7-3, the fourth spacecraft is also the

spacecraft with the lowest final altitude. The small second maneuver is predominantly in

the tangential direction (see Fig. 7-4) and raises the semi-major axis of that spacecraft to

match the other three. With such a small second maneuver, one wonders if two maneuvers

is even necessary. The next section shows that this problem can be solved with only one

maneuver allowed per spacecraft, but the one-maneuver solution uses more fuel than the

two-maneuver trajectory. Further discussion comparing the two scenarios is presented in the

next subsection.

As seen in Fig. 7-5, the optimal locations of the first maneuver for each of the spacecraft
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Figure 7-3: Optimal terminal tetrahedron viewed along the orbital plane for the two-
maneuver problem
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Figure 7-5: Spacecraft burn durations relative to time of reference perigee passage, t-tperigee ,
for spacecraft i = 1,.... 4 during the first burn phase for the two-maneuver problem

are near the reference perigee, resembling a Hohmann transfer. Upon closer inspection of

Fig. 7-5, it is seen that all four burns are offset by varying amounts from the reference

perigee. By staggering the burns, the three spacecraft reach the desired geometric positions

but attain the same semi-major axis upon completion of the maneuver. These maneuvers

do use slightly different amounts of fuel, and when comparing Fig. 7-6 and Fig. 7-3 it is

seen that the amount of fuel burned by each spacecraft increases with increasing terminal

altitude.

One interesting aspect of the formation is the discovery of the fuel-optimal orientation of

the tetrahedron. Recall that no constraints are placed on the orientation of the formation,

yet one can see a definite structure to the solution by looking at Figs. 7-3 and 7-7. In

Fig. 7-3, it is seen that two of the spacecraft remain in the orbit plane, while the other

two spacecraft are located symmetrically out of the orbit plane. Figure 7-7 shows the view

of the formation from a direction normal to the orbit plane. In particular, Fig. 7-7 shows

the terminal position of each spacecraft relative to the mesocenter where r,mc., Xo,m, Xn,mc
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Figure 7-6: Optimal fuel consumption m) - m of spacecraft i = 1,..., 4 for the two-
maneuver problem

represent the instantaneous radial, transverse, and normal components of the position of the

mesocenter. It is seen from Fig. 7-7 the two out-of-plane spacecraft (2 and 3) have the same

projection into the orbit plane. Furthermore, the altitude of spacecraft 4, which burns twice,

is significantly lower than the altitude of the other three spacecraft. Although the solution is

not guaranteed to be globally optimal due to the nonconvexity of the problem, it was found

that several different initial guesses all converged to the solution obtained in this analysis.

Figs. 7-8, 7-9, and 7-10 show the maneuver profile for the three components of thrust

for all four spacecraft during the first maneuver. The four arcs in each figure represent the

four spacecraft. Note that Figs. 7-8-7-10 include the control at the boundaries, which was

calculated using the method described in Chapter 4. The overwhelming majority of the

thrust is in the transverse direction (Fig. 7-9), due to the orbit transfer. Consistent with

the relative geometry in Fig. 7-3, only two spacecraft have nonzero normal components of

thrust (Fig. 7-10), since two spacecraft remain in the reference orbit plane. Interestingly,

the small radial component of thrust in all four spacecraft (Fig. 7-8) is negative at the start
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Figure 7-7: Optimal terminal tetrahedron viewed from normal to the orbital plane for the
two-maneuver problem

of the maneuver and positive at the end of the maneuver. By examining Gauss's variational

equations,5 it is seen that a change in semi-major axis, a, is related to the radial acceleration,

ar by

a = e sin(v)ar + -ao (7.26)

where v is the true anomaly, h is the angular momentum, p is the semilatus rectum, e is the

eccentricity, and r is the radial distance to the spacecraft. From Eq. (7.26) it is seen that

when v is slightly negative (i.e., just before perigee), the radial acceleration must be negative

in order to increase the semi-major axis. Similarly, when v is slightly positive (i.e., just after

perigee), the radial acceleration must be positive to increase the semi-major axis. Therefore

starting the maneuver in the negative radial direction before perigee aids in raising the

semi-major axis of the spacecraft. Note that the crossover point for each spacecraft is not

exactly at perigee, but this slight difference is most likely attributed to the need to satisfy

the terminal conditions.
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-40 -20 0 20 40
time since perigee passage

Figure 7-9: Transverse control for the two-maneuver problem
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Figure 7-10: Normal control for the two-maneuver problem

7.6.2 Single-Maneuver Solution

In the two-maneuver solution, only one of the four spacecraft used both maneuver opportu-

nities. Moreover, the spacecraft that did use two maneuvers had an extremely small second

maneuver. A natural question that arises from the two-maneuver result is if the problem can

be solved using only one maneuver opportunity per spacecraft. The one maneuver problem

was posed by setting the duration of the second burn phase to zero.

As expected, slightly more fuel is used in the single-maneuver solution: 653.375 kg as op-

posed to 653.220 kg in the two-maneuver solution. Interestingly, allowing only one maneuver

per spacecraft changes the orientation of the tetrahedron at the terminal time. The orien-

tation of the tetrahedron for the one maneuver solution is seen in Figs. 7-11 and 7-12. By

allowing only one maneuver per spacecraft, the single burn must simultaneously achieve two

conflicting goals. On one hand, at least one spacecraft must terminate at a different altitude

than the other three in order to satisfy the tetrahedral constraints. With the periodicity

constraint, the only way to achieve a different altitude at the final time is by staggering the
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Figure 7-11: Optimal terminal tetrahedron viewed along orbital plane for the single-
maneuver problem

maneuvers to occur at different times. On the other hand, each spacecraft should burn at

perigee in order to efficiently complete the orbit transfer. To minimize fuel, each spacecraft

should burn as close as possible to perigee, yet still be staggered enough to produce suffi-

cient separation in the final geometry. By balancing these two goals, the resulting effect is

to minimize the maximum altitude separation. This result can be seen in Fig. 7-12, where

the difference between all four spacecraft and the altitude of the mesocenter is the same.

Furthermore, from Fig. 7-13, it can be seen that the maneuvers must be staggered further

away from perigee than in the two-maneuver solution, which is the likely cause of the larger

fuel expenditure than the two-burn solution. Two of the spacecraft burn almost completely

before perigee while the other two are approximately centered around perigee. From a fuel

balancing perspective, the difference in expended fuel between the four spacecraft is 0.25 kg.

In fact, the difference in expended fuel between the four spacecraft for the two-burn solution

is also 0.25 kg, (seen in Fig. 7-6), implying that there is no significant advantage in choosing

one scenario over the other with respect to fuel balancing.
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Figure 7-12: Optimal terminal tetrahedron viewed from normal to the orbital plane for the
single-maneuver problem
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Figure 7-13: Spacecraft burn durations relative to time of reference perigee passage, t-tperigee,

for spacecraft i = 1,...,4 during the burn phase for the single-maneuver problem
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7.6.3 Analysis of Optimality for the 1-Maneuver Problem

As mentioned in Section 6.4, a primary benefit of the Gauss Pseudospectral Method is the

equivalence that exists between the direct and indirect approaches.s By using the costate

mapping shown in this thesis, one can verify that the control from the NLP matches the

analytic control determined from the first-order HBVP optimality conditions at the LG

points (Section 6.2). Confidence in the NLP solution is increased if the NLP solution also

satisfies the HBVP necessary conditions for optimality.

This analysis was done for both the single-maneuver and two-maneuver cases, but only the

results from the single-maneuver case are shown here. Figs. 7-14-7-16 show the magnitude

of the differences between the NLP control and the estimated optimal control derived from

the HBVP conditions for the three components of control, IAur , IAuol, and IAuJ . It is

seen from Figs. 7-14-7-16 that the largest magnitude difference is order 10-6, verifying that

the NLP control is in excellent agreement with the estimated control from the first-order

optimality conditions. This error can potentially be reduced further by increasing the number

of LG points or by tightening the tolerances of the NLP optimizer. Recall that there are

no control variables in the NLP at the boundaries, and therefore only the control at the LG

points are compared.

7.7 Overview of the Spacecraft Reconfiguration Prob-

lem

Now consider a fleet of four spacecraft in a 1.2x12 Earth radii (Re) reference orbit with

a 10 degree inclination. In this scenario, science measurements are taken in a region of

the orbit, called the region of interest (ROI), rather than at a single point as in the orbit

insertion problem. Furthermore, assume that the initial state of each spacecraft is such that

the formation tetrahedron is highly degraded and is incapable of being used to take science

measurements anywhere in this region of interest. 62,63 The problem is then to reconfigure the

four spacecraft into a formation such that the formation satisfies a set of geometric constraints

for a portion of the orbit near apogee. This ROI is defined as a portion of the orbit such that
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Figure 7-14: Error in radial control for the single-maneuver problem

the mesocenter (i.e., the geometric center of the formation) is located a distance greater than

9Re from the center of the Earth (roughly ±20 deg in true anomaly on either side of apogee). 1

It is known that the initial (degraded) formation does not satisfy the geometric constraints

in the region of interest. The problem considered in this section is to design a single-orbit,

minimum-fuel trajectory and control profile that reconfigures the spacecraft to satisfy both

the required geometric constraints in the region of interest. Furthermore, in order to reduce

interference with the scientific measurements, it is desired that the spacecraft perform no

maneuvers for at least three weeks after the final reconfiguration maneuver. Consequently,

the tetrahedron must be able to maintain the specified quality in the region of interest for at

least three weeks without additional maneuvers. To assess the quality of the tetrahedron well

beyond the final reconfiguration maneuver, the spacecraft are propagated from the terminal

state, x(tf), of the single orbit minimum-fuel trajectory for a period of three weeks under

the influence of several perturbations. The resulting ephemeris of each spacecraft is then

1The region of interest represents the plasma sheet region of the magnetosphere, in which scientific
measurements are taken.
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Figure 7-15: Error in transverse control for the single-maneuver problem

used to analyze the tetrahedron during this three-week period to see if the region of interest

geometric constraints have been violated. This section addresses and compares minimum-

fuel trajectories that both violate and adhere to this constraint.

Trajectory Event Sequence

The trajectory event sequence for this problem is given as follows. First, the trajectory is

divided into seven phases with the following ordered event sequence:

[Burn Coast Burn Coast Burn Coast ROI]

During the coast phases the thrust is zero, while during the burn phase the thrust is constant

at a maximum value Tma. Furthermore, at each phase interface it is assumed that the

trajectories and mass of each spacecraft are continuous, but that the control is discontinuous.

It is important to note that, with the exception of the initial time of each spacecraft in the

first phase, the initial and terminal times of each spacecraft and each phase are free. Also,
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Figure 7-16: Error in normal control for the single-maneuver problem

while no maneuvers are allowed in the region of interest phase (and thus the region of interest

phase is a coast phase), several constraints on the formation are applied only in the region of

interest. Therefore, the region of interest is specified separately from the other coast phases

in the problem. Fig. 7-17 shows a schematic of the reconfiguration problem.

7.8 Spacecraft Model and Equations of Motion

7.8.1 Spacecraft Model

In this application four identical spacecraft are considered, each with a dry mass of 150 kg

and a fuel mass of 200 kg. Furthermore, the maximum thrust level of the engine is 0.22 N

with an engine specific impulse of 110 s. These physical parameters are typical of a stan-

dard monopropellant hydrazine orbit maintenance thruster. 123 Consequently, all thrusting

maneuvers are assumed to be non-impulsive. Lastly, there are a few parameters that are

not used in the single-orbit optimal control problem, but are used when propagating the
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Reeion of Interest

Figure 7-17: Schematic of the event sequence for the reconfiguration problem

spacecraft beyond tf to analyze the long term effects of the tetrahedral formation under

certain perturbations. The drag coefficient, Cd, is 2.2 and the drag area, Ad, is 1 m2 for all

spacecraft.

7.8.2 Equations of Motion

The equations of motion for the reconfiguration problem are exactly the same as those defined

for the orbit insertion problem. Consequently, the dynamic model during thrust phases is

defined in Section 7.2.2, the dynamic model during coast phases is defined in Section 7.2.3,

and the dynamic model for the region of interest is defined in Section 7.2.4.

7.9 Constraints

This section describes the many constraints imposed in the reconfiguration problem. Some

constraints are a direct result of the posed problem, while others are specific to the application

of the GPM to this problem.

171



7.9.1 Initial Conditions

As mentioned earlier, the four spacecraft begin in a significantly degraded tetrahedron,

shortly after having departed from the region of interest. Table 7.9.1 shows the initial

conditions for each spacecraft in orbital elements. To be clear, a is the semi-major axis in

Table 7.2: Spacecraft initial conditions
SC num a0o eo io Qo0 o V

1 4.2255510e7 .8025552 .1753710 6.259796 1.6225498 3.5779493
2 4.2255523e7 .8024699 .1753933 6.259694 1.6227984 3.5779235
3 4.2259621e7 .8024827 .1754062 6.260461 1.6217395 3.5781680
4 4.2259623e7 .8254586 .1753016 6.260448 1.6218584 3.5779821

m, e is the eccentricity, i is the inclination, Q is the longitude of the ascending node, w is

the argument of perigee, and v is the true anomaly. All angle units are in radians. Figure

7-18 depicts this initial tetrahedron, which clearly shows that this configuration is not the

desired regular tetrahedron.
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-8.504

-4.8555

mesoce

: SC 4.

-4.8565

2.4744
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2.4748

" -4.857 2.4738 (m 104
2.4738 X (m x10 7 )

Figure 7-18: Initial tetrahedral configuration

The orbital elements in Table 7.9.1 are converted to modified equinoctial elements using a
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transformation To2e (see for example Ref. 5) to obtain the initial state in modified equinoctial

elements. Furthermore, the initial mass of each spacecraft is set to its maximum value, i.e.,

m(i)(to) = mmax, i = 1,..., 4 (7.27)

where for this problem, mmax = 350 kg.

7.9.2 Interior Point Constraints

The interior point constraints are exactly the same as those defined for the orbit insertion

problem in Section 7.3.2, where the number of phases, P = 7.

7.9.3 Trajectory Path Constraints during Thrust Phases

The path constraints are exactly the same as those defined for the orbit insertion problem

in Section 7.3.3.

7.9.4 Constraints in the Region of Interest Phase

The final phase of the trajectory spans the region of interest. In the region of interest,

several geometric constraints are placed on the formation. As noted in Section 7.7, this

phase is a coast phase. Consequently, the thrust is zero in the region of interest. Next, let

the spacecraft mesocenter (i.e., the mean position) be defined as

4

1 r (i)  (7.28)
i=l

where r(i), i = 1,..., 4 are the positions of the four spacecraft as measured from the center

of the Earth. At the start of the region of interest phase, the mesocenter must attain a

particular position on the reference orbit, rRoI, where IjrRo, l = 9Re and is located at a

point prior to apogee. Consequently, a constraint on the position of the mesocenter at the
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start of the region of interest is given as

-(t
P ) ) = rROI (7.29)

There is a second constraint enforced at the entrance of the region of interest. In the

absence of perturbations, a spacecraft's orbit period is solely a function of semi-major axis.

Consequently, a formation in which all spacecraft have equal semi-major axes will be periodic

in its motion. When perturbations are introduced, there will be some degradation to the

tetrahedron over time, but in general the degradation rate is reduced if the orbit periods

are equal at the start. Therefore, in order for the formation to maintain its quality in the

ROI for a period of time into the future (i.e., beyond tf), it is beneficial to require that

the semi-major axes of each spacecraft at the start of the region of interest. Applying this

condition, a second constraint on the formation in the region of interest is given as

a(l)(top ) ) = a(2)(t (P ) ) = a(3)(t O ) )  (4)(t oP ) )  (7.30)

Now, the region of interest terminates when the position of the mesocenter has again attained

a magnitude of 9 Re. Consequently, a constraint at the terminus of the region of interest is

given as

) = 9Re (7.31)

Next, several path constraints are enforced during the region of interest. First, as the

formation evolves in the region of interest, it must maintain a certain geometry in order to be

able to take useful scientific measurements. In particular, the two aspects to the formation

geometry that are important in order to fulfill the science requirements are the shape and

size of the formation. The metric used to determine the quality of the shape of the formation

is the Glassmeier metric (Qgm)." The Glassmeier metric is given as

V, SAa
Qgm= r -+ +1 (7.32)

where V is the actual volume of the tetrahedronV* SA*

where V, is the actual volume of the tetrahedron, SAa is the actual surface area of the
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tetrahedron, and V* and SA* are the volume and surface area, respectively, of a regular

tetrahedron whose average side length is L. It is noted that the largest possible value of

each ratio in Eq. (7.32) is unity. Consequently, the maximum value of Qgm is 3. It is seen

that the Glassmeier quality metric is a function of both volume and surface area of the

tetrahedron. However, because of the functional form of Qgm, the Glassmeier metric has no

sensitivity to the size of the tetrahedron. The ideal geometry for this mission is a regular

tetrahedron with 10 km spacing between each satellite, but science investigators note that

there is considerable flexibility here.62, 63 In particular, values of Qgm greater than 2.7 are

acceptable in the region of interest. Consequently, the following path constraint on Qgm is

enforced in the region of interest

Qgm > 2.7 (7.33)

See Appendix for the computation of the Glassmeier quality factor.

Because the Glassmeier metric is insensitive to the size of the tetrahedron, an additional

constraint is required to constrain the size of the tetrahedron. Although an average inter-

spacecraft separation of 10 km is considered ideal, acceptable science return is still possible

for average separations ranging from 4 km to 18 km.6 2,63 Consequently, the following path

constraint is enforced during the region of interest that keeps the average side length, L,

bounded between its acceptable lower and upper limits:

4 < L < 18. (7.34)

Next, in order to evaluate the aforementioned path constraints in the region of interest at

the same time for all four spacecraft, it is necessary that both the initial and terminal time

for all four spacecraft be the same. Constraints on the initial and terminal time in the region

of interest are then given as

(1) (P) (2) (P) (3) (P) ) (4P)

(1)(P) t)(P) (3 )(P) (4 )(P) (7.35)

It is noted that to and tf in these equations are free.
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7.10 Tetrahedral Reconfiguration Optimal Control Prob-

lem

The optimal control tetrahedral reconfiguration problem is now stated formally. Using the

aforementioned trajectory event sequence, determine the thrust profile that maximizes the

sum of the terminal masses of each spacecraft, i.e., maximize the objective functional

4

J = Mzi ( ) (7.36)
i=1

subject to the dynamic constraints of Eq. (7.1), (7.3), and (7.7), the initial constraints of

Table 7.9.1 and Eq. (7.27), the interior point constraints of Eq. (7.12) and (7.13), the path

constraints of Eq. (7.14) and (7.15), the terminal constraints of Eq. (7.29), (7.30), (7.31),

(7.35), (7.32), and (7.34).

7.11 Numerical Solution via Gauss Pseudospectral Method

The spacecraft configuration problem as described in Section 7.7 - Section 7.10 is solved using

the aforementioned Gauss pseudospectral method. 6 The optimization was carried out with

the MATLAB mex interface of the NLP solver SNOPT 46 using analytic first-order derivatives

for both the constraint Jacobian and the gradient of the objective function. Furthermore,

the optimal control problem was scaled canonically from SI units to a non-dimensional set of

units such that the length scale is the radius of the Earth, the time scale is one Schuler period,

and the mass scale is equal to the initial spacecraft mass. For this numerical reconfiguration

problem, 10 nodes (i.e., 8 Gauss points) were used for the burn phases, and 50 nodes (i.e., 48

Gauss points) were used in the region of interest coast phase. The coast phases (other

than the region of interest phase) were not discretized, but were computed via numerical

quadrature of Eq. (7.7). Consequently, each coast phase had two nodes representing the

initial and final points of the phase.

Ideally, science investigators would like the formation geometry constraints to hold for a

period of three weeks. Yet, the problem described in the previous sections has a duration of
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only one orbit, or roughly one day. Because of this, any constraints on the formation after

this first pass through the ROI are not explicitly coded into the problem. However, the solu-

tion to the single-orbit problem was propagated for three weeks using an orbit propagation

tool called FreeFlyer® to determine the effects of perturbations on the formation. These

results are presented in the following section. The problem was then solved with a tighter

requirement on the tetrahedral formation, which, when propagated for three weeks, met the

tetrahedral requirements for the entire duration. The results of this case are presented in

the following section as well.

7.12 Results

7.12.1 Minimum-Fuel Solution for Qmin - 2.7

A minimum-fuel solution to the problem posed in Section 7.10 with Qmin = 2.7 is presented

here. The total amount of fuel burned is E•• mn = 0.1289 kg. The propellant used by

each spacecraft is shown in Fig. 7-19. Furthermore, Table 7.3 describes in detail the phase

durations for each spacecraft. Although three maneuver opportunities were included in the

trajectory design, it. is seen in the optimal trajectory that at least one maneuver was of zero

duration for each spacecraft. In fact, as seen in Table 7.3, only spacecraft #4 used more than

one of the three provided maneuver opportunities. In addition, all of the thrust maneuvers

were relatively short in duration (the longest burn being roughly six minutes in duration). It

is also interesting to note that spacecraft #1 burned over half of the total fuel expended and

that this maneuver resulted in a significant change in the position of spacecraft #1 relative

to to the other three spacecraft. By examining the tetrahedral formation at the initial time

(Fig. 7-20) and the tetrahedral formation at the terminal time (Fig. 7-21), it can be seen

that the optimal solution essentially re-positioned spacecraft #1 according to the arrow in

Fig. 7-20, with only minor changes in the other three spacecraft. It is important to note that

this optimal trajectory design is unique to the initial conditions given, meaning different

initial conditions could result in very different maneuver profiles.

Fig. 7-22 shows the evolution of the Glassmeier quality factor,Qg,, in the region of
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Figure 7-19: Fuel expenditure of each spacecraft for Qmin = 2.7.
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Figure 7-20: Projection of initial tetrahedron into ECI YZ-Plane for Qmin = 2.7
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Table 7.3: Phase durations (in minutes) for Qmin = 2.7
SC num Burnl Coast1 Burn2 Coast2 Burn3 Coast3 Coast ROI

1 0 158.483 0 355.017 6.224 61.533 837.300
2 1.118 226.667 0 164.500 0 188.967 837.300
3 0 157.483 0 84.083 1.746 337.950 837.300
4 0.383 272.717 1.143 75.000 0 232.017 837.300
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Figure 7-21: Projection of terminal tetrahedron into ECI YZ-Plane for Qmin = 2.7

interest. Note that the constraint on the quality factor becomes active twice during the

region of interest, once at the terminal point and once in the middle of the region of interest.

Interestingly, as seen in Figs. 7-22 and 7-23, the instant of time near the middle of the region

of interest where the quality factor attains is lower bound occurs when the average length

has simultaneously attained its minimum value. When the spacecraft are in close proximity,

small changes in relative position can lead to large changes in the relative geometry. As a

result, the sensitivity of the shape of the tetrahedron to changes in average length is highest

when the spacecraft are more closely spaced. In particular, this sensitivity can result in a

rapid degradation of the quality factor. Fig. 7-24 supports this by showing that the sensitivity

of the quality factor with respect to the average length, aQgm/aL, is indeed largest at the

179

-5.1338

.-. ........ · · · · · · · · · : · · · · · · · - - · · · · :

--



2.95

2.9

2.85

2.8

2.75

2.7

3 4 5 6 7 8 9

t (s x 10 4)

Figure 7-22: Quality factor in region of interest for Qm in = 2.7

time that L is at a minimum.

Finally, it is observed from Fig. 7-23 that the average length always remains between its

upper and lower bound in the region of interest. A possible explanation why the average

length never attains its lower bound is because of the shape of the tetrahedron is highly

sensitive to changes in L when the average length is small. As a result, it may be difficult to

maintain the quality factor if L is too small. A possible explanation as to why the average

length never attains its upper bound is that an exceedingly large value of L may result in an

increase in fuel consumption (since the initial tetrahedron, while deformed, has an acceptable

average side length only of 9.054 km). As a result, a tetrahedron with a large average length

would not be fuel-optimal.

7.12.2 Ensuring Future Satisfaction of Quality Factor Constraint

It is important to note that the fuel-optimal solution described in Section 7.12.1 does not

consider any potential degradation in the quality factor beyond a single passage though the
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Figure 7-23: Average length, L, in region of interest for Qmin = 2.7
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Figure 7-24: Quality factor, Qgm, as a function of average length, L, in region of interest for
Qmin = 2.7. Note: slope of Qgm attains a maximum when L attains a minimum.
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region of interest. However, if no more maneuvers were performed after the spacecraft have

exited the region of interest, it is clear that perturbations (e.g., oblateness, solar, lunar, and

drag) could potentially degrade the quality of the tetrahedron. As a result, at a future time,

the quality of the formation would be unacceptable.

As an example of potentially unacceptable degradation in the quality of the formation,

suppose that, upon the first exit from the region of interest, it is required that no maneuvers

be performed for a period of three weeks in order to take meausurements without interrup-

tion. Naturally, the tetrahedron must be able to maintain a quality factor of greater than 2.7

during every passage through the region of interest for this three-week period. A question

that arises then is whether an optimal trajectory (such as that obtained in Section 7.12.1)

meets these requirements. Fig. 7-25 shows the trajectory obtained when the final state of

the optimal trajectory of Section 7.12.1 is propagated forward over a period of three weeks.2

It is seen from Fig. 7-25 that the quality of the tetrahedron begins to degrade in the region

of interest on subsequent revolutions. More specifically, it is seen in Fig. 7-25 that, within

20 revolutions (1 revolution 1 day), the quality of the tetrahedral formation no longer

satisfies the requirement on the quality factor in the region of interest. However, it is noted

that the average side length between the spacecraft changes very little (Fig. 7-26) over this

three-week period, due in large part to the constraint of Eq. 7.30 on the semi-major axis.

Ideally, the way to ensure that the quality factor constraint is met for a specified time into

the future would be to pose an optimal control problem that includes a sufficient number

of revolutions of the orbit and enforces the quality factor constraint during the region of

interest in every revolution. However, this is computationally cumbersome since the size of

the optimal control problem would increase substantially. An alternative to solving such a

complex optimal control problem is to include some margin in the quality factor constraint

for the single revolution optimal control problem (i.e., the problem considered in this section).

In particular, it may be useful to set the lower bound on Qgm, to a value that is higher than

the desired value of 2.7 and see if the tetrahedron is of acceptable quality for three-weeks

into the future.
2The three-week propagation was performed using the orbit propagation tool FreeFlyer using oblateness,

solar, lunar, and drag perturbations.
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Figure 7-27: Evolution of quality factor, Qgm, over three-week period after t1 in region of
interest for Qmin = 2.8

In order to demonstrate the effectiveness of providing margin in the quality factor, the

original optimal control problem was modified so that the lower limit on Qgm in the first

region of interest was 2.8 instead of 2.7. The final state of this modified problem was then

propagated for three weeks. The results of this modified problem are shown in Fig. 7-27.

Although the quality factor also degrades (from 2.8) over the three-week period, this time

the value of Qgm remains above 2.7 for the entire three week period. However, because of

the tighter constraint on Qgm, the amount of fuel burned is significantly greater than the

Qmin = 2.7 case. In particular, the total fuel burned in the solution to the modified problem

was 0.1674 kg (an increase roughly 29% over the 2.7 case). The propellant used by each

spacecraft is shown in Fig. 7-28. In the optimal solution of the modified problem, all four

spacecraft utilize two maneuver opportunities, as opposed to the 2.7 case where only one

spacecraft burned twice. The phase durations (and consequently the maneuver durations)

are shown in Table 7.12.2. In terms of the terminal tetrahedral formation, the geometry is

similar, with some small changes in the relative positions. Fig. 7-29 directly compares the

geometries of the solutions obtained from the 2.7 and 2.8 cases.
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Table 7.4: Phase durations (in minutes) for Qmin = 2.8 case
SC num Burnl Coast1 Burn2 Coast2 Burn3 Coast3 Coast ROI

1 0 149.150 0.065 424.850 7.209 0 837.300
2 0 184.517 1.008 241.767 1.107 152.867 837.300
3 1.448 155.767 0 88.200 1.556 334.300 837.300
4 0 273.000 1.268 87.35 0.024 219.617 837.300

7.13 Summary

The problem of determining minimum-fuel maneuver sequences for a four-spacecraft forma-

tion was considered. The objective was to determine fuel-optimal configuration trajectories

that would transfer a four spacecraft formation from an initial parking orbit to a desired

terminal reference orbit while satisfying particular tetrahedral formation constraints. The

configuration problem was solved numerically using the Gauss pseudospectral method. In

particular, two versions of the minimum-fuel configuration problem were considered. In the

first scenario each spacecraft was given two maneuver opportunities to complete the transfer.

In the second scenario each spacecraft was given only one maneuver opportunity. Optimal

solutions, and the discovery of the fuel-optimal orientation was found for each scenario. In

addition, the first-order optimality conditions (or KKT conditions) obtained from the Gauss

pseudospectral method were shown for a multiple-phase optimal control problem. These

KKT conditions were compared with the optimality conditions obtained by discretizing the

calculus of variations problem via the Gauss pseudospectral method. A mapping between

the KKT multipliers and the HBVP costates was used to determine an estimate of the

optimal control for a four spacecraft formation flying problem. It was found that the con-

trol obtained from the NLP was in excellent agreement with the control estimated by the

discretized HBVP.

In addition, a minimum-fuel trajectory was designed to transfer four spacecraft from a

degraded tetrahedral formation into a tetrahedron that satisfied certain geometric quality

constraints for a portion of its orbit. This problem was posed as an optimal control problem

and was solved via direct transcription using the Gauss pseudospectral method. The final

state of the solution was propagated three weeks into the future to examine the potential
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degradation of the formation. Observing that the formation degraded in an unacceptably

short period of time, a modified optimal control problem was posed that provided margin

in the quality factor. It was found that the solution to this modified problem satisfied the

tetrahedral quality constraints for this entire three week period beyond the final time of

the trajectory design. The results in this chapter provide insight into the relative motion

of tetrahedral formations and demonstrate the applicability of the Gauss pseudospectral

method to spacecraft formation flying problems.
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Appendix: Computation of

Glassmeier Quality Factor

In order to compute the Glassmeier quality factor at a given point, a few quantities must

be calculated. First, using the mesocenter in Eq. (7.28), the following volumetric tensor is

calculated:

l/me = rmir (7.37)
i=1

where

rmci= r (i) - , i = 1,..., 4 (7.38)

Using RI/me, the volume of the actual tetrahedron is computed as

8 =FI -,
Va = I I/mc I  (7.39)

3a

where I!RI/mcl is the determinant of the volumetric tensor. Next, the surface area of the

actual tetrahedron is computed as follows. First, let

S = r(2) x r(3), S2 = r(1 ) x r(3) S3 = r() x r(2)(7.40)
S4 = 11(r(2) - (1) x (r (3) - ()

Then the volume of the actual tetrahedron is given as

4

SAa = S (7.41)
i=1
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Lastly, the ideal volume and surface area equations are solely a function of the average side

length, and are expressed below.

V* = (L) 3, SA* = 3(L)2  (7.42)
12
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Chapter 8

Conclusions

This chapter provides a brief recap of the key contributions of this thesis, and expounds on

potential areas for future work.

8.1 Thesis Summary

The Gauss pseudospectral method, a recently developed direct transcription method for

solving optimal control problems, is presented in its most current form. This formulation

has been modified from the original formulation in Ref. 6 by increasing its applicability

to problems with path constraints, explicitly including the terminal state in the NLP, and

improving the control estimate at the boundaries. The Gauss pseudospectral method is

implemented as a global approach, meaning the trajectory is approximated using a global

interpolating polynomial across the entire interval, as opposed to using piecewise polynomials

to locally approximate segments of the trajectory. However, since both implementations can

be found in the literature for pseudospectral methods, a rigorous analytic and numerical

comparison is conducted where the GPM is implemented in both a global and local fashion

on several problems. The results validate the use of a global approach (or semi-global

approach in the presence of known discontinuities).

A comparison is made between three commonly used pseudospectral methods: the Leg-

endre, Radau, and Gauss pseudospectral methods. In order to provide a fair comparison, the

NLP solver SNOPT 45 is used for each of the discretizations. Furthermore, all three methods
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are implemented using the same version of MATLAB@ and the initial guesses provided for

all examples are identical. The accuracy and and computational performance between all

the three methods is compared, and a guideline is created to help determine under what

circumstances each method is appropriate.

This thesis also provides a discussion on past and present attempts to prove the conver-

gence of the NLP solution towards the exact optimal solution as the number of discretization

points increases towards infinity.

Lastly, this thesis applies the Gauss pseudospectral method to tetrahedral spacecraft

formation flying problems. Both orbit insertion problems and reconfiguration problems are

formulated, solved, and analyzed, thus creating a greater understanding for the relative

motion and maneuvers of minimum-fuel spacecraft formations.

8.2 Future Work

This work primarily focuses on the viability of the Gauss pseudospectral method as a pre-

ferred numerical method for solving optimal control problems. Specifically, the GPM's ca-

pability to obtain accurate, efficient solutions to very complex, non-intuitive problems is

scrutinized, improved, and compared against several other competitive methods. Yet more

advancements can be made to advance the GPM even further. This section will highlight

some of the potential areas where the GPM can be improved.

Real-Time Path Planning

Real-time path planning is one of the hottest topics in this field right now. Simply deter-

mining an optimal trajectory a priori, and then implementing a controller that will bring

the vehicle back to this optimal trajectory in the presence of disturbances has been done

several times and in fact is sub-optimal. Researchers are now looking at control algorithms

that attempt to re-optimize the trajectory once a vehicle deviates from the original optimal

trajectory. Thus the ability to formulate and solve an optimal control problem in real-time

is highly desirable. Simplified optimal control problems, like those that form linear programs

when discretized, have already been used in real-time control. However, there is still much
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work to be done in terms of implementing nonlinear programs that can be consistently and

reliably solved in real-time. That said, pseudospectral methods have the potential to be

used in real-time due to the extremely high solution accuracy obtained with relatively few

nodes (meaning a smaller problem size). Ross98 has initiated work in real-time optimization

using pseudospectral methods and it is likely others will follow his example. Along similar

lines, research is underway' to try and reduce the computational burden of pseudospectral

methods. Many real-time applications have a nonconvex feasible region, meaning it may be

quite difficult (or computationally expensive) to start from an arbitrary initial guess and

converge to the globally optimal solution. Research on algorithms that help determine the

initial guess for the GPM transcription may significantly reduce overall computation times

and bring pseudospectral methods closer to real-time applications.

Convergence

As mentioned in Chapter 3, the issue of convergence for the Gauss pseudospectral methods,

and pseudospectral methods in general, is currently unresolved. Due to the global nature

of pseudospectral methods, this proof is inherently different than many convergence proofs

of direct transcription methods. Moreover, the inclusion of a cost function makes this con-

vergence proof more complicated than those of boundary value problems. Yet the evidence

suggests that a convergence proof is tractable, and that the convergence rate for smooth

problems using the GPM is extremely good.

Mesh Refinement

The high accuracy and convergence rate for the GPM requires the assumption that the prob-

lem is sufficiently smooth. However, many real world problems have either state discontinu-

ities, control discontinuities, or both. Often the number and location of these discontinuities

are unknown. A mesh refinement algorithm that could detect discontinuities (and insert

a phase interface in response), and also determine an appropriate number of discretization

points to use would be extremely helpful, and would significantly increase the effectiveness

of pseudospectral methods.
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Improving the Control

As was seen in Chapter 4, Pontryagin's minimum principle was used to create a more accu-

rate estimate of the boundary control. This approach works because the state and costate

approximation are more accurate than the control approximation, not only at the bound-

aries, but at the interior points as well. If this approach was able to improve the control at

the boundaries, it may also be able to improve the control at the interior LG points as well,

or possibly even at arbitrary points between the LG points. This result was also noticed by

Hager, 56 who first suggested a posteriori computation of the control. More research must be

done in order to determine to what extent this algorithm should be used when determining

the most accurate control profile.
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