
Construction of Nonlinear Filter Algorithms Using the

Saddlepoint Approximation

by

Esosa 0. Amayo

Bachelor of Science, Electrical Science and Engineering

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

Ccspight 2006 M.T

The author hereby grants to M.I.T. permission to reproduce and

distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author

Department of Electrical Engineering and Computer Science
July 18, 2006

Certified by_
Emery N. Brown

Thesis Supervisor

Certified by_
John L. Wyatt

Thesis Co-Supervisor

Accepted by_
Arthur C. Smith

SI.ndirmlldn, o-pa LLIImL ,0mmittee on Graduate Studies

Q T~CNNOLOGY BARKER

OCT L 3 2007

LIBRARIES

Construction of Nonlinear Filter Algorithms Using the Saddlepoint Approximation

by

Esosa 0. Amayo

Submitted to the Department of Electrical Engineering and Computer Science

July 18, 2005

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

ABSTRACT
In this thesis we propose the use of the saddlepoint method to construct nonlinear
filtering algorithms. To our knowledge, while the saddlepoint approximation has been
used very successfully in the statistics literature (as an example the saddlepoint method
provides a simple, highly accurate approximation to the density of the maximum
likelihood estimator of a non-random parameter given a set of measurements), its
potential for use in the dynamic setting of the nonlinear filtering problem has yet to be
realized. This is probably because the assumptions on the form of the integrand that is
typical in the asymptotic analysis literature do not necessarily hold in the filtering
context. We show that the assumptions typical in asymptotic analysis (and which are
directly applicable in statistical inference since the statistics applications usually involve
estimating the density of a function of a sequence of random variables) can be modified
in a way that is still relevant in the nonlinear filtering context while still preserving a
property of the saddlepoint approximation that has made it very useful in statistical
inference, namely, that the shape of the desired density is accurately approximated. As
a result, the approximation can be used to calculate estimates of the mean and
confidence intervals and also serves as an excellent choice of proposal density for
particle filtering. We will show how to construct filtering algorithms based on the saddle
point approximation.

Thesis Supervisor: Emery Brown

Thesis Co-Supervisor: John Wyatt

To the memory of my father Professor Airen Amayo

2

Acknowledgements
I would like to thank my advisor, Professor Emery Brown for being such an inspiring role

model as a researcher. I am deeply grateful for his patience with me and constant support

through some very difficult personal trials. In some sense, this thesis would not have

happened had Professor John Wyatt not been such a clear and inspiring teacher when I

took 6.432 with him. This thesis is the result of my interest in estimation problems that

was sparked by that class. I am also greatly indebted to him for his friendship, constant

support, encouragement and invaluable advice. Words are inadequate to express my

gratitude to Professor Tayo Akinwande who has been a source of inspiration, and above

all a father to me since I first arrived here as an undergraduate. My graduate student life

would have been stillborn had it not been for the financial support from Dean Isaac

Colbert that saved me when I could not initially get funding. I would also like to express

my thanks to Dr Chris Oriakhi at Hewlett-Packard Research, whose achievements helped

motivate and spur me on and whose friendship and advice helped me through a difficult

time.

This thesis would not have been possible without the support and understanding of my

colleagues at Aware, in particular my manager Dr Michael Lund and the head of our

Engineering division, Dr Rick Gross.

My thanks also go out to Anne Hunter, Vera Sayzew and all the good folks at the course

6 Undergraduate Office for their patience (which I have tested on several occasions over

the years and found to be truly limitless) and willingness to go above and beyond the call

of duty to help students. I cannot thank Cheryl Charles enough for her kindness, motherly

concern and support. I would also like to thank Carol Frederick, my first boss at MIT, for

all her support and friendship.

To Dr Jack Lloyd, thank you.

What is life without ones family and friends?

3

To Stanislav Funiak, Yogishwar Maharaj, Mamat Kaimudeen, Emilia Simeonova, Elana

Wang, Cang Kim Truong, Buddhika Khottachi, Felecia Caic, Senkodan Thevendran, Eric

Escobar Cabrera, Fitih Mustafa Mohammed, Nathaniel Choge, Ming Zhang, Riyaz

Bachani, Bill Blackwell, Pia Bhanerjee, Abhinav Kumar, Bosun Adeoti, Paul Njoroge,

Kwaku Owusu Abrokwah, Nii Lartey Dodoo and all my friends I say "thanks Bushtis" for

making my life bearable.

I would like to thank my lab buddies, Chris Long, Patrick Purdon, Uri Eden, Somangshu

Mukherji, Mike Prerau, Supratim Saha, Riccardo Barbieri, Murat Okatan, Tyler Gibson,

and Julie Scott for always being there to talk about anything even at the busiest of times.

I spent countless hours talking with Ram Srinivasan about my thesis, and about life

outside of the thesis and each conversation left me with renewed encouragement and

energy.

To my sister, Dr Ruth Uwaifo, I say "thank you" from the bottom of my heart for the

constant prayers and support by letters while you were in Nigeria and by phone when you

moved over here.

To my brothers Muyiwa Olubuyide, Jitin Asnaani, and Premraj Janardanan, I say "thank

you" from the bottom of my heart for being there and for enriching my life. Your friendship

has made me a better person.

Last but definitely not least, I want to thank my mother and sister who refused to be

deterred by little nuisances like the Atlantic Ocean in making me feel their love even here.

4

Contents

A cknow ledge m e nts .. 0 3

Chapter 1: Introduction
1.1 The nonlinear filtering problem.. 06
1.2 Brief summary of current approaches .. 08
1.3 Objectives and contributions of the thesis.. 08

Chapter II: Summary of Current Practical Solutions to the Filtering Problem
2.1 Linear Least-Squares Estimation ... 10
2.2 The Extended kalman filter... 12
2 .3 P a rtic le filte ring ... 13

Chapter III: Saddlepoint (or Laplace) Approximation -Theory
3.1 The Laplace method for approximating integrals - existing theory 17
3.2 New results based on the Laplace method for approximating integrals 26
3.3 Proofs of new results based on the Laplace method for approximating

in te g ra ls .. 3 2

Chapter IV: Construction of a Saddlepoint Filter for a Stochastic Point Process Model
4.1 Description of the State-Space Model.. 40
4.2 Saddlepoint Filter for the State-Space Model .. 43
4 .3 A p p lica tio n s ... 4 7

Chapter V: Conclusions and Future Directions
5.1 Summary of thesis results .. 61
5.2 Ongoing and future research.. 61

Appendix A: MATLAB Code ... 63

R e fe re n ce s ... 7 5

5

Chapter 1

Introduction

1.1 The Nonlinear Filtering Problem

Our goal is to sequentially estimate the states of a discrete-time system that has

nonlinearities in the state and/or the observation process and whose state and/or

observation noise processes are not necessarily Gaussian. We will be working with

systems that can be described by the following general state space model

Xn, ~ q9xn in-1)

yn - r(yn xn)

where y, is an observation from the system, xn is the unknown state process, q(xn lxn_.)

is the conditional distribution of x, given x-,_ and r(yn xn) is the conditional distribution of

y, given x,. The initial state is distributed according to the distribution p(xo Y). We

assume that the states follow a first order Markov process. That is

A~x jk -1_,,xk_2 x, , o) =9 q k jk-1) 12

We also assume that the observations are independent given the states. That is

P(yk xkyl,y....,y) = r(yk xk) if k>l>m> ... >s (1.3)

The nonlinear filtering problem is to evaluate p(xk fY), the distribution of the current state

given the observations up to the present time Y = {y,...,Yk} and the initial distribution of

the state process. Once we have the filtering density we can calculate a variety of

estimates of the state such as the mean (which is the minimum mean squared error

estimate of the state), the mode, the median, confidence intervals and so on.

6

The general state space model considered above includes various important models such

as:

(i) The linear state space model with Gaussian or non-Gaussian white noises w, and

x, = Fxn + Gw, (1.4)

yn =Hx,+En

(ii) The nonlinear model with additive noise

x, = f(x_1)+w (1.5)

yn = h(xn)+e,

(iii) The more general nonlinear model with known input un

xn = f(x_,_, w) (1.6)
Yn = h(xn, n9En)

(iv) Discrete Process with probabilistic description of observation process

parameterized by the state (for example state space system with point process

observations)

xn=Fx + Gwn
(1.7)

yn~ Dist(xj)

1.1.1 Recursive Formulae for Filtering

Using only the definition of conditional probability, the Chapman-Kolmogorov equation for

marginal distributions, Bayes' law, and the Markov assumptions mentioned in the

preceding section we obtain recursive formulae for the one step ahead prediction and

filtering densities as follows:

7

One step ahead prediction density:

PXk Y,-) Jxk xk) p(xk1 k-4k-)dx (1.8)

Filtering density:

P(Xk r(yk Xk)P(Xk - (19)

P(yk lk-1)

where P(Yk Y,) is calculated from

P(yk k-1) = fr(yk Xk)P(Xk l-1)dxk (1.10)

1.2 Brief Summary of Current Approaches to the Nonlinear Filtering Problem

If the state and observation equations are linear and initial state as well as the system

and observation noise processes are Gaussian, the system of equations (1.8)-(1.9) has

an exact Gaussian solution and the means and covariances of the one-step and filtering

densities are given by the well-known Kalman Filter recursion. However in the general

not-necessarily-Gaussian case these densities have to be approximated. The most

commonly used practical approaches to this problem are the Extended Kalman Filter

(EKF), the Unscented Kalman Filter (UKF), methods relying on Gaussian approximations

to the left hand sides of (1.8) and (1.9), perfect Monte Carlo simulation (when it is

possible to sample directly from the true posterior density) and particle filtering (which is

used when it is not possible to sample directly from the true posterior distribution). We will

outline the salient points of some of these methods in the next chapter.

1.3 Objectives and Contributions of the Thesis

In this thesis we propose the use of the saddlepoint method to construct nonlinear filtering

algorithms. To our knowledge, while the saddlepoint approximation has been used very

8

successfully in the statistics literature (as an example the saddlepoint method provides a

simple, highly accurate approximation to the density of the maximum likelihood estimator

of a non-random parameter given a set of measurements [Barndorff-Nielsen, 1983]), its

potential for use in the dynamic setting of the nonlinear filtering problem has yet to be

realized. This is probably because the assumptions on the form of the integrand that is

typical in the asymptotic analysis literature (for example [De Bruijn, 1981]) do not

necessarily hold in the filtering context.

In the sequel we will develop filtering algorithms based on the saddle point approximation.

This gives us an approximation whose shape accurately approximates the shape of the

target density. As a result, the approximation can be used to calculate estimates of the

mean and confidence intervals and also serves as an excellent choice of proposal density

for particle filtering.

In Chapter 2 we will discuss the most common approaches to the nonlinear filtering

problem. We will then discuss the existing theory for approximating asymptotic integrals

using the Laplace method (the analogue of the Saddlepoint method on the real line) and

then develop some new results with modified assumptions that can be used to

approximate probability densities that can not necessarily expressed as the integral of a

function which is the exponential of a well-behaved function scaled by a large constant.

We will then show in Chapter 4 how the results obtained in Chapter 3 can be used to

construct filtering algorithms.

9

Chapter 2

Summary of Current Approaches To The Filtering Problem

In this chapter we will first describe the well-known Kalman Filter solution to the linear

estimation problem. We will then outline some of the methods currently being used to

deal with the more general non-linear estimation problem such as the Extended Kalman

Filter (EKF), which is based on the Kalman Filter and Sequential Monte Carlo (Particle

Filtering) methods.

2.1 Linear Least-Squares Estimation

In this section we will summarize the Kalman Filter solution for obtaining the linear

minimum mean-squared error estimate of a random process x, from measurements yn.

Our treatment will closely follow that of [Luenberger, 1969, Chapter 4].

The random process x, is assumed to evolve according to a vector difference equation

xn = Fx + W, n = 0, 1, 2,..., (2.1)

where x is an n-dimensional random vector, F is a known nxn matrix and w, is an n-

dimensional random vector input with mean zero satisfying E[w(k)w'(l)] = Qk3
kl (in other

words, the random vector input is "white"). The initial random vector is assumed to have

mean kc and covariance matrix P.

Measurements of the process are assumed to be of the form

y = Hnx + En, n = 0, 1, 2,..., (2.2)

where H is a known mxn matrix and e is an m-dimensional random measurement

error having mean zero and satisfying E[e(k)e'(l)] = Rk1k, where Rk is positive definite (in

10

other words, not only is the measurement error "white", no component of each

measurement error vector is a deterministic affine combination of the other components) .

The above state-space model is actually motivated by current understanding of the

physical properties underlying most real-world systems. It is believed that basic

randomness at the microscopic scale including electron emissions, molecular gas

velocities, and elementary particle fission are basically uncorrelated processes. When

their effects are observed at the macroscopic scale with, for example, a voltmeter, we

obtain some average of the past microscopic effects [Luenberger, 1969].

The linear least-squares estimation problem is most conveniently tackled by formulating it

as an equivalent minimum norm problem in the Hilbert space of random vectors with finite

second moments [Luenberger, 1969] [Kailath et al, 2000] and inner product (u,v) = E[uv']

where u,v are elements of the Hilbert space. The optimal estimate of x,, given the

observations up to time n , which we will henceforth refer to as xn1n ,is the projection of xn

onto the space spanned by the random vectors yo , yl, ... , yn. The recursive Kalman filter

solution is obtained as follows.

First, we assume that we have measured yo, y1 , ..., y,_1. and that the optimal one-step

estimate, & _1 which is the projection of x onto the space spanned by the random

vectors yo , y1 , ... , yn1, , together with the error covariance matrix

PIn_, = E[(x_ 1 -xn)(xn_ 1 - xn)'], have been computed. The updated estimate can then be

shown to be [Luenberger, 1969] [Kailath et al, 2000]

_ +PH'[HP _H'+R1]- 1[y Hi2] (2.3)

with associated error covariance

nn=n-1P 1+P _H'[HP _1 H' +R] HP _1. (2.4)

The optimal estimate of xn+l given the measurements yO , Y, ... , y is then given by

11

Xn+1n = FnXil (2.5)

with error covariance matrix

Pn+11n = FPntnF'+Qn (2.6)

The above Kalman Filter solution to the linear least-squares estimation problem does not

assume that the input and measurement error processes are Gaussian and requires only

knowledge of the means, variances and covariances. However, when the input and

measurement error processes are Gaussian, the Kalman filter solution is also the solution

to the general optimal minimum mean-squared error estimation problem. In other words,

the Kalman filter recursions provide the mean and covariance matrix of the Gaussian

posterior density at each time step [Luenberger, 1969] [Kailath et al, 2000].

2.2 Approximate Nonlinear Filtering Using the Extended Kalman Filter

Since most practical systems are nonlinear, a lot of effort has been put into developing

approximate nonlinear estimation algorithms. One of the earliest methods developed is

the Extended Kalman Filter (EKF), which is based on a linearization of the state and

measurement equations of the nonlinear state-space model. As an illustration of the

general idea, consider the model given below.

xn f,_ 1 (x_1) + gn_ W _ (2.7)

yn =hk (x,)+ en (2.8)

Let _ be the estimate of xn given the measurements yo , y1 , ... , y,_,. Replacing

f_,(x-,_) and hn 1(x,_,) above with the first order terms from their respective Taylor series

expansions about ^i, and then applying the Kalman filter algorithm to the resulting

linearized system then results in the Extended Kalman filter algorithm for the state-space

12

model. This algorithm is given below [Kailath et al, 2000]. In the algorithm below Rk , QA ,

ZnIn, Anin- , 'i Pnjn are specific to the linearized system and all have the same

meanings as in the previous section.

= +P H' [H H+ -H] (2.9)

n~n = nin-1 + i- n. H' nn- [Hn , ' ,]- H.Pn _ (21

fn (~ 1 ~)(2.11)Xn+11n = fn (Xnin)(.1

n+11n = Fn nnF'+Gn QnG'2.2

Where F=, H-= hx) , and G

x=x nin- 1x=X-xi

Unfortunately, there are almost no useful analytical results on the performance of the

EKF. A considerable amount of experimentation and adjustment is needed to get a

reasonable working filter [Kailath et al, 2000].

2.3 Sequential MonteCarlo (Particle Filtering)

Importance Sampling

In perfect MonteCarlo Simulation the mean of any function of the state process at a given

time conditional on the observations up to that time can approximated by a weighted sum

of samples drawn from the posterior distribution. The law of large numbers then

guarantees that the accuracy of this approximation will increase as the number of

samples drawn increases. Unfortunately, it is often impossible to sample from the

posterior density. This difficulty can be overcome by drawing samples from a known

function that is easy to sample as will be illustrated below.

13

Let X = {xO,..., Xk} and Yk = {Y,.'Yk} be the states and observations up to the present

time and let s(Xk IYk) be the proposal density that is easy to sample from. We will show

below how samples from the proposal distribution can be used to approximate the mean

of a function g(X) . The mean of g(Xk) is given below:

E[gk(X)]= fgk(Xk)p(Xk Y)dXk (2.13)

The mean can be re-expressed in terms of the proposal distribution as follows (see [van

der Merwe, 2000] for more details)

E[g (Xk)] k f k(k)g9k()(k k)k (2.14)
Wk(Xk)S(Xk IY)dXk

where the weight wk (Xk) is given by

Wk(Xk) = P Xk)p(Xk) (2.15)
s(Xk 4)

In (2.4) above, the mean of the function has been re-expressed as a ratio of means, each

taken with respect to the proposal density. Hence by drawing samples, Xk"' = {xf4,..., x} ,

from the proposal distribution we can approximate the expectation in (2.13) above by the

following

Wk kX
g-k(Xk) =N

N Wk (Xk4
1=1

(2.16)

- Wk (i)g9k (Xk'i)

14

The estimate in (2.16 above is biased as it involves a ratio of estimates. However, if the

conditions below hold:

1. X)" is a set of independent and identically distributed samples drawn from the

proposal distribution, the support of the proposal density includes the support of the

posterior density and the desired mean in (2.13) exists and is finite

2. The weights wk(Xk) and the variance of g,(X,) are bounded

the estimate in (2.16) will converge asymptotically to the true mean [van der Merwe,

2000].

Sequential Importance Sampling

The result in (2.16) does not lend itself to the sequential estimation of the mean as new

observations are received. In order to compute a sequential estimate at a given time

without having to modify the previously simulated states, proposal distributions of the

following form can be used:

s(Xk Y) = S(Xkl _ 1k_)S(Xk Xki _Y) (2.17)

Under our assumptions in the previous chapter that the states correspond to a Markov

process and that the observations are conditionally independent of given the states, we

get the following:

j=k

p(Xk) = P(X0)H(x _X)
j=1

(2.18)
j=k

p(Yk jXk)=Hp(y xj)
j=1

By substituting (2.17) and (2.18) into (2.15) we get the following recursive expression for

the importance weights:

15

Wk -: _ Wk_
r(yk _x)q(xk xkl)

s(xk ,Xk,)
(2.19)

Hence, given an appropriate choice of s(xk Xk,,Y) the importance weights can be

updated sequentially and hence estimate of the mean given in (2.16) can also be updated

sequentially as illustrated in the algorithm below:

1. Initialization: set k =0 and for i=1,...,M

p(x0 IY) and set wo) = M-1 for all i.

Set k=1

particles, draw the initial states xO" from

2. Importance Sampling: For i=1,...,M, draw ik{" from sk(Xk XkY,1)

acceptance/rejection algorithm and set 4: - (0) Evaluate the importance

weights:

Wk = Wkk k Sk (Xk Xk ,Yk)

and then normalize them:

M

j =1

3. Update Mean and Variance: Compute the marginal conditional mean and variance
as follows:

M
xkk = M-1 W(x

i=1

Wkk =M-1((x (i)'-xkxk)
i=1 X k

16

using the

Chapter 3

Saddle Point Approximation: Theory

We will first discuss how the Laplace method can be used to approximate asymptotic

integrals with vanishingly small approximation error. Unfortunately the assumptions on the

form of the integrand may not necessarily apply in the nonlinear filtering context. Using a

method analogous to the Laplace method for asymptotic integrals, we obtain bounds on

the integral and approximation error for the integrals of what we will refer to as

exponentially concentrated functions. These results can then be applied in understanding

the error performance when the Laplace approximation is used in the nonlinear filtering

context.

3.1 The Laplace Method for Approximating Integrals

We will focus our attention on integrals over real intervals where both the integration

interval and the integrand may depend on some parameter t, as illustrated in Equation

3.1 below. The Laplace method is usually used to investigate the asymptotic behavior of

such integrals as t -+ oo.

F= Jg(x, t)dx (t -> oo) (3.1)

In this section we will first present a heuristic argument for determining the functional form

of the Laplace approximation for a very general case. Finally we will formally state and

prove the result. The proof will follow the outline provided in [DeBruijn, 1981 Ch.4] while

filling in details omitted in that text.

17

Heuristic Derivation of the Laplace Approximation

The key idea behind the Laplace method is that if there is an interval I such that the

integral over the complement of that interval is small compared to the integral over I, we

can then try to approximate the integrand by simpler functions throughout I. To make

this a little more specific we will consider integrals of the form:

F= Jexp{th(x)}dx . (3.2)

where t is a positive real constant and h(x) is a real continuous function. Furthermore, we

will assume that h(x) has a unique global maximum at the point x = x0 and that its first

and second derivatives exist in some interval. Since h(x) has a unique global maximum

at the point x0 , the value of the integral for large values of t will be dominated by the

behavior of h(x) near its maximum. Therefore there will be a small interval I around the

maximum such that the integral of exp{th(x)} over the complement of I is small

compared to the integral over I.

Further assume that the Taylor's series expansion of h(x) about the point x converges

in I:

h(x) = h(xo) +h'(xo)(x - x 0)+Ih"(x0)(x -X0)2 + higher order terms (3.3)
2

Since h(xo) is a global maximum, h'(xo) = 0. Therefore h(x) may be approximated by

simpler functions as

12
h(x) h(x)=h(xo)+-h"(x0)(x-x 0)2 , for xe I (3.4)

2

18

Since fJ-J jexp{th(x)}dx is small compared to exptth(x)}dx we can approximate the

integral in (3.2) by the integral over I, which in turn can be approximated by the integral

of the simpler function over I. This integral is then approximated by the integral over the

entire interval (which is easily evaluated) yielding the Laplace approximation. These steps

are illustrated below:

f exp{th(x)}dx = exp{th(x)}dx

exp{th(x)+ 2 x{th" (xo))2}d x

= expjth(xO)} exp{ th",(xo)(X-_XO)2}Idx

= (2rr)2 (-th"(xO)) exp{th(x,)}

So the Laplace approximation to the integral in (3.2) is

F(t) = (2ff) 2(-th"(xo)) 12exp{th(xo)} (3.5)

Rigorous Statement and Proof of the Result

In this section we will establish bounds on the integral in (3.2). Before we state the proof

of the main result we will prove a lemma that will be used in the proof.

Lemma 3.1 Let h(x) be a real and continuous function. If

i. h(x) has a unique global maximum at x = xO

19

ii. h'(x) exists in some neighborhood of x0, h"(xo) exists and h"(xo)< 0

Then, given positive e, we can determine 6 0 such that

h(x) -h(xo)- 1(xxo)2h"(xo) E(x-x 0) 2 ,for x-xo0

1Proof Let qp(x) = h(x) - h(xo) -(x - xO)2 h"(xO). Since h(x) is maximal at x = x we infer
2

that h'(xo) = 0. Consequently q'(xo) = p'(xo) = O'(xo) = 0. p"(xo) = 0 implies

(x - xo)-'('(x) - p'(xo)) -> 0 when x -> xO. Since P'(xo) = 0 this means that

qp'(x) = o(x - xO) ,(x -+ xO). Applying the mean value theorem [Rudin, 1976 Theorem 5.5]

to ((x) we see that q(x)-q(xo)=(x-xo)-''(xo+6(x-xo)) for some 0<0<1. So

P(x) = (x - xO)o(9(x - x)) = o((x - x)2) ,(x -> x0). Since V(x)=o((x-xO)2), for a given

positive e we can find 5 6 0 such that q'(x)! e(x-xO) 2 for jx-x j 6 ,5 which proves the

lemma.

We will now state the main result below.

Theorem 3.2 (Bounds on the Integral) Let F(t)= Jexp{th(x)}dx, where h(x) is a real

and continuous function and t 1. If

i. h(x) has a unique global maximum H. at x = xO

ii. there exist numbers A < H. and a such that h(x) A if |x - x0 I a

iii. F(t) exists for t =1 and for all sufficiently large values of t

iv. h'(x) exists in some neighborhood of x0 , h"(xo) exists and h"(xo)< 0

Then for any e such that 0 < 3e < h"(xO)|, there exists a positive real number T such that

for t T the following inequality holds:

1 1 1 1 1

eth(xo)(2/T)i(-h"(xO)+3e) t-2 <F(t) < eth(xo)(2,r) (-h"(xo) -3e) it 2

Since e is arbitrary, for sufficiently large t we have the following Laplace approximation:

1 1
F(t)~ F(t) =(2ff) 2 (-th"(x0)) 2 exp{th(x0)}

20

that

Proof Applying Lemma 3.1 we see that for any positive e we can find 6 0 such that

for ix-xoj0 5 the following inequality holds:

h(x)-h(x0)- I (X-X0)2h"(x) E(x-x 0) 2.

Therefore the following inequalities hold:

S(x-xo)2t(h"(x0)-2e)

xo-d5

xo+3X x+8
xO +'5 thx-6o) x0 2 (X)2t(hN(x)+2e)

t(h(x)-h(xdx < dx
xO-,5 xO-6

As the integrals over (-oo,oo) of the leftmost and rightmost integrands will be used later in

the proof to establish bounds on F(t), we will limit our choice of e to the range

0<3e<jh"(xO)j. This will ensure that the exponent of the integrand in the rightmost

integral in (3.6) is negative.

Let D1 , D 2 and D3 be the amounts by which the integrals above differ from the

corresponding integrals over (-oo,oo). That is:

K06= 0
jet(h(x)-h(xo))dx

D2 r+
-x 0 x6

D - 1
D3 rJ+ f

x +(5

S(x-xo)21(h(xo)+2e)dx

ef(X-XO)2t(h"(xo)-2e)dx

(3.6)

21

Adding D + D2 to both sides of the inequality on the right and D, +D3 to both sides of the

inequality on the left in (3.6) above we get the following inequalities for the integrals over

(-oooo):

e(x-xO)2t(h"(x)-2v dx+D, -D 3 <e-th(xO)F(t)< fe o2t(h(x 0)+2) dx+D, -D 2 (3.7)

S 11 1

Since fJe 2 Xo\\ dx =(2ir) 2 (-h'(x0) T 2E) 2 t 2 the inequalities in (3.7) become:

(27r)(-h"(xo)+2e) t +D --D3 < e-th(xo)F(t) (3.8)

1 11
e-th(x)F(t)<(2r)2(-h"(xo) -2e) 2t 2+D -D 2 (3.9)

We will now establish bounds on D,, D2 and D3. It follows from our assumptions that for

any 8 !0 there exists a positive number q1() such that h(x)-h(xO) -q(8) when

x-xoj 8i. If 45 a then assumption (ii) in the statement of Theorem 3.2 implies that

q1 (8) = Hma - A. If 5 a, let B be the maximum of the continuous function h(x) in the

interval 8 ix - x0 I a. B>A then implies that q()= Hm - B otherwise

71(8) = Hm - A.

Rewriting t[h(x)-h(xo)] as t[h(x)-h(x0)]=(t-1)[h(x)-h(x0)]+[h(x)-h(x0)] and applying

the inequality h(x) -h(xO) -i7 (8) to the second term on the right hand side we get the

following inequality:

t(h(x)-h(xo)) -(t -1)i7(S)+h(x)-h(x) for t >1.

The inequality above implies that:

22

exp {-(t - 1)q7 (6) + h(x) - h(xo)}dx

5 fexp{-(t -1)77(1) +h(x)-h(xo)}dx

Therefore

D, K, exp{-tq1 (6)} where K, = exp1,7(J)- h(xo)} fexp{h(x)}dx.

The functions -(x- xO) 2 t(h"(x0)
2

+ 2e) and
1(x - xo)2t(h"(xo) - 2e)
2

each have a unique

global maximum value of 0 at x = x0 . Furthermore, since the constants t(h"(xo)+ 2e) and

t(h"(xo) - 2e) are both negative, the functions are both monotonically decreasing for

Ix- xo>0 and exp[(x -xO) 2 t(h"(xo)±2e)] is a Gaussian function and hence its integral
2

exists. As a result we see that these functions satisfy the same assumptions (i)-(iii) which

we made on h(x). Hence we can establish the following bounds for D2 and D3 using the

same argument we used above for D,:

D 2 K2 exp{-tq 2 (3)} where K2 = exp J 2()j exp11 (X-Xo)2(h"(xo)+2e)}dx

772 = g2(-h"(xo)-2e)
12)2

D 3 K3 exp{-tq 3 (3)} where K3 = exp1 3(9)1 exp o)2(h"(xo)2e)}dx

7721)= 5
2 (-h"(xo)+2e)

2

Since DI, D2 and D3 are positive, the following inequalities hold:

23

and

and

Dj! +

D1 -D2 < D1 : K1 exp{-t 1 (9)}

D -D 3 > -D 3 > -K 3exp {-t 3(8)}

Plugging the above inequalities into (3.8) and (3.9) we get the following inequalities:

(2r)2 (-h"(xo) + 2e) 2 t 2 - K3 exp {-tU3 (6)

1 1 1
e-th(xo)F(t) <(2ic)2 (-h"(x0)--2e) 2t 2+,

As t increases K3 exp{-tq3(1)}

1 1 1
(2r)2 (-h"(xo)+ 2e) 2 t 2

I < eth(xo)F(t)

exp {-t;1 (6)}

will decay much faster than the difference between

1 1 1

and (2fT) 2 (-h"(xo) + 3e) 2 t 2 (which decays

1 s1 1
when t is sufficiently large (2)r) 2 (-h(x 0) + 2.6) 2 t 2 - K3 exp{f-tq 3 (o5)}

I I

(2z) 2 (-h"(xo) + 3C) 21

1

(2,)2(h (O)+ 3e)

will be greater than

. This together with (3.1) implies that:

2t <e--th(xo)F(t) (3.12)

Similarly, as t increases K exp{-tq1 (i5)} will decay much faster than the difference

1 1 1
between (2,T)2(-h'(xo)-3C) 2 t 2 and

Therefore when t is sufficiently large

1 1 1 1
(2;r)2(-h"(xo)-2e) 2 t 2 (which decays as t 2).

(2T)2 (-h"(xo)-2e) 2 t 2 +K, exp{-t 1(6)} will be

I 1 1

less than (2;) 2 (-h"(xo) -3E) 2 t . This together with (3.11) implies that:

e-th(xo)F(t) <(2'r)2 (-h"(xo) - 3E) 2 2

and completes the proof.

24

(3.10)

(3.11)

as t 2). Therefore

(3.13)

Theorem 3.3 (Direct Evaluation of the Laplace Approximation Error)

F(t) = F(t) + Kt-1 for some positive constant K.

Proof

The Taylor's series expansion of h(x) about the point x0 is given by:

h(x)=h(xo)- (x -xO) 2+ 1H 3 (x-xO)3 + - H 4 (x-xO)4 +higher order terms
22 6 24

where, .2 - , and Hk = (d/dx)k h(x) . The integral can then be expressed as

th(x)dx=eth(xo)f 1 2 (X-X0)2 retHk (x--x0)kdx
feth~x~x = e f 2t-la k>3 i d

Expanding each term of the form H in its Taylor series

get the following:

(x x)k

k>3

expansion about 0 we

2 3

+ 2.(k !)2 H (Xx) 2 + 6.(k !)3 Hk (X- x 0) 3 k+

=1+ Ak(x- xo)k
k 3

fX- 1 2 X2for some constants Ak . Since integrals of the form f(x-xO)ke 2(O) dx equal zero for

odd numbered integers k, only the even powers in the sum above contribute to the
integral in (3.14). Therefore we have the following

Jeth(x)dx = eth(x0)
I f -XOa 2 1 d+ Jx) e2

fe~ 2 (X-- dx+ I A2, -(X _X(2k e-2-a(- dx
k>2

Using known results on the central moments of Gaussian distributions to evaluate the first
few integrals in the sum above yields the following result (see the appendix of [Tierney
and Kadane, 1986]):

25

(3.14)

-I

eth(x)dx=(2ffo-t)=eth(xo) I+BIt-1 +B2t-2 + (t-3)

where

B, =-07'H, +-5 yH 2
8 24

B=I07H6 + 35 o8H2 + 7 8HH 5 5 OH3H4 + 385
48 384 48 64 1152

3.2 New Results Based on the Laplace Method for Approximating

Integrals

Laplace Approximation for Exponentially Concentrated Functions

In the previous section we presented a heuristic argument to derive the Laplace
approximation for integrals of functions of the form exp{th(x)} for large positive real

values of t (which must be greater than 1) and a properly behaved function h(x). Our

eventual goal is to apply this method in approximating the one-step update integral in the
BCK equations for the general filtering problem given in (1.8). Unfortunately, the
integrands of interest in the general filtering problem cannot necessarily be expressed in
the form exp{th(x)}.

An obvious first step towards our eventual goal would be to examine approximations to
integrals of the following form

F = f(x)dx = fexp{h(x)}dx

26

We could apply a similar heuristic argument as the one used at the beginning of the

previous section to arrive at the following approximation:

F = (2ff) 2(-h"(x))2exp{h(x)} (3.15)

However, the results establishing bounds on the integral and asymptotic error

performance of the approximation presented in the previous section will not necessarily

hold. In order to use the approximation in (3.15) to construct nonlinear filtering algorithms

it is essential to have a good intuitive understanding of how the behavior of the integrand

will affect the error performance of the approximation in (3.15).

By focusing on the integrals of functions which have the following properties (we will refer

to such functions as being exponentially concentrated)

* existence of a unique global maximum

" the integral of the function over the complement of a neighborhood of the

maximum decays exponentially as the radius of the neighborhood increases

bounds on the approximation in (3.15) can be established using a method analogous to

that used in the proof of Theorem 3.2. In particular, we show that for exponentially

concentrated functions, the following bound on the integral holds (see the proof of

Theorem 3.5 in the next section for more details and a more rigorous statement)

1 -1 1 1

(2f)2 (-h"(xO) + 2e)2 - K2 (t)e-' < e-h(xo)F <(2f) 2 (-h"(xo) - 2e) 2 + K, (t)e-'"

In the above, e and 6 together are a measure of how well h(x) can be approximated by

a quadratic in a neighborhood of the global maximum at x = x0 . For a given upper limit on

the error of the approximation (parameterized by s), 5 is the largest neighborhood over
I I

which that upper limit is satisfied. We then take F = (2r) 2(-h"(xo)) 2 exp(h(xo)), a value that

also lies between the upper and lower bounds in the inequality above, to be the Laplace

approximation.

27

If h(x) is exactly quadratic (for example if f(x) is a Gaussian function) then the

approximation will be exact. For other cases, we show in Corollary 3.6 that the relative

error of the approximation, F= F-F/F, satisfies the following inequality

The quantities J1,2, and 3 help us to understand the factors determining how well the

approximation works. The first quantity J, is a very small value that decreases as e

decreases and hence depends on how well h(x) can be approximated by a quadratic in a

neighborhood of the global maximum. The second quantity 2 is a measure of the

proportion of the total area under f(x) that is concentrated about the global maximum.

The more of the area under f(x) that is concentrated around the global maximum, the

smaller 2 will be. Finally, 3 is a measure of how accurately h(x) can be approximated

by a quadratic in a neighborhood of the global maximum. The better h(x) is

approximated by a quadratic around x then the smaller 3 will be.

Application to approximating a marginal probability density given the joint

density

Given the joint density p(x,y) of two random variables x and y, we can express the

probability density p(y) of y at a given point y = y* by marginalizing the joint density as

shown below:

p(y*)= fp(xy*)dx

Lemma 3.7 establishes conditions under which the integrand in the above equation is

exponentially concentrated. Under these conditions, we can then apply the result of

Theorem 3.5 to obtain the following bound on the probability density at a fixed point (see

the proofs of Lemma 3.7 and Corollary 3.8 for more details):

28

_(y*)- K2 (t)e-t e-h(xo)p p (y*) + K (t)e-S

where k,(y*) = (2fr) (-h"(x (y*)) - 2e) 2 and P (y*) = (2fr) (-h"(xo (y*)) + 2e)2 . The

Laplace approximation in this case is analogolously:

p(y*)= (2)(-h(x 0 (y*)) 2 p(x0 (y*), y*)

Furthermore, observations about the error performance, which are analogous to those

made for the general case earlier, also hold here.

Application to the nonlinear filtering problem

In chapter 1 we saw that the BCK equations (repeated below) provide a framework

for sequentially updating the posterior density.

One step ahead prediction density:

P(Xk k-1= fq(xk Xk-1)P(Xk-1 lk-)dXk-1

Filtering density:

r(yk Xk)P(Xk _i-1)

P(Yk 1 k-1)

Typically, the transition density q(x xk,) and the likelihood r(yk xk) are already known

and the numerator of the expression for the filtering density is just a scaling constant.

The one-step prediction density can be approximated using the laplace approximation.

The approximation to the filtering density will then be proportional to the product of the

Laplace approximation to the one-step density and the data likelihood r(yk xk). We

outline below a filtering algorithm based on this approach:

29

Initial Step

Put P(x0 IYO)=P(x 0)

Step k

1. Put h(xk,) = log q(xI Xk_) + log P(xkl_ IYk_1

2. Compute the value of x_ that maximizes h(x_) . Call this Xk_.

3. Approximate the one-step prediction density as

k _kil7) = (2)r)//(-h' Y(^k~ 2 ~~~1k~1~~ 1

4. The approximation to the posterior density is then

(Xk Yk) c r(yk jXk)P^(Xk 4y-1)

Step k = 1 is the first time the Laplace approximation is used to estimate the one-step

prediction density. If the integrand of the integral for the one-step prediction density at this

time point, f(xO) = q(x* xo)p(xo), satisfies the conditions in Lemma 3.7 the results we

have derived so far will apply. As was mentioned earlier the relative error of the

approximation to p(xl YO) will be determined by q(xl xO) and the initial state density

p(xo). Specifically, the relative error of the approximation at the point x, = x* will be small

if h(xo)=logq(x*lxo)+logp(xo) is well approximated by a quadratic

significant proportion of the total area under the function f(xo)= q(x*lxo)p(xo) is

contained in a small neighborhood of its global maximum at i^.

At future steps k the error will depend on the effect of the data likelihood at the previous

step r(yk_1 jXk) as well as the transition density.

30

and if a

To illustrate these points we consider one of the state-space models mentioned in

chapter 1. This model can describe, for example, a state-space system with stochastic

point process observations as we will see in the next chapter (it can be shown that for the

model discussed in the next chapter the conditions in Lemma 3.7 hold allowing us to

apply the results developed in this chapter that give us bounds on the relative error and

an intuitive understanding of the factors determining the size of the relative error).

x, =Fx,_ 1 +w,

yn~ Dist(xn)

In the above, the noise process w consists of independent, zero-mean Gaussian

random variables at each time point with variance a' and the initial state is drawn from aw

zero-mean Gaussian distribution with variance a02. As a result q(xl xO) for fixed x, = x*

and taken as a function of x0 will itself be Gaussian with mean x* and variance a 2 . The

function f(xO) = q(x* x,)p(x0), being the product of two Gaussian functions, will also

be Gaussian. Therefore, at step k =1 the Laplace approximation to the one-step

density will be exact.

At the next step the integrand is now the product f(x) = q(x* x,)p(x IYO)r(y Ix,). If the

variances oa and q02 are both small the supports of q(x* x,) and p(xl Y) (which are

both Gaussian) will each be very narrow. As a result, the support of f(x) will be narrow

and most of the area under f(x) will be concentrated around its global maximum.

Consequently the contribution of the 2 term to the relative error of the approximation to

the one-step prediction density at the point x2 = x* will be small. Since both q(x* x,) and

p(xl YO) are Gaussian functions, it is the data likelihood from the previous step r(yo xO)

that will determine how well h(x,) =log f(x) is approximated by a quadratic. This in turn

will determine how big a contribution the j and 3 terms will make to the relative error. A

similar analysis can be carried out at subsequent steps.

31

3.3 Proofs of New Results Based on the Laplace Method for

Approximating Integrals

Definition 3.4 (Scalar Case) A function f(x) will be said to be exponentially

concentrated if the following hold

i. f(x) is a real and continuous positive function which has a unique global

maximum at some point x = x0 (in other words f(x) < f(xO) for all x # xO)

ii. There exist positive real numbers t and K(t) such that the integral of f(x) over

the complement of any neighborhood of x0 having radius 5 satisfies:

+
-LI X0+

f(x)dx K(t)e-'s, V9>0.

Theorem 3.5: Bounds on the Integral

Let F = f(x)dx and h(x) be the natural logarithm of f(x). Assume f(x) is

exponentially concentrated with its unique global maximum at x = x0 , h'(x) exists in some

neighborhood of xO, h"(x 0) exists and h"(xo) < 0 .

For any e such that 0 < 3e < h"(x0)|, there exist positive real numbers 5, t (which is

independent of e), K, (t) and K2(t) such that the following inequality holds:

(2zf) 2 (-h"(xo) + 2e) - K 2(t)e-'S <-h(xo)F <(2T)2 (-h"(x0) - 2E) 2 + K, (t)e-tS.

I w I
We Will take P = (2))2(-h'(x0 ,)) 2 exp(h(x0)) to be the Laplace approximation.

32

Proof Applying Lemma 3.1 we see that for any positive e we can find 5 6 0 such that for

x-x 0 6 5 the following inequality holds:

h(x) -h(xo) - I(X-X0)2h"(xo) e(x-xO) 2

Therefore the following inequalities hold:

x0+6 1 x2+'

(x-xo)2(h"(xo)-2e) (h(x)-h(xo))dx

xo-8 XO-,5

x0 +S e1 (I X)2 (h (xO)+2e)d

xo-5

As the integrals over (-oo,oo) of the leftmost and rightmost integrands will be used later in

the proof to establish bounds on F, we will limit our choice of e to the range

0<3e<jh"(xO)j. This will ensure that the exponent of the integrand in the rightmost

integral in (3.16) is negative.

Let DI, D2 and D3 be the amounts by which the integrals above differ from the

corresponding integrals over (-oo,oo). That is:

j+e(h(x)-h(xo))dx

-COo xO+8

D2 = + f

xo +8

I (X-X)2(h"(xo)+2e)dx

(X-X)2 (h(xo)-2e)d

Adding DI + D2 , DI +D 3 to both sides of the inequality on the right and left respectively in

(3.16) above we get the following inequalities for the integrals over (-oo,oo):

33

(3.16)

+001XXO2h(x)2e +00
1

(XX.2(N(xL)C2_0

f ef()2 h(X>Edx + DI - D3 < eh(xO)F < f eid+D D
-00O -00O

Since fe 2 <-<x
1 =1

dx = (2f)) 2 (-h"(x0) T 2g) 2 the inequalities in (3.16) become:

(27r) (-h"(xo) + 2e) 2+D - D3 < eh(xo)F

e h(xo)F < (2r)2 (-h'(xo)-2e) 2+D,-D2

(3.18)

(3.19)

We will now establish bounds on D1, D2 and D3. From our assumptions there exist

positive real numbers t and K1(t) such that the following inequality holds:

DI K, (t)e-t&

Let vi and v2 be zero-mean Gaussian random variables with variance (-h"(xo) - 2e)-' and

(-h"(x) + 2e)1 respectively. We can therefore re-express D2 and D 3 as follows:

1
1

D2 = (2r)7 (-h"(xo) - 2e) 2 Pr(v, > 1)

1 1
D3 = (2r)7 (-h"(xo) + 2e)2 Pr(V2 >6)

For any positive t an application of Chernoff's bound to Pr(Iv I> 5) and Pr(Iv 2 > 5) (see

for example [Ross, 1996] or [Laha and Rohatgi, 1979]) will then give us the following

bounds on D2 and D3 :

1

D 2 (2nr) 2 (-h"(xo) - 2e)2 M (t)e-t

34

(3.17)

I

D3 (2ff) 2 (-h"(xO)+ 2e)2 M 2(t)e-"

In the above inequalities M,(t) and M2(t) are the moment generating functions of the

random variables IvI and V2 I respectively.

Now since DI, D2 and D3 are positive, the following inequalities hold:

DI -D2 < Di < Ki tWe-1.

1 1

Di -D 3 > -D 3 > -(2r)2 (-h"(xo) + 2e) 2 M2(t)e-' = -K 2 (t)-'.

Plugging the above inequalities into (3.18) and (3.19) we get the following inequalities:

(2f)2 (-h"(xo) + 2e)

e-h(xo)F < (2;r) (-h

2-K 2(t)e-'S< e-h(xo)F

"?(xo) - 29) +K, (t)e-t

thus completing the proof.

Corollary 3.6 (Relative Error of the Approximation)

Assume that the assumptions in Theorem 3.5 hold. Let = F-F IF be the relative error

of the Laplace approximation. Then the relative error satisfies:

In the above , is a small quantity that decreases as e decreases. J2 is a measure of

how much of the area under f(x) is concentrated around the global maximum. The more

35

(3.20)

(3.21)

I I

of the area under f(x) that is concentrated around the global maximum, the smaller J2

will be. Finally, , is a measure of how accurately h(x) can be approximated by a

quadratic in a neighborhood of the global maximum. If h(x) is well approximated by a

quadratic then 3 will be very small.

Proof Clearly F(t) also satisfies the following inequalities:

(2))2(-h"(xo)+ 2e) 2 -K 2 (t)e-t < e h(xo)F

e h(xo)F < (2Z) 2(-h'(x0) -2e) + K,(t)e-'

In equations (3.20) and (3.21) of the proof of Theorem 3.5 we see that F has the same

upper and lower bounds. The fact that F and F share the same upper and lower bound

implies that the absolute approximation error is less than the gap between the upper and

lower bound. That is

e-h(xo) F F < (2;f) (-h"(xo) -2F)2 - (-h"(x0) + 2e)2j + [(K (t) + K 2 (t))-t6]

Dividing both sides of the above inequality by F and multiplying by eh(xo) gives us the

following

where

= (2ff) 2 F-leh(xo) (-h"(xo) - 2e) 2 - (-h"(xo) + 2e)2

2 = F-eh(xo)K, (t)e-t

36

-3= F-e"(xo)K2(t)e-t'

In the course of the proof of theorem 3.5 we saw that D , the integral of f(x) (normalized

by eh(xo)) in a complement of a neighborhood (having radius f) of the global maximum at

x = x0 , is less than K, (t)e-'. So 2 is an upper bound to the proportion of the area under

f(x) that lies outside this neighborhood (having radius 6) of the global maximum. The

more of the area under f(x) that is concentrated around the global maximum, the

smaller 2 will be for any value of 6.

We also saw that e (o)K 2 (t)e'"5 is an upper bound to D 3 where D3 is given by:

D= Kf+ f e(x x)2(h(xo)2edx.

Now e and 6 together are a measure of how well h(x) can be approximated by a

quadratic in a neighborhood of the global maximum. For a given upper limit on the error

of the approximation (parameterized by c), 6 is the largest neighborhood over which that

upper limit is satisfied. Hence, if h(x) is well approximated by a quadratic around the

global maximum any choice of e will result in a 6 value that is not too small when

compared to the width of the support of h(x) and so the integral above will be fairly small.

Hence , will be small when h(x) is well approximated by a quadratic in a neighborhood

of the global maximum.

Lemma 3.7 Let x and y be random variables with probability densities q(x) and p(y).

Let p(y x) be the conditional density of y given x and p(x, y) be the joint density of x

and y. Let h(x) = log p(x,y) for fixed y = y*.

If the following conditions hold

37

i. h(x) has a unique global maximum h(x 0) = hm, at x = xO, h'(x) exists in some

neighborhood of x0, h'(x0) exists and h"(xo) < 0

ii. p(y* |x) is bounded for all values of x

iii. The moment generating function of the random variable |x| exists

then the function x i-> p(x, y*) is exponentially concentrated.

Proof For any 6>0 the following holds:

f p(x,y*)dx=Pr(jx-xO|>65) f
x-x0 >65

p(y* x) P(x) dx
Pr(x- X0 I>6g)

=Pr(jx-x 0 >6) p(y*x)p(x x-xo >65)dx

x-xo0 >6

= Pr(x- x > 9)E [p(y* x)]

In usual cases, p(ylx) will be bounded as a function of x irrespective of the value of y .

This implies that:

x
lx-x 0 >65

p(x,y*)dx<K 2 Pr(x-xI >6)

where K2 =max[p(y* x)]. Using Chernoffs bound we have the following inequality for
x

any t>0:

Pr(Ix - x 0 > 1) M(t)e-t".

38

I1X-XOj>.5

In the above inequality M(t) is the moment generating function of the random variable

x - x0 IThe fact that the moment generating function of jxj exists implies that the

moment generating function of Ix-xOI exists as well and the proof is complete.

Corollary 3.8: Bound on probability density at a fixed point Assume that the

conditions in Lemma 3.7 hold and let:

P (y*) =(2) '2(-h"(x0 (y*)) - 2e) 2

_(y*) =(2n) (-h'(x (y*)) + 2e) 2

Then For any e such that 0 < 3e<|h"(xol, there exist positive real numbers 5, t (which is

independent of e), Ki(t) and K2(t) such that the following inequality holds:

p_(y*)-K 2 (t)e-< e-h(xo)p(y*)<1+(y*)+K1(t)etS.

Proof We can express p(y*) as

p(y*)= Jp(x,y*)dx.

Therefore, Corollary 3.8 follows immediately from Lemma 3.7 and Theorem 3.5.

39

Chapter 4

Construction of a Saddlepoint Filter for a Stochastic Point

Process Model
In this chapter we will illustrate how to construct a nonlinear filter for a Point Process

model using the Laplace approximation. First we describe the state-space model and its

pertinent features and then construct a saddlepoint filter algorithm for estimating the

posterior density for this state-space model. We will then present results obtained using

our algorithm and compare these results against those obtained using an existing filter.

4.1 Description of the Point Process Model

The Observation Process

Let (0,T] be an observation interval during which the spiking activity of J independent

point processes is recorded. For the ith point process the observations consist of the set

of spike times 0< u <ui2 <,---.<UiKi T. For any time t in the observation interval let

N .,(t) be the sample path of the ith point process. It is defined as the event

N , = {0 <u <Ui 2 <,--..<Uk itflN,(t)=k} where N,(t) is the number of events in (0,t]

and k <K,. The sample path is a right continuous function that jumps by 1 at the event

times and is constant otherwise [Snyder & Miller, 1991]. This function tracks the location

and number of spikes in (0,t] and therefore contains all the information in the sequence

of event times. We use No:, = {N ,,N§ } to represent the ensemble activity in (0, t].

40

Each point process can be characterized by its conditional intensity function,

A (t x(t),N :) , where x(t) is the latent state process modulating the activity of each of the

point processes [Snyder & Miller, 1991]. The conditional intensity function defines the

instantaneous firing rate of the point process in terms of the instantaneous probability of

spiking as

Pr(N, (t + At) - N, (t + At) x(t), N,t)
2(~)N,= urn (4.1)

At--O At

Consequently, the probability of a single spike in a small interval [t,t+At) can be

approximated as 2'(t x(t),N,:)At.

In order to facilitate the implementation of the algorithm recursively we will switch to a

discrete-time framework. To achieve this we partition the observation interval into smaller

intervals (tkl_,tk] of length At. As a result, the spiking information observed for the ith

point process in this framework is n' = N,(kAt) - N,((k-)At) for k =1,2,.-. If At is

sufficiently small the probability of more than one spike occurring in the At-spaced

intervals will be negligible. So the new observation process, n', takes on the value 0 if

there is no spike in (tj,tk] or 1 if there is a spike. Let n' = {n,- --,nk} represent the spike

observations up to time tk for the ith point process and n ,- -f-,jn}.

The Latent State Process

The latent state process x(t) modulating the point processes will be taken to be a

continuous time first order autoregressive (CT AR (1)) process

dx(t) + aox(t) = q(t) (4.2)
dt

41

where 7(t) is a white noise process with variance per unit time o . In order to obtain an

expression for the relationship between the states at discrete time points we re-express
(4.2) in the following form

dx(t) = -ax(t) + dW(t).

where W(t) is a Wiener process. It is easy to see that the following holds

d(eao'x(t)) = eao'dW(t).

Now integrating the above equation over the interval (tz ,tk] of length At will give us

x(tk) = eaoAt x(tk1) + f
tk-1

Putting Xk = x(tk) , F =e-o and e, - J e-oA'dW(t) we obtain the equivalent discrete-

time first order autoregressive representation of the CT AR (1) process:

Xk =Fxk_ +e1

where ek is the Gaussian process with E[ek] =0 ,
U72

Var[ek] 7 (1I-F 2
2a

Furthermore, ek

and e, are independent when k j. Choosing an initial state which is Gaussian with

mean, E[xo]=0, and Variance, Var[x 0] =
'2

= a , will
2a

make the state process

covariance stationary.

The likelihood model for the point process observations

Now that we have described the state and observation processes,

essential component is the likelihood model for the point process observations,

p(nk xk,Nl,_l), where nk ={n,---,n} This model defines the probability of observing

42

(4.3)

the final

e-aostdW(t).

spikes in the interval (tkl_,tk], based on the current state of the system and the past

spiking activity. This likelihood is well approximated by

p(nk lxkNl kl)= exp Lin log(A At) -'At] (4.4)

[Brown, Barbieri, Eden, & Frank, 2003] where 2j = Il (t_1 X(tk-l),No)At

4.2 Saddlepoint Filter Algorithm for the State-Space Model

The BCK update equations for the system

Bayes' rule can be used to obtain the posterior density at time tk as a function of the

likelihood at time tk and the one-step prediction density of the state at time tk given the

observations up to time tkl

P(Xk fl:k ,NI:k)
P(nk XkNlk)P(Xk ,:k-1 NI:kl)

=n nIkI5k1
(4.5)

The first term in the numerator of (4.5) is the likelihood and the second term is the one-

step prediction density. The one-step prediction density is defined by the Chapman-

Kolmogorov equation in terms of the state transition density and the posterior density at

time tk-_ as shown below.

P(x :k 1 ,NI:k_)= Jp(xk _Xk)P(XkI _1,:k- _NI:k -)dk (4.6)

43

Constructing a saddlepoint filter algorithm for the state-space model

The strategy is to apply the Laplace approximation to the integral for the one-step

prediction density in (4.6) at each time-step. This leads to the following algorithm:

Let {xo'~} be the common set of grid points at which we evaluate the posterior density at

each time step k. The grid points are spaced at intervals of Ax in the range [x,,,,xx]. In

other words, x =x, +iAx, for i=f,1 N...,Ng,, and where N=(d =x(" -x, V AX+1.

The outer limits xmin and xmx have to be chosen by the user in such a way that the value

of the posterior density outside this range is negligible at each time step. This can be

achieved by implementing the algorithm with an initial choice of xmn and xmax and then

incrementally decreasing and increasing xn and xmx respectively until the estimates of

the posterior mean and posterior variance obtained using one set of outer limits do not

differ significantly from the estimates produced using the previous set of outer limits.

Step k=0

For i = 0,1,..., Ngrid:

Put p(xW n., N1:)= p (x0) = N(x 'i; k01 , 0) where - = 0 and& a 2X010 (7 0 = 7x

N(x'); oo- 1) is the value at x(of the Gaussian probability density parameterized by

mean and variance xojo,qjo respectively.

Step k =1

For i=0,1,...,N

The value of xO that maximizes h(xo) =log p(xo') x.)+log p(xo n:O ,N1:0) is

44

and

010

F
2

U;,

and the second derivative of h(xo) evaluated at the maximum is:

h"e) = - I + 2

The one-step prediction density at xfl) is then approximated by:

p((jn:0 , N1:0) = 2T +
F

2j

Observe that x0 may not fall on one of the grid points used to store values of the density.

In such a case a linear interpolation using the nearest grid points will suffice.

The posterior density at x() is then given by:

^ ((t) 1n1:,N1:) -p(n xf4),Nls)p(x M jnj: , N1:) (4.7)

After the posterior density is evaluated at all the grid points, numerically compute the

mean, x,,, and the variance, o2 , of the Laplace approximation to the posterior density

Step k = 2,3,....

For i= 0,1,..., Ngrd:

The value of xk_, that maximizes h(xk,) = log p(x) lxk 1)+log p(xk_, Jini , NU-_) is obtained

by approximating p(xk_ _1.k-1 ,N kl) by N(xkl; X __ 0
. _). The result obtained is

45

x(M
2 2

0e 17|0

p~x' I)p(^ 1n:0, N1.0)

Xk-lk-iI: +Xk-1 X2

kr-1|k-1

1-
2 +
k7-I|k-] CC

and the second derivative of h(xkl) evaluated at the maximum is approximately:

h"(^_1) - K2 + F
vku k-1e

This approximation to the value of xk-1 that maximizes h(xk_) works well for this particular

model because the true h(xkl) is well approximated by a quadratic

neighborhood of the maximum.

The one-step prediction density at x" is then approximated by:

p 1:k-1,Nl_)= r2 2 1

70k-Ilk-1

+ 2
07F

As pointed out in step k =1, _Xklmay not fall on one of the grid points used to store

values of the density. In such a case a linear interpolation using the nearest grid points

will suffice.

The posterior density is then given by:

(4.8)

After the posterior density is evaluated at all the grid points, numerically compute the

mean, xk-, and the variance, a2 of the Laplace approximation to the posterior density

46

in some

pCx(' X-1_)PX- n1:k-1, NU-,_,

f 1" n1:k ,NIk) - pn Ix ,N, U(-,N 1,_)

4.3 Applications

To illustrate the algorithm, we choose a simple form of the conditional intensity function.

That is, we take the conditional intensity function for each point process as

Z (kAtI x(kAt), N|,.) = exp(, +,,x(kAt)) (4.9)

Example: Multiple Independent Point Processes Driven by Common Latent

State Process

One realization of the model given by Equations (4.2) and (4.9) was simulated. The time

interval for the simulation was 1000 milliseconds and the latent state process model

parameters were F = 0.99 and o-, = 10- while the variance of the initial state was chosen

as u-2 = -1-F 2) = 0.0503 in order to make the latent state process covariance-

stationary. The log of the background firing rate was chosen as U = -4.9 for all 10

observation processes, while the gain coefficients 8, were chosen randomly on the

interval [0.9 1.1]. All model parameters are summarized in Table 1. The simulated latent

process and the first five point processes are illustrated in Figure 1.

The ten point process realizations were each simulated using an algorithm based on the

time-rescaling theorem described in Brown et al. (2001), while the state equations were

updated every millisecond. The posterior mean, variance and density at various time

points were estimated using the Saddlepoint algorithm described in the previous section

with Ax = 0.001, xm,, = -2.0 and x,, = 3.0. The estimation was carried out using different

numbers of observation processes. Specifically, one, two, four, eight and 10 independent

observation processes were used. The results obtained were compared against those

obtained by another algorithm, the Stochastic State Point Process Filter (SSPPF). The

SSPPF algorithm is obtained by approximating the posterior density in Equation (4.5) by a

Gaussian density. This then leads to a recursive algorithm for the posterior mean and

variance in terms of observed and previously estimated quantities (see [Eden et al, 2004]

for more details). This filter was a good choice as it has been shown to be superior to

47

point process analogues of the extended kalman filter, the recursive least squares filter

and the Steepest Descent filter when estimating a latent state process from point process

observations (see [Eden et al, 2004] and [Eden, 2005]).

Parameter Value Parameter Value Parameter Value

Xim -2.000 f -4.900 46 1.0524

Xm 3.000 Al 1.0900 97 0.9913

Ax 0.0010 42 0.9462 8 0.9037

F 0.9900 42 1.0214 89 1.0643

UC 0.0010 4 0.9972 #91 0.9889

q0 0.0503 45 1.0783

Table 1: Model and Simulation Parameters

For this model, the SSPPF performed poorly in estimating the posterior density. While the

mean of its guassian approximation to the density was located very close to the true

mean, the error in approximating the shape of the posterior density was large. In fact the

support of the SSPPF estimate was much narrower than the support of the true density.

This is because even though the true density for this model is symmetric about the mean,

it is very non-gaussian and has significant moments of third order and higher. As a result,

any confidence interval estimates by the SSPPF for this model will be highly inaccurate.

The Saddlepoint algorithm did not share this failing. In fact, the posterior density

estimated by the Saddlepoint algorithm very accurately approximated the true shape of

the posterior density at each time point. Figures 2, 3 and 4 illustrate these observations

48

A 0

0 20 40 60 80 100 120 140 160 180 200

1

B
0

-1 I
200 220 240 260 280 300 320 340 360 380 400

-1 II
400 420 440 460 480 500 520 540 560 580 600

D I I I I11

-1 -L I I -
600 620 640 660 680 700 720 740 760 780 800

1 1 1I 1 1

E0

-1
800 820 840 860 880 900 920 940 960 980 1000

Time (msec)

Figure 1: Realization of Latent State Process and First 5 Point Processes

Shaded areas indicate that a spike occurred in that 1 millisecond interval: Blue - Spike from point process 1; Red -
Spike from point process 2; Green - Spike from point process 3; Magenta - Spike from point process 4; Yellow - Spike
from point process 5.

A) Latent Process and Spiking activity in 1st 200 millisecond time period

B) Latent Process and Spiking activity in 2nd 200 millisecond time period

C) Latent Process and Spiking activity in 3rd 200 millisecond time period

D) Latent Process and Spiking activity in 4th 200 millisecond time period

E) Latent Process and Spiking activity in 5th 200 millisecond time period

at times 107 and 500 milliseconds. The posterior means estimated by both the SSPPF

and Saddlepoint approximations were very accurate. However, the error in the

Saddlepoint approximation was lower. The SSPPF also approximated the posterior

variance well at non-spike times. However, it failed to track jumps in the posterior variance

in periods when spikes occurred and shortly after spikes occurred. The saddlepoint filter

49

on the other hand, accurately tracked jumps in the posterior variance during periods of

spiking activity.

J

7 -

6 -

4 -

3 -

2 -

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

I I I , ~ I I I

8

6 -

4 I.

2

0
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Figure 2: Comparison of SSPPF and Saddlepoint posterior density at 500 milliseconds

Black line - True posterior density; Magenta dashed line- Saddlepoint posterior density; Blue dashed line - SSPPF
posterior density

A) 1 point process used in the estimation

B) 8 point processes used in the estimation

To illustrate these observations, the squared error in the SSPPF and Saddlepoint

approximations to the posterior mean and variance were plotted at all the timepoints. The

saddlepoint error in approximating the mean was about half that of the SSPPF

approximation at all time points. The saddlepoint error in approximating the variance was

50

also smaller than that of the SSPPF. The SSPPF variance approximation error increased

by a factor of about 10 at periods in which spikes occurred since its estimates did not

track well the jumps in the variance at spike time, while the saddlepoint error was

consistently low at spike times. These results are presented in Figures 9 to 12.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

08 .8

-.-. 6-0.4 -0.2 0 0.2 . . .1

-0.6 -0.4 -0.2 0 0.2 0.4

Figure 3: Saddlepoint and Exact posterior density at 107 milliseconds

Black line - True posterior density; Magenta dashed line - Saddlepoint posterior density

A) 1 point process used in the estimation

B) 4 point processes used in the estimation

C) 10 point processes used in the estimation

0.6 0.8

The results above match what we would expect from the theory developed in Chapter 3.

Since the integrand in Equation (4.6) is exponentially concentrated the results in Chapter

51

1

1

0
1

3 on the error bounds of the Laplace approximation apply for this model. As explained in

the previous chapter Laplace approximation error will be zero at the first time step of the

algorithm for this model. This error will increase but that increase is controlled by how

much of a spreading effect the state transition density has on the posterior density in the

integrand of Equation (4.6). The narrower the transition density, the slower will be the

growth of the approximation error. The rate of increase will also depend on the effect of

the data likelihood on how well the natural logarithm of the integrand in (4.6) is

5-

1 --

5-

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

2

5 -

1

5 -

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

approximated by a quadratic. At the first step of the algorithm, the natural logarithm of the

integrand will be exactly quadratic. For the intensity function in (4.9), the increase in the

deviation of the natural logarithm of the integrand from the quadratic will be very slow as

the algorithm progresses through subsequent steps. This, together with the fact that the

52

state transition density itself has most of its area concentrated about the mean, ensures

that the error will be consistently small as time increases. This is borne out by the results

we obtained.

0.1 1 - - - - 1 - 1 1 -1

0.05 - - - - - - - - - - - - -- - - - - - - ---

0.
0 1 1 1 1 1 11 1 I

0 20 40 60 80 100 120 140 160 180 200
0.06

0.05

200 220 240 260 280 300 320 340 360 380 400
).0492 -L

).0491 -6-

0.049
400 420 440 460 480 500 520 540 560 580 600

).0492 -

).0491

0.04J
600 620 640 660 680 700 720 740 760 780 800

0.05 7 III

01
800 820 840 860 880 900 920 940 960 980 1000

Time (msec)

Figure 5: Posterior Variance. Estimating with I Point Process

Blue line - True posterior Variance; Magenta dashed line - Saddlepoint Posterior Variance; Green dashed line - SSPPF
variance. Shaded areas indicate that a spike occurred in that 1 millisecond interval: Shaded Blue - Spike from point
process 1

A) 1st 200 millisecond time period

B) 2nd 200 millisecond time period

C) 3rd 200 millisecond time period

D) 4th 200 millisecond time period

E) 5th 200 millisecond time period

Saddlepoint variance tracks true posterior variance very well even during periods of spiking activity. SSPPF variance
fails to track jumps in true posterior variance during periods of spiking activity.

53

0.1

0
0 20 40 60 80 100 120 140 160 180 200

0.0 6

IS 0.05

0.04 I I
200 220 240 260 280 300 320 340 360 380 40

0.06 -

C 0.05 -

0.04
400 420 440 460 480 500 520 540 560 580 60

0.047

D 0.0468

0.0466
600 620 640 660 680 700 720 740 760 780 80

0.05

0

0

0

E

01
800 820 840 860 880 900 920 940 960 980 1000

Time (msec)

Figure 6: Posterior Variance. Estimating with 4 Point Processes

Blue line - True posterior Variance; Magenta line - Saddlepoint Posterior Variance; Green line - SSPPF variance.
Shaded areas indicate that a spike occurred in that 1 millisecond interval: Shaded Blue - Spike from point process 1;
Red - Spike from point process 2; Green - Spike from point process 3; Magenta - Spike from point process 4

A) 1st 200 millisecond time period

B) 2nd 200 millisecond time period

C) 3rd 200 millisecond time period

D) 4th 200 millisecond time period

E) 5th 200 millisecond time period

Saddlepoint variance tracks true posterior variance very well even during periods of spiking activity. SSPPF variance
fails to track jumps in true posterior variance during periods of spiking activity.

54

A

I

E' ~II

-

'11

0.2

A 0

-0.2

0.1

-0.1
2

0.2

C 0

-0.2
4

0.2

-0.2
6

0.05

-..-..... - - -

0 20 40 60 80 100 120 140 160 180 200

00 220 240 260 280 300 320 340 360 380 400

L

00 420 440 460 480 500 520 540 560 580 600

00 620 640 660 680 700 720 740 760 780 800
II I I I f I I I I I

E 0-

-0.05
800 820 840 860 880 900 920 940 960 980 1000

Time (msec)

Figure 7: Posterior Mean. Estimating with 1 Point Process

Blue dashed line - True posterior Mean; Magenta dashed line - Saddlepoint Posterior Mean; Green dashed line - SSPPF
Mean. Shaded areas indicate that a spike occurred in that 1 millisecond interval: Shaded Blue - Spike from point
process 1

A) 1st 200 millisecond time period

B) 2nd 200 millisecond time period

C) 3rd 200 millisecond time period

D) 4th 200 millisecond time period

E) 5th 200 millisecond time period

Both Saddlepoint and SSPPF estimates of the posterior mean track the true posterior mean accurately

55

0 .2 - - IIIIIIIII-

A 0

-0.2 11111111-
0 20 40 60 80 100 120 140 160 180 200

0.1 -1

B 0-

-0.1
200 220 240 260 280 300 320 340 360 380 400

0.2 -

C 0

-0.2 L
400 420 440 460 480 500 520 540 560 580 600

0.2

D 0

-0.2
600 620 640 660 680 700 720 740 760 780 800

0.2

E 0

-0.2
800 820 840 860 880 900 920 940 960 980 1000

Time (msec)

Figure 8: Posterior Mean. Estimating with 4 Point Processes

Blue line - True posterior Mean; Magenta line - Saddlepoint Posterior Mean; Green line - SSPPF Mean. Shaded areas
indicate that a spike occurred in that 1 millisecond interval: Shaded Blue - Spike from point process 1; Red - Spike from
point process 2; Green - Spike from point process 3; Magenta - Spike from point process 4

A) 1st 200 millisecond time period

B) 2nd 200 millisecond time period

C) 3rd 200 millisecond time period

D) 4th 200 millisecond time period

E) 5th 200 millisecond time period

Both Saddlepoint and SSPPF estimates of the posterior mean track the true posterior mean accurately

56

x10
4

cc 2

0

I

0 20 40 60 80 100 120 140 160 180 200
x10

0.5

0
200 220 240 260 280 300 320 340 360 380 400

x10
2

0 I

400 420 440 460 480 500 520 540 560 580 600
x10

1 - I I I I I I I I-1

S0.5

0 -LI----
600 620 640 660 680 700 720 740 760 780 800

x 10

uj 2 -

0
800 820 840 860 880 900 920 940 960 980 1000

Time (msec)

Figure 9: Squared Error in the posterior Variance. Estimating with 1 Point Process

Blue line - SSPPF Error; Magenta line - Saddlepoint error. Shaded areas indicate that a spike occurred in that 1
millisecond interval: Shaded Blue - Spike from point process 1.

A) 1st 200 millisecond time period

B) 2nd 200 millisecond time period

C) 3rd 200 millisecond time period

D) 4th 200 millisecond time period

E) 5th 200 millisecond time period

Saddlepoint error is consistently very small even during periods of spiking activity. SSPPF error increases during periods
of spiking activity.

57

x10

A
2

02
0 20 40 60 80 100 120 140 160 180 200
x10

4

0 -2
L I I0

200 220 240 260 280 300 320 340 360 380 400
x10

C1

0
400 420 440 460 480 500 520 540 560 580 600

x10

2

0
600 620 640 660 680 700 720 740 760 780 800

x10

E2-

0
800 820 840 860 880 900 920 940 960 980 1000

Time (msec)

Figure 10: Squared Error in the posterior Variance. Estimating with 4 Point Processes

Blue line - SSPPF Error; Magenta line - Saddlepoint error. Shaded areas indicate that a spike occurred in that 1
millisecond interval: Shaded Blue - Spike from point process 1; Red - Spike from point process 2; Green - Spike from
point process 3; Magenta - Spike from point process 4

A) 1st 200 millisecond time period

B) 2nd 200 millisecond time period

C) 3rd 200 millisecond time period

D) 4th 200 millisecond time period

E) 5th 200 millisecond time period

Saddlepoint error is consistently very small even during periods of spiking activity. SSPPF error increases during periods
of spiking activity.

58

x10
4

A2

0
0 20 40 60 80 100 120 140 160 180 200

-6
x10

B 2

0
200 220 240 260 280 300 320 340 360 380 400

-6
x10

4

C 23

0
400 420 440 460 480 500 520 540 560 580 600

x10
2

DI1

0
600 620 640 660 680 700 720 740 760 780 800

x10
4i

E 2F-

0
800

I I I 1

820 840 860 880 900
Time (msec)

9 I I 1 9

920 940 960 980 1000

Figure 11: Squared Error in the Posterior Mean. Estimating with 1 Point Process

Blue line - SSPPF error; Magenta line - Saddlepoint error. Shaded areas indicate that a spike occurred in that 1
millisecond interval: Shaded Blue - Spike from point process 1

A) 1st 200 millisecond time period

B) 2nd 200 millisecond time period

C) 3rd 200 millisecond time period

D) 4th 200 millisecond time period

E) 5th 200 millisecond time period

Saddlepoint error about half that of the SSPPF

59

A

B

C

Figure 12: Squared Error in the Posterior Mean. Estimating with 4 Point Processes

Blue line - SSPPF error; Magenta line - Saddlepoint error. Shaded areas indicate that a spike occurred in that 1
millisecond interval: Shaded Blue - Spike from point process 1; Red - Spike from point process 2; Green - Spike from
point process 3; Magenta - Spike from point process 4

A) 1st 200 millisecond time period

B) 2nd 200 millisecond time period

C) 3rd 200 millisecond time period

D) 4th 200 millisecond time period

E) 5th 200 millisecond time period

Saddlepoint error about half that of the SSPPF

60

x10

0.5 --

0
0 20 40 60 80 100 120 140 160 180 200

x10
4

2

0
200 220 240 260 280 300 320 340 360 380 400

x10

0
400 420 440 460 480 500 520 540 560 580 600

x 10

0.5

0
600 620 640 660 680 700 720 740 760 780 800

).01

005

0
800 820 840 860 880 900 920 940 960 980 1000

Time (msec)

D

E 0.

Chapter 5

Conclusions and Future Directions

This thesis has focused on developing results that will facilitate a better understanding of

the limits on the performance of the Laplace approximation when applied in a nonlinear

filtering context. Such an understanding will then help guide its application either as a

stand-alone nonlinear filtering algorithm or in concert with a Particle filter.

5.1 Summary of Thesis Results

In chapter one we briefly described the nonlinear filtering problem and then reviewed the

Bayes-Chapman-Kolmogorov equations for sequentially updating the posterior density.

These BCK equations later formed the starting point of our exploration of how the

attractive performance properties of the Laplace approximation can be taken advantage

of in a nonlinear filtering context. In chapter three we discussed how the Laplace

approximation is applied in obtaining estimates of asymptotic integrals. For non-

asymptotic integrals, we showed that analogous error bounds could be established for

exponentially concentrated functions. These bounds helped us to better understand the

factors limiting the relative error of the approximation. We then showed how to construct a

nonlinear filtering algorithm using the Laplace approximation for a particular state space

model with point process observations. The algorithm based on the Laplace

approximation outperformed existing algorithms such as the SSPPF and the EKF in

estimating the posterior density and consequently will produce better metrics such as the

mean, variance and confidence intervals.

5.1 Ongoing and Future Research

Further investigations into the performance of the Saddlepoint algorithm for point process

models with a variety of intensity functions are being carried out. The analysis in this

thesis was limited to scalar processes. However, most of these results can be extended to

61

the multivariable case. Further work is planned on exploring state-space models of

dimension greater than one. Also of interest is the application of algorithms based on the

Laplace approximation in expectation-maximization algorithms for joint parameter and

state estimation.

62

APPENDIX A

MATLAB Code Used to Simulate State Process

clear all;
close all;

timestep = 0.001; % msec Resolution in time used in simulating Point process
timeStepEst = 1; % msec Resolution in time used in estimating state process
alpha = 0.99;
endTime = 1000; % msec Duration of simulation
noisevar = 0.001; % Noise standard Deviation
noiseSD = noisevarAO.5;
initvar = noisevar/(1-alphaA2);
initSD = initvarA0.5;
IC = 0; % initial mean

time = [0:timestep:endTime];
n = max (size(time));
state = zeros(1,n);
init = 0;

% Generate state processes by sampling CT AR(1) process every
% microsecond

% generate realization of v(t= -timestep).
init = initSD*rand(l);

% generate realization of v(t=0).
state(1) = alpha*init + noiseSD*randn(l);
% generate realizations of v(t = timestep) , v(t = endtime)
for k=2:n,

end state(k) = alpha*state(k-1) + noiseSD*randn(1);

save /home/omonoba/work/LaplaceApproximationResearch/datafiles/Results-for-model2/signal2.mat;

MATLAB Code Used to Simulate Point Process

clear all;
close all;

load
/home/omonoba/work/LaplaceApproximationResearch/datafiles/Results.for-model2/signal2.mat;

uch = -4.9;

% beta is randomly selected in the interval [0.9,1.1]
bch = 0.9 + (1.1-0.9).*rand(1,10);

u = ones(10,n);
b = ones(10,n ;
spike = zeros(10,n-1); % The number of spike bins is one less than the %number of gridpoints
spikePos = zeros(10,n-1);
spikeTime = zeros(10,n-1);

u= uch.*u;
for =1:10,

end (j,:)= bch(j).*b(j,:);

63

for j=1:10,
[spike(j,:) spikepos(j,:) spikeTime(j,:)] = simspikes(1, alpha, noiseSD, u(j,:), b(j,:)

,state, timestep, endTime);
end

save /home/omonoba/work/Laplace-pproximationResearch/datafiles/Results-for-model2/spikes

MATLAB Code Used to calculate spiking in 1 msec bins

clear all;
close all;

% timestep = point process is simulated using this resolution
% timeStepEst = Estimation is done using this resolution
% timestepEst is the size of the spike bins and is
% chosen such that the average probability of 2 or more spikes in a
% bin is very small

load
/home/omonoba/work/Lapl ace-ApproximationResearch/datafil es/Resul tsfor-model 2/spi kes-model 2_l0
neurons.mat;

numbins = endTime/timestepEst;
numsimInEst = timeStepEst/timeStep;
spikebins = zeros(10,numbins);

for 1=1:10,
for k=1:numbins,

spikebins(lk) = 0;
for j=1:numsimInEst,

spikebins(l,k) = spikebins(l,k) + spike(l,(k-1)*numSimInEst + j);
end

end
end

save
/home/omonoba/work/LaplaceApproximationResearch/datafiles/Results.forjmodel2/spikebins-model2
_10neurons.mat;

MEX/MaTLAB function for Implementing SSPPF Algorithm

/ *

*/
SSPPF FILTER

#include
#include
#include
#include
#include

"/home/omonoba/work/Laplace-ApproximationResearch/mexheader.h"
"mex.h"
"sys/time.h"
"unistd.h"
"stdlib.h"

#define MAXSPIKES 1e6

INTERFACE FUNCTION
*/

void mexFunction(
int
mxArray
int

nl hs,
*plhs[],
nrhs,

/* number of expected outputs */
/* array of pointers to output arguments */
/* number of inputs */

64

{

double
*spike,*u,*b,*Timestep,*endtime,*numgrid,*numspikes,*numused,*IC,*initvar,*alpha,*n
oisevar;

double *spfmean,*spfvar;
double *spikeobs,predMean,*predvar,*innovation;
double t,dl-dx;
double *lambdaestk,update.k-mean,update-kivar;

register int i,j,k,lnmb,grid,nmbused;
register int tindex,nindex, sumIndex;
register int outputsize;

/* check numbers of arguments */
if ((nrhs != 12) 11 (nlhs != 2)) {

mexErrMsgTxt("Usage: [spfmean,spfvar] =
SSPPF(spike,u,b,timestep,endtime,numgrid,numspikes,numused,Ic,initvar,alpha,noiseva
r)");

}

spike = mxGetPr(rhs[O]);
u = mxGetPr(prhs 1]);
b = mxGetPr(prhs 2]);
TimeStep=mxGetPr prhs[3]);
endtime=mxGetPr(prhs[4]);
numgrid = mxGetPr(prhs[5)6
numspikes = mxGetPr(prhs 6j);
numused = mxGetPr(prhs[7]);
IC=mxGetPr(prhs[8]);
initvar = mxGetPr(prhs[9]);
alpha=mxGetPr(prhs[10]);
noisevar=mxGetPr(prhs [11]);

nmb=numspikes[0];
nmbused = numused[0];
grid = numgrid[O];

/* create the output datastructures */
outputsize = (int) (endtime[O]/TimeStep[0]);
mexprintf("os = %d\n",outputsize);
plhs[O] = mxCreateDoubleMatrix(1, outputsize, mxREAL);
spfmean = mxGetPr(plhs[O]);
plhs[1] = mxCreateDoubleMatrix(1, outputsize, mxREAL);
spfvar = mxGetPr(plhs[1]);

predvar =(double*) mxcalloc(outputsize, sizeof(double));
ambdaestk =(double*) mxalloc(nmbused, sizeof(double));

innovation =(double*) mxalloc(nmbused, sizeof(double));
spikeobs =(double*) mxCalloc(nmbused, sizeof(double));

/*************** Initialize the filter ****************************/

predvar[O] = alpha[0J]*alpha[]*initvar[O] +noisevar[0];
predMean = alpha[O *IC[O]

/**************Algorithm for t > 0 *

for(t=0 ; t<endtime[0]-TimeStep[0] ; t+=TimeStep[O]) {
tindex = round(t/Timestep[0]);
nIndex = grid*tIndex;

for(k=0;k<nmbused;k++) {
spikeobs[k]=0;
for(sumIndex = nIndex;sumIndex < nindex+grid ;sumIndex++) {

spikeobs[k] += spike[k+nmb*sumIndex];
}

}

/ * SSPPF Algorithm for updating one-step gaussian approximation

if (t<endtime[O]-TimeStep[O]) {
update-k-mean=O;

65

/* array of pointers to input arguments */const MXArray *prhs[])

update-kLvar=O;
for (k=O;k<nmbused;k++)
{

lambdaestk[k]=
exp(u[k+grid*tIndex*nmb]+b[k+grid*tIndex*nmb]*predMean);

innovation[k]=spikeobs[k]-lambdaest-k[k]*Timestep[0];
dl-dx=b[k+grid*tIndex*nMb];
update-k-mean=update-k-mean+dl-dx*innovation[k];
update-k-var=update-k-var+dl.dx*dl.dx*lambdaestk[k]*Timestep[0];

}

spfvar[tIndex]=1/(1/predvar[tIndex]+update-k-var);
spfmean[tIndex]=predMean + spfvar[tIndex]*update-k-mean;

predvar[tIndex+1] = alpha[0]*alpha[0]*spfvar[tIndex] + noisevar[O];
predMean = alpha[O]*spfmean[tIndex];

}

mxFree (predvar);
mxFree(1ambdaest-k);
mxFree(spikeobs);
return;

}

MEX/MATLAB Code Used to Implement Saddlepoint Filter
/*

myfilter3ver2.c
- Filter Based on Laplace Approximation for "non-asymptotic integrals
- Estimates the posterior density at a given time point
- Also return estimates of means and variances up to given time point
- Model: multiple independent point processes modulated by the same latent
- state process

*/
#include "/home/omonoba/work/LaplaceApproximationResearch/mexheader.h"
#include "mex.h"
#include "sys/time.h"
#include "unistd.h"
#include "stdlib.h"

#define MAXSPIKES 1e6
#define PI 3.1415926

/ **
* INTERFACE FUNCTION
*/

void mexFunction(
int nlhs /* number of expected outputs */
mxArray *plhs[], /* array of pointers to output arguments */
int nrhs, /* number of inputs */
const mxArray *prhs[]) /* array of pointers to input arguments */
{

double *spikeobs,*u,*b,*TimeStep,*stoptime,*initmean,*initSD,*alpha,*noiseD;
double

*xmin,*xmax,*xstep,*numused,*numTotalNeurons,*mypdf,*postmean,*post-var;
double mean-prev,varprev,argmax-curr,

d2logcurr,max-transpdf,x-low,x.high,indexhelper, oldpdf-interpol;
double *newpdf, *oldpdf;
double p1,p2 al;
double x, xold, t;
double *lambda, noisevar;
double transpdf,updatepdf, spikepdf;
double meansum, varsum,norm;

register int k, xIndex, oldindex,
tindex,zIndexlow,zIndex-high,numused,numtotal;

int pdfsize,outputsize;

66

/* check numbers of arguments */
if ((nrhs 1= 14) 11 (nlhs != 3)) {

mexErrMs9Txt("Usage: [mypdf,post-mean,post-var] =
myfilter3ver2(spikeobs,u,b,timestep ,stoptime,initmean,initD,alpha,noiseD,xmin,xma
x,xstep,numUsed,numTotalNeurons));

}

spikeobs = mxGetPr(prhs[0]);
u = mxGetPr (prhs [1];
b = mxGetPr(prhs [2]);
Timestep=mxGetPr(prhs[3]);
stoptime=mxGetPr prhs [4];
initmean=mxGetPr(p rhs 5];
initSD = mxGetPr(prhs 6];
alpha=mxGetPr(prhs [7])
noiseSD=mxGetPr(prhs[81);
xmin=mxGetPr(prhs 9;
xmax=MXGetPr(rhs);
xstep=MXGetpr prhsl]);
numused=mxGetPr(prhs[12]);
numTotalNeurons=mxGetPr(prhs[13]);

numused = numused[0];
numtotal = numTotalNeurons[0];

/* create the output datastructures */
outputsize = (int) (stoptime[0]/Timestep[0]) + 1;
pdfsize = (int) (xmax[0]/xstep[0] -xmin[0]/xstep[0])+1;
plhs[0] = mxCreateDoubleMatrix(1, pdfsize, mxREAL);
mypdf = mxGetPr(plhs[O]);
plhs[1] = mxCreateDoubl eMatrix(1, outputsize, mxREAL);
post-mean = mxGetPr(plhs[1]);
plhs[2] = mxcreateDoubleMatrix(1, outputsize, mxREAL);
post-var = mxGetPr(plhs[2]);

/* Helper variables */
newpdf = (double *) mxcalloc(pdfsize, sizeof(double));
oldpdf = (double *) mxcalloc(pdfsize, sizeof(double));
lam da = (double*) mxcalloc(numused, sizeof(double));

noisevar = noiseSD[0]*noiseSD[0];

/** * Initialize the filter *

/* generate the initial density at t = - timestep */
for (x=xmin[O] ; x <=xmax[0] ; x+=xstep[0]) {

xindex = round(x/xstep[]-xmin[0]/xstep[0]);
oldpdf[xIndex] = 1/sqrt(2*PI)/lnitSD[0] * exp(-(x-initmean[0])*(x-

initmean[0])/2/initSD[O]/initSD[0]);
}
mean-prev = initmean[0];
var-prev = initSD[0]*initSD[0];

/**************Algorithm for t >= 0 *

/* stoptime must be strictly less than the endtime of the simulation
of the state space model */

for(t=0 ; t<=stoptime[0] ; t+=Timestep[0]) {
tIndex = round(t/Timestep[0]);

norm = 0;
meansum = 0;
varsum = 0;

/******* Estimate Posterior Density at t *
for (x=xmin[0] ; x <= xmax[0] ; x+=xstep[0]) {

xIndex = round(x/xstep[0]-xmin[0]/xstep[0]);

/* calculate Approx Value for the arg max of the integrand and */
/* Form Laplace Approximation to the one-step Density */
d2log-curr = (1/varprev) + (alpha[0]/noisevar))
argmax-curr = (mean-prev/var-prev) + (x/noisevar)/d2log-curr;
max-transpdf = 1/sqrt(2*PI)/noiseSD[0]*exp(-(x-

alpha[0]*argmax-curr)*(x-alpha[0]*argmax-curr)/2/noisevar);
/* get previous posterior density at the argmax using linear

interpolation */
if (argmax-curr < xmin[0])
{

67

zindex-low = 0;
zindex-high = 0;

else if (argmax-curr > xmax[0])
{
zindexhigh = round((xmax[0]- xmin[0])/xstep[0]);
zIndex-low = zIndex-high;

I
else
{
index-helper = (argmax-curr-xmin[0])/xstep[0];
zIndex-low = (int) (index-helper);
zIndex-high = zIndex-low+1;
}

p1 = oldpdf[zIndex-low];
p2 = oldpdf[zIndex-hi h];
al = xmin[O]+zindexvow*xstep[0];
oldpdf-interpol = p1 + ((argmax-curr-al)/xstep 0])*(p2 p1);
updatepdf = sqrt((2*PI)/d2log-curr)*max-transpf*oldpdf-interpol;

/* Update the posterior density, posterior mean and variance estimates

spikepdf = 1.0;
for (k=0;k<numused;k++)

iambda[k] = exp(u[0]+ b[k]*x);
spikepdf *= exp(-lambda[k]*Timestep[0]);
if (spikeobs[k+tIndex*numtotal]) spikepdf *= lambda[k]*TimeStep[0];
I
newpdf[xindex] = updatepdf*spikepdf; /* Posterior Density up to scaling

(numerator of Bayes expression)*
norm += newpdf[xIndex *xstep[0];
meansum += x*newpdf[xIndex]*xstep[0];

}

post-mean[tindex] = meansum/norm;
mean-prev = post-mean[tIndex];

for (x=xmin[0] ; x <=xmax[0] ; x+=xstep[0]) {
xIndex = round(x/xstep[0)-xmin[0]/xstep[0]);
newpdf xIndex /= norm;
oldpdf[xIndex = newpdf[xIndex];
mypdf[xIndex] = newpdf[xIndex];
varsum += (x - post-mean[tIndex])*(x -

post-mean[tIndex])*newpdf[xIndex]*xstep[0];
I

post-var[tIndex] = varsum;
var-prev = post-var[tIndex];

}

mxFree(newpdf);
mxFree(oldpdf);
mxFree(lam da);
return;

}

MEX/MATLAB Code For Generating Realization of Point Process Using
Time-Rescaling Theorem

/*
Function: simspikes.c (MEX FILE)
simulate a realization of a Stochastic Point Process with
intensity function of the form lambda(t) = exp(u + b*x(t))
where u and b are constants and
x(t) is a continuous time AR(1) process.
A Time interval, delta, is chosen such that the probability of
2 or more spikes in a time interval of lenght delta is very small.
The CT AR(1 process is then "sampled" at delta-spaced intervals
and the samples are used to generate a realization of the
point process using the time-rescaling theorem

*/

#incl ude "/home/omonoba/work/Laplace_..ApproximationResearch/mexheader. h"

68

#include "mex.h"
#include "sys/time.h"
#include "unistd.h"
#include "stdlib.h"

#define MAXSPIKES 1e6

INTERFACE FUNCTION
*/

void mexFunction(
int nlhs,
mxArray *plhs[],
int nrhs,
const mxArray *prhs[])

{
double
double
double
double
double
double
double
double
double
double
double
double
double
double
mxArray
double

int
int
int

/* number of expected outputs */
/* array of pointers to output arguments */
/* number of inputs */
/* array of pointers to input arguments */

*spike,*spikePos,*spikeTime;
*numinputs;
*alpha;
*sigSD;

*u;
*b;
*timestep;
*endtime;
*lambda;
lambdaInt;
lambdaEst;
innovation;
t,t-int;
*rhs1[1],*lhs1[1];
*z,*mu;

j, k;
tIndex,nIndex, oIndex;
outputsize;

/* check numbers of arguments */
if ((nrhs != 8) 11 (nlhs 1= 3)) {

mexErrMsgTxt("Usage: [spike spikePos spikeTime] = simspikes(numinputs, alpha,
sigSD, u, b,x, timestep, endtime)");

I

numinputs = mxGetPr(prhs[O]);
alpha = mxGetPr(prhs[l]);
sigSD = mxGetPr(rhs[2]);
u = mxGetPr prhs 3]);
b = mxGetPr(rhs 4]);
x=mxGetPr(pr s[5);
timestep mxGetPr(prhs[6]);
endtime =mxGetPr(prhs[7]);

/* create the output datastructures */
outputsize = (int) (endtime[O]/timestep[0]);
mexPrintf("os = %d\n",outputsize);
plhs[O] = mxCreateDoubleMatrix(numinputs[O],
spike = mxGetPr(plhs[O]);
plhs[1] = mxCreateDoubleMatrix(numinputs[0],
spikePos=mxGetPr(plhs[1]);
plhs[2] = mxcreateDoubleMatrix(numinputs[0],
spikeTime=mxGetPr(plhs[2]);

outputsize,

outputsize,

outputsize,

mxREAL);

mxREAL);

mxREAL);

lambda = (double *) mxcalloc(outputsize*numinputs[O], sizeof(double));

rhsl[O] = mxcreateDoubleMatrix(1, 1, mxREAL);
mu = mxGetPr(rhsl[0]);
mu[0]=1;

for (j=O ; j<numinputs[O] ; j++)
{

t = 0;

69

while (round(t) < round(endtime[OJ))
{

lambdaInt = 0;
mexCallMATLAB(1, lhsl, 1, rhsl, "exprnd");
z = mxGetPr(lhsl[0]);

while ((lambdaInt < z[0]) && (round(t) < round(endtime[O]-timestep[O])))
{
t += timestep[0];

tIndex = (int) (t/timestep[O]);
lambda[j+(int) numinputs[]*tIndex] = exp Cu j+(int)

numinputs[O]*tIndex]+b[j+(int) numinputs[]*tIndex *x[tIndex]);
lambda[j+(int) numinputs[O]*(tIndex-1)] = exp (u (int)

numinputs[] *(tIndex-1)] +b[j+int) numinputs[0]*(tIndex1-)] *x [tIndex-1]);
lambdaInt += 0.5*lambda[i+(int) numinputs [0*tIndex]*timestepLO);
lambdaInt += 0.5*lambda[J+(int) numinputs [O*(tIndex-1)]*timestep[O];

}

if (t < endtime[0])

}

spike[j + (int) numinputs[0]*(tIndex-1)] = 1;
spikeTime[j + (int) numinputs[0]*(tIndex-1)]=t-timestep[0];
spikePos[j+ (int) numinputs[0]*(tIndex-1)]=x[tIndex-1];

}

mxFree(lambda);
return;

MEX/MaTLAB function for calculating Exact Posterior Density at
a given Timepoint

/*
instantexactPDF.C -
plots exact posterior density at a specified time point

#include "/home/tzvi/spline/mexheader.h"
#include "mex.h"
#include "sys/time.h"
#include "unistd.h"

#define MAXSPIKES 1e6
#define PI 3.1415926

INTERFACE FUNCTION
*/

void mexFunction(
int nlhs,
mxArray *plhs[],
int nrhs,
const mxArray *prhs[])

{
double
double
double
double
double
double
double
double
double
double
double
double
double
double
int
int

/* number of expected outputs */
/* array of pointers to output arguments */
/* number of inputs */

/* array of pointers to input arguments */

*pdf,*numb,*numbused,*numgrid;
*spike,*spikeobs;
*alpha, *sigSD;
*xmin, *xmax, *spacestep;
*u, *b;
*timestep, *endtime;
*initvar, *initmean;
*newpdf, *oldpdf;
x xold, t;
*iambda;
CKint;
transmean, transSD, transpdf, spikepdf;
meansum, varsum;
norm;
xIndex, oldIndex, tIndex,nindex,sumIndex;
outputsize, pdfsize,num,grid,numused,target-time;

register int k;

70

}

/* check numbers of arguments */
if ((nrhs != 15) 11 (nlhs 1)

mexErrMsgTxt("Usage: [pdf] = instantexactPDF(alpha, sigSD, u, b, timestep,
endtime, xmin, xmax, spacestep, spike, initmean, initvar,numb,numgrid,numbused)");

}

alpha = mxGetPr(prhs[F]);
sigSD = mxGetPr(rhs 1]);
u = mxGetPr(prhs 12));
b = mxGetPr(prhs 3]);
timestep = mxGetPr(prhs[4]);
endtime = mxGetPr(prhs[5]);
xmin = mxGetPr (prhs[6] ;
xmax = mxGetPr(prhs [7]);
spacestep = mxGetPr(pr s[8]);
spike = mxGetPr(prhs[9])
initmean = mxGetPr(prhs[10]);
initvar = mxGetPr(prhs 11]);
numb = mxGetPr(prhs[12)-
numgrid = mx(GetPr(prhs113])
numbused = MXGetPr(prhs[14]);

/* create the output datastructures */
pdfsize = (int) (xmax[0]/spacestep[0]-xmin[0]/spacestep[0])+1;
plhs[0] = mxcreateDoubleatrix(1, pdfsize, mxREAL);
pdf = mxGetPr(plhs[0]);

num = numb[0]
numused = numbused[0];
grid = numgrid[0];
newpdf = (double *) mxCalloc (pdfsize, sizeof(double ;
oldpdf = (double *) mxcalloc(pdfsize, sizeof(double ;
lam da = (double *) mxcalloc(numused, sizeof(double));
spikeobs = (double *) mxcalloc(numused, sizeof(double));

/* Initialize the pdf to the right value */
for (x=xmin[O] ; x <=xmax[0] x+=spacestep[O]) {

xindex = round(x/spacestepO]-xmin[O]/spacestep[0));
newpdf[xIndex] = 1/sqrt(2*PI*initvar[O]) * exp(-(x-initmean[0])*(x-

initmean[0])/2/initvar[O]);
oldpdf[xIndex] = newpdf[xIndex];

}

for (t=0 ; t<=endtime[0] ; t+=timestep[0]) {
tindex = round(t/timestep[0]);
nindex = grid*tIndex;

for(k=0;k<numused;k++) {
spikeobs[k]=0;
for(sumIndex = nIndex;sumIndex < nindex+grid ;sumIndex++) {

spikeobs[k] += spike[k+num*sumIndex];
}

}

norm = 0;
meansum = 0;
varsum = 0;

for (x=xmin[0] ; x <=xmax[0] ; x+=spacestep[0]) {
xIndex = round(x/spacestep[0]-xmin[0]/spacestep[0]);
for(k=0;k<numused;k++){

lambda[k] = exp(u[k+num*grid*tIndex]+b[k+num*grid*tIndex]*x);
}
spikepdf = 1.0;
for(k=0;k<numused;k++){

spikepdf *= exp(-lambda[k]*timestep[0]);
if (spikeobs[k]) spikepdf *= lambda [k] *timestep[o];

}

CKint = 0;
for C xold=xmin[0] ; xold <=xmax[0] ; xold+=spacestep[0]) {

oldIndex = round(xold/spacestep[0]-xmin[0]/spacestep[0]);
transmean = alpha[O]*xold;
transSD = sigSD[0];
transpdf = 1/sqrt(2*PI)/transSD * exp(-(x-alpha[0]*xold)*(x-

alpha[0]*xold)/2/transSD/transSD)
CKint += transpdf*oidpdf[oldIndex]*spacestep[0];

}
newpdf[xIndex] = spikepdf*cKint;
norm += newpdf [xIndex]*spacestep[0];

71

}
for (x=xmin[0] ; x <=xmax[O] - x+=spacestep[O]) {

xindex = round(x/spacestep[0]-xmin[O]/spacestep[0]);
newpdf[xIndex /= norm;
old df[xIndex] = newpdf[xindex];
pdf xIndex] = newpdflxIndex];

}

}

mxFree(newpdf);
mxFree(oldpdf);
mxFree(lambda);
mxFree(spikeobs);

return;
}

MEX/MaTLAB function for calculating Exact Mean and Variance For the
Point Process model

/*
exactmeanvar.c - Plots Exact Mean and Variance For the Point

Process model
*/

#include "/home/omonoba/work/Laplace.ApproximationResearch/mexheader.h"
#include "mex.h"
#include "sys/time.h"
#include "unistd.h"

#define MAXSPIKES 1e6
#define PI 3.1415926

/ **
* INTERFACE FUNCTION
*/

void mexFunction(
int nlhs, /* number of expected outputs */
mxArray *plhs[], /* array of pointers to output arguments */
int nrhs, /* number of inputs */
const mxArray *prhs[]) /* array of pointers to input arguments */
{

double *pdfmean, *pdfvar;
double *spike;
double *numinputs;
double *alpha, *sigSD;
double *xmin, *xmax, *spacestep;
double *u, *b;
double *timestep, *endtime;
double *initvar, *initmean,*numb,*numbused,*numbgrid;
double *newpdf, *oldpdf;
double x, xold, t;
double *1ambda,*spikeobs;
double cKint;
double transmean, transSD, transpdf, spikepdf;
double meansum, varsum;
double norm;
int xIndex, oldIndex, tIndex,sumindex,k,grid,num,numused,nIndex;
int outputsize, pdfsize;

/* check numbers of arguments */
if ((nrhs != 15) 11 (nlhs != 2)) {

mexErrMsgTxt("Usage: [pdfmean pdfvar] = exactmeanvar(alpha, sigSD, u, b
timestep, endtime, xmin, xmax, spacestep, spike, initmean,
initvar,numb,numbused,numbgrid)");

I

alpha = mxGetPr prhs[0]);
sigSD = mxGetPr(rhs[1]);
u = mxGetPr(prhst2J);
b = mxGetPr(prhs[3]);

72

timestep = mxGetPr(prhs[4]);
endtime = mxGetPr(prhs[5]);
xmin = mxGetPr(prhs[6]);
xmax = mxGetPr(prhs[7]);
spacestep = mxGetPr(prhs[8]);
spike = mxGetPr(prhst9]);
initmean = mxGetPr(prhs[10]);
initvar = mxGetPr(prhs [11);
numb = mxGetPr(prhs[12]);
numbused = mxGetPr(prhs [13);
numbgrid = mxGetPr(prhs[14]);

/* create the output datastructures */
outputsize = (int) (endtime[O]/timestep[O]);
pdfsize = (int) (xmax[0]/spacestep[0]-xmin[0]/spacestep[0])+2;
plhs[0] = mxcreateDoubleatrix(1, outputsize, mxREAL);
pdfmean = mxGetPr(plhs[0));
plhs[1] = mxcreateDoubleMatrix(1, outputsize, mxREAL);
pdfvar = mxGetPr(plhs[1]);

num = numb[O];
grid = numbgrid[O];
numused = numbused[O];

newpdf = (double *) mxcalloc(pdfsize, sizeof(double));
oldpdf = (double *) mxCalloc (pdfsize, sizeof(double));
lam da = (double *) mxcalloc(num, sizeof(double));
spikeobs = (double *) mxcalloc(num, sizeof(double));

/* initialize the pdf to the right value */
for (x=xmin[O] ; x <=xmax[O] ; x+=sacestep[0]) {

xIndex = round(x/spacestep[O]-xmin[O]/spacestep[0]);
newpdf[xIndex] = 1/sqrt(2*PI*initvar[0)) * exp(-(x-initmean[0])*(x-

initmean[0])/2/initvar[0]);
oldpdf[xIndex] = newpdf[xIndex];

}

for (t=0 ; t<endtime[0] ; t+=timestep[0]) {
tindex = round(t/timestep[0]);
nindex = grid*tIndex;

for(k=0;k<numused;k++) {
spikeobs[k]=0;
for(sumIndex = nIndex;sumindex < nindex+grid ;sumIndex++) {

spikeobs[k] += spike[k+num*sumIndex];
}

}

norm = 0;
meansum = 0;
varsum = 0;

for (x=xmin[0] ; x <=xmax[O] ; x+=sPacestep(O]) {
xIndex = round(x/spacestep[0]-xmin[0]/spacestep[O]);
for(k=0;k<numused;k++){

lambda[k] = exp(u[k+num*grid*tIndex]+b[k+num*grid*tIndex]*x);
I
spikepdf = 1.0;
for(k=O;k<numused;k++){

spikepdf *= exp(-l ambda[k]*timestep[0])
if (spikeobs[k]) spikepdf *= lambda[k]*timestep[0];

}
CKint = 0;
for (xold=xmin[O] ; xold <=xmax[0] ; xold+=s pacestep[0]) {

oldIndex = round(xold/spacestep[0]-xmin[0]/spacestep[0]);
/* transmean = exp(-alpha[O]*timestep[0])*xold;

transSD = s rt((1-exp(-
2*alpha[0]*timestep[0]))*sigSD[0]*sigSD[]/2/alpha[O]); *

transSD = sigSD[0 ;
transmean = alpha 0]*xold;
transpdf = 1/sqrt 2*PI)/transSD * exp(-(x-transmean)*(x-

transmean)/2/transSD/transSD);
CKint += transpdf*oldpdf[oldIndex]*spacestep[0];

I
newpdf[xIndex] = spikepdf*CKint;
norm += newpdf[xIndex]*spacestep[O];
meansum += x*newpdf[xIndex]*spacestep[O];
if ((tIndex == 200) 11 (tIndex == 400) 11 (tIndex == 600) |1 (tIndex

== 800) mexPrintf("x = %f, E = %f\n",x,spikepdf*CKint);

73

pdfmean[tindex] = meansum/norm;
if ((tIndex == 200) |1 (tindex == 400) I (tIndex == 600) I| (tindex ==

800)) mexprintf("norm = %f, mean = %f\n",norm,pdrmean[tIndex]);
for (x=xmin[0] ; x <=xmax[0] ; x+=spacestep[0]) {

xIndex = round(x/spacestep[0]-xmin[0]/spacestep[0));
newpdf[xIndex /= norm;
oldpdf[xIndex] = newpdf[xIndex];
varsum += - pdfmean[tindex])*(x -

pdfmean[tIndex])*newpd[xIndex]*spacestep[0];
}

pdfvar[tindex] = varsum;

I
mxFree(newpdf);
mxFree(oldpdf);
mxFree(lambda);
mxFree(spikeobs);
return;

I

74

References

Anderson, B.D.O., & Moore, J.B., (1979). OptimalFiltering. New Jersey: Prentice-Hall.

Bamdorff-Nielsen, O.E. (1983). On a formula for the distribution of the maximum likelihood

estimator. Biometrika, 70, 2, 343-365.

Brown, E.N., Barbieri R., Ventura V., Kass, R.E., & Frank L.M. (2001). The time-rescaling theorem

and its application to neural spike train data analysis. Neural Computation, 14, 325-346.

Brown, E.N., Barbieri R., Eden U.T., & Frank L.M. (2003). Likelihood methods for neural data

analysis. In: J. Feng (Ed.), Computational neurosience: A comprehensive approach (pp. 253-286). London:

CRC.

Brown, E.N. (2005). Theory of Point Processes for Neural Systems. In: Chow CC, Gutkin B, Hansel

D, Meunier C, Dalibard J, (Eds.) Methods and Models in Neurophysics. Paris, Elsevier, Chapter 14, pp. 691-

726.

Daley, D., & Vere-Jones, D. (1998). An introduction to the theog ofpoint processes. New York: Springer-

Verlag.

Davison, A.C. (1986). Approximate predictive likelihood. Biometrika, 73, 2, 323-332.

De Bruijn, N.G. (1981). Aymptotic methods in analysis. New York:Dover.

Eden, U.T., Frank, L.M., Solo, V., & Brown, E.N. (2004). Dynamic analysis of neural encoding by

point process adaptive filtering. Neural Computation, 16, 971-998.

Eden, U.T. (2005). Point process filters in the analysis of neural spiking models. Unpublished Thesis

Dissertation.

Julier, S.J., & Uhlmann, J.K. (1994). A general method for approximating nonlinear transformations of

probability distributions.

75

Julier, S.J., Uhlmann, J.K., & Durrant-Whyte, H.F. (1996). A new approach for the nonlinear

transformation of means and covariances in linear filters. IEEE Transactions on Automatic Control.

Julier, S.J., & Uhlmann, J.K. (1997). A new extenstion of the IKalman filter to nonlinear systems, Proc.

of Aerosense: The 11" International Symposium on Aerospace/Defence Sensing, Simulation and Controls, Orlando,

Florida, Vol. Multi Sensor Fusion, Tracking and Resource Management II.

Kailath, T., Sayed, A.H., & Hassibi, B. (2000). Linear Estimation. Upper Saddle River, NJ: Prentice Hall.

Laha, R.G. & Rohatgi V.K. (1979). Probabilio Theory.

Luenberger, D.G. (1969). Optimization by vector space methods. New York: John Wiley & Sons.

Reid, N. (1988). Saddlepoint methods and statistical inference. Statistical Science, 3, 2, 213-238.

Reid, N. (1996). Asymptotic Expansions. Engclopedia of Statistical Sciences .

Ross, S.M. (1996). Stochastic Processes. New York: John Wiley & Sons.

Rudin, W. (1976). Pinzples ofMathematicalAnaysis. New York: McGraw-Hill

Smith, A.C., & Brown, E.N. (2003). Estimating a state-space model from point process observations.

Neural Computation, 15, 965-991.

Snyder, D., & Miller, M. (1991). Randompointpcesses in time and space. New York: Springer-Verlag.

Tanner, M.A. (1993). Toolsfor statistical inference, 2"d ed. New York, NY: Springer-Verlag.

Tiemey, L., & Kadane, J.B. (1986). Accurate approximations for posterior moments and marginal

densities. Journal of the American StatisticalAssociation, 81, 393, 82-86.

Tiemey, L., Kass R.E., & Kadane, J.B. (1989). Approximate marginal densities of nonlinear functions.

Biometrika, 76, 3, 425-433.

76

