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Abstract
This thesis demonstrates a technique that reduces the perceived error introduced in the
visualization of higher-order DG solutions with traditional tools. Most visualization tech-
niques work by using the solution at the mesh vertices and linearly interpolating to color
the interior of the element. For higher-order solutions (where the visualization mesh is the
same as the solution mesh) this method renders the high-order solution linear. By inserting
new nodes at element quadrature points where the difference between the actual solution
and the linear rendering is above a user-defined tolerance, additional elements are created
and used for the visualization process. In order to keep the counts low for this new mesh,
after each insertion a local rearrangement is performed to readapt the parent element so
that the total visualization error is reduced.

The method introduced here has many advantages over isotropic adaptation used by
some higher-order visualization techniques. Isotropic adaptation adapts all the elements
regardless of error, thus creating a higher total element count and therefore requiring more
memory and rendering time. In some cases isotropic elements are not ideal in representing
the solution (ie: boundary layers, shocks, wakes, etc.). Lastly, by providing an option to
define the maximum visualization error allows the user to specify how close the visualized
solution is to the actual calculated one (at the expense of a denser visualization mesh).

Second, this work introduces a new method to apply an accuracy maintaining post-
processor on DG vector fields to improve on the standard streamlining algorithms. Time
integration methods do not work accurately and may even fail on discontinuos fields. The
post-processor smoothens the field and eliminates the discontinuity between elements thus
resulting in more accurate streamlines. To keep down the computational cost of the method,
the post-processing is done in a one dimensional manner along the streamline.

Thesis Supervisor: Robert Haimes
Title: Principal Research Engineer
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Chapter 1

Introduction

1.1 Current Visualization techniques

Basic forms of Computational Fluid Dynamics (CFD) were established in 1966 with

John Hess' and A. M. O. Smith's first paper on methods to solve the linearized

potential equations. CFD began developing quickly in the 1980's as the improvement

of computing and processor technology gave scientists the means to solve the complex

fluid dynamics equations they already had. With these new solutions came the need

for visualization: without being able to see the solutions it is significantly harder

to understand them. As the technology further improved and CFD solvers started

producing three dimensional results, the question arose on how to visualize something

three dimensional on a computer monitor.

Currently OpenGL is the most commonly used graphics library for both two and

three dimensional visualization. It was developed in 1992 by Silicon Graphics (SGI).

OpenGL deals with linear display components, building the visualized image from

polygons. While this method can be fast and efficient, it does not always produce

accurate images.

Most visualization techniques for CFD use OpenGL to produce imagery. This is

accomplished by using the solution at the mesh vertices and linearly interpolating

to color the interior of the element. For higher-order solutions, if one uses the same

visualization mesh as the solution mesh, the solution will be rendered linearly with



loss of accuracy. Elements with high order geometric faces also get misrepresented

during the process as they lose their curved nature. These problems in visualization

may mislead the user to believe that either the solution is incorrect, or the solver

itself has an error. Thus, it is crucial to be able to visualize a solution accurately as

its interpolation order increases. For time-dependent solutions, it is also important

to be able to do so quickly since the solution must be rendered at each time step.

There are techniques which allow pixel exact visualization, such as ray tracing, but

these techniques are relatively slow and have to be restarted every time the solution

is rotated, zoomed in/out or moved around in any way.

Another significant problem is the calculation of streamlines in Discontinuous

Galerkin (DG) fluid fields. A streamline can be defined by an ordinary differential

equation (ODE) as it is done in Section 1.5. There are standard ODE solvers (time-

integrators [25, 3]) available that help trace a streamline, but they were designed for

continuous smooth fields. If, for example, a fourth-order Runge-Kutta (RK4) method

is used on a DG fluids solution, its convergence would only be first order [8].

The discontinuity between elements may cause other significant problems for sim-

ple time-integration methods. For example, one can imagine a situation in which

a streamline exiting one element sees a velocity solution pointing in the direction

from which it just came. Such a situation would cause the streamline to get stuck

on the element boundary with the time integrator in an infinite loop. One solu-

tion to avoid potential problems during the streamlining process is to use some type

of post-processing prior to the time integration step. Most of these techniques use

convolution with B-splines to smooth out oscillations and discontinuities while also

increasing the accuracy of the solution [7, 30, 29].



1.2 DG Discretization of the compressible Navier-

Stokes equations

The time dependent, strong form of the compressible Navier-Stokes equations is:

19uk + iFki(U) - 1iFk'(u) = 0, k e I1,ns (1.1)

In the above equation u represents the conservative state vector (p, pu, pv, (pw, )pE),

p is the density and E represents the total energy. Fki is the inviscid while Fki is the

viscous flux components. Equation 1.1 contains the three conservation laws (mass,

momentum and energy).

The calculation is done on a domain Q which can be divided up by a triangu-

lar/tetrahedral mesh. The solution is a piecewise polynomial function in each ele-

ment that satisfies the weak form of the above equation. A detailed overview of DG

discretization of the Navier-Stokes equations, and the way to obtain the weak form,

is provided by Cockburn and Shu [5] and Fidkowski et al [14].

1.3 Simplex Cut Cells

Most CFD solvers work by using one of two types of body-conforming meshes: struc-

tured or unstructured. Structured meshes do not store element connectivity data and

thus take up less memory, but they require significant user involvement to generate.

Conversely, unstructured meshes can be generated robustly even for complex geome-

tries, but they must store element connectivity data, which also makes them slower.

However, both types of meshes run into difficulties when higher-order elements are

required by the solver (i.e.: body conforming higher order discretization methods [1]).

Many issues arise in the generation of these types of grids which are further discussed

in [13].

One of the most promising methods used to solve the meshing problems intro-

duced due to the curved boundary requirement is the cut cell method. Purvis and



Burkhalter first introduced the cartesian cut cell method in 1979 [26]. This method

used rectangular/box shaped cells, faces aligned with the coordinate system, to cut

through the geometry of the body of interest. With these cut cells, the mesh no

longer has to be body conforming, allowing the grid generation process to become

automated. However, the intersection of the body with the background mesh must be

calculated and the solver must be able to solve on the arbitrarily shaped cells which

result from the cutting.

Cartesian cut cells solved the problem of automated mesh generation but added

the constraint of isotropic background elements which may not be ideal for many

fluid dynamics problems (i.e.: boundary layers, shocks, wake, etc.). Even though

adaptive mesh refinement (AMR) [23] can be used to resolve the grid, it is not the

most efficient method. The main problem with AMR is that refinement can not be

done purely locally, and that all the elements have to be isotropic. Figure 1-1 shows

a cartesian cut cell mesh adapted around a curved boundary in 2D.

In order to be able to introduce anisotropic adaptation, the background elements

had to be changed from cartesian to simplex. Simplex cut cell method was introduced

by Krzysztof J. Fidkowski in his doctoral thesis [13]. This method is similar to the

cartesian method, but in the simplex method the background mesh is built from

triangles in two dimensions and tetrahedra in three.

The development of simplex cut cells necessitated the ability to visualize the

solutions derived from their calculations. This thesis presents two novel techniques

for that purpose.

1.4 Visualization Error

As mentioned earlier, most visualization techniques are not pixel exact, especially

when looking at higher order solutions. There is some error introduced due to the

linear interpolation inside elements, but this error is easily quantifiable. The exact

solution can be calculated anywhere in the domain with the use of the basis functions

(Equation 1.2). The linearly interpolated solution can be calculated in the same man-



Figure 1-1: Cartesian cut cell refinement around body boundary (figure used with
the permission from [13])

19



ner if the higher order basis functions are replaced by the linear function (Equation

1.3).
+u( ,

u E ai Oidi~;F;F; (1.2)

(1.3)
d+1

UL( ) E 3i =

In the equation d is the problem dimensionality and p is the solution polynomial

order. With the use of mapping (Equation 1.4), the coordinates of any point can

be converted to shadow reference coordinates [14] for which the basis functions are

defined. Figure 1-2 shows the reference, original, and shadow reference elements, and

the mapping between each of them.

(' = B-'l (1.4)

The error introduced during the visualization process is simply the difference between

the real and the linearly interpolated solutions at every point Ei, = |u - uL1.

Reference element Original element (solid)
Shadow element (dashed)

Shadow reference
element

B-1

41 ^1

Figure 1-2: Reference, Original and Reference Shadow elements (figure used with the
permission from [14])

1.5 Streamline

A streamline is defined as a curve with tangents pointing in the direction of the

velocity vector at every point [18] at the same instance of time. The mathematical

52



definition of a streamline is the following;

dr
d=' (1.5)

In Equation 1.5, i7 is the velocity vector which can be written as U' = (u, v, w) and

r is the streamline. The directional derivative is defined as:

dd- = (1.6)

It can be seen that Equation 1.5 is a first order ODE. As such there are numerical

methods available to get an approximate solution of a streamline on a given vector

field with a given starting point. In CFD it is advantageous to be able to visualize

streamlines in order to understand how the flow behaves around (or for some cases

inside) a body.

1.6 Contributions of this Thesis

This thesis demonstrates an anisotropic visualization-error based mesh adaptation

for higher order DG results in order to reduce the error and improve the efficiency

of the visualization process. Additionally, a one sided post-processing technique is

demonstrated in a one-dimensional manner along a streamline in a continuous manner

without the loss of accuracy.





Chapter 2

Visualization of High Order DG

solutions

2.1 Current Techniques

Solving the problem of accurate visualization of high order methods has become an

increasingly urgent issue in the past ten years. As mentioned in Section 1.1, ray

tracing is a pixel exact visualization technique. Turner Whitted presented the first

algorithm in 1979 and a broad overview of the technique can be found in Andrew

Glassner's book [16]. Ray tracing's main problem until this year was its high com-

putational cost. However, Professor Philipp Slusallek from University of Saarland,

Germany developed a new algorithm that promises more efficient and faster ray trac-

ing in the near future. While ray tracing produces pixel exact images, there are some

methods that aim for the same result in a more efficient fashion.

The most common method to solve the problem of high order visualization is to

isotropically subdivide all the elements in the solution mesh according to the order

or the element type, whichever is higher. This technique does not require any pre-

processing. It inserts the same number of new nodes in every cell in such a way that

the reference elements are divided up to pd equal sized elements. The solution is then

sampled at the new node locations in order to enforce accurate visualization at those

locations. Since the behaviour of the flow solution is not utilized in any way to control



the subdivision of the element, the method is not adaptive. Due to the non-analytic

manner of the algorithm, new nodes are inserted and the elements are refined even

at locations where the linear interpolation is already adequate. In addition, the user

does not have control over the magnitude of the introduced error thus giving a false

impressions of the solution.

There are other techniques that try to resolve the issue of high order visualization.

Jean-Francois Remacle developed an isotropic visualization-error based adaptation al-

gorithm [28]. In this method, elements are refined isotropically to the highest level.

After the subdivision, Evi is checked at every new node location and compared to

the tolerance requirement with and without an element. The mesh is then coarsened

to the minimum element number at which all the possible nodes still meet the re-

quirement. Even though the total element count is less than for the pure subdivision

technique mentioned earlier, isotropic elements are not ideal when the features of the

flow are not isotropic (i.e.: vortices, shocks, boundary layers).

Douglas Quattrochi introduced another adaptation technique in his master the-

sis [27]. The algorithm uses quadrature points as sample points to calculate the

visualization-error, and the new nodes are inserted at these locations. Even though

the method does not enforce isotropic elements, the triangulation inside a solution

cell is done with a Delaunay algorithm [12] which does not allow elements that are

too strongly stretched in any direction. In addition, this meshing technique is compu-

tationally expensive, thus the cost of the visualization pre-processing step increases

exponentially as the element count gets higher.

The goal in this work is to find a technique that approaches the higher order

solution accurately based on the user needs. From the user's point of view, the algo-

rithm is ideally both efficient computationally and also enables anisotropic elements

to minimize the total number of nodes required.



2.2 New Adaptation Technique for Visualization

The technique introduced here anisotropically adapts one computational element

(parent element) at a time by calling the same algorithm on all cells. The refine-

ment is built up from the children elements. This algorithm could be applied on

Continuous Galerkin solutions as well, but this might introduce discontinuities be-

tween elements in the visualized solution due to the possibility of hanging nodes in

the final mesh. The general algorithm is used for visualization in both two and three

dimensions, with the differences mentioned explicitly.

Main algorithm

1. Get the quadrature points (sample points C).

2. Calculate the real (high order) solution (u) at quadrature points.

3. While there are sample points with visualization-error (Ei,) larger than Error

tolerance (Eto,).

(a) Calculate the Linear solution (UL) for sample points that are inside the

area that was affected by the latest re-meshing (Calculate Linear Solution,

Section 2.2.1). However, u does not have to be recalculated since it does

not change.

(b) Calculate UL and the High order solution (u) for new sample points.

(c) Find the sample point with largest E,i, (check points that had E,,i < Eto1

earlier since re-meshing may have changed this relationship).

(d) If maxc E,•i > Eto then insert a sample point as a new node (InsertNode,

Section 2.2.2).

(e) Insert new sample points on the quadrature points of the new element(s).

(f) Rearrange area to minimize the total Ei, on the sample points (Swapping,

Section 2.2.3).

There are multiple termination criteria for the loop. If there are no more sample

points with E,i, > Eto, the loop will end. However, if the user defines an Eto too



low, the algorithm may take longer than desired. To avoid this situation, the user can

input the maximum number of new nodes introduced per computational element.

2.2.1 Calculate Linear Solution

First, the element which contains the sample point has to be determined.

1. The location of the sample point was known before the last re-meshing.

2. Loop until the element containing the point is found

(a) Calculate the weights of the sample point in the element. With a matrix

multiplication (discussed in Section 1.4, Equation 1.4) the shadow reference

coordinates can be calculated ('1, 2, '3)

2 Dimensions

W 1, = ( , W2 = -" 1 3 '1 - 2

3 Dimensions

W1 = 1 , W2 2, 3 = 3, W 4  -1 2 3- 3

(b) If all the weights are positive then the element is found.

(c) If any of the weights are negative then the next element that needs to be

checked is the one which is opposite to the face with the most negative

weight.

3. Point coordinates are converted to shadow reference coordinates (~,, 2).

4. Node solutions can be linearly interpolated with the use of ~j, •2 3to get the

solution at the sample point (as shown in Equation 1.3).

This function has to be called multiple times because while the higher order solu-

tion does not change, UL changes as the element gets adapted. However, the algorithm

uses targeted searching for the element, instead of looping through all of them to find

the one that contains the sample point. In addition, the last step, linear interpolation,



is a simple vector matrix multiplication where the matrix size only depends on the

dimensionality of the problem, not the order.

2.2.2 InsertNode

The sample point is inserted creating new elements in the structure. The number of

new elements introduced depends on the where the node is inserted and the dimen-

sionality of the problem. There are three possible locations the algorithm allows for

a node to be inserted: in the interior, on an original face of the parent element or

on a face which is inside the parent element (interior face). Table 2.1 summarizes

dependencies:

Table 2.1: Number of new elements introduced per insertion
2D 3D

interior 2 3
boundary face 1 2
interior face 2 4

Figure 2-1 shows the three different locations a node can be inserted at in two

dimensions. The top right image has child element 2 split up by an interior node

into three elements, yielding two new element. On the bottom left, child element 3 is

split up by a boundary face node into two elements, one new. Finally, on the bottom

right, elements 1 and 2 are split up by an interior face node into 4 elements, 2 new.

Insertion is done automatically. The new node is connected to the nodes of the

element in which it is contained. As new elements are introduced, both the total

cell count and the node number have to be modified. The connection data between

elements also needs to be updated, as does the boundary information if the element

is on the boundary.

2.2.3 Swapping

This is the part of the method that can get the most computationally expensive as

the total element count becomes high. The number of possible mesh configurations



Boundary face

Figure 2-1: Node insertions in a parent that already has one step of refinement done
on it (top left image).

increases exponentially with the total number of nodes. In order to guarantee the

most efficient algorithm in two dimensions, it is necessary to record the faces that

were not swapped, and only check them the next time around if their neighborhood

has changed.

1. Initially, when the function begins, all interior edges are marked as swappable.

2. Follow the algorithm until no swapping is performed during the loop.

(a) Loop through all the interior edges which are marked as swappable.

(b) Check to see that if the face is swapped it would not create an element

with negative area. This is a simple cross product check for 2 dimensional

problems. Figure 2-2 on the left shows a swappable face, and on the right

one which would create an element with negative area.

(c) If it is still a candidate for swapping, then check the Eji, for all the sample

points inside the two neighboring elements of the face for both configura-

tions.

Interior Face



(d) If the second configuration has a lower total E ,, then swap the face and

update the locations of the sample points affected.

(e) Mark all other faces on the affected elements as not swappable for this

loop but swappable for the next iteration.

/

4
Figure 2-2: Face Swapping in two dimensions. On the left a configuration when the
face can be swapped. On the right, swapping would result in negative element area
(shaded region).

Three dimensional rearrangement (swapping) is done with TURIN (Tetrahedral

Unstructured Remeshing Interface) software developed by Robert Haimes. Instead

of swapping edges like in with triangles, in three dimensions a common face of two

neighboring tetrahedra can be swapped into an edge and create three tetrahedral.

2.3 Simplex Cut Cell terminology

As described in Section 1.3, cut cells are produced when the body intersects an

element. Figure 2-3 shows a two dimensional background element (triangle with 2

edges) that is cut by the boundary. The shaded region of the element represents the

section that is inside the flow domain; this valid area is called the cut cell.

There are cases when one background element gets cut into two or more pieces

that lie inside the computational domain, these are multiply cut cells, with the cells

being each other's sibling element. Figure 2-4 shows the trailing edge of a NACA0012



Figure 2-3: Background element cut by the boundary creating the shaded cut cell.

airfoil with a multiply cut cell. It can be seen that cut cells 1 and 2 share the same

background element, they are sibling elements.

Figure 2-4: Multiply Cut Cell at the trailing edge of an airfoil

2.4 Isotropic Refinement for Simplex Cut Cell Vi-

sualization

The isotropic subdivision that can be used on body conforming meshes (described in

Section 2.1) can also be applied to Cut Cells with some small additions to the algo-

rithm. All the elements can be adapted in the same manner as before but assigning

the solution data to the newly added nodes is different for multiply cut cells (Cut

Cells with the same background element).



(a) Non-refined cut cell (b) Refined cut cell

Figure 2-5: Isotropic refinement gets rid of elements completely outside of flow domain

Since the background element is the one which gets isotropically adapted, every

new node has to be assigned a solution from one of the cut elements it supports. In

order to decide which solution coefficients should be used for the calculation, it must

be determined which cut element contains (or is nearest to) the new node. The correct

element can be determined by calculating the distance between the quadrature points

of all the elements (of the same background cell) to the node and finding the closest.

Second, it is important to add every new element only once. Multiply cut cells

share the same background element and thus get cut multiple times. If the same

element is present in the mesh multiple times it results in unnecessary memory usage

and rendering time. As the case inscreases in size, it gets more important not to

waste computing resources.

Last, after all elements are subdivided, there may be some children elements that

are completely outside the flow domain. A simple test can be done to check for

this situation: if the shadow reference coordinates of all the nodes are outside the

bounding box of the parent cut cell then they are outside the domain. In order to

save memory and rendering time, these cells are not passed to the visualizer. Figure



2-5 shows an example of isotropic refinement on a cut cell with unnecessary elements

removed.

2.5 Adaptation Technique for Simplex Cut Cells

Higher order solutions on Simplex Cut Cell meshes need to undergo the same adap-

tation as any other solution in order to limit the error introduced from the linear

rendering of the visualization process. Some difficulties arise if one tries to use the

anisotropic algorithm on Cut Cells.

As mentioned in Section 2.2, quadrature points are used as the sample points to

calculate the visualization-error and also are used for node insertion. Every Cut Cell

has its own quadrature rule because each cell is unique as a result of the cutting.

Figure 2-6 shows an example of quadrature points in a two-dimensional NACA 0012

grid. The refinement algorithm examines these quadrature points and uses them as

the sample points. By not using the normal quadrature rules we guarantee that the

adaptation is done only on the part of the element that is inside the flow region, and

no memory and computing power is wasted on points outside the domain.

Another main problem that arises with Cut Cell visualization is the presence of

multiply-cut elements. Figure 2-4 shows an example of this situation. The individual

elements that belong to the same background element have their own shadow reference

coordinates, where the basis functions are defined, and their own set of quadrature

points. As a result multiple sets of quadrature rules, solution coefficients and shadow

reference mapping matrices have to be caried around with the same background

element.

Because of the aforementioned differences between Cut Cell and boundary con-

forming meshes, there must be changes made to the adaptation algorithm:

2.5.1 Algorithm for cut cell visualization

1. A pre-processing step is used to find all multiply cut cells (Pre-process, Section

2.5.2).



(a) All quadrature points

(b) Trailing Edge quadrature points

Figure 2-6: Quadrature points inside Cut Cells for a 2D NACA 0012 airfoil



2. A sample point structure is created using the quadrature points of all the cells

that have the same background element. [13].

3. The same adaptation algorithm is called as for body conforming meshes.

2.5.2 Pre-process

As mentioned earlier, it is essential to determine multiply cut cells from the others

and for every element be able to find all of its sibling elements (if it has any).

1. Loop over all Cut Cell elements (A).

(a) Loop over all the other Cut Cell elements (B).

(b) Check if A and B has the same background element, if they do than they

are multiply cut.

(c) For every Cut Cell store all of its sibling elements.

2. Mark all the multiply cut elements in order to save time in the adaptation

algorithm.

2.5.3 Modifications to Calculate the Linear Solution in mul-

tiply cut cells

The sample points come from sections of the same background element each with

different mapping to the shadow reference coordinates. Also the sample points have

different state solutions at the support nodes. One can consider the situation shown

in Figure 2-4 with an element cut into two pieces: in order to be able to get the linear

(and also the higher order) solution on any point inside the element, two mapping

matrices (B1 , B2) and two sets of solution coefficients (ai) need to be carried around.

It is essential to keep track of the cut element to which the sample points belong.

During the adaptation process it is possible to have a visualization element which

has nodes in different cells of the solution mesh, multiply cut cell. In order to calculate



UL for a sample point inside such an element, different sets of solution coefficients have

to be used to calculate u for the element nodes.

2.6 Visualization Results

In this section, results will be presented on body conforming and cut cell meshes in

both two and three dimensions. All the contour plots show density distributions on

both isotropically refined meshes and on ones which were anisotropically adapted.

The contours are generated on the visualized solution. Since this solution is linear

inside every element, the contour lines themselves are built up from linear sections.

2.6.1 Body Conforming Results

Supersonic Symmetric Diamond Airfoil

First, the results of a M = 1.5 flow about a symmetric diamond airfoil are presented.

The solution uses a fifth order polynomial in each element, with a solution mesh built

up from 1156 elements. For the error based adaptation, the Eto, was set to 10-2 and

10- 3 . Contour lines are shown between p = .7675 and p = 1.2333 with 25 increments.

Figure 2-7 shows the contour lines and visualization meshes on the solution grid

and on the isotropically subdivided mesh. It is clear that the shocks are not well

refined if the visualization is done without any mesh adaptation. The isotropic re-

finement results in a total of 28,900 elements. It can be seen that upstream from the

leading edge the flow is relatively uniform and thus the refinement not necessary. The

maximum visualization-error on the isotropically subdivided mesh is Ei, = .00113

while on the solution mesh it is Ei,, = .127. The error was calculated at the children

elements quadrature points.

Figure 2-8 shows the same solution but this time the mesh was adapted based on

user defined error tolerances. It can be seen that the leading edge shock and expansion

fans are well defined even with an Etol = 10- 2. The anisotropically adapted mesh

includes 4,200 elements, while at Etol = 10-3 the mesh has 21,157 (still less than the



(a) Density contours (b) Solution mesh

(c) Density contours (d) Refined mesh

Figure 2-7: Visualization on the solution mesh (Evi = .127) and the uniformly refined
mesh (Eji, = .00113). Left side shows density contour lines while on the right the
visualization mesh can be seen.



Figure 2-8: :Results on the visualization-error based adapted meshes. Top was adapted
to Etol = 10-2 and the bottom one with Etol = 10- 3 .
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isotropically refined needed number). Fewer elements corresponds to less memory

used by the visualizer which can be extremely important for larger solutions.

In order to demonstrate the anisotropic manner in which this technique works, a

single solution element from the lower expansion fan area was magnified and is shown

in Figure 2-9. It can be seen that the new elements created are highly anisotropic

and much smaller in the normal direction of the shock.

(a) Contour lines with the magnified sec-
tion highlighted

(b) Single parent element adapted
anisotropically

Figure 2-9: Single element adapted anisotropically along expansion fan

Transonic NACA 0012 airfoil

The following case is a NACA0012 airfoil in transonic conditions M =.8 with an angle

of attack a = 1.128. The solution again uses a fifth order polynomial in each element

and in whis case is built up from 1836 elements. In order for the solver to be able to

resolve the solution the domain was set to a relatively large size resulting in the high

element count even without adaptation.

In Figure 2-10 it can be seen how small the body is compared to the entire domain.

On the solution mesh Evi, = .217.



Figure 2-11 shows the density (p) solution on the isotropically refined mesh, Ei,8 =

.00278, with 45,900 element count, and on a mesh which was adapted with an Eto, =

10-3 and contains 6,672 elements. It can be seen that the new adaptation technique

only refines the mesh where it is necessary (mainly the weak shocks on the top and

the bottom of the airfoil, and the leading and trailing edges). The shocks are well

resolved in both cases. In some locations in the anisotropically refined mesh the

shocks are better resolved, even though the element count is almost an order of a

magnitude less.

The two cases shown here demonstrate how the new technique reduces the total

element number, and thus the total memory requested to achieve a required error

tolerance, compared to a simple isotropic refinement. Low element number does not

just cut down the memory required for the visualization but also reduces the rendering

time of the visualizer. The use of the method becomes more important as the order

of the solution polynomial increases. Higher polynomial produces larger visualization

errors which cannot always be resolved efficiently by isotropic elements.

On the other hand, the adaptation has a pre-processing phase where the new

required node locations are calculated. This phase takes time that depends on the

Etol the user wishes to reach.

Three dimensional wing

A three dimensional onera wing is presented in M = 1.5 conditions. Since the solution

is only a second order polynomial, the difference between visualization on a non-

adapted versus an adapted mesh is not as significant as for the earlier examples.

The element size of the solution mesh is 45,937. This number clearly shows how

the dimensionality of the problem affects the element count and thus the computing

memory required for the visualization process. The isotropically refined mesh includes

363,336 elements and has an E 8i, = .001. The same visualization error can be reached

by anisotropic adaptation with a 318,937 element count.



(a) Solution grid on the entire domain

(b) Density contours on the solution (c) Solution mesh zoomed in
mesh

Figure 2-10: Results on the solution mesh (Eji = .217).



(a) Density contours (b) Refined mesh

(c) Density contours (d) Adapted mesh

Figure 2-11: Results on the isotropically refined (Evs = .00278) and visualization-
error based adapted meshes. The bottom two images were adapted with a Eto, = .001.



Figure 2-12: Results on the solution and the Eto = .001 meshes. Left side shows
density contour lines on a 2D cut plane while on the right the contour lines on the
body are visible.
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2.6.2 Cut Cell Results

NACA inviscid airfoil with multiply cut elements

This example shows a NACA 0012 airfoil with an angle of attack a = 1.128 and M =

.5 on a non-adapted cut cell mesh. The mesh includes multiply cut elements, and even

though the solution is converged, it still needs refinement to resolve the singularity at

the trailing edge. The example is primarily shown in order to demonstrate the new

techniques ability to handle multiply cut elements. The solution is a second order

polynomial on 290 elements. The low element count is the result of using a coarse

cut cell mesh.

Figure 2-13 shows the solution mesh and the density distribution contour between

p E [.9, 1.08]. Since the solution is a relatively low order polynomial the maximum

visualization-error is only Ei, = .027. There are density contours inside the airfoil

since the visualization is done on the background mesh. The body is overlayed on

the solution so the user can tell what part of the solution is inside the flow domain.

Figure 2-14 shows density contours and visualization grids for both the isotropi-

cally subdivided and adapted meshs. The refined grid is built up from 1819 elements

and has a Evi, = .0012. Since this method creates some elements that are completely

inside the body, those were taken out from the mesh to reduce the rendering time,

however this increases the pre-processing step. The adapted results were created with

a Ei, = .0012 and include 1763 elements. Since there are no new nodes inside the

body, unlike in the isotrpoically refined case, there are no elements that can be taken

out the mesh, causing the only minor difference in element counts. However, the

nodes are inserted in an adaptive manner resulting in much smoother contour lines

inside the cut cells, close to the body.

Lastly, Figure 2-15 shows a multiply cut and a simply cut element that were

adapted by the new technique. There are no new nodes inserted inside the airfoil,

only on the surface and inside the flow domain. The children elements are not multiply

cut, so an element has all of its node solutions from the same cut cell.



(a) Solution grid on the entire domain

(b) Density contours on the zoomed in
solution mesh

(c) Zoomed in solution mesh

Figure 2-13: Results on the solution mesh Eji, = .027. Solution exists inside the
airfoil but may be disregarded.



(a) Density contours (b) Refined mesh

(c) density contours (d) Adapted mesh

Figure 2-14:: Results on the isotropically refined Eto0 = .0012 and visualization-error
based adapted meshes. The bottom two images were adapted with a Etl = .0012.



(a) Multiply cut element (b) Cut element

Figure 2-15: Adapted cut cells



Chapter 3

Streamlining in DG fields

3.1 Current Techniques

Visualizing vector fields has always been a challenge. There are several calculation

techniques that try to adress this challenge: particle tracing [19, 31], icon [24, 11] or

texture [6, 10] based methods, etc. One of the most commonly used techniques is

streamline visualization.

Streamlines can be useful in understanding flow solutions and thus they can be

helpful in the engineering process. However, little effort has been spent on finding effi-

cient and accurate techniques to calculate and then visualize the results. The current

method to trace streamlines is to use one of the many available numerical ordinary

differential equation (ODE) solvers on the vector field. All of these time-stepping

algorithms assume continuity of the underlying field and their order of accuracy de-

creases as the field becomes discontinuous. Curtis et. al [8] demonstrated how the

Runge-Kutta 4 method, that has fourth-order convergence on continuous smooth

fields, demonstrates only first-order convergence when applied on a discontinuous

field. As the convergence rates worsen, these methods require more steps (smaller

timesteps), and thus more computing power and time. In addition to this increase

in processing time, discontinuities in the solution between elements may cause prob-

lems (described in Section 1.1) that can result in physically incorrect streamlines or

possibly the failure of the time integrator itself.



Darmofal and Haimes [9] analyzed different types of time integrators (multistep,

multistage and hybrid schemes) for their efficiency, convergence rate and computa-

tional cost in stream-, streak- and path-line calculations. They also showed that

an improperly chosen timestep can result in non physical streamlines and incorrect

critical points even in continuous fields.

The generic form of a multistep scheme is the following:

t=0 t=0

Where s represents the number of steps, for explicit schemes f0 = 0. The main

disadvantage of higher order accurate multistep methods (s > 1) is that they require

s - 1 startup steps that are lower order accurate thus additional error gets introduced

to the time-integration. Computationally they are not as expensive as multistage

methods since only one velocity field needs to be evaluated per iteration; the previous

positions can be stored and reused.

Even though some families of multistage methods can be written down in a generic

form (for example Strong Stability Preserving Runge-Kutta methods), there is no gen-

eral descriptive formula. The most commonly used multistage techniques are from the

Runge-Kutta family. One of the main concerns with these schemes is that they require

the calculation of the velocity at intermediate steps which can be computationally

expensive and result in longer calculation time. In order to be able to calculate the

velocity, the underlying element in the grid that contains the intermediate stage has to

be found. This process is the most computationally expensive part of the streamline

calculator. In addition, for cases when the solution is only known at sample points,

intermediate velocity calculations can cause difficulty that is usually solved by the

use of a Newton-Rhapson scheme to get an interpolated value. Introducing this extra

numerical algorithm for interpolation produces additional error in the streamlining

process. If the time integrator has access to the full polynomial solution, not just the

visualized one, the interpolation phase can be avoided and the order of accuracy is

not compromised.



There are methods that use adaptive timesteps (e.g. predictor-corrector, RK-4/5)

in order to bound the local (per step) error. In a DG setting for the time-integrator

the jump in the solution at element boundaries appear to be an error. The local error

depends on the size of the jump and the At. In order to have minimal introduced

error at big jumps, the timestep needs to be very small. As At becomes smaller,

more iteration is needed and getting passed a single element boundary becomes com-

putationally expensive. As a result, if one wishes to achieve a relatively accurate

streamline with these methods, the process can become rather time consuming due

to all the discontinuities the streamline encounters in its path [15].

There have been many filtering techniques developed that aim to smoothen out

discontinuous fields and create a continuous function from a discrete solution. A group

of these methods uses B-splines for the filtering. An overview of B-spline filtering

techniques can be found in [22]. Hou and Andrews [17] use linear combination of

cubic B-splines for image processing. Their technique is very similar to the one used

in this work. Mitchell and Netraveli [20] also use piecewise cubic filters for image

reconstruction, not limiting to B-splines.

The goal of this work is to demonstrate a post-processing algorithm that can be

applied during the time-integration in order to improve the accuracy of streamlining

on unstructured meshes in discontinuous fields. The technique uses a one dimensional

convolution kernel to introduce continuity between elements, increase smoothness

while not introducing additional error.

3.2 The uniform symmetric post-processor

The post-processor takes advantage of the information the negative norm gives about

the oscillatory behaviour of the error introduced in Galerkin methods [4]. It improves

the accuracy in the L2 norm by filtering the oscillations out of the solution. The

framework of the post-processor was introduced by Bramble and Schatz [2] and Mock

and Lax [21]. Cockburn et al. showed that the method, if applied on DG approxima-

tions of linear hyperbolic systems on uniform meshes, can improve the accuracy from



order k + 1 to 2k + 1.

The post-processor is a convolution kernel that satisfies the following three re-

quirements. 1) it is a linear combination of B-splines, 2) it has compact support, 3)

it can reproduce polynomials of degree 2k by convolution.The post-processed solution

can be calculated by the following way:

u*(x) = K2(k+ 1),k+ l * Uh(x) (3.1)

u*(x) = - K2 )k+1 ( - x Uh(y)dy (3.2)

Where h represents the element size, Uh is the DG solution, u* is the post-processed

solution and K2(k+1), k+ 1 is the convolution kernel. The B-splines for the kernel are

convolutions of the characteristic function X with itself k times.

1 x E (-1, )

0, otherwise

The convolution kernel looks like the following:

k

K2(k+l),k+l(x) -= E C2(k+1),k+1,p(k+1)(x - -y) (3.3)

In the above equation 0(k+1) represents the (k + 1)th convolution of the charac-

teristic function with itself and c2(k+ 1),k+ l are constants. The property of the kernel

that it reproduces polynomials of degree 2k by convolution is used to calculate these

constants.

f fgk+l(x - yk)yody ... f k+1(x - y + k)yody c-k 0

f k+l(x - y - k)y 2kdy ... f Ck+l(x - y + k)y2kdy Ck x2k

(3.4)



The constants only need to be calculated once, since they only depend on the poly-

nomial order of the solution. The post-processor can be expanded to two and three

dimensions. The higher dimensional kernel is simply a product of the one dimensional

formulation, in 2D:

k k

K 2(k+l),k+l(, y) 2( Ck+1),k+1(k+1)(- x) 2(k+1),k+(k+1) -

-y=-k -ty=-k

3.3 Post-processing for accurate streamlining

Curtis et. al [8] demonstrated a technique to apply the post-processor for streamline

calculation. In their work they used the convolution kernel on the final numerical

solution before the use of a time integrator. This method is very effective and com-

putationally manageable if the underlying mesh is uniform structured and there are

no objects inside the domain (i.e. boundaries are periodic).

In order to use the technique on meshes with bodies inside the domain, some

changes have to be made. The main problem with using the symmetric kernel for

problems like this is as one tries to post-process the solution close to the body, the sup-

port of the kernel includes places outside the flow domain. The solution polynomial

either does not exist inside the body, or if it does (cut cell meshes) then it is invalid.

Avoiding this problem requires the use of a fully one-sided post-processor. However,

depending on the shape of the body boundary, it may become a complex problem to

find the support that is entirely inside the flow domain. While in two dimensions the

problem could be solvable, in three dimensions with complex geometry this may be

intractable. The problem in three dimensions becomes a moving 'structured block'

grid generation problem. Even if the problem becomes solvable it is computation-

ally prohibitive. Since one of the main goals is to have a fast algorithm, something

that becomes more important for pathline calculations and unsteady problems, a new

method is necessary for these problems.

In order to reduce the computational cost, the method introduced here does not



post-process the entire flow domain. However, as every time integrator needs the

solution at sample locations to iterate, these points do need to be post-processed.

In addition, a one dimensional convolution (post-processing) is performed along the

streamline, thus eliminating the problem that may arise close to complex body bound-

aries. As only the past of a streamline is known at each step of a time integration, a

fully one-sided kernel is used instead of the symmetric kernel. (This one-sided kernel

is described in Section 3.4)

Since the post-processing is done along a streamline in arch-length coordinates,

the corresponding mesh is not uniform. Even if the underlying grid is uniform a

streamline may slice through it in such a way that it would result in greatly varying

element sizes. Two methods have been introduced by Curtis, Kirby et al. [7] for

non-uniform meshes. First, a local L2 projection of the mesh to one that is uniform.

Second, the idea of characteristic length for the kernel can be introduced. As for

non-smoothly varying meshes the second method is more efficient, therefore it has

been chosen for this work. The choice of characteristic length is an important part of

this technique and is described in Section 3.6.

3.4 Fully one-sided post-processor

The one-sided convolution kernel that was introduced by Ryan and Shu [30], displays

only minor differences from the symmetric:

-k

K2(k+'),k+l()= C C2(k+1),k+lO(k+)(X _
-y=-2k-1

The coefficient calculation which are also non symmetric given by:

[f k+ 1 (x - y - 2k - 1)yody ... f k+l(x - y - k)yody C-2k-1 0

f k+l(x - y - 2k - 1)ykdy ... fk+l(x - y - k)ykdy c-k k



The entire kernel is on one side of the point of interest therefore the limits of the

convolution change. Since the integral is one sided, the solution is not needed from

the other side of the point, which is important since the future of the streamline is

not know when this post-processing scheme is employed.

It is shown that the one-sided technique also demonstrates an improvement in

accuracy from order k + 1 to 2k + 1, but only for uniform meshes. However, when

the underlying mesh becomes non-uniform, the method loses its accuracy enhancing

characteristic, but keeps an accuracy conserving behaviour [30].

(a) Fully one-sided kernel (b) Symmetric kernel

Figure 3-1: Convolution kernels for the k = 1 case.

Figure 3-1 shows an example of the symmetric and the fully one-sided kernel for

k = 1. The x-axis is scaled by the characteristic length, and 0 corresponds to the

location of the point that is being post-processed. The y-axis is scaled by the kernel

coefficients.

3.5 Numerical integration for the post-processor

The convolution step of the post-processor require us to evaluate an integral where

the integrand is the kernel multiplied by the solution (Equation 3.2). For this integral

the Jacobi-Gauss quadrature rule is used to get the exact answer. As the integrand is



discontinuous, each continuous subregion is numerically integrated according to the

appropriate quadrature rule.

Figure 3-2: Discontinuous integrand as seen by a streamline.

For example, let us investigate the case when the post-processed solution needs

to be calculated at point y in Figure 3-2. The integrand is a fifth order polynomial

within each continuous region, but there are discontinuities at the boundaries. For

the numerical integration to give the exact solution it requires three quadrature points

per segment. The integrand is then evaluated at these locations, multiplied by the

appropriate weights, and summed up.

Also, the arch-length coordinates of the quadrature points have to be converted

to physical coordinates in order to get the solution data. Since the streamline is

calculated with a time integrator, it is built up and visualized from linear line seg-

ments, while in reality it is a higher order curve. However, the quadrature points of

the integral does not necessarily coincide with the locations that the time integrator

calculates. To get the real coordinates of a quadrature point that is not one of the

actual sample points, an interpolation is done between the two end points of the linear

segment. Once the coordinates are found, the real high-order interpolant is used as

the solution at the point. Figure 3-3 shows how there can possibly be a difference

between the real coordinates of a quadrature point if it is calculated on linear seg-

ments or higher-order curves. The squares represent the locations the time-integrator

calculated, x is a quadrature point along the streamline.



X
Figure 3-3: Continuous line is the real higher-order streamline, dashed line is built
from linear segments

3.6 Ideal characteristic length

The characteristic length is the scaling factor of the convolution kernel, for uniform

meshes it is the element size. In order to find the ideal characteristic length one would

need using this post-processing method, a test case was set up. A two dimensional

vector field was created, one that has streamlines which are oscillating circles. Figure

3-4 shows a sample streamline that was calculated on the original continuous field

with the Runge-Kutta 4 (RK4) method and a timestep At = .001. It can be seen

that there are a total of 20 cycles of oscillation around one loop.

degree = 1, elemnt= 50, Cd 0.001
0.4-

0.3-

02

0.1

0
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-0.3

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Figure 3-4: A sample streamline over the continuous field with a starting location of
(0, .3)

The field was then projected on a uniform mesh with L 2 projection as a first-order

polynomial to make it discontinuous, as if it was generated by a DG solver. Figure

3-5 shows the u values (x velocity) along the streamline, in arch-length coordinates



(x axis). It can be seen that the projected solution is neither continuous nor smooth.

(a) Actual values (b) L2 projected values

Figure 3-5: X velocity along the streamline (x-axis is in 10- 4 arch-length coordinates).

As a next step, the one sided post-processor was applied on this solution along

the streamline. The real streamline was sampled with a At = 10- 7 . The integration

was done with Jacobi-Gauss quadrature rules, along the real oversampled streamline,

this way the real coordinates of every quadrature point were known exactly. The post

processed solution was calculated with characteristic length ranging from .01 to .3 in

arch-length coordinate. The maximum error between the real and the post-processed

solution is shown of Figure 3-6. The vertical line is the maximum error between the

projected and the real solution.
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Figure 3-6: Maximum error (in x velocity) vs. characteristic length (in arch-length).



(a) Post-processed U value

710

(c) Post-processed U value (d) Post-processed error

Figure 3-7: Results with char length of .3 on the top and .05 on the bottom.

The maximum error improves during the post-processing for characteristic lengths

smaller than .18. The reason for this is that if the kernel support is too big then

high frequencies of the solution get filtered out. At the same time if the characteristic

length is too low, the support is not large enough to reduce the unwanted oscillations.

Figure 3-7 shows the two extreme cases, one with characteristic length of .3, the other

with .05.

The same test was run on similar vector fields just with lower number of oscillation

cycles around the circle. It was observed that when the characteristic length was set

to the largest element size, the post-processed maximum error was always lower than

(b) Post-processed error

Q q
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(a) Post-processed U value

Figure 3-8: Results with char length of .14

the non post-processed. Table 3.1 sums up the results by showing the maximum

error for the non post-processed (projected) and the post-processed solution, with

the maximum element size as the characteristic length.

Figure 3-8 shows the post-processed u values and the error whan the maximum

element size was used as the characteristic length for the convolution kernel. It can

be seen that the solution is continuous and significantly smoother than the original

projected solution (Figure 3-5 b).

Table 3.1: Post-processed error when the characteristic length is set to the maximum
element size.

Number maximum maximum maximum
of cycles element size post-processed error projected error

2 .154 .068 .104
4 .244 .018 .019
6 .179 .014 .031
8 .108 .021 .052
10 .151 .048 .063
12 .126 .051 .105
14 .124 .078 .151
16 .158 .159 .191
18 .138 .136 .172
20 .101 .137 .249

(b) Post-processed error



3.7 Choice of time-integration technique

There are a wide variety of time-integration techniques available [25, 3]. For the

purpose of this work there were some restriction on what type can be used. In order

to be able to use implicit schemes, the solution needs to have smooth first derivatives.

Since the post-processor guarantees only smooth solutions, it is necessary to use an

explicit method. Also, one would like to use an integrator that demonstrates a high

order of convergence, to reduce the number of timesteps needed for the calculation.

The most commonly used method is RK4 or RK45. The main problem that arises

with these two techniques is that they sample the field from locations that are not

along the streamline. RK4 formula is shown below. Step 3 and 4 does not satisfy the

requirement of being along the streamline.

ki = hf(tn, yn)

2 = hf(tn+,yn + kl)

k3  = hf(t + , yn+ k2)

k4 = hf(tn + h, y, + k3 )

Yn+l = Yn + kl + k2 3 + -k4

Since the convolution is done along the streamline, calculating the post-processed

solution for intermediate stages that are not on the path is inconsistent and may lead

to unquantifiable errors. The RK2 method uses one intermediate stage, and that is

a half timestep in the future along the streamline. Even though this method has

only second-order convergence on continuous fields, this is the only one that can be

applied with this post-processing technique. Multistep methods were avoided due to

their introduced error in the startup phase.



3.8 Streamline results

For the aforementioned reason the post-processing technique mentioned above was

implemented with a Runge-Kutta 2 time integrator.

kl = hf(tn, yn)

k2 = hf(tn+,yn + kl)

Yn+1 = Yn+k2

This method has second order convergence. It requires two post-processing per

iteration, since the solution has to be calculated at yn and y, + Akl.

(a) Streamline close to the airfoil (b) Closer look at the streamlines

Figure 3-9: Streamline results on 2D transonic case. Dashed line is streamline without
post-processing. Both streamlines were created with a At = .01

First, streamline results are shown on the same two dimensional transonic airfoil

solution as in Section 2.6.1. Figure 3-9 shows two streamlines with the same starting

origin. Both of these were traced by an RK2 method with a At = .01, but the dashed

line was calculated without post-processing and it gets stuck close to the boundary

as this At proves to be too large. The calculation time of the post-processed solution

took roughly four times longer than the simple integration scheme. If At is reduced

cz~



to .0015 then the non post-processed streamline can also be fully evaluated but this

would result in longer total rendering time.

(a) Streamline close to the wingtip (b) Streamline close to the wingtip

Figure 3-10: Streamline results on 3D transonic case. Two different views of the wing
and the streamline.

Next, a three dimensional example is shown. Calculations were done on the same

case as in Section 2.6.1, a three dimensional wing in M = 1.5 conditions. A streamline

was traced close to the wingtip and the results are shown on Figure 3-10.

Finally, a two dimensional viscous case was used. Viscid flow was calculated

around a NACA 0012 airfoil with a = 1.25, M = .5 and Re = 5 * 10- 3 . Figure 3-11

shows a streamline close the body, and separation can be observed towards to the

trailing edge.

Figure 3-12 shows a streamline in the separated region at the trailing edge. It

can be seen that the non post-processed streamline (top two images) spirals inwards

towards a critical point. This is a physically impossible solution. However, for the

streamline calculation done with post-processing (bottom two images), the streamline

spirals out and finally leaves the airfoil. This example demonstrates how, when using

ODE integrators, errors can accumulate and produce erroneous results especially in

the presence of critical points.



Figure 3-11: Streamline close to the airfoil. Separation can be seen towards the
trailing edge. The x location marks the starting point of the streamlines on Figure
3-12.



(a) No post-processing

(c) Post-processed (d) Post-processed

Figure 3-12: Streamlines at the separated region. Streamline starting location is the
same for both cases. At = .1
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Chapter 4

Conclusions and Future Work

4.1 Conclusions

First, a visualization-error based anisotropic mesh adaptation algorithm was pre-

sented for both unstructured triangular/tetrahedral body-conforming and simplex

cut cell meshes. The technique, while introducing a pre-processing step to the visu-

alization, reduces the total element number needed for accurate higher order CFD

visualization. The reduction in element number results in less memory usage and

faster rendering time. The computational power saved depends on the order of the

solution polynomial. While it is not necessary for lower order solutions, it can prove

extremely effective for high order solutions.

An isotropic refinement technique was also introduced for simplex cut-cell solu-

tions. This method has the advantage of neglecting refined elements that are com-

pletely outside the flow domain. By not passing these cell informations to the visu-

alizer, the technique reduces rendering time.

A post-processing technique was also introduced for accurate streamline calcu-

lations. The method uses an on-the-fly accuracy conserving, smoothness improving

post-processor with a Runge-Kutta second order method to trace streamlines. By

eliminating the inter-element discontinuities from DG solutions, the order of conver-

gence of time-integrators can be conserved. With this method, incorrect integration

close to critical points can be avoided and accurate streamlines can be traced even



with bigger time steps. Even though, the post-processor is computationally expen-

sive, in some situations it is necessary for the time integrator not to fail due to

discontinuities in the flow solution.

4.2 Future work

During the development of these techniques, a few ideas came to mind in order to

either improve this work or add as possible continuation of it to different problems.

1. Embedded surface adaptation

For three dimensional cut cell results, the visualization on the surface of the

body is done on the quadratic patches. An additional embedded surface is added

for all of these boundaries and the solutions is visualized on these. Since both

the geometry and the solution can be higher-order, the standard visualization

technique's linear rendering introduces errors. The two dimensional adaptation

technique can be applied on these surfaces in order to both improve the accuracy

of the body and the solution visualization.

2. Parallelize adaptation algorithm

The pre-processing step of the mesh adaptation can be time consuming for high

order solutions. Since the algorithm adapts one element at a time without any

influence from any of its neighboring cells, the process can be parallelized in a

simple fashion.

3. Better time integration technique

The currently used RK2 solver is explicit and has second order convergence.

For streaklining, it has been proven that implicit methods, specially backwards

differentiation, is more effective. In order to be able to use these algorithms,

a continuous solution is not enough, the first derivative of the solution needs

to be smooth also. By applying a modified post-processor, continuity on the



first derivative can be achieved and more accurate time-integrators can be im-

plemented for the streamliner.

4. Better sampling for the post-processor

The convolution requires the solution at quadrature points along the streamline.

Currently the location of the quadrature points are calculated as the linear

interpolation of the section of the streamline. The solutions however is the

real higher-order value at the location. In order to improve the calculation of

the quadrature point coordinates, a higher-order curve fitting method could be

applied to the sample points of the streamlines.
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