
COMPUTATIONAL ALGORITHMS FOR
ADAPTIVE ROBOT CONTROL

by

Guinter Dieter Niemeyer

B.S., Technische Hochschule Aachen, (1986)

SUBMITTED TO THE DEPARTMENT OF
AERONAUTICS AND ASTRONAUTICS IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE IN AERONAUTICS AND ASTRONAUTICS

at the

MASSACHUSETITS INSTITUTE OF TECHNOLOGY

February 1990

Copyright © Massachusetts Institute of Technology, 1990. All rights reserved.

Signature of Author .
Depaieet of Aeronautics and Astronautics

January 25, 1990

Certified by

Accepted by

Professor Jean-Jacques E. Slotine
Thesis Supervisor

D artment of Mechanical Engineering

'1.)

WASSACHUSETTS INSTITUTE
OF TECHNnt fGY

FEB •2 6 1990

VProfessor Harold Y. Wachman
Chairman, Department Graduate Committee

- -- ~-- ---

COMPUTATIONAL ALGORITHMS FOR
ADAPTIVE ROBOT CONTROL

by

Giinter Dieter Niemeyer

Submitted to the Department of Aeronautics and Astronautics on January 25,
1990 in partial fulfillment of the requirements for the degree of Master of Science

in Aeronautics and Astronautics.

Abstract
Effective adaptive controller designs potentially combine high-speed and high-precision in
robot manipulation. Furthermore, they can considerably simplify high-level programming
by providing consistent performance in the face of large variations in loads and tasks.
Globally convergent adaptive manipulator controllers have recently been developed for this
purpose. However, computational complexity has so far restricted their applicability to
manipulators with few degrees-of-freedom.

This work presents a new recursive algorithm, which effectively implements the simple, yet
globally tracking-convergent, adaptive sliding manipulator controller. To further improve
efficiency, a procedure is derived to select and evaluate a minimal set of inertial parameters
of the manipulator. Since many tasks require direct cartesian control, the algorithm is
subsequently expanded to handle cartesian data hi real-time and possibly exploit kinematic
redundancies. Finally, the application to constrained motion is discussed, introducing
impedance control features to guarantee stable contacts to arbitrary passive environments.
The complete system allows the effective use of adaptive strategies on multi degree-of-
freedom manipulators for a variety of tasks.

The developments are implemented and illustrated experimentally on a four degree-of-
freedom articulated robot arm and suggest a wide range of application beyond adaptation to
grasped loads.

Thesis Supervisor: Professor Jean-Jacques E. Slotine
Title: Associate Professor of Mechanical Engineering

Acknowledgments

I wish to express my deepest gratitude to my advisor, Professor Jean-Jacques Slotine.

He was a constant source of support, ideas, and excellent guidance and truly brought the

project to life.

Special thanks go to Professor Kenneth Salisbury and Dr. William Townsend, who

allowed me to use their truly fine manipulator and provided many stimulating discussions

and much encouragement. Also many thanks to Brian Eberman and Sundar Narasimhan,

who helped in the software implementation and were always full of suggestions.

I furthermore deeply appreciate the many friendships I have found here: My long-

time office-mates Andre Sharon, Ted Clancy, Harvey Koselka, and Hyun Yang, the

members of the Nonlinear Systems and Whole Arm groups, the Martin Design Center and

the Artificial Intelligence Laboratory. They all provided numerous pieces of helpful advice

and comments and made this time thoroughly enjoyable.

I also gratefully acknowledge the support from the H.A. Perry Foundation, as well as

partial support by the MIT Seagrant Office and Grant 8803767-MSM from the National

Science Foundation. Development of the arm and control hardware was supported by

Grants N00014-86-K-0685 and N00015-85-K-0214 from the Office of Naval Research.

Finally, I am most grateful to my family, who supported and encouraged my work in

any way they could and, I am sure, without whom I would not be here today.

Table of Contents

Abstract 2
Acknowledgments 3
'Fable of Contents 4
List of Figures 6
List of Tables 7

I. Introduction 8

2. Direct Adaptive Sliding Control II

3. Recursive Implementation 15
3.1 The Definitions of Spatial Quantities 17
3.2 The Relation of Joint and Link Inertia Matrices 18
3.3 Expressing the Coriolis Matrix 20
3.4 The Gravity Vector 24
3.5 Feedforward of the Inertial Forces 25
3.6 Adaptation Law for Inertial Parameters 26
3.7 The Complete Recursive Algorithm 26
3.8 Comparison to Newton-Euler and Walker Algorithm 28
3.9 Closed Kinematic Chains 29

4. Minimal Parameterization 30
4.1 Parameter Redundancies for Two Consecutive Links 31
4.2 Parameter Transfers through Rotational Joints 38
4.3 Parameter Transfers through Translational Joints 40
4.4 Parameter Reductions for Links with Restricted Motion 40

5. Cartesian Implementation 42
5.1 On-Line Inverse Kinematics 43
5.2 Redundancy Solution 45
5.3 Implementation Aspects of Inverse Kinematics 46

6. Applications to Constrained Motion 48
6.1 The Basic Passivity Concept 49
6.2 Passivity Interpretation of the Adaptive Controller 50
6.3 Adaptive impedance control 53

7. Experimental Results 56
7.1 The Experimental Setup 56
7.2 A Comparison between P.D. and Adaptive Control 60
7.3 Cartesian Control Experiments 63
7.4 Whole Arm Experiments 63

Appendix A. The Spatial Vector Notation 65
A. 1 The Spatial Vector Definition 66
A.2 Spatial Vector Algebra 66

-5-

A.3 Reference Frame Transformations 68
A.4 The Spatial Inertia Matrix 69
A.5 The Dynamics of an Arbitrary Rigid Body 71

Appendix B. Evaluating the Link Force Coefficients 72

Appendix C. The Implementation Code 78
C. I Type and Variable Definitions 78
C.2 Controller Recursive Routine 80
C.3 Adaptation Recursive Routine 84

References 87

List of Figures

Figure 3- 1:
Figure 4-1:
Figure 6-1:
Figure 6-2:
Figure 6-3:
Figure 6-4:
Figure 6-5:
Figure 7-1:
Figure 7-2:
Figure 7-3:
Figure 7-4:
Figure 7-5:

Geometric Interpretation of Summations
Two consecutive links connected by a rotational joint
Negative feedback and parallel connections maintaining passivity
Passive Interpretation of a rigid manipulator
Open versus closed loop passive mapping of the manipulator
Passivity interpretation of the adaptive controller
Complete control system for constrained motion
The WAM manipulator
The coordinate frames of the WAM manipulator
Joint Tracking Errors q (in degrees)
Joint Torques z (in N.m.)
Cartesian Tracking Errors i'(t) (in cm)

3.2
4.1
6.1
6.2
6.2
6.2
6.3
7.1
7.1
7.2
7.2
7.3

List of 'rabies

Table 3-1: Complete Equations for the Recursive Implementation of the Direct 3.7
Adaptive Controller

Table 4-1: Evaluation of 61 dk 4.1
Table 4-2: Evaluation of vk-l x S1 dk + dk x 6 kI + 81 vk-1 x dk 4.1
Table 4-3: Upwards Transformation of a Spatial Inertia Matrix 4.1
Table 4-4: Downwards Transformation of a Spatial Inertia Matrix 4.1
Table 4-5: Transformation of the inertia parameters for rotational joints 4.2
Table 4-6: Transformation of the inertia parameters for translational joints 4.3
Table 7-1: Denavit-Hartenberg Parameters of the WAM manipulator 7.1
Table 7-2: The necessary inertial pannaters of the WAM manipulator 7.1
Table B-I: Evaluation of Ri i, B
Table B-2: Evaluation of w x Ri v + v x R i w + Ri w x v B
Table B-3: Analytic functions for the individual force coefficients B
Table B-4: Velocity combinations for the force coefficient evaluation B
Table B-5: Individual force coefficients given by velocity combinations B

Chapter 1

Introduction

Adaptive control has been extensively studied, and several globally convergent

controllers have been derived for linear time-invariant single-input single-output systems.

Recent developments (for example [Slotine and Li, 1986], [Craig, Hsu, and Sastry, 1986],

[Middleton and Goodwin, 1986], [Hsu, et al, 1987], [Sadegh and Horowitz, 1987], [Bayard

and Wen, 1987], [Koditschek, 1987], [Slotine and Li, 1987a-e], [Li and Slotine, 1988],

[Walker, 1988]) have been able to derive adaptive manipulator controllers with similar

global convergence properties. This represents an important extension of adaptive control

to a class of nonlinear multi-input systems. Such adaptive manipulator controllers

potentially provide consistently high performance in the face of large variations of loads

and tasks. Furthermore, this performance is achieved without requiring increased actuator

bandwidth.

A simple, yet globally tracking-convergent, direct adaptive sliding manipulator

controller was developed in [Slotine and Li, 1986] and demonstrated experimentally in

subsequent work [Slotine and Li, 1987b]. Though the controller provides excellent

-9-

performance and robustness properties, it application is currently limited by the

computational burden of the nonlinear control and adaptation laws. Existhig recursive

algorithms are rendered useless as they do not match the nature of the controller.

The central part of the work presented here develops a new recursive algorithm to

effectively implement the adaptive manipulator controller of [Slotine and Li, 1986]. This

allows the application to multi degree-of-freedom manipulators, which so far have been

excluded from the advanced control concepts.

An additional increase in computational efficiency can be achieved with the use of

minimal parameter sets. This work also presents a procedure for selecting such minimal

sets and evaluating the involved parameters. It is applicable to all joint types and kinematic

structures and presents a more practical altemative to existing theoretical results ([An,

Atkeson, and Hollerbach, 1985], [Khosla and Kanade, 19851, [Mayeda, 1988]).

Since many interesting tasks can be addressed with direct cartesian control, this work

proceeds by extending the recursive algorithm to handle cartesian data in real-time. It thus

provides a cartesian implementation of the adaptive controller. To handle redundant

manipulators, a pseudo-inverse method is used with nullspace minimization of a joint

position norm. On the basis of this cartesian implementation, the application to constrained

motion is then examined. In particular, impedance control features are introduced to

guarantee stable contacts with arbitrary passive environments. The complete system then

allows the effective use of adaptive strategies on multi degree-of-freedom manipulators for

a large variety of tasks.

The developments are implemented and illustrated experimentally on a four degree-

of-freedom articulated robot arm. A comparison between P.D. and adaptive controller

clearly demonstrates the improvements caused by the adaptation process. Further

-10-

experiments also suggest a wide range of application beyond the adaptation to grasped

loads.

Following a brief review of the direct adaptive controller of [Slotine and Li, 1986] in

Chapter 2, Chapter 3 presents the recursive algorithm for the implementation. The minimal

parameter sets are derived in Chapter 4, after which cartesian implementation and

application to constrained motion are discussed in Chapters 5 and 6 respectively. Finally

the experimental results are detailed in Chapter 7.

-1-

Chapter 2

Direct Adaptive Sliding Control

The direct adaptive sliding controller considered in this thesis was originally

developed and later experimentally verified in [Slotine miand Li, 1986, 1987a]. It is

applicable to all rigid manipulators, regardless of kinematic structure, and briefly

summarized in the following.

In the absence of friction and other disturbances, the dynamics of an n degree of

freedom rigid manipulator (with the load considered as part of the last link) can be written

as

H(q) q + C(q,q) q + G(q) = s (2.1)

where q and u are the nx I vectors of joint displacements and applied joint torques (or

forces) respectively. H(q) denotes the nxn symmetric positive definite (s.p.d.) manipulator

inertia matrix, C(q,q) q is the nxl vector of centripetal and Coriolis torques, and G(q) gives

the nxl vector of gravitational torques. A friction model can be added to the above

dynamics, using e.g. D, sgn(4) and D,, q as the nxl vectors of static (Coulomb) and

-12-

viscous friction torques. Note that the sign operator sgn(.) is performed independently in

each component, and the matrices Ds and D,, are diagonal positive definite (or semi-

definite). Including friction, the manipulator can thus be modeled as

H(q) q + C(q,qi) q + G(q) + D3 sgn(q) + DZ, q = (2.2)

The adaptive controller design problem is stated as follows: given the desired

trajectory qd(t), with some or all of the dynamic parameters being unknown, and with the

joint positions and velocities measured, derive a control law for the actuator torques, and an

adaptation law for the unknown parameters, such that the manipulator joint position q(t)

closely tracks the desired trajectory qd(r).

In contrast to other controllers, a reference trajectory, which incorporates a first level

of feedback, is defined together with an associated error measure as

qr = d - A q (2.3)

s = 4 - •r = q + A' (2.4)

where q = q - qd and A is a s.p.d. matrix (or, more generally, a matrix whose eigenvalues

are strictly in the right-half complex plane). Also, a(r) is defined as the current estimate of

the constant vector a of the manipulator's dynamic parameters, with a(t) = a(t) - a.

The control and adaptation laws can now be given as

S= Y(q,q,4r,vq) - KD s (2.5)

a = - P YTs (2.6)

where KD and P are symmetric positive definite gain matrices and the matrix Y(q,4,4,.,qjr) is

defined by

-13-

A A A A A A
Y(q,) a = H(q) o,. + C(q,q)qr + G(q) + D. sgn(~r) + D, qr (2.7)

The controller thus consists of a P.D. feedback term plus a particular type of feedforward.

To be more precise, the feedforward terms do not cancel the natural dynamics, but rather

compensates for the torques corresponding to the reference trajectory. This helps the

overall convergence (adding negative terms to (Vt)) and avoids the use of velocity

measurements for fiiction compensation. Therefore problems of inaccurate friction models

at zero velocity are alleviated and no boundary layer approximation is necessmay for

Coulomb friction. This is true in general for all friction models, that provide a total friction

torque monotone in velocity.

The analysis and stability proof of this controller are done using a Lyapunov-like

function

V(t) = sTHs + a1 Tl-1a (2.8)
2 2

and exploiting fundamental physical properties of the system, such as conservation of

energy and the positive-definiteness of the inertia matrix H. Substituting the above control

and adaptation laws (2.5) and (2.6) then yields

17(t) = - sT (D, + KD) s - sT Ds (sgn(~) - sgn(4r)) 5 0 (2.9)

Using simple functional analysis arguments, this result can be shown to imply that s --+ 0 as

t -4 co, which in turn implies that q and q both tend to 0. The algorithml is therefore

guaranteed global tracking convergence independent of the initial parameter estimates.

It is interesting to note that the use of an adaptive controller, such as the one given

above, improves the performance of a manipulator without increasing the actuator

-14-

bandwidth. This is extremely important when dealing with large loads, as they generally

reduce tie structural frequencies and limit the available bandwidth considerably, making

fixed parameter controllers most sensitive to parameter uncertainties.

-15-

Chapter 3

Recursive Implementation

A major obstacle towards the implementation of multi-d.o.f. nonlinear controllers, is

their computational complexity. This is particularly true for multi-d.o.f. manipulator

controllers using full dynamics compensation, such as the adaptive controller described in

Chapter 2. It is therefore important to develop and implement recursive algorithms to

preform the necessary calculations. Such algorithms provide the necessary efficiency for

multi-d.o.f. controllers, as their execution time remains linear in the number of degrees of

freedom, or more precisely in the number of links.

Physical insight in the dynamic equations of motion for rigid manipulators has led to

the recursive Newton-Euler algorithm. This algorithm exactly calculates the forces and

torques necessary for any given position, velocity, and acceleration, as detennined by the

equations of motion. It thus provides an efficient implementation of "computed torque"

type controllers, which attempt to precisely cancel the nonlinear dynamics. However, the

adaptive sliding controller does not attempt cancellation, but introduces a reference velocity

and slightly modifies the dynamic equations computing the applied torques. It thus can not

make use of the Newton-Euler algorithm, which is limited to the exact equations of motion.

-16-

A solution to this problem was suggested by [Walker, 1988], who applies the ideas of

[Slotine and Li, 1986] directly to the recursive Newton-Euler formulation of the equations

of motion. The resulting algorithm is recursive, hence efficient, and has very similar

convergence properties as the original adaptive sliding controller. Differences, however,

exist and, in particular, there is no joint-space representation of the calculated torques, and

therefore no simple "closed-form" of the resulting multi-input controller.

To achieve an exact implementation of the adaptive sliding controller of [Slotine and

Li, 1986], this section develops a new recursive algorithm. Though it is derived

independently from the Newton-Euler algorithm, it takes a similar form, generalized to

accommodate the reference velocity. As the original algorithm, it remains applicable to all

rigid manipulators, regardless of kinematic chains and joint structure. To allow a simpler

notation, however, the derivation is detailed for open kinematic chains only. Remarks on

the closed chain results follow thereafter.

The efficiency of a recursive algorithm is achieved by treating each link as an

individual rigid body. The following thus proceeds by relating all the joint quantities of the

controller to the rigid-body quantities of each link and then substituting these in the control

and adaptation laws. Throughout these developments the standard Denavit-Hartenberg

convention for coordinate frame locations and numbering is used (see, e.g., [Asada and

Slotine, 1986]). 'That is, for open kinematic chains, the links are numbered from zero (base)

to n (tip) with joint i connecting link i-I to link i.

-17-

3.1 The Definitions of Spatial Quantities

As in the computational approach of [Walker, 1988], a simplifying aspect of the

derivation is the use of the spatial vector notation of [Featherstone, 1987]. This notation

combines corresponding rotational and translational quantities into a single 6-dimensional

vector, thus reducing the number and complexity of involved equations. Appendix A gives

a summary of this vector notation and its fundamental rules, while this section defines the

needed quantities.

Due to the nature of the spatial notation, the relative velocity of two connected links

can simply be expressed as the product of a fixed spatial vector dk and the joint velocity 4k,

regardless of the joint type (for example rotational, translational or even screw-like). The

structure of this spatial vector dk, also referred to as the joint axis, determines the type of

joint, while its norm specifies the gear ratio. That is

vk - Vk-l = dk ' k (3.1)

Therefore the spatial velocity vk, reference velocity wk and reference acceleration wk

as well as the velocity error ek of each link can be written as

k

Vk = d li• (3.2)
l=1

k

wk = di r (3.3)
1=1

k

irk = dt irl + vi x di ;,. (3.4)
I=1

k

ek = Vk - k = d s (3.5)
Associated with each link is also a spatial inertia matrix k containing all ten inertia1

Associated with each link is also a spatial inertia matrix Ik containing all ten inertia

-18-

parameters of the link. Defined as in Appendix-Section A.4, these matrices can be

expressed using sparse placement matrices Ri and the ten parameters values ak of the link.

10

Ik = Ri aki (3.6)
i=1

The local spatial forces fk caused by each link can also be divided into the effects of

all ten parameters.

10

fk = fk aki (3.7)
i-1

Summing the local forces of the above links then results in the total force Fk to be applied

to a particular link

n

Fk = f (3.8)
l=k

which can in turn be mapped to the joint torque as

tk = dkT Fk (3.9)

3.2 The Relation of Joint and Link Inertia Matrices

Having related joint and link velocities, accelerations, and forces in the above

definitions, the next step in the derivation must relate the joint and link inertia matrices.

This is best done by examining the kinetic energy, which is independent of the choice of

variables, as are all types of energy. In particular, it can be expressed in both joint and link

variables as

-19-

E n "

Ekin Y 4 k 'kj 4j
j=1

Substituting

rewritten as

or Ekin = I v• I i
i1=

(3.10)

the definition for spatial velocity (3.2) then allows the kinetic energy to be

= dk k i, d ij• (3.11)

Sk dkT x i d 4
= j= i=max(kj)

so that the inertia matrix elements hkj can be written as

h kj = dk Tkj' I (3.12)I dj
i=mnax(kj)

The above transformations, as will many others throughout the derivation, rely

strongly on changes in the order of summation and on corresponding changes in the

summation ranges. In particular, it is true that

fi n

k I
I1

i= k

as well as

n

i=k j=1

n

j=1

(3.14)
i=max(kj)

These equalities are best verified geometrically, as in Figure 3-1, where each shaded

element is included in the summation.

(3.13)

Ekin

-20-

k j

i k i

Figure 3-1: Geometric Interpretation of Summations

3.3 Expressing the Coriolis Matrix

The adaptive controller makes use of the relation between the Coriolis matrix C and

the inertia matrix derivative i by noting the skew-symmetry of (H - 2C) or equivalently

using H = C + CT. In addition, the following derivation uses an explicit expression for each

element of the Coriolis matrix, which can be obtained by deriving the equation of motion

with a Lagrangian approach [Slotine and Li, 1987e]. That is, Coriolis matrix is given by

n D hki D h D h
cki = + kj - 1 (3.15)2•j2 j -_ qj a q qkk

Using this expression and the above result for the inertia matrix (3.12) it is also possible to

derive a spatial expression for *he Coriolis matrix.

First, it is necessary to find partial differentiation rules for spatial joint axes and

inertia matrices. Knowing that for a fixed reference frame the transformnnation matrices obey

P

-21-

t x k =- d n

it then follows that

dk =
a q,
ý qj "--

V i>k

dlxdk Vi5k
o V i>k

Sdi x ' k d- , xi

(3.16)

(3.17)

(3.18)
V i5 k
V i>k

The following derivation examines the three parts of cki according to Equation (3.15)

first before connecting them into one larger equation. Thus the first part takes the form

ij=1
1 hki/, q7 =

ai

n

=+
j=1

j=1

+
j.= 1

j [7 1di j
a #j

I=max(k,i)n

1=-max(k,i)

nl-=nax(k,i)n

4j (aj a~ dta(dx dk)T 11 di

j d kT (djx ll-lldjx) di

4j dkr I d x di

if j k

if j5 l

if j i

using the partial differential rules, as given above by Equations (3.17) and (3.18). The

conditions can be incorporated in the summation boundaries for j and the summaations can

then be performed creating a spatial velocity.

-22-

n

1=max(k,)

- ax(ki)
l=imax(ki)

dkT Vk X I di

dkT 11 v, x di

n

l=max(k,j)

I=max(k,i)

dkT VI X It di

dk' II Fi x di

The second part of Equation (3.15) can then be expressed as

n
Shkj
) qi

= n=

-i
j=l

ii

j=1

[dkT7 11 d

l=max(kj)n

1=max(kj)

i--max(kj)

1--max(kj)

4j (d, x dk)" I, dj

4J dkT (di I- I d) d

j dkT ! d, xd

Changing the order of summation according to

j=1 I=max(kj)

as was done in Section 3.2 and then incorporating two of the

summations, noticing that i < j also implies i 5 1, results in

n
dkT di x I, v

I=k
kj l =h I

j=1 i

conditions into the

if i k

dkT (di x I - I I d i x) v,

dkT I dix (v - i)

i
j= 1

Sski

l = -

S 1ki

r) j qj -

if i k

if il5

if i5j

n t

t=k j=1

+ x
I=max(k,i)

n

+ I
I=max(k,i)

i
q 4

-23-

dkT di x II vi

dkT di x I v-

if i k

dkT I1 di x vi

n

I=man(k,i)

where the change of the summation range in the first sum has no immediate effect, but

simplifies the further development.

Finally the third part of Equation (3.15) is skew-symmetric to the second part and can

thus be writter, as

n hijSh ..

/= Gk SI± [-•i -dTlldj] jJ=l I=max(ij) qk

n

=-max(k,i)

-i
diT dk X. lI vI

diT dk X I1I v =m (k,
I=max(kj)

if k<i

diT 11 dk x vk

The spatial expression for an element cki of the C matrix can now be obtained by

connecting the above three parts and canceling several terms thereof.

j=l l=max(k,i)

(k
+ I

I=max(k,i)

ahkj =
qjs

-24-

I-max(k,i)

I=max(k,i)

- dk Vk x Id,

+ dkT llixd,

- diT dk I1

- dkT d xly v
+ didkXI 11VI

+ dkT vl - dkT t vI x di

+ dkTdix I vI - dk'lld i xX i

+ di Tldk k

if i k

if k i

+dT vxI dig -Y dkT Il v X di + dkT d, x l ,V

+ dkT 1I vi d

(3.19)

3.4 The Gravity Vector

An expression for the gravitational torques is quickly obtained when realizing that

gravitational forces corresponds to a vertical upward acceleration of the complete system in

a gravity-free environment. Therefore

Gk = - dkT i g0
i=k

(3.20)

where go is the gravitational acceleration pointing downward. In the implementation the

gravity terms should also be lumped into a vertical acceleration, as to avoid additional

calculations.

-25-

3.5 Feedforward of the Inertial Forces

This section computes the actual joint torques to be applied due to the inertial forces

of the manipulator. In particular, substituting the above results (3.12), (3.19), and (3.20)

into the control law yields

= · , + c*, qrg + Gk
i= I i= 1

n

=dkT It (-g 0)
I=k
n n

+ "IT 11 (di qr +
i=1 I=max(k,i)

+ (tdix v,

(3.21)

vi x di ,.I)

Sri + P* X It di 4.i + di x 1 v i)

After changing the order and ranges of sunummnations, similar to (3.14.), the inertial

torques can be written as

k = dkT Fk = dkT If
I=k

with the individual link foicesf, being calculated as

f = II - g0) + V lx lI w1 + w1 II V II 1 WX V1

(3.22)

(3.23)

Or, splitting the effects of different parameters, that is using Equation (3.7), the inertial

torques can also be expressed as

n 10

k=k i-

with

(3.24)

Tk

-26-

I 1 1
f1 ' = R, (wl - go) + 1 vlx Ri wl + Wl X Ri v, + i RI wl x v1 (3.25)

3.6 Adaptation Law for Inertial Parameters

To implement the adaptation law given in Equation (2.6), it is necessary to notice that

the matrix Y, as defined in (2.7), represents the coefficients of each torque with respect to

all parameters. Remembering the above results, this implies a coefficient between torque tk

and an inertial parameter ali of

Sd ' fi V k55
Ykl = dkf V k (3.26)

k 0 V k>i

The product YT s can then be computed as

(yTs) i A = "k dkTf/ = eTf (3.27-

so that the complete adaptation law for the inertial parameters, given a diagonal gain matrix

P, is

ali = - P 1
i T fl i (3.28)

3.7 The Complete Recursive Algorithm

The key equations of the recursive algorithmn are given by the local inertial force of

each link (3.23) and the spatial version of the adaptation law (3.28). Together with the

definitions of the spatial quantities and some joint level computations for friction

compensation and P.D. feedback, they form the complete algorithm.

-27-

initialize: '0 = - go

upward: vk= k-l + dk k
Wk = Wk-l + dk ,rk

Wk = Wkl + dk rk + Vk-1 dk qk

ek = k - Wk

downward: f' k X Ri wk wk xRi vk + Rk k Vki

10

Fk Fk+1 + 1 fki aki
i=1

7 A A
k = dkFk + Dsk sgn('r k) + D k rk - KDk sk

ak - _ pk ek fk
A
Ds = - Pk s gn(rk)
D k - k V Sk irk

Table 3-1: Complete Equations for the Recursive Implementation
of the Direct Adaptive Controller

The algorithm consists of two major parts. During the first, the kinematic structure is

traversed from the base upwards to the tip, while computing link velocities and

accelerations. Then second part then proceeds in reverse order downwards from the tip to

the base, at each link determining the individual forces, the joint torque, and updating the

parameter estimates. Table 3-1 summarizes all involved equations for the case of diagonal

gain matrices P and KD.

Several practical considerations can still greatly influence the actual efficiency of the

algorithm :

-28-

* Using the Denavit-Hartenberg convention, the following choice of reference

frames minimizes the number of frame transfonnations: velocities,

accelerations, inertias, and local force components are expressed in their own

frame (i.e. in the frame attached to their link), while joint-axes and summed

fbrces are expressed with respect to the frame beneath them.

* It is important to "customize" the algorithm (similarly to e.g. [Koshla and

Kanade, 1985]), so as to avoid multiplications by or additions with zero. These

occur mainly in the local force component calculations (due to the sparse

placement matrices), which should be evaluated analytically, as is described in

Appendix B. Also, several velocity and acceleration components may be

restricted to zero (especially close to the base) and can thus be eliminated.

* Several parameters may be redundant, and therefore the algorithm can be

optimized by using a minimal parameter set, as is detailed in Chapter 4.

* The gravitational forces are implemented as a vertical acceleration in gravity-

free space, by setting the spatial acceleration of the base appropriately.

3.8 Comparison to Newton-Euler and Walker Algorithm

The major difference between the true implementation algorithm developed above

and both the Newton-Euler and [Walker, 1988] algorithm lies in the computation of the

local force components. For comparison, the equivalent equations of all three algorithms

are given by

-29-

ymp, : (Y -g 0) + v x It w1 + w x I vt + It wx v (3.29)

1 t (l-g) + V x 11 v, (3.30)

-tW = 1/ (!i -g 0) + WIt II "I (3.31)

Quite cleariy, the deri.ved algorithmi for the actual implementation can be reduced to either

algorithm, if reference hnd actual velocities are identical.

As a consequence of the above, a minor difference can also be found in the

ad'.ptation segment of the [Walker, 1988] algorithm.

3.9 Closed K(inematic Chains

The above developments were detailed in the context of manipulators with open

khilematic chains. They remain, however, also valid for manipulators with closed kinematic

chains.

To implement the algorithm for closed chains, imaginary cuts are placed at several

joints to obtain an open but branched kinematic structure. The forces are then simply added

at the branch points and the constraint equations are used to determine the torques for the

motorized joints. Notice that the link numbering system has to be changed and therefore

also the ranges of the summations throughout the algorithm have to be modified. They

must be specified as sets of links lying above or below, as is appropriate. The approach of

[Walker, 1988] for structuring closed chains and incorporating kinematic constraints can be

,lsed straightforwardly.

-30-

Chapter 4

Minimal Parameterization

The inertial and mass properties of an arbitrary rigid body are completely described

by 10 parameters, all of which are included in the spatial inertia matrix. They consist of the

mass, the location of center of mass, and the six traditional inertia values. However, when

two rigid bodies are connected through some joint and their motion is restricted with

respect to each other, not all 20 parameters are needed to describe the behavior of the

connected system. Consequently, the dynamics of a rigid manipulator can be described by

a reduced set of inertial parameters ([An, Atkeson, and Hollerbach, 1985], [Khosla and

Kanade, 1985]).

This parameter redundancy has been studied analytically by [Mayeda, 1988] for

robots with rotational joints, whose axes are either perpendicular or parallel. He concludes

the minimum number of parameters necessary to describe the whole system to be 7N-4B,

where N is the number of links and B the number of parallel joints located at the base

(which is at least one). If the first joint is vertical, then another two parameters can be

removed.

-31-

Parameter redundancy is quite important for both an efficient imhnplementation and the

estimation of the parameter values. The following therefore studies parameter reductions in

more detail, using the spatial notation to simplify the analysis. In particular, a system of

two consecutive links is examined and a procedure is derived, to eliminate redundant

parameters therein. Applying this procedure recursively to all connected links allows the

elimination of all redundant parameters of the manipulator and simultaneously gives rules

for the evaluation of the remaining parameters. The derivation is valid for arbitrary joint

types and configurations, including both rotational and translational joints of an arbitrary

intersection angles.

4.1 Parameter Redundancies for Two Consecutive Links

The following study focuses on two consecutive links k-1 and k connected by the

particular joint, as is shown in Figure .4-1. The joint may be of any type and intersect other

joint axes at any angle. The derived procedure allows a reduction of the original 20 inertial

parameters, by transfering appropriate parameter values. That is, several parameter values

can be set to zero, if other values are adjusted accordingly, without effecting the equations

of motion.

In the following, the first link is assumed to have an arbitrary velocity and

acceleration, that is it can move and turn in all directions. The case of restricted motions is

a simple extension and is discussed later. The velocity of the secolld link can then

determined using joint velocity and acceleration as

vk = Vk- 1 + dk ik (4.1)

k = Vk-1 + dkik + Vk-1 x dk 4k (4.2)

where d represents the joint axes, and v, i are the velocity and acceleration of the particular

link.

-32-

V
k-I

link k-I

fimune k-I

link k

Figure 4-1: Two consecutive links connected by a rotational joint

To assure that the parameter changes have no effect on the equations of motion two

conditions have to be satisfied. Given the velocities and accelerations both the total forces

and the joint torque must remain unchanged. That is, while changing the parameter values

the following must hold for any velocity and acceleration:

fk-I + fk = constant (4.3)

dkT fk = constant (4.4)

where the individual link forces can be computed as

fk = Ik k + k X Ik Vk (4.5)

To evaluate these conditions the upper force fk can be rewritten as a function of the

lower link velocity and acceleration using Equations (4.1) and (4.2).

,€

-33-

fk = Ik-I + vk- V X Ik Vk- 1 (4.6)

+ Ik dk qk
+ (Ik vk- X dk dk X lk vkl + Vk- l X Ik dk) qk

+ dk lkdk qk2

To further study the parameter changes, an inertial variation matrix 81 is introduced.

This matrix is added to the inertia matrix of link k and subtracted from that of link k-l, as

the total inertia matrix must remain constant. Substituting in the above equations,

equivalent conditions can be found for this inertia variation.

BI dk = 0 (4.7)

81 vk-l x dk + dk X 8, vk-l + Vk_ x .1 dk = 0 (4.8)

dk X .I dk = 0 (4.9)

dkT 81 ýk-l = 0 (4.10)

dkT SI dk = 0 (4.11)

dkT Vk- 1 x 81 vk- 1 = 0 (4.12)

However these conditions are redundant and in particular Conditions (4.9), (4.10), and

(4.11) follow directly from Condition (4.7), while Equation (4.8) automatically implies

Equation (4.12). That is, all inertia variations 51, which satisfy the following two

conditions, describe parameter changes that have no effect on the equations of motion.

51 dk = 0 (4.13)

1 Vk-l 1 dk + dk X 51 vk-1 + Vk- 1 x SI dk = 0 (4.14)

These conditions were derived with no assumptions on the manipulator structure and

-34-

thus remain general for all joint types and configurations. To achieve further results a

particular joint type has to be chosen, which specifies a value for the joint axis dk.

According to the Denavit-Hartenberg convention the joint axis is attached to frame k-1, so

that the further analysis is best performed in this frame.

Evaluation of the above conditions can be done using Tables 4-1 and 4-2, which give

the resulting spatial vector for unit values of vk- 1 and dk. Note the numbers enclosed in

brackets represent the values of the specified parameter, i.e. (3) is the value of parameter 3

(representing the z-axis inertia). They clearly show the dependence on the different inertia

parameters. Given the value of dk, these tables then allow all necessary parameters and

parameter combinations to be identified. The remaining parameters and parameter

combinations can therefore be included in the allowable set of inertia variations 61.

Using 81 it is now possible to eliminate parameters by subtracting their value from

link k-1 and adding them to link k. This suggests the interpretation of transfering

parameters from link k-I to link k, which can also be inverted, i.e. parameters can be

transfered from link k to link k-l. To transfer the parameters, however, the inertia

variations 61 has to undergo a reference frame transfonnation from frame k-l, in which it

was derived, to frame k. Tables 4-3 and 4-4 describe this transformation for both upward

and downward directions.

dkl

-(9)
+(8)
+(1)
+(4)
+(5)

dk2

+(9)

-(7)
+(4)
+(2)
+(6)

dk3

-(8)
+(7)

+(5)
+(6)
+(3)

dk
4

+(10)

+(9)
-(8)

dk5

+(lo)

-(9)

+(7)

dk6

+(o0)
+(8)
-(7)

Table 4-1: Evaluation of 61 dk

-35-

dki
I

dk2

-2(8)
-2(9)

-2(5)
+2(4)

+2(8)

-2(6)
-(3)+(2)-(1)

+2(9)

-(3)+(2)+(1)
+2(6)

dk3

+2(7)
-2(4)

-(3)-(2)+(1)

+2(7)

+2(5)

+(3)+(2)-(1)

-2(7)

-2(9)
+2(6)

-2(4)

+2(9)

+(3)-(2)-(1)

+2(5)

-2(7)
-2(8)

-2(6)
-2(5)

Table 4-2: Evaluation of Vk- 1 X BI dk + dk x e k_.1 + 81 Vkl x dk

dk6

-2(10)

+2(9)

-2(7)

+2(10)

+2(9)
-2(8)

dk4

-2(10)
-2(8)
+2(7)

+2(10)

-2(9)

+2(7)

dk5

+2(10)
+2(8)
-2(7)

-2(10)

-2(9)
+2(8)

Vk-1 2

ifk-14

ifk- 15

1k- 16

+2(8)
+(3)-(2)+(1)

+2(4)

I

jxk-I J - - -1 J -k J 1 - mrtk mr - mr j^ m i

sO2 0 2s"c 0 0 0 0 -2d

c 6' cOcr sc o -2socecca' -2sOsaca 2ceOsaca -2ac -2asOe -2dca 2
'+ca'

-2dsesaE a +2dcfsaca

J se sa2 cOswa ca" -2sOcOsa 2 2sOsaca -2cOsaca -2acO -2asO -2dsa a2+d2sCZ
+2dsesaca -2dcOsacc

j*Y -sOceca sOcOca 0 -(se-cO2)ca c9sa sOsa -asOcca -+acca asa -ads&
i dcOsa +dsesa

=Ie sOcesa -secOscX 0 (se'-ceý)sa cOca seca +as0sa -acOsa aca -adca
+dcoca +dsOca

-se-saca --cessaca saca 2sOcOsaca sO(saQC caL) -cO(saý2 ca2 dse(soa.caa) -dcO(sca a) 2dsaca -d-saca

0 0 0 0 0 0 cO-- i 0 -- a

mr 0 0 0 0 0 0 -sOca cOca sa -dsa

r I 0 0 0 0 0 0 sesa -cOsa ca -dca

mk 0 0 0 0 0 0 0 0 0 1

Table 4-3: Upwards Transformation of a Spatial Inertia Matrix

Table 4-4: Downwards Transformation of a Spatial Inertia Matrix

I
W

I

-38-

4.2 Parameter Transfers through Rotational Joints

This section turns its attention to the particular case of rotational joints. However, the

intersection angle between joint axes still remains arbitrary. Rotational joints are described

by a unit rotation along the z-axis, so that

dk=

00
1
0
0

S0

(4.15)

Therefore, assuming an unrestricted vk- 1 and using Tables 4-1 and 4-2, the equation

of motion depends on the following parameters and combinations.

(1)-(2) (3) (4) (5) (6) (7) (8) (4.16)

The inertia variation thus has three degrees of freedom and contains

1 k- = ((1) =(2) , (9) , (10)) (4.17)

= (=xxW=) , Pz , 8m)

To eliminate and transfer parameters between links, the parameter values must

undergo the reference frame transformation, given for rotational joint in Table 4-5. The

Denavit-Hartenberg parameters (a,ct,d,O) correspond to joint k.

It is interesting to note that the parameter reductions often have physical

interpretations. In this example the parameters correspond to a thin rod (i.e. having no

inertia in that direction) along the rotational axis, which can belong to either of the attached

links.

-39-

8Jxx Ik- I = J

Jyy Ik-I = J

6pz Ik-I = Pz

6m]k-I = m

8J, Ik = J + md 2 - 2dpz

= (J + md 2 - 2 d pz) cos 2(a) + m a2

8Jzz Ik = (J + md 2 - 2d pz)sin 2(a) + in a2

= (apz - mad)sin(a)

= (apz - mad)cos(a)

= -(J + md 2 - 2dpz) sin(a) cos(a)

=(Pz - md)sin(a)

pz Ik = (Pz - md) cos(a)

Bm Ik =m

Table 4-5: Transformation of the inertia parameters for rotational joints

8Jyy Ik

Jxyz Ik

8Jyr I
k

p. Ik = -ma

Bpy Ik

-40-

4.3 Parameter Transfers through Translational Joints

Translational

Therefore

dk =

joints are characterized by a unit translational vector along the z-axis.

(4.18)

As in the previous example using the Tables 4-1 and 4-2, the equation of motion

depends on the following parameters and combinations.

(7) (8) (9) (10) (4.19)

The inertia variation thus has six degrees of freedom and contains

61]k-1I (4.20)

(1) () (3), J , (6)9 zz ' y 'I xz I

The reference frame transformation for these particular parameters is given in Table 4-6.

4.4 Parameter Reductions for Links with Restricted Motion

For links with restricted motion, as for example the base link, many more parameters

can be eliminated. The analysis should proceed as before, however ignoring any conditions

arising from the restricted directions. Also, only forces in the unrestricted directions need

to be examined. As such situations only arise with very simple kinematics, the analysis is

typically straight-forward. Foj exmnple, a base rotating about a vertical axis only requires

the corresponding rotational inertia as parameters.

-41-

6Jx Ik- I = Jx

5,jyy Ik-.1
SJ y

8Jzz Ik-1 = Jzz

SJxy ik-I

•rJ z Ik-1

IJ k-1 =

Jxz

I -

5Jx.r Ik = J cos2 (0) + 2 Jxy sin(O) cos(6) + Jyy sin2 (O)

8jy Ik = (Jx sin2 (0) - 2 Jxy sin(0) cos(O) + Jyy cos2 (0)) cos2 (cx)
- 2 (Jxz sin() - Jyz cos(O)) sin(ix) cos(ix) + Jzz sin2(o)

FJzz Ik = (Jxx sin2(0) - 2 Jxy sin(0) cos(O) + Jy,, cos 2(0)) sin2(x)
+ 2 (Jxz sin(O) - Jyz cos(O)) sin(cX) cos(Ox) + Jzz cos 2(Cx)

8Jxy Ik = Jyy) sin(0) cos(e) + Jy (cos 2(0) - sin2(0))) cos(cx)

+ (Jxz cos(0) + Jyr sin(0)) sin(a)

Jxz Ik =((Jx - Jyy) sin(0) - Jxy (cs 2 () - sin2 (0))) sin(a)

+ (Jxz cos(6) + Jyz sin(O)) cos("o)

Jyz Ik = - (J sin2 () - 2 JAy sin(O) cos(0) + Jyy cos 2 (0)) sin(ox) cos(Ix)

- (Jx sin(O) + Jyz cos(0)) (cos 2() - sin2()) + Jzz sin(ca) cos(oc)

Table 4-6: Transformation of the inertia parameters for translational joints

I

_ _

'tt,

-42-

Chapter 5

Cartesian Implementation

The previous chapters analyzed the efficient implementation of a joint-space adaptive

controller. Many tasks, however, are best described in terms of the end-effector motion or

behavior. While it is possible to perform the inverse kinematics on a desired end-effector

trajectory a-priori and thus to use a joint-space controller to achieve specified end-effector

motions, such a procedure prevenws the implementation of an arbitrary end-effector

behavior. Therefore, tasks that require interactions with the end-effector also necessitate a

controller capable of utilizing cartesian data directly as t.a input (e.g., [Luh, Walker, and

Paul, 1980], [Khatib, 1980, 1983], in the non-adaptive case). This chapter discusses the

problems of converting and extending the joint-space adaptive algorithms to handle

cartesian data in real-time. The development represents a computational version of [Slotine

and Li, 1987c], and also extends the algorithm to redundant manipulators.

-43-

5.1 On-Line Inverse Kinematics

Taking a closer look at the joint-space controller, that is examing the control and

adaptation laws (2.5) and (2.6), it can be interpreted as using only reference velocity and

acceleration as input signals and guaranteeing convergence only to these. It is then the

definition of the reference velocity in Equation (2.3) which guarantees the actual

convergence to the desired trajectory. Since in the case of cartesian motion a desired joint

trajectory is not given, it is possible to redefine the joint reference variables in tenns of its

cartesian counterparts. More precisely, with cartesian reference velocity and acceleration

defined as

x,. = -d-AX (5.1)

xr = Xd- A x (5.2)

where ~ = x - xd and A is again a s.p.d. matrix, the joint versions can be defined using the

manipulator Jacobian J.

=,. J q,. (5.3)

x,. -J ,. + J q,. (5.4)

For non-redundant manipulators, the joint reference velocity and acceleration are

then obtained by inverting the Jacobian.

q,. = ~1 i. (5.5)

q,. = ,. - q)(5.6)

This simple extensron then provides a complete cartesian adaptive controller, which

guarantees convergence of cartesian motion to the desired trajectory, similarly to the joint-

space case, as long as singularities are avoided.

-44-

Note that the actual inverse kinematic solution for desired joint position is never

computed directly but rather determined by the dynamics of the system. It can, however, be

retrieved for other purposes by exploiting the filter structure of the reference velocity

definition. Namely, implementing a filter of the form

Id + X qd = ,. + X q (5.7)

will provide the exact desired joint trajectory. This also remains valid for redundant

manipulators.

Also, to provide a more direct feedback or to achieve a certain behavior, it is also

possible to add an explicit cartesian P.D. control component of the form

' = -JTKD (. -k,.) (5.8)

Finally, note that many representations can be used for the end-effector orientation.

For instance, defining the end-effector orientation as in [Luh, Walker, and Paul, 1980], with

(n , o , a) representing the actual orientation vector triplet, (nd , od , ad) representing the

desired orientation vector triplet, and to representing the angular velocity, and using the

results of [Yuan, 1988], one can easily show that letting the orientation components .rorie nt

of ir be

xrorient = d+ (nxnd + o d + axad) (5.9)

guarantees that the orientation error and the angular velocity error both go to zero (with ; -

;C.). Following [Yuan, 19881, it is also possible to use Euler-parameters to represent the

end-effector orientation, avoiding possible singularities of Euler-angles and rotations.

-45-

5.2 Redundancy Solution

For redundant manipulators the inverse Jacobian J-1, as was used above, is no longer

uniquely defined. To resolve this non-uniqueness, a pseudo-inverse PJ can be used instead,

which automatically minimizes the joint velocities corresponding to any cartesian

velocities. In addition, the nullspace, i.e. the space of all joint motions which produce no

cartesian motion, can be used to minimize any performance index.

Similar to work done by [Klein and Huang, 1983], [Klein and Blaho, 1987], the

performance index is chosen to be a quadratic norm of joint positions. Such an approach is

computationally efficient and, intuitively, mimics r. "flexible beam" clamped to the desired

endpoint trajectory. It thus helps to keep the manipulator away from joint limits, as well as

from singular positions. In addition, cyclic cartesian motions converge to cyclic joint

motions [see also Baker and Wampler, 1988], avoiding joint trajectory drifts associated

with mere pseudo-inverse methods.

In contrast to other controllers, sliding controllers require both reference velocity and

acceleration, so that besides the pseudo-inverse (or generalized inverse) J+ of the Jacobian

J, its time-derivative is also needed. Assuming a Jacobian of linearly independent rows,

that is a Jacobian describing a redundant manipulator outside of singularities, we can write

explicit expressions for both as

J+ = JT (JT)-I (5.10)

+ = -J+jJ+ + (1-J+J)jT(Jjf)- 1 (5.11)

With these results the inverse kinematic transformnnation for a redundant manipulator

can be specified as

-46-

r = J r + (1 - J+ J) (5.12)

qr = J+c(r-i4r) + (1-J+J) (' + jrJ (41r- y)) (5.13)

where y is an arbitrary, but continuous, joint-space vector, which the joint velocity

attempts to track within the null-space. It is used to minimize the performance index and

thus is set proportional to the negative gradient thereof. That is

S=-X Vf=- q , p=- (5.14)

in the case of f= Ya2 qi

5.3 Implementation Aspects of Inverse Kinematics

Implementing the kinematic transformations directly as written above can be

computationally intensive. Therefore, after recursively computing the Jacobian and its

derivative, the pseudo-inverse should be obtained using an orthogonalization algorithm

equivalent to Gramm-Schmidt's. That is, if the Jacobian J is decomposed into a lower-

triangular matrix R and a row-orthogonal matrix Q as

J = R Q (5.15)

the pseudo-inversion is then achieved by transposing Q and using backsubstitution to invert

R.

J+ = QT R- 1 (5.16)

The pseudo-inverse J+ is never explicitly computed, but rather substituted directly

into the transformation equations, resulting in

-47-

r = IW + QT (R- 1 . -QW)

q,. = p + QT (R-l(r - ' qr)- QP)

with

P = j + rj R-T e (q,.- Qr)

where again none of the matrix products should be computed explicitly.

(5.17)

(5.18)

(5.19)

-48-

Chapter 6

Applications to Constrained Motion

Many useful tasks involve some interaction with a fixed environment. Controlling

the end-effector impedance is an attractive option for such tasks (e.g., [Hogan, 1985]), since

it imitates a passive mechanism and thus yields stable interaction with any passive

environment. However, using impedance control for tracking substantially limits the

overall performance, as it does not compensate for the nonlinear dynamics of a rigid

manipulator, as is the case for all P.D. controllers.

This chapter introduces impedance control features within the framework of adaptive

control. This allows the application to constrained motion, while preserving the

performance improvements achieved by adaptive control. No model of the environment is

assumed, besides the passivity thereof, and no force measurements are required. Only

position and velocity signals are needed for feedback.

-49-

6.1 The Basic Passivity Concept

Passivity theory is a mathematical formalization of the physically intuitive concepts

of power and energy. It defines the scalar product between input u and output v of a

particular system to be the "power" entering the system. If, in addition, there exists a lower

bounded "system-energy" function E and a non-negative "power dissipation" function Pdiss,

which obey

dE = uT v - Pdiss (6.1)
dt

the system is called passive. A strictly passive system must have a positive power

dissipation, as long as the system-energy has not reached its lower bound.

As a consequence of the above, a passive system with no input is stable, because no

further energy can be obtained, and a strictly passive system is asymptotically stable,

because energy is constantly lost. This corresponds to a Lyapunov-type argument and thus

passive systems are guaranteed stability without any explicit analysis of possibly

complicated dynamics.

A mayor advantage of passivity theory is its ability to connect different passive

subsystems into an overall passive system. This closure property allows many small and

well understood components to interact without worrying about complicated dynamics

caused by the interaction. Connections, however, can not be chosen completely arbitrarily

but must take either a negative feedback or parallel type structure, as shown in Figure 6-1.

-50-

Figure 6-1: Negative feedback and parallel connections maintaining passivity

6.2 Passivity Interpretation of the Adaptive Controller

As noticed by many researchers (e.g., [Ortega and Spong, 1988], [Landau and

Horowitz, 1988], [Kelly and Carelli, 1988)), the Lyapunov-like derivation of the adaptive

manipulator controller of [Slotine and Li, 1986] can easily be translated in terms of

passivity arguments. This offers several advantages, such as the ease of adding new

subsystems, of which the following sections will make use.

A rigid manipulator itself obeys the conservation of energy, and thus generates a

passive mapping between input torques and output velocities. This mapping itself,

however, can also be viewed as a composition of two passive sub-parts, corresponding to

the kinetic and potential energy of the manipulator. These two subsystems are then

connected in a feedback configuration, as in Figure 6-2, verifying the passivity of the

overall manipulator. Equivalently, the passivity can be shown by

dtr pot + H = V Epot q' + qH i + 4 T Hk = 4T (6.2)

since H = C + CT. Note, that actual gravitational forces are given by (- G). If friction

forces are included, these can again be interpreted in their own feedback block, and the

complete system is then strictly passive.

After introducing the reference velocity, the exact (ideal) feedforward component of

-51-

rigid body dynamics

Figure 6-2: Passive Interpretation of a rigid manipulator

the control law (2.5) then modifies input and output variables of this mapping. That is, a

passive mapping is created between any additional torque inputs and reference velocity

error s = q - 4,.. Due to the parametric uncertainty, the additional torque inputs correspond

not only to additional controller torques or external forces, denoted by r*, but also to errors

Y ' in the feedforward compensation. The P.D. component of the control law, in tum, adds

a dissipative element to the system. As Figure 6-3 illustrates, the closed-loop system thus

represents a dissipative mapping. From the Lyapunov analysis, the control law indeed

yields

d - st = sT (C* + Y i) - sTKD (6.3)

Furthermore, using the adaptation law (2.6) corresponds to inserting a passive

feedback block between s and (- Y a), since

d I IT P'i = - sT yaa (6.4)

This can also be shown directly by noticing that the integrator structure

-52-

rq

Figure 6-3: Open versus closed loop passive mapping of the manipulator

a= a = - T s (6.5)

implies a passive mapping (- YT s) -- ~, and thus also a passive mapping s -- (- Y a).

Passivity results verify, that the complete system, as shown in Figure 6-4, remains

passive and hence globally stable. They further allow new passive blocks to be added to

the system, while preserving the overall stability and convergence. This property is used to

analyze the interactions with an environment and to combine the adaptive controller with an

impedance controller. Note, that changes of variables does not affect passivity, so that a

corresponding coordinate change may be perfonned simultaneously on both input and

output of a passive system. That is, the above joint-space system can also be connected to

cartesian subsystems after appropriate Jacobian transformations. This is easily shown by

noting that the power flow to any cartesian subsystems is given as

-53-

closed-loop manipulator dynamics

-yi•

X Xr

external forces end-point velocity error

Figure 6-4: Passivity interpretation of the adaptive controller

*T = (JTF)T s= FT () = FT (jjr) (6.6)

6.3 Adaptive impedance control

An arbitrary passive environment can be interpreted as a passive mapping between

contact forces and displacement velocity, since it can only provide a finite amount of

energy. To account for the adaptive controller contacting such an environment, an

additional element must be added to the above passive system, representing the contact

forces. However, the environment's passivity is not guaranteed between the cartesian

tracking error (i - ,.) and contact forces in general, reflecting the motion constraint

imposed by the environment. Therefore, it is necessary to redefine the cartesian reference

velocity ir, so as to maintain global stability.

Given the surface orientation, we can divide the end point reference frame into

subsets parallel and perpendicular to the surface. Along the parallel directions, motion

-54-

remains unrestricted and no contact forces (beside contact friction) can occur. Therefore, in

these directions no changes have to be made to the definition of I,.. Along perpendicular

directions, however, motion is restricted and tracking is impossible. The components of the

reference velocity r,. along these directions must consequently be set to zero. That is

(Xd i - xi UX surface

r 0 1 surface

or if n represents the surface normal

xr = (1 - n nT) (xd - AX') (6.8)

Having redefined ir in such a fashion, stable contact of the adaptive sliding controller

with any passive environment is possible. However, since position feedback was

completely removed in directions perpendicular to the surface, no guarantee is given that

contact will actually be maintained. This problem is easily solved by adding an impedance

control (Cartesian P.D.) component restricted to the perpendicular directions, which

imitates a spring (and possibly damper) system along these directions. Note that damping

is still provided by the adaptive controller itself.

Fimp = - K(x- x0) 1 (6.9)

Also, a nonlinear impedance can be chosen, for example by saturating the spring at a given

value to achieve a constant contact force.

As impedance controllers are also passive (from endpoint force to velocity), the

whole system, as illustrated in Figure 6-5, is stable, and combines the advantages of its

individual components, that is adaptation, precise tracking, and stable contact.

Furthermore, only position and velocity feedback is used, and thus no force measurements

are required.

-55-

i-i r
adaptive controller

end-point
forces

environment contact forces

restricted impedance controller

F.imp= -K(x-x 0)imp 0 .8.

end-point
velocity error

Figure 6-5: Complete control system for constrained motion

To implement this system, only c.r needs to be modified to lie parallel to the surface.

Therefore, the same algorithms can be used for both free and constrained motion. The

surface normal can be computed either a priori, or on-line, based on the direction of the

error and the velocity. One may also add adaptive compensation for the contact friction, in

the same manner as for joint friction.

w_ |

__

__

|

JI- r

- F imp

-56-

Chapter 7

Experimental Results

The recursive implementation of the adaptive controller as well as the on-line inverse

kinematics were thoroughly tested on a 4 degree-of-freedom cable-driven "whole-arm"

manipulator (WAM) designed at the M.I.T. Artificial Intelligence Laboratory [Townsend,

1988], [Salisbury, et al., 1988]. This manipulator is capable of achieving high speeds and

thus requires precise control to achieve accurate tracking performance. Furthermore, it has

a very efficient force transmission between motors and links, so that open-loop force

control can provide good results and circumvent problems associated with direct foice

feedback.

7.1 The Experimental Setup

The 4 degree-of-freedom whole-arm manipulator, as is shown in Figure 7-1, has a

geometry comparable to the human arm with an extended length of approximately 1 meter.

It is powered by four pulse-width modulated motors, capable of delivering a maximum of

1.5 Nm each. The motors are located close to the base and are connected to the lightweight

-57-

links via two-stage cable transmissions incorporating velocity reductions between 1:20 and

1:30. To maintain high transmission stiffiness, these reductions are performed close to the

joints. Position measurements are obtained at the motor shaft using 12 bit resolvers. While

the joints have a range between ± 900 and ± 1350, the joint velocities without payloads can

exceed 7200 per second.

Joini

ferential

Joint

Fixed Base

Figure 7-1: The WAM manipulator

In order to exploit the wide dynamic range that the manipulatur can achieve, the ann

is connected to a VME-Bus based multiprocessor system [Narasirnhan, Siegel, and

Hollerbach, 1988], consisting of up to six 68020 based processor boards, D/A and A/D

boards, a parallel interface, as well as other boards. This system is interfaced with the

network via a Sun-3 Workstation of Sun Microsystems, Inc. The different processors are

used to implement high-speed input/output routines, the basic controller algorithm, the

adaptation algorithm, the inverse kinematics, and the trajectory generation as well as other

-58-

higher level tasks. The i/o processor performs both the input acquisition and filtering at 4

KHz and P.D. torque calculation and output at 2 Khz. The controller, adaptation, inverse

kinematics, and trajectory generation algorithms are executed in synchronism on separate

processors at 200 Hz. Velocity signals are created on the i/o processor by filtered

differentiation of the 16 bit position signals (12 bit resolver signals plus rotation count).

The integrations in the adaptation algorithm are perfonned using a 2nd order Adams-

Bashforth scheme. All programs are written in C.

Figure 7-2: The coordinate frames of the WAM manipulator

The coordinate frame locations for the various links are determined by the Denavit-

Hartenberg standard and are shown in Figure 7-2. The appropriate parameter values are

given by Table 7-1. Given the structure of the manipulator, a minimal parameter set can be

ze-

-59-

obtained, as was discussed in Chapter 4. In these experiments, however, a single parameter

redundancy is tolerated, to assure that all ten parameters of the last link are used. This

allows the adaptation to an unknown load to be restricted to just these ten parameters. In

particular, Table 7-2 specifies the 23 inertial parameters of the manipulator. The friction

model consists of viscous and direction-dependent Coulomb friction, so that the

manipulator is described by a total of 35 unknown parameters. While dealing with

unknown loads only requires the adaptation to ten parameters, the capability of effectively

adapting to all 35 parameters allows the range of application to be considerably extended.

Joint

1

2

3

4

e

d 0 a aX

0 q, 0 +900

0 q2 0 -900

0.5588 m q3 0.0406 mn +900

0 q4 -0.0279 m -900

0.4598 m 0 0 0

Table 7-1: Denavit-Hartenberg Parameters of the WAM manipulator

Inertial Parameters

J
J Jyy J J P

Jxx • z Jx, J., Px

Jx.x y •y zz xJy Jyz pP Py Pz I,,

Table 7-2: The necessary inertial parmaters of the WAM manipulator

Link

1

2

3

4

-60-

7.2 A Comparison between P.D. and Adaptive Control

To compare a simple P.D. controller to the adaptive controller, the manipulator was

commanded to follow a sinusoidal joint trajectory. This trajectory had a period of I second

and an amplitude of approximately ± 450 per joint, thus allowing the tip to travel 5 meters

per period, with maximum tip velocities and accelerations of 8.5m11/s and 10g. This was

done first with a simple P.D. controller, whose performance is helped by the presence of

transmission ratios, and second with the adaptive scheme starting as a P.D., that is with an

A
initial a = 0. The plots in Figure 7-3 clearly demonstrate a factor 10 to 20 improvement in

tracking error after transients of about I second when adapting to all 36 parameters.

Furthermore, although both controllers start identical, the maximum tracking error of the

adaptive controller during transients remains 2 to 5 times smaller than that of the P.D..

Nevertheless, the generated joint torques, shown in Figure 7-4, are very similar in both

smoothness and amplitude.

-61-

- 1.0152.0 53.0 54.0 55.0

8.0
6.0
4.0
2.0
0.0
-2.0
-4.0
-6.0
-8.0

-10.0

6.0
4.0
2.0
0.0

-2.0
-4.0
-6.0
-8.0

-10.0

0 50 0 0 6.0

2.0
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5

2.0
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-2.0

2.5
2.0
1.5
1.0
0.5
0.0

-0.6
-1.0
-1.5
-2.0

3.0
2.0
1.0

0.0
-1.0
-2.0

-3.0

0 I 105 210 2 0 3. 4 5.0
v

S15 .5 .0

0.5 1 1'"0 rr2.5`30 3.S 4,V 4.6 6.0

F 0-0

0. 0 1.5 2. . 3 3. 4. 4.5 6.0

L

P.D. Adaptive Controller

Figure 7-3: Joint Tracking Errors q (in degrees)

The residual tracking error is mostly due to actuator and other umnodeled dynamics.

In particular, the motors produce torque ripple of about 5%. Yet, parameter drift was not

observed to be significant during these experiments, so that adaptation dead-zones were not

used. Nevertheless, it is possible to incorporate such dead-zones to avoid parameter drift

and enhance robustness. The constant adaptation gains were set according to the following

LA AI

12.0
10.0
8.0
6.0
4.0
2.0
0.0
-2.0
-4.0
-6.0
-8.0

-10.0

- - ! ; !

25

A i

-62-

An n

30.0
20.0
10.0
0.0

-10.0
-20.0
-30.0
-40.0

I - I I I I I I I A I
.510.6 vv .56v.6 N.5 5.0Er..

04-.z

a,
0

50.0
40.0
30.0
20.0
10.0
0.0

-10.0
-20.0
-30.0
-40.0
-50.0

4.0
2.0
0.0
-2.0
-4.0
-6.0
-8.0

-10.0

6.0
4.0
2.0
0.0
-2.0
-4.0
-6.0
-8.0

-10.0

Af . I5 n I

.0d i II-L

vyv-yY

IL
(. •.

In> fvI I A
SV .5-Ir/ .0

P.D. Adaptive Controller

Figure 7-4: Joint Torques v (in N.m.)

equation, which is intuitively motivated by least-squares identification rules.

Y defined in Equation (2.7)

T
P - Diagonal(jt

0

\.5XJ2.5 43.54 .45 .0

4U.U

20.0
10.0

0.0
-10.0
-20.0
-30.0
-40 0

40.0
30.0
20.0
10.0

0.0
-10.0
-20.0
-30.0
-40.0

02.0
1.0
0.0

-1.0
-2.0
-3.0
-4.0
-6.0
-6.0
-7 0

r0.5

6.0

4.0
2.0

0.0
-2.0

-4.0

-6.0

Ix

With

(7.1)

0.5 1 1.6 2.5 vas~ 3.6 v. 4.6 .

-- i I- i * - J6 1 - i I i I - i I i I i I i I - i I
I I I I a h i -L I

V .5 .5 .6 V .6 5 5.0
L-

F"

k

o-~l.slao "ii"J''"Y~"ir·

n.r~.m.n.n.

f

-

An k

-4 .

Y(qdjdtdqd)Tyqdld,4d~qd dt)-

-63-

These values were also used in all further experiments along various trajectories and

variations thereof were found to have little effect on the system performance.

7.3 Cartesian Control Experiments

The inverse kinematics and adaptive cartesian control were tested on trajectories

describing a square in the vertical plane. Each side measures I meter and was completed in

0.4 seconds. Figure 7-5 shows the resulting cartesian tracking errors under both P.D. and

cartesian control, which again clearly demonstrates the improvement caused by the

adaptation process both in transients and steady-state. Also the adaptive impedance

controller was shown to have excellent performance in making and maintaining stable

contact with an unknown curved surface while performing adaptive tracking in the

unconstrained directions.

7.4 Whole Arm Experiments

In other experiments, the adaptive controller was used to push a large and heavy box

over the floor, at speeds of about 0.75 m/s, by exploiting the kinematic redundancy to

maintain line contact with the box. Despite the lack of accurate models for the relative

motion between the box and the arm or for the friction between the box and the floor, this

strategy allowed accurate "whole-arm" manipulation of the box. The presence of the box

was interpreted by the algorithm as a change in inertial and friction coefficients. This

robustness is quite remarkable for a reasonably complex high-performance algorithm, and

should extend the range of applications for adaptive manipulator control well beyond

adaptation to grasped loads. Also, the accuracy of the manipulator controller allows the use

of the "geometric" stability properties of the task ([Mason, 1986] in the case of pushing),

thus permitting large uncertainties on the initial position of the box, as well as high speed

transition (contact) phases.

-64-

o.E 0.5
x

0.0

-0.5
W -1.0

. -1.5

0 3.0
2.5

>` 2.0
8 1.5

1.0
0 0.5
u, 0.0

-0.5
-1.0-" o5

r. n.
6015

S 1.0
'" 0.5

N 0.0
0 -0.5
:: -1.0
4 -1.5
n -2.0
0 -2.5
a-. -3.0

P.D. Adaptive Controller

Figure 7-5: Cartesian Tracking Errors i(t) (in cm)

S0.0
-1.0

S-2.0
-3.0

m -4.0
-5.0
-6.0-7.0

S6.0
> 4.0

2.0
0.0

Un -2.0a -4.0

0

5 4.0
N 2.0

0.00
-2.0

m -4.0
oL -6.0

-8.0

·- hn
,--% If

-7-20 -2.0

- Q
Q35

- I

-3.5

-65-

Appendix A

The Spatial Vector Notation

Individual points in space have three degrees of freedom and are well described by

the traditional three dimensional vectors. Rigid bodies, however, have six degrees of

freedom, and require a set of two traditional vectors to describe both linear and angular

quantities. This leads to complex equations and notation, as the relation between the two

corresponding vectors must always be treated explicitly.

A more compact description of rigid bodies is given by the spatial notation of

[Featherstone, 1987], which combines the corresponding linear and angular quantities into a

single six dimensional vector. This reduces the number of equations and variables, and also

simplifies many expressions, automatically coupling the three dimensional subparts. Due

to this coupling, however, the spatial vectors obey a slightly different set of rules than do

traditional vectors. Intuitively very similar, these rules are discussed in the following.

Traditional vectors are denoted by arrows (-V) to avoid confusion with bold spatial vectors

(v).

-66-

A.1 The Spatial Vector Definition

In general spatial vectors are defined to be a combination of a 3-dimensional line

vector and a 3-dimensional free vector. Line vectors are referenced along a particular line

in space, and can be shifted only along this line. Physical examples thereof are the force

applied to or the angular velocity of a rigid body. In contrast, free vectors have no point of

reference and can be shifted in any direction, as is the case for the applied torque or the

translational velocity. To shift a line vector perpendicular to its reference line, the free

vector has to change value. This implements the coupling between linear and angular

vectors.

When combined, the line vector is located in the upper half and the free vector in the

lower half of the spatial vector, as for example in the spatial velocity or force vectors

and F = (A.I)
v I

Therefore, in all spatial vectors of motion (i.e. velocity, acceleration) the angular quantity

takes the upper half, while for spatial vectors of force and momentum the angular quantity

takes the lower half. Though initially somewhat confusing, this difference actually unifies

the spatial vector rules.

A.2 Spatial Vector Algebra

To describe a linear mapping between spatial vectors, a spatial matrix is introduced.

This 6x6 matrix obeys the standard matrix rules, with the exception of the transpose

operator. Splitting the spatial matrix into standard 3x3 submatrices and using the standard

operator for these subparts, the spatial transpose operator can be defined as

-67-

C D CT AT
(A.2)

Accordingly spatial vectors transpose as

= [IT fT (A.3)

These rules give the transpose operator the same properties as its standard counterpart, in

particular the product of velocity and force results in power.

The spatial notation also makes use of a vector product, defined by the following

matrix product

(sx) q I x q x Ix q (A.4)

where (7 x) and (7 x) denote standard 3x3 skew-symmetric matrices, such that the matrix

product (7 x) X equals the standard 3x3 vector product 7 x 2.

The spatial vector product has the following properties, analogous to its 3

dimensional counterpart.

s x q = - q x s (A.5)

(s x) T = - (s x) (A.6)

-68-

A.3 Reference Frame Transformations

As spatial vectors have 6 dimnensions, the reference frames must also have 6 degrees

of freedom. That is, in addition to the orientation of the reference frame, the location of its

origin needs to be specified. This point is arbitrary and for rigid body quantities does not

have to coincide with the center of mass.

Accordingly, a transformation of reference frame consists of two parts, the movement

of the origin and the rotation of the frame. The first step is specific to spatial vectors and

takes care of the coupling between angular and translational quantities. If a spatial vector

s is composed of line vector 7 and free vector 7, a movement of the reference frame origin

from point a to point b must be accounted for as follows

s lb b a I X (A.7)
b ib Ilablb X 1 1a

where ab =a -alb is the vector from point b to point a. Note that superscripts after a

vertical bar represent the reference frame and (I x) denotes a skew-symmetric matrix, such

that the matrix product (I x) I equals the vector product ' x 7.

The second step accounts for the rotation of the frame and is equivalent to standard

3-dimensional vector rotations. Thus if the reference frame is rotated from orientation a

into orientation b with the standard 3-dimensional rotation matrix defined as Ra gb, then a

spatial vector changes according to

7l b l 0 a b • ja
0 ib R Ra lb I a (A.8)

-69-

Combining the above, the complete spatial reference frame transformation can be

written as

I Ib la b 07 ja
s Ra = x a b s ja (A.9)b b ab[bXR l]b lalb a

with the spatial transformation matrix Xa 1b. Such a transformation matrix has properties

similar to the standard rotation matrices. In particular,

Xa c = Xb c . Xa b (A.10)

Xa lb -1 -= Xa lb T = Xb a (A.11)

- x a b = Yab b x X b a= (b b x XX b (A.12)

Xa l
b (s ia x) = (s jb x) Xa ib (A.13)

A.4 The Spatial Inertia Matrix

To analyze rigid body dynamics in the spatial notation, a spatial inertia matrix has to

be defined, which maps the spatial velocity to momentum. This inertia matrix contains all

ten inertial parameters of a rigid body, that is it consists of the standard 3x3 inertia matrix J,

the mass mn, and the product of mass and location of center of mass '.

I = (A.14)

where I denotes the 3x3 unity matrix. Note the reference frame, which is stationary with

respect to the link, can be placed at any point with any orientation and does not need to be

located at the center of mass or be oriented according to the principle inertia axes.

-70-

The inertia matrix obeys the following properties, for changing the reference frame

and determining its time derivatives.

la ab Xa b . a . Xb ia

ad I b = b x I a b b bb xd7 a =bVab - aI Vab lX

(A.15)

(A.16)

To separate the effect of the different parameters, the inertia matrix can also be

written as a product of ten placement matrices and the ten parameter values

10
I= R, ai

i=1

where the parameters are given as

a l = Jx

a2 =J

a3 Jzza3 Jzz

a4 = J'
a5 = Jxz

a6 = yz

a7 = Px = rn

a8 =py = MI'
a9 =pZ = n ?

a 10 = M

(A.17)

(A.18)

and the placement matrices consist only of ones and zeros, as for example

(A.19)

To facilitate the analysis in some sections, the inertia matrix can also be explicitly

written as a function of the ten parameters. Interpreting the bracketed numbers as the

values of the specified parameters

-71-

I =

+(9) -(8) +(10)

-(9) . +(7) +(10)

+(8) -(7) +(10)

+(1) +(4) +(5) . -(9) +(8)

+(4) +(2) +(6) +(9) -(7)

+(5) +(6) +(3) -(8) +(7)

(A.20)

A.5 The Dynamics of an Arbitrary Rigid Body

With the above tools it is possible to write the equation of motion for an arbitrary

rigid body in the spatial notation. This single equation includes both Newton's and Euler's

equation and accounts for their coupling automatically. With a denoting the acceleration,

the equation of motion is given by

d
F =- Iv = Ia + vxlv (A.21)

dt

Similarly the spatial notation simplifies the total kinetic energy including both

rotational and translational energy as well as the power input.

E = vT Iv (A.22)
kin =2

Pin = vTF (A.23)

-72-

Appendix B

Evaluating the Link Force Coefficients

The key part of the recursive algorithm is the computation of the local force

coefficients at each link, given by Equation (3.25). Multiplying these force coefficients

with the parameter values determines the forces (see Equation (3.7)) and, furthermore,

multiplying them with the velocity errors determines the adaptation values (see Equation

(3.28)).

The placement matrices, used to evaluate the force coefficients, are extremely sparse

and therefore it is important to customize the algorithm by evaluating these coefficients

analytically and eliminating multiplications and additions with zero. The gravitational

forces are implemented as a vertical acceleration and can be ignored, so that the link force

coefficients are given by

fi = Ri + vxRiw + w x Riv + Ri w xv (B.I)

where, for simplicity, the subscripts determining the link are removed from all quantities.

-73-

Sinilarly as in Section 4.1, the above expression can be determined using Tables B-1

and B-2. These Tables give the results for unity vectors v, w, and ;v, where the bracketed

numbers should be understood as

(x) =iff x i (B.2)
0 if X i

WI

-(9)
+(8)
+(1)
+(4)
+(5)

1)2

+(9)

-(7)
+(4)
+(2)
+(6)

Y,3

-(-8)
+(7)

+(5)
+(6)
+(3)

'4

+(10)

+(9)
-(8)

rV5

+(Io)

-(9)

+(7)

t'6

+(10)
+(8)
-(7)

Table B-l: Evaluation of R i i

Also, in Table B-3 the force coefficients are specified separately as an analytic

function of the components of velocities and acceleration. Examining these functions, it

can be noted that many terms repeat. Therefore, it is advantageous to define "velocity

combinations" R, that is products and sums of velocities and accelerations, in an

intermittent step and to use these to compute the force coefficients. Tables B-4 and B-5

give the appropriate expressions, which represent a very efficient way to implement the

local force computations.

-74-

Wi

+2(7)
-2(4)

-(3H-(2)+(1)

-2(8)
-2(9)

-2(5)
+2(4)

+2(8)

-2(6)
-(3)+(2)-(1)

+2(9)

-(3)+(2)+(1)
+2(6)

+2(7)

+2(5)

+(3)+(2)-(1)

-2(7)

-2(9)
+2(6)

-2(4)

+2(9)

+(3)-(2).-(1)

+2(5)

Table B-2: Evaluation of w x R i v + vx R i w + Ri w x v

-2(10)

+2(9)

-2(7)

+2(10)

+2(9)
-2(8)

+2(10)
+2(8)
-2(7)

-2(10)

-2(9)
+2(8)

-2(10)
-2(8)
+2(7)

+2(10)

-2(9)

+2(7)

+2(8)
+(3)-(2)+(1)

+2(4)

H'6

-2(7)
-2(8)

-2(6)
-2(5)

i

2 i - -- -

-1 a ii ---4I i
I

i
I

1 1 1 ii i i i - i i

-75-

I I
-w'3V 2 +-'213 + 1

+ w 3 1'l + 1Wl'3

- "1 131-• 211 - W~l,2

- W1V3

+ W2" 3

+ WI !

-142 172

+ 14)11"2

+ W1"3

-W 11V5- W 1 5-wgl 6

+ 112

+ ý

- W2 1 2

- 1403V3

+ 4 3

- W2

2 4 - 6

W3" 4 + •' 5

,f 2 =

f 5 =

f8 =

14) 1
5 3"2 - W2 3

1
2 '3"1 13 2 + 2

I W2V WIV
+ 21 + 2 "•w

+WIV I

- W12l

-11

L2 6

+ W3"3

+ H"3

+
!I

- W31 3'3

+
!

- W2'4 + '6

+ W3 " 5 - ;V4

f 3 =

f 6 =

f 9 =

I I
+ 1 '3t,2 + w21'3

2 3 2-

1 1

2- 14 1 12* 3

+ W2l' 2 -- "'3

-- W 211
+ w'Il

+ W3 1 I

+ W3"2

+ W' I1) 6

+ w2 16

+ W3

+ '2

- W3 " 5W3 ý5

+ w'2

- M,4

+ 4

+ W2 1 6

- WIV 6

+ W1V 5

- W 31'5 + H'4
+ 14'34 + V5

- W 21'4 + 6

Table B-3: Analytic functions for the individual force coefficients

fI =

f 4 =

f 7 =

f 10 =

-76-

•l = - 2 2 - W1 "I

R12 =- w l 1 - W3 V3

3 = - W3 V3 - W2 "2

R14 = - W212 + Wl VI
5 - Wl V1 + W3 V3

16 = - 13 V3 + W2 V2

R17 = W2 v6 - W3 5 + 4
88 = 3 V4 - W4 V6 + i 5

99 = WlV 5 - W2 V4 + wi6

10i = W3 V2 - ill

I'll = W2V3 + il
1

912 =2 (21"3 + W3 v 2)

1113 -2 3w(2 3 v2) + il

.114 = Wi V3 - ;2
R15 = W3 ,1 + '2

R16 W3 '1 + '1 "3)

1i7 (W 3 V I - W 1 13) + $ý2

118 = 2V 1 - 13
Ri1=9 = W v1 2 + W3

IL20 (W1 1 2 + W2 V)
1 2 -) +

Table B-4: Velocity combinations for the force coefficient evaluation

-77-

2 3 4 5 6 7 8 9 10

-+ 12

+ 1120
•121

+ P21
+ Ni

+95
-•0 o

+ 111
-C6

f C18

+ P-3

+ 19

+P8

+918

+ 119

- 97

+ io
+91

- 98
+ 97

+ 17

+98

Table B-5: Individual force coefficients given by velocity combinations

i= I

+913
+916
- 120

_I __~_ I

-78-

Appendix C

The Implementation Code

This Appendix gives the key segments of the actual implementation code. In

particular, two routines are listed, which perform the recursive computations at each link

for both the controller and adaptation portions of the system. The Denavit-Hartenberg

parameters are left general, so that the routines can easily be customized for any particular

kinematic structure. First, however, the type and variable definitions are given.

C.I Type and Variable Definitions

/*
** typedef.h

** (a) Copyright 1989. All rights reserved.
** Nonlinear Systems Lab and Artificial Intelligenae Lab, MIT
**

** Type Dimensions : SPTL , VCMB , PRMS INRTL

** Type Definitions : spatl , vocmb , param
**

#ifndef TYPEDEF
#define TYPEDEZ

-79-

** Type Dimensions
*/

#define SPTL
#define VCMB

(6)
(21)

#define PRMS INRTL (10)

/*
** Type Definitions
*/

/* dimension of spatial vectors */
/* number of velocity combinations */
/* per link needed in traversing */
/* number of parameters per link */

typedef float

typedef float

spatl[SPTL] ;

voomb[VCMB] ;

/* spatial vector (6 elements) */

/* link cartesian velocity */

/* combinations (21 choices) */

struct
inrtl[PRMSINRTL]
f vis ;
f col ;
f off ;

param ;

parameters of a link including: */
10 inertial parameters */
viscous friction */
coulomb friction */
friction offset */

(a) Copyright 1989. All rights reserved.
Nonlinear Systems Lab and Artificial Intelligence Lab, MIT

The following gives the variable definitions used in the controller

and adaptation routines.

/* atesian data

/* cartesian data */

vel [LNKS]
r vel[LNKS]
r ao[LNKS]
force [LNKS]
v err[LNKS]
v com[LNKS]

prm[LNKS]

/* Link velocities */
/* Link reference velocities */
/* Link reference accelerations */
/* Link forces */
/* Link velocity error */
/* Link velocity combinations */
/* Link parameters */
/* (including friction) */

/* joint data */

q[JNTS]
qdot [JNTS]

q r_dot[JNTS]
q r_ddot [JNTS]

Joint position */
Joint velocity */
Joint reference velocity */
Joint reference acceleration */

typedef
{ float

float
float
float

)

#endif

/*

spatl
spatl
spatl
spatl
spatl
vcomb
param

float
float
float
float

-80-

tau[JNTS] ; /* Joint torque */

/* Denavit-Hartenberg Parameters */

dIUK3 ;
sinq[LXI] ;
cosq [LVII ;

a[LUNX ;
xina[LNX] ;
coma [Ml] ;

/* Parmeter d */
/* sine and cosine values of */
/* the angle theta */
/* Parmeter a */
/* sine and cosine values of */
/* the angle alpha */

C.2 Controller Recursive Routine

/*
otr traverse general.c

(a) Copyright 1989. All rights reserved.
Nonlinear Systems Lab and Artificial Intelligence Lab, MIT

The following is a general controller traversing routine for
an arbitrary link with the Denavit-Hartenberg parameters given.
As part of a recaursive implementation it calculates the local
cartesian velocity, reference velocity, reference acceleration,
and forces of the link. After having traversed the remaining
links, it then propagates the foroes downward and computes the
control torque for the corresponding joint due to inertial
effects. It also calculates the cartesian velocity error and
several velocity combinations, which are used by the adaptation
routines.

The joint motion is here assumed to be rotational, but could
equally well be of any other form.

Note that all calculations are down according to the spatial
vector notation.

Also note that this routine is not stand-alone and thus no
variable definitions are given.

*/

** Link NIE
**-----------

*/

traverse LNX()

(register float
register float
register float
register float

sq
oq
ma
oa

s sinq[LNKI

o lina(LNKI
- coWA[LNKI

/* sine and aosine values of
/* the Denavit-Hartenberg
/* angles theta and alpha

float

float
float
float
float
float
float

-81-

Transform all data from previous link to this link after adding
the appropriate joint motion.

/* Transform velocity after adding joint velocity */

(register float
register float

*pv = vel[LNK-1]
*v = vel[LNK] ;

/* pointer to previous vel. */
/* pointer to this links vel. */

register float tI , t2 , t4 ;

t2 = pv[2] 4. qdot[LNK] ;

v(O] =a q * pv[O] + sq * pv[1]
hl = - sq * pV[0] + q * pv + q pv1]

v[1] Ca o * tl + sa * t2
v[2] - sa* tl + t2

/* temporary variables */

v[3] =m q *
t4 - - sq *

v[4] = oa *
v[5] = - sa *

pv[3]
pv[3]
t4
t4

+ sq * pv[4]
+ aq * pv[4]
+ sa * pv(5]
+ ca * pv[5]

/* Transform reference velocity after adding joint reference velocity */

{ register float
register float

prv= r vel[LNK-1] ;/ pointer to previous r_vel. */
rv = r vel[LNK] ; / pointer to this links r vel. */

register float tl , t2 , t4 ;

t2 = prv[2] + qr_dot[LNK] ;

rv[O]
ti

rv[l1]
rv[2]

rv[3]
t4

rv [4]
rv[5]

aq *
sq *
ca *
sa *

aq *

ca *
- sa *

prv[0]
prv[0]

tl
tl

pry[3]
prv[3]

t4
t4

+ sq
+ oq
+ sa
+ ca

+ sq
+ oq
+ sa
+ ca

/* temporary variables */

prv[1]
prvy [1]

t2
t2

* prv[4]
* prv[4]
* prv[5]
* prv[5]

+ d[LNK] * tl ;
- d[LNK] * rv[0] ;
+ a[LNK] * rv[2] ;
- a[LNK] * rv[l] ;

/* note that the second half of this vector is only used to */
/* compute the velocity error for the adaptation routine. */

/* compute the velocity error for the adaptation routine */

(register float
register float
register float

*v = vel[LNK] ;
*rv = r vel[LNK] ;
*ve = v err[LNK] ;

/* pointer to velocity */
/* pointer to ref_velocity */
/* pointer to velocity error */

ve[O] = viO] - rv[O] ;
ve[1] = v[1] - rv[1] ;
ve[2] = v[2] - rv[2] ;

d[LNK]
d[LNK]
a [LNK]
a[LNK]

* tl
* v[0] ;
* v[2] ;
* v[1] ;

-82-

ve[3] = v[3] - rv[3] ;
ve[4] - v[43 - rv[4] ;
vets] - v[5] - rv[53 ;

/* Transform reference aoaeleration after adding both joint ref. aao. */
/* and aross-produot of velocity and direction of joint ref. vol. */

(register float *pra = r ac[LNK-1] ;/* pointer to previous raco. */
register float *ra r_ aoo[tIK] ; /* pointer to this links r aoo. */
register float *pv M veI[LNK-1] ; /* pointer to previous vol. */

register float tO , tl , t2 ;
register float t3 , t4 ;

/* temporary variables */
/* temporary variables */

tO n pra[O] + pv[1]
ti = pra[1] - pv[O]
t2 m pra[2]
t3 - pra[3] + pv[4]
t4 = pra[4] - pv[3]

ra [O]
ti

ra[1]
ra[2]

ra[3]
t4

ra[4]
ra[5]

aq *
sq *
as *

as *

m oq *

m as *

& - sa *

* q r dot[LNK] ;
* q rdot [LNK] ;

* q • dot[LNK] ;
* q r dot[LNK] ;

sq * tl ;
aq * t1 ;
sa * t2 ;
oa * t2 ;

sq *
aq *
sa *
oa *

t4
t4

pra [5]
pra[51]

Compute the velocity combinations, which are later needed
for force calculations and for adaptation purposes.

register float
register float
register float
register float

*v M vel[LNK] ;
*rv = rvel[LNK]
*ra = r aoa[LYNK]
*v&- = v _omu[LNK]

pointer to velocity */
pointer to ref_velocity */
pointer to ref aooeleration */
pointer to vel oombinations */

register float half = 0.5 ;
register float tO , tl , t2 ;

/* constant 1/2 */
/* temporary variables */

tO = - rv[O] * v[O] ;
tl = - rv[1] * v[1] ;
t2 = - rv[2] * v[2] ;

vQ[0]
vo[1]
va[2]

vo[3]
vo[4]
vo[5]

/* combinations 0-5 */+ to ;
+ t2 ;
+ tl ;

- tO ;
- t2 ;
- tl ;

q.r.ddot [LNK] ;

+ d[LNK] * tl
- d[LNK] * ra[0]
+ a[LNK] * ra[2]
- a[LNK] * ra[l]

a

a

a

-83-

- rv[1] * v[5] - rv[2] * v[4]
M rv[2] * v[3] - rv[O] * v([5
= rv[O] * v[4] - rv[1] * v[3]

+ ra[3]
+ ra[4] ;
+ ra[5] ;

/* combinations */

/* 6-8

tO M
vo[9] = tl M
va[10] = to =

ra[O] ;
rv[21 * v[1] - to ;
rv[1] * v[2] A to ;

/* combinations 9-12 */

vo[11] - tO = half * (tO + tl) ;
vo[12] = to - tl ;

tO =
vo[13] = tl =
vo[14] = tO =

ra[l] ;
rv(0] * v[2] - tO ;
rv[2] * v[0] + to ;

/* combinations 13-16 */

vo[15] = tO = half * (tO + tl) ;
va[16] M tO -- tl

tO =
vo[17] = tl =
vo[18] m tO -

ra[2j ;
rv[l] * v[0] - tO ;
rv[O] * v[1] + tO ;

/0 combinations 17-20 */

vo[19] = tO = half * (tO + tl) ;
vo[20] = tO - ;

Calculate the local forces as a product between the above vel.
aombinations and the inertial parameter values.

f = foro[LNK] ;
*p = prm[LNK].inrtl ;
*vo = v com[LNK] ;

* p[6]
* p[6]
* p[6]

+ vo[17] * p[7]
+ vol 1] * p[7]
+ vo[10] * p[7]

/* pointer to force */
/* pointer to parameters */
/* pointer to vel combinations */

+ vo[14] * p[8] + va[6] * p[9]
+ vol 9] * p[8] + vo[7] * p[9]
+ vo[0] * p[8] + vao 8] * p[9]

f[3] = vc[12] * p[O] - va[ll] * p[1] + va[ll] * p[2] - vc[13] * p[3]
+ vo[le] * p14] + vo[5] * p[5] + vo[8] * p[7] - vo[7] * p[S] ;

f[4] m vo[15] * p[0] + vo[16] * p[l] - vc[15] * p[2] + vo[10] * p[3]
+ vo[4] * p[4] - vo[17] * p[5] - vo[8] * p[6] + vo[6] * p[8] ;

f[5] = - va[19] * p[0O] + vo[19] * p[l] + vc[20] * p(2] + vol 3] * p[3]
- va[9] * p[4] + vo[14] * p[5] + vo[7] * p[6] - vo[6] * p[7] ;

Connect upwards to next link

traverse LNK+1() ;

vo[6]
va[7]
vao 8]

(register
register
register

f [0]
f[1]
f[2]

float
float
float

va[2]
vo[18]
vo[13]

-84-

Propagate the forces downward and compute the joint torque.

(register float *pf = force[LNK-1] ; /* pointer to previous force */
register float

register float
register float

*f = force[LNK] ;

to , tl , t2 ;
t4 , t5 ;

/* pointer to force */

/* temporary variables */
/* temporary variables */

- a[LNK] * t2 ;
+ a[LNK] * tl ;

pf[0] += tO m
pf[1] +m tl =
pf[2] += t2 ;
pf[3] +-
pf [4] +=
pf[5] += t5 ;

tau[LNK] = t5 ;

aq * f[0] - sq * ti ;
sq * f[0] + aq * tl ;

aq * f[3] - sq * t4 - d[LNK] * tl ;
sq * f[3] + aq * t4 + d[LNK] * tO ;

/* set joint torque */

return;

C.3 Adaptation Recursive Routine

adp traverse_general.c

(a) Copyright 1989. All rights reserved.
Nonlinear Systems Lab and Artificial Intelligence Lab, MIT

The following is a general adaptation traversing routine for
an arbitrary link with the Denavit-Hartenberg parameters given.
As part of a reoursive implementation it caloulate& the inertial
parameter derivatives and updates the parameter estimates.

The joint motion is here assumed to be rotational, but could
equally well be of any other form.

Note that all calculations are down aooording to the spatial
vector notation.

Also note that this routine is not stand-alone and thus no
variable definitions are given.

Link LUK

ca *
sa *
ca *
sa *

f[iJ
f[1]
e[4]£[4]

sa *
oa *
ma *
a& *

f[2]
f[2]
f[5]
f[5]

return;

-85-

** ----------

*/

traverseLNK ()

Compute the inertial parameter derivatives

(register float
register float
register float

*pd = prm dot [LNK].inrtl
*vo - v oou[LNK] ;
*ve v err[LNK] ;

/* pointer to the prm deriv. */
/* pointer to val. comb. */
/* pointer to v errors */

+ vo[15]
+ va[16]
- vo[15]

+ vo[10o
+ vo[43
- va [17]

* Ye[1]
* ve[l]
* ve[l]

* veail
* ve[13
* ve[l]

- vo[8] * ve[l]
+ va[18] * ve[4]

+ va[1]
+ vo[6]
+ vo[9]

* ve[4]
* ve[l]
* ve[4]

va [19]
vo[19]
voa[20]

vat 3]
va[9]
va [14]

va[73
va [13]
vo[6]

+ vo[03 * ve[5]

pd[9] = vo[6] * ve(3] + va[7] * ve[4] + va[8] * ve[5]

Update the inertial parameter estimates

register float
register float
register float
register float

*pm = prm[LNK] .inrtl ;
*gn = gain[LNK].inrtl ;
*dot = prm dot[LNK] .inrtl;
*old - prm_old_dot[LUK].inrtl

parameters */
adaptation gains */
prm. derivative */
prev. prm. der. */

register float t ; /* temporary variable */

register float on 1.5 / servo_ loop_rate ; /* integration */
register float co - 0.5 / servo _loop_rate ; * constants */

t = dot[0] ; pm[O] -- gn[O] * (on * t + co * old[O]) ; old[0] = t ;
t wa dot[1] ; pm[1] -m gn[1] * (an * t + co * old[l]) ; old[1] = t ;
t = dot[2] ; pm[2] -m gn[2] * (an * t 4 ao * old[2]) ; old[2] = t ;

t = dot[3] ; pm[3] -= gn[3] * (on * t + co * old[3]) ; old[3] = t ;
t = dot[4] ; pm[4] -= gn[4] * (an * t + co * old[4]) ; old[4] t ;
t = dot[S] ; pm[5] -= gn[5] * (on * t + co * old[5]) ; old[5] = t ;

t = dot[6] ; pm[6] -, gn[6] * (an * t + co * old[6]) ; old[6] = t ;
t = dot[7] ; pm[7] -= gn[7] * (on * t + co * old[7]) ; old[7] 3 t ;
t = dot[8] ; pmr[] -- gn[8] * (an * t + co * old[8]) ; old[8] , t ;

pd[O]
pd[]]
pd[2]

pd[3]
pd[4]
pd[5]

pd[6] =

pd[7] =

pd[8] =

va[123
TO[113

Vc[11j

- vo[13]
vao[18]
vo[5]

+ va[2]
va[8]

+ vo[17]
- vo[7]
+ va[14]

ve[0o]

ve[0]

ve[0]
ve [0]
ve[0]

vw[3]
v [0]
ve[3]
ve[0]
ve[3]

ve[2]
ve[2]
ve[2]

ve [2]
ve[2]
ve[2]

ve[2]
ve[5]
ve[2]
ve []

-86-

t - dot[9] ; pm[9] -= gn[9] * (an * t + co * old[9]) ; old[9] - t

/*
** Connect upwards to rext link

*/

traverse LNK+1() ;

return;

-87-

References

An, C.H., Atkeson, C.G. and Hollerbach, J.M. 1985. Estimation of inertial

parameters of rigid body links of manipulators. I.E.E.E. Conf. Decision and Control, Fort

Lauderdale.

Asada, H., and Slotine, J.J.E. 1986. Robot Analysis and Control. Wiley.

Baillieul, J. 1985. Kinematic Progranuning Alternatives for Redundant

Manipulators. IEEE Int. Conf. on Robotics and Automation, St. Louis.

Baker, D.R., and Wampler, C.W. II 1988. On the Inverse Kinematics of

Redundant Manipulators. Int. J. Robotics Res. 7(2)

Bayard, D.S., and Wen, J.T. 1987. Simple Adaptive Control Laws for Robotic

Manipulators. Proceedings of the Fifth Yale Workshop on the Applications of Adaptive

Systems Theory.

Craig, J.J., Hsu, P., and Sastry, S. 1986. Adaptive Control of Mechanical

Manipulators. I.E.E.E. Int. Conf. Robotics and Automation, San Francisco.

Desoer, C.A., and Vidyasagar, M. 1975. Feedback Systems: Input-Output

Properties New Yok: Academic Press.

Featherstone, R. 1987. Robot Dynamics Algorithms. Kluwer Academic Publishers.

Hogan, N. 1985. Impedance Control: An Approach to Manipulation: Part I - Theory.

J. Dynamic Systems, Measurements and Control. 107(1): 1-7.

Hsu, P. et al. 1987. Adaptive Identification and Control of Manipulators Without

-88-

Joint Acceleration Measurements. I.E.E.E. Int. Conf. Robotics and Automation, Raleigh,

NC.

Kelly, R., and Carelli, R. 1988. Unified Approach to Adaptive Control of Robotic

Manipulators Proc. 27th Conf. on Dec. and Contr., Austin. pp 1598-1603.

Khatib, O. 1980. Commande Dynamique dans L'Espace Operationnel des Robots

Manipulateurs en Presence D'obstacles. Docteur Ingenieur Thesis. Ecole Nationale

Superieure de L'Aeronautique et de L'Espace, Toulouse, France.

Khatib, 0. 1983. Dynamic Control of Manipulators in Operational Space. 6th

IFTOMM Congress on Theory ofMachines and Mechanisms. New Dehli

Khosla, P., and Kanade, T. 1985. Parameter Identification of Robot Dynamics.

I.E.E.E. Conf. Decision and Control, Fort Lauderdale.

Klein, C.A., and Blaho, B.E. 1987. Dexterity Measures for the Design and Control

of Kinematically Redundant Manipulators. Int. J. Robotics Res. 6(2):72-83.

Klein, C.A., and Huang, C.H. 1983. Review of Pseudoinverse Control for use with

Kinematically Redundant Manipulators. IEEE Trans. on Systems, Man and Cybernetics.

13(2):245-250.

Koditschek, D.E. 1987. Adaptive Techniques for Mechanical Systems.

Proceedings of the Fifth Yale Workshop on the Applications of Adaptive Systems Theory.

Landau, I., and Horowitz, R. 1988. I.E.E.E. Int. Conf. Robotics and Automation,

Philadelphia, PA.

Li, W., and Slotine, J.J.E. 1987. Parameter Estimation Strategies for Robotic

Applications. A.S.M.E. Winter Annual Meeting, Boston, MA.

-89-

Li, W., and Slotine, J.J.E. 1988a. Indirect Adaptive Robot Control. 5th I.E.E.E.

Int. Conf. Robotics and Automation, Philadelphia, PA.

Luh, J.Y.S., Walker, M., and Paul, R.P.C. 1980. Resolved Acceleration Control of

Mechanical Manipulators. IEEE Trans. on Automatic Control. 25(3):468-474.

Mason, M.T. 1986. Mechanics and Planning of Manipulator Pushing Operations.

Int. J. Robotics Res. 5(3):53-71.

Mayeda, H., Yoshida, K., and Osiuka, K. 1988. Base Parameters of Manipulator

Dynamic Models. 5th I.E.E.E. Int. Conf. Robotics and Automation, Philadelphia, PA.

Middleton, R.H. and Goodwin, G.C. 1986. Adaptive Computed Torque Control for

Rigid Link Manipulators. 25th I.E.E.E. Conf. on Dec. and Contr., Athens, Greece.

Narasimhan, S., Siegel, D.M., and Hollerbach, J.M. 1989. Condor: An

Architecture for Controlling the Utah-MIT Dexterous Hand. IEEE Trans. on Robotics and

Automation. 5(5):616-627.

Niemeyer, G., and Slotine, J.J.E. 1988. Performance in Adaptive Manipulator

Control. Proc. 27th Conf. on Dec. and Contr., Austin.

Niemeyer, G., and Slotine, J.J.E. 1989. Computational Algorithms for Adaptive

Compliant Motion. I.E.E.E. Int. Conf. Robotics and Automation, Scottsdale, AZ.

Ortega, R., and Spong, M. 1988. I.E.E.E. Int. Conf. Decision and Control, Austin,

TX.

Popov, V.M. 1973. Hyperstability of Control Systems. New York: Springer Verlag.

Sadegh, N., and Horowitz, R. 1987. Stability Analysis of an Adaptive Controller

for Robotic Manipulators. I.E.E.E. Int. Conf. Robotics and Automation, Raleigh, NC.

-90-

Salisbury, J.K. et al. 1988. Preliminary Design of a Whole-Ann Manipulator

System. I.E.E.E. Int. Conf. Robotics and Automation, Philadelphia, PA.

Slotine, J.J.E., and Li, W. 1986. On The Adaptive Control of Robot Manipulators.

A.S.M.E. Winter Annual Meeting, Anaheim, CA.

Slotine, J.J.E., and Li, W. 1987a. Theoretical Issues In Adaptive Manipulator

Control. Proceedings of the Fifth Yale Workshop on Applications of Adaptive Systems

Theory.

Slotine, J.J.E., and Li, W. 1987b. Adaptive Robot Control, A Case Study. I.E.E.E.

Int. Conf. Robotics and Automation, Raleigh, NC.

Slotine, J.J.E., and Li, W. 1987c. Adaptive Strategies in Constrained Manipulation.

I.E.E.E. Int. Conf. Robotics and Automation, Raleigh, NC.

Slotine, J.J.E., and Li, W. 1987d. Adaptive Robot Control - A New Perspective.

I.E.E.E. Conf. Decision and Control L.A., CA.

Slotine, J.J.E., and Li, W. 1987e. On the Adaptive Control of Robot Manipulators.

Int. J. Robotics Res. 6(3).

Slotine, J.J.E., and Li, W. 1988. Adaptive Manipulator Control: A Case Study.

I.E.E.E. Trans. Autom. Control, 33, 11.

Slotine, J.J.E., and Li, W. 1989. Composite Adaptive Robot Control. Automatica,

25(4).

Slotine, J.J.E. and Li, W. 1990. Applied Nonlinear Control. Prentice-Hall.

Townsend, W.T. 1988. The Effect of Transmission Design on Force-Controlled

-91-

Manipulator Performance. Technical Report AI-TR1054. Cambridge, MA: Massachusetts

Institute of Technology Artificial Intelligence Laboratory.

Walker, M.W. 1988. An Efficient Algorithm for the Adaptive Control of a

Manipulator. Proc. 5th Int. Conf. Robotics and Automation, Philadelphia.

Yuan, J.S. 1988. Closed-Loop Manipulator Control using Quaternion Feedback, J.

Robotics and Automation, 4(4):434-440.

