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Abstract

The five noble gases (helium, neon, argon, krypton, and xenon) are biologically and chemically inert, mak-
ing them ideal oceanographic tracers. Additionally, the noble gases have a wide range of solubilities and
molecular diffusivities, and thus respond differently to physical forcing. Tritium, an isotope of hydrogen, is
useful in tandem with its daughter helium-3 as a tracer for water mass ages. In this thesis, a fourteen month
time-series of the five noble gases, helium-3 and tritium was measured at the Bermuda Atlantic Time-series
Study (BATS) site. The time-series of five noble gases was used to develop a parameterization of air-sea gas
exchange for oligotrophic waters and wind speeds between 0 and 13 m s- 1 that explicitly includes bubble
processes and that constrains diffusive gas exchange to ± 6% and complete and partial air injection pro-
cesses to ± 15%. Additionally, the parameterization is based on weeks to seasonal time scales, matching the
time scales of many relevant biogeochemical cycles. The time-series of helium isotopes, tritium, argon, and
oxygen was used to constrain upper ocean biological production. Specifically, the helium flux gauge tech-
nique was used to estimate new production, apparent oxygen utilization rates were used to quantify export
production, and euphotic zone seasonal cycles of oxygen and argon were used to determine net community
production. The concurrent use of these three methods allows examination of the relationship between the
types of production and begins to address a number of apparent inconsistencies in the elemental budgets of
carbon, oxygen, and nitrogen.
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Chapter 1

Introduction



1.1 Motivation

The ocean plays a key role in the biogeochemical cycle of many climatically relevant gases such as CO 2 ,

CH4 , N20, etc. These gases are at historically unprecedented levels in today's atmosphere (e.g. Keeling

et al., 1996; Petit et al., 1999; Fluckiger et al., 1999; Spahni et al., 2005) and thus the exchange of gas

between the atmosphere and the ocean is of particular importance. The ocean is a significant sink for

anthropogenic CO2 (Siegenthaler and Sarmiento, 1993; Cox et al., 2000) but exactly how CO2 is sequestered

and how this amount will change with time is not well understood. For example, recent evidence suggests

that the Southern ocean sink of CO2 is becoming saturated (Le Quer~ et al., 2007). Other gases than CO2 also

have potentially varying sources and sinks in the ocean. The primary natural sources of N20 are emission

from ocean upwelling regions and from tropical soils. Since the magnitude and location of denitrification

may change with climate, the oceanic source of N20 may change as well. Another climatically relevant gas,

DMS, is produced in the ocean and diffuses into the atmosphere, where through the CLAW hypothesis it

may participate in important climate feedbacks (Charlson et al., 1987).

All gases in the atmosphere and ocean cross the air-sea boundary and thus are affected by air-sea gas

exchange. The challenge is that air-sea gas exchange is a complicated, dynamical physical problem which

is very difficult to measure directly. Thus bulk parameterizations of air-sea gas exchange flux have been

developed to allow researchers to calculate the net result of air-sea gas exchange for a given gas in a given

condition (Liss and Merlivat, 1986; Wanninkhof, 1992; Wanninkhof and McGillis, 1999; Nightingale et al.,

2000). Recent studies suggest that these earlier estimates may be too large by approximately 20% to 30%

(Ho et al., 2006; Sweeney et al., 2007). These air-sea flux relationships are important for global climate

change models as well as for flux calculations. For example, bulk parameterizations have been used in

conjunction with maps of surface seawater pCO2 to infer air-sea CO2 fluxes for different regions of the

ocean (Takahashi et al., 1997). Additionally, quantification of air-sea gas exchange fluxes is necessary for

biogeochemical research that uses gases as tracers to investigate key problems. For example, 0 2/N 2 ratios

in the atmosphere can be used to infer partitioning of CO2 between land and ocean sinks (e.g. Keeling et al.,

1993; McKinley et al., 2003; Bender et al., 2005) and 02 measurements in the ocean can be used to infer net

community production (e.g. Jenkins and Goldman, 1985; Craig and Hayward, 1987; Emerson, 1987). One

sign of the ubiquity of use of these air-sea gas exchange parameterizations is that the most commonly used



parameterization by Wanninkhof (1992) has been cited 890 times.

Existing parameterizations, however, have uncertainties of 25 to 50%, leading to uncertainties that prop-

agate through all studies using these parameterizations. Depending on the parameterization used, global and

regional fluxes can differ by up to 100% (Fangohr and Woolf, 2007). Additionally existing parameterizations

are based on either short time-scales of hours to days or on long time-scales such as decades. The shortest

time scales are assessed by micrometeorological techniques (Wanninkhof and McGillis, 1999) which have

time scales of hours. Radon deficit calculations (Peng et al., 1979) and deliberate dual release experiments

(Watson et al., 1991) allow prediction of gas exchange paramterizations on time scales of several days to

two weeks. In line with the short time scales, these estimates are necessarily local in scope. At the other

extreme, gas exchange parameterizations estimated from natural or bomb radiocarbon budget have decadal

or longer time scales (Broecker and Peng, 1974; Wanninkhof, 1992; Sweeney et al., 2007). Such estimates

are by nature global in scope. Yet it is the intermediate time scale of weeks to seasonal that matches the time

scale of many biogeochemical processes in the ocean.

Moreover, most existing parameterizations do not explicitly treat bubbles. Air injection (the flux due to

bubbles) is a complicated problem of bubble dynamics (e.g. Memery and Merlivat, 1985; Woolf and Thorpe,

1991; Woolf, 1993; Keeling, 1993; Woolf et al., 2007). The air injection flux can be significant, especially for

less soluble gases such as 02 and He. Finally, the techniques that determine air-sea gas exchange parameters

from direct empirical data, such as purposeful release experiments, are logistically difficult and have only

been applied in limited areas of the ocean. The major goal of this thesis is therefore to determine an air-sea

gas exchange parameterization with uncertainties of only 10 to 20% that is based on direct, emprical data,

that explicitly includes bubbles, and that is based on weeks to seasonal time-scales.

Another reason for studying gases in the ocean is that gases can be used to constrain upper ocean bio-

geochemical cycles. Understanding the carbon cycle is key for climate research since CO2 is an important

greenhouse gas. As mentioned above, CO2 enters the ocean through air-sea gas exchange. Marine organ-

isms then fix approximately 50 Pg of carbon per year (Field et al., 1998). Some of this organic matter

is remineralized in the surface of the ocean and thus has no net effect on CO2 concentrations. Some of it,

however, is exported into deep water and separated from the atmosphere on time scales of hundreds of years.

The importance of biological production in the ocean has long been known. Standard techniques for



measuring biological production include bottle experiments in which radiotracers are added to bottles of

seawater which are then incubated and analyzed. While such experiments are useful, they have limitations

due to so-called "bottle effects" produced by confining production to a single bottle, eliminating grazers,

trace metal contamination from the bottles, etc. Additionally, bottle experiments offer only a snap-shot

of production at one particular place and time. Sediment traps quantify export production and offer the

advantage of direct collection of sinking material. However, hydrodynamic biases and swimmers make

sediment trap data difficult to interpret (Gardner, 2000). Newly designed neutrally-buoyant sediment traps

(Buesseler et al., 2000; Valdes and Price, 2000; Stanley et al., 2004; Buesseler et al., 2007) avoid some

of these problems but nonetheless sediment traps, as well as bottle experiments, may miss episodic events

(such as production stimulated by eddies) which may constitute a large fraction of production (McGillicuddy

et al., 2007).

Geochemical tracers complement the traditional approaches to estimating production because they char-

acterize the integrated behavior of systems over broad spatial and temporal scales. A variety of geochemical

tracers have been used to quantify three types of production - net community production (e.g. Jenkins and

Goldman, 1985; Craig and Hayward, 1987; Spitzer and Jenkins, 1989; Gruber et al., 1998), export produc-

tion (e.g. Jenkins, 1980; Sarmiento et al., 1990), and new production (Jenkins, 1988b; Jenkins and Doney,

2003). Net community production is defined as primary production minus heterotrophic respiration. New

production is defined as the production stemming from input of new nutrients into the euphotic zone (Dug-

dale and Goering, 1967). Over sufficiently long temporal and spatial scales, the three types of production

should be equal (Eppley and Peterson, 1979). In this study, I use geochemical tracers to measure all three

types of production at the same location and at the same time for an in-depth analysis of the carbon cycle in

a subtropical oligotrophic gyre. By using all these methods concurrently, I examine the relationship between

the types of production and begin to address a number of apparent inconsistencies in the elemental budgets

of carbon, oxygen, and nitrogen.

1.2 Overview of Approach

The two central objectives of my thesis are:



1. To provide a quantitatively more accurate parameterization of air-sea gas exchange rates that explicitly

includes bubble-mediated processes on biogeochemically relevant time scales

2. To use three tracer subsystems in order to concurrently quantify new, net community, and export

production in an oligotrophic subtropical gyre.

In order to achieve these objectives, I have collected a monthly time-series of five noble gases (He, Ne,

Ar, Kr, and Xe), helium isotopes and tritium at the Bermuda Atlantic Time-series Study (BATS) site. I

then combine this data with a one dimensional, vertical, modified Price-Weller-Pinkel (PWP) model (Price

et al., 1986; Spitzer and Jenkins, 1989) in order to separate and quantify gas exchange parameters. By

combining the noble gas and tritium data with biogeochemically active constituents, such as NO and 02, I

also constrain biological production.

Noble gases are ideal tracers because they are biologically and chemically inert and thus respond solely

to physical forcing. Additionally, there are five of them with a range of solubilities and molecular diffusiv-

ities (Figure 1-1). The diffusivities differ by a factor of five with helium being the most diffusive (J'ihne

et al., 1987). The solubilities differ by a factor of ten, with xenon being the most soluble (Wood and Caputi,

1966; Weiss, 1971; Weiss and Kyser, 1978; Hamme and Emerson, 2004b). Additionally, the solubilities of

the heavier noble gases have a stronger dependence on temperature. This broad range in physicochemical

characteristics leads to differing response to physical forcing. Thus measurements of multiple noble gases

made concurrently allow us to diagnose and quantify physical processes.

Helium (He) and neon (Ne), the lightest gases, are useful because they are insoluble with relatively lit-

tle temperature dependence and therefore are sensitive to air injection processes. Krypton (Kr) and Xenon

(Xe), the heaviest gases, are useful because they have a strong temperature dependence to solubility and

thus respond to thermal forcing. Argon (Ar) is intermediate in behavior and has a solubility and diffusivity

very similar to that of molecular oxygen. Thus, it is especially important because it can serve as an abiotic

analogue to 02. Oxygen signatures in the ocean are a result of physics and biology. Argon mimics the

physics and thus the difference between 02 and Ar can be a tracer for biological productivity (Craig and

Hayward, 1987; Emerson, 1987; Spitzer and Jenkins, 1989). In practice, however, the story is more com-

plicated since Ar and 02 have different gradients and distributions. In the aphotic zone, 02 is consumed

through remineralization, resulting in an 02 debt that is mixed upward. Argon in contrast, has a relatively



Figure 1-1: (a) Molecular diffusivities of the noble gases and oxygen as a function of temperature, as
calculated from the diffusivity values of Jiihne et al. (1987). Helium, the lightest noble gas, is more diffusive
by a factor of five than Xe, the heaviest noble gas. (b) Solubilities of the five noble gases and oxygen as
a function of temperature. The solubilities vary by an order of magnitude, with Xe being the most soluble
and having the strongest temperature dependence. Solubility values for He are from a modified version of
Weiss (1971), Ne and Ar solubilities are from Hamme and Emerson (2004b), Kr solubility is from Weiss
and Kyser (1978) and Xe solubility is from Wood and Caputi (1966).
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constant saturation anomaly with temperature. By using all the noble gases and a one dimensional model of

upper ocean dynamics, I model the physical processes affecting 02 and by difference can estimate biological

production.

In previous seawater studies, Ar has been used in conjunction with 02 to estimate biological production

(Craig and Hayward, 1987; Spitzer and Jenkins, 1989). Time-series of He, Ne and Ar measurements in

seawater have been used to investigate air-sea gas exchange (Spitzer and Jenkins, 1989) as have time-series

of Ne, Ar, and N2 (Hamme and Emerson, 2006). Helium measurements in seawater have been used to

investigate escape mechanisms for the exosphere (Bieri et al., 1967). Modeling studies suggest Ar can be

used for quantifying diapycnal mixing (Henning et al., 2006; Ito and Deutsch, 2006). The solubility of Kr

and Xe have a stronger thermal dependency than Ar and thus these heavier gases allow better constraints on

air-sea gas exchange parameters (Stanley et al., 2006) and may be useful tracers of water mass formation

processes (Hamme and Severinghaus, 2007).

As part of our time-series, I also measure 3He and tritium. 3He in the ocean has two sources - primordial
3He from hydrothermal and volcanic activity and 3He produced from in-situ tritium decay. In the upper

ocean at BATS, the main source of 3He is tritium decay (Jenkins, 1980). Tritium is naturally produced in

small amounts from cosmogenic rays, but the natural inventory was dwarfed by input of tritium from the

thermonuclear bomb tests in the 1950s and 1960s. Tritium was injected into the stratosphere where it formed

HTO and then rained out into the ocean. Tritium decays to 3He with a half-life of 12.31 years (MacMahon,

2006) and the combination of tritium and 3He measurements can be used as a "clock" for dating subsurface

water (Jenkins and Clarke, 1976). At the surface, the clock is zeroed as most of the 3He is fluxed out due

to gas exchange. As water is subducted and separated from the atmosphere, 3He builds up from decay of

tritium. In practice, mixing complicates this simple scenario but models can be used to calculate ventilation

time scales from tritium and 3He measurements (Jenkins, 1980; Doney and Jenkins, 1988).

By measuring a time-series of tritium, 3He, and the noble gases, I am able to resolve the seasonal cycle

and build a detailed understanding of the dynamic system. The BATS site is an ideal place for this work for

several reasons. First, a time-series of many biogeochemical relevant parameters (but not the noble gases)

have been measured at BATS since 1988 (Michaels and Knap, 1996) and before that at Station S since 1954

(Schroeder and Stommel, 1969). Thus there is a wealth of historical data that can be used to constrain the



model and to interpret the results. Second, the infrastructure was in place for sample collection. This not

only meant that ship-time was accessible, but also key information such as 02 and nutrient measurements

are made as part of the BATS program and ancillary data from the BATS program (such as plankton tows,

sediment traps, bottle experiments, etc) may aid in interpretation of results. Third, there is a significant

seasonal cycle at BATS, with a summer to winter temperature difference of approximately 10 degrees.

Since the heavier noble gases respond most strongly to thermal forcing, a strong temperature cycle causes a

supersaturation of the gases in summer, and thus a flux out of the mixed layer which can be parameterized.

Fourth, BATS is located in an oligotrophic regime. Ninety percent by area of the oceans are oligotrophic

and half of the global carbon export occurs in oligotrophic regimes. Thus a study in such conditions is

relevant to much of the world's oceans. Finally, noble gas data at the BATS site is amenable to being

modeled with a one-dimensional vertical model. The main factor controlling the distribution of the noble

gases is the temperature history of the water. At BATS, the contours of net heat flux parallel the circulation

(Worthington, 1976) and thus a one-dimensional model can reasonably be used for the noble gases .

I use a one-dimensional vertical Price-Weller-Pinkel (PWP) (Price et al., 1986) model that has been

modified to include He, Ne, and Ar (Spitzer and Jenkins, 1989) and I extend it to the heavier noble gases.

I force the model with six-hourly NCEP reanalysis heat flux (Kistler et al., 2001) and with QuikSCAT

winds. Modeling is necessary to separate and quantify the physical processes affecting the noble gases.

The advantage of a one-dimensional model is that it is simple and transparent. However, a one-dimensional

model clearly does not account for horizontal processes and large scale circulation. For reasons described

above, the model is sufficient for the noble gases. However, it is not appropriate for use with nutrients,

tritiugenic 3He, and tritium because of large scale gyre circulation (Williams and Follows, 1998; Jenkins

and Doney, 2003).

1.3 Chapter by Chapter Plan

Noble gases are ideal tracers but the heavier noble gases have not often been measured in seawater, perhaps

because they are so difficult to measure. Recent improvements in mass spectrometers, particularly the

development of a stainless steel cryogenic trap (Lott, 2001) have made such measurements possible. In

Chapter 2 of this thesis, I describe a method I developed for measuring the five noble gases and their isotopes



in seawater samples through mass spectrometry. Automated cryogenic traps are used to first sorb and then

to separate the noble gases. Two mass spectrometers are attached to a single processing line, allowing

measurements of both helium isotopes and noble gases on the same samples. The noble gases are measured

statically by peak height manometry using a quadrupole mass spectrometer, equipped with a pulse-counting

secondary electron multiplier. Helium isotopes are measured on a purposely built, branch-tube, statically

operated magnetic sector mass spectrometer. Separating the noble gases in a reproducible way can be

difficult due to matrix effects of one noble gas on another as well as affects from other gases in seawater

(such as methane) and thus great effort was made to reduce and assess matrix effects. Additionally, the mass

spectrometer and processing system are precisely standardized, and any effects of nonlinearity are assessed

and accounted for. By measuring the noble gases through comparison to precisely known aliquots of air, I

avoid using isotope dilution and thus can determine the isotopic ratios of the noble gases in the samples.

In Chapter 3, I perform a modeling sensitivity study in order to determine how well a time-series of five

noble gases at BATS could constrain air-sea gas exchange parameters. I extend the PWP model for Kr and

Xe and force the model with NCEP reanalysis winds and heat fluxes (Kistler et al., 2001). Ensemble runs

are used to optimize tunable physical parameters in order to emulate the temperature, salinity, and mixed

layer observations at BATS. I then perform sensitivity studies to characterize the response of the noble gas

saturation anomalies to air-sea gas exchange parameters. I use a linear inverse technique (singular value

decomposition) in order to determine the constraints offered by a hypothetical time-series of all five gases.

As a limited demonstration of the approach, I use a dataset of a time-series of three noble gases (He, Ne, and

Ar) collected between 1985 and 1988 in the Sargasso sea (Spitzer, 1989) in order to calculate preliminary

estimates of air-sea gas exchange parameters.

In Chapter 4, I present a 14 month time-series of five noble gases collected between July 2004 and

August 2005 at 22 depths in the upper 400 m of the ocean. I combine the noble gas data (measured according

to the method in Chapter 2) with inverse modeling (as in Chapter 3 but with QuikSCAT winds) in order to

develop an air-sea gas exchange parameterization that explicitly includes air injection processes, that has

uncertainties of ±6% for diffusive gas exchange and ±15% for air injection over the range of wind speeds

encountered in the time-series (0< uIo <13 m s-l), and that provides an estimate on a relevant and unique

time scale. I use a nonlinear constrained optimization inverse method and explore the sensitivity of the



parameters to uncertainties in the solubility functions of the noble gases, to uncertainties in the physical

parameters used in the model, to the structure of the cost function, and to uncertainties in the model's

representations of the gases.

In Chapter 5, I combine the gas exchange parameterization developed in Chapter 4 with 3He, tritium, 02,

and NO3 measurements from the 14 month time-series in order to estimate new, net community, and export

production. First, I combine 3He measurements in the mixed layer with the gas exchange parameterization

to calculate the 3He flux out of the mixed layer. By correlating 3He in the thermocline with NO3, I can then

estimate the flux of NO3 into the mixed layer and the new production flux as it is physically transported by

upwelling of thermocline waters. I next use tritium and 3 He data from the upper ocean measurements as

well as from two profiles that extend to 4200 m depth in order to calculate the ventilation age of the water.

I combine apparent oxygen utilization with these ventilation ages to calculate apparent oxygen utilization

rates (AOUR). The vertically integrated AOUR is a measure of export production. Finally, I use the euphotic

zone seasonal cycles of 02 and Ar with the model developed in Chapters 2 and 3, in order to estimate

net community production. This study is unique in that it measures all three types of production using

geochemical techniques at the same location and at the same time. By comparing the estimates of the three

types of production, I start to examine inconsistencies in the elemental cycling of C, 0, and N.

In summary, this thesis uses the five noble gases as tracers to improve our understanding of air-sea gas

exchange processes and upper ocean biological production. The noble gases are used to develop an im-

proved parameterization of air-sea gas exchange that explicitly includes bubbles and that can be applied to

calculate the air-sea flux of any gas. The noble gases, tritiugenic 3He, and tritium are then used, in conjunc-

tion with this improved parameterization, to estimate three types of biological production in a subtropical

oligotrophic gyre and to explore the relationship between new, net community, and export production and

nutrient cycling.





Chapter 2

A Method for Measuring Five Noble Gases

and Their Isotopic Ratios Using Stainless

Steel Cryogenic Trapping and a

Combination of Quadrupole and Magnetic

Sector Mass Spectrometers



Abstract

A method is presented for precisely measuring all five noble gases and their isotopic ratios in water samples

using multiple cryogenic traps in conjunction with quadrupole mass spectrometry and magnetic sector mass

spectrometry. Multiple automated cryogenic traps, including a two-stage cryotrap used for removal of water

vapor, an activated charcoal cryotrap used for helium separation, and a stainless steel cryotrap used for neon,

argon, krypton and xenon separation, allow reproducible gas purification and separation. The precision

(expressed as 1 standard deviation) of this method, determined by repeated measurements on gas standards,

is +0.10% for He, +0.14% for Ne, +0.10% for Ar, +0.14% for Kr, and +0.17% for Xe. The precision

of this method for water samples, determined by measurement of duplicate pairs, is ±1% for He, +0.9 %

for Ne, +0.3% for Ar, +0.3% for Kr, and ±0.2% for Xe. Isotopic ratios of the noble gases are measured

as well, with precisions of ±0.19% for 20Ne/22Ne, +0.20% for 84Kr/86Kr, +0.25% for 84Kr/82Kr, +0.09%

for 132Xe/129Xe and +0.13% for 132Xe/136Xe. An attached magnetic sector mass spectrometer measures
3He/4He with precisions of +0.1% for air standards and +0.14% for water samples.



2.1 Introduction

Noble gases are biologically and chemically inert and have a wide range of solubilities and diffusivities,

making them useful environmental tracers. Noble gases have also been used extensively in groundwater

studies to constrain paleotemperatures (Stute et al., 1992, 1995; Aeschbach-Hertig et al., 2000) and ground-

water infiltration and recharge (Beyerle et al., 1999; Manning and Solomon, 2003; Zhou et al., 2005). Mea-

surements of Ar and Kr isotopes in ice cores can lead to estimation of firn thickness and temperature (Craig

and Wiens, 1996; Severinghaus et al., 2001, 2003). Noble gases in mantle-derived rocks have been used to

infer properties of the early history of the earth (Honda et al., 1991; Hiyagon et al., 1992; Farley and Neroda,

1998). Noble gas isotopes produced by cosmic rays yield surface exposure ages for terrestrial rocks (Lal,

1991; Bierman, 1994; Schafer et al., 1999).

In seawater studies, noble gas measurements have been used to investigate air-sea gas exchange (Spitzer

and Jenkins, 1989; Emerson et al., 1995; Hamme and Emerson, 2006), biological production (Jenkins and

Goldman, 1985; Craig and Hayward, 1987), diapycnal mixing (Henning et al., 2006; Ito and Deutsch, 2006),

and escape mechanisms for the exosphere (Bieri et al., 1967). Extending the measurements beyond the three

noble gases (He, Ne, and Ar) used in previous work allows one to constrain air-sea gas exchange parameters

to levels significantly better than can be obtained when only three of the noble gases are used (Stanley et al.,

2006). Given that Kr and Xe have a stronger thermal dependency than Ar, the supersaturation pattern of the

heavier noble gases may provide probes for ocean mixing and water mass formation processes (Hamme and

Severinghaus, 2007). Additionally, the isotopic ratios of the noble gases could be useful tracers.

Quadrupole mass spectrometry (QMS) and magnetic sector mass spectrometry have often been used to

measure the noble gases in water samples. Recently, instruments have been developed that measure all five

noble gases from a single sample (Poole et al., 1997; Beyerle et al., 2000; Kulongoski and Hilton, 2002; Sano

and Takahata, 2005). The analysis is usually conducted by isotope dilution or by peak height comparison

with an air standard. The noble gases are commonly chemically purified and then condensed onto a charcoal

trap at liquid N2 temperatures (77 K), on a charcoal trap at dry ice/acetone temperature (96K), or on a glass

trap at liquid He (4K). Methods that measure all five gases from a single sample have precisions of 0.3% to

1.0% using magnetic sector instrument (Beyerle et al., 2000) and 0.4% to 1.6% using a QMS system (Sano

and Takahata, 2005). Methods that only measure one of the noble gases may have better precisions. For



example, an isotope dilution method for measuring only Ne routinely obtained precisions of 0.13% (Hamme

and Emerson, 2004a).

We have developed an automated sample processing and measurement system for the determination of

the complete set of noble gas concentrations and isotope ratios in water samples (90 cc) at the 0.1-0.2%

level. Active gases are removed from the sample and the remaining noble gases are captured cryogenically

and then selectively released for measurement to a quadrupole or a magnetic sector mass spectrometer. We

use a set of three cryogenic traps operated in tandem with a Pd catalyst and chemical getters and combined

with a volume partitioning system in order to achieve a high degree of purity and separation between the

individual noble gases, thereby reducing as much as possible the potential for interference between gas

species. The water vapor cryotrap (WVC) is a dual flow through cryotrap with independently controlled

temperatures allowing water vapor to be removed but the noble gases to pass unimpeded. The activated

charcoal cryotrap (ACC) captures He and then releases an aliquot into the QMS and the remainder into a

helium isotope magnetic sector mass spectromer (HIMS) for precise measurements of 3He/4He ratios. A

"nude" stainless steel cryotrap (SSC) (Lott, 2001) captures Ne, Ar, Kr and Xe and then selectively releases

the gases into the QMS. The QMS operates in a static, ion-counting mode which requires a lower partial

pressure of gas within the QMS, less gain dependence on the electron multiplier, and a more linear response.

Standardization of the system is accomplished using precisely known aliquots of atmospheric noble gases

(determined by pressure, temperature, volume and relative humidity), and thus is dependent on knowledge

of the abundance of these gases in air. However, since studies involving dissolved gases generally presume

these values, uncertainties in these abundances cancel out in most calculations.

2.2 Methods

The sample processing and measurement system is shown in Fig. 2-1. Noble gases from a water sample

or gas standard are sequentially drawn through the two-stage WVC to remove water vapor, and through a

Pd catalyst and getters for chemical purification, and then onto two cryogenic traps. The AAC at < 10K

captures He and then at 40 K releases He into the HIMS. The SSC, also initially at < 10K, captures Ne, Ar,

Kr, and Xe and then selectively warms and releases the noble gases (Fig. 2-2) into the statically operated

QMS for measurement by peak height manometry. "Static" refers to the sample being let into the isolated



QMS (i.e. no pumping during measurement) and then peak jumping is used to measure the count rates at

each of the pre-determined masses. The QMS is a Hiden quadrupole mass spectrometer (P/N PCI 1000

1.2HAL/3F 1301-9 PIC type 570309), equipped with a pulse counting secondary electron multiplier (SEM)

run at an emission of 20 to 40 /-tamps, an electron impact ion source and triple quadrupole ion optics. The

HIMS, an improved system based on the "Clarke design", is a purposely constructed branch tube, statically

operated, dual collector magnetic sector helium isotope mass spectrometer, radius of 25.4 cm, equipped with

a Faraday cup and a pulse counting SEM. The system, including the processing line, cryotraps, and mass

spectrometers, is operated under computer program control to achieve a high degree of reproducibility and

for continuous operation.

In order to avoid possible systematic biases caused by the interaction between gas species via ion col-

lisions and preferential ionization, we use cryogenic techniques to separate the noble gases before they are

inlet into the mass spectrometers. Thus each of the noble gases is measured sequentially from the same air

standard or water sample. The cryogenic systems used here lead to three cryogenic processes: cryoconden-

sation, cryosorption and cryotrapping. Cryocondensation refers to the condensation of gas on a truly inert

surface and results in the partial pressure of the gas above the surface being a function only of its vapor

pressure at the trap temperature. However, no surface is truly inert, and thus the nature of the surface of

the trap influences the amount of gas released. An active surface, such as on the ACC, results in stronger

cryosorption and thus releases the gases at higher temperatures than a stainless steel surface such as on the

SSC. For example, Ne is released at 25K on the SSC and at 80K on the AAC.

Cryotrapping refers to one gas being trapped underneath another. Since Ar is three to five orders of

magnitude more abundant than the other noble gases, Ar cryotraps the other gases and thus the SSC has to

go through many temperature cycles to reproducibly and quantitatively separate and release all the noble

gases. In this section, we first outline the process necessary for measuring all five noble gases in a single air

standard. Then we discuss some additional particulars that are necessary for processing a water sample.

2.2.1 Method for a gas standard

The processing line is pumped by a diffusion pump, a turbo molecular pump, and three ion pumps (in

different parts of the line - see Fig 2-1) to below 5x10 - 8 torr before starting an analysis. An aliquot of an air



Figure 2-1: Schematic of the processing line and mass spectrometers (HIMS and QMS) that comprise the
analytical system. Red and green squares denote pneumatically actuated copper stem tip (vacuum-type)
stainless steel UHV bellows valves (Nupro P/N 22-*BG-TW-CU-3C and SS-4BG-USI-VD-3C), with red
squares representing the valves that are closed at the beginning of an analysis and green squares representing
the valves that are open at the beginning of an analysis. Valve numbers are included for valves referenced
in the text. White squares represent pneumatically operated crackers. Ovals represent aliquot volumes. All
aliquots as well as the standard reservoir volumes and the 2 L expansion volume are in an aluminum box
in order to keep them at an approximately constant temperature. Purple squares denote pressure gauges
with "IG" representing ionization gauges (Granville-Phillips 330), "CV" representing convectron gauges
(Granville-Phillips 316), and "MKS" representing a capacitance manometer (MKS baratron PR4000 con-
troller with 10 torr type 626A absolute pressure transducer). "IN 2 trap" refers to a trap chilled with liquid
nitrogen to condense water vapor when initially pumping down the sample bulbs after attaching them to the
automanifold - the sample bulbs are still sealed at that point. "Dual WVC" refers to a two-stage cryotrap
(inlet and outlet sides) initially held at 160K to trap water in the sample. "AAC" and "SSC" refer to the ac-
tivated charcoal and the stainless steel cryotraps respectively. For more detail on the processing line, please
refer to the text.
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Figure 2-2: Temperature of the stainless steel cryotrap (SSC) as a function of time after analysis has com-
menced. The SSC undergoes a number of temperature cycles in order to reproducibly separate and release
the noble gases. Gray arrows indicate where gases are released. Black arrows indicate where gases are
pumped. Numbers indicate temperatures at various points in the temperature cycles.
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standard or a sample first passes through the WVC, a two-sided cryotrap held at 160 K, in order to remove

water vapor. Then it flows through a Pd catalyst (BASF catalyst R02-20/37) where the CH4 in the standard

is oxidized to CO2 and H20. The pressure is recorded on a capacitance manometer (MKS baratron PR4000

controller with 10 torr type 626A absolute pressure transducer) in order to get a parametric determination

of the total gas pressure. The gas then flows through a zirconium-vanadium-iron getter, composed of pellets

of STS707 (available from SAES getters) in order to remove active gases. The first half of the getter is

heated to 350 0C to chemically remove 02, N2 , and CO2 and to crack CH4 , while the second half of the

getter remains at room temperature (20"C) to sorb H2. The noble gases are inert to the getter pellets and

flow through unimpeded.

The sample is next drawn for 12 minutes onto the SSC, held at less than 9.5 K. Neon, Ar, Kr and Xe are

trapped on the stainless steel surface. Helium does not sorb quantitatively to the stainless steel surface at

this temperature, so the sample is next exposed for 8 minutes to the ACC (Lott. and Jenkins, 1984) operated

at 8.5K in order to trap He. Meanwhile, the SSC is isolated and warmed to 40 K for 3 minutes and then

cooled to 9.5 K in order to liberate the 2-4% of the He that was cryotrapped by Ar or the other gases. The

ACC subsequently pumps on the SCC for 30 seconds in order to cryosorb this He onto the ACC.

The sample is next drawn for 12 minutes for a second time onto the SSC, while the inlet side of the

WVC is warmed to 285 K and the outlet side of the WVC is held at 160 K. The ice is thus melted and the

water is distilled onto the outlet WVC, releasing any gases that had been trapped in the ice for subsequent

purification and cryotrapping while blocking water vapor.

The SSC is warmed to 60 K and then is cooled back to 25 K in order to outgas and release Ne that

had been cryotrapped by Ar. The SSC is then opened and Ne is released from the trap. The amount of Ne

released is volumetrically split by a factor of roughly 200 in a reproducible fashion by trapping an aliquot of

the released gas between valves 40 and 41 in order to obtain a sample size that gives a counting rate of about

140,000 cps, an optimal counting rate for the SEM, which is operated in the ion counting mode. Too high

a counting rate leads to dead-time issues, a nonlinear response, and a short lifetime for the SEM. Too low a

counting rate leads to poor Poisson ion-counting statistics. Because volume partitioning is used to split the

Ne, some fraction of Ne remains on the SSC. This is removed by ion pumping for 2 minutes at 20 K, which

is 5 K less than the release temperature in order to avoid any Ar from being pumped.



The SSC is then warmed to 80 K in order to uniformly distribute Ar on its surface. Meanwhile, the ACC

is warmed to 40 K and then is opened to release He. An aliquot of He, equal to approximately 1% of the

sample is trapped between valves 38 and 39, is inlet into the QMS, and measured with a counting rate of

about 100,000 cps on the SEM. Next, the 99% of the remaining He is volume partitioned into the HIMS

where the 3He/4He ratio is measured.

The ACC is then warmed to 80 K. An aliquot of gas is released from ACC and analyzed for Ne, in order

to quantify any Ne that did not sorb to the SCC but rather made it through to the ACC. The amount of Ne

measured from the ACC is approximately 5% of the amount measured from the SSC for gas standards and

approximately 0.5% of the amount measured from the SSC for water samples, suggesting the SSC exhibits

a variable Ne trapping efficiency which is dependent on major gas composition, including possibly water

vapor. The ACC is cleaned by ion pumping at 80 K for 10 minutes.

Meanwhile, the SSC remains isolated and held at 80 K for two minutes, before it is slowly cooled to

25 K to recondense Ar on the cryotrap. The cooling is slower than usual in order to layer the Kr on the

SSC first and then the Ar and thus to minimize commingling of Ar and Kr. The SSC is warmed to 60 K

and opened to release Ar. Because Ar is very abundant in air samples, the Ar sample must be reproducibly

split down by roughly a factor of approximately 3x10 6 in order to avoid overwhelming the QMS. Thus Ar

is expanded for four minutes into a 2 liter stainless steel expansion volume, through valves 10, 9, 40, 42,

43 and 24. We performed experiments to determine that four minutes were required for the Ar atoms to

have time to distribute evenly throughout the expansion volume. When the expansion time was shorter, the

Ar signal increased, suggesting that the Ar had not reached equilibrium in the expansion volume, and thus

fewer Ar atoms were pumped away, leaving more Ar to be analyzed.

Approximately 0.03% of the Ar is trapped in the aliquot between valves 42 and 43 and the remaining Ar

is pumped away using a turbo molecular pump. The Ar in the aliquot is then expanded for a second time,

this time into the volume bounded by valves 40, 43, and 9. Again, the Ar in the aliquot between valves

42 and 43 is saved and the rest is pumped away. Once more, the Ar is expanded into the volume bounded

by valves 41, 9 and 43. This time the portion of the Ar in the aliquot between valves 40 and 41 is saved

and inlet into the QMS. Although this splitting procedure may seem cumbersome, it enables the consistent

splitting of Ar by a factor of approximately 3x10 6 with a reproducibility of 0.1%.



In order to remove any Ar remaining on the SSC, the SCC is then ion pumped at 62 K for two minutes.

This pumping temperature is higher than the release temperature in order to remove enough Ar so as to

minimize interference with the Kr measurements. Then, in order to remove any Ar that still remains on the

SSC, perhaps cryotrapped under Kr or Xe, a temperature/pumping cycle is performed. The SSC is isolated

and warmed to 150 K, cooled back to 62 K, and then ion pumped for 3 minutes. This heating and pumping

cycles results in an acceptably low amount of Ar in our Kr and Xe samples - the Ar introduced into the

QMS when the Kr is inlet produces an ion current that is about 20% of the Kr signal. It is possible to further

reduce the amount of Ar in the Kr inlet by pumping for longer or at higher temperatures. However, this

results in significantly greater Kr loss, resulting in deterioration of our Kr results.

The SSC is isolated, warmed to 103 K and opened to release Kr. The Kr is split by a factor of approxi-

mately 130 by trapping an aliquot of sample between valves 40 and 41 and then is inlet into the QMS and

measured on the SEM at an ion current of approximately 150,000 cps. The SSC is cooled to 93 K and then

turbo pumped for 2 minutes to remove remaining Kr. The SSC next undergoes a heating/pumping cycle to

remove any Kr cryotrapped by Xe. The SSC is warmed to 150 K, cooled back to 93 K, and pumped on for

1 minute.

The SSC is next warmed to 155 K and opened to release Xe. The Xe is split by a factor of approximately

6 by expansion of the sample through valves 9, 40, 42, and 43 and then trapping of a subsection in the section

between valves 9, 41, and 42. This subsection is inlet into the QMS and measured on the SEM with an ion

count rate of approximately 150,000 cps. The SSC is turbo pumped for 1.5 minutes to remove any remaining

Xe. The SSC is then ion pumped while being warmed to 290 and pumped and held at 290 for five minutes.

Next the ACC and the SSC are cooled to 10 K in order to prepare for the next sample.

The total analysis time for one sample is approximately three hours and 20 minutes and the procedure

is completely automated. Line blanks are run every few days in order to check for leaks and to assess the

cleanliness of the system. Line blanks typically are smaller than 0.004% for He, Kr, and Xe, smaller than

0.01% for Ne, and smaller than 0.07% for Ar.



2.2.2 Additional Steps for a Water Sample

Water samples consist of 90 g of water taken at sea by gravity feeding water from Niskin bottles on a CTD

rosette via Tygon tubing into valved stainless steel cylinders. In the on-shore laboratory at the Bermuda

Biological Station, we extracted the gases from the cylinders into aluminosilicate glass bulbs (approximate

volume of bulb is 25 cc) using the "at-sea extraction system" (Lott and Jenkins, 1998). The glass sample

bulb contains >99.95% of the original sample as well as 3 to 5 cc of distilled water transferred during the

extraction.

Because He, and to a less extent Ne, permeates through the viton o-rings in the cylinder plug valves,

samples were extracted as soon as possible, usually within 24 hours of sample collection. This time period

was comparable to the typical delays encountered in practice during the WOCE/CLIVAR sampling. Experi-

ments performed with degassed water samples documented the rate at which samples are compromised. He

and Ne were equilibrated at rates of 0.46% and 0.09% of their disqulibrium per day. Thus for a sample with

a 10% disequilibrium in either He or Ne concentration or He isotope ratio, a 24 hour delay in extraction

from the time of sampling would lead to a signal reduction of 0.046%, 0.009%, and 0.046% respectively.

Sets of eight of these glass bulb samples are attached to the automanifold using viton o-ring compression

fittings. The manifold is then pumped for at least 2 hours, a processing blank is run to assess for any leaks,

and then the samples are individually processed, with one gas standard being run after every two water

samples. To process a sample, first all of the sample sections except the sample of interest are closed off,

and the manifold is isolated from the vacuum pumps and the rest of the processing line. Custom-fabricated

automated "crackers", based on a heavily modified Nupro valve (P/N SS-6-6BK-TW-10), snap the tip of the

glass seal-off on the bulb. Experimentation revealed that an optimum pneumatic pressure of 40 psi achieves

reliable "cracking open" of the sample. On cracking of the bulb tip, the gas from the headspace of the

sample bulb is partitioned into the volume of the manifold.

After 30 seconds, the manifold is opened and the gas expands into the dual WVC. Here, water is drawn

out of the sample, quantitatively sweeping all the gas from the headspace out of the bulb into the WVC

section of the processing line. After 1.5 minutes, the valve to the bulb is closed to avoid excessive water

vapor transfer. Beyond this point, the sample gases are processed in an identical fashion to the standard

gases.



Table 2.1: Theoretical and experimentally determined amount of gas typically left behind in a sample bulb
after the gas in the headspace is swept into the processing line for analysis. The ratios are different for each
position on the manifold. One example set of ratios is listed here. The ratio of theoretical to measured
left-behind is used to correct all samples for the total gas in the bulb. Uncertainties in this ratio thus lead to
uncertainties in determinations of gas concentrations in samples.

He Ne Ar Kr Xe

Theoretical left-behind (%) 0.16 0.19 0.63 1.1 2.1

Ratio of theoretical to measured left-behind 0.87 0.98 0.79 0.62 0.85

Estimated uncertainty in ratio 0.07 0.1 0.05 0.03 0.03

Uncertainty in final correction for samples (%) 0.01 0.01 0.03 0.01 0.06

Some fraction of the gases are dissolved in water and thus not all the gas is drawn out of the bulb. This

amount of gas left behind can be calculated theoretically from the volume and temperature of the water,

the volume of the bulb, and the solubility of the gas. Additionally, it was determined experimentally on

some samples by repeated drawing of gas from the same sample. More gas was consistently drawn from

the samples than the theoretical calculation predicted, suggesting that some of the gas was fluxed out of the

water during the draw (Table 2.1). The ratio of the measured sample left behind in the bulb to theoretical

sample left behind in the bulb is consistent for each position on the manifold and is used to correct all

measurements for the amount of gas left in the bulb. Manifold positions that are closer to the WVC have

less gas left-behind because then the WVC is more effective at drawing out the gas. Samples that are on the

lower manifold also have less gas left-behind because they are slightly warmed from below by the diffusion

pump and gases are less soluble at warmer temperatures. We thus measure the ratio for each position on the

manifold and correct each sample accordingly. This ratio is more difficult to calculate for He and Ne since

He and Ne diffuse into the bulb during the time period between samples. We used repeated measurements

in order to assess the amount of He and Ne that grows in but still our estimates for He and Ne left behinds

have larger errors. However, since these gases are the least soluble, only a small percentage is left-behind

and thus even with these larger uncertainties, the error added by the total correction is small.

To assess whether any gas was left behind in the manifold or WVC, experiments were done in which the



manifold and WVC were isolated after a sample was drawn and processed. The WVC was warmed to 285

in order to melt the ice and release all gases and then cooled to 160 K. The gas in the WVC and manifold

was measured, using the the usual procedure, to be less than 0.005% of that contained in a sample. Thus the

dual stage WVC sucessfully prevented gas from being trapped in the ice.

2.2.3 Details of QMS Analysis

Scanning and data collection on the QMS commences immediately prior to isolation and sample inlet. After

the QMS is isolated from its ion pump, the gas samples are expanded into the QMS for a specified inlet time

(Table 2.2), while the QMS continues measuring the ion current at the selected isotopes. After the specified

inlet time finishes, valve 1 is closed and the QMS continues to measure the ion count of the isotopes for a

total number of scans (Table 2.2), such that the overall analysis time is approximately 5 minutes. The QMS

also measures the ion count of other gases that have the potential to be large enough to influence the results,

such as H2, CH4 , CO2, H20, and the other noble gases (Tables 2.3 and 2.4). Monitoring is done to ensure

that these gases do not reach undesirable levels.

Measurement of all isotopes is made at specific mass points rather than by scanning individual peaks.

Data reduction involves fitting the requisite scans as functions of time (discussed in section 2.2.6). The

emission current was set for each gas in order to achieve a reasonable ion count rate (see Table 2.2). The

ion count rate should be large enough to give good counting statistics but small enough so as to avoid

degradation of the performance of the SEM. The voltage of the SEM was set to be at 2600, which is slightly

above the "knee" in the curve of voltage vs. count rate.

2.2.4 Details of Magnetic Sector Analysis

The helium isotope sample is expanded into the HIMS for 30 seconds. After 30 seconds of settling time,

the magnet current is adjusted so as to center the 3He peak at an ion energy of 2844.6 V: for four times

the 3He counts are measured on the pulse-counting SEM at 2846.6 and at 2842.6 accelerating voltage and

then the magnet current is adjusted so that the ion counts at those voltages are roughly equal. Since the

Faraday cup has been placed so that the 4 He peak center aligns with the 3He peak center, by centering on

3He, one also is in the center of the 4He peak. Furthermore, the 4He peak is much broader than the 3He



Table 2.2: Parameters used by the QMS to measure the five noble gases in a water sample or gas standard.

He Ne Ar Kr Xe

Isotopes Measured 4He 20Ne, 22Ne 40 Ar, 36Ar 84Kr, 86Kr, 82Kr 132Xe, 129Xe, 13 6Xe

CryoTrap Used ACC SSC&ACC SSC SSC SSC

Release Temp (K) 40 25 60 103 155

Splitting Factor 100 200 3x10 6  130 6

# Scans by QMS 200 90 110 90 130

Emission(ItAmp) 20 20 40 40 20

Inlet Time (s) 60 60 60 60 90

peak so that misalignment is far less of a problem than for the 3He peak. Next 10 cycles are conducted in

which typically the peak is measured 11 times with 20 second integrations each time, bracketed by a 20

second baseline measurement at an accelerating voltage of 2854.6 V to determine the scattering background

signal. A typical standard has a 3He ion current of ,1500 cps, and a typical background of 18 cps. With

the aforementioned counting times, a sample would typically accumulate 3.3x106 counts on the 4He peak

and 2000 counts on the baseline. Thus the Poisson counting limitations to the precision of the isotope ratio

measurement would be 0.06%. The count rate at HD and the baseline are measured once again and then the

gas is pumped away through valve 0 by an ion pump. Overall the analysis takes about 45 minutes and is

performed while the processing line and QMS are measuring the other noble gases in the sample.

2.2.5 Computer Control

All processes are automated in order to achieve reproducible, "around-the-clock" measurements. The gate-

way to the physical system is a visual basic program, the "Server", run on the Dell Windows XP computer,

which is directly integrated into the instrumentation. The server controls all the pneumatic valves, sends

commands to the HIDEN QMS, controls the HIMS, and measures the pressures and temperatures of all the

components of the processing line. The Server also manages a common pool of boolean flags that are used



Table 2.3: Isotopes and other masses measured on the QMS during the analysis of He, Ne, and Ar: typical count rates for a standard, dwell
times, and Poisson ion counting statistics. Negative count rates are clearly unphysical and are a result of extrapolation to end of inlet for small
count rates for some of the masses in the blanks.

Helium

Masses 3.9 2 5 16 18 19 20 28 32 40 44

dwell time (s) 1000 100 100 100 100 100 100 100 100 100 100

std cps 97,000 100,000 0.56 69,000 370 11,000 200 2200 2.6 66 800

Poisson (%) 0.02

blank cps 3 110,000 0.1 74,000 390 10,000 15 2100 3 49 580

Neon

Masses 20 22 2 4 5.5 14 16 18 19 28 32 40 44

dwell time (s) 500 1000 50 100 100 50 50 50 50 50 50 100 100

std cps 140,000 13,000 61,000 56 0.016 570 8900 390 11,000 1400 2.7 79 690

Poisson (%) 0.05 0.11

blank cps 13 3 63,000 -0.4 -17 490 7900 410 11,000 1300 8 16 564

Argon

masses 40 36 2 5 16 19 20 22 28 32 44

dwell time (s) 100 800 100 600 100 100 100 100 100 100 100

std cps 110,000 400 240,000 0.73 25,000 19,000 13,000 21 3800 7.5 2300

Poisson (%) 0.04 0.69

blank cps 93 3 250,000 0.4 24,000 19,000 25 19 3500 8 2100



Table 2.4: Isotopes and other masses measured on the QMS during the analysis of Kr and Xe: typical count rates for a standard, dwell times,
and Poisson ion counting statistics. Negative count rates are clearly unphysical and are a result of extrapolation to end of inlet for small count
rates for some of the masses in the blanks.

Krypton

masses 84 86 82 2 5.5 16 18 19 28 32 40 44 132

dwell time(s) 600 600 600 100 100 100 100 100 100 100 100 100 100

std cps 134,000 38,000 27,000 240,000 0.75 26,000 620 20,000 4400 6.9 15,000 2100 25

Poisson (%) 0.04 0.08 0.09

blank cps 0.7 0.3 0.4 240,000 0.7 23,000 630 19,000 4000 5.9 5200 1900 1.9

Xenon

masses 132 129 136 2 5.5 16 18 19 28 32 40 44 84

dwell time (s) 600 600 600 100 100 100 100 100 100 100 100 100 300

std cps 130,000 120,000 40,000 100,000 0.41 36,000 330 9100 1700 3.2 320 690 7600

Poisson (%) 0.04 0.04 0.06

blank cps 1.1 0.7 0.2 100,000 -0.2 54,000 320 9000 1600 2 69 610 1.9



to coordinate various client programs. When the system is in normal analysis mode, a client program know

as "Menu" is used to schedule and initiate sample or standard analyses. The Menu program uses a series of

code numbers to signify various characteristics of each procedure, and on schedule launches another client

program, called "Procline" that executes the analysis. Procline operates by sending commands to the Server

to operate valves, warm and cool the cryotraps, start analysis on the mass spectrometers, etc. in a repro-

ducible fashion as well as to record system conditions (pressure, temperature, etc) to disk file during the

analysis. Analysis of the noble gases on the QMS is also accomplished by Procline, which downloads scan

control information and various commands to an embedded computer on the QMS (MSIU) and uploads

acquired measurement data. Helium isotope measurements on the HIMS are made by another client pro-

gram called HeAnal that is launched at the appropriate time by Procline. Data from the HIMS is collected

using counter-timer cards on the core computer: the 4He is measured by a Faraday cup electrometer that is

digitized using a 10 KHz voltage-to-frequency converter, and the 3He ions are counted using a channeltron

electron multiplier and a preamplifier/discriminator unit.

In addition there are other programs that are used as "utilities" from time to time. For example, a virtual

"Chart Recorder" can display and save readouts of the temperature or pressures of the various gauges. Also,

a general purpose scripting program called "Tweak" can be used to execute a range of useful procedures

on the system. Under normal conditions, 16 samples can be loaded onto the two manifolds, the Menu set

up, and then the system can operate completely independently for approximately 5 days (or longer if just

gas standards are being analyzed). Monitoring of all components and changes to the programs can be done

remotely (i.e. from the Internet). Data is stored by these programs in a hierarchical directory structure using

data-encoded file names.

2.2.6 Standardization

After the analysis of the sample is complete, a MATLAB routine is used to linearly extrapolate the mass

peak ion count rate from all the scans back to the end of the inlet in order to calculate a single representative

ion count rate associated with the amount of a given isotope in a sample or standard. The ion count rate

of a sample is quantitatively compared to the ion count rate in a standard (std) in order to calculate the

concentration of gas in a sample:



sample ion count rate - blank ion count rate
cc of gas in sample = cc of gas in std x

std ion count rate - blank ion count rate

where "blank ion count rate" refers to the ion count rate measured when running a wet-blank - running the

same procedure but without introducing sample. We are explicitly assuming a linear relationship between

ion count rate and the pressure of the gas and hence the sample size. Deviations from this relationship are

determined empirically and corrected for (see section 2.3.1).

For a standard, we use aliquots of a sample of marine air that was collected in a 15 liter metal can

on the beach outside of Woods Hole Oceanographic Institution. The metal can was first evacuated in the

lab to a pressure of 1x10- 7 torr. The can was then brought to the beach, equilibrated with atmospheric

conditions for 1 hour, and filled with air, with the temperature, relative humidity, and barometric pressure

being recorded. Each time a standard is run, the remaining amount of gas in the standard tank is depleted by

5x10 - 5 or 5x10 - 6, depending on the size of the aliquot of standard removed. This depletion factor is taken

into account when calculating results. There are two aliquot volumes connected to this running sample, one

being 10% the size of the other, in order to calculate linearity effects associated with larger or smaller gas

sizes. The amount of gas in each aliquot is listed in Table 2.5.

The running standard is calibrated against a reference air standard - an air standard collected in the same

way but only run occasionally in order to assess if leaks or other problems have developed with the running

standard. The air standards and reference air standards typically agree within 0.2% and multiple reference

air standards are calibrated against a running standard to decrease the error further.

The amounts of Ar, Kr and Xe in a water sample differ from those in an air standard by roughly a factor

of 2, 4, and 7 respectively. Thus, we created a "makeup" standard - a standard consisting of purchased,

purified Ar, Kr, and Xe in an amount such that one aliquot of makeup standard plus one aliquot of the air

standard would result in Ar, Kr, and Xe concentrations similar to that of a water sample. Thus by running one

aliquot of the makeup standard and one aliquot of regular air standard, we have similar gas concentrations

and ratios in our standard as in our warm (shallow) water samples. By running two aliquots of the makeup

standard and one aliquot of regular air standard, we have similar gas concentrations and ratios as in our cold

(deep) water samples.

We made the makeup standard by expanding aliquots of pure Xe, Kr, and then Ar (in that order) at a



Table 2.5: Amount of gas (in cc STP) in one aliquot of each type of gas standard. Small and large refer to
two different size aliquots attached to the same air standard. Makeup refers to a standard comprised of only
Ar, Kr, and Xe used to make the gas ratios in a total gas standard equivalent to that in a water sample.

Isotope Large Small Makeup

4 3.60x10- 6  3.80x10 - 7  0

20 1.14Ex10- 5  1.20x10- 6  0

22 1.12x10- 6  1.19x10-7  0

40 6.42x10- 3  6.77x10 - 4  1.15x10- 2

36 2.18x10 - 5  2.30x10 - 6  3.90x10- 5

84 4.46x10-7  4.71x10-8  1.83x10-6

86 1.33x10 - 7  1.40x10 - 8  5.47x10- 7

82 9.08x10 -8  9.58x10-9  3.73x10 -7

132 1.61x10 - 8  1.70x10 - 9  1.27x10 - 7

129 1.58x10 - 8  1.66x10- 9  1.25x10 - 7

136 5.32x10- 9 5.61x10 - 10 4.21x10- 8



known pressure and temperature into a 15 L standard tank that had previously been evacuated. The pressure

was measured with a capacitance manometer to within 0.1 torr (MKS baratron controller, model 270B-4 with

model 390HA 100 torr absolute pressure transducer). The Ar was ultra-high purity Ar from CorpBrothers.

The Kr and Xe were research grade gases, 99.999% purity, from SpectraGas. We then calibrated the makeup

standard for Ar, Kr, and Xe to better than 0.1% by running one aliquot of makeup standard and analytically

comparing it to runs of two, four, or seven aliquots of the air standard. We ran multiple aliquots of air

standards so as to match the size between the makeup and air standards as closely as possible to mitigate

linearity effects. In addition, since the amount of Ar and Xe in the sample affects the amount of Kr released

from the trap (see section 2.4.2), we used extra aliquots of pure Ar and Xe when calibrating for Kr to

minimize this matrix effect. The amount of gas in one aliquot of the "makeup" standard is listed in Table

2.5.

2.3 Analytical Performance and Reproducibility

2.3.1 Performance of the QMS and Processing Line

By using both a charcoal and a stainless steel cryotrap, this method successfully separates the noble gases,

such that for a measurement at a given release temperature, a sample is predominantly comprised of a single

noble gas. The release curves for the gases from the stainless steel trap are depicted in Fig. 2-3. Good

separation is obtained for Ne and Ar. For Ar, Kr, and Xe, however, the release curves overlap, making

separation more difficult. Hence Ar and Kr have to be released below the temperature at which 100% of the

gas is released. In essence, the trade-off is between less quantitative release (and hence potentially greater

temperature dependence and variability) vs. systematic effects associated with commingling gases. Krypton

is released at 103 K, but then the excess Kr in the trap is pumped away at a lower temperature (93 K) in

order to prevent Xe from being dragged away with the Kr. We saw a 5% increase in the amount of Xe when

the pumping temperature for Kr was dropped from 103 K to 93 K.

Figure 2-4 depicts the inlet curves at each of the five release temperatures for the noble gases and their

isotopes in an air standard. The inlet curves are flat after the initial inlet, signifying there is little, if any,

time dependence to the measurements. The isotope 36Ar is also measured but not plotted because the signal



Figure 2-3: Release curves of Ne, Ar, Kr and Xe from the stainless steel cryotrap as determined by analyzing
repeated air standards at different release temperatures. At 9 K, virtually none of the gases are released and
thus all the gases are drawn onto the trap. Then as the trap temperature is slowly warmed, the gases are
released one-by-one. The release curves of Ne and Ar have good separation. In contrast, the release curves
of Ar, Kr, and Xe overlap slightly making these gases harder to separate.
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is small compared to that of 40Ar. In the He, Ne, and Ar inlets, only He, Ne, and Ar were detectable. In

the Kr inlet, an amount of Ar equal to 20% of the Kr signal was detectable (Tab 2.4). In the Xe inlet, small

amounts of Ar and Kr were detectable (0.3% and 10% of the Xe signal respectively). Such small amounts

of other noble gases should not interfere with the measurements of the primary noble gas. When measuring

20Ne and 22Ne, one needs to also consider any contribution from doubly-charged 40Ar or 44CO 2 , as such

species will have the same mass as 20Ne and 22Ne. Assuming 10% of the 40Ar and 1% of the 44 C0 2 is

doubly charged, then Ar and CO 2 could be contributing to 0.004% and 0.1% of the 20Ne and 22Ne signals

respectively (Tab 2.3). Such a contribution is corrected for, as Ar and CO 2 are measured every time.

The isotopic ratios of Ne, Ar, Kr and Xe as measured by the QMS and in the atmosphere are listed in

Table 2.6. The ratio of 22Ne/2 0Ne measured by the QMS is smaller than the ratio in air, suggesting that this

method (either the QMS or the processing) may be discriminating against the heavier isotope. Similarly,

the ratio of 86Kr/84Kr and 136Xe/ 132Xe suggest discrimination against the heavier isotope. However, the

ratios of 84Kr/82Kr and 132 Xe/129 Xe are larger than the ratio in air, suggesting discrimination against the

lighter isotope. Perhaps the discrimination is always against the less abundant isotope, instead of based

on mass. The ion optics of a 3 stage quadrupole mass filter are extremely complicated and thus the mass

discrimination function for the QMS as a whole can be very convoluted. There are a number of factors,

including sample processing and release from the cryotraps that can contribute to "non-canonical" isotope

ratios. Thus we rely on calibration and stability of the system - as long as the discrimination occurs equally

in both standards and samples, then such a bias should not prevent the measurement of accurate isotopic

ratios.

The peak shapes of the noble gases show clear separation of the isotopes (Fig 2-5). Seven isotopes of

Xe and five isotopes of Kr can be distinguished in the appropriate mass range. The peaks are sloped, being

steeper on the high mass side than the low mass side. This shape is typical of quadrupole mass filters and

reflects imbalances between the low mass and high mass filters. The Hiden QMS used here has a prefilter

and a postfilter on either side of the main mass filter, whose function it is to steer all the ions into an aligned

beam for the main mass filter. To improve the peak shape, one needs to either increase the amount of time

the ion beam is in the mass filter (by decreasing the speed at which the ions travel) or to increase the RF

frequency so that the ions see more RF cycles. The latter can only be done by Hiden personnel at the



Figure 2-4: Ion count rate of the mass peaks during the inlets of the noble gases. The He inlet occurred at
release temperature of 40 K from the ACC. The other gases were released from the SSC at temperatures of
25 K, 60 K, 103 K, and 155 K for Ne, Ar, Kr and Xe respectively. Isotopes of each noble gas that were
measured are shown except for 36Ar which is too small to be visible on the same plot as 40Ar. In the Kr
and Xe inlets, other noble gases were detectable and thus are plotted as well. Inlet curves of the gases are
labeled according to the mass of the gases, with mass 44 referring to CO 2.
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Table 2.6: Performance of the QMS for measuring the major isotopes of the five noble gases.

Gas in a standard (cm 3 STP)

Signal on QMS (cps)

Precision (%)

Blank (as % of standard)

Isotopic ratios measured

Precision (%)

Isotopic ratio in air

Isotopic Ratio from QMS

4He

4.0x10- 6

1.1x105

0.10%

0.004%

20Ne

1.3x10 - 5

2.7x10 5

0.14%

0.01%

22 Ne/20Ne

0.19%

0.102

0.098

40Ar

1.9x10 - 2

1.2x105

0.10%

0.07%

40Ar/ 3 6
Ar

1.3%

293

271

84Kr

2.3x10 - 6

1.7x10 5

0.14%

0.0004%

132Xe

1.5x10 - 7

1.8x105

0.17%

0.004%

8 6 Kr/ 8 4Kr, 84Kr/82Kr 132Xe/ 129 Xe, 136Xe/ 132Xe

0.20, 0.25% 0.09, 0.13%

0.304, 4.91 1.02, 0.331

0.291, 4.95 1.06, 0.327



Hiden facility so we did not pursue that route. The former can be done by lowering the cage voltage. We

investigated the response of the peak shape to the cage voltage and indeed saw an improved peak shape with

lower voltages (Fig 2-6). However lower voltages also led to decreased sensitivity. The optimal cage voltage

was deemed to be 2 V.

Because the peaks are not "flat topped" there are two potential sources of error that can be introduced into

the analyses. First, because the measurement scans are done by setting the mass filter to one specific value

for each isotope, then a change in the "registration" of this setting can lead to a shift in the apparent response

of the instrument. Second, if the shape of the peak is dependent on the pressure of gas within the machine

(due to scattering of ions off neutrals) then the apparent response will also be affected. We evaluate these

effects by frequent standardization (using the assumption that the mass registration will change gradually

with time), and by performing "linearity" curves with multiple standard aliquots.

Because the size of the standard is not exactly the same size as that of the sample, we assessed the

linearity of the response of the QMS and of the sample/standard processing to the size of the samples.

We analyzed standards with sizes varying from 90% to 200% of the typical standard size by composing a

standard with varying combinations of small and large aliquots and varying amount of makeup standard.

The response of the QMS to standard size is linear, with r2 values of at least 0.999. The linear response

of the QMS throughout this range confirms that our samples and standards are in the linear dynamic range

of the instrument. We used a least squares regression to fit the relative count rate between different size

standards to the relative amount of gas in the standard, fixing the intercept to be 1. The slopes of Ne, Ar,

Kr, and Xe are between 0.99 and 1.00, suggesting a straight-forward relationship between count rate and

amount of gas in the sample. The slope of Kr has the greatest deviation from 1. The Kr measurements are

affected by the amount of Ar and Xe in the sample. We thus need to take into account the effect of greater

Ar and greater Xe when calculating the linearity. A full treatment of the Kr linearity and Ar and Xe matrix

effect on Kr is described in section 2.4.2.

We examined the drift of the instrument due to factors such as changing room temperature, change

in the SEM, change in filament, changing reactivity of the surface of the traps, etc. by making repeated

measurements of the air standard over the course of several days (Fig 2-7). This long run had standard

deviations of the measurements equal to .09% for He, 0.15% for Ne, 0.23% for Ar, 0.31% for Kr and 0.42%



Figure 2-5: The peak shapes for the isotopes measured on the QMS of each of the noble gases are plotted
in arbitrary units. Five isotopes of Kr can clearly be seen as can seven isotopes of Xe. The peak shapes are
more steeply sloped on the high mass side due to differences in the low and high mass filters.
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Figure 2-6: The peak shapes for the major isotope of each of the noble gases at different cage voltages
ranging from 1.5 V (blue) to 3.5 V (red) are plotted in arbitrary units. The curves have been shifted vertically
for clarity. As the cage voltage decreases, the top of the peak is flatter and the resolution improves but the
sensitivity decreases. A cage voltage of 2 V was deemed to provide the best balance between sensitivity and
peak shape.
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Table 2.7: Linearity of the QMS measurements. The linear dynamic range of the QMS and processing line
was explored by processing standards ranging from 90% to 200% of the size of the typical gas standards.
The data was then fit in a least-squares sense to a linear function with a fixed intercept of 1. The slopes as
determined by fit as well as their associated uncertainties are listed here.

Isotope Slope 1 a

4He 0.995 0.001
20Ne 0.995 0.01

22Ne 0.998 0.009

40Ar 0.997 0.001

36Ar 1.006 0.005

84Kr 1.027 0.003

86Kr 1.022 0.003

82Kr 1.021 0.003

132Xe 0.994 0.001

129Xe 0.995 0.002

136Xe 0.984 0.002



for Xe. The standards show a downward drift for all gases, that could be associated with aging of the

filament and ion source, change in gain on the SEM, changes in room temperature, fluctuations in power

source, etc. A quadratic trendline is fit to these measurements and deviations from the quadratic trendline -

a crude measure of the random uncertainty in the standard measurements - are calculated (Fig. 2-8).

Because of the downward drift, when measuring samples we alternately measure samples and standards

and then use the interpolated standard results to calculate the sample values. Therefore, our objective is

to determine the uncertainty associated with using the standards to predict a value for a sample measured

between adjacent standards. In order to assess this, we treated half of the standards as "unknowns." We

then fit a least squares smoothing spline to the remaining standards to interpolate the response of the system

at the time of the "unknowns." By comparing the predicted value to the actual value, we can calculate the

random error in our measurements. The thus computed errors ranged from 0.10% for He to 0.17% for Xe

(Table 2.6).

A number of water samples prepared from a 10 liter container of water that was stirred for 24 hours while

in contact with lab air were analyzed in order to assess the accuracy of the method. The average saturation

state of the samples was calculated from the freshwater solubility values of Krause and Benson (1989) and

are reported in Table 2.8. Helium and neon may be supersaturated due to bubble entrainment during the sam-

pling procedure. The geometry of the plug valves on the sampling cylinder may be conducive to trapping a

small quantity of air. The standard deviation of these samples ranged from 0.7% to 1.2%, possibly reflecting

variability in the samples themselves or in the preparation or in the analysis. This test was conducted before

our method for analyzing all the noble gases was optimal; the method has improved significantly for Ne,

Kr, and Xe after this experiment was completed. Unfortunately, the water container was not located in a

constant temperature bath. A 1 degree change in temperature results in a 3% change in Xe saturation state

so some of the variability in the Xe measurements may be due to temperature inhomogeneities in the bulk

sample. In addition, the relative humidity and the barometric pressure in the room were not monitored and

24 hours may not have been enough time for full equilibration. In a future experiment, one should stir the

water in a temperature controlled bath for at least one week, keep the water in contact with outside air (to

avoid possible changes in gas ratios due to lab air such as a nearby liquid Ar tank or He carrier gas in a gas

chromotograph), and record the relative humidity and barometric pressure at all times. Additionally, since



Figure 2-7: The stability of the QMS measurements with respect to time was assessed by repeatedly running
standards over several days (black circles). A quadratic trend line of count rates of the standards as a function
of time is shown in gray. The full scales of each plot reflects a 2% range of the signal size. All the gases
show a downward drift, with Xe having the steepest drift. This may be due to aging of the ion source or the
electron multiplier. Histograms of deviations of the measurements from the quadratic trend line are shown
in Fig. 2-8).
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Figure 2-8: Histograms of the deviations (calculated as %) of the repeated measurements of standards run
over several days from a quadratic trend line. The data used for these histograms are the same as depicted
in Fig. 2-7. He, Ne and Ar have smaller deviations than Kr or Xe, reflecting that the lighter gases have a
smaller variability due to random errors.
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Table 2.8: Performance of the QMS for measuring the major isotopes of the five noble gases in distilled
water samples consisting of 90 g of water equilibrated with laboratory air.

4He 20Ne 40Ar 84 Kr 132Xe

amount of gas (cm 3 STP) 4.12x10 - 6  1.6x10- 5  3.0x10 - 2  3.9x10 - 6  2.6x10 - 7

% saturation 101.1% 99.5% 99.3% 98.5% 98.6%

Precision (%) 0.8% 0.7% 0.7% 1.0% 1.2%

the solubilities of the noble gases depend on the salinity of water, it would be helpful to do the experiment

with seawater so as to better be able to interpret our seawater results.

The uncertainties of this method for replicate seawater samples are 0.96% for He, 0.88% for Ne, 0.28%

for Ar, 0.29% for Kr, and 0.19% for Xe. These are significantly improved for Ar, Kr and Xe but similar for

He and Ne. This may be because (1) our method has improved for Kr and Xe since the distilled water test

was performed and (2) some of the uncertainty in the saturation anomalies of the heavier gas in the distilled

water test was probably a result of temperature inhomogeneities in the water container. The uncertainty has

not improved for He and Ne probably because the uncertainty in those gases is due to bubbles entrained

during sample collection. The He and Ne results from the distilled water tests can be used to correct all

samples for bubble entrainment during sampling.

2.3.2 Performance of the HIMS for He Isotopes

The theoretical limit to the precision of the helium isotope measurement is governed by the number of

3He ions collected (Poisson statistics) and that precision is calculated to be 0.06%. The peak shapes are

well defined for 3He and 4He with centers of the He peaks at an accelerating voltage of 2844.6 V (Fig. 2-9).

There is good separation between 3He and HD (centered at 2837.8 V). The valley between the peaks is about

5% of the 3He peak height. The shape of the HD peak is not symmetric, possibly because of interferences

from H3.

A typical running standard has approximately 3.9x10 - 6 cc of He. The signal sizes for the running

standard are approximately 1500 cps for 3 He as measured on the pulse-counting SEM and 210 pA for 4He



Figure 2-9: The peak shapes for HD and 3He as measured on a pulse counting secondary electron multiplier
(blue) and the peak shape of 4He as measured on the Faraday cup (red) all with 1 second integrations at 0.01
V resolution. The peaks for the helium isotopes are flat-topped and are centered at 2844.6 V. The peak shape
for HD is slightly triangular and is centered at 2837.8V. There is good separation between the 3He peak and
that of HD, with the valley being approximately 5% of the 3He signal. The SEM background, which is due
to ions that have suffered low-angle scattering off resident gas atoms/molecules, is approximately 1% of the
3He signal and the FC baseline is approximately 0.05% of the 4He signal.
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as measured on the Faraday cup with an FET input electrometer. Because of the relatively high partial

pressure of He in the HIMS (2 to 3 x 10-6 torr), there is a background due to ions that have scattered off

neutrals. This background is typically 16 cps for a standard or sample, thus resulting in a background that

is approximately 1% of the 3He signal. This background is measured at regular intervals during the analysis

by increasing the accelerating voltage to about 2854 V, off but not far from the 3He peak. On the Faraday

cup, there is an electrometer DC offset associated with an input bias current in the input JFETs equal to 0.1

pA, which is 0.05% of the 4He signal and is measured and subtracted for each analysis. Uncertainty in this

correction is very small (,0.01 %).

There are four components to variability in the isotope measurement: (1) variability in the luminosity

of the source; (2) variability in the beam steering; (3) variability in the gain of the pulse counting SEM

detection system and (4) digitization error (for 4He) or ion counting statistics (for 3He). The variability

in the luminosity of the source can be determined by repeated measurements on the top of the 4He peak

to be 0.068pA, or 0.032% of a typical standard size. The variability in beam steering can be determined

by measuring the current while sitting on the side of the 4He peak to be 0.004V in acceleration voltage.

The impact of this variability on the measurement depends on peak-shape and slope. A crude calculation,

assuming a slope on the top of the peak of 5%/volt yields an upper bound uncertainty of 0.02% associated

with beam steering variability. The variability in SEM efficiency is an additional source of error; often in

mass spectrometers with pulse-counting SEM, the ion to electron conversion efficiency on the entrance to

the SEM is less than unity. That is, the SEM may not be detecting all the 3He ions - some ions may not

be starting a sufficiently large cascade of electrons for detection of the pulse. The digitization error for 4He

is 0.1 pA per second, suggesting a theoretical error of approximately 0.05 pA, in close agreement with the

observed variability. Ion counting statistics for 3He can be calculated from the number of ions detected

(typically of the order 3x10 6) to be 0.06%.

The 3He/4He ratio measured on air standards is 1.0x10 - 6. This is calculated by converting the 4He

Faraday cup current in pA to ions per second using Coulomb's constant and taking the ratio of the 4He ion

count rate to the 3He ion count rate. There is a systematic uncertainty in this conversion, associated with the

tolerance of the current sense resistor (1010 ohms, ± 1%), and the uncertainty of the gain in the electrometer

amplifiers (0.2%) and in the voltage to frequency converter (0.1%). The composite uncertainty is thus -1%.



The ratio measured is smaller than the atmospheric ratio of 1.4x10- 6 (Clarke et al., 1976; Hoffman and

Nier, 1993). One possible explanation is that there may be mass discrimination in the ion source. We tuned

the source on 4He because it is larger and less subject to the ion counting variations seen with 3He and

thus perhaps the 4He ions are extracted out of the ion box more easily than the 3He ions. Support for this

hypothesis comes from the fact that the apparent isotope ratio (3He/ 4He) increases with time during the

analysis.

The estimated efficiency of the ion source is 55%. This efficiency is calculated from taking the ratio

of ions collected in the Faraday cup to the number of ions removed from the system (lost either due to

detection or collisions). In a simple experiment, a gas standard was measured continuously on the peak of

4He for 20 minutes. The average current was 209 pA. Thus 1.6x1012 ions were collected. The standard has

3.98x10 - 6 cc He = 2.05x1014 atoms of He. When the standard was in the HIMS for 20 minutes, the 4He

current decreased by 2.7%. Thus 2.9x1012 ions are removed from the system. Hence the efficiency, which

is equal to ions collected divided by ions removed, is equal to 55%.

2.4 Discussion

The method presented here measures all five noble gases from a single sample. Good separation of the

noble gases is obtained, even of the heavier noble gases which traditionally have been the most difficult to

separate. The results are reproducible and test water samples show reasonable saturation values. In order to

achieve these results, we had to resolve several procedural issues. Below we discuss several of the problems

that were encountered in developing this method and how we resolved them. Such a discussion may be of

use to those who wish to adapt this method for their own analyses.

2.4.1 Separation of the Noble Gases

The multiple cryogenic system offers a powerful method for separating the noble gases. Although the

principle of the noble gases being released at different temperatures is simple, the actual separation does

not necessarily happen in a straight-forward fashion. On a charcoal cryotrap, the release curves for the

heavier noble gases overlap significantly, with one gas starting to be released long before the previous gas

is 100% released. Additionally, the heavier gases are released at very high temperatures (280 K for Ar, for



example) on a charcoal trap, requiring very long cycle times. On a stainless steel cryotrap, these problems

are mitigated, as the release curves are sharper and the release temperatures are lower (only 60 K for Ar, for

example). Nonetheless, some small overlap of release curves occurs (Lott, 2001). Furthermore, Ar is orders

of magnitude more abundant than Kr or Xe in water, making it especially difficult to remove all Ar before

analyzing Kr or Xe fractions.

In order to achieve the best separation of the noble gases, we examined a range of release tempera-

tures and procedures. In general, the cryotrap was operated at its minimum temperature to draw the gases

onto it. The temperature is raised to successively higher temperatures to release each noble gas separately.

Sometimes it was necessary to compromise on a release temperature, releasing a gas at a temperature below

which 100% of the gas was released in order to prevent releasing too much of the following gas. For exam-

ple, we found it necessary to release Ar at 60 K, even though only aproximately 80% of Ar is released at

this temperature, in order to prevent Kr from being released with the Ar. Since sample results are compared

to standards, the exact amount of the gas released does not matter, as long as the same percentage is re-

leased in every analysis. Nonetheless, the advantage of being near the 100% release point is that then small

fluctuations in the temperature of the cryotrap do not have a large effect on the amount of gas released.

At the optimal release temperatures, we found that large amounts of Ar were being let in with the Kr

and Xe subsamples. Increasing the pumping time at the Ar release temperature did not significantly reduce

the amount of Ar being inlet with Kr and Xe. We successfully reduced the Ar in the Kr and Xe inlets by

one to two orders of magnitude by isolating, warming, cooling, and pumping on the SSC after the Ar inlet

and before starting the Kr inlet. We hypothesize that some Ar may be initially cryotrapped by the Kr and Xe

atoms in the SSC. By warming the SSC to 155 K, all the Ar, Kr, and Xe atoms are converted to the gaseous

phase. Then when the SSC is slowly cooled to 65 K, the Kr and Xe recondense but most of the Ar remains

in gaseous phase. Pumping on the trap at 62 K removes the Ar. A second possibility is that the temperature

cycling makes it easier to desorb Ar from the surface of the SSC. The Ar is adsorbed to the surface initially.

There is a strong kinetic effect with adsorption/desorption processes that perhaps is hastened by temperature

cycling, allowing the Ar to be pumped away. In any case, we found that the heating/pumping cycle was

necessary to reduce the Ar to less than 20% of the Kr signal and less than 1% of the Xe signal.

Similarly, in order to achieve minimal Kr in the Xe inlet, we added an additional heating/pumping cycle



immediately after the Kr analysis. Again we theorize that perhaps by warming the trap, we convert all the

Xe to gaseous phase, allowing any Kr cryotrapped by Xe to be freed. Then after the trap is cooled, Kr

is still in the gaseous form and is pumped away. Or perhaps again it is an absorption/desorption kinetic

issue, hastened by the temperature cycle. In any case, by warming the SSC to 155 K, cooling it to 93K, and

pumping, we were able to reduce the Kr in the Xe inlet by an order of magnitude. We were then able to

make a Xe measurement, in which Kr accounted for less than 10% of the Xe signal.

2.4.2 Matrix Effects of Ar and Xe on Kr

We observed a "matrix" effect with the SSC in which samples with larger amounts of Ar resulted in smaller

Kr measurements. We hypothesize that this effect occurs because the Ar forms a sorption layer or "ice" at

low temperatures that is many layers deep on the trap, rather than forming a simple monolayer. A simple

calculation using the area of the trap and the diameter of an Ar atom results in an estimate of order 100

layers of Ar atoms on the trap surface. It is likely that Kr atoms may be occluded in these layers of Ar.

When the Ar is released from the trap at 60 K, some Kr is released with it and swept from the trap during

head-space expansion of the Ar and pump-out. This leads to a bias where the apparent Kr composition

will appear slightly smaller for a sample with a larger Ar: Kr ratio. We detected no similar effect on Xe,

probably because Xe has a much higher release temperature and thus is pulled onto the trap surface at a

much higher temperature after the thermal cycling, and hence is layered onto the surface below the Ar

layers. Krypton's vulnerability is that it is more similar to Ar in its sorption characteristics and therefore

more likely commingles with it.

Our initial procedures resulted in an apparent Kr "suppression" of about 5% when doubling the amount

of Ar in the sample. We subsequently modified the procedure to reduce this effect to about 2.5%. The

modification that reduced the matrix effect the most was to release Ar at a lower temperature (60 K rather

than 62 K). This is probably because at the lower temperature, Ar may be less effective as a molecular drag

pump, allowing the Kr to remain sorbed to the trap more easily while Ar is being released. We also changed

the temperature cycle of the stainless steel cryotrap before Ar release to only warm the SSC to 80 K, rather

than the 155 K we originally used. We then slowly cool the SSC from 80K to 25 K. This strategy is based

on the assumption that by raising the SSC to just slightly above Ar release temperature, we convert only Ar



to the gaseous phase, allowing any Kr and Xe that has been trapped within the Ar to settle "to the bottom" of

the SSC. Then, as we slowly cool the trap, Ar settles on top of the Kr. This new method presumable reduces

(but not eliminates) the Ar-Kr commingling.

Additionally, there is a second matrix effect on Kr due to Xe. If more Xe is in a sample, then more Kr is

released from the trap. One possible explanation, is that Xe can cryotrap some Kr beneath it, preventing the

Kr from being removed when Ar is released at 60 K. A second possibility is that the Xe atoms may passivate

the stainless steel trap, allowing Kr to be more easily released at the Kr release temperature. In either case,

this effect needs to be accounted for.

Although we were not able to completely eliminate either of these effects, we were able to calibrate them

precisely (Fig 2-10). We calibrated these matrix effects by preparing three additional standards composed of

pure Ar, pure Kr, and pure Xe. We then ran a number of gas standards with different numbers of additional

aliquots of pure Ar, pure Kr, and pure Xe. We performed a multiple nonlinear regression to account for the

Ar and Xe effects on the Kr measurements and other Kr "linearity" effects at the same time. We examined

a number of functional forms for the correction and found the form that gave the best fit to the data was

RKr1 = 1 + ai(RKrcci - 1) - a2AArcci - RKrcci + a3 - (RXecci - 1) (2.1)

where i refers to quantities of the unknown sample, ai, a2, a3 are constants, RKri = Kr,,p RKrcci == Krcpastd

Kr-cc ,RXecci = ,Xec and AArcc = Arccj - Arccstd, with cc referring to amount of gas in cc STP,Krccstd Xeccstd'

and cps referring to the ion count rate measured on the QMS in cps. A non-linear least squares technique was

used to determine the optimal coefficients and their uncertainties (Table 2.9). When Eq. 2.1 was applied to

the gas standard experiments, the amount of Kr (in cc STP) calculated matched the known amount to within

0.1% in most cases, and to 0.2% if the amount of Ar or Xe were more than 50% different from the regular

standard. The errors in the coefficients and in the measurements were propagated to show that for a 35%

deviation in size between standard and sample, the Kr correction would yield a 0.14% uncertainty.

Cold (<150 C) water samples have relative gas ratios similar to that of a running standard consisting of

air and two aliquots of makeup standard. We thus performed similar experiments where we added additional

aliquots of pure Kr, pure Ar, and pure Xe to two aliquots of the makeup standard. These coefficients are

very similar to those for determined with a reference of a one makeup standard, giving confidence in the



Figure 2-10: Contour plot of the "matrix effect" of Ar and Xe on the Kr measurements. The relative amount
of Kr is plotted vs. the absolute amount of additional Ar (in std cc) added to the standard and the relative
amount of additional Xe (ratio relative to the gas standard and thus unitless). All the standards run in the
experiments plotted here had identical amounts of Kr. However, when more Ar (or less Xe) was added,
the apparent Kr ion count rate decreased. Contour lines are drawn at 1% intervals. White circles reflect
the data points from the experiments. Black x show the expected position of seawater samples with respect
to a typical running standard comprised of air and the makeup standard. We used the data here as well as
additional experiments with pure Ar, pure Kr, and pure Xe standards in order to determine a regression that
can correct for these matrix effects. Kr is the only gas that is affected by a change in Ar or Xe concentrations.
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2.4.3 Hydrogen

To avoid errors associated with preferential ionization and ion collisions associated with other gases, we

wanted to only let in one gas at a time into the mass spectrometer. Not only does this necessitate separating

all the noble gases, but also it means preventing other gases such as H20, N2, 02, CH4, and H2, a number of

which are far more abundant than the noble gases, from being inlet into the QMS. The initial getter system

used reduced the amount of H20, 02, and N2 to acceptable levels but did not suffice for H2 or CH4 . There



Table 2.9: Coefficients and their uncertainties (1 o) for the matrix effect of Ar and Xe on Kr with respect to
a reference standard composed of 1 aliquot of makeup (1MU) gas standard and with respect to a reference
standard composed of 2 aliquots of makeup gas standard (2MU).

al a2 a3

Reference is 1 MU 1.0692 + 0.002 1.2534 ± 0.09 0.029118 ± 0.002

Reference is 2 MU 1.0454 ± 0.002 1.2519 ± 0.04 0.02508 ± 0.001

was a large background of H2 in the QMS, with the H2 being released from the stainless steel surfaces in

the QMS or processing line or being released by the actuating valves. In order to reduce H2, we added a

room temperature Fe-Zr-V getter (SAES ST707) to the QMS chamber. Thus once the sample was inlet,

this additional getter sorbed any H2 in the first few seconds of analysis, reducing the H2 by two orders of

magnitude. This getter also reduced N2 by one order of magnitude.

For the HIMS, it is especially crucial to reduce the amount of hydrogen since HD and H3 has a nominal

mass of 3, just as does 3He. If hydrogen is too abundant in the spectrometer, the low mass tail of the HD-H3

peak interferes significantly at the 3He mass position. We thus attached three stainless steel containers, each

with about 50 g of getter material (SAES ST707) to the HIMS. We initially baked the HIMS at 300 oC for

1 week in order to remove hydrogen contained in the stainless steel. When we cooled the HIMS and turned

on the ion beam, we found an unacceptable amount of HD (about 6x10 6 cps). We thus baked the HIMS

again, this time at a higher temperature of 380 OC. Additionally, we first heated the getters to 700 OC since

when the getters are hot, they release their hydrogen load. Then we cooled the getters and kept them at room

temperature during the bakeout so that they would sorb the hydrogen released from the ion source and flight

tube. We then cooled the flight tube, and only once it was cool did we heat the getters again. By alternating

hot getters with hot flight tube we were able to first use the getters as effective pumps for the hydrogen, and

then to release the hydrogen directly from the getters into the turbo molecular pump. After this bakeout, the

HD was reduced over three orders of magnitude to a value comparable to the 3He ion beam for a typical

sample. At this level, the interference was indistinguishable from zero.



2.4.4 Methane

Not only can other gases interfere with ionization inside the QMS, but also the presence of gases other than

the noble ones and hydrogen on the cryotrap can change the release characteristics of the noble gases from

the SSC. Our original experimentation with another, similarly designed mass spectrometer, showed that

when CH4 was drawn onto the SSC, it effectively "activated" the trap surface, which retarded the release

of Kr. This is an important potential systematic bias because water samples have approximately a factor of

four higher concentration of CH4 than our air standards and thus we observed that our water samples were

yielding erroneously low Kr measurements. Moreover, we were concerned that excessive amounts of CH 4,

which was released from the SSC at temperatures above 100 K, consequently accompanied the Kr and Xe

into the QMS, possibly influencing subsequent measurements.

With the aim of reducing CH4, we examined the effect of raising the temperature of the hot half of the

flow-through getter. At elevated temperatures (supposedly >3000 C), the getter should crack some of the

methane into C and H2. By raising the temperature from 2700 C to 310 0C we decreased the CH4 by 50%.

By further increasing the temperature to 3500 C, we made only a modest reduction in the CH4, but more

importantly prevented CH4 from gradually increasing over time. Additionally, after drawing the sample

onto the cryotraps, we raised the temperature of the cool side of the flow-through getter to 350 0C and then

cooled it again. This temperature cycling resulted in cracking any CH4 that remains in the cool part of the

flow-through getter and thus prevented the CH4 from increasing over time. Even with these improvements,

however, we still had more CH4 in our water samples than in our standards.

We thus introduced a Pd catalyst (0.47% Pd on Al Oxide, BASF RO-20/47) into our sample processing

system to act on the gas sample prior to gettering. Pd and Pt catalysts on alumina, silica, zirconia, and

anatase have been used in the catalytic converter industry to oxidize volatile organic compounds (VOC)

including methane (Lyubovsky and Pfefferle, 1998; Janby et al., 2003; Escandon et al., 2005). When the

catalyst is at temperatures greater than 450 0 C, Pd catalyzes the oxidation of CH4 into CO2 and H20. In our

system, the catalyst must be placed before the getters since oxgyen is necessary for the oxidation reaction

to occur and the getters can then remove the CO2 and H20 that are products of the oxidation reaction.

Additionally, the catalyst must be placed after the water trap since the catalyst acts like a "sponge," soaking

up large quantitites of water vapor and thus is very hard to subsequently pump down.



After the addition of the catalyst, the amount of CH4 measured in a water sample was equal to the

amount measured in an air standard, both being approximately 20,000 cps. Half of this CH4 comes from the

processing line and the other half comes from the QMS itself, perhaps produced by reactions of CO2 and the

H2 in the stainless steel. Nonetheless, since the amount of CH4 is the same for both standards and samples,

if it interferes with our measurements of the noble gases, it would do so the same way for both standards

and samples and thus would have no net effect on our analyses.

2.4.5 Error Analysis

The total error in the measurement of the noble gases in a sample derives from three main sources. One

source is the random and systematic errors associated with the mass spectrometers and processing line

when measuring a sample or standard. The second source is the systematic error associated with how well

we can calculate the amount of gas in a standard aliquot. The third source is the random or systematic errors

introduced in the sample collection or initial extraction of the gases from the water samples. These sources

of error and their estimated sizes for the five noble gases as measured on the QMS are listed in Table 2.10.

To estimate the random error associated with the processing of a sample, we ran standards for several

days. We then treated half the standards as "unknowns" and used the remaining half of the standards to

predict the values of these "unknowns". We used the deviation between the predicted values and the actual

values as a measure of the total error in our sample processing. This random error is listed as "error due to

repeated measurements of standards" in Table 2.10.

We also considered the error inherent in the QMS measurement of a single sample (called here QMS

error). This QMS error is estimated from the uncertainty in the extrapolation of the ion counts back to

the end of inlet (Table 2.10). The fact that we are extrapolating back to inlet introduces an error of about

1.5 to 2 times the intrinsic Poisson uncertainty. The extrapolation reduces dependence on any subsequent

fractionation or modification within the QMS during analysis. Additionally, the QMS error of a single

sample is smaller than the total processing line error (error estimated from repeated standards), suggesting

that much of the variability comes from sample processing rather than from the QMS itself. If desired, the

QMS error could be minimized further by increasing the number of scans during analysis.

In this method, we calculate the amount of gas in a sample by comparing the ion count measured by



Table 2.10: Sources of errors in the measurements of the noble gases.

Source of Error

1. Air Standards

Repeated Measurements of Standards

Extrapolation to end of inlet

Counting Statistics

Air Standard Calculation

Temperature

Relative Humidity

Pressure

Aliquot volumes

Interstitial loss

Makeup Std

Total error for standards

2. Water Samples

Correction for linearity

Correction for matrix effects on Kr

Correction for gas left in bulb

Total estimated error for samples

Observed error for duplicate water samples

4 He 20 Ne 40Ar 84Kr 132Xe

0.10%

0.05%

0.02%

0.1%

0.04%

0.01%

0.001%

0.09%

0.002%

0%

0.14%

0.10%

0.05%

0.1%

0.04%

0.01%

0.001%

0.09%

0.002%

0%

0.10%

0.06%

0.03%

0.1%

0.04%

0.01%

0.001%

0.09%

0.002%

0.1%

0.14%

0.07%

0.03%

0.1%

0.04%

0.01%

0.001%

0.09%

0.002%

0.13%

0.17%

0.06%

0.02%

0.1%

0.04%

0.01%

0.001%

0.09%

0.002%

0.13%

0.14% 0.17% 0.14% 0.17% 0.20%

0.007%

0%

0.01%

0.14%

0.96%

0.1%

0%

0.01%

0.2%

0.88%

0.03%

0%

0.03%

0.14%

0.28%

0.19%

0.03%

0.25%

0.29%

0.02%

0%

0.06%

0.2%

0.19%



the QMS of the sample to the ion count measured by the QMS of an air standard. Thus it is necessary to

accurately and precisely calculate how much gas is in an aliquot of air standard. Any error in the calculation

of the air standard would lead to a systematic error that would shift all our results. The uncertainties in

the calculation of gas in an air standard include the uncertainties in recording the atmospheric conditions

(temperature, pressure, relative humidity) when the air standard was collected and the uncertainties associ-

ated with determining the volumes of the aliquots and standard cans (Table2.10). In order to minimize the

uncertainties in the collection of the air standard, we take several "reference" air standards over the course

of months that we compare to our running air standard. The reference air standards and the running air stan-

dard agree within 0.2%. We then use these reference standards to better calibrate the running air standard.

Additionally, for the cases of Ar, Kr, and Xe, there is additional error due to the uncertainty in the calibration

of the makeup standard.

When measuring water samples, there are potential additional sources of systematic biases due to the

differences in the size and composition between our water samples and our air standards. Although the

response of the QMS is close to linear, the slope of the linearity calculation has some uncertainty. We could

decrease this uncertainty by more determinations of the linearity correction. Additionally, we correct for the

effect of Ar and Xe on the Kr measurements and this correction leads to some additional error for our Kr

measurements. Finally, when running water samples, some of the gas is left in the water in the bulb. We

correct for this using the weight of the water (measured after each sample has been run) but uncertainties in

the weight of the water, in the temperature of the headspace expansion, and in the ratio of the theoretical to

observed amount of gas left behind lead to additional uncertainties for water samples. A combination of all

the above effects yields an error estimate for our samples (listed as estimated error in Table 2.10).

There is also a source of error associated with the sample collection and initial extraction of the gases.

For example, bubbles can stick to the walls of the sample chamber or lurk in the internal geometry of the

plug valves on the sample cylinders and thus erroneously increase the He and Ne concentrations. Or if the

temperature during the extraction is too low, perhaps not all the Xe is extracted from the samples. Thus it

is not surprising that the uncertainties as determined by duplicate pairs of water samples are larger than on

our gas standards. The truest estimate of the random component of our total measurement and sampling

error comes from duplicate samples. The difference between duplicate samples incorporates all the random



uncertainties in sampling, processing, and measurement. The errors for the duplicates are the highest for He

and for Ne, suggesting we may be entraining bubbles during sample collection.

The error on our 3He measurements from the HIMS can be theoretically calculated from Poisson count-

ing statistics to be 0.06%. For an estimate of the actual error observed, we calculated the deviation from

a least squares smoothing spline loosely fit to the standards to be 0.05% to 0.1%. The error estimated this

way depends on how tight a fit one uses for the spline. Thus to better assess the error, we used half of the

standards to estimate values for the other half and then looked at the deviation for these "unknown" stan-

dards. The average deviation was 0.07%, suggesting that our 3He results are close to the theoretical limit.

To include the random error from sample collection and processing, we consider the difference between

duplicate pairs, which is 0.14%, which is higher than the instrumental error.

2.5 Conclusions

We present here a method for measuring all five noble gases from a single water sample. A new feature of

this method is incorporation of an automated stainless steel cryogenic trap into the processing line of a QMS.

By repeatedly warming, cooling and pumping the trap, we can separate the heavier noble gases, resulting in

improved precision. The precision for this method for air standards for He, Ne, Kr, and Xe is good enough

to be useful for geochemical estimates of processes such as gas exchange. The method is fully automated

and allows measurement of noble gas isotope ratios. The SSC also reduces the time of the measurement,

allowing analysis of all five noble gases in approximately three hours. The method here was used on 90 g

water samples but it could also be used on smaller 1 g samples. Additionally, it could be adapted for use

with rock or ice samples.

The variability in our isotope ratios is smaller than in our absolute abundances, suggesting that this

method might be improved by using isotope dilution. However, since the error for our water samples is larger

than for our standards, the limitations to our measurements does not come from the mass spectroscopy but

rather from the initial sample collection and preparation. Thus future studies should include investigation

on more reproducible ways to collect and extract the gases from seawater.
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Abstract

A multi-year time-series of measurements of five noble gases (He, Ne, Ar, Kr, and Xe) at a subtropical ocean

location may allow quantification of air-sea gas exchange parameters with tighter constraints than currently

available by other methods. We have demonstrated this using a one-dimensional upper ocean model forced

by 6-hourly NCEP reanalysis winds and heat-flux for the Sargasso Sea near Bermuda. We performed en-

semble model runs to characterize the response of the modeled noble gas saturation anomalies to a range

of air-sea gas exchange parameters. We then used inverse calculations to quantify the sensitivity of the pa-

rameters to hypothetical observations. These calculations show that with currently achievable measurement

accuracies, noble gas concentrations in the Sargasso Sea could be used to constrain the magnitude of equi-

librium gas exchange to +11%, the magnitude of the total air injection flux to +14%, and the magnitude

of net photosynthetic oxygen production to +1.5 mol 02 m- 2 Y-1. Additionally, we can use noble gases

to quantify the relative contributions of bubbles that are partially dissolved to bubbles that are completely

dissolved. These constraints are based on idealized assumptions and may not fully account for some of the

uncertainties in the meteorological data, in lateral transport processes, and in the solubilities of the noble

gases. As a limited demonstration, we applied this approach to a time series of He, Ne, Ar, and 02 measure-

ments from the Sargasso Sea from 1985 to 1988 (data from Spitzer, 1989). Due to the limited number of

gases measured and the lower accuracy of those measurements, the constraints in this example application

are weaker than could be achieved with current capabilities.



3.1 Introduction

Air-sea gas exchange is a crucial component of the biogeochemical cycles of many important gases, in-

cluding 02 and CO2. However, existing air-sea gas exchange parameterizations have uncertainties of

25% to 50% (Liss and Merlivat, 1986; Wanninkhof, 1992; Wanninkhof and McGillis, 1999; Nightingale

et al., 2000). Eddy correlation techniques provide estimates based on hourly time scales (Wanninkhof and

McGillis, 1999). Radon deficit calculations (Peng et al., 1979) and deliberate dual release experiments (Wat-

son et al., 1991) allow prediction of gas transfer functions for time scales of several days to two weeks. At

the opposite end of the spectrum, gas transfer functions determined from natural 14C balance or bomb 14C

considerations (Broecker and Peng, 1974; Wanninkhof and McGillis, 1999) are based on decadal or longer

time scales. The techniques that determine air-sea gas exchange parameters from direct empirical data, such

as purposeful release experiments, are time-consuming and expensive and have only been applied in limited

areas of the ocean. Additionally, few of these methods average gas exchange over time-scales of weeks to

months , and yet it is those time scales that most affect nutrient cycling and biological production.

A monthly time-series of noble gas measurements may help constrain air-sea gas exchange parame-

terizations on monthly time-scales and regional spatial scales. Noble gases are an ideal tool for such an

investigation because they are chemically and biologically inert, and therefore respond only to physical pro-

cesses such as air-sea gas exchange, mixing, transport, etc. Seasonal warming and air injection due to large

wind events drive noble gases out of equilibrium while diffusive gas exchange works to restore equilibrium.

The five stable noble gases, helium (He), neon (Ne), argon (Ar), krypton (Kr), and xenon (Xe), have a wide

range of physical properties. The solubilities of the gases differ by a factor of ten and the diffusivities by

a factor of five (Wood and Caputi, 1966; Weiss, 1970, 1971; Weiss and Kyser, 1978; Jhne et al., 1987;

Hamme and Emerson, 2004). In addition, the solubilities of Kr and Xe are strongly dependant on tempera-

ture, whereas the solubilities of He and Ne are weakly dependant on temperature. This range in properties

causes the gases to respond differently to physical forcing and thus allows quantification of a variety of

physical processes.

To quantify these physical processes, we must combine noble gas measurements with a numerical model

that simulates the noble gas concentrations in a time-evolving environment. The primary objective of the

model is to provide a first order, time-varying description of the key factors that influence noble gas distribu-



tions such as the vertical distribution of temperature, salinity and mixing in the water column. This modeling

is easier for two reasons if we study the noble gases near Bermuda in the Sargasso Sea at the Bermuda At-

lantic Time-Series Study (BATS) site (3 1040'N, 640 10'W). First, a wealth of hydrographic data exists from

the BATS site and nearby Station S (32 10'N, 64030'W) that can be used to constrain the physical param-

eters in the model. A biweekly time-series of temperature, salinity, oxygen, and other measurements exists

at Station S from 1954 (Schroeder and Stommel, 1969) with a similar monthly time-series at BATS from

1988 (Michaels and Knap, 1996). Second, a one-dimensional vertical model can be used for the gases with

fewer problems at this site than at many others. Thermal forcing is one of the largest determinants of gas

saturation state, and at the BATS site, the large scale circulation nearly parallels the zero contour of net

heat flux (Jenkins and Doney, 2003). Thus the temperature history of the upper water column with respect

to thermal forcing does not vary greatly laterally, suggesting that a one-dimensional model may produce

reasonable values for noble gas distributions.

In this paper, we present a design experiment: given noble gas measurements at currently achievable

measurement accuracy, how well can we quantify air-sea gas exchange processes? First, we describe the

model and method used to constrain air-sea gas exchange parameters from noble gas measurements (3.2).

Second, we present the choice of physical parameters used in the model and show that the model successfully

mimics temperature and salinity data from the Sargasso Sea (3.3). Third, we present a sensitivity study

quantifying how well noble gas measurements can constrain a variety of air-sea gas exchange parameters

(3.4). Finally, as a limited demonstration we apply this method to a three-year time-series of He, Ne, Ar, and

02 measurements collected at Station S from 1985-1988 (Spitzer, 1989) and determine preliminary values

for air-sea gas exchange parameters in a subtropical oligotrophic gyre (3.5).

3.2 Methods

3.2.1 Description of the one-dimensional vertical upper ocean model: Physical parameters

We used a one-dimensional, vertical, modified Price-Weller-Pinkel (PWP) model (Price et al., 1986). The

model previously had been extended to include He, Ne, Ar, and 02 (Spitzer and Jenkins, 1989), and here we

extended it further to include Kr and Xe. Moreover, whereas Spitzer and Jenkins (1989) used climatological



data to force their model, we used six-hourly National Centers for Environmental Prediction (NCEP) re-

analysis heat fluxes, wind stress, precipitation, etc. (Kistler et al., 2001), interpolated for the BATS site. The

annually averaged net heat flux obtained from the NCEP reanalysis for this location is negative (net cooling)

suggesting that lateral advection balances the heat budget over decadal, or possibly longer, timescales. Thus

a positive heat flux, calculated by balancing the sum of the NCEP heat flux terms to zero (on order 30 to 50

W m-2), is added to the model to compensate for the NCEP extraction of heat and to simulate the effects of

lateral advection.

In addition, in the model there is an effective heat convergence associated with Ekman pumping. We

computed the Ekman pumping from the four day low pass filtered local wind stress curl derived from the

NCEP reanalysis data. The Ekman pumping induced vertical velocity is tapered to zero at the bottom of the

model domain, in approximate concordance with the Sverdrup relation. The vertical heat flux convergence

associated with this flux results in a net heat gain in the model. To prevent the model from warming,

a heat flux of order 5 W m- 2 is removed from the water column. The exact magnitude of this Ekman

heat convergence compensation term (Ekm) is difficult to calculate explicitly because it depends on the

simulated vertical temperature profile in conjunction with the vertical velocity profile, and to a lesser extent

on vertical mixing. It thus was treated as a model parameter that was adjusted for long term heat balance.

Furthermore, varying Ekm has the effect of partially compensating for errors in the NCEP heat fluxes. We

evaluated physical model performance as a function of the magnitude of Ekm, the depth range over which

the total heat flux offset (sum of the Ekman compensation and NCEP balance terms) is distributed (Z), the

time scale over which the heat budget is forced to balance, and the background vertical diffusivity (Kz).

We determined the optimum values for these tunable physical parameters from ensemble runs (n- 100)

calculated using an initially wide range of physical parameter values: 10- 5 < Kz < 10- 4 m2 s - 1, 1 <

Ekm < 15 W m- 2, and 10 < Z < 400 m. We quantitatively compared the output of these runs to

BATS and Station S data through the use of a cost function based on the sum of the weighted root mean

square difference between model and observations. Quantities included in the cost function were the winter

mixed layer depth, summer mixed layer temperature, winter mixed layer temperature, summer mixed layer

salinity, average temperature in the top 600 m, and average salinity in the top 600 m. The mixed layer depth

contribution to the cost function was weighted by 25 m, the temperatures by 0.5 OC, and the salinities by 0.1



psu. As a comparison, we also calculated a second cost function based on the root mean square difference

between model and observed temperature and salinity at depths ranging from the surface to 150 m. In both

cases, a narrower range of physical parameters was then chosen near the optimum and another ensemble

run was performed. The process was repeated until the cost functions displayed no significant difference

between the optimal values of physical parameters.

The net water flux was determined by the difference between the NCEP precipitation flux and the evap-

oration, calculated by converting the latent heat flux from W m- 2 to kg m2 s- 1. The net evaporation minus

precipitation is about 65 cm y-1 so an offset is applied to balance the fresh water flux over the period, as-

suming that this is typically achieved in the ocean by a lateral freshwater flux divergence. The optimal value

for this offset was determined from the BATS salinity data. The model and the gas distributions are not very

sensitive to changes in salinity at this location and thus are not sensitive to the value of this offset.

For the sensitivity study (Sec. 3.4), the model was spun up from 1992-1999 with initial conditions of

temperature and salinity profiles from BATS data and all gas concentrations at equilibrium. We used the cost

function/ensemble run method described above in conjunction with the BATS and Station S data from 1992

to 2002 in order to calculate the optimal physical parameters for this time period. Then simulated noble gas

concentrations from 1999-2002 were used to quantitatively investigate potential constraints on air-sea gas

exchange parameters.

For the example application (Sec. 3.5), the model was spun up from 1978 to 1985 and then simulations

from 1985 to 1988 were used in conjunction with time-series data to determine the air-sea gas exchange

parameters. To determine the optimal physical parameters, we used an inverse analysis with BATS tem-

perature and noble gas data. To determine a reasonable range of physical parameters, we used the cost

function/ensemble run method described above. This range of physical parameters allowed us to calculate

the additional uncertainty in the air-sea gas exchange parameters due to uncertainty in the physical param-

eters. The optimal physical parameters for the 1992-2002 decade differed from those for the 1978-1988

time period, probably because of differences in lateral processes (such as eddies) that are not resolved in the

model.



3.2.2 Description of the model: Gas exchange parameters

Gas exchange processes are modeled according to standard literature parameterizations with adjustment

permitted through the use of tunable model parameters. The total flux of a gas, FTOT, is the sum of the flux

due to diffusive gas exchange, FGE, and the flux due to air injection, FAI:

FTOT = FGE + FAI (3.1)

The diffusive gas exchange flux, FGE (mol m- 2 s- 1) is given by

Sc -0.5
FGE = 7G - 7.9 x 10-8 US0Uo(Ci,eq - Ci,w) (3.2)

where 7G is a tunable model parameter of order 1 controlling the magnitude of the flux, the coefficient is the

constant used by Wanninkhof and McGillis (1999) converted to units of m s- 1, Sc is the Schmidt number

(ratio of the kinematic viscosity to the molecular diffusivity of the gas of interest), ulo is the wind speed

(m s-1) at 10 m height above sea-surface, n is the exponent controlling the wind-speed dependency of the

flux, and C,,, and Ci,eq are the concentrations of gas i in the water and at equilibrium, respectively. A cubic

wind speed dependency (n = 3), as proposed by Wanninkhof and McGillis (1999), is used in most model

runs. In the few runs with a quadratic wind speed dependency (n = 2), the value of the coefficient changes

to 8.6x10- 7 m s- 1, in order to scale the total gas flux to the global average 14C exchange rate (for details

see Wanninkhof, 1992).

In the model, the flux due to air injection, FAI, has contributions from two types of bubbles. Some bub-

bles are completely trapped, i.e. completely dissolved after injection, and therefore inject air of atmospheric

abundances into the water column. Other bubbles only partially dissolve before rising to the surface, in

which case the injected gases are fractionated as a function of diffusivity and solubility (Fuchs et al., 1987;

Jenkins, 1988a; Keeling, 1993; Woolf, 1993). Thus the total air injection flux, FAI, is equal to

FAI = Fc + Fp (3.3)

where Fc refers to the flux from bubbles that are completely trapped and Fp refers to the flux from bubbles



that are only partially dissolved.

The flux due to completely trapped bubbles is dependent on the partial pressure of the gas in the atmo-

sphere and the volume entrainment rate of the air entrained. This volume entrainment rate is given by a

combination of the whitecap coverage formulation of Monahan and Torgersen (1990) with the air entrain-

ment velocity estimate of Keeling (1993):

Fc= yAc -Ac - 2 x 10- 6(uo - 2.27)3VaP a (3.4)
RT

where YAc is a tunable model parameter of order 1 that scales the magnitude of the complete trapping flux,

Ac is a constant coefficient equal to 1.4x10 - 3, Va is the air entrainment velocity (0.01 m s-1), R is the

gas constant (8.31 J mol-1 K-1), T is the temperature (K), and Pi,a is the partial pressure of gas i in the

atmosphere (Pa). We calculated the coefficient A, by performing ensemble runs (n,-100) and then using

a cost function to determine the value of Ac that allowed the best match to He, Ne, and Ar data from the

Sargasso Sea. Eq. 3.4 is valid for ulo > 2.27 m s- 1. At ulo < 2.27 m s- 1, F, is set to 0.

The partial bubble trapping flux depends upon the volume entrainment rate, the solubility and diffusivity

of the gas, and the difference between the partial pressure of the gas in the bubble and in the water :

Fp = 7YAp Ap 2 x 10- 6 (10 - 2.27)3VaoaqDP ibTIPi iw (3.5)

where YAp is a tunable model parameter of order 1 that scales the magnitude of the partial trapping flux, Ap

is a constant coefficient equal to 2x10 5, a is the Bunsen solubility coefficient of gas i, D is the diffusivity

(m2 s - 1) of gas i, a and b are exponents controlling the power dependency of a and D respectively, and Pi,b

and Pi,, are the partial pressures of the gas in the bubble and in the water (Pa). We calculated the coefficient

Ap by performing ensemble runs (n-100) and then using a cost function to determine the value of Ap that

allowed the best match to existing He, Ne, and Ar data from the Sargasso Sea. The power dependency of a

and D can be determined theoretically depending on whether the bubbles are believed to be clean (a = 1,

b = 1/2) or dirty (a = 1, b = 2/3) (Levich, 1962) or can be determined by modeling studies of characteristic

bubble populations (a = 0.7, b = 0.35) (Keeling, 1993). In this study, we examined the sensitivity of the

results to the choice of a and b. Unless noted otherwise, we will report results for a = 1, b = 2/3. Eq. 3.5



is valid only for ulo < 2.27 m s- 1. At ulo < 2.27 m s- 1, Fp is set to 0. Eq. 3.5 is similar to the partial

trapping flux equation used by Keeling (1993) when appropriate scaling factors and units are used.

The partial pressure of the gas in the bubble, Pi,b, depends on the size and depth distribution of the

bubbles and thus is a complicated problem of bubble dynamics. Here, however, Pi,b is simply approximated

by:

Pi,b = Xi(Patm + pghbub) (3.6)

where Xi is the mole fraction of gas i in dry air, Patm is the atmospheric pressure of dry air (Pa), p is

the density of water (kg m-3), g is the gravitational acceleration (9.81 m s- 1) and hbub (m) is the average

dissolution depth for the bubbles. This expression takes into account the hydrostatic pressure felt by the

bubble but neglects the effects of surface tension on the bubble. The depth hbub, used for the hydrostatic

pressure calculation, is approximated by:

hbub = (0.3ulo - 1.1) (3.7)

which is the bubble cloud residence depth/wind speed relationship of Graham et al. (2004), multiplied by

a bubble depth scaling factor of I to take into account that the bubbles partially dissolve along their entire

downward and upward transect rather than simply at their residence depth. The results were not sensitive to

the choice of bubble depth scaling factor since a decrease in the scaling factor could be compensated for by

an increase in YAp. Eq. 3.7 is valid only for u1 0 > 3.7 m s-1. At ulo < 3.7 m s-1, hbub is set to 0.

Both the diffusive gas exchange flux and the air injection flux parameterizations (Eq. 3.2 and Eq. 3.5)

require knowledge of the solubilities of the noble gases. These solubilities were determined by Weiss in

the 1970s (Weiss, 1970, 1971; Weiss and Kyser, 1978). More recently, the solubilities of Ne and Ar were

redetermined by Hamme and Emerson (2004b), with these newer results differing from those of Weiss by

1% for Ne and 0.4% for Ar. We performed most of the calculations with the Ne and Ar solubilities of

Hamme and Emerson. We assumed that the difference in the Ne solubilities between Weiss and Hamme

and Emerson was due to a systematic difference in technique. We thus scaled the Weiss solubility values for

He (which was not determined by Hamme and Emerson) with the same correction factor that was needed to



make the Weiss Ne solubility equal to the Hamme and Emerson Ne solubility. This correction factor, which

depends on temperature, ranges from 0.5% at 180C to 1.5% at 29 0C. We performed some calculations

with the Weiss solubilities in order to assess the effect of different solubility functions. Additionally, we

propagated the uncertainty in solubility determination, when appropriate, throughout all the calculations.

Biological production is incorporated through the use of an idealized oxygen production and consump-

tion profile. In the upper 100 m, the oxygen productivity profile, Prod, is represented by a sine curve

according to

Prod oc sin for z < 100m (3.8)
100

where z is depth (m). Below 100 m, oxygen is consumed exponentially:

- (z - 100)Prod oc exp( ) for z > 100m (3.9)

where z* is a scaling depth of 295 m that was chosen based on tritium-helium dating (Jenkins, 1980). Since

oxygen production by photosynthesis above 100 m should approximately balance oxygen consumption from

remineralization below 100 m, the integrated production above 100 m was scaled to balance the integrated

production below 100 m. The total oxygen production and consumption, PTOT, is then scaled by tunable

model parameter yp and seasonally modulated with maximum production in early spring (Musgrave et al.,

1988; Spitzer and Jenkins, 1989), according to

PTOT = yP " Prod . [1 + sin(27r(t - to))] (3.10)

where t is the model time and to is 1995 (a year in the middle of the time-series). This is an idealized

approach to biological productivity and at the moment is not intended to give new information about biolog-

ical productivity at the BATS site. Rather it simply illustrates that 02 and Ar measurements can be used to

constrain biological productivity. Future work will likely use better data assimilation techniques for oxygen

and argon in order to estimate useful values of biological production at the BATS site.



3.2.3 Linearization and inverse technique

The equations above mathematically describe the effect of diffusive gas exchange and air injection on the

signatures of the noble gases. Qualitatively, the equations illustrate that there are three types of forcing for

the noble gases: thermal forcing which changes the saturation state of the gas, diffusive gas exchange, and air

injection. For insoluble gases such as He and Ne, the diffusive gas exchange flux balances the air injection

flux, making separation of the terms difficult. For soluble gases such as Kr and Xe, the air injection flux is

relatively less important. Thus thermal heating (which is directly observed) causes a diffusive gas exchange

flux, which can then be calculated from mass budgets. We then used this estimated diffusive gas exchange

flux and the He and Ne results to quantify the air injection fluxes. In practice, we actually determined the

diffusive and air injection fluxes simultaneously using all five noble gases, as described below.

The four tunable geochemical model parameters in the above equations are gas exchange magnitude 7G,

complete bubble trapping magnitude 7A,, partial bubble trapping magnitude -yAp, and biological production

magnitude 7p. In order to quantify these factors, we first constructed a reference case by running the model

using the most probable values of all model parameters (Table 3.1). For 7G and yp, literature values were

used to assign the reference case. For 7Aec and %Ap, reference values of 1 were chosen since the coefficients

Ae and Ap had been calculated to best match observations. Second, we ran the model with a range of values

for a given model parameter, holding all other model parameters constant at the reference values, in order to

linearize the response of an observational metric to a given model parameter. The observational metrics are

measurable quantities, such as the surface saturation anomaly of a noble gas. This linearization ultimately

allowed us to estimate how well noble gas measurements, at current measurement capabilities, can constrain

air-sea gas exchange parameters. The linearizations are robust to data noise, and physical model error and

they provide direct interpretation of parameter impact on observational metrics and error propagation. The

sensitivity study shows that the approximation of a linear response is appropriate.

As an initial step, we used the linearizations in a partial derivative method to determine which observa-

tional metrics offer the best constraints on a given model parameter. This approach assumes all other model

parameters are known with zero error. All uncertainties in this paper refer to la values. The estimated

uncertainty in the model parameter, oparam, which is essentially the constraint on the model parameter, can

be calculated from the following equation:



Table 3.1: Reference case values for the tunable gas exchange model parameters chosen either according
to literature values (yG, yp) or to best match previous observations (YAc, YAp). All of the parameters are
unitless except for the oxygen production parameter yp.

Model Parameter Description Reference Value

YG Magnitude of diffusive gas exchange 1

YAc Magnitude of complete trapping component of air injection 1

7Ap Magnitude of partial trapping component of air injection 1

7p Magnitude of net biological production 5 mol 02 m- 2 y-1

ometric AObservationalMetric
= slope (3.11)

Uparam AModelParameter

where Otmetric is the estimated uncertainty in the observational metrics achievable with present measurement

capabilities and slope refers to the slope calculated from the linearization. Laboratory experiments indicate

that it is possible to achieve at least 0.1% measurement uncertainty on measurements of He, Ne, and Ar

and at least 0.2% measurement uncertainty on measurements of Xe using peak height manometry on a

quadrupole mass spectrometer. Such uncertainties depend on adequate purification and separation of gases

to eliminate matrix effects, and highly reproducible experimental procedures achieved by precise computer

control of all processing. There will be additional error due to sampling and gas extraction. However,

systematic biases can be assessed by careful experimentation, and random errors can be overcome by over-

sampling the water column (e.g., multiple samples within the mixed layer).

The situation is more complicated than the partial derivative method suggests because we do not know,

a priori, the values for any of the model parameters and because the metrics depend on more than one pa-

rameter. In order to take into account this complexity, we also calculated the parameter constraints using a

full inverse method that utilizes multiple observational metrics. For the full inverse method, we used simu-

lated "data" of the distributions of the five noble gases from a model run with reference model parameters.

Then we used singular value decomposition (SVD) and the linearizations to simultaneously determine all

of the model parameters from the "data" weighted by the currently achievable measurement uncertainty of



the observational metrics. The uncertainties determined from the SVD calculations give us the potential

constraints on the model parameters. In the future, when we have an actual dataset of all five noble gases,

we will explore using nonlinear optimization techniques rather than the SVD.

Additionally, we calculated linearizations using different sets of physical parameters (see Section 3.3

for description of the sets of physical parameters) and thus determined the uncertainty produced by ambi-

guity in the one-dimensional model physics. We added in quadrature the uncertainty due to the noble gas

measurements as determined from the SVD and the uncertainties due to model physics to determine final

constraints on the model parameters.

3.3 Choice of physical parameters

The physical model is able to mimic reasonably well the mixed layer depth, temperature, salinity, and

average temperature in the top 600 m (approximately proportional to total heat content) for a ten-year period

when the appropriate physical parameters are chosen (Fig. 3-1). The root mean square deviations between

model and data are 70 m for mixed layer depth, 1.20C for mixed layer temperature, 0.13 psu for mixed layer

salinity, and 0.40C for average temperature in the top 600 m. The winter mixed layer depths predicted by the

model have the largest root mean square deviation from the data relative to the weights assigned in the cost

function. This may be because the mixed layer depth is sensitive to convection of relatively homogeneous

mode waters, and thus small year to year variations in lateral heat transport, mesoscale eddies, and errors

in heat fluxes can lead to large variations in winter mixed layer depth (Doney, 1996). No long-term drift is

apparent in the optimized model, even when the model is run for forty-five years. The model-data agreement

suggests that the model is an adequate description for the seasonal physical evolution used for the noble

gases.

The best set of physical parameters for the time period 1992 to 2002 consist of K,=6x0 - 5 m2 s-1, Z =

100 m, and Ekm = 6.5 W m- 2. However, we found that the parameters work in concert, with various sets of

physical parameters yielding similar cost functions. If K, ranged from 2x10 - 5 m2 s-1 to 8x10 - 5 m2 s-1,

we could still achieve reasonably low cost functions. For model runs with K, outside this range, the cost

functions increased significantly and the model results could no longer match the seasonal temperature cycle

observed at BATS. We thus carried out the modeling and determination of air-gas exchange parameters with



Figure 3-1: Comparison of model predictions (-) with BATS/Station S data (o) for mixed layer depth,
mixed layer temperature, average temperature in the top 600 m, and mixed layer salinity. Mixed layer depth
was determined from BATS/Station S data using a potential density criterion of AO.1 kg m-3. Physical
parameters used in this reference simulation are background vertical diffusion Kz=6x10- 5 m2 s- 1, Ekman
heat convergence Ekm=6.5 W m- 2, and depth to which heat offset is added Z=100 m.
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three sets of physical parameters: (1) the optimal set, as listed above (all results in figures and tables are for

this case); (2) Kz=8x10- 5 m2 s- 1, Ekm=5 W m- 2, Z=100m; and (3) Kz=2xl0 - 5 m2 s- 1, Ekm=1O W

m- 2, Z=100 m. We then used the difference in the calculated air-sea gas exchange parameter values as a

first-order approximation for the uncertainty due to choice of physical parameters. The choice of physical

parameters differs slightly from decade to decade, perhaps because of differences in lateral processes (such

as eddies) that are not resolved in the model, or trends in unresolved biases in the NCEP data. For the

time period 1978 to 1989, we also performed calculations with three sets of physical parameters: (1) the

best physical parameters Kz=3.6xl0 - 5 m2 s-1, Z=100 m, and Ekm=5.5 W m- 2 ; (2) Kz=8x10- 5 m2 s- 1

Ekm=5 W m- 2, Z=100 m; and (3) Kz=2x10- 5 m2 s- 1, Ekm=10 W m- 2, Z=100 m.

3.4 Sensitivity Study: Constraints on air-sea gas exchange parameters from

the noble gases

3.4.1 Model results: Noble gas behavior

The model shows that the individual noble gases have different signatures in the mixed layer (Fig. 3-2) and

the upper ocean (Fig. 3-3) because the noble gases have a range of physical properties. We measure and

model concentrations of the noble gases. However, to ease interpretation, all noble gas results are presented

here as saturation anomalies, A, which are defined as

A=(,( _' 1) x 100 (3.12)
Ci,eq

where Ci,w is the concentration of gas i in the water and Ci,eq is the concentration of gas i at equilib-

rium. Positive (negative) saturation anomalies reflect that the gas is supersaturated (undersaturated), and

the magnitude of the saturation anomalies corresponds to the magnitude of the departure from equilibrium.

Although a similar pattern of saturation anomalies is seen from one year to another, the exact magnitude of

the saturation anomalies differ each year because the saturation anomalies are driven by physical processes,

such as wind forcing, mixed layer depth, and mixed layer temperature, which also differ each year.

Helium and Ne are relatively insoluble, with a weak solubility dependence on temperature (Weiss, 1971;



Figure 3-2: Surface (mixed layer) saturation anomalies (Asurface) for the five noble gases and oxygen as
predicted by the model using reference case model parameters. Note that He and Ne form one group with
AHe at a maximum in the winter, whereas Ar, Kr, Xe, and 02 form a second group and are at a maximum
in the summer. Furthermore, this second group of gases has a much larger range in surface saturation
anomalies.
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Figure 3-3: Saturation anomalies for all five noble gases in the upper 300 m of the water column as predicted
by the model using reference case model parameters. Contours are drawn at 0.5% spacing for He and Ne and
at 2% spacing for Ar, Kr, and Xe. The range in Xe saturation anomalies is four times that of He saturation
anomalies.
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Hamme and Emerson, 2004b). Helium and Ne are thus sensitive to both air injection processes and to dif-

fusive gas exchange. The model shows the maximum surface saturation anomalies of He are in the winter,

when the winds are strongest causing large air injection events. The surface saturation anomalies of He and

Ne are thus good choices for observational metrics for air injection magnitude. The difference between the

winter and summer surface saturation anomalies, the seasonal amplitude, is used as the observational metric

in order to minimize the effect of any systematic error in the solubility functions of the gases. Additionally,

since He and Ne have similar solubilities but different diffusivities, the ratio between He and Ne surface sat-

uration anomalies is a useful observational metric for diffusively mediated processes, such as the magnitude

of partially trapped bubbles.

In contrast, Kr and Xe are more soluble with a strong solubility dependence on temperature (Wood and

Caputi, 1966; Weiss and Kyser, 1978), and thus Kr and Xe respond primarily to diffusive gas exchange.

Saturation anomalies of Kr and Xe are at maximum during the summer. In the summer the ocean warms due

to subsurface solar heating. Krypton and Xe are less soluble in warmer water leading to a supersaturation

and thus a flux of Kr and Xe out of the ocean. However, the flux is not strong enough to remove all the excess

gas resulting in large positive saturation anomalies of up to 6% for Kr and 9% for Xe in the mixed layer.

Below the mixed layer, the gases cannot be directly expelled to the atmosphere, resulting in large saturation

anomalies that persist for months. The seasonal amplitude of Kr and Xe surface saturation anomalies are

useful observational metrics for diffusive gas exchange, since as the gas exchange flux out of the mixed

layer increases, AKr and AXe in the mixed layer decrease (Fig. 3-4).

Argon has a solubility in between that of Ne and Kr (Weiss, 1970) and thus has an intermediate response,

responding both to air injection events (though more weakly than does He and Ne) and to diffusive gas

exchange. Argon is especially useful because it has a solubility and diffusivity similar to 02, allowing Ar

to be an abiotic analogue of 02. The difference between Ar and 02 seen in Figure 3-2 is a direct result

of biological production affecting only 02. In order to quantify biological production, we chose as an

observational metric the difference between Ar and 02 saturation anomalies at 55 m depth. We found that a

depth of 55 m for the saturation anomalies yielded the greatest sensitivity to biological production because

AAr and AO 2 are at maxima at that depth during the summer.

By using observational metrics that incorporated all five noble gases and 02, we had six constraints.



Figure 3-4: The Xe surface saturation anomaly for model runs with three different values of the model
parameter 7G: yG = 0.5(- - -),cG =1 (-), and y7 =2 (....). The Xe surface saturation anomaly is a useful
observational metric for gas exchange magnitude because it is sensitive to changes in Gc. In the summer,
Xe is supersaturated. As 7G increases, the flux of Xe out of the mixed layer increases, less Xe is left in the
mixed layer, and thus AXe decreases.
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Additional constraints came from using the saturation anomalies of the gases in the surface or at any other

depth, in the winter or the summer or annual average, or singly or in combination. Although not all of these

constraints are strictly independent, multiple observational metrics allowed us to quantitatively distinguish

among air-sea gas exchange processes.

3.4.2 Quantifying the constraints

The partial derivative method reveals which observational metrics are useful for constraining the air-sea

gas exchange parameters. The constraints, slopes, and r2 values of some of the observational metric/model

parameter linear relationships are listed in Table 3.2. The suitability of an observational metric to the quan-

tification of a given model parameter can readily be seen from the table or from a plot of the observational

metric as a function of the model parameter (Fig. 3-5). A steeper slope of the linear regression corresponds

to a stronger sensitivity of the observational metric to the parameter (see Eq. 3.11). For example, note that

the He surface saturation anomaly vs. complete bubble trapping has a steep slope signifying a strong con-

straint, whereas the Xe surface saturation anomaly vs. complete bubble trapping has a very shallow slope

signifying a weak constraint. Because the linearizations for complete bubble trapping are similar to those

for partial bubble trapping, observational metrics that combined various noble gases were used to distin-

guish between complete and partial trapping. In particular, the difference between ANe and AAr provided

a useful constraint for complete bubble trapping. For diffusive gas exchange magnitude, 7G, the observa-

tional metrics were plotted as a function of yGI since one would expect saturation anomalies of the gases

to be inversely proportional to the strength of gas exchange. In addition, for 7G, the slope is defined as the

A(observational metric)/A(7-y).

The advantage of the partial derivative method is that it allows determination of precisely which gases,

or observational metrics, best constrain a given parameter. The disadvantage is the actual constraints de-

termined from the partial derivative method are not necessarily accurate as they assume we have only one

observational metric and only one model parameter at a time. Thus we need the full inverse method in order

to determine simultaneously all of the constraints on air-sea gas exchange parameters as offered by a noble

gas time-series (Table 3.3). Because we have multiple observational metrics, the constraints offered by the

full inverse method are slightly tighter than those offered by the partial derivative method. For example, 7G



Table 3.2: Uncertainty on model parameters as determined from individual observational metrics and the
corresponding slopes as calculated from the partial derivative method. For each model parameter, the obser-
vational metrics that offer the tightest constraints on the parameter are listed as well as the slope, r2 value,
and estimated measurement uncertainty in the observational metric. For a given model parameter, steeper
slopes and smaller measurement uncertainties result in tighter constraints. Since "yG, 7Ac, YAp have the
same reference values, it is possible to compare slopes between those parameters. For a definition of slope
and constraint, see Eq. 3.11. The units of the slope are % for 7G, 7Ac, YAp and are % mol-1 m2 y for

7p. Asurface refers to a surface saturation anomaly, A55 to saturation anomaly at 55 m depth, w to winter
average, and s to summer average.

Model Uncertainty of Observational Slope r2  Estimated
Parameter model Metric (%) measurement

parameter uncertainty in
observational

metric (%)
Y7G 6% AXesurface w-s 3.5 0.996 0.2

6% AArsurface w-s 1.5 0.998 0.1

8% AKrsurface w-s 2.4 0.997 0.2

17% AHesurface w-s -0.61 0.995 0.1

7Ac 20% ANesurface w-s -0.49 1 0.1

22% AHesurface w -0.45 1 0.1

21% ANe-AArsurfacew 0.68 1 0.14

23% ANe-AXesurfacew 0.96 1 0.22

25% ANe-AKrsurfacew 0.85 1 0.22

7Ap 26% AHesurface/ANesurface 0.38 0.995 0.1

36% AHesurface w-s -0.28 0.9997 0.1

39% ANesurface w-s -0.25 0.9998 0.1

7P 0.2 mol 02 m-2y- 1 AAr55-AO 2,55 s 1.1 1 0.22



Figure 3-5: The Linearizations: the observational metrics are plotted as a function of model parameter and
then a linear relationship is calculated. The slope is a reflection of how sensitive the observational metric
is to the parameter - a steep slope implies a sensitive metric. The observational metrics are plotted as a
function of the inverse of the gas exchange parameter 7G because the saturation anomalies of the noble
gases are inversely proportional to gas exchange.
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Table 3.3: Constraints on the air-sea gas exchange model parameters calculated using the full inverse
method. All uncertainties are lao values. First listed is the uncertainty of the model parameter with a fixed
choice of physical parameters, second the additional uncertainty due to the choice of physical parameters
(i.e. uncertainty due to 1D model physics), and third the total uncertainty on the parameter, calculated by
adding the above uncertainties in quadrature. Because there is a large negative covariation between partial
and complete trapping, the total air injection flux, FAI, has an uncertainty of approximately 14%.

Model Uncertainty Uncertainty Total
Parameter from full from physical Uncertainty

inverse method parameters
7G 4% 10% 11%

7Ac 12% 17% 20%

7Ap 21% 15% 26%

7p (mol 02 m- 2 y-l) 0.2 1.5 1.5

can be constrained to 6% in the partial derivative method and to 4% in the full inverse method. When we

include the additional uncertainty due to choice of physical parameters, the total uncertainty for 7G is 11%.

Estimates of net biological production could be constrained to +0.2 mol 02 m- 2 y-1 if K, were known

perfectly. However, uncertainties in K, increase the uncertainty in net biological production to 1.5 mol 02

m- 2 y-1. Biological production is sensitive to the choice of Kz because there is a very sharp gradient in 02,

but not in Ar, below the euphotic zone. In this respect, Ar is not a perfect abiogenic analog of oxygen.

The magnitude of the complete bubble trapping flux, Fc, can be constrained to 12% (20% if one includes

the uncertainty due to possible variations in physical parameters), and of magnitude of the partial bubble

trapping flux, Fp, to 23% (26% including the uncertainty due to physical parameters), both significant

improvements over other currently available methods. However, even with multiple gases, we have some

difficulty in resolving the partitioning between partial trapping and complete trapping. The uncertainty in

the total air injection flux, FAI, is smaller than the uncertainty of either Fc or Fp because there is a large

negative covariation between YAc and YAp. The uncertainty on total air injection depends upon the gas, being

smaller for the gases that are more influenced by air injection. For He, Ne, and Ar the uncertainty on FAI is

6%. For Kr and Xe, the uncertainty on FAI is 8% and 10% respectively. The choice of physical parameters

adds another 12% uncertainty. The total uncertainty in air injection, averaged for the five gases, including



uncertainty due to physical parameters, is 14%. If we use a more pessimistic (and less realistic estimate)

of the possible measurement uncertainties of the gases of 0.3% for all measurements, we can constrain

yG to ±13%, YAc to ±29%, YAp to +51% and 'yp to ±1.5 mol m- 2 y-1 (these uncertainties include the

uncertainty due to physical parameters).

Ideally, one would use this method to determine n, the power dependency of gas exchange magnitude on

wind speed. The exact nature of the wind-speed dependency of the gas transfer velocity is not well-resolved.

It may be a quadratic relationship (Wanninkhof, 1992), a cubic one (Wanninkhof and McGillis, 1999), or

one following some fractional exponent. Unfortunately however, Bermuda is not an ideal spot to study

wind speed dependency. The quadratic and cubic parameterizations are scaled to yield the same flux at the

global average wind speed (7.4 m s-1) in order to match the global radiocarbon balance (Wanninkhof, 1992;

Wanninkhof and McGillis, 1999). The average wind speed in Bermuda (7.1 m s- 1 for the period 1999-2002)

is similar to the global average wind speed, making it difficult to distinguish between a quadratic and cubic

parameterization. Additionally, the wind speed distribution in Bermuda has a standard deviation of only 3.4

m s- 1, and there are very few resolved large wind-speed events that would show a large difference between

quadratic and cubic parameterizations.

We performed calculations with n=3, n=2, and n as a tunable model parameter. The estimated uncer-

tainties of the air-sea gas exchange parameters are similar whether we use n=3 or n=2. The value for the

coefficient for the gas exchange flux (i.e. 7.9x10 - 8 in Eq. 3.2) and the value of -y will change if a quadratic

or cubic form is used but the relative uncertainty to which we can constrain yG remains similar. If we use

n as a tunable model parameter, we can determine the power dependency to +0.4. However, due to the

interplay of all the parameters in the flux equations, the constraints on the other parameters are weakened

to +15% for -YG, +27% for YAc, and ±28% for YAp. For example, since the diffusive gas exchange flux

FGE depends on both n and 7G, if n can vary, then yG must have a larger uncertainty as well. Although

this method can in principle determine n, extrapolating a determination of n made at the low wind speeds

in Bermuda to higher wind speeds is unwarranted. Hence, in Bermuda, where there are low winds and only

a small spread in wind-speed, it is best to fix n and determine the best value of -yG for n=2 and yG for n=3.

Researchers who wish to use parameterizations of gas exchange determined by this method could choose an

n that is appropriate for their study site and then use the corresponding coefficient and 'yG as determined by



this method.

We explored the sensitivity of these conclusions to assumptions of the power dependence of solubility

and diffusivity (a and b in Eq. 3.5), to choice of solubility functions and to selection of reference case

values. If different combinations of a and b are used (a=l, b=2/3; a=l, b=1/2; or a=0.7, b=0.35), the values

of "YAc and YAp change. However, the fractional constraints offered by the noble gases on the parameters

do not differ significantly. Thus we should be able to use noble gases to constrain air-sea gas exchange

parameterizations regardless of the functional form of the air injection equation. The choice of solubility

function, those of Weiss (1970, 1971) or of Hamme and Emerson (2004b), does not significantly affect

how well the noble gases can be used to constrain air-sea gas exchange parameterizations in the sensitivity

analysis. However, the choice of solubility function does affect the actual values for the parameters and thus

it is essential to have accurate solubility functions for all the noble gases.

The fractional constraints on 7G and yp remain the same regardless of reference case parameter values.

However, the constraints on YAc and YAp change with reference case. YAc and YAp covary and thus some

reference cases have larger YAc and smaller YAp, resulting in a larger proportion of air injection due to

complete trapping. In that case, the constraint on complete trapping becomes tighter but the constraint on

partial trapping becomes looser. Overall, the constraint on total air injection remains 14% regardless of

reference case.

3.5 Example application: Time-series of helium, neon, and argon

As a limited demonstration, we performed an example determination of air-sea gas exchange parameters

using a monthly time-series of He, Ne, Ar, and 02 measurements made at Station S from March, 1985

to February, 1988 (Spitzer, 1989; Spitzer and Jenkins, 1989). The results of this example analysis are

limited because the data are only for three of the noble gases and yet above we show that it is necessary to

have the heavier noble gases (Kr and Xe) in order to separate diffusive gas exchange and air injection. In

addition, methods for collecting and measuring noble gas samples have improved greatly (Lott and Jenkins,

1998), so measurements made today would be of higher quality. Nonetheless, the exercise allows us a

preliminary glance at seasonal air-sea gas exchange parameters in an oligotrophic subtropical gyre. For the

Spitzer (1989) data, samples for He and Ne were collected from Niskin bottles in copper tubes containing



45 g of seawater and were measured mass spectrometrically using peak height manometry. Samples for

Ar were collected in copper tubes containing 13 g of seawater and were measured using isotope dilution

mass spectrometry. For a more complete descriptions of methods, see Spitzer and Jenkins (1989). The

noble gas data is presented in Figure 3-6. The la analytical uncertainty of Ar measurements is 0.4% but

the reproducibility of the samples from samples drawn from the same Niskin bottle is about 1%. The 1a

analytical uncertainty for He and Ne measurements is 0.2% and the reproducibility is similarly 1%. (For

comparison, in Section 3.4 for the sensitivity study, we assumed modern errors of 0.1%. The errors are

smaller in modern studies because of improved sampling procedures and because of averaging made possible

by oversampling in space and time). We attribute the larger scatter of this data to artifacts associated with

the early sampling method. In addition, some of the samples with large supersaturations may have been

contaminated with bubbles trapped during sample collection.

We used the full inverse method with twelve observational metrics to quantify the four model parameters:

7G, 7Ac, 7Ap, and yp. The observational metrics and associated la errors are listed in Table 3.4. Since the

metrics are the mean of data over a given period, the errors are based on the combined standard error of

the estimate of the mean (major component) and the analytical uncertainty (minor component). The error

also includes the uncertainty in the solubility functions for all observational metrics that are not differences

between two saturation anomalies (either the difference between winter and summer values or between

one gas and another since in both such cases any systematic uncertainties in solubility should cancel). For

uncertainty in solubility functions, we use 1.5%, 0.3% and 0.13% for He, Ne and Ar respectively (Hamme

and Emerson, 2004b). The He uncertainty is determined by the size of the correction we applied to the

Weiss solubility functions.

The coefficient matrix, created from the slopes of the linearizations and weighted by the 1o errors in

the observational metrics, is listed in Table 3.5. In a given column, a large absolute value of a coefficient

implies the observational metric has a large part in determining the parameter. From the coefficient matrix,

one can see Ar is more sensitive to diffusive gas exchange and less sensitive to complete bubble trapping

than are He and Ne. Nonetheless, all three gases are sensitive to all the air-sea gas exchange parameters,

and thus, as expected, having only He, Ne, and Ar makes it difficult to quantitatively distinguish between air

injection and gas exchange. In order to increase our ability to separate the two processes, we used additional
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Figure 3-6: Monthly surface saturation anomalies (o) of He, Ne, and Ar at Station S, collected and measured
by Spitzer (1989). The model results (-) are constructed using the model parameters determined from the
full inverse calculation.

a, • 4

<2
0

tVw CU

't

"' 1985 1986 1987 1988
Year

101

10,

•6
• 4

< u2
%-



Table 3.4: Twelve observational metrics were calculated from the limited time series of He, Ne, Ar and 02
collected from 1985-1988 in the Sargasso Sea (Spitzer, 1989). The 1 a errors listed are the combined error
due to the standard error of the estimate of the mean, the analytical uncertainty, and the solubility uncertainty
if appropriate (see text for details). The model run was constructed using the air-sea gas exchange model
parameters determined from the inverse calculation. Asurface refers to a surface saturation anomaly, A50 to
saturation anomaly at 50 m depth, w to winter average, s to summer average, and a to annual average. The
units of all saturation anomalies are %.

Observational Metric Data Model

AHesurface s-w -0.19 ± 0.4 -0.02

ANesurface s-w -0.56 ± 0.8 0.54

AArsurface s-w 2.3 ± 0.3 2.5

AO250 -AAr5 o s 11 - 1 11

AAr50 s-w 3.3 ± 0.7 4.9

AHesurface w 2.3 ± 0.4 1.0

ANesurface w 1.4 ± 0.8 0.93

AArsurf ace W -0.27 ± 0.2 -0.05

AHe - ANesurface a 1.0 ± 0.3 -0.2

AHesurface a 2.2 ± 0.9 1.0

ANesurface a 1.0 ± 1.1 1.2

AArsurface a 1.1 ± 0.3 1.1
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Table 3.5: The slope matrix created from the linearizations of the analysis of the He, Ne, Ar, and 02 time-
series data, weighted by the l errors in the observational metrics. The observational metrics are listed in the
first column. The parameters investigated are listed in the first row. A larger slope implies the observational
metric responds strongly to changes in the parameter. Asurface refers to a surface saturation anomaly, A50
to saturation anomaly at 50 m depth, w to winter average, s to summer average, and a to annual average.

Obs. Metric\Parameter yG 7Ac TAp YP

AHesurface s-w -1.9 -1.3 -1.0 0

ANesurface s-w -0.5 -0.6 -0.4 0

AArsurface s-w 2.9 -0.6 -1.0 0

A02 50 -AAr5 0 s 0.1 0 0 1.1

AAr50o s-w 0.6 -0.1 -0.2 0

AHesurf ace w 3.8 2.7 1.3 0

ANeaurface w 1.9 1.5 0.6 0

AArsurface w 2.5 -0.6 0.1 0

AHe - ANesurface a -0.7 2.5 2.3 0

AHesurface a 1.3 0.9 0.3 0

ANesurface a 1.2 0.9 0.2 0

AArsurface a 0.7 0.3 0.2 0

observational metrics. For example, the seasonal amplitude of the saturation anomaly of Ar at 50 m depth

is less influenced by air injection then the other metrics since air injection is less important for more soluble

gases such as Ar. Other observational metrics used include the difference between saturation anomalies of

02 and Ar at 50 m depth in order to constrain biological production and the difference between He and

Ne surface saturation anomalies to constrain the fraction of bubbles completely vs. partially trapped. We

also included the winter surface saturation anomalies of He, Ne, and Ar since these winter values are more

sensitive to air injection and diffusive gas exchange than the seasonal amplitudes. Thus the winter values

are valuable even though they have larger associated la errors (in order to take into account the error in

solubility functions).
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Table 3.6: Model parameter values as determined by the full inverse method (SVD) using the He, Ne, Ar
and 02 time-series data.

Model Parameter Description Reference Value

7G Magnitude of diffusive gas exchange 0.7 ± 0.7

"YAc Magnitude of complete trapping component of air injection 0.5 + 1

YAp Magnitude of partial trapping component of air injection 0.4 ± 1

7Yp Magnitude of net biological production 9 ± 3 mol 02 m- 2 y-1

With twelve observational metrics and four parameters, the system is over-determined and can be solved

using SVD to yield "best" values for the four tunable model parameters (Table 3.6). Uncertainties on the

parameter values were determined from propagating the 1 error from the observational metrics through

the SVD calculation and by including the error due to choice of physical parameters. Values of the air-sea

gas exchange model parameters are robust to choice of physical parameters but differ by 50% according to

whether the Hamme and Emerson (2004b) solubility functions or the Weiss (1970, 1971); Weiss and Kyser

(1978) solubility functions are used. Though the total air injection fluxes are robust, the partitioning of these

fluxes between complete and partial trapping is sensitive to choice of reference case. The magnitude of the

biological production is sensitive to the choice of Kz. When we performed our calculations over a range

of Kz (2x10 - 5 to 8x10 - 5 m2 s-1), the estimated biological production varied by 30%. We included this

source of error in the calculation of the la error of yp. Additionally, there is some ambiguity in the absolute

magnitude of all parameters due to potential biases and errors associated with the NCEP reanalysis winds

that were used to force the model.

Overall, the model parameters determined are reasonable. The gas exchange magnitude is 70% ± 70%

of that predicted by Wanninkhof and McGillis (1999). The net biological production is 9+3 mol 02 m- 2

y-1 , which is equivalent to 6+2 mol C m- 2 y-1 or 0.9±0.3 mol N m- 2 y-1 using the revised Redfield

ratios of Anderson and Sarmiento (1994). Although this estimate is based on an idealized oxygen profile,

it is similar to a recent estimate of new production determined using the 3He flux gauge approach of 0.84

± 0.26 mol N m- 2 y-1 (Jenkins and Doney, 2003). It is slightly higher than several previous biogeochem-
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ical estimates of production in the Sargasso Sea (Jenkins and Goldman, 1985; Jenkins, 1988a; Spitzer and

Jenkins, 1989; Gruber et al., 1998).

We investigated how well the model could match the data by using the best parameters as determined

from the SVD (Table 3.6) to run the model. The resulting model run results are plotted with the data in

Figure 3-6. Observational metrics calculated from the model run are listed in Table 3.4. The model predicts

He saturation anomalies consistently lower than the observed He, perhaps because of systematic errors in

sampling collection, sampling analysis or in the solubility of He. The model run allows us to quantify and

compare the fluxes due to diffusive gas exchange, complete bubble trapping, and partial bubble trapping

(Fig. 3-7). Although Kr and Xe were not measured, the model can use the air-sea gas exchange parameters

determined from the He, Ne, and Ar data to calculate diffusive gas exchange and air injection fluxes for Kr

and Xe as well. For the insoluble gases He and Ne (not shown), the diffusive gas exchange flux is similar in

magnitude and opposite in direction to the air injection flux. Large air injection events are mirrored by large

diffusive gas exchange fluxes. Additionally, the air injection flux is primarily due to complete trapping. For

the more soluble gases Kr (not shown) and Xe, the opposite is true. The diffusive gas exchange flux is larger

than the air injection flux and there are many diffusive gas exchange events that are not associated with

air injection events. Because these gases are soluble with a strong temperature dependence to solubility,

air injection is less important and diffusive gas exchange is primarily driven by thermal forcing. The air

injection flux of Kr and Xe is primarily due to partial trapping. The behavior of Ar is intermediate between

He and Xe.

We explored the sensitivity of the calculations to the power dependency of solubility and diffusivity used

in the partial bubble trapping equation (a and b in Eq. 3.5). We repeated all calculations for three different

cases of a and b (aD2/ 3, aD 1/ 2, a0. 7Do.35). If aD 1/2 or a'0 700D 35 is used, then negative values for 7Ap

result from the SVD calculation. This situation is clearly unphysical. One can, however, achieve positive

values for all parameters if one does not use the two observational metrics of winter average AAr, and AHe-

ANe. This implies that in the aD 1/2 or a0 .7D0 -35cases, it is possible to achieve the general signatures of

the gases but is impossible to match the winter average of AAr or to achieve the proper differences between

the saturation anomalies of He and Ne. If one uses the results from the SVD where those two observational

metrics were excluded, the total fluxes for air injection and gas exchange are a factor of two larger than
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Figure 3-7: Model results for the diffusive gas exchange flux FGE(gray), total air injection flux FAt(black),
and partial air injection flux Fp(dashed) for He, Ar, and Xe. The complete air injection flux Fc is equal
to the difference between the FAI and Fp curves. The fluxes are calculated using the parameter values
determined from the full inverse method. Note the difference in vertical scales used for each gas. For He,
the gas exchange flux is approximately equal in magnitude and opposite in sign to the air injection flux
whereas for Xe, the gas exchange flux is typically much larger than the air injection flux.
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the results for aD2/ 3 case calculated with all observational metrics. The results for aD1/ 2 or •0 .7D0.35 are

similar to the results for a calculation performed with aD 2/ 3 but without the same two observational metrics.

Thus both choice of observational metrics and power dependency of a and D are important. Differences in

power dependency are not merely notational - they have important implications for the total fluxes of gases.

Since isotopes have similar solubilities but different diffusivities, isotopic ratios of the noble gases (e.g.
20Ne/22Ne' 

36Ar/40Ar) could potentially be used to better constrain the power dependency of the diffusivity

of partial bubble trapping.

The exercise performed here differs from the work of Spitzer and Jenkins (1989) in several ways. We

used NCEP reanalysis winds and heat fluxes to force the model, a cubic parameterization of equilibrium gas

exchange, and a different formulation of air injection processes. Spitzer and Jenkins used climatological

winds and heat fluxes, a three-step linear parameterization of equilibrium gas exchange (Liss and Merlivat,

1986), and a formulation of air injection where partial bubble trapping depended only on the diffusivity of

the gas. In addition, Spitzer and Jenkins did not use Ne data and used only one year of He, Ar, and 02

data. Our results differ from Spitzer and Jenkins in that we find that the majority of bubbles are completely

trapped, whereas they found that partial trapping was dominant. The biological production we estimate is

45% larger than the Spitzer and Jenkins estimate. It is difficult to directly compare estimates of gas exchange

since we use different parameterizations. The uncertainties on the model parameters are quite large - much

larger than the expected constraints on model parameters from the theoretical noble gas sensitivity study

that we report in Section 3.4. These large uncertainties result from the limited nature of the data. First, we

only have data for three noble gases and yet above we show we need all five noble gases to separate the

air injection and diffusive gas exchange processes. Second, the data itself has large uncertainties associated

with sample collection and measurements. Current methods for sample collection and measurement have

improved greatly in the last two decades. In the expected constraints reported in Section 3.4, we assumed

measurement uncertainties of 0.1% for He, Ne and Ar, and 0.2% for Kr and Xe. Hence the large uncertainties

in this exercise do not contradict the results of Section 3.4. Rather, they show that though we have a powerful

method, we need to have the appropriate data in order to use the method. Additionally, some uncertainty

may result from the real ocean being more complex than our ideal model assumes.

107



3.6 Conclusions

Noble gases are useful tools for quantifying air-sea gas exchange parameters since the difference in physical

properties of the gases allows separation of processes. Model calculations show that a time-series of all

five noble gases and 02 can constrain air-sea gas exchange parameters more tightly than can other currently

available methods. An additional advantage of this noble gas method is that it allows the study of gas

exchange from empirical data on a larger scale than is possible with purposeful tracer release or laboratory

experiments.

The potential constraints on the air-sea gas exchange parameters were calculated using only the uncer-

tainty due to expected measurement capability and to choice of physical parameters. Additional sources of

potential uncertainty that were not included in the analysis but would serve to increase the calculated un-

certainties (loosen the constraints) of parameters include variability in sample collection due to small-scale

processes such as Langmuir cells and mesoscale processes such as eddies. We can try to average over the

small-scale processes by taking multiple samples in the mixed layer and over the mesoscale processes by

using a multi-year time-series with monthly resolution. Furthermore, satellite imagery can be used to assess

the influence of eddies and lateral processes.

Systematic uncertainties include a bias against sampling in high-wind events and any errors in the sol-

ubility functions of the noble gases. The former is mitigated by noble gas signatures integrating over a

few weeks so samples only need be collected within a few weeks of the storm event. In addition samples

can be collected with a moored noble gas sampler that can collect samples in any conditions (Hood, 1998).

However, wind speed data can be problematic at high wind speeds, thus making interpretation of the noble

gas data difficult. Although systematic biases in solubility can be partially mitigated by using seasonal am-

plitudes of the noble gases saturation anomalies, this study illustrates the need for accurate determination of

the solubilities of all the noble gases.

As no data yet exists for all five noble gases, we presented an example calculation using a time-series of

only three of the noble gases in order to illustrate the method and to calculate some initial values for air-sea

gas exchange parameters in the Sargasso Sea. Ongoing work includes collection of a time-series of all five

noble gases in order to exploit the full potential of this method. Current improvements in sample collection

and extraction (Lott and Jenkins, 1998) and in mass spectrometry, including advances in the technique of
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using cryogenics to separate the noble gases (Lott, 2001), make such a time-series feasible. In April 2003,

we started measuring a three-year time series of all five noble gases. That data combined with the method

presented here (as well as with a full nonlinear optimization) will allow an accurate determination of air-sea

gas exchange parameters based on empirical measurements. These estimates are unique in that they cover

the time-scale (several weeks to months rather than days or years) and spatial scale (regional average rather

than local patch or global scope) that is important to understanding the biogeochemical cycling of gases.
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Table 3.7: Appendix: Definition of symbols and variables

Ac constant coefficient equal to 1.4x10- in complete bubble trapping flux equation (Eq. 3.4)
Ap constant coefficient equal to 2x10 5 in partial bubble trapping flux equation (Eq. 3.5)
a exponent for power dependency of a in partial bubble trapping flux equation (Eq. 3.5)
b exponent for power dependency of D in partial bubble trapping flux equation (Eq. 3.5)
Ci,eq equilibrium concentration of gas i in water (moles m- 3 )
Ci,W concentration of gas i in water (moles m- 3)
Di diffusivity coefficient of gas i (m2 s- 1)
Ekm parameter used in model to compensate for the Ekman heat convergence (W m- 2 )
FAI gas flux due to air injection (bubbles) (moles m- 2 s-1 )
Fc gas flux due to complete trapping of bubbles (moles m- 2 s-1)
FGE gas flux due to diffusive gas exchange (moles m- 2 s- 1)
Fp gas flux due to partial trapping of bubbles (moles m- 2 s- 1 1)
FTOT total air/sea gas exchange flux including contribution from diffusive gas exchange and air

injection (moles m- 2 s- 1)
g gravitational constant = 9.81 m s- 2

hbub average dissolution depth of bubbles that are partially trapped (m)
i gas of interest
Kz vertical diffusivity parameter used in model (m2 s- 1)
n exponent controlling the wind speed dependency of the diffusive gas exchange flux
Pi,a partial pressure of gas i in the atmosphere (Pa)
Pi,b partial pressure of gas i in the bubble (Pa)
Pi,w partial pressure of gas i in the water (Pa)
Prod depth-dependent portion of the oxygen productivity profile used in the model
PTOT total 02 flux due to oxygen production and consumption used in model
R gas constant = 8.31 J mol-1 K- 1

Sc Schmidt number (ratio of kinematic viscosity to molecular diffusivity)
slope slope calculated from the linearization of model parameter vs. observational metric
T temperature of water (K)
t time in model (year)
ul0  wind speed at height of 10 m above surface (m s- 1)
Va air entrainment velocity = 0.01 m s-

Xi mole fraction of gas i in dry air
Z parameter used in model for depth over which the total heat flux offset (sum of Ekman and

NCEP imbalance compensation terms) is distributed (m)
z depth in model used in oxygen productivity Eq. 3.8 and 3.9 (m)
z* scaling depth used in oxygen productivity Eq. 3.8 and 3.9 (m)
ai Bunsen solubility coefficient of gas i
A saturation anomaly of gas (%)
7Ac tunable model parameter controlling the magnitude of the complete bubble trapping flux
YAp tunable model parameter controlling the magnitude of the partial bubble trapping flux

'YG tunable model parameter controlling the magnitude of the diffusive gas exchange flux
7p tunable model parameter controlling the magnitude of net biological 02 production (mol m- 2 y-1)
p density of water (kg m- 3 )
aparam uncertainty in the model parameter, equals constraint on model parameter
rmetric estimated uncertainty in observational metric
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Chapter 4

Air-Sea Gas Exchange Parameters as

Determined by a Time-Series of Five Noble

Gases
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Abstract

A fourteen month time-series at approximately monthly resolution of five noble gases (helium, neon, argon,

krypton, and xenon) collected in the upper 400 m in the Sargasso Sea is used in conjunction with an upper

ocean mixed layer model to separate and quantify diffusive gas exchange to +6%, and complete and partial

bubble trapping to +15%. We present parameters to be used with standard formulations of these three air-

sea gas exchange processes in oligotrophic waters over the range of wind speeds encountered during this

time-series (0<ulo <13 m s-l). The magnitude of diffusive gas exchange is determined to be 79% of the

value proposed by Wanninkhof (1992). The magnitude of air injection in the winter is significant for all

gases. The winter air injection flux of Ar is comparable in magnitude to the diffusive gas exchange flux.

The fraction of air injection associated with completely trapped bubbles (as opposed to partially trapped

ones) ranges from 91% for He to 70% for Xe, and is estimated to be approximately 86% for oxygen. The

largest uncertainties in our determination of the parameters come from uncertainties in the solubilities of the

heavier noble gases and from potential biases in the upper ocean physical model.
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4.1 Introduction

Air-sea gas exchange is a crucial component of the biogeochemical cycle of many climatically relevant gases

such as CO2, 02, DMS, N20, and CH4. Accurate representation of air-sea gas exchange processes in climate

models is clearly important. Air-sea gas exchange parameterizations are used in order to estimate CO2

fluxes from maps of surface ocean pCO2 , (Takahashi et al., 1997). Additionally, quantification of air-sea gas

exchange fluxes is necessary for many types of biogeochemical research, such as in studies of euphotic zone

oxygen measurements for determining net production (Craig and Hayward, 1987; Emerson, 1987; Spitzer

and Jenkins, 1989), 3He measurements for determining new production (Jenkins, 1988b; Jenkins and Doney,

2003), and 02/N2 and APO calculations (Keeling et al., 1993; McKinley et al., 2003; Bender et al., 2005).

Many parameterizations of air-sea gas exchange exist (Liss and Merlivat, 1986; Wanninkhof, 1992;

Wanninkhof and McGillis, 1999; Nightingale et al., 2000) but such parameterizations have large uncertain-

ties. Recently, two parameterizations (Ho et al., 2006; Sweeney et al., 2007) predict air-sea fluxes that are

25% to 33% lower than Wanninkhof (1992) proposed. Existing parameterizations are based on either large

spatial and temporal scales (such as the global radiocarbon budget) or on local spatial and short time scales

(such as with tracer release experiments and edddy-correlation measurements). Additionally, most existing

parameterizations do not explicitly include air injection (bubble) processes.

Bubble-mediated gas transfer may be significant, especially for less soluble gases and at higher wind

speeds. It is difficult to estimate the total air injection flux from theoretical treatment of bubbles (Woolf

and Thorpe, 1991; Woolf, 1993; Keeling, 1993) because of uncertainties in bubble size spectra, bubble

dynamics, and depth distribution. A few parameterizations of bubble processes have been formulated (Asher

and Wanninkhof, 1998; Zhang et al., 2006; Hamme and Emerson, 2006), allowing estimation of bubble

flux given fraction of white-cap coverage. These formulations have large uncertainties and in many cases

do not distinguish between bubbles that have been completely dissolved, and therefore inject atmospheric

abundances, versus bubbles that only partially dissolve before rising to the surface, thus fractionating the

gases (Fuchs et al., 1987; Jenkins, 1988a).

Noble gases are ideal tracers for investigating air-sea gas exchange because they are chemically and

biologically inert. Additionally, they have a wide range of solubilities (order of magnitude) and molecular

diffusivities (factor of five) and thus respond differently to physical processes. The lighter noble gases have
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been used previously to estimate air-sea gas exchange parameters. Spitzer and Jenkins (1989) used a time-

series of He, Ne, and Ar in order to estimate the rate of diffusive gas exchange and air injection. More

recently, Hamme and Emerson (2006) used a time series of Ne, Ar, and N2 to investigate the partitioning

of completely trapped vs. partially dissolved bubbles. The study presented here expands on previous work

by including measurements of Kr and Xe. Since Kr and Xe are the most soluble noble gases and have the

strongest temperature-dependence of solubility, they greatly improve the constraints on both diffusive gas

exchange and on air injection fluxes (Stanley et al., 2006).

In this work, we use a 14 month time-series at approximately monthly resolution of five noble gases

measured in the upper 400 m of the water column in the Sargasso Sea in order to construct a parameterization

of air-sea gas exchange based on direct empirical data that has a characteristic time-scale of weeks to seasons

- the time-scale relevant to many biogeochemical cycles in the ocean - and that explicitly includes bubble

processes. Simple calculations of mixed layer depths and gas transfer velocity show that the time-scale of

gas exchange flux of the noble gases is on the order of weeks. Additionally, our estimates are based on gas

saturations driven by seasonal warming. By using all five noble gases, the relatively insoluble helium He

and Ne as well as the more soluble and temperature dependent Ar, Kr, and Xe, we are able to separate and

quantify diffusive gas exchange to ±6% and air injection processes ±15%. The parameters presented here

are valid for use in environments with similar wind conditions to the Sargasso Sea (0<ulo< 13 m s- 1) and

that are similarly oligtrophic and thus have minimal surfactants. We combine our noble gas time-series with

a one-dimensional mixed layer model (described in section 4.2) and a non-linear constrained optimization

scheme in order to use the time-series to quantify air-sea gas exchange parameters. In section 4.3, we present

the noble gas data and the air-sea gas exchange parameters as determined by inverse modeling. In section

4.4, we examine the controls on the parameters exerted by the various noble gases and the sensitivity of the

parameters to the physical parameters in our model, to the choice of cost function, and to uncertainties in

the solubilities of the noble gases.
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4.2 Methods

4.2.1 Data Collection

Samples for noble gas analysis were collected aboard the R/V Weatherbird II, the R/V Cape Hatteras, or the

R/V Oceanus at the Bermuda Atlantic Time-series Study (BATS) site every month between July 2004 and

August 2005. On all cruises except for the February 2005 cruise, the samples were collected on a "Core"

BATS cruise. The exact dates and location of the samples are listed in Table 4.1. The samples were collected

from Niskin bottles by gravity feeding through tygon tubing into valved stainless steel sample cylinders (90

cc volume). The cylinders were gently rapped during sampling in order to dislodge bubbles. We extracted

the gases from the samples into aluminosilicate glass bulbs (approximate volume of bulb is 25 cc) in the

on-shore laboratory at the Bermuda Biological Station. Details of the sampling and extraction procedures

are described in Lott and Jenkins (1998).

Samples were extracted as soon as possible - usually within 24 hours of sample collection - because

He and to a lesser extent Ne permeate through the viton o-rings in the cylinder plug valves. Experiments

conducted with degassed water suggest that samples are compromised at a rate of 0.0046 and 0.0009 of their

disequlibrium per day for He and Ne respectively. Thus for a sample with a 5% disequilbrium in He and

Ne, a 24 hour delay in extraction would lead to a concentration shift of 0.023% and 0.005% respectively.

The aluminosilicate bulbs were brought to Woods Hole Oceanographic Institution and stored in ambient

conditions for up to two years before analysis. Because the gases have a practically zero permeation rate

through aluminosilicate glass, this storage time should have no effect on the measurements.

The aluminosilicate bulbs are attached to a dual mass spectrometric system and analyzed for He, Ne,

Ar, Kr, and Xe as well as for helium isotopes. For details of analytical procedures, please see Chapter 2

of this thesis. In brief, the noble gases in the water sample are chemically purified by being sequentially

drawn through a two-stage water vapor cryotrap to remove water vapor, through a Pd catalyst to remove

methane, and through Ti-Zr-Fe getters to remove 02, N2, CO2, and other active gases. The noble gases

are then drawn onto two cryogenic traps - a stainless steel cryogenic trap for Ne, Ar, Kr, and Xe, and an

activated charcoal cryogenic trap for He. The cryogenic traps are selectively warmed and the gases are

sequentially released into the statically operated quadrupole mass spectrometer (QMS) for measurement by
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peak height manometry. The QMS is a Hiden quadrupole mass spectrometer (P/N PCI 1000 1.2HAL/3F

1301-9 PIC type 570309) run in static mode, equipped with a pulse counting secondary electron multiplier

(SEM) run at an emission of 20 to 40 pamps, an electron impact ion source and triple quadrupole ion optics.

Standardization of the system is accomplished using precisely known aliquots of atmospheric noble gases

(determined by pressure, temperature, volume and relative humidity), and thus is dependent on knowledge

of the abundance of these gases in air. However, since studies involving dissolved gases generally presume

these values, uncertainties in these abundances cancel out in most of the following calculations.

Our data are presented here as saturation anomalies, A, which are the percent deviation from solubility

equilibrium, and here defined as

A = (Ci' - 1) x 100 (4.1)
Ci,eq

where Ci,, is the concentration of gas i in the water and Ci,eq is the concentration of gas i at equilibrium

(i.e. the solubility value). Positive (negative) saturation anomalies reflect that the gas is supersaturated

(undersaturated), and the magnitude of the saturation anomalies corresponds to the magnitude of the depar-

ture from equilibrium. The solubilities of many of the noble gases were determined by Weiss in the 1970s

(Weiss, 1970, 1971; Weiss and Kyser, 1978). More recently, the solubilities of Ne and Ar were redetermined

by Hamme and Emerson (2004b), with these newer results being larger than those of Weiss by 1% for Ne

and 0.4% for Ar. We perform the calculations with the Ne and Ar solubilities of Hamme and Emerson.

We assumed that the difference in the Ne solubilities between Weiss and Hamme and Emerson was due

to a systematic difference in technique. We thus scaled the Weiss solubility values for He (which was not

determined by Hamme and Emerson) with the same correction factor that was needed to make the Weiss

Ne solubility equal to the Hamme and Emerson Ne solubility. This correction factor, which depends on

temperature, ranges from +0.5% at 180C to +1.5% at 290C. For Kr, we use the solubility value determined

by Weiss and Kyser (1978) and for Xe, the solubility value determined by Wood and Caputi (1966). We

propagated the uncertainty in solubility determination throughout all the calculations.

Bubbles can easily be trapped during sampling in the void spaces in the plug valves in the stainless steel

cylinders and on the inner walls of the cylinders. We try to reduce this by rapping the cylinder walls and by

exercising (opening and closing) the plug valves on order 20 times during sample collection. Nonetheless,
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it may be impossible to completely eliminate bubbles. In order to assess the amount of gas trapped in our

samples due to bubbles entrained during sample collection, we measured the noble gases in distilled water

that had been equilibrating with laboratory air for 24 hours. (For details of this test, please see Chapter 2

of this thesis.) We then calculated the saturation state of these samples using Krause and Benson (1989)

solubility values for distilled water and found the average saturation anomalies to be 101.1 ± 0.8 % for

He, 99.5 ± 0.7 % for Ne, 99.3 ± 0.7% for Ar, 98.5 ± 1% for Kr, and 98.6 + 1.2 % for Xe. We assumed

the deviations from 100% saturation were results of a combination of air entrainment from bubbles (which

affects the lighter, less soluble gases more strongly than the heavier, more soluble ones), and thermal effects

resulting from incomplete thermal equilibration or temperature gradients within the reservoir (which affects

the heavier, more soluble gases the most). We scaled the contribution from bubbles so that each gas is

affected according to atmospheric concentration and solubility considerations. We then solved a series of 5

linear equations, one for each gas, for these two effects and calculated the saturation anomaly due to bubbles

in our samples (Table 4.2), assuming there is no inherent error in the Benson and Kraus solubility values. We

subtract this saturation anomaly from all our subsequent results in order to compensate for small amounts

of bubbles inadvertently collected in our samples. We performed this experiment in the early stages of our

analysis and our method has improved since then, most significantly for Ne, Kr, and Xe. We will thus repeat

this experiment at a later point, now that we have a better analytical technique. Additionally, we will use a

temperature controlled bath and a longer equilibration time in order to mitigate temperature effects.

Several other corrections were applied to our samples. Approximately 135 samples were analyzed

before we started directly measuring the fraction of Ne that was inadvertently and unavoidably drawn onto

the charcoal trap and including this contribution as part of our Ne measurements. Although early tests

showed quantitative trapping of Ne on the stainless steel cryotrap, subsequent and gradual degradation of

the minimum cryotrap temperature led to less than perfect Ne retention, and consequent transfer of Ne to

the charcoal trap. We corrected these samples by assuming 0.68% of Ne would have been released from the

charcoal trap for standards and 1.02% of Ne would have been released from the charcoal trap for samples.

These correction factors were obtained by averaging the fraction of Ne released from the charcoal trap

in samples and standards run with the same procedure but where Ne was measured from the charcoal trap.

This correction, however, is not well-known since the amount of Ne released from the charcoal cryotrap may
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Table 4.1: Details of sample collection.

BATS cruise #

190

191

192

193

194

195

196

198

199

200

201

202

203

vessel

R/V Weatherbird II

R/V Weatherbird II

R/V Weatherbird II

R/V Weatherbird II

R/V Weatherbird II

R/V Weatherbird II

R/V Cape Hatteras

R/V Oceanus

R/V Weatherbird II

R/V Weatherbird II

R/V Weatherbird II

R/V Weatherbird II

R/V Weatherbird II

R/V Weatherbird II

differ depending on the recent history of the trap, a factor our correction does not capture. Additionally, 40

samples may have additional uncertainty in Kr measurements because initially, we may not have adequately

corrected for the matrix effects that Ar and Xe have on Kr.

Even after these corrections, certain samples have extremely large or small saturation anomalies, reflect-

ing perhaps extreme bubble entrainment during sampling, leaky Niskins, or under-extractions. We plotted

a histogram of all our data and then chose saturation anomaly limits beyond which to exclude data points.

If the AHe was less than -5% or greater than 6%, we excluded the samples. If AXe was less than -5% or

greater than 20%, we also excluded the samples. These criterion resulted in a rejection of 14 data-points,

approximately 5% of our data.
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Date

07-14-2004

08-18-2004

09-15-2004

10-15-2004

11-13-2004

12-09-2004

01-28-2005

02-23-2005

03-22-2005

04-20-2005

05-18-2005

06-15-2005

07-20-2005

08-11-2005

Lat

31.691

31.682

31.667

31.667

31.668

31.668

31.699

31.667

31.669

31.677

31.668

31.654

31.668

31.666

Long

64.166

64.162

64.164

64.167

64.166

64.168

64.187

64.167

64.166

64.17

64.169

64.185

64.165

64.167



Table 4.2: Contribution of bubbles entrained in samples during sample collection, as derived from distilled
water tests, and expressed as a saturation anomaly. The saturation anomalies are consistent with the relative
effect of air injection on the noble gases given the differences in solubility between the gases (i.e. if bubble
entrainment creases a 1.17% supersaturation in He, then it also will create a 0.084% supersaturation in Xe).
The standard deviation of the supersaturation due to bubbles in the eleven test distilled water samples is
listed as well.

Gas Sat Anom from Bubbles Std. Dev.

He 1.17% 0.8%

Ne 0.97% 0.7%

Ar 0.29% 0.2%

Kr 0.15% 0.1%

Xe 0.084% 0.06%

4.2.2 Description of the one-dimensional vertical upper ocean model

We use a one-dimensional, vertical, modified Price-Weller-Pinkel (PWP) model (Price et al., 1986). The

model previously has been extended to include He, Ne, Ar, and 02 (Spitzer and Jenkins, 1989) and to

include Kr and Xe (Stanley et al., 2006). For details on the model, please see Stanley et al. (2006) or chapter

3 of this thesis. Here only a brief description of the model is included.

The model is forced with wind stress from the QuikSCAT satellite and with heat fluxes from the National

Centers for Environmental Prediction (NCEP) reanalysis (Kistler et al., 2001), interpolated for the BATS

site. The attenuation of radiative heat is governed by a Jerlov Type 1A profile. QuikSCAT winds were

chosen over NCEP winds because the QuikSCAT winds agree more closely with a wind record from the

nearby Bermuda Testbed Mooring (BTM) (Dickey et al., 1998). The correlation coefficient between the

NCEP and BTM record was 0.64 whereas the correlation coefficient between the QuikSCAT and BTM

record was 0.82. The BTM wind record was not used directly because of gaps when the mooring was not

deployed. Additionally, a significant advantage of using QuikSCAT winds is to make our parameterization

more applicable for other applications, since satellite data are more frequently available than mooring data.

The surface temperature in the model is restored every 6 hours to a smoothed, interpolated record of
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the BATS sea surface temperature, with a restoring constant of 75 W m- 2 deg C- 1. The annually averaged

NCEP net heat flux for this site is negative, reflecting net cooling. Lateral advection probably balances the

local heat budget over decadal time-scales. To compensate for this effect, we add to the model an upper

ocean positive heat flux of order 50 W m- 2, calculated by balancing the sum of the NCEP heat fluxes to

zero. In addition, in the model there is an effective heat convergence associated with Ekman pumping. We

computed the Ekman pumping from the four day low pass filtered local wind stress curl derived from the

NCEP reanalysis data. The Ekman pumping induced vertical velocity is tapered to zero at the bottom of the

model domain, in approximate concordance with the Sverdrup relation. The vertical heat flux convergence

associated with this flux results in a net heat gain in the model. To prevent the model from warming, a heat

flux of order 20 W m - 2 is removed from the water column. This Ekman heat convergence compensation

term (Ekm) depends on the evolution of model temperature and thus is difficult to calculate explicitly. It

is therefore treated as a model parameter that is adjusted for long term heat balance. Similarly, the depth to

which the total heat offset (sum of lateral and Ekman compensation terms) is distributed (Z) is treated as a

tunable model parameter. Additionally, the vertical diffusivity below the mixed layer in the model, Kz is

also treated as a tunable model parameter.

Ensemble runs (n,-100) and a cost function based on the root mean square difference between model

and data temperature and salinity (with data from the BATS bottle casts) were used to determine optimal

values for these physical parameters (Ekm, Z, Kz). A wide range of physical parameters was examined:

2x10 - 5 < Kz < 2x10 - 4 m2 s- 1, 1 < Ekm < 30 W m- 2 , and 10 < Z < 125 m. The parameters

work in concert, and thus several sets of parameters yield almost equivalent cost function values (Table 4.3).

Subsequent work uses primarily the base case with a low cost function, i.e, Kz=5x10- 5 m2 s- 1 , Ekm = 18

W m - 2 , and Z = 50 m, but we also explore the sensitivity of our results to other sets of physical parameters.

For these studies, the model was spun up from January, 2002 with initial conditions of temperature and

salinity profiles from BATS data for that date and initial gas saturation anomalies of 2.45% for He, 2.75%

for Ne, 1.7% for Ar, 1.48 % for Kr, and 1.55% for Xe at all depths. To choose these initial gas values, the

model was run many times with various initial conditions. Each time, the model converged to similar values

for the deep water and those values were chosen to be our initial conditions. Furthermore, when these values

were used as initial conditions, the deep values in the model did not drift. These values are within the error
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Table 4.3: The three best sets of physical parameters. "rmsd" refers to the root mean square difference of
temperature in the upper 200 m of the water column between the model and BATS data from 2003 to 2006.

Kz Ekm Z rmsd

(m2s - I ) (Wm - 2) (m)

5x10-5 18 50 0.664

6x10-5  20 50 0.665

4x10 -5  16 50 0.670

limits of our winter saturation anomalies, further justifying their choice. In any case, the model results did

not change significantly if different starting saturation anomalies or a longer spinup were used.

4.2.3 Gas exchange parameterization used in the model

Gas exchange processes are modeled according to standard literature parameterizations with adjustment

permitted through the use of tunable model parameters. The treatment of gas exchange processes is identical

to Stanley et al. (2006) (chapter 3 of this thesis), with the exceptions that (1) rather then using yAc and

7YAp, we directly investigate the values of Ac and Ap and (2) a quadratic parameterization of diffusive gas

exchange on wind speed is used. The equations are described in full in Stanley et al. (2006) and are only

briefly described here.

The net total flux of a gas, FTOT, is the sum of the flux due to diffusive gas exchange, FGE, and the flux

due to air injection, FAI:

FTOT = FGE + FAI (4.2)

The diffusive gas exchange flux, FGE (mol m - 2 s- 1) is given by

( SCi )-0.5FGE = G - kG 660 Uo(Ci,e - Ci,w) (4.3)

where YG is a tunable model parameter of order 1 controlling the magnitude of the flux, kG is the constant
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used by Wanninkhof (1992) (8.6x 10- 7 s m-1), Sci is the Schmidt number (ratio of the kinematic viscosity

to the molecular diffusivity of the gas of interest), ulo is the wind speed (m s- 1) at 10 m height above

sea-surface, and Ci,, and Ci,eq are the concentrations of gas i (mol m- 3 ) in the water and at equilibrium,

respectively.

In the model, the flux due to air injection, FAI, is determined as the sum of the flux due to bubbles that

have been completely trapped, thus injecting air of atmospheric abundances, and those that have been only

partially dissolved before rising to the surface, thus resulting in fractionation as a function of diffusivity and

solubility (Fuchs et al., 1987; Jenkins, 1988a; Keeling, 1993; Woolf, 1993). The total air injection flux, FAI,

is equal to

FAI = Fc + Fp (4.4)

where Fc refers to the flux from bubbles that are completely trapped, and Fp refers to the flux from bubbles

that are only partially dissolved.

The flux due to completely trapped bubbles is dependent on the partial pressure of the gas in the atmo-

sphere and the volume entrainment rate for the air entrained. This volume entrainment rate is given by a

combination of the whitecap coverage formulation of Monahan and Torgersen (1990) which scales as u3o

with the air entrainment velocity estimate of Keeling (1993):

Pia
Fc = Ac - kI(ulo - 2.27)3 va i a  (4.5)

RT

where Ae is a tunable model parameter that controls the magnitude of the completely trapped bubble flux, kw

is the constant associated with white-cap coverage (1.86x 10-6 s3 m-3), va is the air entrainment velocity

(0.01 m s-1), R is the gas constant (8.31 J mol-1 K-1), T is the temperature (K), and Pi,a is the partial

pressure of gas i in the atmosphere (Pa). Eq. 4.5 is valid for u lo _ 2.27 m s- 1. At ulo < 2.27 m s- 1, Fe is

set to 0.

The partial bubble trapping flux depends upon the same whitecap coverage formulation as in the case

of complete trapping, and also on the solubility and diffusivity of the gas, and the difference between the

partial pressure of the gas in the bubble and in the water :
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Fp = Ap - kw(ulo - 2.27)vaiD Pi,b - Pi,w (4.6)

where AP is a tunable model parameter that scales the magnitude of the partial trapping flux, a is the Bunsen

solubility coefficient of gas i, D is the diffusivity (m2 s- 1) of gas i, and Pi,b and Pi,w are the partial pressures

of the gas in the bubble and in the water (Pa). Eq. 4.6 is valid only for ulo > 2.27 m s- 1. At u10 < 2.27

m s- 1, Fp is set to 0. Eq. 4.6 is similar to the bulk partial trapping flux equation used by Keeling (1993)

when appropriate scaling factors and units are used and with the difference that Keeling uses exponents on

ai and Di of 0.7 and 0.35 respectively. This is a bulk approximation for partial bubble trapping and does not

explicitly take into account bubble trajectories, size spectra, etc. In both warm and cold conditions, aiD2 /3

varies by approximately a factor of five between the noble gases, being largest for Xe and smallest for Ne.

Calculating the partial pressure of the gas in the bubble, Pi,b, is a complicated problem of bubble dy-

namics, since the pressure depends on the size and depth distribution of the bubbles. Here, we simply

approximate Pi,b by:

Pi,b = Xi(Patm + pghbub) (4.7)

where Xi is the mole fraction of gas i in dry air, Patm is the atmospheric pressure of dry air (Pa), p is the

density of water (kg m-3), g is the gravitational acceleration (9.81 m s-1) and hbub (m) is the average disso-

lution depth for the bubbles. This expression reflects the hydrostatic pressure felt by the bubble but ignores

surface tension effects. The depth hbub, used for the hydrostatic pressure calculation, is approximated by:

1
hbub = (0.3u 1o - 1.1) (4.8)

which is the bubble cloud residence depth/wind speed relationship of Graham et al. (2004), multiplied by

a bubble depth scaling factor of ½ to take into account that the bubbles partially dissolve along their entire

downward and upward transect rather than simply at their residence depth. The results were not sensitive to

the choice of bubble depth scaling factor since a decrease in the scaling factor could be compensated for by

an increase in Ap. Eq. 4.8 is valid only for ulo > 3.7 m s- 1. At ulo < 3.7 m s- 1, hbub is set to 0.
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4.2.4 Inverse Method

The air-sea gas exchange parameters 7c, A,, and Ap were determined inversely by a constrained, non-linear

optimization scheme. The parameters determined by the optimization are dependent on the choice of the

cost function, and thus we explored several possible formulations of the cost function.

Our "base case" model uses a cost function that includes two components: (1) a contribution from

model-data saturation anomalies in the mixed layer and (2) a contribution from model-data concentration

difference below the mixed layer. The cost function is equal to

CF a (Amodi,ij - Aobs,ij) 2 ) a2 " Ncon ([X]mdi - [X]sc,i,j)2 (4.9)

j=1 \i=1 Ai,j cone j=1 i=1 conC,ij

where al and a2 are constants used to make the two components have approximately equal contributions

to the cost function, j is a counter for each of the five gases, i is a counter for each of the measurements,

NA is the total number of monthly surface saturation anomaly measurements (i.e. 14), Amod and A obs

are the monthly surface saturation anomalies of the gases in either the model or observations, oaij are the

uncertainties in the monthly average surface saturation anomaly measurements, Nonc is the total number of

concentration measurements, [X]mod and [Y]mod are the concentrations of the gases in either the model or

in the observations, and acon, are the uncertainties in the concentration measurements.

The first component reflects the differences between the model and data's mixed layer depth-averaged

monthly surface saturation anomalies. We use average monthly values rather than point-to-point depth com-

parisons of mixed layer saturation anomaly between our model and data in order to avoid over-emphasizing

the winter months (which have more data in the mixed layer simply because the mixed layer is deeper)

and to avoid under-emphasizing the summer months, which only have a few data points in the mixed layer

since the mixed layer is so shallow. The saturation anomalies are weighted by the combined uncertainty of

the sampling collection and analysis uncertainty, the estimated uncertainty in the solubility values for the

particular gas, and the standard error of multiple determinations within the mixed layer in the given month,

all added in quadrature. The sizes of these contributions to oaA for the five noble gases are listed in Table

4.4. The sensitivity of the results to different values of oA is investigated.
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Table 4.4: The magnitudes of the three contributions to a,, and the average o, for each of the noble gases
(all in %) . "Meas Error" refers to how well our method can measure the noble gases as determined by
duplicate pairs. "Sol Error" refers to estimates of the uncertainty in the solubility determinations of the
noble gases. "Std error" refers to the standard error of mean of the multiple measurements within the mixed
layer. The standard error and thus oa varies from month to month, with the average value being listed here.

Gas Meas Error Sol Error Std Error oa-

He 0.96 0.5 0.40 1.2

Ne 0.88 0.3 0.39 1.0

Ar 0.3 0.13 0.18 0.37

Kr 0.29 1 0.22 1.06

Xe 0.19 1.5 0.22 1.5

The second component of the cost function is comprised of the difference between the model and data's

concentrations below the mixed layer. We use concentrations here, rather than saturation anomalies, because

erroneously high (low) temperatures in the model below the mixed layer result in erroneously high (low)

saturation anomalies. The model does not achieve the correct thermal structure below the mixed layer; by

using concentrations in our cost function, we compare the total inventory of the gases in the water column

and thus temperature effects are not as significant. The first and second components of the cost function

are scaled using al and a2 so that they contribute in approximately equal proportions. The sensitivity of the

results to this scaling is investigated.

We also investigated a cost function that had a third component reflecting the seasonal amplitude of the

surface saturation anomaly. Additionally, we explored the sensitivity of our results to a systematic offset in

the model-data comparison in order to examine the effect of potential biases in our model, such as those due

to our neglect of lateral advection.
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4.3 Results

4.3.1 Noble Gas Data

Contour plots of the observed and modeled noble gas saturation anomalies (Fig 4-1) and concentrations

(Fig 4-2) show distinctive patterns for the noble gases. Helium and neon form one group, with similar

saturation anomalies to each other and similar values throughout the upper 160 m. The concentrations

of He are nearly constant throughout the upper 160 m, a reflection of the very weak dependence of He

solubility on temperature. The concentrations of Ne are slightly higher at deeper depths - Ne has a weak

dependence of solubility on temperature and thus colder water has more Ne. Argon, krypton, and xenon

form a second group. These gases show maxima in saturation anomalies in the summer, especially below

the mixed layer. In the summer, the water warms, warmer water has a lower solubility, and thus the water

becomes supersaturated. Because Xe has the strongest temperature dependence of solubility, the maxima

for Xe is the largest. The concentration plots of Ar, Kr, and Xe show larger concentrations in colder, deeper

water. The large concentrations in the mid-depth water of the spring of 2005 may be a remainder of the large

gas concentrations entrained in the winter.

The gases also act as two separate groups in the mixed layer (Fig 4-3). Helium and neon form one

group; they have little seasonal variation and are always supersaturated, probably due to air injection. Argon,

krypton and xenon form the second group. Their saturation anomalies increase dramatically in the summer.

The gases follow the "expected" order with Xe having the largest summer saturation anomaly, and Ar

having the smallest summer surface saturation anomaly. Xenon is the most soluble gas with the strongest

temperature dependence on solubility, and thus it has the largest summer and the smallest winter surface

saturation anomaly. Uncertainties in the solubilities of the noble gases, especially of Kr and Xe, could cause

these surface saturation anomalies to shift to higher or lower values.

Vertical profiles of He and Ne (Fig 4-4) reveal that these gases have uniform saturation anomalies with

depth. The profiles also reveal considerable scatter in the data. He and Ne are the most insoluble gases

and thus are the most sensitive to contamination from air during sampling and extraction. The variability

may be a result of bubbles incorporated during sampling or gas leaking in through the plug valves during

storage. Although experiments have shown the gas leaking in should not be a cause for concern, perhaps
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Figure 4-1: Upper ocean saturation anomalies of the five noble gases for the (a) 14 month time-series and
for (b) the base case model run. Contours are drawn at 1% intervals. Please note the different scales for
the different gases. The white line denotes the mixed layer depth as determined from bottle temperature
analyses of BATS samples using a or criterion of 0.15. Circles denote the time and depth of samples used
in this analysis. Gas exchange parameters used in the base case model are 7G = 0.787, Ac=3.21xl0 - 3 and
Ap=1.64x105 .
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Figure 4-2: Upper ocean concentrations of the five noble gases, normalized to the concentrations of the
noble gases in 180 seawater, for the (a) 14 month time-series and for (b) the base case model run. Contours
are drawn at 0.1 intervals. Please note the different scales for the various gases. The white line denotes
the mixed layer depth. Circles denote the time and depth of samples used in this analysis. Gas exchange
parameters used in the base case model are 7yc = 0.787, Ac=3.21xl0 - 3 and Ap=1.64xl05 .
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Figure 4-3: Surface saturation anomalies of (a) He (blue) and Ne (red) and (b) Ar (blue), Kr (green), and Xe
(red). Averages of the samples measured in the mixed layer are plotted (o). The error bars reflect the standard
error of mean of the measurements in the mixed layer and do not include uncertainties in the solubilities of
the noble gases. The model base case is plotted as a solid line. Please note the different scales on the two
plots. The data saturation anomalies in the winter of Xe are larger than those predicted by the model and
the data saturation anomalies in the summer of 2005 are smaller than those predicted by the model. This
discrepancy may be due to errors in the solubilities of Xe (which may depend on temperature) or to problems
with the model. The model results here are only plotted at the timepoints at which data was collected and
thus the high frequency variability in the model predictions are not shown in this plot. Please see Figure
4-10 for a plot of high frequency variability, which may in particular explain some of the mismatch between
the He and Ne model results and data.
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depending on the condition of the o-ring and exactly how it is squeezed when the plug valve is closed, a

variable amount of He and Ne could be infiltrating the samples. We do not think this variability stems from

our analytical method on the mass spectrometer because standards have less than 0.1% variability.

Winter vertical profiles of Ar, Kr, and Xe (Fig 4-5) show uniform saturation anomaly with depth, even

below the mixed layer. In contrast, summer profiles show distinct maxima just below the mixed layer,

because there the gases cannot "escape" by gas exchange directly. Rather, they need to diffuse into the

mixed layer and then, once in contact with the atmosphere, be driven out of the surface ocean. The scatter

in the profiles of Ar, Kr, and Xe is considerably less than for He and Ne, supporting the idea that the scatter

in He and Ne is due to air contamination, a process that would have less of an effect on the heavier, more

soluble gases.

4.3.2 Inverse Model Results

The gas exchange parameters were determined by the "base case" of the inverse model to be 7G=0.7 87 ,

A,=3.21x10- 3, and Ap=1.64x10 5 (Table 4.5). Since the physical significance of Ae and A, is not intuitively

obvious, the fluxes of He, Ar, and Xe associated with A, and Ap for each of the runs are listed in Table 4.6.

Additionally, the complete, partial, and total flux of the sum of all the major gases (i.e. FMG = flux of 02

+ flux N2 + flux Ar) are listed in Table 4.7. The base case air injection parameters result in approximately

91% of the air injection flux of He being due to complete trapping and roughly 70% of the air injection flux

of Xe being due to complete trapping (Table 4.8). Noble gas saturation anomalies and concentrations as

determined by the model run with the base case parameters are plotted in Fig 4-1, Fig 4-2, and Fig 4-3.

We explored the sensitivity of the parameters to choice of physical parameters, choice of ra and Oconc,

and to possible inclusion of seasonal amplitudes in the cost function (Table 4.5). For all these cases, the

retrieved value of the gas exchange parameter ranged from 0.74 to 0.84, Ac from 2.46x10- 3 to 3.43x10- 3 ,

and Ap from 1.28x10 5 to 2.87x105 . The total air injection for the gases varied by ± 15%. We also explored

the sensitivity of the parameters to potential data/model offsets in noble gas saturation anomalies, perhaps

due to lack of inclusion of lateral advection in the model. We tried two choices of constant offsets between

model and data surface saturation anomalies: 0.5%, 0.75%, and 1% for AAr, AKr, and AXe respectively,

and 0.25%, 0.375%, and 0.5% for AAr, AKr and AXe respectively. The relative sizes of these offsets were
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Figure 4-4: Vertical profiles of observed saturation anomalies of He (blue) and Ne (red) for twelve months:
September 2004 to Aug 2005. The scatter in the profiles reflects the noise in our data - the reproducibility
of our He and Ne measurements is on order 1%, perhaps because of bubbles trapped during sampling or
because of the 24 hour storage time between sample collection and extraction. The dashed line denotes the
mixed layer depth.
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Figure 4-5: Vertical profiles of observed saturation anomalies of Ar (blue), Kr (green), and Xe (red) for
twelve months: September 2004 to Aug 2005. The summer months all show a distinctive shape with a
maximum in the saturation anomaly just below the mixed layer. The winter months reflect a primarily
uniform distribution with depth. The dashed line denotes the mixed layer depth.
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Table 4.5: The air-sea gas exchange parameters as determined by the inverse modeling. The base case is our best estimate for the air-sea gas
exchange parameters. In addition, a number of cases are listed and are grouped by the changes in the basic model or cost function. The notes
describes in more detail the specific conditions for a given case. Since the parameters Ac and Ap do not have an intuitively obvious physical
significance, estimated size of complete and partial air injection fluxes for He, Ar, and Xe are listed in Table 4.6. The run numbers allow
comparison between the tables.

# yeY Ac(x10 3 ) Ap (xIO- 5 ) Notes

Base Case
1. 0.79 3.21 1.64

Different Physical Parameters
2. 0.84 3.43 1.58 Phys Param: Kz=6x10 - 5 , Ekm =20, Z=50
3. 0.74 3.03 1.66 Phys Param: Kz=4x10 - 5 , Ekm =16, Z = 50

Different o•
4. 0.80 3.22 1.84 estimated uncertainty of Xe solubility is 2%
5. 0.78 3.20 1.56 estimated uncertainty of Xe solubility is 1%
6. 0.82 3.32 1.78 estimated uncertainty of Kr solubility is 1%
7. 0.79 3.27 1.28 include in oa the variances of mixed layer sat anom

Balance between Surface and Deep
8. 0.78 3.18 1.60 surf. sat. anom. weighted twice the deep conc.
9. 0.81 3.28 1.71 surf. sat. anom. weighted half of the deep conc.

Including seasonal amplitude
10. 0.82 2.46 2.87 ml cost contains 50% absolute mag and 50% seasonal amp
11. 0.80 2.90 2.25 ml cost contains 75% absolute mag and 25% seasonal amp

Constant Data/Model Offset
12. 1.02 3.77 0 constant offset of +0.5%, +0.75%, +1% for AAr, AKr, AXe respectively
13. 0.91 3.85 0 constant offset of +0.25%, +0.375%, +0.5% for AAr, AKr, AXe respectively



Table 4.6: The fluxes due to complete (FC) and partial bubble trapping (Fp) in mol m - 2 s- 1 for the runs described in Table 4.5. The run #
allows comparison between the tables. The base case is our best estimate for the air-sea gas exchange parameters. In addition, a number of
cases are listed and are grouped by the changes in the basic model or cost function. The notes describes in more detail the specific conditions
for a given case. Fluxes were calculated assuming a wind speed of 10 m s- 1, and saturation anomalies of 1% for all gases.

# He: Fc He: Fp

Base Case
1. 6.51x10 - 12

Different Physical
2. 6.96x10 - 12

3. 6.15x10 - 12

Different aA
4. 6.52x10 - 12

5. 6.49x10 - 12

6. 6.73x10 - 12

7. 6.64x10 - 12

6.64x10 - 13

Parameters
6.42x10 - 13

6.74x10 - 1 3

7.45x10 - 13

6.33x10 - 13

7.23x10 - 13

5.21x10 - 13

Balance between Surface and Deep
8. 6.44x10 - 12  6.47x10 - 13

9. 6.65x10 - 12  6.95x10 - 13

Including seasonal amplitude
10. 4.99x10 - 12  1.17x10 - 12

11. 5.88x10 - 12  9.11x10 - 1 3

Constant Data/Model Offset
12. 7.63x10 - 12  0
13. 7.80x10 - 12 0

Ar: Fc Ar: Fp

1.16x10 - 8  2.10x10 - 9

1.24x10 - 8  2.03x10 - 9

1.10x10 - 8 2.14x10 - 9

1.16x10 - s

1.16x10-8
1.20x10 - s

1.18x10-8

2.36x10 - 9

2.01x10 - 9

2.29x10 - 9

1.65x10- 9

1.15x10 - 8 2.05x10 - 9

1.19x10 -s 2.20x10- 9

8.89E-09
1.05x10-8

1.36x10 - s

1.39x10-8

3.69x10 - 9

2.89x10 - 9

0
0

Xe: Fc Xe: Fp

1.08x10 - 13  4.54x10 - 14

1.16x10 - 13  4.39x10 - 14

1.02x10 - 13 4.61x10 - 14

1.08x10 - 13

1.08x10 - 13

1.12x10 - 13

1.10x10- 13

5.10100- 14

4.33x10 - 14

4.94x10 - 14

3.57x10 - 14

1.07x10 - 13  4.43x10 - 14

1.10x10- 13 4.75x10 - 14

8.28x10 - 14

9.76x10 - 14

1.27x10 - 13

1.30x10 - 1 3

7.97x10 - 14

6.23x10 - 14

Notes

Phys Param: Kz=6x10 - , Ekm =20, Z=50

Phys Param: Kz=4x10 - 5 , Ekm =16, Z = 50

estimated uncertainty of Xe solubility is 2% 2
estimated uncertainty of Xe solubility is 1%
estimated uncertainty of Kr solubility is 1%
include in a• the variances of mixed layer sat anom

surf. sat. anom. weighted twice the deep conc.
surf. sat. anom. weighted half of the deep conc.

ml cost contains 50% absolute mag and 50% seasonal amp
ml cost contains 75% absolute mag and 25% seasonal amp

offset of +0.5%, +0.75%, +1%, for AAr, AKr, AXe
offset of +0.25%, +0.375%, +0.5% for AAr, AKr, AXe



Table 4.7: The air injection fluxes of the sum of the major gases, FMG, due to complete and partial bubble trapping, as well as due to total
air injection in mol m - 2 s- 1 for the runs described in Table 4.5. The run # allows comparison between the tables. The base case is our best
estimate for the air-sea gas exchange parameters. In addition, a number of cases are listed and are grouped by the changes in the basic model
or cost function. The notes describes in more detail the specific conditions for a given case. Fluxes were calculated assuming a wind speed of
10 m s- 1 , and saturation anomalies of 1% for all gases.

# Complete FMG Partial FMG Total FMG Notes

Base Case
1 1.23x10- 6  1.39x10- 7  1.37x10- 6

Different Physical Parameters
2 1.31x10- 6  1.34x10 - 7  1.45x10 - 6  Phys Param: Kz=6E-5, Ekm =20, Z=50
3 1.16x10- 6  1.41E-07 1.30x10 - 6  Phys Param: Kz=4E-5, Ekm =16, Z = 50

Different oA
4 1.23x10 - 6  1.56x10 - 7  1.39x10 - 6  estimated uncertainty of Xe solubility is 2%
5 1.23x10 - 6  1.33x10 - 7  1.36x10 - 6  estimated uncertainty of Xe solubility is 1%
6 1.27x10 - 6  1.51x10 - 7  1.42x10 - 6  estimated uncertainty of Kr solubility is 1%
7 1.25x10 - 6  1.09x10 - 7  1.36x10 - 6  include in sigma the variances of mixed layer sat anom

Balance between Surface and Deep
8 1.22x10 - 6  1.36x10 - 7  1.35x10 - 6  surf. sat. anom. weighted twice the deep cone.
9 1.26x10 - 6  1.46x10 - 7  1.40x10 - 6  surf. sat. anom. weighted half of the deep cone.

Including seasonal amplitude
10 9.41x10- 6  2.44x10- 7  1.19x10 - 6  ml cost contains 50% absolute mag and 50% seasonal amp
11 1.1 1x10 - 6  1.91x10 - 7  1.30x10 - 6  ml cost contains 75% absolute mag and 25% seasonal amp

Constant Data/Model Offset
12 1.44x10- 6  0 1.44x10- 6  constant offset of +0.5%, +0.75%, +1% for AAr, AKr, AXe respectively
13 1.44x10 - 6 0 1.44x10- 6 constant offset of+0.25%, +0.375%, +0.5% for AAr, AKr, AXe respectively



Table 4.8: The percentages of complete and partial bubble trapping with respect to the total air injection flux
for a given gas for the five noble gases and for 02 for the "base case" parameters. Fluxes were calculated
assuming a wind speed of 10 m s - , and saturation anomalies of 1% for all gases.

Gas Complete (%) Partial(%)

He 91 9

Ne 93 7

Ar 85 15

Kr 79 21

Xe 70 30

02 86 14

chosen by comparing the temperature dependence of the solubility value of the gases. The gas exchange

parameters differed by up to 30% for the larger offsets, suggesting that uncertainties in our physical model

propagate into uncertainties in the gas exchange parameters.

4.4 Discussion

4.4.1 The Base Case

It is evident that the model base case captures the general features of the data. The saturation anomalies in

the model and the data (Fig. 4-1) both show distinctive maxima in the summer seasonal thermocline for the

heavier noble gases, especially below the mixed layer. The general location in time of these maxima agree

in the model and the data but the location in space differs. The maxima in the model for Ar, Kr, and Xe

extend deeper than in the data. This may be due to temperature effects. The saturation anomaly is directly

related to the temperature of the data, since the solubility of the heavier gases has a strong temperature

dependence. One issue is the presence in the data of eddies which cannot be captured in a one-dimensional

model (Fig. 4-6). In August, 2004 an anticyclonic "warm-core" eddy passed through BATS and the model

temperature is too cool by over 2 OC. In August 2005, a cyclonic "cool-core" eddy passed through BATS and
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the model temperature is too warm by approximately 20 C. A one degree change in temperature corresponds

to a 3% difference in Xe saturation anomaly and thus it is not surprising that the model has trouble matching

the saturation anomaly structure below the mixed layer. Contours of the difference between the model and

data saturation anomalies (Fig. 4-7a) clearly show that the model has too large a saturation anomaly during

the August 2005 warm eddy event. Additionally, the model may have trouble matching the temperature

record because the model attenuates radiation according to a type Jerlov 1A relationship that does not vary

according to season. If desired, however, one could use satellite observations of cholorophyll to modulate

the penetration of solar radiation.

However, the discrepancies in saturation anomalies between model and data are not solely due to the

temperature effects from eddies because the model also has too large saturation anomalies just below the

mixed layer in the fall of 2004. The model predicts larger saturation anomalies than the data even in August

2004 when the model is too cool (and thus when the temperature discrepancy would lead to the model having

lower saturation anomalies). Furthermore, contour maps of the concentration anomaly between model and

data (Fig. 4-7b) also show the same pattern with the model having too much gas below the mixed layer in

the fall of 2004. One possible explanation may that the mismatch is related to the formation mechanisms

for the eddies that passed through the BATS site.

Although the He and Ne data are noisy, the model does a good job at predicting the mean general pattern

of the saturation anomalies of He and Ne - perhaps because they are less dependent on thermal structure.

Please note the scales for He and Ne model/data differences in saturation anomaly in Fig. 4-1 are half the

size of those for the heavier noble gases. The model predicts too large a saturation anomaly for Ne and too

small a one for He. This inability of the model to match the He/Ne ratio in the data may be a reflection of

uncertainties in the solubility of He, inadequacies in the formulation of air injection, or problems in sample

collection or analysis. The fact that a number of our He samples had to be discarded because of bubbles

presents the possibility that all the samples may have low level air injection contamination. We tried to

correct for this using the results of our distilled water tests (see section 4.2), but we may not have fully

accounted for what would presumably be a variable process.

In the mixed layer (Fig. 4-3), the model captures roughly the correct magnitude of He and Ne saturation

but again does not correctly reproduce the ratio between the gases. In the model, Ne is at the same saturation
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Figure 4-6: Contour maps of the temperature (in 'C) in the upper ocean from (a) BATS data and (b) Model
predictions. (c) The difference between the model and data reveals that the model is too cool in August 2004
when an anticyclonic eddy resulted in warmer than typical temperatures at BATS. The model is too warm
in August 2005 when a cyclonic eddy resulted in cooler than typical temperatures at BATS. At other times,
the model and data temperature agree to within 1 0 C. The white line denotes the mixed layer depth. Circles
denote the time and depth of samples used in this analysis. Physical parameters used in this model run are
Kz = 5x10 - 5 m2 s - 1, Ekm=18 W m- 2, and Z=50 m.
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Figure 4-7: (a) Model - data differences of saturation anomalies. The saturation anomaly differences are
plotted in %. Contour lines are every 1%. (b) Model - Data differences of concentrations. The concentrations
were normalized first to 18 degree water and then the differences in these normalized concentrations are
plotted. Contour lines are drawn at 0.05 intervals. In the summer of 2005, there is a large positive saturation
anomaly difference between model and data but only a small concentration difference, reflecting that the
saturation anomaly differences are also dependent on the temperature differences between model and data.
We use a cost function with saturation anomalies in the mixed layer and concentrations at depth in order to
try to minimize the effect of mismatches in temperature between model and data below the mixed layer.
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level or even more saturated than He, whereas in the data the reverse is true. Again, this may be because

contamination from air is causing the variability in our He results and air contamination affects He more

strongly than Ne. The model does a good job at matching the Ar, Kr, and Xe saturation anomalies in the

summer of 2004. Unfortunately, it does not do as good a job in the summer of 2005, which may be the more

important summer to match since we have data from the winter preceding the summer of 2005. Future work

should involve changing the weightings so that the data in the summer of 2004 contributes less to the cost

function than the data in the summer of 2005. Additionally, the model and data in the winter time are within

errors of each other for Ar and Kr. However, the data is about 1% larger than the model predicts for Xe.

This discrepency for Xe suggests either errors in the solubility functions of Xe, or that the model may not

be incorporating all the processes that in the ocean affect the fluxes of these gases, such as lateral advection.

eding the summer of 2005. Future work should involve changing the weightings so that the data in the

summer of 2004 contributes less to the cost function than the data in the summer of 2005. Additionally, the

model and data in the winter time are within errors of each other for Ar and Kr. However, the data is about

1% larger than the model predicts for Xe. This discrepency for Xe suggests either errors in the solubility

functions of Xe, or that the model may not be incorporating all the processes that in the ocean affect the

fluxes of these gases, such as lateral advection.

Our model does not explicitly include lateral processes. We try to compensate for lateral heat advection

by adding in a heating compensation term. We do not make any corrections for lateral transport of the

gases. In this region, warm water flows northward, resulting in a net cooling. Since warm water has lower

gas concentrations, if the gases are at equilibrium, then water with low gas concentrations flows northward,

increasing in gas, and resulting in a net influx of gas across the air-sea interface. We do not account for

this possible process in our model, partially because we do not know if the gases are at equilibrium. It is

possible the gases do not fully equilibrate and thus the water that flows "out" of our region is still low in gas

and is undersaturated. We can roughly estimate the maximum size of such a lateral effect by multiplying the

solubility dependence on temperature of the noble gases with the change in temperature that is caused by our

heating compensation term. The size of this estimated flux (Fig. 4-8) is small compared to the sizes of the

diffusive gas exchange and air injection fluxes for all the gases except for Kr and especially Xe, suggesting

that it may not be adding much error for the gases apart from Kr or Xe.
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Figure 4-8: Integrated monthly fluxes of the noble gases (in mol m- 2 y- 1) as calculated by the model for
the five noble gases. The three types of air-sea gas exchange fluxes - that due to diffusive gas exchange
(blue), complete air injection (green), and partial air injection (red) - are dominant. Also shown is the flux
of gases associated with Ekman pumping (cyan) and the estimated gas flux associated with the model's heat
compensation (purple). This last flux is not added explicitly in the model and is shown here for reference
only.
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In Figure 4-8, we plot the integrated monthly fluxes predicted by the model for diffusive gas exchange,

and partial and complete air injection. For He and Ne, the air injection flux into the ocean is balanced by the

diffusive gas exchange flux out of the ocean. For Ar, Kr, and Xe, there is a diffusive gas exchange flux out of

the ocean in the summer months due to thermal warming. This flux is independent of the air injection - the

separation between air injection and diffusive gas exchange for these heavier gases allows us to constrain

both air injection and diffusive gas exchange. In the winter, however, even the signatures of the heavier

gases reflect the interacting processes of air injection and diffusive gas exchange. For Xe, in the winter there

is a diffusive gas exchange flux and a significant air injection flux into the ocean, with the winter total air

injection flux being larger than the diffusive one. For Ar and Kr, in the winter, air injection brings in enough

gas that the diffusive gas exchange flux drives gas out of the ocean, in spite of the cooling of the water. Also

plotted on the figure is an estimate of the size of the flux of gas due to Ekman pumping and of the possible

gas flux associated with the heating compensation flux added to our model. For He, Ne, and Ar these fluxes

are both small compared to the gas exchange fluxes, suggesting uncertainties in these fluxes do not add

much error to our estimates of gas exchange flux. For Kr and Xe, however, the potential flux associated with

the heating compensation flux added to the model is of similar size to the gas exchange fluxes, suggesting

that the lack of including an associated gas flux in the model with the heating compensation term may be

problematic.

The magnitude of the fluxes seems reasonable when compared to the monthly changes in gas inventories

in the top 160 m of the water column (Fig. 4-9). The inventories were calculated by fitting a spline to the

individual monthly profiles of model or data concentrations of the noble gases and then integrating the spline

over the top 160 m of the water column. The inventory of gases in the model and data agree within 2% for

He, 0.5% for Ne and Ar, and 1% for Kr and Xe. Helium is consisently higher in the data than in the model,

perhaps due to air contamination issues or to errors in solubility. The inventories of the other gases do not

show systematic offset between the data and the model. Since one of the terms of our cost function (Eq.

4.9) was the concentration of the gases, it is not surprising that the inventories agree well. Nonetheless, it is

gratifying that the model and the data are able to so closely match inventories, reinforcing the idea that the

discrepencies in saturation anomaly between the model and data are primarily a result of the temperature

discrepencies between model and data.
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Figure 4-9: Inventories of the noble gases (in mol m- 2) in the upper 160 m in the base case model (dashed
line) and from the data (solid line) were calculated every month by integrating the concentration profiles.
The model and data agree within 2% for He with the model consistently underestimating the inventory.
There is not a consistent discrepency for the other gases, and the model and data agree to within 0.5% for
Ne and Ar, and to within 1% for Kr and Xe.
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Our model does not include the cool skin effect. In the ocean, a thin layer (-1 mm) at the surface

has a cooler temperature of -0.2 to 0.3 OC due to evaporative and radiative cooling (Fairall et al., 1996;

Wick et al., 2005). Since Xe is more soluble at colder temperatures, the effective saturation anomaly of Xe

at the surface is - 0.5 to 0.9% smaller than calculated in our model. The magnitude of the diffusive gas

exchange flux would thus be larger than the model predicts when Xe is undersaturated and smaller than the

model predicts when Xe is supersaturated. Future versions of the model should address this cool skin effect.

However, recent estimates of the cool skin effect on the gas exchange of CO2 suggest it is less important

than previously had been thought (McGillicuddy et al., 2007; Zhang and Cai, 2007), in part because the

temperature boundary layer is an order of magnitude thicker than the mass boundary layer.

4.4.2 Controls on the Parameters

In order to assess which gases are controlling the values of the parameters, we performed a "knock-out"

study where we systematically increased o&a to 1000 (from the typical value of 1) for each gas in turn (Table

4.9). We thus examined how the parameters changed depending on which gases were included in the cost

function. If the parameters did not change much after the exclusion of a given gas, then that gas is not

exerting much control on the parameter. The diffusive gas exchange parameter, yc changed by at most

10% if any one gas was excluded from the cost function. Hence, all the gases suggest similar values for

7G and thus our value of 0.79 is robust to choice of gases included. This gives us confidence in at least the

consistency of our results.

The total air injection flux changes by up to 25% if one of the gases is excluded. The largest total air

injection flux is predicted when Ne is excluded. Once again, He and Ne are playing off each other to some

extent with the He data pointing to a larger air injection flux and the Ne data pointing to a smaller air injection

flux. The fraction of complete vs. partial air injection changes dramatically depending on which gases are

included in the cost function - from the extreme case of being all complete trapping if Ne is excluded to to

being predominantly partial trapping if He and Ne are excluded.

The fraction of complete vs. partial trapping is somewhat difficult to constrain given the quality of our

current data and the uncertainties associated with the solubilities of the gases. We conducted a sensitivity

study where we ran the model five times, each with approximately the same amount of total air injection but
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Table 4.9: The parameter values calculated using the nonlinear optimization scheme when one or more gases
was excluded from the cost function. The base case is included in the first line for reference purposes. The
air injection fluxes FMG in mol m- 2 s- 1 of the sum of all the major gases (N2 , 02, and Ar) is listed for the
complete trapping flux, the partial trapping flux, and total air injection flux for all the cases.

Gas(es) Excluded

none

He

Ne

Ar

Kr

Xe

He and Ne

Kr and Xe

7G

0.79

0.78

0.84

0.87

0.76

0.75

0.84

0.71

A,(xlO3)

3.21

2.56

4.48

3.37

3.11

3.10

4.20

2.94

Ap (x10- 5)

1.64

2.75

0

2.18

1.53

1.45

0.41

1.36

Complete FMG

1.23x10 - 6

9.80x10- 7

1.71xl0-6

1.29x10-6

1.19xl0 - 6

1.19xl0-6

1.61xl0 - 6

1.13x10- 6

with a different percentage of complete trapping, ranging from 0% to 100% (Fig. 4-10). The ratio of He to

Ne saturation anomalies changes with different fractions of complete trapping. However, our He and Ne data

have uncertainties of roughly 1%, preventing us from using He and Ne as a tight constraint on the fraction

of complete vs. partial trapping. Interestingly, the winter saturation anomaly of Ar, Kr, and especially Xe

increase as the fraction of partial trapping increases. Since partial trapping is proportional to the solubility

of the noble gases and the heavier gases are more soluble, they are much more affected by partial than by

complete trapping. At the moment, given the solublity uncertainty in Xe, we cannot use Xe to constrain the

fraction of complete vs. partial trapping. However, if the solubility uncertainties in Xe were resolved, then

Xe could offer a powerful tool for distinguishing between partial and complete trapping.

4.4.3 Sensitivity of Parameters

We examined the robustness of the choice of parameters by running the inverse scheme with various sets

of physical parameters, different aA, different proportions between the upper ocean saturation anomaly

component and the deep concentration component of the cost function. We also explored including or
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1.39x10- 7

2.34x10 - 7

0

1.86x10 - 7

1.30x10-0

1.23x10 - 7

3.52x10-8

1.16x10 - 7

Total FMG

1.37x10 - 6

1.21x10-6

1.71x10 - 6

1.48x10-6

1.32x10 - 6
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Figure 4-10: Sensitivity of the surface saturation anomalies of the five noble gases to changes in the propor-
tion of complete vs. partial trapping. All five runs have similar total amounts of air injection. The model
run with the largest fraction of complete trapping (red) has the lowest winter surface saturation anomalies
of the heavier noble gases. Xe is the most sensitive gas to the proportion of complete vs. partial trapping.
Please note the difference in scale between the He and Ne plots and the Ar, Kr, and Xe plots.
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excluding the seasonal amplitude of saturation anomalies and including a constant data/model offset to

potentially account for problems with our model.

The magnitude of diffusive gas exchange varies by ±6% depending on the set of physical parameters

used to run the model. The total air injection and the partitioning between complete and partial traping

change by approximately 6% depending on the set of physical parameters used. Since we cannot distinguish

between the three sets of physical parameters, this ± 6% range is a source of uncertainty in our air-sea gas

exchange parameters.

The gas exchange parameters are sensitive to the choice of ea,. We include in ao (1) the uncertainty in

sampling and analysis, assessed by the deviation between duplicate pairs, (2) the solubility uncertainties in

the noble gases and (3) the standard error in our estimates of average mixed layer saturation anomaly (see

Table 4.4). The first and third of these contributions are clearly defined. The second contribution, i.e. the

uncertainties in the solubility values, is not well known. The uncertainties in the solubility determination

of Ne and Ar are stated by Hamme and Emerson (2004b) to be 0.3% and 0.13% respectively. For the other

gases, however, the estimates are less clear. For He, we apply a correction ranging from 0.5% to 1.5% to the

Weiss (1971) solubility values. We estimate the uncertainty in the corrected He solubility value to be 0.5%

since the estimated uncertainty in uncorrected solubility values is 1% and the correction should improve the

values by at least a factor of 2. For Kr, Weiss and Kyser (1978) list the uncertainty as 0.4%. We have used an

uncertainty of 1% in most of our calculations since we expect the Weiss and Kyser Kr values to be no better

than the He or Ne values. The solubility of Xe is the most uncertain, but exactly how uncertain is not clear.

Hamme and Severinghaus (2007) suggest the Xe solubility values may be in error by 2% based on deviation

of an ocean Xe profile from expected values. However, that study does not offer a firm constraint on the

uncertainty in Xe solubility since the estimate is simply based on their data not meeting their expectation.

In order to better assess the uncertainty in Xe solubility, and indeed in the solubility of all the gases,

we compared the freshwater versions of the "standard" set of solubility relationships used in this study

with freshwater solubility values derived by Krause and Benson (1989) (Fig. 4-11). By "standard", we are

referring to the solubility relationships used here, e.g. modified Weiss (1971) for He, Hamme and Emerson

(2004b) for Ne and Ar, Weiss and Kyser (1978) for Kr and Wood and Caputi (1966) for Xe. The Krause and

Benson (1989) measurements (referred to here as KB) were carefully made using pressure measurements
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and have uncertainties of less than 0.1%. However, the Krause and Benson (1989) measurements were

only made in freshwater and thus we cannot use them directly for our study. Nonetheless a comparison

between them and the freshwater versions of the standard solubility relations gives us insight on the possible

uncertainties in the standard solubility relationships. The deviations of Ne, and Ar from the KB values are

less than 0.3%, and are on average 0.04% for Ne and 0.14% for Ar. Our "Hamme-corrected" He solubility

relationship differs from the KB values by at most 0.8% at 18 OC and on average by 0.3%, suggesting that

an error estimate of 0.5% for He is a reasonable choice. The standard Kr solubility values differ from KB

by at most 1.1%, and on average by 0.8%, suggesting our 1% estimate was reasonable, but perhaps too

pessimistic. We conducted an inverse run using a 0.5% estimated uncertainty in Kr values. The standard Xe

solubility value differs from the KB values by at most 1.5% but because the value is 1.5% higher than the

KB value at low temperatures, and 1.5% lower than the KB values at high temperature, the average deviation

is only 0.11%. We thus investigated the sensitivity of our results to a choice of 1%, 1.5% and 2% estimated

uncertainty in Xe solubility.

The values of the diffusive gas exchange parameter changed by at most ± 4%, the total air injection

flux changed by at most ± 4%, and the partitioning between partial and complete trapping changed by at

most ± 2% depending on the choice of uncertainty in the solubility of Kr or Xe (within the range described

above). If, however, the uncertainty in solubility values were not included for any of the gases (in other

words, if assumed that we knew all the solubilities perfectly), then the results changed substantially for air

injection but only by 10% for diffusive gas exchange: 7y -=0.87, Ac=2.98x10 3 , and Ap=3.6x105. Using the

parameters from this extreme case is clearly not justified since we know there are substantial uncertainties

in the solubilities of the noble gases. Nonetheless, the fact that there is no big difference for diffusive gas

exchange is reassuring. The large difference for air injection suggests the need for accurate determination

of Kr and Xe solubilities.

We also performed one run where we weighted the gas contributions in the cost functions by the variance

of the observations. The advantage of this is then each of the gases has a similar contribution to the cost

function - otherwise since Xe has the widest range in surface saturation anomalies, changes in Xe have a

disproportionate effect on the cost function. The magnitude of diffusive gas exchange did not change and

the magnitude of the air injection flux changed by only 1% if the variances were included. The proportion
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Figure 4-11: The ratios of solubility concentrations used in this study (denoted as ax) to the Krause and
Benson solubility concentrations (denoted aKB) for freshwater from 18 'C to 30 OC. The deviation of this
ratio from 1 gives a measure of the size of the uncertainty in the solubility values used. However, it does
not provide a valid way of "correcting" the solubility values used since Krause and Benson only determined
solubility for freshwater and our study is for seawater. Neon and Ar solubility values agree the most closely
whereas Xe solubility values are the most different.
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of complete vs. partial trapping was more sensitive and changed by approximately 4%.

Our cost function has two components - a mixed layer saturation anomaly component and a deep con-

centration component. In the base case, these two components are approximately equal. We explored the

sensitivity of the parameters to relative contributions of these components by changing al and a2 so that the

surface component was either twice as large or half the size as the deep component. The diffusive gas ex-

change fluxes and the air injection fluxes change by less than 3% suggesting the parameters are not sensitive

to the balance between the two components.

Our base case uses the actual values of the saturation anomalies in the cost function. A different possible

formulation of the cost function includes the seasonal amplitude of the saturation anomalies of the noble

gases. The advantage of this approach is that it would mitigate any systematic offsets in our model or in the

solubility values. We thus performed runs where we added in a component of the cost function to reflect

the deviation in seasonal amplitude of the surface saturation anomalies between the data and the model. We

either weighted both the seasonal amplitude and the absolute magnitude of the surface saturation anomalies

equally (run #10) or weighted the seasonal amplitude as only 25% of the mixed layer component of the cost

function and the absolute magnitude as 75% (run #11). The values of yG changed by at most 4%, the total

air injection flux by 15%, and the partitioning between partial and complete trapping only change by 10% if

seasonal amplitudes are included in the cost function. When the seasonal amplitude was included, the total

air injection flux decreased and the fraction due to partial trapping increased.

The biggest changes in our parameters occur if we include a constant offset in the data/model compar-

ison. For example, the model does not directly treat lateral advection which could lead to uncertainties in

especially Kr and Xe. We examined what effect a problem in the model would cause on our choice of pa-

rameters by adding a constant offset to our model-data comparison. This offset differed for each gas; since

Xe is more sensitive to thermal changes, it may be more sensitive to problems with the model. We tried

two choices of constant offsets: 0.5%, 0.75%, and 1% for AAr, AKr, and AXe respectively in run #12,

and 0.25%, 0.375%, and 0.5% respectively for AAr, AKr and AXe in run #13. We chose the relative sizes

of these offsets by comparing the change in solubility value with temperature for the gases. In particular,

arguments by Ito and Deutsch (2006) show that the heavier gases are supersaturated in the subsurface as a

result of diapcynal mixing. We calculated that if Ar was 0.5% supersaturated due to diapycnal mixing, then



Kr would be 0.75% and Xe would be 1% supersaturated. Although we should be accounting for diapycnal

mixing in our model through our choice of the vertical diffusivity constant, Kz, these numbers seemed a

reasonable starting point for considering data/model offsets.

The diffusive gas exchange parameter, yG increased by 30% if we included a constant data-model offset

of 0.5%, 0.75%, and 1% for AAr, AKr, and AXe respectively. The total air injection flux increased by 6%

for He and decreased by 20% for Xe. Moreover, the proportion of air injection switched to entirely complete

trapping; since the Xe winter saturation anomalies are now "matched" by the model (given a +1% model

offset), the air injection must be completely trapped in order not to add any more Xe in the winter-time.

These large changes suggest that the results are sensitive to model dynamics and thus any errors in model

dynamics will propagate into determination of gas exchange parameters. Further work on improving this

model or on a more complicated model that includes lateral advection might be worthwhile. Additionally,

a longer time-series will help resolve whether the model-data discrepencies occur every year. We have

samples from three full years but we have only analyzed one year of samples for this study.

4.5 Conclusions

In this study, we use a 14 month time-series of five noble gases to determine parameters for calculating

the fluxes of air-sea gas exchange, explicitly separating and quantifying diffusive gas exchange, complete

bubble trapping, and partial bubble trapping. The parameters for both air injection and diffusive gas ex-

change determined here and their associated equations can now be applied to calculate the air-sea flux of

any gas of interest. The magnitude of diffusive gas exchange is approximately 20% lower than predicted

by Wanninkhof (1992) and in the same range as more recent estimates by Ho et al. (2006) and Sweeney

et al. (2007). Indeed, the magnitude of diffusive gas exchange in the parameterization presented here agrees

within 2% to that of Ho et al. (2006) and is 11% lower than that of (Sweeney et al., 2007). However, such

agreement is deceptive since Ho et al. and Sweeney et al. did not explicitly include air injection in their

parameterizations. In tracer release experiments, 3He and SF6 are added to the water, driving a diffusive gas

exchange flux out of the mixed layer. Partial bubble trapping should also result in a flux out of the water,

since the 3He and SF6 could diffuse into the bubbles and then escape to the atmosphere. Thus the tracer

153



release experiment gives the flux due to diffusive gas exchange and partial trapping but does not account

for complete trapping. In the case of radiocarbon (Sweeney et al., 2007), the influx of 14C into the water

is considered and therefore in these studies diffusive gas exchange and air injection (both partial and com-

plete) are working together. In contrast, the parameterization presented here separately considers each type

of flux and therefore contains three separate parts for calculating the flux of diffusive gas exchange, partially

trapped bubbles, and completely trapped bubbles.

Relatively little previous work has been done on estimating sizes of air injection fluxes. Additionally,

the air injection flux can change dramatically with the wind speed (given the cubic dependence) and thus

comparing estimates of air injection at different locations and times is difficult. The 02 bubble flux estimated

by Hamme and Emerson (2006) at station ALOHA in Hawaii is 7x10- 8 mol m- 2 s- 1, which is more than

three orders of magnitude smaller than the 02 bubble flux of 1x10- 4 mol m- 2 s- 1 estimated by Zhang et al.

(2006) during a winter storm at station PAPA in the Northeast Pacific. Our estimates fit within this wide

range. Our "summer" or low wind speed estimate of air injection flux for 02 (calculated at ulo=7 m s- 1) is

approximately 8.6x10- 8 mol m- 2 s- 1, comparable to Hamme and Emerson's value. Our "winter" or high

wind speed air injection flux for 02 (calculated at u10=15 m s- 1) is 2.0x10- 6 mol m- 2 s- 1. In very high

wind speeds (uo10=25 m s- 1) comparable to the winter storm wind speed seen by Zhang et al. (2006), we

estimate an 02 bubble flux of 1.4x10 - 5 mol m- 2 s- 1. This is still an order of magnitude below the estimate

of Zhang et al. The extrapolation of our results to wind speeds of 25 m s- 1 may not be justified since our

time series data was collected with winds primarily less than 15 m s- 1 and thus any extrapolation is sensitive

to the assumption of a cubic dependence on wind speed.

The partitioning between complete and partial trapping we calculate here is within the range of that

predicted by Hamme and Emerson (2006). We found that in the winter, completely and partially trapped

bubbles lead to significant contributions in the saturation anomalies of even soluble gases, suggesting that

air injection may be more important than previously thought for soluble gases, such as CO2.

We examined the sensitivity of our parameters to a range of conditions and found the results to be

consistent to within approximately ±6% for the magnitude of diffusive gas exchange, and ±15% for the air

injection fluxes. The root mean square wind speed over the time-series was 6.7 m s- 1 ± 6.6 m s- 1. This

suggests that our parameters are best known at ,7 m s- 1 and the parameterization is valid between 0 and
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13 I s- 1 (within one standard deviation of the mean). Additionally, the parameterization is only valid for

similarly oligotrophic waters. Coastal waters have surfactants that can depress the gas exchange (Frew et al.,

2004).

Additionally, as a cautionary note, however, the consistency of these values does not necessarily ensure

their accuracy. Our biggest sources of uncertainty are the possibility of systematic problems with our model

and with the solubility functions of the heavier noble gases. It thus would be worthwhile to revisit the same

data-set with a more complete model. We tried to account for the uncertainty in the solubilities by the

weights in our cost function, but nonetheless, the need for more accurate solubility determinations of the

heavier noble gases is critical.

Once we have an improved model and more accurate solubility values, we could examine the effect

of different wind products on our parameter choice. The Bermuda Testbed Mooring (Dickey et al., 1998)

provides a record of wind speeds measured at a mooring nearby our sample collection. The record has gaps

during times when the mooring was not deployed but nonetheless it offers the valuable chance to link direct

wind measurements with gas exchange processes. Additionally, we should examine the effect of using the

NCEP reanalysis wind product on our parameters. Since NCEP and QuikSCAT have different mean u0o, we

would have calculated different parameterizations if we used a different wind product. Thus the parameters

calculated here should either be applied only to QuikSCAT winds or the appropriate corrections should be

made. Since many researchers use NCEP winds, it would be useful to determine a set of parameters that is

consistent with NCEP winds.

Additionally, it would be interesting to use our time-series of noble gas data collected here in combi-

nation with satellite altimetry and backscatter measurements in order to calibrate air-sea gas exchange flux

parameterized as a function of surface roughness as well as wind speed (Woolf, 2005; Glover et al., 2007;

Frew et al., submitted, 2007). Some of the variability in existing parameterizations of air-sea gas exchange

may be because the diffusive part of the gas transfer rate does not directly depend on wind speed but rather

on the frequency spectrum of the divergence field at the surface and thus is a function of surface roughness,

surfactant films, sea state, etc. The data set collected here, in combination with satellite records of surface

altimetry and mean square slope, could offer the valuable opportunity for constraining a parameterization of

air-sea gas exchange based on surface roughness.
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Chapter 5

Estimates of Biological Production from a

Time-Series of Noble Gases, Tritium, and

Helium-3
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Abstract

A fourteen month time-series of 3He, tritium, oxygen, and noble gases collected in the Sargasso Sea between

July 2004 and August 2005 is used to quantify new production, export production, and net community

production. The flux of 3He from the mixed layer is used to estimate new production of 0.9 ± 0.3 mol N

m- 2 y- 1, which is equivalent to 10 + 3 mol 02 m- 2 y- 1. Apparent oxygen utilization rates calculated from

tritium/helium dating of thermocline waters lead to estimates of export production of 3.7 to 5.0 mol 02 m- 2

y-1. Euphotic zone seasonal cycles of 02 and Ar, combined with an upper ocean one-dimensional vertical

model, result in estimates of net community production of 3.0 to 5.2 mol 02 m- 2 y-1. The discrepancy

between the new production estimate vs. the estimates of export and net community production may reflect

a larger than expected contribution of biological production in the winter or may be a result of uncertainties

and differences in the temporal and spatial scales inherent in the methods. The 3He flux gauge and apparent

oxygen utilization rates yield a regional scale estimate of new production whereas the euphotic zone 02 and

Ar cycles give a local, immediate estimate of net community production.
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5.1 Introduction

A wide range of methods that average over various space and time scales have been applied to determine

the amount of carbon exported from the euphotic zone. Upper ocean sediment traps offer the advantage of

direct collection of sinking particles but likely have collection biases due to swimmers and hydrodynamic

flow across the mouth of the traps (Gardner, 2000). Neutrally buoyant sediment traps likely resolve the

hydrodynamic issue (Buesseler et al., 2000; Valdes and Price, 2000; Stanley et al., 2004). However, sedi-

ment traps average over time scales of a few days and thus may easily miss or be biased by large episodic

sinking events. Export can be estimated from 234Th disequilibria and Th:C ratios, with such estimates dif-

fering from sediment traps by as much as a factor of three to ten (Buesseler, 1991; Buesseler et al., 1994;

Murray et al., 1996; Hernes et al., 2001). Radiotracer incubation bottle experiments offer a snapshot of the

new production at a particular time and place (Dugdale and Goering, 1967) but again spatial and temporal

heterogeneity can make such snapshots difficult to interpret. Additionally, so-called bottle effects cause by

confining production to a bottle and thus subsampling the community, disrupting grazing, potential leaching

of chemicals from the bottle, etc. can lead to difficulty in interpreting the bottle estimates of production.

Episodic events such as eddies (McGillicuddy et al., 1998, 1999; Sweeney et al., 2003; Mourino-Carballido

and McGillicuddy, 2006; McGillicuddy et al., 2007) may constitute a large fraction of new production and

might be missed by bottle experiments or sediment traps.

Satellite measurements of ocean color, and by extension of net primary production (NPP), are extremely

useful because of detailed spatial and temporal coverage (Behrenfeld et al., 2005). However, satellites mea-

sure only water characteristics down to one optical depth and they measure ocean color, not NPP directly;

estimates of NPP from ocean color via models have errors on the order of a factor of two (Carr et al., 2006).

Satellites may not accurately track production at the base of the euphotic zone. Moreover, satellites give

a measure of the inventory of chlorophyll. The relationship between the standing stock of chlorophyll and

productivity is not necessarily constant. Additionally, net community production (NCP), rather than NPP,

is the most climatically relevant parameter (where NCP is defined as NPP minus heterotrophic respiration),

and NCP is difficult to estimate from NPP.

Geochemical tracers are ideal tools for studying rates of biological production because they allow for

collection of large amounts of data and because they characterize the integrated behavior of systems over
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broad spatial and temporal scales. Tracers thus complement methods such as satellites, which offer detailed

coverage but are hard to relate to NCP, and they complement sediment traps and incubation experiments,

which provide a snapshot of one particular location at one particular time. A variety of geochemical tracers

have been used near Bermuda in the oligotrophic Sargasso Sea to quantify three types of production - net

community production, export production, and new production. Export production is defined as the flux of

organic matter leaving the euphotic zone. New production is defined as the flux of new nutrients into the

euphotic zone, primarily through upwelling or upward mixing of thermocline waters (Dugdale and Goering,

1967). Over sufficiently long temporal and spatial scales, the three types of production should be in balance

(Eppley and Peterson, 1979). In this study we use a fourteen month time-series of 3He, tritium, 02, and Ar

measured at the Bermuda Atlantic Time-series Study (BATS) site between July 2004 and August 2005 in

order to measure new production through the use of the 3He flux gauge technique (Jenkins, 1988b; Jenkins

and Doney, 2003), export production from apparent oxygen utilization rates (Riley, 1951; Jenkins, 1977,

1980), and NCP from euphotic zone seasonal cycles of 02 and Ar (Craig and Hayward, 1987; Emerson,

1987; Spitzer and Jenkins, 1989).

The principle behind the 3He flux gauge technique is that nitrate and excess 3He are correlated in the

thermocline because as water ages, it gains in nitrate due to continuing remineralization and gains in 3He

due to decay of tritium. When this water is mixed into the euphotic zone, it supplies the the nutrients needed

for new production and also carries an excess 3He signal. We can measure excess 3He in the mixed layer and

use a gas exchange relationship to calculate the air-sea flux of excess 3He to the atmosphere. This excess

3He flux out of the mixed layer must be balanced by a supply of excess 3He from below on annual or longer

time scales, and thus gives us a measure of the amount of excess 3He being input into the mixed layer. We

then use the correlation between excess 3He and nitrate in order to predict the input of nitrate. Therefore,

this calculation predicts new production based on the physically mediated nitrate flux from vertical transport

of thermocline waters - it does not take into account nitrate from other sources such as nitrogen fixation or

zooplankton migration (Steinberg et al., 2000). Excess 3He must be transported physically and we assume

that the physical transport (i.e. advection or turbulent mixing) does not discriminate between excess 3He,

nitrate, phosphate, or any other constituent of the water. Additionally, it assumes that the water is coming

from the thermocline and thus the correlation observed between nitrate and excess 3He for the thermocline
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can be used.

3He and tritium can be used in the aphotic zone to calculate apparent oxygen utilization rates (AOUR).
3He and tritium are used as a "clock" in order to estimate the ventilation age of the water (Jenkins and Clarke,

1976). When the water is at the surface, excess 3He is almost completely lost due to gas exchange. As

water is sequestered from the atmosphere and ages, 3He builds up and tritium decreases. In practice, mixing

complicates matters and thus we use a simple box model in order to estimate ventilation time scales (Jenkins,

1980). The apparent oxygen utilization (AOU) - the difference between equilibrium 02 and measured 02 -

results from 02 being consumed during remineralization of exported matter. By combining the ventilation

age of the water in the aphotic zone with the AOU, we can calculate the apparent oxygen utilization rate

(AOUR). The vertically integrated AOUR is a measure of export production.

In the euphotic zone, 02 can be used to estimate NCP. In the summer, 02 produced by photosynthesis is

trapped between the bottom of the mixed layer and the bottom of the euphotic zone, resulting in a subsurface

oxygen maximum. Argon can be used as an abiotic analogue of 02 to distinguish the physical component

of this supersaturation from the biological one, and thus to quantify the net community production. Oxygen

and Ar, however, have different boundary conditions below the euphotic zone, as there is a sharp gradient in

02 concentration due to remineralization. Thus we use a one-dimensional, vertical, modified Price-Weller-

Pinkel model (Price et al., 1986; Spitzer and Jenkins, 1989; Stanley et al., 2006) and five noble gases in

order to characterize the physical component of this supersaturation. We then inversely use the model to

determine the biological activity required to produce the observed 02 signals.

This study is unique in that it measures all three types of production - NCP, new production, and export

production - using geochemical tracers at the same time in the same place. We begin to make inferences

from comparing the types of production, given of course the caveats in our methodology. In section 5.2 of

this paper, we describe in detail each method used. In section 5.3, we present the results for each type of

production estimated and discuss the limitations of each method. In section 5.4, we synthesize the results

and reflect how they relate to the broad questions of nutrient cycling and biological production.
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5.2 Methods

5.2.1 Data Collection

Helium Isotopes and Noble Gases Helium isotopes were measured on the same samples that were used

for noble gas analyses. Please see Chapter 4 for complete details on sample collection, including exact

location and time of samples. In brief, samples were collected aboard the R/V Weatherbird II, the R/V Cape

Hatteras, or the R/V Oceanus at the Bermuda Atlantic Time-series Study (BATS) site every month between

July 2004 and August 2005 at 22 depths in the upper 400 m of the water column. Additionally, samples were

collected down to 4200 m during November 2004 and April 2005. On all cruises except for the February

2005 cruise, the samples were collected on a "core" BATS cruise. The samples were collected in valved

stainless steel sample cylinders (90 cc volume) by gravity feeding through tygon tubing from Niskin bottles.

The gases were extracted from the samples into aluminosilicate glass bulbs (approximate volume of 25

cc) in the on-shore laboratory at the Bermuda Biological Station. Details of the sampling and extraction

procedures are described in Lott and Jenkins (1998).

Samples were extracted as soon as possible - usually within 24 hours of sample collection - because

He permeates through the viton o-rings in the cylinder plug valves. Experiments conducted with degassed

water suggest that samples are compromised at a rate of 0.46% of their He disequilbrium per day. Thus

for a sample with a 2% difference in He isotope ratio, a 24 hour delay would lead to a signal reduction of

0.009%. The aluminosilicate bulbs were brought to Woods Hole Oceanographic Institution and stored in

ambient conditions for up to two years before analysis. Because the gases have a practically zero permeation

rate through aluminosilicate glass, the only effect of this storage time on our measurements is for the decay

of tritium in water in the sample bulb to slightly elevate the He isotope ratio by approximately 0.02%. This

correction is small because when the samples were first collected, we extracted all the 3He from the samples

but only about 5% of the water and thus only about 5% of the tritium. This correction is small compared to

the measurement uncertainty and is accounted for in our calculations.

The aluminosilicate bulbs are attached to a dual mass spectrometric system and analyzed for He isotopes

as well as for Ne, Ar, Kr, and Xe. For details of analytical procedures, please see Chapter 2 of this thesis.

In short, the noble gases are purified and separated by being sequentially drawn through a two-stage water
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vapor cryotrap, a Pd catalyst, and Ti-Zr-Fe getters onto two cryogenic traps. Neon, Ar, Kr, and Xe sorb onto

a stainless steel cryogenic trap and He sorbs onto an activated charcoal cryotrap. The charcoal cryotrap is

warmed to 40K and He is selectively released into the helium isotope mass spectrometer (HIMS). The HIMS,

an improved system based on the "Clarke design" (Clarke et al., 1976), is a purposely constructed branch

tube, statically operated, dual collector magnetic sector helium isotope mass spectrometer, radius of 25.4 cm,

equipped with a Faraday cup and a pulse counting SEM. The other noble gases were released sequentially

from the stainless steel cryogenic trap into a statically operated quadrupole mass spectrometer (QMS) for

measurement by peak height manometry. The QMS is a Hiden quadrupole mass spectrometer (P/N PCI

1000 1.2HAUI3F 1301-9 PIC type 570309) run in static mode, equipped with a pulse counting secondary

electron multiplier (SEM). The system, including the processing line, cryotraps, and mass spectrometers,

is operated under computer program control to achieve a high degree of reproducibility and for continuous

operation.

Standards, consisting of precisely known aliquots of marine air, are used for reference for the He isotopes

and for calculation of absolute amount of noble gases in the samples. These standards are processed in the

same way as samples. Additionally, the measurements are corrected for non-linearities in the processing

line and mass spectrometer. The linearity correction for He isotopes is typically around 0.01%, which is

smaller than our measurement uncertainty.

The helium isotope data are presented here as isotope ratio anomalies 63He relative to the atmospheric

standard and are defined as

63He= RsRm 1 x l00 (5.1)

where Rsm = (- ),• r is the isotopic ratio in the sample and Rtd = e()std is the isotopic ratio in

an air standard. Measurement error in the isotope ratio anomaly as determined by reproducibility of air

standards is 0.1% and as determined by reproducbility of sample replicate pairs is 0.14%.

The argon and oxygen data are presented here as saturation anomalies A, which are the percent deviation

from solubility equilibrium, and defined as

iA =-' 1 X 100 (5.2)
Ci,eq
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where Ci,, is the concentration of gas i in the water and Ci,eq is the concentration of gas i at equilibrium

(i.e. the solubility value). Positive (negative) saturation anomalies reflect that the gas is supersaturated (un-

dersaturated), and the magnitude of the saturation anomalies corresponds to the magnitude of the departure

from equilibrium. For Ar, we use the solubility value of Hamme and Emerson (2004b) and for 02 we use

the solubility value of Weiss (1970).

Oxygen Oxygen concentrations were measured by BATS personnel on samples collected from the same

Niskins as the noble gases. Oxygen concentration was determined by automated titration, according to the

Carpenter (1965) modification of the traditional Winkler titration. Please see the BATS method manual

(Knap et al., 1997) for more details. The precision of duplicates is typically better than 0.5 IL mol kg-.

Tritium Tritium samples were collected from Niskin bottles by gravity feeding through tygon tubing into

0.5 L or 0.95 L Boston round glass bottles that had previously been filled with Ar. The bottles were filled

with seawater to the "shoulder", leaving about 100 cc of Ar "blanket" present in order to minimize exchange

with atmospheric water vapor. Samples were collected at the surface, 50 m, 100 m, 140 m, 200 m, 250 m,

300 m, and 400 m every month. Additionally in Nov 2004 and April 2005, samples were collected at an

additional 22 depths between 500 m and 4200 m.

The bottles were brought to Woods Hole Oceanographic Institution and within typically two weeks were

"degassed" into aluminosilicate glass bulbs (volume of 200 cc or 500 cc). For degassing, the empty bulbs

were connected to a high vacuum manifold, the seawater sample was transferred using negative pressure

under an Ar "blanket" from the glass bottle to half-fill each bulb, and the bulb was repeatedly shaken and

pumped in order to completely degas the water. After six cycles of shaking and pumping, the bulbs were

flame-sealed and stored in the basement to shield from cosmogenically produced 3He. Samples from depths

shallower than or equal to 400 m were collected in 0.5 L bottles and degassed in 200 cc bulbs. Samples from

deeper than 400 m were collected in 0.95 L bottles and degassed into 500 cc bulbs. For more details on the

degassing procedure, see Lott and Jenkins (1998).

After allowing at least six months for ingrowth of 3He from tritium decay, the samples were analyzed

for 3He on a mass spectrometer, which though different than the one that measured the noble gas and helium

isotope samples, is constructed of a similar design. It is also a purposely constructed branch tube, statically
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operated, dual collector magnetic sector helium isotope mass spectrometer, radius of 25.4 cm, equipped with

a Faraday cup and a pulse counting SEM. The concentration of tritium in the sample is determined using the

radioactive decay equation from the the storage time and the amount of 3He measured. Tritium results are

expressed in Tritium Units (TU), where

TU = Tritium atoms 18TU = x 10 (5.3)
Hydrogen atoms

5.2.2 He Flux Gauge Calculations

In order to calculate the flux of nitrate into the mixed layer due to physical transport, we used the 3He

flux gauge approach. The 63He of all the samples from within the mixed layer were averaged for each

timepoint in order to yield a monthly time-series of surface 63He. The uncertainty of 3He at a particular

timepoint is estimated from the standard error of the mean of the measurements within the mixed layer. The

dynamic solubility equilibrium value of 63Heeq for each timepoint was calculated from the solubility value

of 3He (Benson and Krause, 1980). Additionally, since in the mixed layer, completely trapped bubbles lower

63Heeq (Fuchs et al., 1987) and partially trapped bubbles increase 63Heeq, we use the one-dimensional upper

ocean model described in Chapter 4 of this thesis to calculate the effect on 63Heeq from air injection and gas

exchange.

The excess of S3Heex over the solubility equilibrium value of 63Heeq is then calculated to be

63Heex = 63He - 63Heeq (5.4)

This excess of 3He results in a net flux of 3He out of the ocean. The flux of 3He is calculated according to

the diffusive gas exchange parameterization determined in Chapter 4 of this thesis, which is equivalent to

the Wanninkhof (1992) quadratic relationship scaled by a factor of 0.79. Thus the gas transfer velocity, k, is

given in cm hr-1 by
-1

k = 0.245u1o ( (5.5)660 ) (5.5)

where ul 0 is the wind speed in m s- 1 measured at 10 m above the sea surface and SCHe3 is the Schmidt

number of 3He (ratio of the kinematic viscosity to the molecular diffusivity of the 3He which was calculated
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by scaling the molecular diffusivity of 4He by the square root of the ratio of their masses ). The gas

transfer velocity was calculated at 12 hour intervals using the QuikSCAT wind record during the two week

period preceding and following each mixed layer measurement. These gas transfer velocities were averaged

and then multiplied by 1 in order to calculate kmean in units of m d- 1. We explored the sensitivity of the

results to the time period during which the gas transfer velocity was calculated, also using periods of one

week, three weeks, and four weeks before and after each measurement.

The flux of 3He out of the water, FHe3 in % m d- 1 is equal to

FHe3 = kmean(6 3 He - 63Heeq) = kmean " 63Heex (5.6)

The flux calculated with the above equation is too small by approximately 2% to 3% because we calculate

the flux from 63Heex values directly rather than calculating the flux separately for 3He and 4 He atoms. This

2% to 3% error is small compared to the total uncertainty in the approach (which is approximately 30%).

We next correct this flux for the small amount of 3He producted by in situ decay of tritium within the

mixed layer. We then fit a least squares smoothing spline to the monthly, tritium-corrected FHe3 estimates

in order to integrate the yearly flux, FHe3. This flux should be balanced by an upwelling flux of 63Heex,

and since NO is correlated with 63 Heez, an upwelling flux of NO 3 . The upwelling flux of new NO3 to

the euphotic zone, FN03 is thus estimated to be

FN03 = SN03:He " FHe3 (5.7)

where SNO3:He is the linear regression between NO 3 and 63Heex. To calculate SNO3:He, we use the slope

from the least squares linear fit between 63 Heez and NO3 from our Bermuda data and from data from the

CLIVAR repeat hydrography cruises (WOCE lines A20 and A22). We bin the data within a given density

range and then calculate the linear regression. We use the following density ranges: (1) all density surfaces

between 26.3 kg m - 3 and 27 kg m-3 ; (2) density surfaces between 26.3 kg m- 3 and 26.5 kg m- 3 ; and (3)

density surfaces between 26.3 kg m- 3 and 26.6 kg m- 3 .
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5.2.3 Apparent Oxygen Utilization Rate Calculations

Export production is calculated from the integrated AOUR profiles. First, we combine tritium and 3He data

in order to calculate the ventilation age of the water. Tritium decays to 3He with a half-life of 12.31 years

(MacMahon, 2006). At the surface, excess 3He is lost through gas exchange, and thus when water is at the

surface, the tritium/helium clock is "zeroed". Once a parcel of water submerges, it is sequestered from the

atmosphere, and 3He grows in from tritium decay. Thus, in this simple scheme, the T/He age of the water

can be calculated as

T/He age = A- ' log 1+ [3He]e (5.8)

In practice, however, mixing complicates matters considerably. If two water parcels with different tritium

and helium concentrations mix, the age of the mixture will not be equal to the weighted average of the ages

(Jenkins, 1987). Thus for time-scales of more than a few years, the T/He age is not a valid representation of

ventilation age (Jenkins and Clarke, 1976). Here, we reduce the problem by using a simple box model with

a constant ventilation rate in order to estimate the ventilation age, 7, from the calculated T/He age (Jenkins,

1980). In future work, we will explore more sophisticated treatments of ventilation age.

The box model calculates the concentration of tritium and excess 3He in the interior given surface

concentrations of tritium and ventilation time 7. For the surface concentration of tritium we use a source

function obtained by blending the Dreisigacker and Roether source function (from 1950 to 1967) with a

function obtained by fitting a smooth curve through observed surface tritium values near Bermuda from

1968 to the 1980s (Doney and Jenkins, 1988) and then to the present. The concentration of tritium in the

interior box of the model at a time t is given by

1
CT(t) = CT(t - 1) + -(Cs(t) - CT(t - 1)) - ACT(t - 1) (5.9)

where CT(t) is the concentration of tritium in the interior at given timepoint t, Cs(t) is the concentration

of tritium in the surface at timepoint t, r is the ventilation replacement time in years, and A is the decay

constant of tritium. The concentration of tritium is determined by the concentration it was at the last time

step (first term) plus the contribution from the surface box modulated by 7 (second term) minus the decay

of tritium (third term).
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The concentration of excess 3He in the interior box of the model is given by

1
H(t) = H(t- 1) + -(O- H(t- 1)) + ACT(t- 1) (5.10)

where H(t) is the concentration of excess 3He in the interior at a given timepoint t and 0 is the surface

concentration of excess 3He. We are thus assuming that gas exchange effectively zeros the surface excess

3He concentration.

We run this model with values of 7 ranging from 0 to 500 years. For each run, we start the model at

1950 with steady-state equilibrium pre-anthropogenic tritium and 3He levels consistent with the specific r

and step forward in time until the model predicts the tritium and 3He concentration for the time at which

our data was collected (Figure 5-1). We use the tritium and helium concentrations to calculate the T/He

age (according to equation 5.8) of the interior as predicted by the model. We then compare the T/He age

calculated directly from the data to that predicted by the model in order to determine the ventilation age r

of our data point. In practice, we calculate the intersection of the calculated T/He data age with the model's

T/He age curve and use the r which is at the intersection point. In order to estimate the uncertainty of 7, we

propagate the measurement uncertainties in the 3He and tritium measurements in order to calculate a range

of T/He age and then use this range to calculate a range of probable values of 7.

In theory, we could instead have compared the tritium data with the model's tritium or the helium data

with the model's helium. If we use the 3He for the data/model comparison, then we predict ventilation ages

that are approximately 15% older than when we use T/He age. We cannot in practice use tritium data for

the model/data comparison for depths shallower than 900 m, because the tritium data does not intersect with

the tritium predicted by our model due to errors in our source function. The source function is for a broad

area of the ocean rather than for the specific BATS location. For depths deeper than 900 m, a ventilation age

based on tritium is 5% to 10% younger than a ventilation age based on T/He age. By using the T/He age we

can take advantage of both tritium and 3He and minimize the effect of errors in our source function.

We then combine this ventilation age estimate with the oxygen data in order to calculate the apparent

oxygen utilization rate (AOUR), which is given by

AOUR = 02 sat - 02 meas (5.11)
Tr
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Figure 5-1: Predictions for February 2005 for (a and b) tritium, (c and d) 3He, and (e and f) T/He age as
a function of replacement time r from the box model. Plots (a), (c), and (e) illustrate results with to r <
300 y. The black dashed squares in the plots depict the regions that are shown in detail in plots (b), (d),
and (f), which present results for r < 30. The intersection of the T/He age calculated for the data with
the T/He age calculated from the box model results gives the replacement ventilation time scale for each
sample. The results of the model shown here are for February 2005 as an example timepoint in the middle
of our time-series. In practice, we calculate r for every timepoint of our data.
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where sat and meas refer to the equilibrium and measured concentrations of 02 respectively. If one as-

sumes that the water was at equilibrium when it was at the surface and that all loss of 02 since then is

due to biological consumption, then the AOUR is an estimate of biological consumption and the vertically

integrated AOUR is a measure of export production.

5.2.4 Oxygen and Argon Time-Series Calculations

Net community production is calculated from euphotic zone seasonal oxygen cycles. The oxygen signal in

the euphotic zone is influenced by NCP, gas exchange, thermal forcing, and vertical fluxes of low 02 waters.

Here we use the same one dimensional vertical modified Price-Weller-Pinkel (PWP) model that was used in

Chapters 3 and 4 of this thesis in order to characterize the thermal forcing, gas exchange fluxes and vertical

fluxes. We optimize the model 02 production against depth in order to determine NCP over a seasonal cycle.

The model is described fully in Chapters 3 and 4 of this thesis. In brief, we use a one-dimensional,

vertical, modified Price-Weller-Pinkel (PWP) model (Price et al., 1986). The model previously has been

extended to include He, Ne, Ar, and 02 (Spitzer and Jenkins, 1989) and to include Kr and Xe (Stanley

et al., 2006). The model is forced with wind stress from the QuikSCAT satellite and with heat fluxes from

the National Centers for Environmental Prediction (NCEP) reanalysis (Kistler et al., 2001), interpolated

for the BATS site. The surface temperature is restored every 6 hours to a smoothed, interpolated record

of the BATS sea surface temperature, with a restoring constant of 75 W m- 2 deg C -1 . Heat fluxes are

added to the model to compensate for the effects of lateral advection and Ekman pumping. Tunable physical

parameters include the amount of heat added to the model (Ekm), the depth to which it is distributed (Z),

and the turbulent vertical diffusivity Kz below the mixed layer. These physical parameters work in concert,

and ensemble runs were used to choose the three best sets of these physical parameters. The same physical

parameters are used here as were used in the base case of Chapter 4 of this thesis. For these studies, the

model was spun up from January, 2003 with initial conditions of temperature, salinity, and oxygen profiles

from BATS data.

The gas exchange equations used in the model are described in detail in Chapter 3 of this thesis. There-

fore here we limit our description to the representation of biological production in the model. Biological

production is incorporated through the use of an idealized oxygen production and consumption profile. The
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compensation depth is assumed to be 76 m for most runs (Najjar and Keeling, 1997; Jin et al., 2007). Above

the compensation depth, the oxygen productivity profile, Prod, is represented by a sine curve. A sine was

chosen because production should go to low values at the surface due to photo-inhibition and should go

smoothly to zero at the compensation depth due to light limitation. Future work will involve exploring the

sensitivity of the results to other shapes of productivity profile. The oxygen productivity, Prod is equal to

Prod = P - " sin ) for z < z, (5.12)

where P is a tunable model parameter scaling the total amount of production (in mol 02 m 2 y-1), z, is the

compensation depth (m), the constant ' is used for scaling purposes and is equal to the inverse of the total

area under the production curve, and z is depth (m). We examine the sensitivity of our results to the choice

of compensation depth. For the base case, we use zo=76 and for a sensitivity test, we use zo=100.

Below 76 m, oxygen is consumed. We use the profile of AOUR determined in this study as the basis for

the shape of 02 consumption in our model (Figure 5-2). We then multiply the consumption profile by C, a

tunable model parameter controlling the amount of consumption in the model, and by a scaling factor equal

to the inverse of the total area under the consumption curve. The AOUR profile shows that consumption

persists to 900 m. 02 in the euphotic zone cannot constrain this deep consumption and thus the value of C is

not meant to signify the actual amount of export production in the ocean. Rather, it is only used to provide

a reasonable lower boundary condition of 02 so that the model can accurately estimate NCP.

The total oxygen production and consumption, PTOT, is then seasonally modulated according to:

PTOT = [1 + a sin(2,r(t - to))] - Prod (5.13)

where a is the amplitude of the seasonal modulation, t is time, and to is the seasonal phase. Most runs

are performed with a=l, and thus with maximum NCP in the summer and zero NCP in the winter (Figure

5-3). We examined the sensitivity of our results to a-0.75 and a-0.5, which have more production in the

winter and thus a less steep seasonal difference. Although primary production peaks earlier in BATS, net

community production has been estimated to peak in June (Gruber et al., 1998), and thus our base case run

uses to-0.2. We examined the sensitivity of our results to the time of the peak of production by using to--O.1,



Figure 5-2: The vertical productivity profile used in the model is plotted in arbitrary units. The dashed
line indicates division between production and consumption. In the upper 76 m, biological production is
modeled as a sinusoidal function, with integrated area equal to tunable model parameter P. Below 76 m,
biological consumption is modeled according to the shape of the AOUR profile determined as part of this
work. The integrated area of the consumption is equal to tunable model parameter C. Because we are using
euphotic zone 02 data to constrain production, we cannot constrain C well. Instead the consumption is used
solely to provide reasonable boundary conditions for 02 below the euphotic zone.
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0.2, and 0.3, and thus by shifting the peak in production forward and backward by one to two months.

We then use a constrained, non-linear optimization scheme to inversely determine the best values for the

parameters P and C and thus to estimate the size of net community production. By using a cost function

that compares the difference in 02 and Ar saturation anomalies between the model and the data, we mini-

mize uncertainties associated with thermal forcing and gas exchange representation in the model. The cost

function, CF, is equal to

SN
CF = N [(AO2 - AAr)model - (AO2 - AAr)data] (5.14)

i=1

where i is a counter for the number of measurements, and N is the total number of measurements included

in the cost function. For our base run, we do a point to point comparison of saturation anomalies in the

upper 160 m of the ocean. We examine the sensitivity of our results to the "cut-off" depth of measurements

that we include in the cost function by also using cut-off depths of 100 m, 120m, 140 m, and 200 m.

5.3 Results and Discussion

Three types of biological production are estimated in this study using three different techniques. We first

present results and discuss the uncertainties in the new production estimates from the 3He flux gauge method.

Next, we present results and discuss the export production estimate from AOUR. Finally, we present results

and discuss the net community production estimate from the euphotic zone seasonal cycles of 02 and Ar.

5.3.1 He Flux Gauge

The 63He data, gas transfer velocity k, and FHe3 estimates are shown in Figure 5-4. The error bars on the

data reflect the standard error of the mean of the multiple measurements within the mixed layer. The error

is smaller in the winter when there is a deeper mixed layer and thus more measurements within the mixed

layer. For all but 3 months, 63Hee, is significantly above the dynamic solubility equilibrium value, resulting

in a flux of excess 3He out of the water (Figure 5-4a). The gas transfer velocity is larger in the winter due

to the stronger winds that occur then (Figure 5-4b). The total flux of excess 3He out of the water peaks in

the winter as well (Figure 5-4c). In the winter, deeper mixed layers "mine" the thermocline for excess 3He
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Figure 5-3: Productivity in the model is seasonally modulated according to a sinusoidal function. The base
case uses a function with maximum net community production in June and zero production in the winter. We
explored the sensitivity of the results to changing the amplitude a of production so that there is a shallower
seasonal difference (dashed gray lines) and to shifting the production maximum forward (black dashed line)
and backwards (not shown) in time.
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and presumably for nutrients as well. Since a flux into the mixed layer must be balanced by a flux out of the

mixed layer, this increased influx of excess 3He results in a larger outflux of excess 3He through air-sea gas

exchange.

We fit the excess 3He flux estimates, FHe3, with a least squares smoothing spline. The time average of

the spline for 12 months (Sept 2004 to Aug 2005) is a measure of the average flux of excess 3He out of the

mixed layer and is equal to 1.37 ± 0.16 % m d- 1. We next correct this flux for the excess 3He in the mixed

layer produced by in situ decay of tritium. The mean concentration of tritium in the upper 300 m (maximum

winter mixed layer depth) of the water column at BATS during the one year time-series is 0.73 + 0.06 TU

(average of 146 samples). The number of 3He atoms produced by this tritium is given by NAAT where N

is the number of tritium atoms, A is the decay constant for tritium and is equal to 0.05527 -1, and AT is the

change in time over which 3He is being produced. The contribution of tritium decay to the flux of excess
3He is only 0.15 % m day- 1, or 10% of our gas exchange flux. Thus the corrected annual average FHe3 is

1.22 ± 0.16 % m day- 1.

The correlation of NO with 63Heex was calculated on a number of different density surfaces in the

thermocline, using data from BATS as well as data from the two CLIVAR repeat lines collected in 2003

in the subtropical gyre (Table 5.1). As water ages, it increases in 63Heex due to increased ingrowth of
3He from tritium decay and it increases in NO due to increased remineralization. Figure 5-5 shows the

correlation for all density surfaces ao <27.0 kg m- 3 for only Bermuda and for all the subtropical gyre data.

The relationships are not significantly different, reinforcing the suitability of this approach. In surface water,

however, 3Hee is decoupled from NO- because 3He is lost in the mixed layer through gas exchange and

NO is lost in the euphotic zone by biological consumption. Thus we used oe=26.3 kg m- 3 (about 200 m)

as the shallowest depth for the regressions. The average slope as determined from the different subsets of

data is 1.98 ± 0.2 pmol N kg-' %- 1 and we use this as our value of SN03:He.

Combining the regression coefficient and the excess 3He flux yields an estimate of 0.90 ± 0.3 mol N m3

y- 1. The estimated uncertainty includes contributions from measurement error, uncertainty in gas transfer

velocity parameterization, uncertainty in solubility equilibrium values, and uncertainty in the NO3 :63Heex

regression. To compare this with the other estimates of biological production determined here (Table 5.2),

we use the revised Redfield ratios of Anderson and Sarmiento (1994) to convert this to an oxygen flux of 9.6
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Figure 5-4: (a) The isotopic ratio anomaly of 3He in the mixed layer (o). Error bars reflect the standard error
of the mean of multiple measurements within the mixed layer. The dynamic solubility equilibrium for 3He
(-) is calculated using an upper ocean model that includes bubble dynamics. (b) The average gas transfer
velocity for 3He calculated during +2 weeks of the 3He measurement. Error bars reflect the 10% estimated
uncertainty in the gas exchange parameterization. (c) The excess 3He flux out of the mixed layer. Error bars
reflect the combined error of the measurement uncertainty and the gas transfer velocity uncertainty. Note
the flux peaks in the winter when upwelling "mines" the deep water, bringing up 3He. The spline that is fit
to the data is used to calculate the annual integrated flux.
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Table 5.1: Regression between 63Heex and NO calculated using different subsets of data and different
density surfaces (min. density < ao < max. density). Slope and intercept are calculated from a linear least
squares fit to a plot of the N03 vs 63Heex data. Bda refers to data collected at the BATS site as part of this
study. RH2 and RH3 refer to data collected in 2003 between 200 N and 380 N as part of the CLIVAR repeat
hydrography program along WOCE lines A20 and A22. All slopes are expressed in units of /tmol N kg- 1

%-1 and intercepts are in units of pmol N kg - 1.

Data Set min. density max.density Slope Intercept

Bda 26.30 27.00 1.98 ± 0.05 1.39 ± 0.1

Bda 26.30 26.60 1.94 ± 0.1 1.45 ± 0.2

Bda 26.30 26.50 2.08 ± 0.2 1.32 ± 0.2

RH2 26.30 27.00 1.78 ± 0.08 1.55 ± 0.3

RH2 26.30 26.60 1.98 ± 0.3 0.91 ± 0.6

RH2 26.30 26.50 2.49 ± 0.4 -0.11 ± 0.7

RH3 26.30 27.00 1.99 ± 0.1 0.86 - 0.5

RH3 26.30 26.60 2.03 ± 0.1 0.66 ± 0.3

RH3 26.30 26.50 1.97 ± 0.12 0.76 ± 0.4

All 26.30 27.00 1.90 ± 0.04 1.33 - 0.2

All 26.30 26.60 1.80 ± 0.07 1.42 ± 0.1

All 26.30 26.50 1.77 ± 0.1 1.44 ± 0.2

average 1.98 1.08

std 0.2 0.5
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Figure 5-5: The relationship between 63 Heex and nitrate in the thermocline in (a)Bermuda (BATS site) in
2004-2005 and (b) the subtropical gyre in 2003. The red points show data from isopycnal surfaces shallower
than 26.3 kg m - 3 . In this region, 63Heex and nitrate are decoupled because nitrate is consumed by biological
consumption in the euphotic zone whereas 63Heex is lost through gas exchange in the mixed layer. The blue
circles show data from isopycnal surfaces between 26.3 kg m - 3 and 26.5 kg m- 3 and the green circles show
data from isopycnal surfaces between 26.5 kg m- 3 and 27 kg m- 3 . The black line is the linear regression
for all samples from isopycnal surfaces 26.3 kg m- 3 to 27 kg m- 3 , and has a slope as marked in units of
/mol N kg -1 %-1. In the text, we also present the regressions for the separate isopycnal surfaces. Data
from the subtropical gyre is courtesy of William Jenkins (personal communication).
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Table 5.2: Estimates of biological production from this study. Fluxes have all been converted into 02
currency using the revised Redfield ratios of Anderson and Sarmiento (1994).

Type of Production Method Flux (02 mol m2 y-l)

New Production He Flux Gauge 9.6 ± 3

Export Production AOUR 3.7 to 5.0

Net Community Production 02 and Ar time-series 3.0 to 5.2

+ 3 mol 02 2 m -2 -1 and a carbon flux of 6.6 + 2 mol C m-2 y-1. The conversion into 02 or C "currency"

might be underestimating the actual production due to the preferential remineralization of N and P over C

(Anderson and Pondaven, 2003) and the non-Redfield C/N production of organic matter (Sambrotto et al.,

1993) that has been observed at BATS.

The flux of N03 calculated from this method reflects an estimate of the annual new production as

delivered by the physical input of new NO0 to the euphotic zone. It does not take into account nitrogen

fixation. Nitrogen fixation, however, is estimated to be only a small fraction of the new production at BATS

(Orcutt et al., 2001; Hansell et al., 2004; Knapp et al., 2005) and thus this omission does not contribute

to much error in the estimate of new production. Instead, the largest source of uncertainty in the 3He flux

gauge estimate of new production stems from the interpretation of the air-sea 3He flux and the 3He and NO0

regression.

This approach relies on regressing excess 3He with N03 in the thermocline in order to calculate the

NO3 flux into the euphotic zone. By integrating the 63Heex profile, we can calculate that the annual

integrated gas exchange flux of excess 3He is equal to the excess 3He inventory in the upper 500 m of the

water column, and hence using a regression in the thermocline seems appropriate. However, this regression

is not straightforward, given that there is a non-zero intercept (Table 5.1). This non-zero intercept may be

the result of a steeper relationship in the upper waters because N03 is being remineralized in the shallow

aphotic zone whereas 3He is not. It may also be a result of winter deep mixed layers mining 3He and through

gas exchange fluxing it out at a time when biological uptake of N03 is small.

The implications of this non-zero intercept is that the amount of NO0 brought up with the 3He varies
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depending upon which depth the water is coming from. We cannot determine which depth the 3He is coming

from and thus we do not know which N03 :63Hee, ratio to use. Thus we are using as a conservative estimate

the slope of the relationship, but this may be an underestimate of the actual NO brought up, especially if

the NO comes from the shallow waters of the upper thermocline where remineralization is largest. In

some sense, this method is defining new production as production that is a result of nitrate coming from

far away rather than from the seasonal cycles of NO remineralized in the upper thermocline. One might

expect, then, that our estimate of new production from this method would be on the low side of production

estimates; surprisingly, it is significantly larger than the estimates of production from AOUR and euphotic

zone oxygen cycles (Table 5.2).

Another issue is that the correlation between excess 3He and NO in the thermocline is changing with

time since the 3He distribution is evolving while the NO distribution is essentially constant (Fig. 5-6). A

decade ago, the slope between 3He and nitrate was -0.95 pImol N kg- %- 1 rather than the value of 1.98

pmol N kg- %- 1 used here. The water in the main thermocline that is being accessed for the 3He flux

may be several years old and thus perhaps the slope from several years ago should be used instead of the

correlation calculated from today's values. Since this older water has a shallower slope, the 3He flux gauge

estimate may be an overestimate of the production because it uses the steeper, modem slope.

Additionally, the approach may overestimate new production if some of the water that is transported

into the euphotic zone at BATS has been transported from the North where production is higher. Between

the base of the euphotic zone and base of the mixed layer, NO can be removed from the water without

removal of 3He. Such water, therefore, would have a less steep NO :3He correlation than the one we use

here, leading to our estimate being an overprediction of new production. The 3He flux gauge technique may

therefore yield an estimate of production on the regional spatial scale, rather than on a local spatial scale.

Another uncertainty in this method comes from the estimate of the dynamic solubility equilibrium value

63Heeq. j 3Heeq is a function of temperature and gas dynamics (Fuchs et al., 1987). The solubility equi-

librium given only temperature considerations, 63He,,o, can be calculated from the relationship of Benson

and Krause (1980). To determine the contribution from gas dynamics to 63Heeq, we added nontritiugenic

3He to the one dimensional vertical mixed layer model described in Chapter 4 of this thesis. We used the

parameterizations of air injection (including both complete and partial trapping) and diffusive gas exchange
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Figure 5-6: The correlation between excess 3 He and NO, has changed with time. In 1985-1988 (data
marked by x), the slope for Bermuda data on the density horizons between -o=26.3 kg m- 3 and ao=27.0
kg m- 3 was equal to 0.95 ± 0.04 pmol N kg -1 %-1 and in 2005 (data marked by o) the slope is equal to
1.98 ± 0.05 pmol N kg -1 %-1. Only the regression line (dashed) is drawn for data from the 1993 from
WOCE line A20 between latitude 200 N and 38' N which has a slope equal to 1.17 ± 0.06 imol N kg -1
%-1. Data from 1985-1988 is from Jenkins and Doney (2003).
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as determined in Chapter 4 by the time-series of noble gases in order to determine 63 Heeq.

In addition, we performed a sensitivity study to see how much 63Heeq would change under different

air-sea gas exchange parameters (Figure 5-7). In Chapter 4 we explain how depending on the exact form

of cost function, we determined a range of air injection and diffusive gas exchange magnitudes. Here we

use the parameters from the base case, a set of parameters that yields low air injection fluxes and where

the flux has a relatively small contribution from complete trapping and a set of parameters that yields larger

air injection fluxes with a larger contribution from complete trapping. For these three cases, 63 Heeq varies

by on average 0.04%. An uncertainty of 0.04% in 63Heeq leads to uncertainties of order 20% in the new

production estimate.

We also examined the effect on 63Heex of having an air injection flux that was entirely due to partially

trapped bubbles or one that was entirely due to completely trapped bubbles using the same diffusive gas

exchange and total air injection. Neither of these latter two situations would occur in the ocean but they are

useful as end-members in order to investigate the total possible range in 63Hee. If the bubble flux is all

due to complete trapping, then 63 Heex decreases by on average 0.04%. A complete bubble flux injects air

of atmospheric ratios. In steady-state, the flux in must be balanced by the flux out. Since the gas transfer

velocity of 3He is larger than of 4He (because of the larger diffusivity of 3 He), the equilibrium concentration

must be lower so that the total gas flux out is the same. If the bubble flux is all due to partial trapping, then

63Heex increases by on average 0.08%. 3 He and 4 He have almost the same solubility but 3He has a higher

diffusivity by a factor of - . Diffusive gas exchange is proportional to D2 whereas air injection flux

due to partially trapped bubbles is proportional to DI. The more diffusive gas, 3He therefore escapes the

bubbles more easily and hence the ratio of 3 He/4He in the water is higher, resulting in &3Heeq being greater

than 63Hesol.

The estimate of diffusive gas transfer velocity has uncertainties from two sources. One is from the

parameterization used. Here we use the gas exchange parameterization developed in Chapter 4 of this thesis

which has an uncertainty of order 10%. The second source is due to the window of wind speeds used to

calculate the gas transfer velocity. We performed the above calculations using a + two week window around

the time of sampling since approximately two weeks is the expected gas exchange time-scale for the mixed

layer. We investigated the effect on the results of using a shorter or longer window. If a one week window is
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Figure 5-7: Air injection affects the dynamic solubility equilibrium J3Heeq and thus knowledge of the
amount of air injection and the partitioning between completely and partially trapped bubbles is necessary.
The three solid lines show the 63 Heeq predicted by our model given the "base case" air injection parameters
as determined in Chapter 4 of this thesis. The low air injection and high air injection curves are calculated
using the parameters determined in Chapter 4 that gave the smallest and largest air injection fluxes, with
small and large fractions of complete trapping respectively, and thus represent the "extreme cases" of rea-
sonable values. The high air injection and the base case give almost the same dynamic solubility equilibrium
values. The small air injection case predicts values within 0.04% of the others. The green dashed line is the
equilbrium value based only on temperature. The "end-member" cases of all complete or all partial trapping
are shown by the other dashed lines.

-I~-1.3

-1.4

-1.5

S-1.6
I

-1.7

-1.8

2004.6 2004.8 2005 2005.2 2005.4 2005.6
year

183



used, then the average gas transfer velocity decreases by 7%, perhaps because of a fair weather bias in the

sample collection. If a 3 or 4 week window is used, the average gas transfer velocity decreases by 1% or 2%

respectively. Thus the results are not very sensitive to the choice of window used and hence we estimate the

uncertainty due to gas exchange to be 10%.

The NO flux calculated from this time series is -10% larger, but not significantly different, than that

calculated by Jenkins and Doney (2003). This work differs from that of Jenkins and Doney in several ways.

First, their work was based on a five year time-series and thus is less sensitive to interannual variations.

Although at the moment we have only used an effectively one year time-series, we have samples from an-

other two years. Second, the data they used was from the 1980s when there was more tritium and 3He in

the water column. This is not a serious problem for our study since though 3He has decreased over time,

the measurement techniques have improved. Third, they used a gas exchange parameterization with a cubic

dependence on wind speed (Wanninkhof and McGillis, 1999) whereas we use a gas exchange parameteri-

zation with a quadratic dependence on wind speed. They state that using the gas exchange parameterization

of Wanninkhof (1992) yielded slightly higher but significantly similar results. Our diffusive gas exchange

parameterization is 20% lower than that of Wanninkhof (1992) and thus if the only difference were due to

gas exchange parameterization, our flux should be lower than that of Jenkins and Doney, not higher. Finally,

they calculated the solubility equilibrium value from a gas exchange model which used different parame-

terizations for air injection and thus they used a 63Heeq that was elevated beyond that predicted solely from

temperature by 0.06%, whereas we used a 63Heeq that was depressed from that predicted solely from tem-

perature by -0.05%. Since we used a smaller 63Heeq, we calculated a larger flux of 63Heez and a larger

NO flux. In the Jenkins and Doney study, 63He was larger (because the time-series was from the 1980s)

and thus their results are much less sensitive to 63Heeq. In spite of the significant differences between the

two studies, the results are remarkably concordant.

5.3.2 Apparent Oxygen Utilization Rates

The tritium and excess 3He data that are used to calculate the ventilation ages are presented in Figure 5-8.

Three full years of tritium data are shown whereas only one year of excess 3He has been measured so far.

The tritium data has been decay corrected to 2005. Tritium is highest in the subtropical mode water of the



main thermocline. In some profiles, there is a second maximum at 1200 to 1600 m. A maximum at about

this density of 27.7 has been observed previously (Jenkins, 1980) and has been attributed to a northerly

source. Tritium then decreases dramatically below approximately 2400 m.

Excess 3He is at a maximum between 900 and 2000 m - this is in the region where there is still mea-

surable tritium but is below the main thermocline where 3He can be lost upwards due to mixing and then

gas exchange. Below 2000 m, there is significant excess 3He even though the tritium concentration is very

low. This water, which has high silica as well as high 3He, is probably upper North Atlantic Deep Water

that has been influenced by Circumpolar Water (Jenkins and Clarke, 1976). In the Pacific, hydrothermal

vents inject primordial 3He into the deep water. This water then flows into the Southern ocean and becomes

Circumpolar Intermediate Water, still with a high 3He. Some of this Circumpolar Water spins off into the

Atlantic, bringing its 3He signature with it. Thus the 3He in the deep water may be from primordial 3He in

the Pacific. We can estimate the 3He contribution from such water: We use 3He and Si data from WOCE line

SR01 (Drake Passage) to calculate that the regression between Si and excess 3He is 0.031 TU kg ymol-1

Si. We then combine the Si concentrations measured in our deep samples with the regression to calculate

that the 3He contribution from the Antarctic in the deep waters is 0.5 to 1.8 TU. The remainder of the 3He

signal in the deep waters (0.5 to 1 TU) may come from the volcanic activity in the North Mid-Atlantic Ridge

along the Gibbs Fracture Zone (Jenkins and Clarke, 1976) or may come from old water in which the natural

(pre-bomb) tritium has already completely decayed.

Profiles of ventilation time 7-r from the two deep profiles are presented in Figure 5-9. Qualitatively, as

depth increases, water ages and thus r increases. In the profiles, there is a maximum at approximately

1100 m in November and at 900 m in April. These depths correspond to density surfaces of 27.66 kg

m- 3 and 27.32 kg m- 3 respectively. A similar maximum at about 900 m was observed by Jenkins (1980).

This maximum is probably the result of low tritium, high 3He Antarctic Intermediate Water, as SiO2 is at a

maximum as well. Our simple box ventilation model breaks down below the main thermocline and therefore

we can only use 7 estimates at depths shallower than ,800 m.

The T/He age is also plotted on Figure 5-9 for reference. In the surface, the T/He age agrees well with

7. Between 300 and 800 m, the T/He age is an overestimate of the ventilation age. Since the change in

decay-corrected tritium concentration is decreasing with time, mixing favors old waters, resulting in the
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Figure 5-8: A time-series of (a) tritium and (b) excess 3He (reported in TU for ease in comparison with
tritium). Only one year of the 3He time-series has been measured, whereas the tritium time-series is for 3
years. Tritium data has been decay-corrected to 2005, a midpoint in the time-series and thus is reported in
TU05 . Sample locations are marked by dots. Contours are drawn every 0.1 TU05 for tritium and every 0.2
TU for 3He.
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Figure 5-9: Profiles of r in (a) the upper 2200 m and (b) the upper 800 m of the water column for November
(red) and April (blue). Also plotted is T/He age for comparison. The peak in r at about 900 or 1100 m
depending upon the month is a sign of lateral advection of a different water mass, suggesting that using the
box model is no longer appropriate at those depths.
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T/He age being too high. Below 800 m, the T/He age is smaller than r, but as described above, we cannot

use our box model at these depths and thus the comparison is irrelevant.

We next used 7 to calculate the AOUR (Figure 5-10) for the two deep profiles and for our monthly data

at depths between 140 and 400 m. The monthly data shows significant scatter. At these shallower depths,

7 has a steep slope with respect to the T/He age. Hence measurement uncertainties of 3 He and tritium

lead to large uncertainties in r and thus large uncertainties in AOUR. Additionally, there is seasonal and

interannual variability in AOU in the shallower depths (Jenkins and Goldman, 1985). Luckily, however, we

have fourteen measurements at each of these shallower depths and by averaging all these measurements can

compensate for the larger uncertainty. Although we show AOUR estimates for depths down to 2200, for

reasons mentioned above, our approach is not valid below approximately 800 m and thus these deep AOUR

estimates cannot be used. Thus the AOUR integral is a lower bound on the export flux.

We are most confident in the AOUR estimates between 200 m and 800 m. At these depths our approach

should give robust value for r and we should be well enough below 02 production in the euphotic zone for

it not to unduly influence our results. We fit a spline to the data between 200 and 800 m, and by integrating

the spline, we calculated the vertically integrated AOUR between 200 and 800 m to be equal to 3.73 ± 0.19

mol 02 m- 2 y-1

Remineralization is also occurring above 200 m and below 800 m. At 140 m, there is enough 3He that we

can still calculate r. However, there is increased uncertainty because we are getting uncomfortably close to

the 02 compensation depth, and thus 02 may be diffusing downward, confounding our estimates. Therefore

our method may be underestimating the total export. Nonetheless, we can still calculate an integrated AOUR

for the water column between 140 and 200 m. In order to estimate the contribution of the remineralization in

the water column above 140 (below 800 m), we "extended" the AOUR estimates by fitting the upper (lower)

few data points with a quadratic function. We then integrate the area under these quadratic extensions to get

a rough idea of the remineralization in these regions. These numbers are useful in so much as they give us

an idea of the contribution of the regions of the water column that are not well constrained by our approach.

The estimates of the integrated AOUR, or export production, for each region of the water column are given

in Table 5.3. The total export production integrated between 75 m and 1000 m is 5.0 mol 02 m-2 y-1. From

deep sediment traps, we know that there is non-zero export below 1000 m (Conte et al., 2001) and thus this
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Figure 5-10: Profiles of AOUR in (a) the upper 2200 m and (b) the upper 800 m of the water column for all
the data (gray circles) and averages at each depth horizon (black circles). For each data point, the error bars
reflect the propagated error from the ventilation age estimate. For the depth averages, the error bars reflect
the standard error of the mean of all AOUR determinations made at that depth. A spline fit of the data from
140 to 800 m (black line) was used to determine the integrated AOUR. Below 800 m, the model ventilation
age estimates are not reasonable. We show the AOUR estimates below 800 m but we do not use the data
below 800 m in our integration. Rather, we extend the AOUR curve by fitting a quadratic to the 600 to 800
m data. Similarly, near the surface our AOUR calculation breaks down and thus we extend the curve upward
by fitting a quadratic curve to the 140 to 300 m data (dashed line).
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Table 5.3: Estimates of export production in different depth regions of the water column. The prediction for
the depth region 200 m to 800 m is the most robust prediction. The other regions are shown in order to assess
their approximate contribution. The notes explain the limitations of the estimates for the other regions.

Depth Range Export Notes

(mol 02 m- 2 y-')

75 to 140 m 0.57 estimated by extending quadratic fit to the 140 to 300 m data

140 to 200 m 0.45 region is uncomfortably close to 02 maximum

200 m to 800 m 3.73 calculated from spline fit to AOUR data, most robust region

800 m to 1000 m 0.28 estimated by extending quadratic fit to the 500 to 800 m data

total: 5.0

AOUR estimate of export production is a lower bound. The region between 200 and 800 m contributes to

approximately 75% of the total export flux.

The AOUR profile determined in this study is surprisingly uniform with depth over the region between

250 and 600 m. Near the surface, AOUR is expected to be higher because organic matter is more abundant

and probably more labile. Deeper in the water column, the combination of a smaller amount of probably

more refractory organic matter should lead to lower AOUR. Data from sediment traps suggests that rem-

ineralization decreases with depth following a power law (Martin et al., 1987). Traditional sediment trap

data in the upper ocean, however, have limitations due to artifacts from hydrodynamic biases and swimmers

(Gardner, 2000). Nonetheless, recent experiments with neutrally buoyant sediment traps (which avoid many

of the problems associated with traditional traps) also show a decrease in remineralization with depth that

follows a power law dependence (Buesseler et al., 2007), quite unlike the relatively constant dependence on

depth that we see here.

Previous estimates of AOUR in the North Atlantic subtropical gyre show a range of behavior. Some

estimates suggest AOUR decreases more steeply with depth than what we found here (Sarmiento et al.,

1990) while other estimates show that AOUR below approximately 300 m is relatively constant (Riley,

1951). Using Radium-228, Sarmiento et al. (1990) calculated an AOUR profile that decreases uniformly
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from about 16 /mol kg- 1 y-1 near the surface to 0 /smol kg- 1 y-1 at a depth of 700 m - both the decrease

and the magnitude of Sarmiento et al's AOUR estimates are larger than the ones we calculate here. Using a

similar method to the one described here, Jenkins (1980) calculated an AOUR profile that decreases much

more sharply between 140 m and 400 m than does the profile we present here. However, between 400 and

800 m, the Jenkins (1980) profile and ours have a similar slope. Similarly, the AOUR profile of Riley (1951)

drops more sharply between 200 m and 300 m than our profile does, but at depths greater than 300 m both

profiles are relatively constant. We have samples from 12 deep profiles over 3 years which we have not yet

analyzed for 3He. It will be interesting to see if these samples show a relatively uniform remineralization

profile with depth or if they show a sharper decrease.

The magnitude of the vertically integrated AOUR here is in the middle of the range of other vertically

integrated AOUR estimates in the region. Our value of 3.8 to 5 mol 02 m- 2 y-1 (depending on the limits

of the vertical integration) is larger than estimates by Riley (1951) and smaller than estimates by Jenkins

(1980, 1987) and Sarmiento et al. (1990). Although our vertically integrated estimate is smaller than that

of Jenkins (1980), the difference is driven by the much larger AOUR estimates of Jenkins in the top 300 m.

Below 300 m, our AOUR estimates are larger than that of Jenkins because our 7 are smaller and AOU is

approximately the same. Jenkins used a similar box model as described here to calculate ventilation ages,

but he used tritium or excess 3He to calculate 7 rather than using the T/He age as we did.

Several issues exist regarding the estimation of export production through AOUR calculations. One

uncertainty, as described above, is that this calculation is most robust between 200 and 800 m and thus

we are forced to extrapolate to get an estimate of export production above 200 m. From the "extensions"

of our AOUR profile, as described above, we found that export production at water depths shallower than

200 m may be 30% of the total water column export. Export production above 200 m may be a significant

portion of the total and thus a more robust way of calculating export production in this region would be

desirable. Export production below 800 m probably accounts for less than 10% of the total export and thus

the weakness of our approach at these depths is probably less important.

Other issues arise from the basic premise on which these calculations rate - that the difference between

oxygen concentration measured and the saturation oxygen concentration divided by the ventilation time

is a valid estimate of the amount of organic matter remineralized. Oxygen at the surface is probably not



exactly in equilibrium. Even though the water at BATS is not the source water for the deeper water column,

02 measurement at BATS may give us an idea of the deviation from equilibrium. Measurements of 02 in

the mixed layer at BATS show that 02 ranges from being undersaturated by approximately 1% to 2% in

the winter to being supersaturated by 2% to 3% in the summer. Stommel (1979) argued that a "demon"

selectively pumps late winter water into the main thermocline. Modeling experiments confirmed Stommel's

hypothesis (Williams et al., 1995), finding that the subduction period lasts about one month after the end of

winter. In the late winter/early spring at BATS, the 02 saturation ranges from 99% to 101.5% depending

upon the year. If we calculate the integrated AOUR assuming surface water is at 99% of saturation value,

then we determine the integrated AOUR from 200 to 800 m to be 3.6 mol 02 m2 y- 1, a decrease in 6%

over our initial calculation. If we calculate the integrated AOUR assuming surface water is at 101.5% of

saturation value, then we determine the integrated AOUR from 200 to 800 m to be 4.1 mol oz2 m2 y-, an

increase of 10%. Thus uncertainty in the initial saturation value of 02 leads to an uncertainty of order 10%

in our calculations.

This method uses a total 02 decrease divided by the ventilation age to calculate the export production.

But the question arises of when and where exactly was the 02 consumed by remineralization? The 02

probably was not consumed linearly with time. This approach yields no information on whether the 02

was consumed immediately after the water parcel was subducted or if it was consumed the day before we

collected the sample. Rather it gives the average AOUR consumed along the path of the water parcel and

this may bias the estimates toward shallow conditions.

A final question is the suitability of our box model calculation of ventilation age. In the most basic

sense, the concept of "a" ventilation age is flawed since in actuality, there is no single age for the transit time

of water between the surface and the interior. Water mixes and thus there is a distribution of ages rather than

a single ventilation age. Additionally, different tracers favor different parts of this distribution and hence

different tracers yield different ages (Waugh et al., 2003). Nonetheless, by using a box model to calculate

tritium, we are taking into account mixing and thus calculating a more accurate age than had we just used

the tritium-helium age. Additionally, by using both tritium and helium, we achieve some independence from

uncertainties in initial conditions. In the future we will explore a more sophisticated treatment of ventilation

age.
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Finally, the box model rests on the assumption that the system is very diffusive. Several lines of evidence

support this theory. First, a "pipe" model can be used to estimate that a Peclet number of 1 (i.e. diffusive

system) gives the best fit to scatter plots of tritium and 3He (Jenkins, 1988a). Additionally, by using mul-

tiple age tracers, Waugh et al. (2003) has shown that the mean age A and the width F of the transit time

distribution are on the same order and thus again that the Peclet number is on order 1. Thus the use of our

box model is appropriate.

5.3.3 Oxygen and Argon Time-Series

The data and base case saturation anomaly differences between 02 and Ar are presented in Figure 5-11.

The largest differences between the saturation anomalies of 02 and Ar occur in the summer in the region

between base of the euphotic zone and base of the mixed layer (Fig. 5-11a). In this region, 02 builds up

because of production but is not lost to the atmosphere by gas exchange flux. The model reflects the basic

structure of the data's saturation anomaly pattern (Fig. 5-1 ib), but the AO02 - AAr maxima in the optimized

model are smaller than those in the data. Additionally the maxima persist deeper in the water column for

the data than for the model. The negative 02 saturation anomalies between 100 and 200 m - a sign of 02

consumption - are stronger in the data than the model, suggesting the model may need more consumption

between 100 and 200 m.

The NCP estimates from the inverse modeling range from 3.0 to 5.2 mol 02 m- 2 y-, with our base case

predicting a value of 3.52 mol 02 m- 2 (Table 5.4). The model has a difficult time constraining production in

the winter time (see discussion below) and thus we also report the "summer" production - production during

the six month period between Apr 1 and Sept 30. For this period, the production estimates range from 1.96

to 2.41 mol 02, with the base case predicting a value of 2.13 mol 02 m-2 . This summer prediction is much

more tightly constrained than the annual production.

The magnitude of the consumption magnitude C estimated for the model ranges from 6 to 11 mol 02

m-2 y-1 integrated over the 1000 m water column included in the model, considerably larger than the AOUR

estimates of consumption. This consumption is also much larger than the production. However, a model

that is using data in the upper 160 m cannot constrain consumption over 1000 m of water column. Instead,

the model is only constraining consumption in the upper 200 to 300 m since it is only consumption there



Figure 5-11: The difference in saturation anomaly of 02 and Ar is a measure of net community production.
Contour plots of A0 2-AAr for both the (a) data and (b) model show maxima in the summertime between
the base of the mixed layer and the base of the euphotic zone. The thin white line demarcates the mixed
layer and the circles mark locations of samples. Contour lines are drawn at 2% intervals.
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Table 5.4: Net community production as estimated from the inverse fit to the euphotic zone seasonal cycles
of 02 and Ar. The annual production is listed as well as the production between Apr 1 and Sept. 30. The
model constrains this "summer" production more tightly than the full annual cycle. The base case uses a
compensation depth of 75 m, includes samples with depths up to 160 m in the cost function, and uses a
seasonal modulation of production with amplitude of 1. We examined the sensitivity of our results to other
choices, as listed here, with the notes describing the conditions of each run.

# Annual Prod Apr to Sept Notes
(mol 02 m2 y-l) Prod (mol 02)

Base Case
3.52

Different Physical Parameters
2. 3.23
3. 3.75

2.13

1.96
2.27

Different Gas Exchange Parameters
4. 3.52 2.14
5. 3.51 2.13

Different Depths Included in Cost Function
6. 3.02 1.83
7. 3.24 1.96
8. 3.37 2.05
9. 3.66 2.22

Different Representation of Consumption
10. 3.09 1.88
11. 3.53 2.14
12. 3.30 2.00

Different Seasonal Modulation
13. 5.23
14. 4.01
15. 3.49
16. 3.91
17. 4.36

2.20
2.07
2.29
2.27
2.41

Kz = 4x10-5 m2 S- 1, Ekm =16 W m- 2

Kz = 6x10- 5 m2 s- 1, Ekm =20 W m- 2

small air injection and diffusive gas exchange flux
large air injection and diffusive gas exchange flux

depth to which points included in cost function = 100 m
depth to which points included in cost function = 120 m
depth to which points included in cost function = 140 m
depth to which points included in cost function = 200 m

compensation depth = 100 m
set consumption below 300 m to zero
force consumption in upper 300 m to equal production

to--=0: production peaks ,two months earlier
to=0.1: production peaks -one month earlier
to=0.3: production peak -one month later
seasonal amplitude of production a = 0.75
seasonal amplitude of production a = 0.5
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that affects the 02 signal that is being used in the cost function. The integrated consumption in the upper

300 m of the model is 3.3 mol 02 m 2 m- 2 -1 for the base case, roughly in balance with the 02 production. We

examined the sensitivity of our results to how we modeled consumption. The NCP estimates did not change

significantly when we either set the consumption below 300 m to equal zero or when we forced consumption

in the upper 300 m to exactly balance the production.

We examined the sensitivity of the results to the choice of physical parameters and to the choice of gas

exchange parameters, in both cases using sets of parameters that were found to be appropriate in Chapter 4

of this thesis. Production increases if the vertical diffusivity increases. With a larger Kz, there is a larger flux

of low oxygenated water into the euphotic zone that has the effect of "canceling" out the 02 produced by

biological production. Thus more production is needed to maintain the same AO02-AAr signal. The results

are not sensitive to the choice of gas exchange parameters used. Since we are looking at the difference in

saturation anomalies between Ar and 02, the effects of gas exchange are minimized.

The production estimates vary by up to 15% if different depths are used as the cut-off depth for the cost

function. When a shallower depth is used, the production decreases. In the late fall/early winter mixed layer,

the model predicts AO2-AAr to be larger than the data (Figure 5-12). When the cut-off depth decreases,

these mixed layer points are relatively more important and thus the total production decreases in order to

achieve a better match to the data.

The production estimates are sensitive to the choice of seasonal modulation of production. The depen-

dence of NCP on season is not well known. Seasonal cycles of DIC and '13C have been used to infer that

although primary production peaks in the bloom season in early spring, NCP may peak later (Gruber et al.,

1998). The relative proportion between summer and winter NCP is not known. In the winter, deeper mixed

layers increase availability of nutrients but limit light. We thus examined the sensitivity of our results to the

seasonal modulation. We examined the effect of a temporal shift (by changing to) and the effect of shallow-

ing the gradient between summer and winter production (by changing a). When the peak in production is

shifted earlier by one month, the annual estimated production increases by 15%. If it is shifted earlier by two

months, then the annual estimated production increases by 40% but the amount of production between April

and September increases by only 3%. If the peak is shifted later by one month, then the annual estimated

production estimate changes by only 1%.
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Figure 5-12: The difference in saturation anomalies of 02 and Ar in the mixed layer. The model overesti-
mates A0 2-AAr in the late fall/early winter and then underestimates AO2-AAr when the mixed layer depth
sharply increases in February 2005. The deep mixed layer brings up water that is undersaturated in 02.
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The results are also sensitive to the amplitude of seasonal production. If the seasonal amplitude of

production is decreased to 0.5, then there is a larger fraction of production in the winter (see Figure 5-

3), and the annual production increases by almost 30%. However, the "summer" production (production

between Apr 1 and Sept 30) changes by only 13%, suggesting the model is better at constraining summer

production than annual production. In the winter, there is a larger gas exchange flux and a deep mixed layer

depth (deeper than the maximum in production). Thus 02 due to winter production is rapidly outgassed and

mixed down into the consumption zone. The error structure (deviation between AO2-AAr model and data)

is remarkably similar for the model runs with different seasonal amplitudes. When the seasonal amplitude

decreases, the optimal model runs have a similar amount of vertically integrated production in the summer

but a larger amount in the winter (Figure 5-13a). The A0 2-AAr model values at 35 m are remarkably

similar in spite of the difference in winter production (Figure 5-13b). Thus our method does not constrain

winter production well.

In summary, this technique relies on (1) AO2-AAr being present (not "washed" away by deep mixing

or gas exchange) and (2) AO02-AAr being a measure of production. As shown above, in the winter, (1) fails

due to deep mixed layers and increased gas exchange. We use a model in order to characterize any verti-
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Figure 5-13: A sensitivity study of the model's response to the amplitude of the seasonal modulation of
production. (a) A steeper amplitude, a, leads to a larger difference between summer and winter production.
(b) However, very little difference is seen in the difference in saturation anomalies between 02 and Ar, even
at 35 m where this signal is strongest. This may be because the largest difference in production occurs in
late fall/winter when (c) the total gas exchange flux is large and (d) the mixed layer is deeper than 35 m. The
dashed line in (d) indicates a mixed layer depth of 35 m.

2004.6 2004.8 2005 2005.2 2005.4 2005.6

2004.6 2004.8

2004.6 2004.8

2004.6 2004.8 2005

2005 2005.2 2005.4 2005.6

2005 2005.2 2005.4 2005.6

2005.2 2005.4 2005.6

198

4

2
0

-20
-4

20

N 10

0 0

U

100

200

(b) d~Odk~ 35 m



cal transport of low oxygenated waters which would confound (2). However, uncertainties in the model's

dynamics (such as the turbulent diffusivity) will lead to uncertainty in the NCP estimate. Additionally, our

model ignores lateral transport, which may be different for 02 and for Ar.

Future work should include examining the sensitivity of NCP estimates to the vertical shape of the

production profile. In this study, production was assumed to be inhibited near the surface. However, the

vertical profile of NCP is not well known and thus production may not be decreasing in the mixed layer

as sharply as we assumed. If a profile of NCP was used that was uniform with respect to depth, then the

estimate of NCP would probably increase.

The estimate of NCP determined here (3.0 to 5.2 mol 02 m 2 m- 2  1) is within the range of NCP previously

estimated for the Sargasso Sea using seasonal 02 cycles. Using an 02 record from the 1960 to 1980, Jenkins

and Goldman (1985) estimated production to be approximately 5 02 m- 2 y-1. Musgrave et al. (1988) re-

examined the same 02 data from 1961 to 1970 using a one-dimensional upper ocean model and found a

production of 3 to 4 mol 02 m- 2 y-1. Spitzer and Jenkins (1989) used a time-series of Ar and 02 for the

year 1985 and estimated a production of 4.3 ± 1.7 0 2 m- 2 -1

In this study, we use the same model as Spitzer and Jenkins with the following differences: (1) Spitzer

and Jenkins used climatological winds and heat fluxes whereas we use QuikSCAT winds and NCEP reanaly-

sis heat fluxes; (2) Spitzer and Jenkins used a three-step linear parameterization of equilibrium gas exchange

(Liss and Merlivat, 1986), and a formulation of air injection where partial bubble trapping depended only

on the diffusivity of the gas whereas we use a quadratic gas formulation of gas exchange and the gas ex-

change parameterizations determined in Chapter 4 of this thesis; (3) Spitzer and Jenkins forced production

to balance consumption at every time step whereas we solve independently for production and consumption

and (4) Spitzer and Jenkins used different vertical profiles of production (for example a compensation depth

of 100 m and an exponentially decreasing consumption) and a seasonal modulation that peaked in spring;

(5) Spitzer and Jenkins used linear inversion (SVD) whereas we use a non linear optimization scheme. Our

sensitivity studies, however, show that these differences should not significantly change the estimate of pro-

duction and thus the similarity between our estimates and those of Spitzer and Jenkins suggest there may

not be a significant long-term change (of more than 1 mol 02 m- 2 y-1) in NCP in the Sargasso Sea over

the past twenty years.
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5.4 Synthesis

Over sufficiently long temporal and spatial scales, new production, export production, and net community

production should balance (Eppley and Peterson, 1979). It is instructive to examine the relationship between

the three types of production as estimated in this study (Table 5.2). To do so, however, we must understand

the temporal and spatial scales of the methods used here. Although the new production estimate from the

helium flux gauge is based on one year of helium fluxes, the actual time-scale of new production it applies to

is much longer, on the order of years, and it applies to a regional spatial scale. The AOUR export production

calculation integrates over years to decades and again is regional in spatial scale. We do not know exactly

when or at what depth the export took place but only that oxygen was consumed sometime between when

the water left the surface and when the water was "dated" years to decades later in the thermocline. In

contrast, the estimate of NCP is a local estimate that only reflects production during one year, and is most

accurate for a period of six months when the mixed layer is shallow and the gas exchange flux is small.

The NCP agrees remarkably well with the export production estimate, in spite of the difference in

temporal and spatial scales of the two methods. In contrast, the new production estimate from the 3He flux

gauge is twice as large as the other estimates. It is hard to believe that new production is actually double

export production and NCP. If so much new production were occurring, then there should be some sign of

it - both immediately (in NCP) and afterward (in export production). The new production estimate was

calculated for nitrate and then the revised Redfield ratios of Anderson and Sarmiento (1994) were used to

convert it into 02 "currency" for comparison with the other methods. Thus any uncertainties in this ratio

could lead to disagreement between methods. However, the expected sense of this uncertainty works in the

opposite direction; at BATS, nitrate may be preferentially remineralized (Ono et al., 2001; Anderson and

Pondaven, 2003) and thus exported matter has a high C/N ratio. C should be inextricably linked with O since

most of the oxygen is consumed when converting organic matter to CO2 and thus a high C/N ratio results

in an even larger discrepancy between the 3He flux gauge estimate of new production and the estimates of

export production and NCP.

A large uncertainty in the 3He flux gauge calculation stems from the regression slope of 3He and NO.

As mentioned above, this slope is changing with time and thus the 3He flux gauge may be overestimating

production. If the slope from a decade ago is used instead of today's slope, then the 3He flux gauge new
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production estimate would become statistically equivalent to the export and NCP estimates from this study.

The flux gauge may overestimate production for a second reason - it is possible that the water that is

transported into the euphotic zone at BATS has already circled round the gyre and has been "trapped"

between the mixed layer and base of the euphotic zone. Therefore, there may have been upstream removal

of NO without complete loss of 3He in the more productive regions to the north. Thus, the 3He flux gauge

is a regional-scale estimate of new production, rather than a local one.

The new production estimate from this study is statistically equivalent to that calculated by Jenkins and

Doney (2003) and by Jenkins (1988b), although it is on the high side of both estimates (Table 5.5). Those

estimates were on the high side, but again statistically equivalent, to estimates of export production and NCP

made through a variety of geochemical tracer techniques. The export production and NCP measured here are

within the range, albeit slightly on the low side, of other estimates of export production and NCP measured

in the Sargasso Sea using geochemical tracers. At first glance, such agreement between different types of

production and different methods is heartening. On closer examination, however, it reveals a paradox.

The 3He flux gauge technique describes the transport of water from the upper thermocline to the euphotic

zone. This water brings 3He, nitrate, and phosphate as described above but also must bring an 02 debt and

a DIC surplus, since the remineralization processes that create the nitrate and phosphate, also create DIC

and consume 02. If the remineralization quotient approximately equals the photosynthetic quotient, as

is believed (Laws, 1991), then if new production and NCP were equal, the 02 debt carried by the water

should equal the 02 produced in the euphotic zone and thus no 02 maximum would be apparent. Similarly,

the surplus of DIC would "cancel" the DIC consumed in the euphotic zone, and no euphotic zone DIC

minimum would be measured. In short, the current understanding of remineralization and physical transport

of nutrients implies that there should not be any euphotic zone 02 maximum, and yet such an oxygen

maximum is observed. In fact, if new production is really larger than NCP as this study implies, then the

problem is even worse - the new production should bring up such a deficit of 02 as to not only completely

obliterate the euphotic zone oxygen cycles but as to even turn them negative. However, there are significant

difference in C:N ratio (Ono et al., 2001) at BATS and thus perhaps the euphotic zone 02 signal stems from

the excess 02 caused by export of high C:N material in extreme oligotrophy. If the water being transported

into the mixed layer has an 02 debt associated with typical C:N ratios (because it comes from elsewhere
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Table 5.5: Estimates of biological production from past research in the Sargasso Sea. Fluxes have all been converted into 02 currency using

the revised Redfield ratios of Anderson and Sarmiento (1994).

Type of Production Method Flux Reference

(02 mol m2 - 1)

New Production He Flux Gauge 9.6 ± 3 this study
He Flux Gauge 6.0 ± 1.7 Jenkins (1988b)

He Flux Gauge 8.9 ± 2.3 Jenkins and Doney (2003)

Export Production AOUR: Thermocline invasion 3.7 to 5.0 this study
AOUR: Thermocline invasion 5.1 + 1 Jenkins (1980)

Seasonal AOUR amplitude 4.5 ± 1 Jenkins and Goldman (1985)

Net Community Production 02 and Ar time-series 3.0 to 5.2 this study

Oxygen and Ar time-series 5.4 ± 1.5 Spitzer and Jenkins (1989)

DIC time series 5.3 ± 1.4 Michaels et al. (1994)
13 C time series (mixed layer estimate only) 4.6 ± 1.5 Gruber et al. (1998)



in the gyre) but biological production produces high C:N organic matter, than an excess of 02 would be

observed.

One must remember, however, the temporal differences between the processes. The 3He flux gauge

showed the largest fluxes in the wintertime when the mixed layer deepens and mines the thermocline. In the

winter, both model and data show negative 02 saturation anomalies as the 02 debt is brought up as well.

There may be production that is partially compensating for some of this 02 debt. In the late winter/early

spring, 02 in the model is close to saturation levels. This may be because 02 produced from new production

is balancing the 02 debt brought up from below. This winter production may not be seen by our other

techniques. We have shown that the euphotic zone 02 cycles do not constrain the production in the winter.

It is harder to explain why the AOUR estimates might be missing this potentially large production signal. If

the initial 02 is actually undersaturated, then the AOUR method could also be underestimating the winter

production, but calculations done above indicate this should be a small effect. The AOUR estimate does

not constrain remineralization near the surface well, and thus may not capture any remineralization that

is occurring just below the winter mixed layer. Thus it is possible that there may be large productivity

in the winter that is not being caught by the other techniques and that could partially explain some of the

"paradox".

Other possibilities for resolving the paradox fail on close examination. For example, one might argue

that the paradox could be resolved if the upwelled water lost its oxygen debt via air-sea gas exchange before

nitrate was used. If that were the case, then the nutrients could fuel new production and yet the oxygen

maxima would not be erased. However, the time scales are in exactly the wrong direction - air-sea gas

exchange for oxygen takes several weeks whereas nutrients can be utilized in the oligotrophic ocean in

days. Alternately, one could contend that the paradox could be resolved if the photosynthetic quotient was

different from the remineralization quotient by more than a factor of two. However, such a difference over

long time scales causes mass balance problems (Laws, 1991). Another explanation would be that nitrogen

fixation accounts for the same amount of new production as is fueled by upwelled nutrients (0.5 to 1 mol N

m- 2 y-1). However, current estimates of nitrogen fixation in the Sargasso sea are much lower, ranging from

so low as to be nondetectable in N isotopic studies (Knapp et al., 2005) to 0.015 mol N m- 2 y-1 (Orcutt

et al., 2001) to 0.072 mol N m- 2 y-1 (Gruber and Sarmiento, 1997).
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5.5 Conclusions

We have used geochemical tracer techniques to estimate the amount of new production, export production,

and NCP from a fourteen month time series of 3He, 02, Ar, and tritium collected at the BATS site between

July 2004 and August 2005. New production is estimated to be 0.9 : 0.3 mol N m- 2 y-1 or 9.6 + 3 mol 02

m- 2 y-1. Export production and NCP are significantly smaller, with the former estimated to be 3.7 to 5.0

mol 02 m- 2 y-1 and the latter to be 3.0 to 5.2 mol 02 m- 2 y-1. The export production and NCP production

estimates agree well with past estimates of production from geochemical tracers from the Sargasso Sea. The

new production estimate is on the high side but statistically equivalent to an earlier estimate by Jenkins and

Doney (2003), which is also based on the 3He flux gauge technique.

The differences in new, net community, and export production may be a result of fundamental processes

in the ocean or may be a result of uncertainties with our techniques. The largest source of uncertainty

in the new production estimate is from the correlation between 63Heex and nitrate. The largest source of

uncertainty in the export production estimate is the oxygen deficit resulting from remineralization occurring

above 200 m. The water above 200 m is uncomfortably close to the 02 compensation depth and thus any

production occurring there is not easily assessed. Additionally the concept of ventilation ages from our box

model is difficult to apply to this young water. The largest source of uncertainty in the NCP estimate is from

sizable NCP which could be occurring in the winter but not being recorded in AO2-AAr due to deep mixed

layers and large gas exchange fluxes.

This study is unique in that it measures three types of production all at the same location at the same

time. Samples from another two years of the time-series will be analyzed and will allow us to see if the

differences between production estimates persist or if they are due to interannual variability. Eddies for

example can have a dramatic effect on biological production (McGillicuddy et al., 2007). Additionally,

more samples will allow us to see whether AOUR remains surprisingly constant with depth.

Future work on the 3He flux gauge technique should include relating the 63Hee. to phosphate rather

than nitrate. The Sargasso sea may be phosphate limited (Wu et al., 2000) and thus using phosphate could

result in a better estimate of new production. For the AOUR studies, in the future we could use a more

sophisticated treatment of r. The concept of tracer distribution age (Waugh et al., 2003) could be applied

to the estimated r in order to calculate a distribution of ventilation ages and thus a distribution of AOUR
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estimates. Additionally, a two-dimensional mixing/advection model could lead to more realistic estimates

of ventilation age. Future work should also attempt to use the A0 2-AAr seasonal cycles in the upper ocean

to constrain export between 200 m and the surface, blending the seasonal 0 2-Ar cycles and the AOUR

techniques. For all three tracer subsystems, future work should continue to examine the assumptions behind

the approaches and should attempt to reconcile the differences in their conclusions.
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Chapter 6

Conclusions and Future Directions
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Noble gases are ideal oceanographic tracers because they are chemically and biologically inert. Additionally,

since the five noble gases have different solubilities and diffusivities, a time-series of all five stable noble

gases, as presented in this thesis, can be used to separate and quantify physical and biological processes

in the ocean. Time-series of He, Ne, and Ar (Spitzer and Jenkins, 1989) and of Ne, Ar, and N2 (Hamme

and Emerson, 2006) have been measured before. This thesis presents the first time-series of Kr and Xe

in the ocean. These heavier gases are particularly useful because of their strong solubility dependence on

temperature, providing a useful contrast to the lighter gases. Using the time-series of all five noble gases, we

developed a parameterization of air-sea gas exchange that constrains diffusive gas exchange to +6% and air

injection to -15% for wind speeds between 0 and 13 m s- 1. Additionally, by combining the time-series of

noble gases with helium isotopes, tritium, 02 and NO measurements, we quantified new, net community,

and export production and examined the relationships between these three types of production.

The first challenge of this thesis was developing a method for precisely measuring the noble gases in

seawater samples, particularly for the heavier noble gases which have rarely been measured. We built a

processing line which uses automated cryogenic trapping and two mass spectrometers in order to separate

and analyze the noble gases. First, water vapor, methane, and active gases are removed from the samples by

a dual stage cryogenic trap, a Pd catalyst, and two Ti-Zr-Fe alloy getters. Second, a stainless steel cryogenic

trap sorbs and then sequentially releases Ne, Ar, Kr and Xe while an activated charcoal cryogenic trap

sorbs and then releases He. Helium isotopes are measured on a purposely constructed branch-tube magnetic

sector mass spectrometer equipped with a secondary electron multiplier. Neon, argon, krypton, and xenon

are measured statically on a Hiden quadrupole mass spectrometer with a pulse-counting secondary electron

multiplier. Although in principle separating the noble gases by releasing the gases at different temperatures

from the cryogenic traps should be straightforward, in practice the cryotraps need to warmed and cooled

many times throughout the analysis in order to completely separate the gases. Furthermore, the presence of

Ar, Xe and CH4 quantitatively influences the trapping and release of Kr. These matrix effects needed to be

minimized and assessed. A more inert surface on the stainless steel cryogenic trap might reduce some of

these problems. The reproducibility of our method for gas standards is better than 0.1% for He and Ar, better

than 0.15 % for Ne and Kr and better than 0.2% for Xe. For water samples, the reproducibility is worse,

probably reflecting variability introduced during sample collection and initial extraction of the gases. The
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most likely source of this variability is from bubbles entrained during sample collection. The reproducibility

for water samples as assessed from duplicate pairs of samples is ,1% for He and Ne, -0.3% for Ar and

Kr, and N0.2% for Xe. Xenon is the gas which is least affected by bubbles and it is only gas where the

reproducibility of samples is equal to the reproducibility of gas standards.

In order to quantitatively use the noble gas measurements, we employ a one-dimensional model to

capture the physical dynamics of the water column at the Bermuda Atlantic Time-series Study (BATS) site.

We thus extended a modified Price-Weller-Pinker model (Price et al., 1986; Spitzer and Jenkins, 1989) to

the heavier noble gases and made the model more "realistic" by including NCEP reanalysis forcing and

QuikSCAT winds. We performed a sensitivity study to see how well the noble gases could constrain air-sea

gas exchange parameters. Using linear inverse techniques (singular value decomposition) we determine that

a time-series of all five noble gases at BATS could constrain diffusive air-sea gas exchange to order 10%

and air injection to 14%. However, this sensitivity study assumes smaller measurement uncertainty than we

were actually able to achieve, assuming a 0.1% measurement uncertainty for He and Ne.

A fourteen month time-series of all five noble gases measured between July 2004 and August 2005 at 22

depths in the upper 400 m of the Sargasso Sea each month is presented as part of this thesis. As expected,

the saturation anomalies of the noble gases follow seasonal patterns, with the the saturation anomalies of

the heavier gases being at a maximum in the seasonal thermocline in the summer. In the summer, the water

warms, the heavier gases are less soluble at warmer temperatures, resulting in a supersaturation and a flux

of the gas out of the water column. More surprisingly, the heavier gases are also slightly supersaturated in

the winter. This may reflect errors in the solubility functions of the noble gases or could be a result of air

injection.

We use a non linear, constrained optimization technique to calculate air-sea gas exchange parameters

from the noble gas time-series. Based on error analysis, uncertainties in the observations, uncertainties in

the solubility functions, and the range of physical parameterizations consistent with the model and data, the

diffusive gas exchange rate was constrained to ± 6% and the air injection rate to +15%. We determine

the diffusive gas exchange rate to be 20% smaller than the most commonly used relationship proposed by

Wanninkhof (1992). Additionally, we find that air injection is more important than previously has been

thought, even for the more soluble gases such as Kr and Xe. Most air-sea gas exchange parameterizations
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do not include air injection explicitly and thus they may be missing a significant fraction of the air-sea gas

exchange flux. The parameterizations developed here can be used with any gas in other oligotrophic regions

of the ocean with moderate wind speeds (0< ulo < 13 m s-1). The parameterizations may not be applicable

in highly productive regions, since surfactants could lead to a dampening of the diffusive gas exchange, or

in regions with high wind speeds (ulo >15 m s- 1) outside the range encountered in this study. Future work

should include combining the data set collected here with satellite altimetry and backscatter measurements

in order to calibrate air-sea gas exchange flux parameterized as a function of surface roughness as well as

wind speed (Woolf, 2005; Glover et al., 2007; Frew et al., submitted, 2007).

Biological production was estimated from the same time-series of noble gases, as well as from helium

isotopes, tritium, 02, and NO3 measurements. The improved gas exchange parameters calculated in this

thesis were used in order to calculate the shift in equilibrium value of 63He due to air injection and to

model the diffusive gas exchange and air injection fluxes of 02 from the euphotic zone. The 3He flux gauge

technique (Jenkins, 1988b; Jenkins and Doney, 2003) was used to calculate that new production at BATS

is equal to 0.90 + 0.3 mol N m- 2 y- 1, which is equivalent to 9.6 + 3 mol 02 m- 2 y-1. This result is

slightly higher than, but consistent with, earlier results. Export production was calculated from apparent

oxygen utilization rates to be 3.7 to 5.0 mol 02 m- 2 y-, with the largest source of error stemming from

remineralization in the depths shallower than 200 m or greater than 800 m, both of which are not well

constrained by this technique. Net community production, as inferred from 02 and Ar seasonal cycles in

the euphotic zone coupled to model simulations, is equal to of 3.0 to 5.2 mol 02 m- 2 Y- 1 , with the largest

uncertainty stemming from the magnitude of winter-time production. Since the 3He flux gauge is an estimate

of how much nitrate is brought into the mixed layer through physical supply of upwelling water, it also gives

an estimate of the 02 debt that would accompany such water. This large 02 debt contradicts the observed

02 maxima in the euphotic zone and several possible explanations are considered that could reflect on this

paradox.

The spatial scales of these estimates range from regional scale for new production to local scale for net

community production. Additionally, the export production estimate integrates over the longest period of

time (years to decades), whereas the other estimates may be influenced by interannual variability. The net

community production and export production estimates agree well with each other, in spite of this difference
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in temporal and spatial scales. In contrast the new production estimate is almost double the size of the

other estimates. This discrepancy may reflect a significant degree of winter-time production that is not

caught by the other estimates, the difference in temporal/spatial scales between three tracer methods, or

uncertainties with the 3He flux gauge technique. The largest uncertainty in the 3He flux gauge technique

is in the correlation between nitrate and 3He since this correlation changes with time. Additionally, 3He

and NO may have been decoupled in the more productive waters to the North, where high productivity

between the base of the mixed layer and base of the euphotic zone could remove NO, while leaving 3He,

resulting in the flux gauge yielding an overestimate of local production. Modeling studies could potentially

assess the contribution of such lateral transport to the 3He flux gauge estimate of new production.

The above conclusions are based on a fourteen month time-series that resolves the seasonal cycle but

does not address interannual variability. Production stimulated by eddies may be a significant fraction of

production at BATS (McGillicuddy et al., 2007). Two months in our time-series have been affected by eddies

(as seen from temperature plots and satellite measurements). Samples from a full three year time-series have

been collected. It will be interesting to measure the samples from the other years of the time-series and to

see if the discrepancy between the production estimates persists. Additionally, the thermal and wind speed

history differs from year to year and noble gas data from the other years will therefore give us a more robust

parameterization of air-sea gas exchange.

Most of this thesis has been concerned with measurements in the upper few hundred meters of the

ocean. Noble gases, however, may be valuable tracers in deep waters as well. Modeling studies suggest

that noble gas concentrations in deep water may be diagnostic of diapycnal mixing (Henning et al., 2006;

Ito and Deutsch, 2006) and gas dynamics during water mass formation (Hamme and Severinghaus, 2007).

I have collected samples down to 4200 m on 12 occasions (once every 3 months) during the time-series.

Only two such profiles have been analyzed so far. These profiles allow a glimpse of gas signatures in deep

waters. Figure 6-1 presents the deep data from the November, 2004 profile of the noble gases. Helium and

Ne increase slightly with depth, as does SiO 2. Perhaps He and Ne are higher in waters from Antarctica

because of higher winds and increased air injection there. Another possibility, however, is that the deeper

samples have more bubbles entrained during sampling collection. When the deep samples were collected,

water condensed on the outside of the tubing because of the low temperature of the samples, and thus it was
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harder to see whether bubbles were being entrained. Investigation of more deep profiles should lead to clues

on whether this increased He and Ne signal is real.

The saturation anomaly of Ar reveals a "bulge" between 300 m and 1500 m that may be a result of

diapycnal mixing and that qualitatively agrees remarkably well with the modeling results of Henning et al.

(2006) for theoretical Ar distributions in the thermocline. Xenon is near equilibrium in the thermocline.

The saturation anomaly of Xe decreases between 700 and 1600 m, and then remains approximately constant

for the remainder of the profile. Krypton has a similar saturation anomaly to Xe until about 700 m, and

then at greater depths is usually slightly more undersaturated than Xe. The gases may be undersaturated in

deep water because of disequilibrium in the source regions (Hamme and Severinghaus, 2007). If the water

in the source region cools rapidly, the heavier gases may not be able to equilibrate with the atmosphere

before being subducted. However, one would then expect Xe to be more undersaturated than Kr, since Xe

has a stronger temperature dependence on solubility and a slower gas exchange time scale. The solubilities

of the heavier noble gases, and in particular of Xe, are not well known, so perhaps the true Xe saturation

anomaly is indeed more negative than Kr. The other possibility is since diapycnal mixing would increase the

saturation anomalies of the heavier gases whereas disequilibria during water mass formation would decrease

the saturation anomalies, depending on the exact conditions and the temperature dependence on solubility,

each gas balances these two effects in different ways. In any case, this profile is just one glance at deep

water gas concentrations. Future work should include analyzing all 12 deep profiles that were obtained in

this program and making quantitative arguments about the implications of the gas signatures.

In order to make full use of the deep profiles of Xe - and indeed to make better use of Xe in the shallow

work as well - accurate determinations of the solubility of Kr and Xe in seawater are needed. The solubilities

of He, Ne, Ar, and Kr in seawater were determined by Weiss in the 1970s (Weiss, 1970, 1971; Weiss and

Kyser, 1978) and the solubility of Xe was determined by Wood and Caputi (1966). Recent redeterminations

of the solubilities of Ne and Ar by Hamme and Emerson (2004b) reveal up to 1% differences from the Weiss

solubilities. The solubilities of Kr and Xe have not yet been redetermined. Several lines of evidence suggest

that the solubility of Xe may not be accurate. As described above, the deep profile shows Xe with deep

saturations between Ar and Kr, whereas one would expect the saturation anomalies of the gases to follow

the order of Ar, then Kr, and then Xe. One of the largest uncertainties in our determination of air-sea gas
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Figure 6-1: Saturation anomalies in deep water may yield information on diapycnal and ventilation charac-
teristics. Saturation anomalies for (a) He, Ne (b) Ar, Kr and Xe in November, 2004. Dashed lines indicated
a 0% saturation anomaly, i.e. the solubility equilibrium point. (c) For reference, profiles of temperature and
nutrients on samples measured from the same CTD cast are shown as well. The circles represent data and
the line represents a least squares smoothing spline that has been fit to the data.
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exchange parameters is the uncertainty in the Xe solubility. Now that it is clear that noble gases can be

accurately measured in the ocean, the community needs accurate solubilities of all the noble gases in order

to gain the most quantitative information from these tracers.

In summary, in this thesis a time-series of five noble gases is used to develop a parameterization of

air-sea gas exchange that constrains diffusive gas exchange to +6% and air injection to +15%. This pa-

rameterization can be used to calculate the total air-sea flux of any gas of interest in oligtrophic waters with

wind speeds between 0 and 13 m s-1. Additionally, new, net community, and export production are quan-

tified. The discrepency between the production estimates raises questions about exactly what these tracer

techniques are measuring, about the timing of biological production and about nutrient cycling.
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