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Abstract

In this thesis, we deal primarily with the multi-baseline SAR configuration utilizing
three satellites. Two applications of InSAR, multi-baseline height retrieval and multi-
baseline compensation of CCD’s slope biasing effects, are first examined in details. An
optimal baseline-weighted height averaging technique is introduced. Phase averaging,
a novel height retrieval technique, combines the multi-baseline phase data into one,
such that only one set of heights is retrieved from the three-satellite configuration.
This approach outperforms single baseline height retrieval and allows application
of the conventional two-satellite height retrieval process on the multi-baseline data,
without need for excessive modifications. Slope biasing effects, inherent in multilook
coherence estimator, make it difficult to identify if low or medium coherence values
are results of an actual scene change or an undulating terrain. This ambiguity can be
best resolved by accounting for the topographic phase variations via prior knowledge
of the original height profile, whose precise retrieval requires a multi-baseline satellite
configuration. The three-satellite setup is then related to a realistic cartwheel config-
uration, where the resulting errors in the height retrieval and CCD process, due to the
constant cartwheel rotation, are analyzed. It is found that baseline-weighted averag-
ing becomes a necessary step for the correct and automated retrieval of heights while
change detection works equally well when considering a realistic cartwheel setup, even
though its performance becomes dependent on the cartwheel’s start position. Lastly,
errors in satellite positions are introduced and their impacts on height retrieval and
CCD are studied. In CCD, it is shown that the effects of satellite position errors
is minimal since in this case, only the local terrain profile rather than the absolute
terrain matters. However, in height retrieval, small errors in the positions propagate
into unacceptably large misalignments. Attempts to account for these errors without
prior knowledge of any ground truths are also made, making use of cost minimization
functions.
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Chapter 1

Introduction

1.1 Introduction to SAR Interferometry

Conventional synthetic aperture radar (SAR) systems provide a two-dimensional map
of the radar reflectivity of an illuminated scene, with one axis along the flight track
(“along-track direction”) and the other defined as the range from the SAR to the
target (“across-track direction”). The interpretation of such a SAR image is partly
distorted since the three-dimensional world is collapsed to two dimensions [1). SAR
Interferometry (InSAR) enables the measurement of the third dimension.

Whereas conventional SAR uses a single antenna, InSAR requires two antennas sep-
arated by a baseline. Graham [2] first demonstrated InSAR by using two vertically
separated antennas to simultaneously receive backscattered signals from the scene.
Signals from both antennas are recorded and processed to yield two complex SAR
images of the same scene. Phases measured in each image are differenced on a pixel-
by-pixel basis to obtain the geometrical information about the scene [3]. With knowl-
edge of the interferometer geometry, this phase difference can then be converted into
an altitude for each of the image point. It is this addition of a third measurement to
the along and cross track location of every pixel that allows a reconstruction of the
three-dimensional locations of the targets.

InSAR systems can be airborne or spaceborne, and are typically employed to retrieve
the three-dimensional height information, otherwise known as the Digital Elevation
Model (DEM). Other applications of InSAR include measuring the radial velocity
of moving scatterers, tracking subtle terrain motions, and detecting slight changes
in scene content. The latter is commonly referred to as Coherent Change Detection
(CCD). As well, since SAR systems provide their own illumination in the microwave
frequencies regime, they can image in daylight or at night, and in nearly all weather
conditions.

InSAR requires at least two antennas to form an interferometric baseline, with the
wrapped phase difference data being stored in a two-dimensional map, called the
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interferogram. For the rest of the thesis, we shall assume that we are dealing with
a spaceborne InSAR system and that each antenna is attached to a satellite. As
such, reference to an antenna is equivalent to that of a satellite. A major part of
our studies considers a three-satellite setup instead of the conventional two-satellite
configuration.

1.2 Problem of Interest

In this thesis, we deal primarily with the multi-baseline SAR configuration utilizing
three satellites. Two applications of InNSAR, multi-baseline height retrieval and multi-
baseline compensation of CCD'’s slope biasing effects, are first examined in details.
The three-satellite setup is then related to a realistic cartwheel configuration, where
the resultant errors introduced to the height retrieval and CCD process, due to the
constant cartwheel rotation, are analyzed. As well, errors in satellites’ positions are
introduced and their impacts on height retrieval and CCD are studied.

For the rest of Chapter 1, the simulation test model used for terrain height retrieval
and coherent change detection is presented. This is followed by an overview of the
height retrieval and CCD process.

Introduction of a third satellite to the conventional two-satellite InNSAR provides us
with three interferograms instead of one. In Chapter 2, we look into ways on making
use of these additional data to improve the height retrieval process. In particular,
the height averaging and phase averaging techniques applied on a non-collinear three-
satellite setup will be discussed. Phase averaging, which involves combining the three
interferograms into one, is a novel contribution of the thesis and shall be addressed
in greater details. These include discussing various implementations of the phase
averaging method and presenting simulation results of the retrieved height. Apart
from attaining the DEM, InSAR is also widely used to detect temporal changes of
the illuminated scenes, by observing them at different times [10, 11, 12]. Retrieving a
CCD map by applying multilook coherence estimator [4] ignores the true topography
and is therefore, slope dependent [13]. For the rest of Chapter 2, we shall look into
ways of overcoming the slope biasing effects on CCD. In particular, we shall examine
the performance of a multi-baseline approach in compensating for these effects.

In chapter 3, we related our three-satellite configuration to a more realistic setup by
considering an interferometric cartwheel [6, 7], with the eventual hope of account-
ing for the errors introduced to the height retrieval and CCD process. A circular
cartwheel is setup such that the three satellites are in constant motion even within a
snapshot of the interferogram. However, only a set of the height retrieval parameters,
corresponding to the satellite positions at the beginning of the shot, are assumed to
be known. In that case, the interferogram may be perceived as imperfect for height
inversion and CCD. Nonetheless, it was found that a self-compensating mechanism
exists within such a setup itself so that we are still able to retrieve the terrain heights
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correctly, upon application of a weighted averaging scheme. On the other hand, CCD
is found to be less affected by the cartwheel’s rotation but its performance is depen-
dent on the relative positions of the satellites in the cartwheel. Cartwheel’s impact
on both height retrieval and CCD shall be addressed in this chapter.

Lastly, we account for the satellite positioning errors in Chapter 4 and attempt to
retrieve the true satellites positions without knowledge of any ground truths, which
would otherwise propagates into unacceptably large misalignments in the retrieved
terrain profiles. This was achieved with cost minimization functions in a noiseless
environment. As well, impacts of satellite positioning errors on CCD applications are
studied.

This thesis concludes with a summary of the main findings.

1.3 The Test Model

Flight Direction
® /

S
I

Ground Range Direction

Figure 1-1: Three-dimensional coordinate system of a three-satellite InNSAR setup.

Figure 1-1 shows a three-dimensional three-satellite SAR system. Each antenna is
attached to a satellite and assumed to be active (i.e. both transmitting and receiving
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signals). The satellite system is taken to be in stable orbit around earth, emitting
signals over specified terrain of interest. The microwave signals transmitted by the
antennas impinge on the terrain below, and backscattering effects allow a significant
portion of the signal energy to get reflected back to the relatively slow moving SAR
system. Since height retrieval is a post processing step done after data collection,
we may consider the three satellites as coexisting in a single-pass orbit, or a single
satellite passing over the same scene in consecutive passes (repeat-pass). One ma-
jor concern in the latter is temporal decorrelation [14], which follows from physical
changes in the scene over the time lapse between observations, and leads to deterio-
ration of the DEM’s quality. As we shall see in section 1.5, measurement of temporal
decorrelation is in fact the primary focus in CCD. In the rest of this thesis, we shall
assume a single-pass orbit due to its resemblance to the interferometric cartwheel.

In the three-dimensional coordinate system in figure 1-1, the single-pass SAR sys-
tem advances in the azimuth direction, with its antennas side-looking in the range
direction. Due to the extremely short time interval required to capture a scene, the
satellites’ heights above the ground is assumed to be constant. However, this no
longer holds true when an interferometric cartwheel is considered, as we shall see in
Chapter 3. As well, the Earth’s curvature and its spin is ignored, allowing a flat earth
assumption.

1.3.1 Two-Dimensional Three-Satellite Setup

In figure 1-2, we define a two-dimensional coordinate system typically used for side-
looking InSAR. The diagram is a cut in the azimuth direction and contains the ground
range and height directions (x-z coordinates). After applying pixel co-registration?,
we may assume the three satellites to simultaneously lie on this plane cut. B;; is the
length of the baseline formed between SAR i and SAR j, with {i,5} = {1,2,3},i # 7,
while p; is the absolute one-way slant range from satellite ¢ to the ground pixels. A
baseline elevation angle, a;;, corresponding to each B;; is defined as the angle between
the baseline and the horizontal. 6 is the look angle and H is the height of SAR 1
above ground. The illuminated scene is at a distance z away from SAR 1’s nadir
while Az represents the height information that we are interested in.

In the conventional two-satellite INSAR where only SAR 1 and SAR 2 exist, the above
setup simplifies as follows:

By =a3=p3=0 (1.1)

Bio=Bi3 o012 =o0u3 (1.2)

Hence, we can think of the three-satellite case as a combination of three distinct sets
of the two-satellite setup. This approach enables us to retrieve three sets of height

1See section 1.4.1
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Figure 1-2: Two-dimensional coordinate system of a three-satellite InSAR setup.

information, which may be further post-processed (i.e. height averaging).

Let’s consider a pair of satellite and their SAR images, i.e. SAR 1 and SAR 2 in
figure 1-2. Each pixel in the SAR image corresponds to a point on the ground and
contains a complex valued signal, A;e%* and A,e’2. We can obtain a coherence value
between the two images using the correlation coefficient, in its simplest form:

Appei®n = (4,6%) (A,6%)" (1.3)

where Ajo = A As and ¢y2 = ¢1 — ¢o. While its phase data is essential in retrieving
the DEM, its magnitude is a measure of the signal’s reliability and is typically used
for assigning the weighting values in the weighted phase unwrapping method.

One way to avoid attaining unreliable data (i.e. A;2 = 0) is to ensure that the baseline
length between any pairs of satellites used for height retrieval is less than the critical
baseline length [14, 15, 16], in eq. 1.4:

Ap

Beritical = 555——7 .
eritieal = 5 R, cos2 0 (14)

A is the wavelength of the transmit signal, p is the one-way slant range from the SAR
to the center of a ground pixel, R, is the ground range resolution, and @ is the look
angle. Eq. 1.4 is satisfied when the change in look angle between SAR 1 and SAR
2 is sufficient to cause total decorrelation in backscattering from every ground pixel
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[14].

We shall assume that all pixels have magnitudes of one in our simulations and use a
residue weighted scheme? for phase unwrapping instead. This allows us to only deal
with the interferometric phase data for height retrieval. However, this simplification
can no longer be made when dealing with CCD.

The interferometric path length, 4, is defined as the one-way slant range difference
between the satellites and the ground targets.

012 =p1— P2 (1.5)

For an interferogram, ®,,, formed from SAR 1 and SAR 2, the interferometric phase
difference represented by each of its pixel is obtained through the following relation-
ship [8]:

4dT

4
Dy = —;5 = ’X‘(pl — p2) (1.6)

Eq. 1.6 is only true in the ideal case. In reality, the interferogram contains wrapped
phase data and is corrupted by noise3.

1.3.2 Test Terrain Model

Unless otherwise specified, the test terrain used in simulations is shown in Figure 1-3.
It is a valley with an absolute height of 200m. The mathematical representation of
the terrain is:

Y
Az =50 sin(;-z% + 550) + 50 sin(§2—6 + 550); (L.7)

where Az is the terrain height, X and Y are the distances from SAR 1’s nadir in the
ground range and azimuth direction respectively.

1.3.3 Simulation Parameters — Three or Two Satellites

With reference to figure 1-2 for a three-satellite non-collinear case, the system param-
eters required for simulations are defined in table 1.1. If considering a collinear setup
instead, the only modification needed is that a2 = a3 = 35° and By3 = 200m.

Since the three-satellite case can be related to the two-satellite case as explained in
section 1.3.1, it is sometimes useful to examine the conventional two-satellite (i.e.
SAR 1 and SAR 2) setup too. The systems parameters for such a setup is shown in
table 1.2.

2See section 1.4.4
3See section 1.3.4
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Figure 1-3: Two-dimensional plot of the test terrain.

Parameter Parameter Value
Baseline length, B 150m
Baseline length, Bis 250m

Baseline elevation angle, a;s 30
Baseline elevation angle, a3 45°

Azimuth resolution, Ay 4m
Ground range resolution, Az dm

No. of pixels 256 x 256
Height of SAR 1, H 5 x 10°m

Distance from nadir, X,Y 3 x 10°m
Wavelength, A 0.3m

Table 1.1: Simulation parameters for three-satellite non-collinear setup.

Parameter Parameter Value
Baseline length, B, 200m
Baseline elevation angle, a9 35°
Azimuth resolution, Ay dm
Ground range resolution, Az 4m
No. of pixels 256 x 256
Height of SAR 1, H 5 x 10°m
Distance from nadir, X,Y 3 x 10°m
Wavelength, A 0.3m

Table 1.2: Simulation parameters for two-satellite setup.
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1.3.4 Noise Model

Thermal noise, in particular speckles (see [18]), affects the phase measurements. Pix-
els misregistration also contributes to phase error. In order to account for these noises
in our simulation model, the following noise model is adopted:

i3
AP =n—{-1,1 1.8
noes{-1,1} (1.
A® is the white phase noise added to every pixel in the ideal interferogram of eq. 1.6.
These errors are independent from pixel to pixel. n is the noise level in degrees and
is used to specify the maximum magnitude of distortion made to the interferogram.
{—1,1} represents a random number uniformly distributed between —1 and 1.

The above noise model is chosen mainly due to its simplicity. However, not all
phase noises are white. For instance, [17] explained that besides the unavoidable
white noise term, the interferometric phase data include an addictive term due to
atmospheric inhomogeneities. Nonetheless, it may be argued that because of noise’s
random nature, the various noise models should have similar impacts on our height
retrieval methods.

1.3.5 Root Mean Square Error

In order to evaluate the performances of our implementations in this thesis, the root
mean square (RMS) error is computed. In particular, if we are retrieving heights,
then, the RMS height error will be evaluated. For an interferogram of size a by b, the
RMS height error is computed as:

1 a b ' o
r.m.s height error = o Z Z[(h%‘”“ - h?;'gm“l)ﬂ (1.9)

i=1 j=1

where h*¢ is the noise-affected height retrieved at the (i*", j**) pixel and h;’;igi"“l is
the true terrain height at the (i, j®*) pixel.

Since noise is random, a more accurate measure of performances would be the mean
RMS height error defined in eq. 1.10.

N
1
mean r.m.s height error = ]—V-Z(r.m.s height error); (1.10)
i=1

where N is the number of simulation trials. In this thesis, N is set to 20. The RMS
error is also the standard deviation away from the true value as a result of noise’s
distortion. In the ideal case, mean RMS height error is zero.

Wong [8] has shown that the RMS height error, noise level and baseline length are
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related as follows: n
mean r.m.s height error B (1.11)

The above relationship suffices for a two-satellite or three-satellite collinear setup,
provided that the baseline length is less than the critical baseline length of eq. 1.4.
In the three-satellite non-collinear setup,the perpendicular baseline [17] shall instead
be considered such that

n
mean T.m.s height error « B (1.12)
1

B, is the projected baseline length in the direction perpendicular to the look direction,
as shown in figure 1-4. Here, the rays from each satellites to a single target point are
approximated to be almost parallel since p > B.

SAR2

Look Direction
Figure 1-4: Perpendicular baseline length.

1.4 Height Retrieval Process

In this section, the various post-processing steps used in our simulator for height
retrieval are presented. Assumptions made are highlighted as well. Figure 1-5 shows
an overview of the process.

1.4.1 Image Co-registration

Prior to determining the pixel-to-pixel phase differences of the interferogram, the two
complex SAR images has to be co-registered such that they are spatially aligned.
This is a non-trivial process due to skewed radar trajectories and differing look angles
[3]. In fact, misregistration in the range direction is more severe than in the azimuth
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Figure 1-5: Flow chart of the implemented height retrieval process.

direction since the phase centers of the antennas are usually well-aligned along-track
[16].

In general, co-registration requires the resampling of one of the images in both the
azimuth and range directions. Since we are more interested in studying the height
retrieval and CCD applications of InNSAR, as well as analyzing the errors introduced
by a cartwheel setup, we shall assume that each interferogram pixel is already aligned
spatially. Any additional such errors would be factored into the noise model of section
1.3.4.

1.4.2 Interferometric Phase Denoising
Since two-dimensional phase unwrapping of the interferogram is a noise sensitive pro-

cess, the presence of noise in measured interferograms directly affect the quality of
the retrieved DEM. Denoising is a process that remove noise from the measured in-
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terferograms prior to phase unwrapping.

Braunisch et al. [19] presented two methods of denoising: complex interferogram
averaging and wavelet denoising with soft-thresholding. The former uses a 3 x 3
moving-average filter where each pixel in the measured interferogram is replaced by
the complex average of the pixels over a localized window. An implementation of
this method is explained in [9]. In implementing the wavelet denoising with soft-
thresholding [20], we made used of the Daubechies orthogonal wavelet filters to per-
form a two-dimensional discrete wavelet transform (2D-DWT) decomposition, with
the coarsest scaling at level four. Although the details of this denoising approach will
not be elaborated further, it should be noted that thresholding here is automated.
In figure 1-6, we compare the above two denoising methods to the case where no
denoising is applied, in a two-satellite setup.

6 T T T T T T T T

—S— Without denoising
_| —8— Complex inteferogram denoising
—%— Wavelet denoisng with soft-thresholding

F-
T
1

w

N

Mean RMS height error (m)

50
Noise Level (degrees)

Figure 1-6: Comparison of the effects of interferometric phase denoising on height
retrieval, using a two-satellite setup.

Mean RMS height error (m)

Complex | Wavelet

Noise Level (°) | No Denoising | Averaging | Denoising
0 9.29 x 1078 0.0116 |3.28 x 10~*

Table 1.3: Mean RMS height error at noise level = 0°, after application of interfero-
metric phase denoising.
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From figure 1-6, it is obvious that the mean RMS height error is reduced after applica-
tion of denoising. In particular, in line with the conclusions of [19], wavelet denoising
outperforms complex interferogram averaging. However, it is noted in table 1.3 that
at 0° noise level, application of both denoising schemes result in higher error than
with no denoising. This is an unique case where we can perceive denoising as a dis-

ruptive process applied to an already ideal interferogram. In practice, noise is always
present.

Furthermore, it was observed in [19] that applications of both denoising methods to
the wrapped interferogram render the iteration in weighted least-squares phase un-
wrapping obsolete. This immediate convergence of phase unwrapping greatly reduces
the computation complexity of the height retrieval process. We shall, for the rest
of this thesis, always apply wavelet denoising with soft-thresholding to the measured
interferograms prior to phase unwrapping.

1.4.3 Flat Earth Phase Removal

The terrain height information is related to the absolute interferometric phase defined
in eq. 1.6 whereas the complex-valued interferogram is measured modulo 27 (wrapped
phase). As such, phase unwrapping is required to retrieve the absolute phase data.

Fringes are locations on the interferogram where 27 discontinuities occur. Existence
of a large number of fringes, resulting from large phase variations, may degrade the
performances of several phase unwrapping tools [21]. “Flat earth” phase removal is
used to reduce these phase variations. The idea is to flatten the phase by removing
a reference phase that characterizes the gross trend of the interferogram [22]. The
flattened phase (eq. 1.16) is then unwrapped and the reference phase added back to
yield an unwrapped and unflattened interferogram.

Since the satellites’ locations are known, we compute the reference phase by assuming
a flat terrain in the illuminated scene. A wrapping operator, W{.} is defined such
that

W{z+2m} =z (1.13)

where n is an integer and —m < < . Then, from eq. 1.6, the measured interfero-
gram (wrapped) is
P12 = W{®12} = W{12 +27n} (1.14)

Applying flat earth removal to reduce phase variations, eq. 1.6 becomes

ai 47r Q Q
ofit = (o=l = (= ™))

i o
= (o= o) = (ol = )
= Ppp— Vo (1.15)
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where p/™® and pf'® are the one-way slant range from SAR 1 and SAR 2 respectively

to the assumed flat terrain, and Wy, is the absolute flat earth phase removal term.

Note that p{lat, pél“t and hence, ¥, are known quantities. Since we are dealing with

wrapped measured data, eq. 1.15 is implemented as follows:

W{@{éat} = W{‘I)n - 11’12}
W{¢12 + 2mn; — 12 — 270y}
= W{¢2 — 12} (1.16)

Eq. 1.16 shows that a wrapped version of the absolute flat earth phase removal term,
112, is subtracted from the interferogram, before wrapping is carried out once more
to attain W{®/5"}. This output is then unwrapped to retrieve ®/5* and added to
W15 to attain the desired unwrapped data, ®;o.

1.4.4 Interferometric Phase Unwrapping

The measure phase differences are wrapped according to eq. 1.13 into the range
[—m, 7). Phase unwrapping is a process of recovering the lost integral number of cy-
cles, and must be carried out before terrain heights can be retrieved. Without the
presence of noise, fringes in the interferogram can be easily located and multiples of
2m added to produce an unwrapped data. However, noise-corrupted real-world data
necessitate the development of more sophisticated phase unwrapping algorithms.

Phase unwrapping can be generalized into two methods: local and global. Local
methods unwrap a pixel depending only on its nearest neighboring pixels whereas
global methods consider the entire set of pixels to be unwrapped. Weighted least-
squares unwrapping is a global approach that attempts to minimize the difference
between the wrapped derivatives of the measured data and the derivatives of the so-
lution. It is implemented by employing a rapid, iterative method based on fast cosine
transforms and preconditioned conjugate gradients to solve the least squares partial
differential equations [24, 25]. Residue-cut unwrapping, on the other hand, is a local
method where the solution is derived from integrating the fringes. It identifies the
residue (phase inconsistencies) in the interferogram and “balances” them by forming
branch cuts [26]. Other local methods include the region growing phase unwrapping
[27, 28, 29]. All these different approaches aim to reconstruct the absolute phase data,
starting from an interferogram distorted by noise, shadowing and layover effects.

Each of the above mentioned methods has its pros and cons. The strength of the
least-squares approach is that the phase values are unwrapped everywhere in the im-
age. However, errors leading to an underestimate of the recovered phase slopes follow
from the assumption that the unwrapped phase field is continuous everywhere. The
residue-cut method does not suffer from this problem since branch cuts can be formed
so that integrations are avoided at sites of inherent phase discontinuities, without hav-
ing to enforce continuity. This method, however, does not always yield a complete
solution. Zebker and Lu [30] suggested a hybrid method by using the residues of the
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residue-cut method as weights of the weighted least-squared method. They demon-
strated that this hybrid method perform the best in terms of unwrapping accuracy
when compared to the original residue-cut, least-squares or coherence-weighted least-

squares methods, while ensuring complete coverage. A similar conclusion is arrived
in [9].

We shall adopt this hybrid method for two-dimensional phase unwrapping in our im-
plementation and simply referred to it as the weighted least-squares method. Since
the algorithm works best with binary-valued weights [31], we assign a weight of zero
to pixels where residues exist and one otherwise.

1.4.5 Ground Control Point Alignment

Interferometric phase unwrapping process as described in section 1.4.4 only recover
the phase data to within a constant of the desired absolute phase. A known reference
height in the scene, commonly referred to as a ground control point (GCP), is needed
to evaluate this constant. In our simulations, we assumed that the GCP lies at the
(1,1) pixel of the interferogram.

1.4.6 DEM Retrieval

Upon recovery of the absolute phase data from the interferogram, we are now able to
retrieve the terrain heights (DEM) by using the geometry of the SAR setup [8]. For
the purpose of the following formulation, we shall again consider a two-satellite setup
of SAR 1 and SAR 2, with close reference to figure 1-2. Firstly, recognize that the
unwrapped phase, ®;, is directly proportional to the one-way slant range difference
of the satellites, as in eq. 1.6, such that

A
512 = E@lg (117)

Using cosine rule on the setup’s geometry, the following relationship between the look
angle, 6, and § can be established:

. _1( 012 B 2 )
012 = +sml( + - 1.18
2o By,  2p¢ 2Bpp;m (1.18)
Then, the height, Az, is obtain by
Az12 =H- p1 COS 912 (119)

Eq. 1.19 is applied on a pixel-by-pixel basis so that if we have a two-dimensional
interferogram, then, a three-dimensional DEM is obtained. Also, while the above
illustrates a two-satellite case using SAR 1 and SAR 2, the same approach works on
all pairs of satellites in the setup of figure 1-2, by using the appropriate ¢ and its
corresponding parameters B, 6, o, p and H.
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1.4.7 Foreshortening Correction

SAR systems measure data in the azimuth and slant range directions while in the
DEM, the heights are plotted against the azimuth and ground range directions. In
the former, it becomes possible that a taller object further away in ground distance
from the SAR’s nadir, to have a smaller slant range than a shorter object nearer
nadir. An illusion is created such that, in terms of slant range distances, the taller
object appears nearer to the SAR than it really is. This phenomenon is known as the
layover effects [32].

Foreshortening is a process that adjusts the position of each pixel along the range
direction to compensate for the fact that range pixels are not necessarily in order as
far as the ground dimension is concerned. An approximated correction term that is
dependent on the retrieved height [8] is added to the ground-projected slant range
distance of every pixel so that we are able to attain the (X + Az) ground distance of
figure 1-2. In this way, all pixels are shifted in the image and equal pixel spacing is
achieved by interpolation at the ground range resolution of the SAR configuration.

In our analysis, we shall assume that foreshortening correction are applied perfectly
so that we can only be concerned with the performance of height inversion due to
the multi-baseline configuration, and not how well foreshortening corrections are ac-
counted for. Nonetheless, any possible such errors can be factored crudely into our
noise model.

Next, an overview of InSAR change detection techniques is discussed.

1.5 Change Detection of Imaged Scenes

Change detection involves interrogating a scene with a SAR system at two different
times, ranging from hours to weeks. The resultant two SAR images, commonly re-
ferred to as the reference and test data [36], are used to determine where targets have
entered or left the imaged scenes between the two data acquisitions. Even subtle dif-
ferences, not visible to the naked eyes, can be detected. Applications of SAR systems
to identifying scene changes include the detection of vehicle movement [39], mines
deployment, urban development and geographical changes [40].

Two approaches to detecting changes are identified in [10]. The first set of techniques
detect changes based on differences in the magnitudes of the signal intensities in the
two images, by taking their ratios. The second set of techniques, also known as co-
herent change detection (CCD), accounts for the temporal decorrelation of speckle,
which can be achieved through the magnitudes of the complex cross correlation of the
SAR image pair. The two methods measure different properties of a scene. While the
coherent detection approach indicates whether the positions of the image scatterers
have been altered or totally changed, it provides no indication on the magnitudes
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of change in radar backscatter. On the other hand, the backscatter-power ratio
technique measures the magnitudes of the radar backscatter change, and thus, the
dielectric properties of the scenes so that change detection in soil moisture content or
surface roughness is possible.

In [37], the authors recognized the need to consider both the above change statistics
in order to properly characterize the scene changes and to reduce the false-alarm
rates. Fusion of both statistic is accomplished by forming a log-likelihood ratio. In
this thesis, we shall only be concerned with physical changes of the scene content and
the ability to discriminate between the reference and test data using coherent change
detection techniques.

The initial implementation to be analyzed here utilizes a single satellite antenna in a
nearly-exact repeating orbit, that forms the interferometer baseline by relating radar
signals on repeat passes over the same site. Our analysis will eventually involve mak-
ing use of two or more physical antennas (i.e. interferometric cartwheel configuration)
illuminating the ground simultaneously. Despite the antennas illuminating the same
scene at different times, received signals will remain highly correlated if the ground
is completely undisturbed [14].

1.5.1 Coherent Change Detection

Similar to eq. 1.3, a more general form of the correlation coefficient [4, 13] between a
pair of SAR images is

1 ei% — E{5.53}
S 0

where S; and S, are the complex values of the two SAR. images, E{.} is the ensemble
average, * is the complex conjugate and ¢ is the interferometric phase containing
topography information. The amplitude of eq. 1.20, |p|, called coherence, determines
the precision of the retrieved DEM and accounts for coherence losses when the SAR
images are acquired at different times. These losses include that due to physical
scene changes, which is our primary interest in this chapter. In section 1.5.2, three
decorrelation factors contributing to coherence loss shall be discussed.

Assuming that S;, Sz and S;S; are homogenous and ergodic in mean, eq. 1.20 may
be estimated locally, by ensemble averaging M x N neighboring pixels in the complex

data
M N
Z Z S1(m, n)S3(m,n)
lol = meln (1.21)
M

N M N
Z lel(m, n)|2 Z Z|S2(m7 n)IZ

m=1 n=1 m=1 n=1

32



where m and n are the spatial coordinates and 0 < |p| < 1. This is known as the
multilook coherence estimator [4] and is commonly used to detect changed regions of
a scene. In our implementation, constant amplitudes of the SAR data are assumed
[29] and square windows (i.e. M = N) of size 3 X 3 are used. Larger sized windows,
though better adapted to reducing the statistical scattering of the measurement, have
a greater trade-off in terms of the loss of spatial resolution and details.

According to [38], the above method can be classified as a pixel-based approach of
detecting changes. Another class would be the feature-based approach which is still
in the preliminary design stage and is capable of reducing misregistration problems
of SAR data. It should be highlighted that a first attempt in combining the two ap-
proaches has already been made [38] and the results are promising. Since accounting
for co-registration is not our focus in this thesis, this approach shall not be elaborated
further.

1.5.2 Decorrelation in Interferometric SAR Data

It was mentioned that if the illuminated scene is completed undisturbed, then the
coherence value, |p|, of the two SAR images of the same scene taken at different
times would be high. However, this is not always true since coherence losses are not
solely dependent on changes in the relative positions of the scene’s scatterers. Inexact
satellite repeat track leading to varying observation geometry of each SAR image is
another cause of coherence loss. In [14], three independent sources of decorrelation
has been identified: decorrelation due to the nonidentical sensors viewing directions,
Pspatial, decorrelation due to actual changes of the targets, piemporal, and lastly, scene
decorrelation due to thermal noises of the receivers, pshermai- An expression for the
total correlation was arrived as:

Ptotal = Pspatial+temporal+thermal = Pspatial - Ptemporal - Pthermal (122)

Ideally, we would want po to be entirely dependent on piempora; in CCD applications
such that papatiar and Pehermar €qual one. This way, we may infer the physical properties
of the scene without being confused by instrumental effects. However, pspatia = 1 can
only be achieved via an exact satellite repeat track, which is impractical to attain.
Hence, this non-zero baseline between the two satellite passes is a major contributor to
coherence losses and we seek to account for it in our coherence data. In eq. 1.4, Beritical
is the maximum separation between the satellite passes before pgpaiia; becomes zero.
In that case, total decorrelation in the backscattering signals occurs, i.e. psota = 0,
rendering the phase data useless for height retrieval. As well, it is no longer possible
to retrieve the value of piempora-

Having introduced the simulation test model as well as the general height retrieval
and CCD process, we shall next examine in greater details the multi-baseline height
retrieval techniques. The slope biasing effects on CCD will be discussed and possible
solutions presented.
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Chapter 2

Multi-baseline Height Retrieval
and CCD

The introduction of a third satellite, SAR 3, to the conventional InSAR two-satellite
configuration of SAR 1 and SAR 2 provides two additional baselines, Bz and Bas.
This corresponds to a total of three interferograms instead of one that are available
for height inversion. In section 1.3.1, we noted the traditional view of treating the
multi-baseline setup as a combination of distinct satellite pairs. This way, three sep-
arate height data of the same terrain can then be retrieved and later post-processed
to reduce noise errors via height averaging, to be discussed in section 2.1.

In section 2.2, a novel approach of combining the multi-baseline data, called phase
averaging, is investigated. Instead of combining the final retrieved heights, we now
seek to combine the three interferograms before the height retrieval process so that
only one set of height data, corresponding to a virtual baseline, is attained. A new
virtual baseline has to be utilized since alterations to the interferograms correspond
to changes in the satellites geometries. The main advantage of this multi-baseline ap-
proach over the conventional view of distinct satellite pairs is that the combined phase
data may now be treated as if it is from a pair of satellites, enabling the application
of the original height inversion process to the three-satellite case without need for
excessive modifications. We shall discuss the implementations of such an approach,
analyze its impact on height inversion and compare the results with height averaging
techniques. The collinear configuration shall first be addressed. After which, it be-
comes trivial to extend the same idea to a non-collinear satellites configuration.

In section 2.3, relationships between the terrain slope, baseline length between satel-
lite passes and the coherence values are examined. It was found that application of
the multilook coherence estimator of eq. 1.21 resulted in coherence losses due to ter-
rain slope variations, eventually leading to misinterpretation of changes in the imaged
scenes. The topography-corrected and wavelet transform-based coherence estimators
are applied to compensate for these slope biasing effects.
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2.1 Height Averaging Technique

2.1.1 Data Averaging

Wong [8] has shown that in a three-satellite setup, the data averaging method is
effective in reducing the root-mean-square height error!. This is a simple method
extending from the results obtained using the two-satellite model. Here, the three
sets of data, corresponding to each of the three available baselines, are grouped into
pairs, and the two statistical best data pairs are averaged to produce an improved
estimate of the DEM. Data averaging is applied considering eq. 2.1:

b . < wizhi12 + waghas + w13h13)
average —

(2.1)
W12 + We3 + W13

where h;; is the height profile corresponding to each of the three available baselines
formed between satellite ¢ and j (i.e. B;;), with {3,7} = {1,2,3},¢ # j. wi;’s are the
appropriate weighting functions.

If hi5 and hy3 give the two best height profiles data, then, for data averaging, eq. 2.1

simplifies to:
ha.ve'rage = (h_m%'@) (22)

where the following weighting functions are applied:
wiz = Lwiz =1;wes =0 (2.3)

Wong pointed out that the above weights assignment does not give the optimum
solution. In section 2.1.2, we shall explore a more comprehensive weighting function
that accounts for the baseline lengths. Nonetheless, the data averaging method shall
be used as the basis of comparison in analyzing other three-baseline InSAR height re-
trieval methods due to its simplicity and effectiveness, as concluded in [8]. Moreover,
data averaging works for both the collinear and non-collinear satellites configuration.

2.1.2 Weighted Averaging

Before proceeding further to integrate all three multi-baseline interferograms, a di-
gression will be made to introduce a new weighting scheme, either than the one
already defined for data averaging in eq. 2.3, to be applied to eq. 2.1. Later, we
will compare the performance of this scheme to that using unity weights and to both
data and phase averaging, in terms of the RMS retrieved height error. It turned out
that this proposed weighted averaging scheme outperforms data averaging and shall
eventually be used to combine all interferograms of the three-satellite configuration

1See section 1.3.5
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in application of phase averaging.

Ferretti et al., in [17], combines the multi-baseline DEM data, derived by means of a
multi-look Gaussian estimation, as follows:

1M
Q|§~

SO] &)
S,

>
Il

(2.4)

(o}

iM=
wi"‘

>

1

where h; is the DEM retrieved from the ** interferogram and oZ; is the associated
noise variance. In order to relate the weighted averaging of eq. 2.4 to the baseline
lengths, relationship between the height dispersion and phase dispersion [14] is used.

hz-,.- AT
=— .0c=-——:.8inf . o 2.5
Oh = op - e 47 B, ' € (25)
where hy, is the height variation corresponding to one cycle phase variation, B, is the
perpendicular baseline, 8 is the look-angle, r is the slant range distance from satellite
to target, A is the wavelength, o, is the phase error in the interferogram, and oy is
the corresponding height error. Hence, by relating

9 1

with B; being the perpendicular baseline corresponding to interferogram i, eq. 2.4
is eventually modified to become

h=S— (2.7)

Eq. 2.7, referred to as weighted height averaging, shall be the new weighted averaging
scheme adopted for the three-satellite setup such that the weighting function is

_n2 . _n2 . 2
w12 = Bljg;w13 = B 3;we3 = By (2.8)

Simulation Results

Figure 2-1 depicts the mean RMS height error plot of various averaging techniques
applied on a non-collinear three-satellite setup as described in section 1.3. These
include data averaging, phase averaging, weighted averaging of eq. 2.1 with eq. 3.7’s
weighting function applied (unity-weighted averaging), and the baseline-weighted av-
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Averaging Methods for Three-Satellite Configuration
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Figure 2-1: Data averaging, phase averaging and baseline-weighted averaging methods
applied on a three-satellite configuration.

Mean RMS height error (m)

Single Unity Baseline

Noise | Longest Data Weighted Phase Weighted

Level (°) | Baseline | Averaging | Averaging | Averaging | Averaging
0 0.0004 0.0003 0.0003 0.0005 0.0003
10 0.1576 0.1521 0.1705 0.1409 0.1319
20 0.3036 0.2911 0.3278 0.2686 0.2502
30 0.4435 0.4206 0.4732 0.3885 0.3613
40 0.5712 0.5393 0.6056 0.4973 0.4617
50 0.6899 0.6580 0.7383 0.6057 0.5618
60 0.7977 0.7567 0.8496 0.6971 0.6459
70 0.9073 0.8628 0.9878 0.7935 0.7376
80 1.0514 1.0033 1.1279 0.9199 0.8503

Table 2.1: Mean RMS height error of data averaging, phase averaging and baseline-
weighted averaging applied on three-satellite non-collinear configuration.
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eraging of eq. 2.7. The corresponding data are tabulated in table 2.1.

As already concluded in [8], unity-weighted averaging performs worse than without
averaging, when only data corresponding to the single longest baseline, B3, is consid-
ered. Similar to conclusions to be drawn in section 2.2.7, data averaging outperforms
both unity-weighted averaging and single baseline data while phase averaging does
better than them all. The baseline-weighted averaging which would be applied as
part of the cartwheel height retrieval process turns out to be the most robust to noise
and give the lowest mean RMS height error at all noise levels.

2.2 Phase Averaging Technique

2.2.1 Three-Satellite Collinear Configuration

Figure 2-2 and figure 2-3 show the collinear satellites setup that we will consider
in this section, with their flight paths along the azimuth direction. In figure 2-2,
the three satellites are lined-up and their corresponding slant range, p, are shown.
Since p > B, we can approximate the three slant range directions to be parallel,
i.e. p1 || p2 || p3. Figure 2-3 depicts this approximation.

Eq. 1.6 relates the unwrapped interferogram, ®, directly to the one-way slant range
difference, 4, between the satellites. Similarly, the wrapped interferogram, ¢, is also
directly proportional to 4. For now, only the absolute phase data shall be considered,
with the slant range difference being related to the unwrapped interferogram (®;;
and ®,3), as illustrated in figure 2-3.

We shall start off the analysis by manipulating only two phase data of the available
three, which correspond to the longer perpendicular baselines. Apart from simplifying
our investigation, this approach allows us to readily compare the performance of phase
averaging to that of data averaging, already discussed in section 2.1.1. To combine
all three data, the baseline-weighted averaging technique presented in section 2.1.2
will be used as the basis of the three-interferogram phase averaging scheme.

Single Height Method

As what was done in data averaging, two interferograms of the three available are
selected. With reference to eq. 1.12, we chose the interferogram selection criteria to be
based on the longest projected baseline length. In our current setup, this corresponds
to B2 and Bj3. Hence, starting with ¢,2 and ¢,3, the two interferograms are first
aligned spatially, follow by independent applications of denoising, flat earth phase
removal, weighted least square unwrapping and GCP alignment on each of them, to
eventually attain ®,, and ®;;.

At this stage, instead of retrieving a DEM from each of the unwrapped phase data,
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Figure 2-3: Three-satellite collinear geometry, with parallel slant range approxima-
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40



we seek to combine ®;5 and ®,3 in the following way, so that only a single DEM is
attained from the multi-baseline data:

D10 + D43

. (2.9)

CI)new =
Since our phase data is related to the geometry of the satellites setup, we shall relate
D in eq. 2.9 to figure 2-3 using similar triangle concepts, applied on the triangle

bounded by SAR 1, SAR 3 and point 4 (i.e. A(SAR 1, SAR 3, point 4)). Thus,

Q1 D3
—L = 2.10
Bz B (2.10)
Using eq. 2.9 and defining a Bi,,, as shown in the setup,
q)'n,ew _ ‘I)13
Bne'w BlS
B13®12 | Bz
Bpew = ——=+ —
e 285, | 2
Applying eq. 2.10 to the above,
Brew = 5‘2—;—39 (2.11)

From eq. 1.18 and eq. 1.19, the parameters required for height inversion are p, B, «
and ®. Upon modification of the phase data according to eq. 2.9, p and a used for
height retrieval remains the same (i.e. p;) while the corresponding change in B is
derived in eq. 2.11, using similar triangle approximation.

As such, we can now retrieve a single DEM using the combined multi-baseline data
of ®pey, Brew, p1 and . In fact, we may replace the three-satellite system with
only SAR 1 and a virtual SAR, as indicated in the figure. It should, however, be
emphasized that the interferogram corresponding to this pair of satellites are a result
of combining two interferograms from the original setup. We shall refer to this phase
averaging technique, where each of the original interferograms are processed and
unwrapped individually before combining, as the single height method.

Single Interferogram Method

Another approach to the same phase averaging method is to combined the spatially
aligned wrapped interferograms right before weighted least-squares unwrapping in-
stead. In this case, we first obtain

Brew = P12 + P13 (2.12)
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After phase unwrapping, the absolute phase data of eq. 2.9, is attained as follows:

@I
Brew = —522 (2.13)

After retrieving ®,.,, a single DEM may be retrieved exactly as described in the
single height method. We shall name this approach of combining the interferograms
before weighted least-squares unwrapping as the single interferogram method.

The advantage of the single interferogram method over the single height method is
that nearer the onset of the height retrieval process, after flat earth phase removal
is applied, the combined multi-baseline data may be treated as if it is from a pair
of satellites, SAR 1 and virtual SAR. This way, the conventional height inversion
process designed for satellite pairs can be applied to the three-satellite case without
the need for excessive modifications. However, as we shall see and explain in section
2.2.7, this approach will eventually breakdown at high noise environment while the
single height method remain stable. In section 2.2.4, the performances of both phase
averaging techniques, applied on the collinear setup of figure 2-3, will be examined.

Similar Triangle Approximation

The phase averaging method derived is based on the parallel slant range approxi-
mations such that similar triangle concepts may be applied. As a result, the o and
Bhpew corresponding to ®,,.,, that we used for height inversion are also approximated
values. Since the retrieved heights are sensitive to the parameters’ accuracies, these
inexact height retrieval parameter values will propagate into unacceptable retrieved
height errors. From our three-satellite collinear setup simulations, it was found that
applications of the phase averaging methods, without accounting for similar triangle
approximation, as described in section 2.2.1 resulted in vertical shift of the retrieved
heights away from the original terrain by ~ (1 — 5)m. These vertical shifts of the
terrain are similar to the observations made when inexact baseline parameters are
used for height inversion [8].

To account for this error, the following are noted:
o &, is defined according to eq. 2.9 and 2.13.

e SAR 1 is used as a pivot between the original and new setup, so its position
remains the same and no uncertainties exist in p; parameter value.

e Inexact o and B,., parameters are the cause of the terrain misalignment and
can be rectified using the single GCP available, in one of the following two ways:

1. Estimate ey from similar triangle geometry and then find Bi,,, using the

GCP. In the current collinear setup, the estimated aye, Will be equal to
the original a.
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2. Estimate By, from similar triangle geometry, as in eq. 2.11, and then find
Qipey USing the GCP.

Olpew OF Bpey, is attained via the GCP by back-solving eq. 1.19 and eq. 1.18. In our
implementation, the latter approach is adopted. After the above correction, we are
then able to retrieve the exact terrain profile in a noiseless environment using phase
averaging with a virtual satellite.

2.2.2 Interferograms Manipulations

An overview of how the phase data are handled in the data averaging, single height and
single interferogram methods is presented in figure 2-4. The distinction between single
height and single interferogram is that the phase data are combined after unwrapping
in the former while in the latter, they are combined before unwrapping. Nonetheless,
both approaches result in a single DEM retrieved from the multi-baseline data. In
data averaging, two interferogram is processed independently to attain two sets of
DEM, which is then averaged to attain the final terrain profile. Though this section
only deals with combining two of the three available phase data, the same approaches
apply to the general case of fusing all three data.
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2.2.3 Weighted Phase Averaging on Collinear Setup

Point7 «-

X

Azimuth Direction

Figure 2-5: Three-satellite collinear geometry, for application of the weighted averag-
ing scheme.

Similar to the single height and single interferogram method applied on ®;, and ®,3,
manipulations of the three phase data (i.e. ®;2, ®;3 and ®,3) also warrant a corre-
sponding change in the baseline length and elevation angle used for height retrieval.
We shall again relate the phase data to the satellites geometry, as depicted in figure
2-5, and seek to obtain the baseline length, B,,,, corresponding to the manipulated
phase data, ®,,,.

Parallel slant range from each satellite is again approximated and similar triangle con-
cepts are applied to A(SAR 1, SAR 3, point 5). To visually aid our understanding of
the forthcoming data manipulations, first recognize that A(SAR 2, SAR 3, point 4)
may be slide down such that vertex ‘SAR 2’ of this triangle matches with vertex ‘SAR
1’, as represented by the two shaded triangles in figure 2-5. This means that ®,3 can
now be considered as an interferogram formed by SAR 1 and a satellite located at
point 7 instead, since it is associated with the slant range differences rather than the
absolute range distances. The above analysis approach is justified due to the parallel
slant range approximation made, where the various satellites in figure 2-5 share the
same target-view geometries (i.e. same look angle from the various satellites to a tar-
get) so that the absolute positions of satellite pairs become somewhat insignificant in
forming interferograms. Rather, only the slant range differences matters.

In the following analysis, we will consider only A(SAR 1, SAR 3, point 5), A(SAR 1,

45



SAR 2, point 6) and the shaded triangle containing vertex ‘SAR 1’. We first obtain
the relationship between the baseline lengths and slant range differences, as shown

below.
Q12 D13 D3

Bis Bz By
Similar to eq. 2.1, we next combine the slant range differences, ®;;, according to

(2.14)

Boog = (w12<1>12 + wo3Pa3 + w13<1)13) (2.15)

Wiz + Wo3 + W3
Extending from eq. 2.14 and with reference to figure 2-5, By,g is defined as

Cavg _ 213

2.16
Bavg B13 ( )

Bl3
Bav = = - ‘I)a'v
£ @13 g

_ wi2B12 + wo3Bag + w13 B3 (2.17)
Wiz + W3 + W3 .

Having obtained ®,,, and its corresponding B,,g, the heights may then be retrieved
if o and p are known. As described in section 2.2.1, oy, can be obtained by back
solving eq. 1.19 and eq. 1.18 with the GCP. In this collinear configuration case, anew
is expected to be ~ prigina (i-€. 35°). Using pi, a single set of height, taking into
account all three phase data, is attained.

Note that the choice of using p; in all our height retrieval process is arbitrary. ps
could have been utilized instead and the resulting heights would still be the same. In
this case, eq. 1.19 and eq. 1.18 would become

. _1( 62 B 62
6., = ap + sin 1( 2 _ 2,12 2.18
12 12 B2 2py  2Biopo (218)
AZ]g = HSAR2 — P2 COS 9;’12 (219)

where Hgaro is the height of SAR 2.

2.2.4 Simulations and Results: Collinear Setup

Eq. 1.12 tells us that the mean RMS retrieved height error is directly proportional
to the noise level and inversely proportional to the projected baseline length. In
this section, such a relationship will be compared among various height and phase
averaging techniques, for a collinear satellite setup. The setup of our simulation is as
described in section 1.3.3 with Bi3 as the single longest baseline.
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Two Phase Data

Here, we shall look at the relationship between the RMS error and the noise level,
and compare this relationship among the following four height retrieval techniques:
height inversion based on the single longest baseline, data averaging, single height
and single interferogram methods, with weighting function described by eq. 2.3. The
simulation results are plotted and tabulated in figure 2-6 and table 2.2 respectively.

As expected from [8], data averaging of the multi-baseline configuration outperforms,
in terms of retrieved heights, the approach where only a single baseline is considered,
for all noise levels. Phase averaging not only produces lower mean height errors than
the single baseline approach, but outperforms data averaging as well. Also, both the
single height and single interferogram methods yield the same RMS error up to 60°
noise level. This observation is in line with the conclusion of section 2.2.1 where we
showed that the two methods represent different approaches in obtaining the same
®,c,. However, at higher noise levels, single interferogram method begin to deviate
and produces greater errors. This phenomenon is observed in the non-collinear setup
as well and will be explained in section 2.2.7.

Weighted Height and Phase Averaging

In this section, all three multi-baseline data are combined and the heights in weighted
phase averaging are retrieved as describe in section 2.2.3. The weighting function used
for eq. 2.15 and eq. 2.17 is that of eq. 2.24. The performances of the weighted height
and phase averaging techniques are compared to the two-satellite averaging techniques
examined in the previous section, where weighting function of eq. 2.3 was applied.
Simulation results are illustrated in figure 2-7 and table 2.3.

The plot shows that using all available multi-baseline data and averaging them in
a non-linear weighted fashion allow heights to be retrieved with smaller mean RMS
errors, when compared to using only two of the data. In fact, this was found to be
true even when non-linear weights are applied to two phase data such that

W12 = Bil2; Wiz = B.2Ll3; Wz = 0 (220)

Thus, the ability to utilize all three data in height and phase averaging is certainly
advantageous.

From figure 2-7, we see that while two-satellite phase averaging outperforms height
averaging, the same cannot be said about the three-satellite averaging case. This
may be attributed to the fact that the choice of weights in the former is non-optimal,
as highlighted in [8]. Hence, we expect the existence of better methods than simply
averaging two sets of heights, such as the phase averaging technique. On the other
hand, derivation of the non-linear baseline-dependent weights function in section 2.1.2
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RMS Error VS Noise Level for a Collinear Configuration
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Figure 2-6: Mean RMS height error vs. noise level relationship for data averaging and
phase averaging techniques, applied on a three-satellite collinear configuration.

Mean RMS height error (m)
Single Single Single
Longest Data Height | Interferogram
Noise Level (°) | Baseline | Averaging | Method Method
0 0.0003 0.0003 0.0003 0.0003
10 0.1908 0.1633 0.1588 0.1588
20 0.3651 0.3073 0.2987 0.2987
30 0.5347 0.4481 0.4353 0.4353
40 0.6817 0.5763 0.5583 0.5583
50 0.8338 0.6974 0.6764 0.6764
60 - 0.9612 0.8038 0.7794 0.7795
70 1.1056 0.9216 0.8941 0.8945
80 1.2852 1.0657 1.0310 1.0356
90 1.5521 1.2974 1.2376 1.2587

Table 2.2: Mean RMS height error of data averaging and phase averaging, applied on
three-satellite collinear configuration.
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Mean RMS Error VS Noise, for a Collinear Configuration
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Figure 2-7: Mean RMS height error vs. noise level relationship for two-satellite and
three-satellite height and phase averaging techniques, applied on a three-satellite
collinear configuration.

Mean RMS height error (m)

Weighted | Weighted
Phase Data Phase Height

Noise Level (°) | Averaging | Averaging | Averaging | Averaging
0 0.0003 0.0003 0.0004 0.0003
10 0.1575 0.1620 0.1556 0.1535
20 0.2996 0.3088 0.2959 0.2911
30 0.4302 0.4432 0.4259 0.4185
40 0.5547 0.5722 0.5474 0.5381
50 0.6760 0.6971 0.6682 0.6565
60 0.7846 0.8084 0.7764 0.7623
70 0.8872 0.9125 0.8816 0.8638
80 1.0243 1.0555 1.0147 0.9948
90 1.2567 1.2956 1.2434 1.2197

Table 2.3: Mean RMS height error of two-satellite and three-satellite height and phase
averaging, applied on three-satellite collinear configuration.
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ensures, to a large extent, that the weighted height function of eq. 2.7 is optimal.

Nonetheless, the main advantage of the weighted phase averaging lies in its ability to
combine the multi-baseline data into one, such that it may be perceived as coming
from only a pair of satellites, allowing the application of the conventional two-satellite
height inversion process without need for excessive modifications. In fact, not only is
weighted phase averaging shown to work correctly, it outperforms the heights retrieved
from individual baseline, as well as from the two-satellite phase and data averaging
approaches.

Next, we shall extend the phase averaging concepts to the three-satellite non-collinear
configuration.

2.2.5 Three-Satellite Non-Collinear Configuration
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Figure 2-8: Three-satellite non-collinear geometry.

We shall first consider only two of the three interferograms, corresponding to the two
longest perpendicular baselines, and later address weighted phase averaging using all
three interferograms in section 2.2.6. The phase averaging technique discussed pre-
viously shall be extended to the three-satellite non-collinear configuration, using the
same argument presented for the single height and single interferogram methods. The
geometry of such a setup, with parallel slant range approximation, is shown in figure
2-8. As before, the slant range difference between the satellites may be related to the
interferograms.

The multi-baseline interferograms are combined by first selecting the two that corre-
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spond to the longest projected baseline lengths. In our case, they are Bi; and Bis.
These interferograms, after aligned spatially, are processed according to eq. 2.9 or
2.13 to attain ®,.,. We shall again relate such modifications made to the phase data
to the non-collinear setup geometry.

Referring to figure 2-8, similar triangle concept is applied on the triangle bounded by
SAR 3, point 4 and point 5. Using a similar derivation as in eq. 2.10 and 2.11, the
coordinates of the virtual SAR’s location are attained as

SAR 2x + SAR 3x SAR 2z + SAR 33
2 ' 2

[Vitualx, Virtualz] = [ (2.21)

This way, the new baseline length, B,.,, can be determined since the positions of
SAR 1, SAR 2 and SAR 3 are known quantities. Hence, we are able to invert the
multi-baseline terrain profiles to obtain a single DEM just by considering SAR 1 and
virtual SAR, using Ppew, Brew, 1 and aney. In order to account for errors due to
similar triangle approximation, By, is estimated from the geometry while ., is
attained via use of the GCP. Even so, it should be noted that we are expecting

. Q2+ o3

Qpew ~ 2 (222)

2.2.6 Weighted Phase Averaging on Non-Collinear Setup

Figure 2-9(a) illustrates the three-satellite non-collinear geometry for the application
of weighted phase averaging. The interferograms ®,5, ®;3 and ®,3 are combined
according to eq. 2.24 and eq. 2.15 to arrive at a single ®,,,. As before, we seek to
find the corresponding B,,, that may be applied to eq. 1.18 and eq. 1.19 for height
retrieval, while a,e,, is attain using the GCP.

By is derived with similar triangle concepts applied to A(SAR 3, point 5, point 8).
Adopting the same argument as presented in section 2.2.3, we may consider A(point
6, point 8, point 9) instead of A(SAR 2, SAR 3, point 4) due to parallel slant range
approximations made. Before arriving at Bg,4, the baseline lengths corresponding to
slant range differences ®;2, ®13 and P,3, projected on line segment (point 8, SAR 3)
of A(SAR 3, point 5, point 8) have to be attained. These virtual baselines are labeled
as B4, Bp and Bc in figure 2-9(b). A Biemy is defined to be the distance between
point 8 and SAR,,, such that

waB4 +wpBp + weBe
ws + wp + wWe

Btemp = (2.23)

where

'Knowing Biemyp, the position of SAR,,q as well as By, can be deduced. Figure 2-9(a)
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Figure 2-9: (a) Three-satellite non-collinear geometry for weighted phase averaging
(b) Application of similar triangle concepts on A(SAR 3, point 5, point 8).

illustrates these parameters. Final terrain heights, using the combined multi-baseline
data, can then be retrieved with Bgyg, Pavg, p1 and ey

In the above analysis, the position of point 8 has to be first attained so that By,
Bg and Bg, and eventually B,,, can be found. This is achieved by applying simple
geometry and making use of p; slant range distance and a GCP located in pixel
(1,1). However, this approzimated point 8’s position is not fixed. As we consider
data further away from pixel (1,1) in the ground range direction, A(SAR 3, point 5,
point 8) alters. Visually, we can think of an increment of the look angle such that the
parallel slant range direction shifts, resulting in a corresponding change in point 8.
Simulation results show that this inability to accurately deduce point 8’s position for
all pixels in the interferogram leads to heights retrieved with unacceptable magnitude
of errors, when weighted phase averaging is applied to the non-collinear three-satellite
configuration.

We will next examine the performance of phase averaging technique on the non-
collinear satellite setup. Weighted phase averaging will no longer be considered since
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errors are introduced upon the approximations made, as described in the previous
paragraph.

2.2.7 Simulations and Results: Non-Collinear Setup

In this section, application of weighted phase averaging will not be considered. In
phase averaging, the original three-satellite configuration is collapsed into two satel-
lites using a virtual SAR (see figure 2-8) which is obtained by manipulating the
interferograms. In our simulation, an additional real satellite is physically added to
the exact position of virtual SAR to illuminate the scene and record the phase data.
As such, an additional physical baseline exist between SAR 1 and this real SAR,
and shall be called physical baseline. By doing so, we would like to investigate the
improvements in height retrieval brought about by the three-satellite data over a two-
satellite setup, even though both cases may be perceived as having two satellites at
the same locations. The results for the non-collinear setup are plotted and tabulated
in figure 2-10 and table 2.5 respectively.

Simulation results show that phase averaging again outperforms both the heights
retrieved from the single longest baseline and data averaging. In fact, it also did
much better than retrieving heights with the physical baseline. This implies that
having data from an additional third satellite is favorable for increased accuracies of
the DEM. Again, as in the collinear configuration, we are now able to combine the
multi-baseline data into one such that the conventional two-satellite height inversion
process may be applied, and yet returns more accurate results than just using data
from each of the three possible satellite pairs.

Number of Residues
Single
Single Height Method | Interferogram Method
Noise Level (o) ¢12 ¢13 ¢12 + ¢13
70 0 0 8
80 1 2 36
90 4 24 268

Table 2.4: Number of residues in 256 x 256 phase data prior to unwrapping.

As in the collinear configuration simulations, single interferogram method performs
the same as single height method for noise levels up to 60°. Beyond that, its per-
formance starts to deteriorates. The deviation between the two phase averaging
approaches may be explained in terms of residues in the phase data prior to residue-
weighted least-squares unwrapping. In single height method, ¢, and ¢;3 are un-
wrapped individually while in single interferogram method, @12 + ¢13 is unwrapped
instead. Table 2.4 shows the number of residues in the 256 x 256 denoised wrapped
phase data used in both of the phase averaging methods. Below 70° noise level, no
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Figure 2-10: Mean RMS height error vs. noise level relationship for data averaging and
phase averaging techniques, applied on a three-satellite non-collinear configuration.

Mean RMS height error (m)

Single Single Single

Longest Data Height | Interferogram | Physical

Noise Level (°) | Baseline | Averaging | Method Method Baseline
0 0.0004 0.0003 0.0005 0.0005 0.0003
10 0.1600 0.1542 0.1431 0.1431 0.1936
20 0.3035 0.2898 0.2680 0.2680 03711
30 0.4470 0.4251 0.3927 0.3927 0.5417
40 0.5704 0.5401 0.4991 0.4991 0.6997
50 0.6825 0.6537 0.6010 0.6010 0.8457
60 0.7860 0.7550 0.6931 0.6931 0.9755
70 0.9084 0.8678 0.7971 0.7977 1.1198
80 1.0579 1.0020 0.9182 0.9228 1.2963
90 1.2728 1.2294 1.1073 1.1262 1.5743

Table 2.5: Mean RMS height error of data averaging and phase averaging, applied on
three-satellite non-collinear configuration.
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phase inconsistencies are detected in all three interferograms. In single interferogram
method, summing up the phase data before unwrapping act to amplify the effects of
noises, resulting in greater number of residues as compared to each separate inter-
ferogram. These phase inconsistencies are accounted for in the weighting schemes of
the least-squares unwrap and is the cause for deviations between the methods, even
though they both seek to attain the same unwrapped ®,.,,. Hence, depending on the
effectiveness of the selected phase denoising scheme, single interferogram method will
eventually breakdown as the noise level increases.

In the next section, slope-biasing effects of CDD as well as the solutions will be
studied.

2.3 Multi-baseline CCD

In this section, a problem inherent in current coherent change detection techniques
shall first be analyzed. A solution based in the wavelet domain [4] is then implemented
and compared with another solution which uses the scene’s DEM. The latter requires
a multi-baseline satellite configuration in order to avoid temporal decorrelation in the
retrieved heights.

2.3.1 Coherence Losses and Terrain Slopes

[17] concluded that multilook coherence estimates (eq. 1.21) of the surface in undulat-
ing terrain appear to vary if different interferometric baseline is used. In particular,
shallow slopes exhibit high coherence whereas steeper slopes exhibit low coherence.
We shall first examine this relationship in our implementation and then discuss its
implication in CCD.

Unlike in the height retrieval process, the SAR images are processed separately before
combining them to compute their coherence values, as in eq. 1.21. Interferometric
flat earth phase progression, similar to that described in section 1.4.3, is first removed
from each image [12, 39]. The two images are then spatially aligned before the mul-
tilook coherence estimator is applied. Misregistration errors contributes to coherence
losses and may be factored into pshemar of €q. 1.22. Note also that phase denoising is
no longer applied here.

In the following simulations, we seek to explore the effects of varying baseline length
between satellite passes to the multilook coherence values of eq. 1.21. As well, the
impacts of different terrain slope on this relationship are looked into. Our setup is
similar to the two-satellite case of section 1.3.3 where o remains at 35°, except that
the baseline length between the satellites are no longer fixed, but rather made to
vary from Om to 1080m, at increments of 40m. Here, the two satellites are used
to represent two passes of a single satellite at different times in near-repeat orbital
tracks separated by the baseline, B, as depicted in figure 2-11. The illuminated ter-
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rain remains totally unchanged between the passes and no noise is present such that
Ptemporal @0d Prhermar Doth equal one. Eq. 1.22 becomes

Ptotal = Pspatial (225)

Thus, we are really measuring spatial baseline correlation in the coherence values.
Ideally, we would always like to be able to relate the p;pq computed to piemporar in
order to measure the scene change.

Plots of the coherence between the two SAR images against baseline length are shown
in figure 2-11 for (a) a flat ground terrain, (b) for a terrain with a 11° slope facing
the radars and (c) for one with a 27° slope. Since we are dealing with a 256 x 256
terrain size, the corresponding coherence map attained is also 256 x 256 in size. In
making the plots, the coherence value of the middle (128, 128) pixel is used. As stated
earlier, a satellite in an exact repeat orbit, i.e. B = 0, has pspariat = 1 as observed for
all the three terrains. In figure 2-11(a) pgpasiar for flat terrain are well accounted for
due to the flat earth phase correction made to each of the two images, resulting in
Ptotal = Pspatial = 1. This high coherence allows us to correctly relate p;oq to scene
changes (no change). As the terrain slope is increased to 11° in (b), coherence values
Piotar Degin decreasing as the baseline length is increased, even though the terrain
scene remains unchanged. This is due to deterioration of pspatia;. At an even greater
terrain slope of 27°, figure 2-11(c) predicts that the coherence of the two scenes decays
at a faster rate. These observations agree well with the conclusions of [17] presented
at the beginning of this section.
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Figure 2-11: Coherence values as a function of baseline length, B, between satellite
passes on unchanged terrain with slopes (a) 0°, (b) 11° and (c) 27°.
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2.3.2 CCD and Terrain Slopes
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Figure 2-12: Two-slope unchanged terrain and its corresponding coherence map, in a
noiseless environment.

Some form of thresholding is usually applied in CCD [13, 38|. In its simplest form,
pixels with coherence values below the threshold are classified as “change present”
while those above the threshold are classified as “change absent”. In dealing with
constant-slope terrain as above, care must be taken to ensure that the interferometric
baseline is small enough so that pspetiar 7 0. Although coherence losses occur even
when the constant-slope terrain stays unchanged, these losses, for a given baseline, are
constant and may be accounted for by choosing an appropriate value of the threshold.
However, if the scene contains terrain of varying slopes, as in mountainous regions,
then pspariqr Will vary drastically across the map for a particular B and it becomes
impossible to set a threshold without a prior knowledge of the DEM, since we can
no longer identify which coherence losses are a result of spatial baseline decorrelation
and which are due to actual scene changes. In these cases, it would be desirable to
have a short baseline as simulation results in figure 2-11 shows that the coherence
values for unchanged scenes remain high for varying terrain slope when B < 400m.
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Figure 2-12 presents one such case, with B = 600m, where an unchanged two-slope
terrain returns two coherence values, making it hard to distinguish if the coherence
losses are due to large spatial baseline or actual scene alterations.

2.3.3 Multi-baseline Considerations

Similar observations due to the large variation in the terrain’s slopes are made in
[14, 41]. Suggestions by [14] to remove the contributions due to Pspatial 1D calculating
Piotal include having a detailed knowledge of the true DEM. This approach, when ap-
plied on a one-satellite repeat-track scenario, is limited by the fact that the retrieved
DEM is susceptible to temporal decorrelation. If two or more satellites are avail-
able simultaneously, as in the interferometric cartwheel, then, temporal correlation
becomes high and a more accurate DEM is attained. In section 2.3.5, we shall look
into the case where three satellites are available for height retrieval and the resulting
topography is factored into the coherence analysis so that eq. 1.21 becomes [4]

M N A
> " Si(m, n)S;(m, n)e~i¢=tmn)

|Dtopol = \m=1n=1 , (2.26)
M N M N

> ISimn)2 YD " |Sa(m,m)]?

where qu is the estimated topographic component obtained by means of external
DEMs. Eq. 2.26 shall be referred to as the topography-corrected coherence estimator.
This coherence value is not biased by the terrain slopes anymore and works best if
a multi-baseline satellite configuration is available for DEM retrieval. However, an
external DEM may not always be available and considerations of terrain profiles in
CCD greatly increase the computational complexities.

In [4, 5], a method that uses the two-dimensional discrete wavelet packet transform
(2D-DWPT) to retrieve the coherence map is presented, and unlike the multilook
method, is shown to be unbias to the terrain’s topography even without any knowl-
edge of the DEM. This approach also allows a higher spatial resolution coherence
estimation since no windowing is applied.

2.3.4 Wavelet Transform-Based Interferometric Coherence
Estimator

According to [5], the measured interferometric phase, ¢, may be described by
d=¢,+v (2.27)

where v is a zero-mean noise independent of ¢,, which represents the topographic
induced phase. It should be recognized that ¢ here is the same as the ¢y5 of eq. 1.3,
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which we have been using in the height retrieval process. By considering the complex
phasor, 7%, an average wavelet coefficient intensity may be derived as

E{|DWTspe’|?} = 2%N? + 02 + 02 (2.28)

where i represents the wavelet scale, v. and vs; are two zero-mean noises associated
with the real and imaginary parts of e/® respectively, and 07w, 02w, are the variance
values of the noise terms in wavelet domain. Nc¢ contains the same information as the
original coherence nonbiased by terrain slope variations since topography information
is already encompassed in ¢ [4]. So, if N, has a high value, the corresponding phase
contains information about the topography, and if its zero, then the phase contains
only noise. Also, unlike in the multilook techniques, images S; and S, need not be
considered separately. Thus, the same processing of the combined data in height
retrieval applies here as well.

Eq. 2.28 shows that N,, hence, the coherence information, can be retrieved by select-
ing a large i so that influence of the noise terms become negligible and the wavelet
coefficients’ intensity is only proportional to coherence. i is selected to be i, = 3
in our implementation since that is shown to be sufficient for the decoupling of N,
from the random noise terms, by 2D-DWPT. Daubechies filters are used in our im-
plementation of the coherence estimation process, which closely follows the algorithm
presented in [5]. It should be noted that the selection of threshold values in the al-
gorithm is non-automated. The final effect of the process is that the weight of those
wavelet coefficients classified as containing useful information are amplified with re-
spect to those not processed, reducing the influence of the noise terms with respect to
N,. After the inverse 2D-DWPT is applied to the processed signal, the derived com-
plex phasor output in the original domain, N.e’%= has a denoised topographic phase
and an amplitude proportional to V.. The coherence value is obtained by normalizing
the amplitude by 2ime=.

In short, the algorithm first convert the input, 7%, into the two-dimensional frequency-
space wavelet domain, do some processing to enhance the useful signals inside that
domain, and returns the output, N.e’®=, in the original domain. By applying 2D-
DWPT to the entire image rather than employing a windowing process as done in
multilook techniques, spatial resolution is maintained. Furthermore, noise wavelet
coefficients of interferometric phases with low coherence, which may contain phase
details, are not eliminated. Instead, the algorithm is based on enhancing the impor-
tance of useful wavelet signal coefficients. In this way, spatial details are also main-
tained. We shall verify our implementation using the denoised topographic phase of
the algorithm’s output, ¢,. Ultimately, our interest is in the algorithm’s ability in
retrieving the nonbiased coherence map without the use of a DEM.

In this investigation, the three-satellite non-collinear setup of section 1.3 is used.

Phase averaging method presented in earlier sections is applied for the height retrieval
process, and three different denoising schemes (see section 1.4.2) are adopted and com-
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Mean RMS Error VS Noise, Using Phase Averaging Methods
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Figure 2-13: Mean RMS height error of phase averaging method as a function of
noise, with complex interferogram averaging, coherence wavelet denoising and wavelet
denoising with soft thresholding.

Mean RMS height error of Phase Averaging Method (m)

Noise Complex Coherence Wavelet Denoising

Level (°) | Averaging | Wavelet Denoising Soft Thresholding
0 0.0116 0.0003 0.0005
10 0.1324 0.1736 0.1409
20 0.2649 0.2871 0.2689
30 0.4071 0.3823 0.3853
40 0.5545 0.4823 0.5005
50 0.7241 0.5901 0.6052
60 0.9137 0.7193 0.6940
70 1.1526 0.8880 0.7911
80 1.4955 1.2085 0.9221
90 2.1350 1.9466 1.1228

Table 2.6: Mean RMS height error of phase averaging method, with different denoising
schemes applied.
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pared: complex interferogram averaging, wavelet denoising with soft-thresholding,
and denoising using the current method which we refer to as coherence wavelet de-
noising. In figure 1-6, it was already shown that both complex interferogram averag-
ing and soft-thresholding wavelet denoising outperforms the case with no denoising
at all noise levels. In the plot of figure 2-13, mean RMS error using the three de-
noising schemes are comparable for low noise levels, i.e. < 30°. As the noise level
increases, coherence wavelet denoising did even better than complex interferogram
averaging while soft-thresholding wavelet denoising outperforms the other two even-
tually. Hence, the topographic phase, ¢,, of the complex phasor output is indeed a
denoised version of the original phase data, as indicated in [4, 5]. To a certain extend,
this verifies our implementation of the algorithm.

It is interesting to note that even though wavelet denoising with soft-thresholding
generally fair better than coherence wavelet denoising, and that its threshold selec-
tion process is automated, coherence values may not be retrieved from this approach.
This is because in soft-thresholding, some complex wavelet coefficients are eliminated,
preventing a correct reconstruction of the complex output, N.e/%=.

2.3.5 Compensating for Slope Biasing Effects in CCD

The wavelet transform-based coherence estimator is next applied on the same terrain
we had in figure 2-12, except that scene changes do occur between the satellite passes.
Figure 2-14(b) depict this scene change. Compared to the first pass, the two-slope
terrain in the second pass has a 4.5¢m deep, one-pixel wide trench running along
the azimuth direction in the steeper sloped portion and a 4.5¢cm deep, four-pixel big
hole entrenched in the middle of the gentler sloped portion. In the ideal case, we
would hope that the resulting coherence map indicates high coherence values across
the entire scene except where the trench and hole deformation occur. Figure 2-14(c)
shows the ideal coherence map where the resolutions of the deformations are exact.
This map shall be used as the basis of comparison in the computation of the mean
RMS coherence error, which can be attained in a similar fashion as eq. 1.9 and 1.10,
with the exception that the heights are replaced by the coherence values.

It was already shown that multilook coherence estimator suffers from varying coher-
ence losses dependent on the terrain slope, even for an unchanged scene. Here, ap-
plications of the topography-corrected and wavelet transform-based CCD techniques
will be applied, and comparisons be made among these three approaches of detecting
changes. To facilitate the above, the setup illustrated in 2-14(a) is used. It consist of
the non-collinear three-satellite configuration of section 1.3.3, at two different times,
separated by a baseline of 600m between the passes. This baseline length, as observed
in figure 2-12, is sufficient to induce slope-dependent coherence losses in the multilook
estimator. Only SAR 1 of both passes are utilized in retrieving coherence values from
the three CCD techniques. However, all three satellites of the first pass are involved
in retrieval of the original topographic phase term, without the need for temporal
degradation considerations, in applying eq. 2.26. The three-satellite height retrieval
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technique adopted for this case is phase averaging, with coherence wavelet denoising
discussed in section 2.3.4 applied. Note that both the height and coherence retrieval
processes are susceptible to the same noise level.

In this investigation, we vary premporai—Scene change, pspotiai—varying terrain slopes
and P¢hermai—noises, and seek to achieve the following:

e Detect the actual scene changes, i.e. 4.5¢cm deep trench and hole

e Investigate slope bias effects on the various CCD techniques

e Examine the coherence map errors in the presence of noise

e Look at the coherence map spatial resolution of the various CCD techniques

Figure 2-15 shows a plot of the mean RMS coherence error as a function of noise level
using the multilook, topography-corrected and wavelet transform-based coherence
estimator. The corresponding values are tabulated in table 2.7. In general, the RMS
coherence error increases with the noise level. Topography-corrected and wavelet
CCD techniques significant outperforms the multilook approach, primarily due to the
latter’s inability in compensating for the terrain’s slope bias. Topography-corrected
method works the best, as expected, having knowledge of the topography while the
wavelet method presents promising coherence retrieval performances even without
use of a DEM.

There are three possible reasons why the coherence errors is non-zero in noiseless
environments.

1. Due to the slope bias effects, as discussed in section 2.3.2, that occur even when
no noise is present.

2. The ideal map used has an absolute value of 1 when no change occurs while total
decorrelation (i.e. 0) when a change is detected. However, in our implementation
and practical cases, no detected changes corresponds to high coherence values,
> (.7, while scene changes lead to low values of > 0.3.

3. Ideal coherence map has spatial resolution exact to the actual terrain changes,
i.e. 0 values occupying regions exactly as the one-pixel wide trench and four-
pixel size hole. In implementation, lower resolution may be obtained depending
on the CCD technique applied.

From the above, it becomes necessary to visually observe the coherence map of the
three different approaches so as to better understand each implication on spatial res-
olution, bias slope effects, scene change detection and errors due to noise. Figure 2-16
to 2-18 depicts the coherence maps for a single simulation trial run with noise level
0°, 10°, 20°, 30°, 40° and 50°.

From figure 2-16(a), in the noiseless case, multilook CCD with a baseline of 600m
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Figure 2-15: Mean RMS coherence error as a function of noise for multilook,
topography-corrected and wavelet CCD.

Mean RMS coherence error
Topography-
Noise Level (°) | Multilook CCD | Wavelet CCD | Corrected CCD
0 0.2538 0.1400 0.1194
10 0.2570 0.1428 0.1231
20 0.2665 0.1522 0.1252
30 0.2824 0.1679 0.1320
40 0.3040 0.1913 0.1475
50 0.3317 0.2207 0.1733
60 0.3630 0.2644 0.2108
70 0.4005 0.3100 0.2570
80 0.4408 0.3603 0.3096
90 0.4814 0.4136 0.3673

Table 2.7: Mean RMS coherence error for various CCD techniques on a non-collinear
three-satellite near-repeat orbit setup.
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is corrupted by the unchanged terrain slopes such that coherence value remains high
for the gentler slope but medium for the steeper one. Due to windowing, the spatial
resolution is also worse-off than the ideal’s. Wavelet CCD, though affected by the
slopes, still register a high coherence > 0.8 for the entire map except where deforma-
tion occurs. Spatial resolution of the detected changed regions is high, as predicted.
Accounting for the slopes via knowledge of the DEM, topography-corrected CCD is
seen to be non slope-biased. Again, because of windowing involve in such a coherence
estimator, it loses spatial resolution when compared to the ideal or wavelet CCD map.
As the noise level increase, both the topology-corrected and wavelet approach, as seen
in figure 2-18(b), still depicts the correct information, i.e. there is no change detected
throughout the map except for the trench and hole regions. However, multilook CCD
breaks down and it is impossible to tell if the coherence losses in the left half portion
of the map are due to temporal or spatial decorrelation.

In this chapter, phase averaging technique has been successfully applied to the three-
satellite non-collinear configuration and is shown to perform better than data aver-
aging, in terms of the mean RMS height error. Weighted phase averaging technique,
though expected to outperform phase averaging using only two satellite data, break
down in the non-collinear setup. As well, the single height method is shown to be
more robust to varying noise levels than the single interferogram method. The ability
to combine the multi-baseline data into one, such that it may be perceived as coming
from only a pair of satellites, allows the application of the conventional two-satellite
height inversion process without need for excessive modifications. Yet, at the same
time, this approach returns more accurate results than just using data from each of
the three possible satellite pairs.

As well, coherence losses due to terrain slopes and inexact satellite repeat tracks
are identified. This introduces ambiguities in the interpretations of low or medium
coherence values: if they represent a scene change or simply an undulating terrain.
Solutions to this issue include accounting for the topographic phase variations via
prior knowledge of the DEM or a distinctive approach in the wavelet domain. While
the latter is shown to produce a map with higher spatial resolutions, the former re-
turns the best overall performance in CCD, in terms of mean RMS coherence error,
and requires a multi-baseline satellite configuration for accurate retrieval of the DEM.
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Figure 2-16: Coherence map for one simulation trial using multilook, topography-
corrected and wavelet CCD with noise level at (a) 0° (b) 10°.
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Chapter 3

Three-Satellite Interferometric
Cartwheel Orbit

Interferometric cartwheel system is one of the more recent applications of InSAR.
The constellation is composed of at least three satellites, which are assume to be
active in our analysis. Such a configuration is capable of acquiring the data required
for a more accurate computation of the DEM, since the simultaneous reception of
interferometric echoes on these satellites will avoid the temporal decorrelation effects
inherent to repeat-pass interferometry [6]. Each satellite orbit is characterized by
different eccentricities and perigee arguments so that the relative motion of the satel-
lites, in general, follows an ellipse. As such, the constellation can constantly provide
interferometry baselines by selecting appropriate pairs of satellites.

Au'th Direction

/

H=500km
\ ™~ Ground Range Direction

N ~ - -
Terrain =

Figure 3-1: Interferometric cartwheel configuration.
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Figure 3-1 illustrates the cartwheel setup used in our analysis. The cartwheel’s plane
lies perpendicular to the constellation’s direction of motion. The satellites constantly
rotate in a circular cartwheel fashion as the constellation advances in the azimuth
direction, with each satellite side-looking on the same terrain. In addition, every
satellite orientates itself with respect to a reference point [34], which in our case, is
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chosen to be the center of the wheel. This reference point is assumed to be fixed at
a height of 500km above sea level as the constellation advances.

We shall start off the analysis by first considering and setting up a three-satellite
circular cartwheel system. The cartwheel’s impacts on InSAR applications of both
height retrieval and CCD shall then be addressed.

3.1 Satellites Cartwheel Setup

Cartwheel Rotation

SAR?

SAR3 @500 Reference Point
60° i

Reference Point

SART GAR1  SARI
> X X
Azimuth Direction Azimuth Direction Azimuth Direction
View 1 View 2 View 3

Figure 3-2: Three different views of the satellite cartwheel in the azimuth and range
directions.

The satellite cartwheel when viewed from the azimuth and range directions are illus-
trated in figure 3-2. With reference to view 1, the three satellites are separated from
one another by 200m, forming an equilateral triangle upon joining up SAR 1, SAR 2
and SAR 3. As the constellation rotates in the clockwise direction about the triangle’s
centroid, the paths traced by the satellites define a circular wheel. This is assuming
that the centroid, which is also assigned to be the constellation’s reference point,
remains stationary. In reality, the reference point, thus the constellation, advances
in the azimuth direction. A rotation angle, 6, is defined to be the angle between the
horizontal flight path and the line through the reference point perpendicular to side
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12 of A123. 6 is eventually used to relate to the satellite positions.

View 2 and 3 show the geometries which we will consider for height inversion. In
fact, view 3 closely resembles the setup of figure 1-2 with side-looking radars, except
that a collinear configuration is considered here. In our simulation, we first collapse
the configuration of view 1 into that of view 2, and then project the vertical satellites
arrangement such that they are at an angle, «, from the horizontal, as shown in view
3. The baseline elevation angle, «, is selected to be 35°, which is consistent with the
definitions of section 1.3.3. This then allows us to apply the height retrieval process
exactly as before on a collinear satellite configuration. In the following sections, the
detailed implementation of the above cartwheel model is discussed.

3.1.1 Varying Baseline Lengths

Baseline Length as a function of 8

Baseline Length (m)

Figure 3-3: Relationship between the baseline length and the rotation angle, 6.

From figure 3-2, the true baseline length, B;;, used for InSAR is the distance between
satellite 7 and j of view 3. However, since view 2 and 3 only differs by horizontal
shifts of the satellites, it is sufficient to only examine the vertical separations of the
satellites in view 2 and treat them as the baselines. In that case,

Blg = 200 cos @ (31)

B3 = 200 cos(60° — 6) (3.2)

Depending on the value of 6, the corresponding By; can be computed from B;, and
B3 of eq. 3.1 and 3.2. This way, all three possible baseline lengths become functions
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of the rotation angle. A plot showing this relationship for a complete turn of the
cartwheel is presented in figure 3-3.

At § = 0°, it becomes obvious from view 1 of figure 3-2 that SAR 1 and SAR 2 are
joined vertically with Bys = 200m and Bj3 = B3 = 100m. This agrees well with the

plot. As 6 increases to 90°, SAR 1 and SAR 2 becomes joined up horizontally with
Bi3 = Byz and B,y = O0m. These observations again agreed with our plot.

3.1.2 Detection of the Bottommost Satellite

Cartwheel Rotation

Fixed
— ¥,— — Reference
I B Level

Azimuth Direction Azimuth Direction Azimuth Direction Azimuth Direction

Figure 3-4: Bottommost satellite varying distance below the reference as the cartwheel
rotates.

The figure above shows that the relative satellite positions with respect to the fixed
reference level is constantly changing as the cartwheel rotates, such that the bottom-
most satellite changes from A to B distance below the reference. In order to correctly
relate the satellite positions to the rotation angle, the bottommost satellite must first
be detected, and then its vertical distance from the reference can be computed with
knowledge of the wheel’s spoke length. Figure 3-5 depicts these relationships as func-
tions of @ in our implementation. For instance, at § = 30°, the plot detected SAR 1
as the bottommost satellite and it is at the maximum distance (wheel’s spoke length)
below the reference level. This, in view 1 of figure 3-2 translate to the cartwheel
position where SAR 2 and SAR 3 form a horizontal line.

3.1.3 Satellite Positions for InSAR

By combining the work of the previous two sections, the satellite positions to be used
for InSAR applications may now be established. For any value of 8, the bottommost
satellite is first detected and its position relative to the reference point in the height-
range plane is determined as described in section 3.1.2. After which, the relative
positions of the other two satellites can be derived with knowledge of the baseline
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Figure 3-5: Detection of the bottommost satellite and its distance below the reference
point.

lengths already obtained in section 3.1.1. The final positions are attained by project-
ing the satellites onto the line that forms an angle, «, with the horizon. This method
is capable of modeling a three-satellite collinear configuration similar to that seen in
view 3 of figure 3-2. In figure 3-6, the satellite positions used for height retrieval in
our model are presented at § = 0°,10° and 30°. It would be useful to compare these
plots with their corresponding cartwheel orientations gathered in appendix A.
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3.1.4 Accounting for Co-registration
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Figure 3-7: Modeling the three-satellite cartwheel as a collinear arrangement, upon
application of co-registration.

Figure 3-7 shows the actual satellite cartwheel configuration when measurements of
the ground’s radar reflectivity are being taken. Each of the satellite, at any one time,
lies on a distinct azimuth plane. Since DEM retrieval is not a real-time process, the
measurements may first be recorded and the data be processed at a later stage. After
applying co-registration to spatially align the data from each satellite, the original
cartwheel configuration may equivalently be collapsed into a collinear arrangement,
as illustrated in figure 3-7. This explains why the model described earlier, where the
three satellites are implemented as if they all lie in a single cut of the azimuth plane,
is valid.

3.1.5 Satellite Cartwheel Trajectory

We have been looking at the case where the cartwheel rotates about a stationary
reference point. In this section, the trajectories of the satellites, as the cartwheel
advances in the azimuth direction, will be derived. This implies that we should now
relate the positions of the satellites to time, ¢, instead of 6.

At the same time the cartwheel rotates (i.e. # changes), the constellation is also in
motion along azimuth with the reference level fixed at a height of 500km. In order
for this constellation to maintain a circular orbit at 500km above earth, gravitational
laws dictate the orbital period, as follows [35]:

. ’r3

where T is the orbital period and r is the orbit’s radius. u is a gravitational parameter
that equals ~ 398601km3/s? for earth. In our setup, the orbital period turns out to
be ~ 95 minutes and the corresponding velocity is ~ 7.6km/s. Furthermore, we
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will assume the realistic case where the cartwheel rotates one complete round for one
period of the constellation’s revolution about earth [45]. As such, both cartwheel and
constellation share the same period and all previous parameters that are functions of
6 can be modified to become functions of ¢ by replacing 6 with 27 /T x t.

x10°  Trajectories of Satellites with Constellation Velocity = 7.6km/s

5m15 T T T T T | L] T L)
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E
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49995
4999
1 I L

4. 1 4 1 1 1 1
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Azimuth Direction (m) <10

Figure 3-8: Satellites trajectories for a constellation velocity of 7.6km/s.

x10°  Trajectories of Satellites with Constellation Velocity = 0.035m/s
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Figure 3-9: Satellites trajectories for a constellation velocity of 0.035m/s.
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In figure 3-8, the trajectories of the satellites, in the height and azimuth directions,
are plotted for an orbit of the constellation about earth. It can be observed that each
satellite makes one turn of the cartwheel during this time frame.

To examine the trajectories in greater details, figure 3-9 shows a similar plot but with
the constellation velocity drastically reduced to 0.035m/s, allowing us to more closely

follow each satellite’s path. Again, the cartwheel makes one complete rotation during
this time. In the plot, the initial satellite positions (i.e. @ = 0°) are also highlighted.

3.2 Height Retrieval with the Cartwheel

/,;;9’\ -~ Aimuth Direction

;
1 ~
i /\/ Segment 1 >

Flat Terrain captured in an Interferogram

Figure 3-10: Snapshot of an interferogram using the interferometric cartwheel.

In this section, we shall apply our interferometric cartwheel model to retrieving the
DEM. To facilitate our understanding of this consequence, a flat ground at sea level
is used as the test terrain. A snapshot of a 256 x 256 interferogram, with azimuth
resolution ~ 5m, usually occurs in < 1s for a satellite’s velocity of several km/s.
Hence, the satellite positions may generally be approximated to be constant in the
height-azimuth plane within this small time frame. However, as we shall see later in
this section, the same approximation can no longer be made with a cartwheel config-
uration. Figure 3-10 shows a snapshot of the test terrain by the satellite cartwheel.
Notice that in forming this single interferogram, the cartwheel rotates within itself as
the constellation advances.

Ideally, we would like to be able to trace the actual positions of the satellites as the
cartwheel rotates while taking the snapshot. However, in practice, only one set of the
geometry parameters and satellite positions corresponding to each interferogram is
available. In our analysis, we shall assume that the set of parameter values that cor-
responds to the satellite positions at the beginning of every shot of the interferogram
is used for terrain height inversion. This assumption is illustrated in figure 3-11.
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Figure 3-11: Snapshot of an interferogram, assuming that the interferometric
cartwheel is not rotating in this time frame.

We have already seen from eq. 1.18 that the baseline length, B, is required for height
inversion. This equation is presented here again for the general case:

Furthermore, because p > B and p > 4, the following approximation can be made:

é B 62 ]
(§+%—E> ~ 3 (3.4)

such that eq. 1.18 now becomes

 =a+sin™ (—g-) (3.5)

This shows that the baseline elevation angle, a, the one-way slant range difference,
d, and the baseline length are critical parameters in the height inversion process. For
our setup, a is kept at 35° while § is retrieved from the unwrapped interferogram
(see eq. 1.17). Hence, knowledge of only one set of the parameter values when the
actual cartwheel configuration is constantly rotating propagates into errors of the
baseline length. This may also be inferred from figure 3-3. Effects of under- and
over-estimation of the baseline lengths will be look into in section 3.2.3.

3.2.1 Determining the Angle of Rotation
A realistic implementation of our model is to assume that the cartwheel rotates one

complete round for one period of the constellation’s revolution about earth. The path
distance covered by the constellation in a period of its orbit can be determined by

L =2n(R+ H) (3.6)
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where R is the earth’s radius and H is the constellation’s height. L is found to be
4.3x10%*km for our setup. A typical 512x512 interferogram having azimuth resolution
of 4m covers a ground distance of ~ 2km in the azimuth direction. In order to cover
this ground area in our setup, the cartwheel would have to rotate 2/L x 360° = 0.02°
within a snapshot of the interferogram. This angle of rotation shall henceforth be
used for subsequent height retrieval with the interferometric cartwheel.

3.2.2 Discretizing the Rotation Angle

In setting the cartwheel to rotate 0.02° within a snapshot of the test terrain, the
interferogram is divided up into four segments, as shown in figures 3-10 and 3-11.
Consequently, the total angle of cartwheel rotation is also discretized evenly into four
angles, from Af = 0° to Abfyina = 0.02°. Each segment of the interferogram then
corresponds to an angle of the cartwheel orientation, . For instance, if segment 1 is
related to Ginitia Of the cartwheel, then segment 4 relates to O;nitiar + A8 final-

In reality, the change in the cartwheel’s angle of rotation is continuous and a better
approximation would be to sample A6, at a much higher rate, i.e. dividing the
interferograms into many more segments. However, a coarse sampling rate of Afyinq
is preferred for analysis because it enables us to more closely study the impact of
the cartwheel effects on height retrieval for each segment. In fact, for small Afyinq,
varying sampling rate has minimal impacts on analysis since the ideal continuous
case can really be thought of as the discretized case with varying sampling rates.
Nonetheless, when Afyinq gets too large (i.e. 5°), abrupt phase changes occur in the
interferograms leading to breakdown of the coarsely sampled approximation. We shall
look into the cause of this breakdown for the case when A6y, is large and at the
same time coarsely sampled, and compare to the case when it is small or more finely
sampled.

&3 Flat Earth Phase Correchion Appled Rewrapped ¢,

Aeﬁnal = 50
Segment 4

A =333
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100 150 20 =0
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Figure 3-12: Affinq = 5° with coarse sampling — interferogram, ¢:3, after flat earth
correction and the rewrapped phase.
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Figure 3-12 illustrates the phase data for a setup where the cartwheel’s total an-
gle of rotation in a snapshot of the interferogram is 5°, with a starting position of
Oinitia = 0°. Interferogram ¢;3, corresponding to data from SAR 1 and SAR 3,
is shown after flat earth phase correction has been applied. The interferogram is di-
vided into four segments and each of them corresponds to an angle 8 of the cartwheel’s
orientation, as highlighted in the figure. Since the test terrain is flat and segment
1’s true parameter values are known, the flat earth correction compensate the phase
exactly in segment 1 such that it has a constant zero value. The same does not hold
true for the other segments due to the cartwheel’s rotation. Nonetheless, it should be
pointed out this inexact flat earth correction for the other segments does not propa-
gate into any form of error in the height retrieval process since the flat earth is only a
reference phase used to reduce the phase variations before unwrapping. The key here
is to add back the same phase that was subtracted, after the unwrapping process.

The rewrapped phase data after unwrapping of ¢,3 is observed to differ from the
original wrapped data, implying that least-squares unwrapping has failed. In par-
ticular, the constant phase of segment 1 cannot be retrieved. The reason is that
coarse sampling of A@yn, results in the cartwheel’s orientation changing abruptly
from one segment to the next, creating fringes in the flat earth corrected phase data
in segments 2, 3 and 4. If the residue-weighted least-squares unwrapping is applied
without modification, these fringes will propagate across the shears into neighboring
segments, leading to incorrect unwrapped phase data.

To understand the above phenomenon better, a flat-ramp test terrain, consisting of
a 600m high ramp placed directly besides a flat ground, is used. Figure 3-13(a) also
illustrates the corresponding interferogram formed by a two-satellite setup after being
corrected for flat earth. While the flat ground portion of it has zero phase values,
the ramp portion consist of fringes similar to those in figure 3-12. Figure 3-13(b)
shows the propagation of these fringes into the neighboring flat ground portion to-
gether with the weighting scheme that the least-squares unwrapping used. In order
to prevent unwanted fringe propagation across the shear, zeros weights are later en-
forced along the shear as shown in figure 3-13(c). Comparing (b) and (c), it can be
observed that the number of fringes in the flat ground portion of the rewrapped data
has been decreased. It can thus be concluded that the weighted least-squares unwrap
will generally perform badly when faced with shears in the interferogram, due to its
ineffectiveness in automatically assigning zero weights along these boundaries. Thus,
we should restrict to smaller values of Affina, as in the realistic case, when using
such coarse discretization.

Coarse sampling is only used to help us investigate the effects of the interferometric
cartwheel on the height retrieval process. Once we have understood its mechanics
after the next section, all subsequent simulations will be carried out with much finer
sampling. In that case, such phase errors will no longer surface, allowing our model
to be applied for large values of Affinq. In figure 3-14, fine sampling is applied such
that the interferogram is divided into segments equal to the number of azimuth pixels
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Figure 3-13: (a) Flat-ramp terrain and its interferogram. (b) Automated weighting
scheme and the rewrapped interferogram. (c) Modified weighting scheme and the
rewrapped interferogram.
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Figure 3-14: Affinq = 5° with fine sampling — interferogram, ¢:3, after flat earth
correction and the rewrapped phase.
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Figure 3-15: Affinq = 0.02° with coarse sampling — interferogram, ¢;3, after flat
earth correction and the rewrapped phase.

— 9256. For the same Affi,q = 5° as before, the ¢3 now appears to be continuous
and weighted least-squares unwrapping is executed correctly.

Figure 3-15 shows a coarse discretization as in figure 3-12 but with a much smaller
A8 finq- This would be the setup used for analysis in the next section. Here, segment
1 again contains zero phase values and no fringes appear in the other regions, enabling
the correct unwrapping of the interferogram. Hence, our model remains valid.
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3.2.3 Baseline Errors and Cartwheel Height Retrieval
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Figure 3-16: Retrieved terrain heights corresponding to Bjs, B3 and Bsy, and their
average, for 0;pitia = 0°.

We begin our investigation of the cartwheel effects on height retrieval by looking at
the G;nitiaw = 0° case. In this section, noise will not be introduced and the total
cartwheel rotation angle of 0.02° within a snapshot of the interferogram is always
evenly discretized into four values. Figure 3-16 shows the retrieved heights his, hi3
and hgs from the flat test terrain corresponding to B3, Bis and Bss. Notice that the
correct height is always retrieved in segment 1, i.e. the lowest segment in the map,
as expected because the retrieval parameters used correspond to this segment. It can
be observed that hi correctly retrieve the flat test ground while the topology in hi3
and h3s appears as steps going downwards and upwards respectively. In fact, some
form of symmetry appears between hi3 and h3s. Furthermore, when these three sets
of retrieved heights are averaged according to eq. 2.1, with weighting functions

Wi = 1;UJ13 = 1;11)23 =1 (37)

the resulting averaged height profile is flat with a variation of +1 x 10~2m over the
entire map. It was suggested at the beginning of this section that a constantly rotating
cartwheel propagates into baseline errors in height retrieval. We shall now investigate
this in greater details, on the specific case when 6,4 is 0°, in order to explain the
symmetry in heights observed and why averaging seems to work well here.
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Figure 3-17: Relating the magnitude of baseline change to the horizontal distance
form cartwheel’s reference point.

Before proceeding further, we shall first establish a relationship that would be useful
in the subsequent analysis. Figure 3-17 shows a change in the satellite position from
6, to 0, about the cartwheel, with spoke length r. This results in a vertical change
of r(sin(6;) — sin(f;)) which directly corresponds to changes in the baseline length
(see view 2 of figure 3-2). By relating the difference in the sine functions to their
gradients, it can be inferred that greater baseline length changes occur at smaller
angles of § while small baseline length changes occur for 6 near 90°. As such, the
following relationship is established:

Magnitude of vertical change  Horizontal distance from reference point  (3.8)

Figure 3-18 illustrates the rotation of the cartwheel from 0° to 0.02°, and the corre-
sponding change in the vertical baseline lengths. Using the relationship derived in
eq. 3.8, SAR 1 and 2, which are at the same horizontal distance from the cartwheel’s
reference point, are both shifted downwards by an amount a. SAR 3 is shifted up-
wards by b, where b > a since SAR 3 is at the maximum possible distance away
from the reference point. As a result, vertical B3 increases by a + b, vertical By
decreases by a + b, and B;, remains relatively unchanged. Such observations may be
generalized as an underestimation of B3, that worsens from segment 1 to 4, in the
height retrieval process since the actual baseline length increases from one segment to
the other but fixed parameter values corresponding to segment 1’s are used instead.
Similarly, an overestimation of Bsy occurs.

Simulations data in table 3.1 confirms our observations made in figure 3-18 where B3
and Bs; changes by the same amount in opposite directions while B, remains the
same as the cartwheel rotates 0.02° clockwise.

Wong, in his thesis [8], has already investigated the effects of baseline errors on

two-dimensional height retrieval using a two-satellite setup. Ignoring foreshortening
effects, his findings may be summarized as:
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Figure 3-18: Relating cartwheel rotation to baseline changes for 0,0 = 0°.
8 (°) 0 0.02 || Percentage Change (%)
B, (m) | 348.69 | 348.69 0
Bis (m) | 174.34 | 174.45 +0.06
B3y (m) | 174.34 | 174.24 —0.06

Table 3.1: Baseline lengths for ;501 = 0°.

e An underestimate of the baseline length leads approximately to a vertical shift
of the retrieved terrain heights downwards as compared to the original terrain
profile.

e Similarly, an overestimate of the baseline length will lead to a upwards shift of
the retrieved terrain heights.

e For small change of the baseline length such that ¢, in his derivation, is small,
an equal increment or decrement of the baseline will result in the same shift of
the retrieved terrain upwards and downwards respectively. This is true in our
case since baseline length changes by < £1%.

e The more the baseline length deviates from the true value, the greater the shift
in the retrieved heights.

The above summary allows us to relate figure 3-18 to the observations made in figure
3-16, where

e Underestimation of B3 leads to vertical shifts of the original flat terrain, at
H = O0m, downwards to negative values. These shifts in A;3 increases from
segment 1 to 4 as the cartwheel rotates and deviations of the baseline length
increases, from one segment to the next. This explains the downwards steps
observed in hqs.
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e The opposite may be concluded for hgz,.
e Minimal distortions occur for hi, because B;; remains relatively unchanged.

Furthermore, the symmetry observed between h,3 and hs, is well-defined since B3 and
Bs, changes in the opposite directions by the same small amount. Thus, averaging
of the three sets of heights data with simple weighting functions of eq. 3.7 indeed
should work to cancel out the vertical shifts and return the original flat terrain. Now,
in circular cartwheel configuration, averaging is no longer an option but rather, a
necessary step in order to retrieve correctly the DEM. However, does simple averaging
always work? To address this, we look at another extreme case where the ;14 of
the cartwheel is selected to involve satellites at the minimum horizontal distance away
from the reference point. ;piie; = 30° satisfies the requirements and its corresponding
cartwheel configuration is shown in figure 3-19.

6 (°) 30 30.02 | Percentage Change (%)
B (m) | 301.97 | 301.01 —0.02
B3 (m) | 301.97 | 302.03 +0.02

Table 3.2: Baseline lengths for ;10 = 30°.

There is minimum change in the vertical displacement of SAR 1 since it is right below
the reference point. SAR 2 and 3 are at equal horizontal distances away from the
reference point and are therefore, vertically displaced by the same amount ¢ as the
cartwheel rotates 0.02° clockwise. This results in an equal increment and decrement
of B3 and B, respectively (see table 3.2), leading eventually to underestimates of
his and overestimates of hiy in the form of steps, as depicted in figure 3-20. The
above observations agree well with our previous analysis of the 6,15 = 0° case. hss
is ignored here because Bs; is initially zero such that height retrieval is impossible.

The symmetries of the retrieved heights, k3 and k5, are consequences of an equal but
opposite change in B;s and B;3. Thus, applying averaging with eq. 2.1 and weighting
functions

Wig = 1;w13 = 1;’(1)23 =0 (39)

the initial flat test terrain can be attained. Now, it seems that by selecting appro-
priate weighting functions each time for a different 6;y;tiq;, the correct terrain may be
retrieved despite the cartwheel’s constant rotation within a snapshot of the interfer-
ogram. However, we would like this process to be automated so that it also works
for cases where symmetry of the retrieved heights does not exist. Intuitively, from
the Oinitiar = 30° example, the weighting functions should somehow be related to the
baseline length such that we3 = 0 when Bs; = 0. In the next section, the weighted
averaging technique discussed in section 2.1.2 shall be applied to cartwheel height
retrieval.
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Figure 3-19: Relating cartwheel rotation to baseline changes for 6;,i1a = 30°.
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Figure 3-20: Retrieved terrain heights corresponding to By, Bis and Bsy, and their
average, for ;100 = 30°.
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3.2.4 Weighted Averaging

Simply by inspection, it becomes obvious that baseline-weighted height averaging of
eq. 2.7, repeated below for convenience, should work in the cartwheel height retrieval
process in our two previous examples.

N
Y Bl

h =% (3.10)

N

2
> Bl
i=1

In the Biniia; = 0° example, equal weighting (i.e. By3 = Bsg) of hyz and hsg ensures
that the equal and opposite vertical shifts of the retrieved heights are canceled out.
Similarly, for the 0;nitia; = 30°, hi13 and hio are equally weighted while h3y are not
considered in the averaging scheme, which is as desired.

In continuing our quest for an automatic cartwheel configuration height retrieval
process, the baseline-weighted averaging technique was applied on a case where no
symmetry in the retrieved heights exists. O;nitiar = 15° and Afying = 0.02° is selected
for this purpose.

—— ®
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Figure 3-21: Relating cartwheel rotation to baseline changes for 0;p;tiq = 15°.

6 (°) 15 15.02 || Percentage Change (%)
By; (m) | 336.81 | 336.78 —0.009
Bis (m) | 246.56 | 246.65 +0.035
B (m) | 90.25 | 90.13 ~0.130

Table 3.3: Baseline lengths for 6;,iti0; = 15°.

From figure 3-21, the original positions of SAR 1, 2 and 3 are all at different horizontal
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Figure 3-22: Retrieved terrain heights corresponding to B2, B3 and Bss, and their
average using baseline-weighted averaging technique, for 6,0 = 15°.

distances from the cartwheel’s reference point, resulting in varying vertical shifts of
the satellites as the cartwheel rotates. According to eq. 3.8, it can be deduced that
a < b < c¢. From the diagram, B;, decreases by b — ¢, B;3 increases by a + ¢ and
B3, decreases by a + b. The numerical values for these baseline length changes are
tabulated in table 3.3 and it can be observed that all three lengths change by different
amounts. As such, no form of symmetries in the retrieved heights are expected, as
verified in figure 3-22. In fact, overestimates of Bjs and Bjs in the height retrieval
process lead to vertical shifts of the retrieved terrain upwards while underestimates
of By3 leads to downwards shift of the original flat terrain. These shifts are again
proportional to the magnitude of baseline changes.

When the baseline-weighted averaging is applied to this cartwheel setup where no
symmetries of the retrieved heights (i.e. hy3, hi2 and hss) exists, the original flat ter-
rain is obtained as shown in figure 3-22. And when unity-weighted averaging that
works well with the 6,110 = 0° case is applied instead, a RMS error of 1.3695m is
attained. So, the baseline-weighted averaging scheme, having been successfully tested
on two “extreme” cartwheel’s orientation setups and an in-between case, does work
to automatically retrieved the DEM.

To look deeper into the mechanics of the baseline-weighted averaging, we must first
recognize from the geometries setup, i.e. figures 3-18, 3-19 and 3-21, that short base-

91



lines are generally associated with large changes in their length as the cartwheel
rotates while the inverse is true for a longer baseline. For instance, when 6;,;i,; = 0°,
B, is the longest and has the minimal change in its length. In the 0;y,1:0; = 30° setup,
the shortest Bj; changes by 2¢ while the other two baselines only change by ¢ each.
In the most recent example, the longest B, changes the least, by —0.009%, while
the shortest Bj; changes the most, by —0.130%. In weighted averaging, we seek to
compensate for the vertical shifts of the three retrieved heights due to inexact base-
line parameters. So, terrains with inherently large vertical shifts should be weighted
lighter than those with small shifts, in order for the net shifts to cancel out. This
is achieved with baseline-weighted averaging where we have already established that
short baselines, hence, lighter weights, are associated with large length changes or
corresponding, large vertical terrain shifts. The reverse applies for long baselines.

Moreover, it may be inferred from figure 3-17 that the change in baseline length as
a consequence of the cartwheel’s rotation is approximately linear for small angles of
Af. This implies that the corresponding vertical shifts of the retrieved terrains follow
a linear relationship as well and that linear weights are to be used in the averaging
scheme. However, eq. 2.7 derived uses B? weighting functions and was observed to
outperform a linear baseline weight function when applied on the non-collinear three-
satellite configuration setup. Nonetheless, the scheme still works well for extremely
small A, as we have seen, but may eventually breakdown as it increases, and yet
remains small at < 1°. In the next section, we shall define a critical A8 where the
breakdown occurs.

3.2.5 Optimum Angle of Rotation for Height Retrieval

The baseline-weighted averaging will now be applied on the interferometric cartwheel
configuration using the test terrain defined in section 1.3.2 for various 6;pitiq in noisy
environments. In appendix A, the orientations of the cartwheel at 15° increments of
the rotation angle, @, are shown. Due to the symmetry observed, it is sufficient to
only consider 6 from 0° to 120°. Moreover, dense discretization of Afynq, similar to
that applied on figure 3-14, is used to ensure that the flat-ramp phase issues discussed
in section 3.2.2 do not surface. Figure 3-23 shows a plot of the mean RMS height
error of the retrieved heights at varying noise levels for 0;ni1ir = 0° to 105° at 15°
increments. The correct terrain profiles are retrieved for all values of 8;y;ti4; Since their
plots follow a similar trend to that found in the three-satellite non-collinear setup of
figure 2-1.

It was reported in [8] that the optimum cartwheel orientation for height retrieval
via data averaging occurs at § = 30°. In the current baseline-weighted averaging
implemented with a constantly rotating cartwheel, no optimum position is deemed to
exist, as observed from table 3.4. In fact, all eight plots of the various &;pitiq values fall
almost on the same line, with the average maximum deviations among them across
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Figure 3-23: Mean RMS height error as a function of noise level for various ;y;sia
values with Af final = 0.02°.

Mean RMS height error (m)
Noise
Level (°) | Ginitiqr =0° | 15° 30° 45° 60° 75° 90° 105°
0 0.0057 | 0.0042 | 0.0007 | 0.0034 | 0.0049 | 0.0034 | 0.0007 | 0.0042
10 0.0971 | 0.0967 | 0.0970 | 0.0969 | 0.0974 | 0.0971 | 0.0964 | 0.0968
20 0.1813 0.1801 | 0.1810 | 0.1803 | 0.1815 | 0.1808 | 0.1814 | 0.1814
30 0.2599 0.2604 | 0.2623 | 0.2631 | 0.2612 | 0.2614 | 0.2603 | 0.2631
40 0.3380 | 0.3340 | 0.3353 | 0.3350 | 0.3335 | 0.3378 | 0.3354 | 0.3361
50 0.3993 | 0.4013 | 0.4041 | 0.4039 | 0.4030 | 0.4019 | 0.4029 | 0.4041
60 0.4643 0.4651 | 0.4628 | 0.4634 | 0.4651 | 0.4681 | 0.4655 | 0.4656
70 0.5358 | 0.5316 | 0.5323 | 0.5368 | 0.5332 | 0.5288 | 0.5331 | 0.5297
80 0.6119 0.6142 | 0.6107 | 0.6140 | 0.6062 | 0.6129 | 0.6152 | 0.6178
90 0.7389 0.7492 | 0.7417 | 0.7411 | 0.7479 | 0.7356 | 0.7380 | 0.7370

Table 3.4: Mean RMS height error for 8;ni1i = 0° to 105° values using baseline-
weighted averaging.
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Figure 3-24: Mean RMS height error as a function of noise level for various Ginitiar
values with (a) Affing = 0.05°, (b) Abfina = 0.1°, (c) Abfing = 0.2° and (d)
Aeﬁml = (0.5°.

all noise levels to be 5.78 x 10~3m.

Finally, the critical Af where breakdown of the above scheme occurs shall be defined.
Figure 3-24 depict similar plots as before except that Afyin, is increased from 0.05° in
(a) to 0.5° in (d). As Abjinq increases, the different plots of finitia begins to deviate
from one another such that their RMS height errors become bigger, indicating a break
down in the height retrieval process. As explained in earlier paragraphs, this is due
to the approximations made when applying the B? weighting functions. Here, we
defined A8riticq; to be such that its mean RMS height error is less than a predefined
tolerance level, e;y, for all 6,1 values in the noiseless environment. If e,y is chosen
to be 4cm, as in figure 3-24(b), then, Afgiticar = 0.1°. Using eq. 3.6, this implies that
the terrain may be correctly retrieved up to a maximum cartwheel rotation speed
which makes six complete turns of the wheel in one revolution of the constellation’s
orbit.
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We shall now go on to examine the effects of cartwheel on the CCD process.

3.3 Coherent Change Detection with the Cartwheel

The setup to be used in this section is similar to that employed in figure 2-14, where
the same two-slope terrain, trench-hole deformations and ideal coherence map are
utilized. While three satellites coexist again in each pass, they are now placed in a
circular cartwheel configuration instead, as described in section 3.1. Also, the sepa-
ration between the cartwheel’s reference point of pass one and two is 200m. In this
section, we would like to study the effects of the constantly rotating cartwheel on
change detection of a snapshot of the imaged scene. As before, we shall compare the
performance of the multilook coherence estimator, topography-corrected coherence
estimator and wavelet transform-based coherence estimator, applied on the two-slope
terrain. Here, the DEM needed for topography-corrected coherence estimator is re-
trieved from the three-satellite cartwheel, as explained in section 3.2.4, during the
first pass.
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Figure 3-25: Satellite cartwheel setup for CCD with plane of the cartwheel modified
for clarity.

Figure 3-25 illustrates the simulation setup of the satellite cartwheel used in CCD.
The plane of both cartwheels have been rotated for clarity sake. Without loss of
generality, SAR 1 of the first pass and SAR 2 of the second pass is used to form the
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interferometric baseline for CCD. Of course, we could have chosen any other satel-
lites in the first and second passes to form the baseline but since we are primarily
interested in investigating the effects of the cartwheel on CCD here, such a choice
would have sufficed. In addition, the cartwheels in both passes have the same start
positions, Oinitiar, and final angle of rotation, Affina.

In the subsequent sections, we shall first assume a noiseless environment and fix 6;y;sia;
at 50° to examine the performance of change detection with respect to varying Afyinq.
Performance of the various CCD methods is measure by the mean RMS coherence
error. After that, CCD’s performance in a noisy environment will be evaluated before
finally, analyzing its performance as a function of 6;,;:.;. Note that in the realistic
case, Abging = 0.02° (see section 3.2.2) so that this becomes our primary value of
interest.

3.3.1 Varying Angle of Rotation, Af¢;ny

In this section, we kept 6;,isia fixed at 50° while assuming a noiseless environment.
The coherence maps retrieved from the three approaches are illustrated in figure 3-26
with various value of Afyinq at (a) 0.02°, (b) 0.1°, (c) 0.3°, (d) 0.4° and (e) 0.5°.
Their corresponding RMS coherence errors are tabulated in table 3.5.

For small Afy;nq = 0.02° up to 0.4°, the coherence maps observed are very similar to
those attained in figure 2-16(a), where the slope biasing effect showed up in the multi-
look CCD while both topography-corrected and wavelet CCD are relatively unbiased
by this effect. This implies that cartwheel CCD does work in the realistic case where
Abina is about 0.02°. However, for Afyin, = 0.5° or greater, effects of the rotating
cartwheel starts to kick in and the coherence losses in the unchanged portions of the
imaged scene is so bad that they may be misinterpreted as scene-change induced low
coherence values. These observations may be arrived by inspecting figure 3-26(e),
where coherence values across the maps are generally low (< 0.6), irrespective of the
actual scene changes.

One reason why CCD still works reasonably well despite a rotating cartwheel is due
to the fact that the coherence value of a pixel is also computed based on the val-
ues of its neighboring pixels, via windowing as described in eq. 1.21 and 2.26. This
may be considered as a form of averaging such that the distortions introduced by the
cartwheel’s rotation are partly eliminated, for small Afnq = 0.02° up to 0.4°.
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Figure 3-26: Coherence map for one simulation trial using multilook, topography-
corrected and wavelet CCD with Afyine at (a) 0.02° (b) 0.1° (c) 0.3° (d) 0.4° (e)

0.5°.

Coherence error
Topography-
Abfina (°) | Multilook CCD | Wavelet CCD | Corrected CCD
0.02 0.2307 0.1336 0.1191
0.1 0.2392 0.1475 0.1208
0.3 0.3168 0.1809 0.1834
0.4 0.3884 0.2057 0.2655
0.5 0.4791 0.2917 0.3710

Table 3.5: Coherence error for various CCD techniques as a function of Abfina,

applied on a three-satellite cartwheel.
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3.3.2 Varying Noise Level

Now, we shall keep 8initiq; fixed at 50° and Abying fixed at 0.02°, while varying the
noise level. This is somewhat similar to the investigations carried out in section
2.3.5. The relationship between the mean RMS coherence error and noise level for
the three CCD methods is plotted in figure 3-27. As expected, topography-corrected
CCD method performs the best while the wavelet CCD approach outperforms the
multilook coherence estimator approach.
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Figure 3-27: Mean RMS coherence error as a function of noise.

Mean RMS coherence error
Topography-
Noise Level (°) | Multilook CCD | Wavelet CCD | Corrected CCD
0 0.2307 0.1336 0.1191
10 0.2342 0.1365 0.1192
20 0.2435 0.1455 0.1211
30 0.2601 0.1613 0.1274
40 0.2832 0.1839 0.1427
50 0.3098 0.2172 0.1690
60 0.3446 0.2563 0.2071
70 0.3821 0.3005 0.2509
80 0.4237 0.3538 0.3069
90 0.4704 0.4099 0.3711

Table 3.6: Mean RMS coherence error for various CCD techniques applied on a three-
satellite cartwheel.
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3.3.3 Varying Cartwheel’s Start Position, 0;,;;q

In this section, Affinq is kept fixed at 0.02° in a noiseless environment while 0;,;tiq is
varied, in retrieving the CCD with a constantly rotating cartwheel. A complete turn
of the cartwheel is considered such that 6;,;:;,; changes from 0° to 345°. We shall first
examine the relationship between the mean RMS coherence error and the cartwheel
start position, @;,isiq;- This is illustrated in figure 3-28.

Mean RMS Coherence Emor VS Start Angle of Cartwheel

035 : ¥ : r : :
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02 ...........
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Figure 3-28: Mean RMS coherence error as a function of cartwheel start angle for
multilook, topography-corrected and wavelet CCD.

From the figure above, it can be inferred that the topography-corrected CCD method
is independent of the cartwheel’s start position while both the multilook and wavelet
CCD exhibits minimum errors at 6, = 180°. As well, symmetry in the mean RMS
coherence error is observed about this angle. In order to aid us in understanding this
phenomenon, the interferometric baseline length formed between SAR 1 and SAR 2 of
the two passes is plotted as a function of 6;,se in figure 3-29. Furthermore, reference
to figure 2-11 has to be made. Data values of figures 3-28 and 3-29 are tabulated in
table 3.7

Generally, the various cartwheel’s start positions primarily affects the length of the
interferometric baseline formed between SAR 1 and SAR 2 of each passes, and has
a direct impact on coherence losses in CCD, as illustrated in figure 2-11. Ideally, we
would like the baseline to be as short as possible such that when this baseline length
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Figure 3-29: Distance between SAR 1 of the first pass and SAR 2 of the second pass

as a function of cartwheel start angle for multilook, topography-corrected and wavelet
CCD.

Mean RMS coherence error
Start Multilook | Wavelet | Topography- | Distance between
Angle (°) CCD CCD | Corrected CCD Satellites (m)

0 0.3189 0.1623 0.1190 689.33

30 0.2841 0.1499 0.1189 643.05

60 0.2004 0.1260 0.1192 S17.1

90 0.1294 0.1162 0.1192 347.1

120 0.1166 0.1116 0.1195 185.39
150 0.1193 0.1037 0.1196 99.332
180 0.1196 0.1009 0.1196 95.079
210 0.1193 0.1036 0.1195 99.352
240 0.1165 0.1115 0.1194 185.48
270 0.1295 0.1163 0.1191 347.22
300 0.2004 0.1261 0.1191 917.21
330 0.2841 0.1499 0.1188 643.11

Table 3.7: Coherence error for various CCD techniques and their corresponding satel-
lites separation, applied on a three-satellite cartwheel.
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becomes zero, pspariar Of €q. 1.22 becomes one.

Mean RMS coherence errors of the topography-corrected CCD method in figure 3-28
remain a constant unaffected by 6,100 and hence, are independent of the baseline
length between the passes as well. This is similar to the observation made in figure
2-11(a) where the terrain profile is compensated exactly in forming the coherence
map. If the terrain variations are not totally compensated, then figure 2-11(b) and
(c) tell us that coherence losses, which worsen with increasing baseline length, will
occur. This is what was observed for the case of wavelet and multilook CCD in figures
3-28 and 3-29, where the two plots share very similar trends. As such, we conclude
that the change detection of imaged scenes are dependent on the cartwheel’s starting
position, finitia1, unless knowledge of the DEM is available beforehand.

Furthermore, the coherence errors of the multilook CCD almost match that of the
topography-corrected CCD at 6;,;1,0; = 180°, as observed from table 3.7. This is the
angle where the baseline length is minimum. The phenomenon can be explained by
observing that there are two ways in achieving high pspatiar, unaffected by a non-zero
baseline length (see section 2.3.1).

1. Accounting for terrain slope variations
2. Short interferometric baseline between the passes

Since eq. 1.21 and 2.26 are closely related except for the additional estimated to-
pographic component, ¢,, by simultaneously satisfying the above two criterion, we
would have made these equations equal. Hence, the match in coherence errors of the
two methods are attained.

In this chapter, we have examined the effects of a constantly rotating circular cartwheel
applied in taking a snapshot of an interferogram. Baseline-weighted averaging is found
to be a necessary step for the correct and automated retrieval of heights. The pro-
posed averaging scheme was found to work equally well for all cartwheel’s orientations,
as long as Afying is < 0.1°. Cartwheel’s impact on CCD was investigated as well and
was found to detect scene changes correctly in the realistic case when the cartwheel
rotate an angle of 0.02° within a snapshot of an interferogram. Furthermore, without
prior knowledge of the DEM, CCD’s performance was concluded to be dependent on
the cartwheel’s starting position when taking the snapshot of the scene.

Next, we shall look into the effects of possessing imperfect knowledge of the satellite
positions and how such errors propagate into the height retrieval and CCD process.
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Chapter 4

Satellite Positioning Errors

Due to instrumental noise effects, the satellite positioning data required for height
inversion may be susceptible to errors. In previous chapters, we have highlighted
the advantages brought about by the introduction of an additional third satellite.
For instance, in the case of retrieving the terrain profile, three-satellite configuration
enables the use of phase averaging and weighted height averaging techniques which
are shown to outperform the heights retrieved from single baseline data. In CCD,
a multi-baseline configuration allows for the application of topography-corrected co-
herence estimator, that compensates well for the slope biasing effects observed in the
conventional multi-look coherence estimator.

Errors in the satellite positions propagate into unacceptably large misalignments in
the retrieved terrain profiles, hence, greatly compromising any advantages in a three-
satellite configuration that was discussed earlier. CCD applications are affected as
well if the topography-corrected coherence estimator is adopted. We propose taking
into account the satellite positioning errors in the height inversion process and at-
tempt to retrieve the true satellite positions, without knowledge of any ground truths.
In this chapter, we shall first discuss the implications and significance of such errors
on the retrieved heights and CCD before looking into possible ways of rectifying them.

The setup used for analysis is the three-satellite non-collinear configuration model
discussed in section 1.3.2. Here, we assume that at least one of the true satellite
positions is known and so, may only be concerned with relative rather than absolute
positioning errors. In this case, it suffices to fix one of the three satellite positions
while introducing independent random errors to the other two. In figure 4-1, SAR 1 is
fixed while both SAR 2 and SAR 3 deviates from their true positions (i.e. SAR 2¢rror
and SAR 3..or) by amounts defined by ry, 6, 73 and 63 so that

SAR 2eror = [SAR 2; +r3c086, SAR 2, + ro8in6,) (4.1)

SAR 3error = [SAR 3; + 71300563, SAR 3, + 735in 63 (4.2)

where 6; and r;, with {i¢} = {1, 2}, represent independent random numbers uniformly
distributed between [—m, ) and [0, 7mqs] respectively, with 7,,,, being the maximum
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SAR1

Figure 4-1: Errors in satellite positions, defined in terms of the magnitude r and
phase 6, for a three-satellite non-collinear configuration.

magnitude of satellite position error.

Errors in these positions propagates into errors of the baseline length, the baseline
elevation angle and the satellites’ heights, resulting in retrieved height profiles that
are vertically and horizontally displaced and tilted, as shall be discussed in the next
section.

4.1 Impacts of Positioning Error on Height Re-
trieval

The height retrieval process represented by eq. 1.18 and eq. 1.19 are repeated below
for easy reference, and for a more general case.

5§ B §
= in~! —_ —_—— 4-
0 = a+sin <B+2p 2Bp> (4.3)
Az =H — pcosb (4.4)

From these two equations, we again identify the retrieval parameters as the unwrapped
interferogram, ®, and its corresponding

e slant range, p
e look angle with respect to nadir, €
e baseline, B

e baseline elevation angle, o
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e satellite’s height, H

If errors are introduced in the satellite positions, then B, a and H associated with
interferogram ¢ will inevitably inherit these errors, leading to an incorrect 6 and
eventually, retrieved heights. We shall first examine the effects of having errors in
each of B, a and H separately, on the retrieved terrain profiles.

4.1.1 Baseline Uncertainty and Satellite’s Height Uncertainty

Wong (8] has already investigated the effects of baseline length errors, ceteris paribus,
on the retrieved heights. It was shown that such errors resulted in vertical and hor-
izontal (due to foreshortening correction) shifts of the terrain profiles. In particular,
his thesis illustrated an example where a 2% error in baseline length resulted in ver-
tical and horizontal shifts of hundreds of meters when the terrain’s absolute height is
only ten meters.

Errors in the satellite’s height may be factored into eq. 4.4 such that the retrieved
heights become vertically displaced.

4.1.2 Baseline Elevation Angle Uncertainty

We shall now examine the effects on the retrieved terrain profile when only the baseline
elevation angle, o, contains error.

Let the true angle corresponding to the interferogram in question be «. In that case,
the satellite position errors will introduce a fix deviation, Aa, from the actual value
such that

o =a+Aa (4.5)
Eq. 4.3 is then modified to account for the error so that
6 B 62
' e O = =
¢ = a+sin (B+2p 2Bp)+Aoz
= 0+ Aa (4.6)

Both eq. 4.5 and eq. 4.6 illustrates how the errors in a propagates into errors in
the look angle. Eq. 4.4 relates cosine of the look angle to retrieved heights. This is
represented in eq. 4.7.

Az x cos(8) 4.7)
We shall also define the first and second derivatives of eq. 4.7 where
d(Az) o
a0 = sin(6") (4.8)
d%(Az) ,
a0)? x —cos(8') (4.9)
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Next, we define 64 as the look angle corresponding to the ground range pixels nearest
nadir while fg as the look angle corresponding to the ground range pixels furthermost
from nadir. Figure 4-2 illustrates these angles.

‘ llluminated
‘ Terrain

Swath

Figure 4-2: Satellite setup illustrating 64 and 0.
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Figure 4-3: Plot of Az o cos(f) together with amplified values of 64 and 65.

Using the terrain model described in section 1.3.2, 84 is ~ 30.9638° and 0p is
~ 31.2996°. As a result, |#4 — 05| = 0.3358°, which is small. Figure 4-3 shows
the relationship of eq. 4.7. For illustration purpose, the values of 84 and 6z are
exaggerated to bring out the distinction that 4 < 8p. Referring to figure 4-3, we
now introduce an incremental error, Acq, to the baseline elevation angle such that it
becomes eq. 4.5, and then observe the corresponding change in the retrieved height
at opposite ends (i.e. 84 and 0g) of the illuminated terrain. From the graph, it can
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be deduced that for positive values of A, h4 is decreased by Ah, while hp is de-
creased by Ahp, with Ahy < Ahp. According to eq. 4.8, if we assumed Aa to be
small, then, these changes in hy and hp are approximately linear with respect to
Aa. On the other hand, eq. 4.9 relates the magnitude of change in Ahs and Ahpg to
the difference in look angles, |64 — 05|- In particular, Ah changes linearly for small
|04 — 05| = 0.3358°.

The actual retrieved heights, Az’ affected by Ac, and thus, Ak, may be represented

as follows:
AZ x Az + Ah (4.10)

Because the change in magnitude from Ah4 to Ahp is approximately linear for small
|64 — 5|, this leads to the conclusion that the retrieved heights, Az, becomes ver-
tically displaced and tilted in the ground range direction. This finding agrees with
simulation results where a flat terrain, upon introduction of errors in the baseline
elevation angle, is observed to be vertically shifted and tilted, with a linear slope.

4.1.3 Satellite Positioning Uncertainty

Since errors in the satellite positions propagate into errors of the baseline length,
elevation angle and satellite’s height, we may deduced from earlier sections that,
in general, such uncertainties combine to produce a retrieved terrain profile that is
horizontally and vertically shifted, and linearly tilted. Simulation results verified this
and showed that, in fact, large vertical shifts are the main contributor to the RMS
errors in the retrieved heights. Hence, these errors may be greatly reduced by aligning
the mean of the retrieved and displaced heights. However, we shall not make such an
alignment correction in this chapter for the purpose of analyzing realistically the full
impacts of the satellite position errors on retrieved topography.

In figure 4-4 and table 4.1, we analyze the effects of position errors in SAR 2 and
SAR 3 with maximum magnitudes, 7y,,,, ranging from Ocm to 10cm on the retrieved
terrain. In this case, the mean of N = 50 simulation runs is considered and the mean
RMS height error is computed as:

1 N 1 a b
mean T.m.s error = — } : il E :E :[(hg;ezghted averaging _ h;r(*tgmal)2]
N &~ ab J

=1 j=1
k3 J E

| . (4.11)
ge’ghted VETagind is the retrieved heights susceptible to satellite positioning

errors at the (i*", j'*) pixel, after applying weighted height averaging, and hj 9™ is
the true terrain height at the (i**, j**) pixel.

where h

The plot shows that the accuracy of the retrieved heights are very sensitive to the
maximum magnitude of position errors, and that they are positively related. For
instance, 2cm deviations in the positions of SAR 2 and SAR 3 results in mean height
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Mean-RMS Error VS Error Magnitude, Iy & f5, for a Non-collinear Configuration
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Figure 4-4: Mean RMS height error as a function of the maximum magnitude of error,
Tmaz, applied on SAR 1 and SAR 2 (r; and r3).

Maximum Magnitude of
Satellite Position Error, r9,73 (m) | Mean RMS Coherence Error (m)
0 7.756 x 1078
0.01 3.2579
0.02 6.7779
0.03 8.8438
0.04 18.720
0.05 17.665
0.06 25.089
0.07 26.527
0.08 23.092
0.09 36.275
0.10 36.516

Table 4.1: Mean RMS height error for varying maximum magnitudes of the satellite
positions error, ., for ro and 7.
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errors of more than 5m while 10cm deviations propagate into mean height errors of
36m. Such sensitivities in position errors implied that these errors must be accounted
for in the height inversion process, which we will attempt in section 4.3.

4.2 Impacts of Positioning Error on CCD

In CCD, the phase data of satellites from each of the passes are combined using the
multilook coherence estimator of eq. 1.21, repeated below for easy references:

ZZSl(m n)Sy(m,n)

Pl == e (412)
Z lel(m n)|? Z ZISz(m n)|?

It becomes obvious that multilook CCD is not affected by satellite positioning errors
since satellite position data are not factored into the computations of the coherence
map, as depicted in the above equations. Rather, only the co-registered phase data
from each of the passes are required.

However, if we would like to compensate for the slope biasing effects inherent in

the above method, then, the topography-corrected coherence estimator of eq. 2.26,
repeated below for convenience, shall be utilized.

M N h
Z Z Sl (m, ’I’L)S; (m, n)e_j¢z(m,n)

Iptopol = meln=l - (413)
Z lel(m n)? Z ZiSz(m n)|?

Applications of eq. 4.13 require the terrain profile (¢, ), which should be attained with
a three-satellite configuration in order to avoid temporal decorrelation, as explained
in section 1.5.2. However, the terrain profiles would have been distorted due to
the presence of satellite position errors, discussed in the previous section. We shall
next examine the effects of position errors on the topography-corrected coherence
estimator.

The simulation model used is that shown in figure 2-14, where the same terrain,
deformations and ideal coherence map are considered. The satellite setup is shown in
figure 4-5, where positioning errors have been applied to SAR 2 and SAR 3. Unlike
the errors introduced in figure 4-1, we will fix both 8, and 63 to be 180° for simplicity,
such that their position errors are only dependent on the magnitude 7.4, as shown in
the figure. Moreover, 74, is now non-random and represents the absolute magnitude
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®
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Figure 4-5: Errors in satellite positions, for a three-satellite configuration applied on
the topography-corrected coherence estimator.

‘Mean RMS Height Error VS Satellite Positions Error

70 1 f ! ; T —
BOF - e L 4
- 50 ..................................................................................... -
S
L
%40 .................................................................................... .
Q
I
2
& 3D R D R R A LLL LR E T PR PPRY PEREPPRFP PRPPRPR
=
P
E 20_ .................................................................................... ]
T S A O U SO A S S ST, i
i | i i

i i I i i
0 001 002 003 004 005 0065 007 008 009 04
Magnitude of Satellite Positions Error, ., in Horizontal Direction (m)

Figure 4-6: Mean RMS height error as a function of the magnitude of satellite posi-
tions error, Ties, i & noiseless environment.
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Mean RMS Coherence Error VS Satellite Positions Error
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Figure 4-7: Mean RMS coherence error as a function of the magnitude of satellite
positions error, 144, for noise level = 0°, 10°, 20°, 30°, 40° and 50°.

Mean RMS Coherence Error (m)
Satellite Position
Error, rys (m) | Noise Level = 0° | 10° 20° 30° 40° 50°

0 0.1194 0.1231 | 0.1252 | 0.1322 | 0.1477 | 0.1739
0.01 0.1194 0.1228 | 0.1251 | 0.1323 | 0.1482 | 0.1735
0.02 0.1194 0.1230 | 0.1252 | 0.1323 | 0.1481 | 0.1725
0.03 0.1194 0.1230 | 0.1253 | 0.1317 | 0.1483 | 0.1737
0.04 0.1194 0.1228 | 0.1251 | 0.1323 | 0.1476 | 0.1740
0.05 0.1194 0.1231 | 0.1253 | 0.1328 | 0.1467 | 0.1746
0.06 0.1194 0.1229 | 0.1253 | 0.1320 | 0.1483 | 0.1733
0.07 0.1194 0.1229 | 0.1254 | 0.1319 | 0.1481 | 0.1738
0.08 0.1194 0.1231 | 0.1255 | 0.1324 | 0.1482 | 0.1741
0.09 0.1194 0.1229 | 0.1249 | 0.1332 | 0.1478 | 0.1736
0.10 0.1194 0.1228 | 0.1255 | 0.1331 | 0.1491 | 0.1721

Table 4.2: Mean RMS coherence error as a function of noise levels for varying mag-
nitudes of the satellite positions error, rcg;.
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of errors instead of the mazimum magnitude of the positioning errors defined earlier.

A plot of the mean RMS coherence error as a function of the magnitude of satellite
positions error, 7, for varying noise levels is illustrated in figure 4-7. The data
for the plot is tabulated in table 4.2. At each noise level from 0° to 50°, the mean
coherence errors remain relatively unchanged as 74 vary from Ocm to 10em, even
when the terrain profile, which is used to determine J)m in eq. 4.13, contains RMS
height error of up to 60m. The plot of mean RMS height error as a function of r.g
is shown in figure 4-6. Note that both figure 4-4 and 4-6 exhibits the same general
trend but the mean RMS height error of the latter is higher, ranging from 0m to 60m
for position errors with magnitudes varying between Ocm and 10cm, as compared to
a height error range of Om to 36m in the former. This is because the magnitudes of
the satellite position errors on the horizontal axis represent the absolute deviations in
the latter while those in the former represent only the mazimum possible deviations,
and may not necessarily take up these values.

The observations made in figures 4-6 and 4-7 may be explained by more closely
examining the estimated topographic component, by Firstly, it should be pointed
out that the retrieved heights which are susceptible to positioning errors, are distorted
primarily due to huge vertical displacements, as pointed out in section 4.1.3. In
other words, these terrain profiles, though slightly tilted, closely resembles that of the
original terrain, except for some vertical shifts. As well, it was noted that qu ineq. 4.13
contains only information of the local terrain variations rather than information about
the absolute terrain profile since it represents a phase term wrapped around [—7, 7).
Hence, in computing quSm from the vertically distorted retrieved terrain, minimal errors
are introduced since the local terrain characteristics are still well preserved in these
terrain profiles.

From the results obtained above, it became clear that satellite position errors does
not affect CCD applications as much as they do to height retrieval.

4.3 Satellite Position Retrieval without Ground Tr-
uths

In this section, we shall discuss the methods adopted in attempting to retrieve the
correct satellite positions, without prior knowledge of any ground truths. If ground
truth are available, then retrieval of the positioning data will be trivial. For instance,
Zebker et al. [15] states that the positioning errors may be rectified if two ground
truths is known, i.e. the shifts and tilt of the topography described in section 4.3
may be undone. Nonetheless, in practice, multiple ground truth points may not be
available and it is more realistic to assume the scenario of no ground truths.
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4.3.1 Satellite Position Retrieval Methodology

Since no ground truth points are available, we seek to search for the correct satellite
positions by minimization of some proposed cost functions. The following three cost
functions have been implemented:

a b

f(Bi2, 12, Bi3, ai3) = % Z Z[(hm — hy3)?] (4.14)

i=1 j=1

a b
f(z2, 22, 73, 23) = % Z Z[(hu — h13)? + (P2 — ha3)? + (hiz — has)?]  (4.15)

i=1 j=1

a b
f(z2, 20,%3,23) = \/(ﬁ Z Z[(hm - h13)2 + (hi2 — h23)2 + (P13 — h23)2 +

i=1 j=1

+ (Azy — Azy)® + (Azy — Ax3)® + (Azy — Ax3)?])  (4.16)

where hyp, is the height retrieved from interferogram ¢, of size a x b, with {p,q} =
{1,2,3},p # q. Az, is the ground range corresponding to satellite s. All three
equations made used of the fact that if no satellite positioning errors exist, then, the
retrieved heights from the three interferograms must match, returning the correct
terrain profile. In other words, the functions f(.) are minimum (i.e. RMS of the
heights differences equal zero), at least locally, when the true satellite positions are
detected. Parameters inside the brackets, (.) of f(.), are values we search for in
minimizing the cost functions.

Eq. 4.14 only made use of h;2 and h;3 so that H in eq. 4.4 has no uncertainty. In this
case, we can make use of eq. 4.3 and eq. 4.4 directly to search for Bis, a2, Biz and
oq3 that minimizes the cost function. With SAR 1’s position known, we would then
be able to deduce the correct positions of SAR 2 and SAR 3.

In figure 4-8 and 4-9, the one dimensional cost function of eq. 4.14 is plotted against
position errors of SAR 3 in the horizontal and vertical directions respectively, as
part of the forward problem. A setup similar to that in figure 4-1 is considered. By
introducing [—10cm, 10cm] horizontal and vertical errors separately to SAR 3 only
in both figures, it can be observed that a minimum height error point indeed exists
when no errors in the satellite positions are introduced.

In eq. 4.15, all three available retrieved height profiles are made used in minimizing

the cost function and the true satellites’ positions, (z3,22) of SAR 2 and (z3, 23)
of SAR 3, are searched for directly in the two dimensional along-track plane. In

115



1-D Cost Function: Mean Height Error VS Satellite 3 Error in Horizontal Direction
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Figure 4-8: One dimensional cost function of the RMS height error plotted against
position error of SAR 3 in the horizontal direction.

1-D Cost Function: Mean Height Error VS Satellite 3 Error in Vertical Direction
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Figure 4-9: One dimensional cost function of the RMS height error plotted against
position error of SAR 3 in the vertical direction.
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implementation, the height retrieval equations 4.3 and 4.4 are modified such that

Biy = /(2§ — 11)% + (257" — 21)2 (4.17)
error __
agy = tan~! (%’&—ﬁ) (4.18)
Ty — I

so that ¢ = z and 2" = z when the cost functions are eventually minimized.
¢ and ¢ are the original error-corrupted satellite positions.

Eq. 4.16 is an extension of eq. 4.15 such that the ground range positions of the
retrieved heights, Ax, which is susceptible to foreshortening correction errors, are
taken into account as well. In simulations, Az is calculated as psin(f). It was found
that this cost function returns the most accurate satellite positions in a noiseless
environment.

4.3.2 Simulation Results

We start off working in a noiseless environment with a flat test terrain, utilizing the
setup illustrated in figure 4-1. Using eq. 4.16, the solutions that minimize the cost
function are retrieved with Matlab’s fminsearch function. The topography is then
recalculated using these returned solutions of the fminsearch function (i.e. retrieved
satellites’ positions), in order to compare the improvement in accuracy attained upon
conducting the positioning corrections. As well, the new errors of the corrected satel-
lite positions are computed and compared directly with that of the original position
errors. The results are plotted and tabulated in figure 4-10 and table 4.3

We can observe from figure 4-10 that by setting the mazimum error magnitude, rs
and r3 of figure 4-1, to be 2.5¢m or less, we ensured that the retrieved satellite po-
sitions of SAR 2 and SAR 3 deviate from the true positions by amounts less than
the original errors introduced. For instance, with r and r3 set to 2cm, the solutions
returned by the fminsearch carried errors of about lem for both satellites. In fact,
the topographies retrieved with these new positions were observed to follow closely
the original flat terrain, with RMS height errors of the order ~ 107*m. This is a
great reduction from having RMS height errors of up to 60m when no positioning
corrections are applied.

If the errors introduced are such that » > 2.5¢m, then, the searched satellite positions
returned by Matlab are no longer closer to the true values than the initial deviations
introduced. In that case, the cost functions minimization approach may seem to have
failed to locate the true satellite positions. However, local observations of the cost
functions about the true satellite positions, within +10c¢m, showed that an absolute
minimum point with value ~ 107 indeed exist at the location of the true positions.
In fact, locally around this minimum point, it was found that solutions with function
values of the same order exist, making the minimum point less distinct. Despite re-
ducing the termination tolerance criteria of the search process, Matlab’s fminsearch
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Retrieval of True Satellite Positions using Cog! Functions Minimization
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Figure 4-10: Maximum magnitudes of the original satellite position error, r; and r,
compared against the new position errors after positioning corrections.

Satellite Position Error
after Corrections (m)
Original Satellite
Position Error, 1, 7, (m) | Satellite 1 | Satellite 2
0 1.4761 x 10" | 1.8229 x 10°
0.01 0.005565 0.006756
0.02 0.01064 0.009997
0.03 0.03447 0.03779
0.04 0.04400 0.04656
0.05 0.1061 0.1119
0.06 0.1318 0.1546
0.07 0.1543 0.1552
0.08 0.2157 0.2480
0.09 0.2485 0.2768
0.10 0.2360 0.2578
0.11 0.2710 0.3055
0.12 0.2597 0.3052

Table 4.3: Retrieval of true satellite positions using cost functions minimization tech-
niques.
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seems unable to detect this slight difference in function values, and hence, partly
explaining the incompetence of the cost functions minimization approach in such a
situation. For instance, introducing an error with maximum magnitude 6¢m results
in positioning errors of ~ 14cm in the retrieved solution. Yet, the RMS height error
using the worse-off satellite positions is still small, ~ 1073.

With the introduction of noise, the cost functions minimization approach return satel-
lite positions that deviate greatly from the true values. Again, evaluation of the cost
function in eq. 4.16 verified the existence of a local minimum at the true satellites’
positions. However, fminsearch converges away from this minimum towards another
local minimum further away.

4.3.3 Proposed Search Algorithms

Since the primary concern in this thesis is in analyzing the impacts of satellite po-
sitioning errors on the height retrieval and CCD processes, we shall not go into the
details of compensating for the position errors in a noisy environment. Nonetheless,
the following observations and suggestions are made.

In lieu of the observations made in simulations, it becomes obvious that an alternate
search algorithm is critical in ensuring the success of the cost functions minimization
approach described in section 4.3.1. In particular, the search algorithm must be sen-
sitive to small differences in function values and should only do a local, rather than
global, search for the desired solutions.

One suggested approach is as follows: Due to the local nature of such a search,
it makes sense to divide the four-dimensional satellites’ positions space, containing
(287", 25™°") and (2§77, 2§"™"), into segments and manually search through each
segment to find the one that returns the least value. After which, this newly iden-
tified segment is again divided up and a similar search for the next segment with
the smallest value is applied. The process goes on till the segments become small
enough to approximate satellites’ positions. Such a search approach ensures that the
solutions stay within the vicinity of the local minimum that corresponds to the true
positions. As well, small differences of the cost function values, up to Matlab’s pre-
cision of 107!%, may be detected. Nonetheless, segmentation of a four dimensional
space may prove to be a challenge.

In this chapter, we have analyzed how small errors in the satellite positions propagates
into unacceptably large errors in the retrieved heights. In CCD applications, it was
shown that the effects of satellite position errors is minimal since in this case, only
the local terrain profile rather than the absolute terrain matters. As well, attempts
are made to account for these errors without knowledge of any ground truths. More
accurate satellite positions may be retrieved in a noise-free environment if the original
position errors are less than 2.5¢m. Suggestions on how modifications to the current
search algorithms may be made in order to enhance the satellite position retrieval
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process to account for larger errors are also raised.
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Chapter 5

Conclusion

In this thesis, we deal primarily with the multi-baseline SAR configuration utilizing
three satellites. Two applications of InNSAR, multi-baseline height retrieval and multi-
baseline compensation of CCD’s slope biasing effects, are first examined in details.
The three-satellite setup is then related to a realistic cartwheel configuration, where
the resultant errors introduced to the height retrieval and CCD process, due to the
constant cartwheel rotation, are analyzed. As well, errors in satellites’ positions are
introduced and their impacts on height retrieval and CCD are studied. The thesis
started off with the introduction of the simulation test model as well as the general
height retrieval and CCD process.

In chapter 2, we first look at the multi-baseline height retrieval technique before
directing our attention to CCD applications. Phase averaging technique, a novel
contribution of the thesis, has been successfully applied to the three-satellite non-
collinear configuration and is shown to perform better than data averaging, in terms
of the mean RMS height error. Weighted phase averaging technique, though expected
to outperform phase averaging using only two satellite data, break down in the non-
collinear setup. As well, the single height method is shown to be more robust to
varying noise levels than the single interferogram method. The ability to combine the
multi-baseline data into one, such that it may be perceived as coming from only a pair
of satellites, allows the application of the conventional two-satellite height inversion
process without need for excessive modifications. At the same time, this approach
returns more accurate results than just using data from each of the three possible
satellite pairs.

Next, ways of compensating for coherence losses due to terrain slopes and inexact
satellite repeat tracks are identified. These losses introduce ambiguities in the inter-
pretations of low or medium coherence values: if they represent a scene change or
simply an undulating terrain. Solutions to this issue include accounting for the topo-
graphic phase variations via prior knowledge of the DEM or a distinctive approach
in the wavelet domain. While the latter is shown to produce a map with higher spa-
tial resolutions, the former returns the best overall performance in CCD, in terms of
mean RMS coherence error, and requires a multi-baseline satellite configuration for
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accurate retrieval of the DEM.

In chapter 3, we examined the effects of a constantly rotating circular cartwheel ap-
plied in taking a snapshot of an interferogram. Baseline-weighted averaging is found
to be a necessary step for the correct and automated retrieval of heights. The pro-
posed averaging scheme was found to work equally well for all cartwheel’s orientations,
as long as Abftinq is < 0.1°. Cartwheel’s impact on CCD was investigated as well and
was found to detect scene changes correctly in the realistic case when the cartwheel
rotate an angle of 0.02° within a snapshot of an interferogram. Furthermore, without
prior knowledge of the DEM, CCD’s performance was concluded to be dependent on
the cartwheel’s starting position when taking the snapshot of the scene.

Lastly, satellite positioning errors due to instrumental noise effects are introduced
in chapter 4 where the implications and significance of such errors on the retrieved
heights and CCD are discussed. In CCD applications, it was shown that the effects
of satellite position errors is minimal since in this case, only the local terrain profile
rather than the absolute terrain matters. However, in height retrieval, small errors
in the positions propagate into unacceptably large misalignments. Attempts are also
made to account for these errors without knowledge of any ground truths, making
use of some cost minimization functions.
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Appendix A

Cartwheel’s Orientation

The orientations of the cartwheel at 15° increments of the rotation angle, €, from 0°
to 360° are depicted in this appendix. Due to the cartwheel’s symmetry, it turns out
that satellite positions are repeated every 120°. Hence, in analysis, it suffices to only
examine the rotation from ;i = 0° to 120°.
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