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Summary

There are many practical reasons for studying the deformational behavior or
rheological properties of a dough system. The mass production of bread has led
to a need of machines that are able to handle and process large volumes of
dough. An understanding of the deformational properties can aid in designing
machines of this kind. Less obviously, the texture of the bread we eat is governed
by the mechanical properties of the dough from which it is proofed and baked
from. During the bread making process, large non-linear deformations feature
prominently. In mixing and kneading, dough is stretched and sheared by hand
or by specially designed mixing devices, while in proofing and baking, the
expansion of gas cells causes significant extensional strain on the surrounding
dough. Other than directly affecting the moduli of the fibers and membranes in
the solid phase of bread, a link between the rheology of dough and the baked
loaf volume has also been established.

In this thesis, we first develop consistent and accurate techniques for measuring
the rheological properties of the dough. Good experimental techniques and
protocols are essential for studying the mechanical properties of such a sticky,
visco-elasto-plastic, time-dependent material. We modify some of the standard
rheometric hardware and protocols to accommodate this unusual material.
Special attention is given to nonlinear deformations such as uniaxial extensional
flows and large amplitude oscillatory shear flows (LAOS).
We use the new techniques to probe the microstructure of dough and its
constituents from a mechanical viewpoint. The strongly nonlinear rheological
properties of dough arise from the interactions of a protein matrix and a high
filler concentration consisting of hydrated starch particles. We demonstrate that
the gluten protein that imbues the dough with its characteristic viscoelasticity
should be considered as a transient network that is interconnected by finitely
extensible biopolymer segments (-20nm mesh size) and held together by
hydrogen bonds and/or hydrophilic interactions.
Using this renewed understanding of the microstructure, we construct
appropriately frame-invariant constitutive equations (generalized gel equation and
a multi-mode FENE network model) that describe the rheology of gluten gels with
a minimal number of parameters. The behavior of gluten gels can then be related
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to prototypical flour-water doughs by the effects of the starch filler using the
concept of strain amplification.

Finally, this general framework of microstructure and rheological properties of
gluten gels and flour-water dough are applied to practical situations. We discuss
the utility of this work in context to some specific case studies of rheological
aging, the effects of water content and flour-type variations.

Thesis supervisor: Gareth H. McKinley

Professor

Mechanical Engineering
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1. Introduction

The wheat grown worldwide these days originally descended from a wild eikorn

grass in the Karacadag Mountains of South Eastern Turkey. During the period of

agricultural revolution, humans replanted the seeds and began the long

symbiotic relationship with the plant. The prehistoric man mixed the ground up

grains of wheat with water to form a dough, and possibly cooked it under the

sun or on a fire to form bread. Since then, the global production of wheat (626

million metric tones in 2005) and consumption of bread (60 loaves per North

American in 2007) has increased rapidly. The industry has also recovered

healthily from the fashion of low-carb diets and gluten allergies.

As a result of this huge demand, a large amount of research has been conducted

on the subject of breadmaking. The focus of these works ranges from agricultural

techniques to processing and baking. This science of food production and

preparation has also entered the public's imagination over the last decade

through the term molecular gastronomy. The term was coined by the Hungarian

physicist Nicholas Kurti and French chemist Herve This. It is loosely defined as

the application of scientific principles to understand and improve the art of

preparing food. In this thesis, we will concentrate on one particular aspect of the

multi-disciplinary subject of food preparation and discuss an intermediate step
in the process of bread making, namely the mechanical properties or rheology of

dough.

Dough is the name given to the state in which the flour has been mixed with

water but before the application of heat has gelatinized the starch. There are

many practical reasons for studying the rheological properties of a dough

system. First of all, the mass production of bread has led to a need of machines

that are able to handle and process large volumes of dough. An understanding of

the deformational properties can hugely aid in designing devices of this kind.

Perhaps less obviously, the texture of the bread that we eat is governed by the

mechanical properties of the dough from which it is proofed and baked from.

During the bread making process, large non-linear deformation feature

prominently. In mixing and kneading, dough is stretched and sheared by hand
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or by specially designed mixing machines, while in proofing and baking, the

expansion of gas cells cause significant extensional strain on the surrounding

dough. Other than directly affecting the moduli or "chewiness" of the fibers and

membranes in the solid phase of the finished product [1], the composition and

rheology of the dough can also affect the "airiness" or loaf volume of the bread

[2-5]. So it has long been the objective of food scientist to characterize the

rheological behavior of dough and relate it to particular baking qualities.

Bloksma [61 outlined two rheological requirements for producing high quality

loaves: "1) the dough must have sufficiently large viscosity to prevent the ascent

of gas cells, and 2) it must remain extensible for a long enough time during

baking to avoid premature rupture of membranes between gas cells." The

performance of a dough with respect to these requirements are known as its

functionality. There are a number of studies that formally connect (through

mathematical modeling) or make plausible (through experiments) the link

between functionality and baking qualities [7-9].

The unique ability of wheat flour doughs to satisfy these requirements arise from

the complex multi-scale structures comprising the dough. To the naked eye,

(0 > 10' m), the dough appear to be a continuum. But upon closer inspection

under the microscope (0 <10-3m), voids or gas cells become visible. While at

even higher magnification (0 ~104m), one begin to distinguish the individual

starch granules and an aqueous protein phase which binds them together. With

the help of atomic force microscopy or environmental SEM, the structure of the

protein phase can be seen (0 <10-m).

The resulting rheological behavior of such a multi-scale system is extremely

complex and non-linear. Existing techniques of measurements might not be able

to capture the important features relevant to breadmaking.

The objective of this thesis can be summarized in the following points:

1. Develop consistent and accurate techniques for measuring the rheological

properties of the dough. Since the beginning of the subject, rheologists have

agreed that good experimental techniques and protocols are essential for
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studying the mechanical properties of such a complex material. The sticky,

viscous nature of the materials in question makes forming samples

suitable for testing on a conventional rheometer extremely difficult. To

this end, we will modify some of the standard hardware to accommodate

this unusual material. Dough and its constituents also typically exhibit

thixotropy, aging and other time and history dependent effects. Thus it is

critical to maintain a rigid set of protocols in order to create a

standardized base point.

2. Develop a methodology for distinguishing dough of different functional qualities.

Once we have identified the methods and protocols, a theoretical and

mathematical framework is needed to interpret the results collected. We

will next ask the questions: What are the material functions that best

illustrate the functionality of a dough? Which are the parameters that

mathematically characterize these functions? We will show how by using

the appropriate material functions we can clearly demonstrate trends and

differentiate dough of different "functionality".

3. Understand the underlying micro-structure of the dough which gives it the

unique rheological properties. We explore the origin of these mechanical

properties and investigate the properties of gluten. We will demonstrate a

suitable molecular model and show how the implication of this model can

lead us to an accurate description of the mechanical properties of the

gluten gel. We then show how the gluten gel is the basis of the mechanical

properties of the complete dough by considering the starch granules as

filler particles.

1.1. Outline of the thesis

In spite of its universality, the rheology of breadmaking does not enjoy the

reputation of being a very scientific subject and, generally speaking, the
problems are attacked on a case-by-case basis. From a theoretical standpoint, the
entire problem appears to be complex and unwieldy, and there is no idealized
starting picture for analysis; from an applied viewpoint, it is easy to get lost in
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the complexities of particular cases without ever seeing the structure of the entire

subject.

Thus in this thesis, we will first identify a suitable starting point, in terms of

previous work (Chapter 2), experimental technique (Chapter 3) and general

dough behavior in both linear and nonlinear deformations (Chapter 4). The

reader will gain a feel of the difficulties and general behavior of dough through

these chapters.

The discussion then shifts gear and focuses on the origins of the mechanical

behavior in dough. In chapter 5, we discuss in detail the general rheological

behavior of the gluten gel which is believed to be primarily responsible for the

viscoelastic nature of a dough The rheological evidence will point us towards a

consistent microstructural model of the gluten gel. This idealized picture will in

turn lead us to a more sophisticated constitutive model that is able to describe

the linear to nonlinear rheology of the gluten gel (Chapter 6). Finally, we show,

how the properties of gluten are reflected in a real dough when the primary

effects of starch granule filler material are included (Chapter 7).

In the conclusion (Chapter 8), we take this general framework of microstructure

and rheological properties of gluten gels and dough, and apply it to practical

situations in which we outline how this work can explain and predict many of

the specific observations discussed in the Chapter 2 and 4.
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2. Literature review

2.1. Introduction

The rheology of dough is a broad subject that spans interrelated fields such as

food science, chemistry and continuum mechanics. A thorough review of all the

relevant literature will be beyond the scope of a single chapter. Instead, in this

section, we highlight some ideas that we believe to be central to the field by first

providing a brief overview of the early work concerning the rheology of dough.

Amongst the copious amount of research performed in the area, three separate

sets of papers stand out in particular. Current ideas regarding the origins of the

mechanical properties and molecular structure are then discussed. We finish the

chapter by a survey of common or useful constitutive equations that are

commonly associated to dough systems. More detailed literature review on

individual subjects will be presented at the beginning of the subsequent chapters.

2.2. Early Work 1932-1970

Today, when a rheologist desires to demonstrate "the relationship between

viscosity, elasticity and plastic strength of a soft material", he or she will probably

choose a well studied polymer solution or melt, perhaps a high molecular weight

linear polystyrene for which the structure and properties have been thoroughly

characterized. Such model systems were not available to the early rheologists

and instead, a pair of researchers in the 1930s provided a beautiful illustrations of

their thoughts on the "... plastic strength of a soft material" by discussing the

mechanical properties of flour dough through a series of four papers in the

Proceedings of the Royal Society of London [10-13]. To our best knowledge, this

is the first systematic study on the rheology of dough; Schofield and Scott-Blair

certainly made some prescient remarks that remain central to work in this field.

First of all, they understood that dough is an extremely non-linear material. They

began by extending the concept of a simple Maxwell fluid by considering a

situation in which the relaxation time is not a constant but instead varies
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according to stress [10]. This led to the construction of a constitutive equation [11,

12] in the form:

r + 2(r)--= 7( dy (2.1)
dt dt

Equation (2.1) is non-linear in both stress and strain: using it to make predictions

on the rheological behavior of dough is difficult, especially in the 1930s when

personal computers and Matlab were not readily available. However, we will

point out in a later chapter that for a specific choice of viscosity 77 and relaxation

A functions, equation (2.1) can in fact be related to the critical gel equation,

which is a surprisingly accurate description to many aspects of dough rheology.

Secondly, Schofield and Scott-Blair recognized the network nature of the gluten

that imparts the distinct viscoelasticity to the dough: "In relating these

deductions to the known structure of the dough one may safely identify the

elastic elements with the protein part of the flour. That the elements form a

connected structure is confirmed by the fact that the starch and other

constituents of the flour can be washed out of the dough without breaking up the

gluten." They also understood the transient nature of this network: "it is evident

that the elements, though connected, are not joined securely, but slide past one

another whenever a sufficient stress is operative." The chemical nature of the

network was also probed by applying hydrocholoric acid and thus destroying

the strength of the gluten. They suggested electrostatic attraction between

oppositely charged groups in the neighboring molecules is an important factor in

the strength of the network.

Their work must also be admired for the range of ingenious devices used in

teasing out the material functions of dough. One must remember that at that

time, not only did the researchers not have access to synthetic polymers or

computers, rheometers as we know them today have not come into existence yet.

Instead Schofield and Scott-Blair relied on a variety of machines, two notable

examples are depicted in Figure 2 and Figure 3

14



a. b.

Figure 2. a. The rack devised by Schofield and Scott-Blair. Controlled extension
and recoil experiments were measured on this set-up. b. A torture rack
photographed from the Tower of London, England, image by D. Bjorgen -
http: / / en.wikipedia.org / wiki / Image:ATortureRack.jpg

An instrument which they referred to as "the rack" is shown on Figure 2a. The

name was given for its superficial resemblance to an ancient instrument of

torture'. Multiple samples are attached to the rack with one end fixed by pressing

it round a screw while the other end is attached to a thin strand of rubber by the

extension of which the stress on the dough can be observed. The other end of the

rubber strand is secured to a thread which could be wound up on a small winch.

1 Incidentally, the author of this thesis finds rheology to be not unlike torture. In

controlled stress torture/ rheology, information is extracted from the

victim/ sample by application of strain, in such a way that they are under a state

of stress; and vice versa for the controlled strain case.
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Material functions in creep and stress relaxation in extension can be measured

with this equipment.

a. b.

Figure 3 a. Rheogram experiment. An extruded cylinder of dough is marked with
ink at 1mm intervals and is hung from the top of a sealed tube. The force of
gravity acting on the dough itself elongates the sample. After a measured
amount of time, the ink marks can be printed off to a sheet of paper and is
referred to as a rheogram. The prints can be made while the sample is hanging
vertically in the tube so as to measure instantaneous deformation, or while lying
horizontally so as to measure the deformation in the recoiled state.

A slightly more sophisticated method is the rheogram illustrated in Figure 3. An

extruded cylinder of dough is marked with ink at 1mm intervals and is hung

from the top of a sealed tube. The force of gravity acting on the dough itself

elongates the sample. After a measured amount of time, the ink marks can be

printed off to a sheet of paper and is referred to as a rheogram. The prints can be

made while the sample is hanging vertically in the tube so as to measure

instantaneous deformation, or while lying vertically so as to measure the

deformation in the recoiled state.

16



The rheogram can be analyzed by considering the force balance along different

sections of the dough. The sample is assumed to be incompressible. Through this

analysis, mean stress, viscosity, strain and strain rate can be calculated with the

following expressions:

1
s.,=-gpLO(1+ i/10)

6
emean In(/1 0) (2.2)
emean = l

flmean = alt

Crude, these experiments might be, they are nevertheless an excellent

demonstration of the non-linear dependence of relaxation time and viscosity to

strain and stress. Though limited in terms of quantitative predictions, Schofield

and Scott-Blair showed an uncanny understanding of the physical and chemical

nature of dough. Their work was extremely rich in ideas (strain-stiffening,

Mullins effect, aging and the influence of filler material [131) and is an excellent

qualitative framework for subsequent generations of dough rheologist.

Hibberd et al also wrote a series of papers that had an important impact on the

field [14-17]. In the first of the series, they discussed the linear aspects of dough

rheology, concentrating on the dynamic moduli (see chapter 3). They recognized

the small linear range of dough and quoted a value of y* = 4.4 x 10-3 as the

critical strain, beyond which an anomalous softening became evident. They

noted that this softening effect could be partially reversed by allowing the dough

to rest. This effect was quantitatively demonstrated by performing a time sweep

dynamic test. The amplitude of the test was alternated between values below

(yo = 2.6 x 10-3) and above (yo = 6.9 x 10-2) the linear range. The results of this

experiment are plotted in Figure 4. After the application of a large amplitude, the

sample shows immediate softening that continued at a slower rate until the

amplitude is returned to below the linear range. An immediate partial recovery

was observed which was still incomplete after a further 60 minutes.

17



yo= 2.6x10=
8~~Y -r 0 Cos (Wt)

a I

YO= 6.9 x10-,

-71+-18P 4I 7 p I 89 7 p ---

so 100 1Mo 200 250
time (Mins)

Figure 4 Dynamic time sweep to demonstrate aging and reformation of structure
for a flour water dough [17]. Amplitudes that are below (,yo =2.6 x 10-3) and

above (y, =6.9 x10-2) the linear range were applied alternately. After the
application of a large amplitude, the sample shows immediate softening that
continued at a slower rate until the amplitude was returned to below the linear
range. An immediate partial recovery was observed which was still incomplete
after a further 60 minutes.

This phenomenon was explained by considering the chain segments formed by
the interaction of the protein filaments that connect adjacent starch molecules.

Under deformation, the starch particles are likely to move apart, stretching out

the protein chains. The chains are assumed to have a distribution of lengths such

that some will be more stretched than others, with the shorter change breaking

off at smaller strains. As the strain amplitude is increased, progressively longer

chains are broken, thus causing a decreasing in modulus. The time dependence

of this softening is interpreted as a gradual diffusion of the chains to a new

equilibrium position that provides a more equitable distribution of the loads.

This is also consistent with the gradual but incomplete recovery observed.

Having defined the linear region, the discussion in the second paper turns to the

effect of water content in the said regime. Hibberd et al observed the lost tangent

18



of dough to be independent of the water content, and therefore suggested a

simple superposition principle which is illustrated in Figure 5: a vertical shift

factor is used to collapse small amplitude dynamic moduli onto a single master

curve:

G*(, W)= G*(w)x Q(W - Wo) (2.3)

Where W is a reference water content, G* (w) is the complex modulus measured

at W and Q(W - W) is the required function for shifting complex moduli from

different water content onto the reference curve of G* (0).

G*{(,W)=G*(m)xQ(W-W.)

Mendas 5.6
6

6

-1-S -f-0 -0.5 0 O-S 10
log frequency

59%
Mendos b. 365%

67%

4-21-

-1-4 -1-0 -0-5 0 0-5 t0 I's
log frequency

0-71

I.

C.

0-5 1-

0-3

i's -2 -1 0 1
log frequency

02

io

43 44 45 46
Water Content (%)

Figure 5 An example of using the principle of corresponding water contents. a.,b.
Dynamic moduli of dough at different water content. c. The loss tangent varies
with frequency, but is independent of water content. d. Proposed shift factor to
reduce dynamic moduli to a reference curve.

The shape of the reference curve is still dependent on flour variety. However,

Hibberd went on to suggest that it might be possible to factor out an additional
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varietal dependence, i.e. Go* (w, Variety) = G*, (w) x C(Variety): doughs prepared

from different wheat flour varieties (V. and Vb) can yield identical linear

viscoelastic behavior if appropriate corresponding water contents (W and W,)

are used, or in terms of equation (2.3):

G* (V.,c,W)= G* (Vb,,W,)

if (2.4)

C(V,)Q(vW - WO) = C(V,)Q(W - WO)

In view of the complexity of a dough system, the applicability of such a simple

superposition principle is surprising. Hibberd suggested that within the linear

region, experiments can only probe the short range interactions and it is

reasonable to regard the degree of difference to be rather small for different flour

varieties. A brief search on available databases shows that no further work has

been performed to conclusively validate or disprove this result; and most

researchers will certainly agree, that small amplitude shear deformations are not

sufficient to distinguish between doughs [18].

Hibberd attributed the existence of these simple superposition functions to the

similarity of protein-to-starch (P/S) ratios in typical wheat flours. To test this

hypothesis, he performed experiments with a larger parameter space by

preparing doughs of vastly different P/S ratios. He found that under this greater

range of P/S ratio, the moduli cannot be superimposed onto each other; a

separate water correspondence function and reference modulus function is

required for each P/S ratio:

G* (,W,P / S)= G* (m,-P / S) x Q(W -W,P / S) (2.5)

For the purpose of qualitative comparison, an arbitrary frequency wo was chosen

as a reference point, so that:

4~aw,/S -G(w,W,P I S)
((w,PP / S)= (2.6)

G w0,WPI/S )
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cD(co, P /S) is a dimensionless function that is independent of water content. The

variation of D is plotted on Figure 6.
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Figure 6 Influence of P/S ratio
moduliD', ('".

on the frequency dependent

D' behaves as a power-law when plotted against frequency, the power-law

index decreases with decreasing P/S ratio. D "exhibits more dramatic qualitative

differences: a local minimum develops as P/S ratio is decreased. Hibberd

interpreted this result by comparing it with linear viscoelastic data collected for

high molecular weight polymers. He suggested that the protein starch

interactions play a role that is equivalent to entanglements in reptation models:

the increase in starch concentration decreases the average length of the chain

segments, thus shifting features such as the observed minimum to a lower

frequency outside the observable range.

Other than these useful superposition principles, one of the most important

contributions of Hibberd's work was that he brought to attention the importance

of defining the linear viscoelastic domain. In the last paper of the series, he

outlines yet another simple principle for the dynamic response of dough under
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finite strains of y(t)= y0 cos(ot). He proposed a simple softening function,

similar in form to a time-strain separable relaxation modulus:

G(c,y )=G(w)x T (y,,) (2.7)

Where the softening function '(yo) can be thought of to be analogous to the

damping function under step strain relaxation. This result is perhaps even more

surprising than the superposition principles discussed in the first three papers of

the series. Subsequent researchers have shown that the non-linearity of dough

under oscillation cannot be easily factorized into a strain and frequency

dependent components. We suspect the reason that the factorizability appeared

to be valid for the results presented by Hibberd et al is due to the relative small

amplitude of their finite strains (y. <0.1), as evident by the near sinusoidal

response reported.

To conclude our review of seminal works on dough rheology performed from

1930s to 70s, We would like to direct the reader to a final set of four papers

published by Tschoegl et al [19-22]. Force transducer and motor technology has

certainly come a long way since Scott Blair's time of racks and rheograms, as a

result, rheologist such as Tschoegl and co-workers were able to construct an

experiment that reliably measures the extensional properties of wheat flour

doughs. Their design is illustrated in Figure 7.
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Tschoegl et al were motivated by the fact that most industrial dough testing were

performed on set-ups with outputs that are usually in the form of arbitrary units

(Brabender Extensigraph, Chopin Alveographs etc...) and cannot be easily

interpreted in terms of stress and strain. Therefore they set out to design an

apparatus that maintains a well defined geometry. Their approach was inspired

by a similar procedure that is used to measure extensional properties in

elastomers. Two ends of a ring shaped sample were attached to supports. The

upper support remains stationary and is attached to a load cell, while the lower

support is driven by a motor-pulley system to stretch the sample at a nominally

constant rate. Tschoegl et al noted that forming consistent samples was

absolutely critical to obtaining reproducible results. To this end, they designed a

mold and cutting fixture depicted in Figure 7b to create "race-track-ring" shaped

samples.

Another interesting feature of their apparatus was the fluid bath. During the

experiment, the samples were submerged in a mixture of mineral oil and Freon

TF. This mixture was selected to provide a barrier against sample drying of the

sample and to maintain a neutrally buoyant environment so that gravitational

sagging was eliminated.

By assuming the deformation to be largely confined to the straight sections of the

ring, they calculated the stress and strain sustained by the sample:

F L
- ,e=n-

2WT LO
F = tensile force

W,T = width and thickness of specimen (2.8)
L = length of specimen

LO = initial length of specimen

Though their design was a huge improvement from the typical industrial

measurements, the deformation is still far from a uniform uniaxial elongation:

the strain in the inside circumference is larger than the outside and the relative

slip conditions at the end supports are ill-defined. Nevertheless, they concluded

a carefully calculated correction factor can be used to take into account of these
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effects. As we shall see in the next chapter, the difficulty in achieving ideal

kinematics still remains one of the most intractable problem faced by dough

rheologists.

Using this set-up, Tschoegl et al investigated the large deformation and rupture

behavior of a variety of doughs under different temperature, mixing time and

water absorption levels. Unfortunately, this wealth of information is somewhat

obscured by the researchers unnecessarily complicated use of material functions

based on engineering stresses and strains.

In the same series of paper, the issue of shear rheology was also investigated [19].

The set-up was essentially similar to the design of Hibberd et al [17] that we

have discussed earlier and Tschoegl and co-workers essentially arrived at the

same conclusions regarding linearity/ non-linearity and thixotropic

characteristics. But one observation was particularly interesting. They noted

under some circumstances, the dynamic moduli of gluten or flour water doughs

exhibit a power-law relationship with frequency. This is probably the first

observation of power-law like behavior in these dough systems and in this thesis

we will show that it is in fact a surprisingly accurate description of the rheology

resulting from their microstructural composition.

Important ideas gained from the early work

This brief survey of representative early literature has provided us with a

comprehensive outline of the different aspects of dough rheology. We

summarize the significant ideas that the reader should keep in mind:

1. Performing experiments on dough is difficult - often specialized

equipment or modifications to existing techniques are required. Extreme

care has to be taken to ensure results that are consistent and free from

artifacts.

2. Time dependence - dough exhibits both strong thixotropy and aging. A

rigorous schedule have to be devised and adhered to for consistent

results.
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3. Large number of variables - the mechanical properties of dough are

strongly affected by water content, mixing conditions etc... Simple scaling

and superposition rules are invaluable in reducing the large amount of

data.

4. Non-linear - small linear range, strong non-linear behavior.

5. Constitutive modeling - Schofield and Scott Blair were the first to attempt

to describe the non-linearity mathematically. Many subsequent attempts

have been made to model the mechanical behavior of dough, but yet no

single equation can describe the response of dough under the range of

typical deformation it experiences.

6. Power-law - Tschoegl et al were the first to report a power-law behavior

in material functions under deformations within the linear range.

Subsequent workers have also observed this curious behavior. In this

thesis we will discuss how this observation can form the basis of a

surprisingly accurate constitutive equation.

7. Gluten backbone - Schofield and Scott-Blair made a prescient remark in

which they noted the insoluble protein phase or gluten forms a network

structure that provides a dough with its distinct viscoelasticity. Following

this, many workers have realized that an appreciation of the structure and

rheology of this network is critical to understanding the mechanical

behavior of the overall system. As a result, there has been a number of

studies concerning gluten network isolated from the native dough. The

microstructure of this network is still hotly debated, and a significant

portion of this thesis will be dedicated towards this discussion.

2.3. Dough functionality and microstructure

It has been more than 250 years since Jacopo Bartolomeo Becarri Professor of

Chemistry at the University of Bologna showed that wheat flour can be divided

into two fractions [23]. By gently massaging a flour-water dough under a thin

stream of running water, he showed that the starch can be washed off leaving an

elastic network of proteins which he referred to as glutenis. Since then, the
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microstructure of the dough is an area that is under intense debate. In this thesis,

we will concentrate on the two main components of the dough, namely, starch

and gluten.

Wheat flour starch mixed with water at concentrations simulating typical dough

will form a thick paste that shows extreme shear-thickening behavior. The

response is plotted in Figure 8. The viscosity increases abruptly at j - 10 s-; the

stresses beyond this critical strain rate is so high that measurements are no

longer possible on the rheometer. This type of behavior is typical of highly

charged colloidal particles that flocculate under large hydrodynamic forces [24,

25]. Another interesting observation on the starch solution is its time-dependent

behavior: the viscosity increased by close to an order in magnitude overnight.

Starch particles when submerged in water swells over time [26], this swelling

leads to an increase in filler volume fraction and the filler stiffness, which in turn

affects the viscosity. This time dependency is also present in dough systems and

is a major bugbear to rheologists.
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Figure 8 Viscosity of starch paste at 45% water content. Note the dramatic shear-

thickening behavior, i.e. increase in viscosity at -10 s-1. The data is also

compared to another set collected from the same sample but has been left to sit

on the rheometer over night. The viscosity of the over night sample is

approximately an order of magnitude greater than the fresh sample over most

strain rates.

The mechanical properties of the starch solution is dramatically transformed if a

small amount of gluten is mixed in with it, i.e. in a wheat flour dough. The shear-

thickening behavior is no longer noticeable while the dough takes on some

distinct viscoelastic properties (see chapter 4).

Starch granules has been suggested to act as an inert filler in the continuous

protein matrix of the dough [27], while others described the dough as a bi-

continuous network of starch granules and protein [28]. There are also

suggestions that the rheological behavior can be influenced by the specific
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properties of the starch granule surface [29]. Due to its size (typically > 10 gm )

and high viscosity of the surrounding matrix (> 10' Pa s), it is unlikely that the

starch forms a colloidal network within the dough [30].

The structure of gluten is even less well understood. Field-flow fractionation

shows that gluten are the largest protein molecules in nature and their suitability

of wheat flour for breadmaking may depend on the enormous size of these

polymers [311. The notable "springiness" of gluten doughs owes itself to the

entropic elasticity common to molecules of this size.

Proteins are commonly classified by their solubility by a system introduced by

Osborne [32]. The proteins are extracted sequentially with a series of solvents.

This classification does not necessarily divide the proteins according to its bio-

chemical properties or physical functionality, however, due to its convenience it

is still widely used to separate the constituents into broad functional groups such

as gliadin and glutenin. The non-gluten proteins (typically 15 - 20% of total

proteins content) play only a minor role in bread-making, they occur mostly in

the outer layers of the wheat kernel. While the gluten proteins (80 - 85%), mostly

from the endosperm, has significant contribution to the properties relevant to the

bread-making process. In view of this functionality, more attention will be paid

to the gluten proteins in this article.
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Osborne Solubility Composition Biological role Functional role

fraction behavior

Albumin Water Non-gluten proteins Metabolic and Variable/
(mainly monomeric) structural proteins insignificant

Globulin Dilute salt Non-gluten proteins Metabolic and Variable/
solution (mainly monomeric) structural proteins insignificant

Gliadin Aqueous Gluten proteins Prolamin-type seed Dough
alcohol storage proteins viscosity /plasticity

Glutenin Dilute acetic Gluten proteins Prolamin-type seed Dough
acid storage proteins elasticity /strength

Residue Unextractable Gluten proteins Prolamin-type seed Variable
storage proteins

Table 1 Different groups of protein, as defined by Osborne (1924)

Gluten can be further sub-divided into glutenin and gliadin, which are present in

roughly equal amounts.

Glutenin - a heterogeneous mix of high molecular weight polymers (Mw - 8 x

10i to 106). They are one of the largest proteins found in nature [31]. Due to its

insolubility, the structure of glutenin remains largely unknown until recent years

where new techniques such as light, X-ray and electron scattering, NMR, AFM

etc... [33-41] were made available. During mixing glutenin forms a continuous

network throughout the dough, giving it the distinct elastic property.

Gliadin - a highly polymorphic group of monomeric polymers. (Mw - 3 x 10' to

106).

Gluten functionality arise largely from glutenin. Gliadin are thought to act as

plasticizers on the glutenin network, increasing its viscous (liquid-like) behavior.

The distinctive feature which makes wheat flour dough uniquely suitable for

bread-making is its ability to resist rupture of the gas cells during proofing and

baking. Air is included into the dough during mixing in tiny pockets (- 10-' to 10-
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' in diameter) dispersed throughout the dough, constituting approximately 10-

15% of total dough volume. Leavening agents release gas into these cells further

increasing the size. They undergo yet another expansion during baking through

heating and release of dissolved alcohol/ C02 previously dissolved in the dough

[6, 42]. The dough walls surrounding the gas cells are stretched and becomes

thinner. It is believed that a "weak" dough with insufficient elasticity / strain-

hardening will form dough walls which will rupture under these conditions. Van

Vliet et al [9] provides a qualitative theory on how elasticity and strain-

hardening can lead to a more stable dough wall under stretching. Their

argument is essentially a linear stability analysis considering the effect of a small

defect on a uniform sheet of dough under extension. Through this analysis they

arrive at criterion which is equivalent to the Considere criterion, stating that

rupture will occur when the rate of increase of stress with respect to strain falls

below a certain value. A number of studies have been performed and seem to

provide experimental justification for this hypothesis [4, 7, 43-46].

We next ask the question of what distinct feature of wheat flour gives rise to

these properties? Experimental evidence point towards the gluten fraction of

wheat proteins. Various researchers have come to the consensus that the glutenin

macropolymer forms a three-dimensional network throughout the dough. The

initially distinct glutenin molecules in the flour swells in size due to hydration

and begin to interact with neighbouring glutenin molecules in the process of

mixing / working. The large molecular weight of the glutenin macroplymers is

essential to form a critical number of interactions in order to achieve a sample

spanning structure which gives elasticity. Covalent disulphide bonds and non-

covalent hydrogen/ hydrophobic interactions both play an important role in the

formation of this network, but their exact nature and properties imparted to this

network is still unclear [27].

L tang et al [47] suggested a model that is depicted in Figure 9 consists

essentially of linear polymer chains that are linked end to end by the di-sulphide

bonds while the non-covalent bonds form interchain interactions. This model is

also extremely similar to the linear glutenin model proposed by Ewart [8].
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He explains the development of the dough during mixing in terms of this

molecular picture. At the beginning of dough mixing, the gluten molecules are

folded. Some interactions between the molecules exist but the overall

contributions of these forces is small because of the random orientation of the

chains (Figure 9 (a)). As mixing progresses, the molecules are stretched and

aligned, thus allowing a greater possibility of interaction between neighbouring

chains. This increase in interaction "strengthens" the dough and is reflected in

the increase in torque on the mixograph (see Chapter 3). Excessively long mixing

time leads to the breaking of di-sulphide bonds along the ends of the molecules,

thus decreasing its effective molecule size. The torque also decreases

accompanied by an increase in the viscous nature of the dough as indicated by

an increase in tan S.

Belton's model [48] was also extremely similar, with the idea of alignment and

orientation formalized in his loops and train model.

Singh and MacRitchie [49] took a view similar to that of Letang and Belton, but

they also suggested that the mechanical properties could be understood in terms

of rubber elasticity and in the context of polymer science. They hypothesized that

entanglements between the giant gluten molecules play a role in forming inter-

chain interactions. Dobraszyk et al suggested that the glutenin molecule is of a

branched form. They felt that pinning at the branched points in the entangled

gluten gel is the cause of the strain-hardening typically associated with dough

[4].

On the other hand, Don et al [50, 51] cite microscopy evidence to show that the

gluten gel is of a particulate nature. The gluten molecules form tight globules

that flocculate to form a network through a mixture of covalent and non-covalent

interactions. This particulate view of gluten networks has also been

independently suggested by Lefebvre et al [52]. However, it has also been

suggested that the presence of these particles under microscopy could be an

artifact due to the use of SDS in extracting them [53].
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Figure 10 Microscope images of gluten molecules [54].

Other than microscopic evidence, Domenek et al [55] published results on gluten

gels formed with a range of gel fraction. They concluded that the behavior of

elastic modulus is consistent with a particulate system. However, insufficient

evidence was given to discount the possibility of the rheology being also

consistent with a polymeric gel system described by Letang. In fact, in Figure 11

we showed that the data is consistent with the picture of a physical polymeric gel

system by comparing the divergence of modulus with the well known

percolation result given by Flory [56, 57]. What it also shows is that gluten mixed

at room temperature with typical dough like water fraction and without any

additional heat treatment is indeed close to the critical point where the modulus

diverges (Figure 11). i.e. a critical gel! (see Critical gels - Powerlaw model).
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Figure 11 Modulus for gluten gelled by heat to various levels, data taken from
Domenek et al [55]. A typical gluten dough formed by mixing at room temperature
with a typical dough like water content is close to the critical point will have a
gelled volume fraction ~ vc = 0.43 and p ~ 2.3. Dotted lines are fitted lines to

Flory's gelation theory G ~ (v 2 - vo )P.

Overall, there are an abundance of articles in the literature that provide a range

of good ideas in terms of modeling and also plenty of heated discussion on the

subject [53, 58]. However, we feel that none of the published works provide

sufficient rheological evidence to support their chosen structural models. There

is very limited rheological data presented in these works that definitively link the

supposed functionality arising from the model to actual mechanical behavior. As

a result, the constitutive modeling comprise of mostly empirical equations that

seek to describe the deformation behavior of specific systems rather than general

rheological features that arise from microstructural changes.

2.4. Consititutive modeling of dough

The constitutive models serve as a framework for discussing how material

parameters can vary with different dough conditions such as mixing time, water

content and base flour type.
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A constitutive equation relates the state of stress a in a fluid element in terms of

its deformation history ? (t, t'). It is a framework for relating the two typical raw

data of forces and deformation obtained in dough rheology. Such equations

provide us with a quantitative method in evaluating and comparing quality of

the dough. Provided a suitable form of material function is selected, the effects of

each ingredient and additive or molecular features should become apparent

through changes in the parameters such as relaxation time and modulus.

Knowledge of the appropriate material functions can also improve accuracy for

calculations in process engineering leading to better efficiency.

Rheological modeling of dough borrows heavily from the related field of

polymer science. Most studies have focused on dynamic oscillatory response

using the dynamic moduli as a starting point for building a spectrum of modes.

Relatively little work has been done on the mathematical description of

extensional behavior. Under such strong flows, many phenomena that cannot be

probed by small amplitude shearing will become apparent. These include finite

extensibility and strain-hardening which are both important in the context of

functionality.

Which leads us to the point of functional requirements when designing a

constitutive model for dough. A good model, will not only allow us to make

predictive calculations on the material behavior, but also teach us something

about the physics of the system. Therefore it is important to choose a level of

complexity that is just sufficient to illustrate the important ideas without

encumbering it with too many details. One can of course use a large number of

parameters and equations to make an extremely accurate description of a system,

but it teaches us nothing! The reader is strongly encouraged to keep these ideas

in mind when assessing the merits of a proposed constitutive equation for

dough.

Upper Convected Maxwell and Oldroyd-B model

The upper convected Maxwell (U.C.M.) model and its close relative Oldroyd-B

are natural starting points for this discussion. They are amongst the simplest
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visco-elatic model used to describe behavior of dough in. The U.C.M. contains

only two variables:

a+' = 1f(i) (2.9)

Where q is a polymeric viscosity, A is the relaxation time and the subscript (1) is

the upper-convected derivative operator:

a - - [(Vv). + a-(Vv)J (2.10)
') Dt

The equation can be thought of as a description of a polymer modeled as a

Hookean spring with a particular relaxation response.

A simple extension to the U.C.M. is to add a solvent contribution to the stress.

Such a model is known as the upper-convected Jeffrey's or Oldroyd-B model:

a p + s

ap + na~ir='(1) (2.11)

a5S = 7?I

For both of these models, steady state will not be reached if De > 0.5. Above this

critical Deborah number, the stress increases without bounds. From a physical

point of view, this is unrealistic because a finite extensibility limit will be reached

where the polymer has reached its maximum extension.

The use of these simple models illustrates the viscoelastic nature of doughs.

Bagley et al claimed that the U.C.M. is able to describe with reasonable success

the deformation of a dough under uniaxial compression [59]. However, they did

concede that the range of relaxation time can vary dramatically.

Another short-coming of these models is that they are single modes. Published

data on the dynamic oscillation response show a wide relaxation spectrum,

indicating the highly poly-disperse nature of dough, a mode generalized form

containing multiple modes will be required to fully describe this behavior [60].
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Phan-Thien Model

The Phan-Thein model [61] is able to address many of the features which are not

well described by the simple models in the previous section. It is a

phenomenological model which describes the stress tensor a as a combination

of a hyper-elastic term (aE representing the glutenin/ cross-linked network) and a

visco-elastic contribution (ao representing the suspension of starch globules and

gliadin components).

0 = 0 +a (2.12)

- GEfy(BB1) (2.13)1+ a

GE is the elastic modulus, B is the relative Cauchy strain tensor.

The visco-elastic contribution is expressed as a summation of distinct modes with

constant relaxation times A, and viscosities??,.

N

j=1 (2.14)

GE Xj and 7j are not arbitrary constants. They are determined from the

oscillatory data:

G(co)=GE' 1+6t~o

1 +(2.15)
q ))G 77__

im 1 + iA w

The remaining parameters a and f(y) are determined from start-up of steady

shear flow experiments. Phan-Thien et al observed the shear stress to increase

with time to a peak value and then decrease continuously afterwards with a
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"conspicuous" absence of steady state response. They believed that the peak

value corresponds to a "rupture" or partial "breakdown" of the elastic network.

This behavior is modeled through the strain-softening function f(y):

{ 4

f = 1 )1 exp - (2.16)

where y is the equivalent strain =(TrB-3 ), 2 , y represents the strain at which

shear-thinning occurs in the manner of the Carreau viscosity model with

exponent m, and y. is the strain at which "rupture" occurs.

The predicted stress for a range of strain rates was compared to experimental

data on start-up of steady shear flow and dynamic oscillation. They showed

reasonable agreement, which is not at all surprising, since the constants are fitted

from these data. This illustrates an important point in evaluating a constitutive

equation: how will the predictions fair when compared to data obtained under

different kinematic conditions? Since in the case of doughs, extensional behavior

seems to be of most practical interest, the natural question to pose is whether a

model can predict extensional rheological response. Rock [62] performed a

numerical study on the predicted response of the model under bi-axial extension

in the bubble inflation technique, but unfortunately no attempt has been made to

compare the predictions with extensional data yet.

The greatest drawback for the Phan-Thien model is that it requires an unusually

large number of parameters, making it unwieldy in performing qualitative

analysis such as kinematic failure. It is also difficult to compare relative

functionality of different dough. Fitting the strain-softening function is also

extremely empirical, it is difficult to relate stress development to the molecular

structure of the gluten network.
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Pom-Pom model

The Pom-Pom model [63, 64] has a feature particularly appealing to rheologist

studying dough: it describes the effect of branching on large deformation

rheology. Micrographs of the glutenin network seem to show the molecules to

have a highly branched structure [4].

The Pom-Pom model is an extension to reptation theory [65], where polymers are

modeled as composing a backbone with branched ends, this is illustrated in

Figure 12.

Branched ends Backbone

Branch point "pins"
the backbone of
the polymerSurrounding

coarse grained as
reptation tube

Figure 12 The Pom-Pom model

Branch point acts as a constraint "pinning" the ends of the polymer backbone to

deform affinely with the flow. However, this "pinning" effect is not permanent

and will release allowing the branched points to retract into the reptation tube if

the backbone is stretched to a certain limit. The resulting constitutive equations

are:

a-=G02S

A1 1
A~ =-jA--I

;Lb 3
A (2.17)

Tr(A)

o=$(Vv:S) - 1(0-1) foro<q
Dt AS
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Where G is the modulus, S is the orientation tensor and 0 is a measure of

backbone stretching. The backbone relaxation occurs at a characteristic stretch

relaxation time-scale A, while the orientation can also relax separately at a time-

scale of A)b. Branched point retraction bounds the stress growth providing a

mechanism of finite extensibility to the model.

A natural extension to the Pom-Pom model is to include a spectrum of mode

shapes to capture the dynamic shear response, however this will again increase

its complexity because we will need to specify a q value for every single mode.

There are currently no published results that compares the prediction of this

model to measured rheological data.

Others

The equations discussed here are by no means a comprehensive study of the

different approaches in building a constitutive equation for dough. Other

examples include K-BKZ [66], Bird Carreau [67] model etc... Most models

require a large number of constants reflecting the complex composition of the

dough. All are able to describe particular aspects of dough rheology with

varying degrees of success. In this work, we are most interested in the response

under large nonlinear deformation and will be willing to sacrifice some accuracy

in order to capture the important physics behind mechanism of strain-stiffening,

nonlinear softening, finite extensibility and rupture discussed in the

introduction.

Critical gels - Powerlaw model

In our review of early work, we saw that dough often exhibit a powerlaw type

response in their linear viscoelastic material functions [15, 19, 61, 68]: relaxation

modulus and creep compliance varies as a powerlaw with time, while the

dynamic moduli are power law functions of oscillation frequency. Gabriele and

co-workers [69] were the first to notice the similarity between powerlaw

behavior of dough and the response of a class of materials called critical gels.
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Critical gels refer to materials that lie on the ill-defined boundary between liquid

and solid state. They can be best understood by considering the formation of

them. Here, we use the example of a perfectly cooked egg yolk within a soft

boiled egg as an example [70].

An egg yolk consists essentially of two phases: aqueous phase and globular

protein phase. In Figure 13 we plot the dynamic moduli of an egg yolk as the

temperature is increased. In the uncooked state, there is little interaction between

neighboring globular proteins, and the yolk can be considered as a simple

suspension that is predominantly of fluid nature, this is evident from the relative

magnitudes of the dynamic moduli. As the temperature is raised, there is an

increased level of interactions between neighboring protein globules, they begin

to bond, the structure formed in this manner is able to span the entire sample

thus turning the yolk from a fluid to solid state. The point at which this sample

spanning structure first develops is the critical gel point. Since the bonding

events occur randomly in space, the structures formed will be of a fractal nature,

giving a critical gel its characteristic power law like behavior [71, 72].

Incidentally, the critical gel state is close to what epicureans consider a perfectly

cooked egg yolk: "the yolk suspended between raw and cooked, ... freed from

the slight rubberiness... a sexy egg" [73].
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Figure 13 Mechanical properties of various stages of gelation illustrated by the
cooking of an egg yolk.

The mechanical properties of a critical gel have been well documented [74-77]. It

suffices here to note that the relaxation modulus shows is well known to show a

powerlaw decay in time

G(t)= St-" (2.18)

where S is known as the gel strength and n is referred to as a gel index. Other

linear viscoelastic material functions can be obtained by considering suitable

transforms of equation (2.18) while an extension to include finite strain

deformations will be discussed in the next chapter. Detailed treatment of the

experimental and mathematical framework will appear later in this thesis, where
we will compare theoretical predictions with experimental data obtained from
gluten gels: a material with much simpler rheological behavior.
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The fact that doughs also show a critical gel like response should not be

surprising, after all, there are many other foodstuffs that also show this sort of

powerlaw behavior [70, 78, 79]. However, exactly which components within the

dough give rise to this critical gel behavior is an unanswered question and will

be considered in turn later in the thesis.

2.5. Conclusions

The rheological study of dough has had a long and distinguished history, and we

have spent this chapter discussing articles originating from a period that spans

the best part of the last century. Through this discussion, we have highlighted a

few important ideas that are central to dough rheology.

First of all, we learnt that good experimental technique is absolutely critical.

Dough typically exhibit strongly non-linear rheological behavior and are time

dependent/thixotropic, thus it is important to keep track of all the variables.

We also surveyed some proposed theories for the microstructure of dough. We

showed that hydrated starch is on its own an extremely time dependent material.

For the gluten part, we noted that they can be broadly classified into two schools

of thought, with one school believing the proteins exists in a tightly bounded

particulate form (particulate gels) and another believe that the proteins exists as

long filaments (branched or linear) and behave more like typical long chain

polymers (polymeric gels). Both schools are in agreement that there are strong

interactions between neighbouring proteins that form a sample spanning

network.

We also surveyed some common constitutive equations and assessed the "pros

and cons" of using them. Of particular interest is the critical gel model that seems

to be able to describe the linear viscoelastic properties with a surprising small

number of parameters (gel strength S and gel index n). The material functions

predicted are in agreement with the "powerlaw rheology" often observed in

dough. In the next few chapters, we will build upon this mountain of previous

work and hopefully shed light on some of the unanswered questions still

remaining.
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3. Equipment, Experiments and Sample Preparation

The ultimate goal of dough rheology is to directly measure or otherwise

indirectly obtain its material functions, which can then be used to describe the

functional properties of the dough. A general discussion of each of the following

rheometric tests are provided by Bird et al. [60]. In this chapter, we will briefly

sketch out the techniques and discuss their merits and shortfalls with regards to

dough rheology. Detailed discussions of the specific geometries, procedures and

results will follow in the subsequent chapters.

Bagely [80] outlined the range of difficulties encountered by rheologist

attempting to characterize the mechanical response of dough. Firstly, there is the

difficulty in obtaining repeatable data. He found that other than over-mixed

dough, samples were so heterogeneous that even samples from the same mixing

batch displayed significant variations. He also noted that these heterogeneities

can be eliminated by over-mixing the dough, but over-mixed dough are of little

practical interest. Short of over-mixing, the only solution is to be extra careful

and consistent in preparing the sample, and to perform a large number of

experiments to obtain a statistical mean.

Secondly, the interpretation of raw data is often extremely challenging, since

very few experiments allow us to directly measure the material functions. After

performing the tests, how should the rheologist interpret the raw data

(force/pressure/displacement/Brabender Units etc...), and is it possible to form

a basis for comparing different doughs? How do we compare the results from

say the extensigraph test to the Alveograph or dynamic shear test? These are

questions which we will consider for each of these tests.

Most of these are well developed techniques and are documented in detail in

other works [60, 81-83], it suffices here to provide a very brief list and description

of the "arsenal" available to the dough rheologist to attack the problems at hand.
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3.1. Mixing

Mixing is the very first step towards forming a cohesive dough, whether for

baking or for rheological testing. Obviously, the quality and proportion of

ingredients will have an impact on the baking and rheological properties of the

mixed dough; however, less obviously, the manner in which mechanical work is

imparted onto the dough during mixing can have an effect too.

During the mixing process, the respective constituents are dispersed and the

application of mechanical energy "forms" the dough by changing its molecular

structure as described in [6, 27, 84].

Mechanical mixers come in various forms, industrial mixers are designed to

handle large quantities of dough, some examples are agitator arms, dough hooks,

spindle and planetary mixers etc... In the laboratory, dough is produced in much

smaller quantities, and the mixers are used to produce samples of consistent

properties for testing. Some mixers also monitor the properties of the dough

during mixing and hence can be considered as a crude form of rheometer or

indexer. Z-blade and pin mixers are the most commonly used for dough

applications. In our laboratory, a pin type mixer [85] is used to prepare the

dough samples.

The layout and typical output of the pin-type mixograph is illustrated in Figure

14 (a) and (b). The motion of the rotating pins causes the mixture to stretch and

fold around the stationary pins. The resistance of the dough is reflected in the

deflection of the torque spring. This deflection is recorded on a mechanical strip

chart. Newer models of the mixograph come with the option of electronic torque

measurement and analysis capability. In our lab, we instrumented our

mixograph with a simple string potentiometer that outputs the deformation

signal to a Labview data acquisition and analysis system.
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Figure 14 Mixograph and typical output

The shape of the mixograph varies with flour type, protein and water content,

but several general features are usually present:
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Under-mixed regime (typically 0-1.5mins): The dough is not homogeneous if

mixed for less than 1.5 mins. Between 0 and 1.5 mins, the torque increases

rapidly from 0 to 3 mixograph units.

First plateau region (1.5 to 3 mins): Only observable for strong doughs. Torque

reaches a plateau and remains approximately constant at 3.5 mixograph units.

During this period, the sample becomes homogeneous and fibrous threads are

formed by the stretching action of the mixograph pins.

Peak-mixed (2-10 mins): Torque begins to increase again. In Figure 14 (b) For this

particular flour a mixing time of seven minutes was required to achieve the peak

mixed condition (i.e. the time at which the torque output from the mixograph

was at maximum) but can vary by up to ± 5 minutes for different flour types and

water content. The period of increasing torque up till the peak mixed condition is

usually associated with the development of dough protein structure.

Over-mixed (after the dough was peak mixed): additional energy causes the

breakdown of this structure, and the torque decreases. Visual inspection of the

dough shows that it has become smooth and viscous, and can be described as

"creamy".

The impact of mixing on the rheology [86-88] and bread making qualities [89, 90]

of dough has been the subject of intense study [91]. The general idea is that the

mechanical energy imparted by the mixing method causes dramatic

microstructural changes: through gluten development/breakdown [92, 93],

starch swelling/breakdown [94]. There also some studies that deal with the

distribution of constituents in dough mixed to different levels of development

[95, 96].

3.2. General Mechanical Testing

After the dough is mixed to the required consistency, mechanical testing can be

performed on it. In the context of mechanical testing, scientists and engineers

have found wheat flour dough a difficult substance to work with. Equipments

and analyses in this field of study can be broadly divided into two approaches.
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The first approach centers on devices that were developed specifically for

assessing dough. Included under this category are devices such as Extensigraphs

and Alveograms. The Extensigraph [97] and Alveograph [98] measures the

resistance against extension after the dough has been mixed to a specified

amount of time. Such devices are well suited for testing dough; dough has a

large relaxation time, the mechanical response is highly dependent on its

deformation history. Therefore sample loading is usually simple, protocols for

preparing specimens either minimize handling or ensure that all batches are

treated with uniform deformation. In view of these advantages, the devices

under this first category are widely adopted by the food industry as standards.

Unfortunately, the outputs are usually given in terms of empirical units

(Brabender units etc...). Since the deformations are not well understood, it is

difficult to convert results to universal parameters such as stress and strain.

Another approach utilizes instruments known as rheometers. Rheometers are

capable of measuring resistance (torque/force) and displacements to a high

degree of accuracy. Within the classification of rheometers, we can further divide

them into shear and extensional devices. The deformations experienced by

dough in the bread-making process are predominantly extensional, therefore it is

widely believed that properties measured in the extensional rheometer are more

relevant for describing the quality of the dough [4, 80, 99]. Contrary to the

devices mentioned in the previous paragraph, rheometers are not well suited to

testing dough due to the difficulty in sample loading. But the kinematics of

deformation of the sample within the instrument are well defined, this makes the

analysis to translate resistance-deformation data to universal parameters

relatively simple.

Over the last few decades, a number of studies have been made towards

understanding the kinematics in devices of the first approach and to establish the

link between their results from fundamental quantities measured on true

rheometers. Bloksma [1001 related the pressure and displacement measurements

from an Alveograph to stress and strain by making specific assumptions on the
mode of deformation. Charalambides and co-workers later investigated these
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assumptions through experimental observations [101] and computer simulations

[102].

3.3. Devices designed specifically for dough

Extensigraph

The extensigraph was developed by Brabender. Dough is rolled into a cylindrical

sample and clamped at its two ends. A hook is moved perpendicularly across the

sample, stretching it to a V-shape (Figure 15).
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I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I

Clamps

Hook
moving on
linear stage

~IuI
Initially
cylindrical
sample

Figure 15 The extensigraph. Cylinders of dough are clamped at ends and
stretched out by pushing a dough hook through the central portion.

The Brabender extensigraph outputs the resistance R(t) that the hook experiences

and the distance E(t) which the hook has moved through. Resistance is measured

in Brabender Units (BU), a typically arcane measurement favored by Brabender

company, though it is not difficult to calibrate it to the more common S.I. units of
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force measured in Newtons. From the outputs of the extensigraph, an empirical

number which supposedly reflect the rheological properties can be computed:

Ratio number = Rn R(t) (3.1)
E(t)

A more useful measure is the extensibility Em,, which is simply the maximum

length the dough can be stretched through before rupturing. Obviously,

extensibility will have some direct relation to the dough volume as discussed in

the previous chapter.

Bubble inflation technique

The bubble inflation technique is perhaps the most widely adopted method for

performing extensional tests on dough. Its popularity might be partly due to the

similarity in kinematics to the actual deformation during baking and proofing

which is predominantly bi-axial. Furthermore, a set of accompanying equipment

has been developed to form the initial sample conveniently and consistently with

minimal handling. The Chopin Alveograph was one of the earliest development.

Subsequent improvements and adaptations were made [71, but the underlying

principle remains the same (Figure 16). A flat round disc of dough is clamped

around its edges. A driven piston supplies a controlled flow of air, inflating the

dough sheet into a bubble. Usually, only the volume and pressure of air are

measured as raw data, a typical set of raw data is presented in Figure 17.
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0.

a)
Cl)Ena)

0~

500

400

300

200

100

0 100 200 300 400 500 600 700x10 3

volume [mm3]

Figure 17 Typical raw data from bubble inflation test.
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For a discussion on how the raw outputs of pressure and volume are interpreted,

the reader should refer to the works of Hlynka [103], Bloksma [100] and

Chalarambides [91, 101, 102].

3.4. Shear Rheology

Shear rheology is a convenient and well developed method of exploring the

response of the viscoelastic materials. A rotational rheometer with good

resolution in torque and angular displacement is relatively common.

Unfortunately, a commonly encountered problem is slip. The large viscosity of

dough generates large shear stresses at the interface between the sample and

end-plates, which often leads to slip. Slip is usually eliminated by applying a

roughened surface (usually sandpaper) on to the end-plate. As a result of this

requirement, dough rheology is usually performed on parallel plates rather than

cone and plate geometries, for it is easier to apply adhesive backed sand-paper

onto a flat plate compared to cone geometries.

Typically, a "blob" of sample is placed on the lower rheometer plates, the top

plate is then brought down to compress the sample to the required thickness. A

large amount of normal force is generated in this process. This normal force

limits the size of the plates, and a diameter between 20 and 40 mm is usually

used for these experiments. After the dough is compressed to the desired gap

size, excess dough is trimmed with a razor blade.

Stress relaxation

Stress relaxation is conceptually one of the simplest experiments to perform and

understand on the rheometer (at least in the linear regime) [18]. Typically, a

small shear strain of yo is impulsively applied to the sample. The rheometer then

monitors the shear stress a(t) required to maintain the sample in this

deformation state. The material function obtained is the relaxation modulus:

u(y0 ,t)G(t0)= -aY(3.2)
yo
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which is typically a decaying function of time and is a measure of the "memory"

in the material. The linear regime is defined as the region within which the

relaxation modulus is independent of the step strain amplitude:

u-(y, t)G (t)= ' 0(3.3)
70

The range of strain for which this is valid is surprisingly small for dough, typicall

y* <10-3.

Unfortunately dough systems tend to have a long memory, therefore stresses

incurred during sample loading can interfere with the actual relaxation of the

experiment , especially at long times when the stress becomes diminishingly

small. A discussion of this effect is given in a later chapter.

Steady shear experiment

In a steady shear experiment, a steady shear rate ?0 is applied on to the sample

until the shear stress reaches a steady state is reached. The shear rate dependent

viscosity 7(fO) is defined as:

T Isteady state =7 ? )(3-4)

Attempts to measure 7(?) has not been successful because the shear stress does

not reach a steady state [104]. For experiments conducted at relatively high rates,

the sample tend to roll-out of the geometry. While at very slow strain rates, the

stress can appear to approach a steady value and is sometimes extrapolated to

give an estimate of a zero shear rate viscosity.

Start-up of steady shear

Effectively, the experiment is identical to the steady shear experiment discussed

above but rather than just seeking a steady state viscosity, we instead monitor

the transient changes in shear stress as the sample is deformed. Even though the
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dough deviates from viscometric flows and "rolls out " of the gap at large

strains, the transient shear stress leading up to this point can be monitored. The

material function obtained from this test is the transient shear viscosity:

T = 17( 0tY, (3.5)

At very low rates, when the transient shear viscosity becomes independent of the

strain rate, one can use the Gleissle's mirror [105] relationship to obtain an

estimate of the steady shear viscosity [80]:

1(?)= + (t)[ (3.6)

Creep

Creep is the stress-controlled analog of the start-up of steady shear flows. A

constant shear stress ao is applied to the sample and the resulting change in

strain is measured. The material function obtained is the creep compliance given

by:

y(t)
J) (3.7)

Lefebvre et al conducted a series of comprehensive creep tests on a variety of

wheat flour dough [30], he showed that the material behavior is similar to that

observed in strain-controlled tests in which the sample is ejected from the gap at

large strains. However, the creep experiment does have the advantage in that the

directly measured function, the displacement, is an increasing function of time,

thus making long time scale observations easier.

Oscillatory Shear Experiments

An alternative to stepped, transient and steady shear flows are oscillatory flows.

Instead of a constant shear stress or rate, the deformation or torque are applied to

the sample in a sinusoidal oscillating manner. In the linear viscoelastic regime,
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(at very small strains y, <10-2 ), the material functions are independent of the

oscillation magnitude and is only a function of the frequency. Therefore we can

simply focus on this frequency dependence and perform a sweep through the

oscillation frequencies; this form of "mechanical spectroscopy", reflects the

signature of microstructures at different length-scales in the frequency response.

The material function is typically decomposed to an in-phase and out-of-phase

component (relative to the imposed strain y(t) = y, sin(wt) or stress):

a-(t) = G' y sin(wt) + G "y, cos(wt) (3.8)

G' is referred to as the dynamic modulus and G" the storage modulus. They are

also sometimes expressed in equivalent terms of dynamic viscosities (!!!):

a-(t) = 17" , sin (Wt)+ i'fo cos (0) (3.9)

Since dough are composite materials that show a high degree of polydispersity

and we expect its response to depend on a large range of time scales. Dynamic

shear rheology can probe the behavior over this wide spectrum of time scales

[68].

Phan-Thein et al [61] had reasonable success in using the oscillatory shear

technique for characterizing dough behavior and obtained a relaxation spectrum

for dough, the storage modulus and dynamic viscosity are plotted in Figure 18.

57



10 to 10' u0' to'
Sol

vo' s' se10' f
IC11I

*1O Ifrdi o
1o 10' as ga

Fiqwincy, w (rfs)

Figure 18 Typical frequency response from dynamic oscillatory shear data for
wheat flour dough at various water concentrations [104].

To increase the accuracy of the spectrum, we need data from a wider range of

frequencies. Time-temperature superposition is usually used to extend the range

but is difficult to apply in this case, because change in temperature can alter the

molecular/chemical structure significantly (gelling of starch, drying etc...) [17,

106].

It is important to remember that the analysis described above is only valid in the

linear regime, in which the moduli are independent of strain amplitude. Thus,

the first step towards dynamic shear rheology is to identify the linear range. We

show typical variation in moduli over a strain sweep for a flou-water dough in

Figure 19, the linear range of dough is surprisingly small (strains y - 10-3) and

the manner in which the subsequent softening beyond the linear range is similar

to other published data [107].
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Figure 19 Strain sweep of HRS dough. Both moduli drop dramatically at strain of
5 x 10' which we define as the limit of linear range.

That is not to say that data collected beyond the linear range is not meaningful.

But instead, more sophisticated techniques are required to understand the results

[108-110]. More detailed discussion of such methods will be discussed in

chapters 6 and 7.

Most commonly, the departure from linearity is signaled by a deviation from an

sinusoidal response signal. The most obvious method for quantifying this

deviation is by expressing the response as a series of Fourier harmonics [111] i.e.:

a-(t) - , G', (o, y )sin(nwt) +G", (w, y, )cos(nwt) (3.10)
Yo n=1,2...

In the linear viscoelastic, the contribution of the higher harmonics tend to zero

and we recover the simple harmonic response once again. The response can be

paramterized by eliminating time and presented as Lissajous figures in which

stress is plotted against strain. In the linear viscoelastic regime, the curves should
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take on an elliptical shape (see chapter 6). These ellipses will become gradually

distorted as the strain amplitude is increased beyond the linear range.

Some typical Lissajous figures of flour-water dough from the work of Phan-

Thien et al are presented. The strongly nonlinear behavior of the flour-water

dough is prominent from relatively small strains (yo - 0.01) and becomes

increasingly pronounced at larger strains.
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Figure 20. Lissajous figures of wheat-flour-water dough under oscillatory shear

of amplitude 8.
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Capillary Rheometry

Other than the typical rotational rheometer, a capillary rheometer is sometimes

used [112]. Samples are extruded through a tube driven by a pressure

difference Ap. We approximate the flow to be fully developed and therefore the

pressure drops linearly and velocity profile does not change along the length of

the tube.

r L

z

Figure 21 Fully developed flow in a capillary rheometer.

Shear stress in a fully developed flow is given by:

ApR 
(3.11)

2(L + eR)

Where e is an end correction factor. This end correction factor can be significantly

large for dough, values of up to 200 are typical. It is therefore critical to have a

large L/R ratio to mask the effect. We estimate an apparent strain rate at the wall

by considering fully developed flow of a Newtonian fluid with parabolic velocity

profile:

avz 4Q
2

'apparent (3.12)cR

Where Q is the volume flow rate. An apparent viscosity can then be computed:
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ApXR4

17apparent 8Q(L+eR) (3.13)

A variety of correction factors are typically required to account for the

occurrence of slip, recirculation and other non-viscometric effects within the

capillary [80].

Comparison between different methods of shear rheometry

Relatively few attempts have been made to compare the results obtained from

different shear rheometry measurements. Bagley et al [80] presented results from

capillary rheometer and start-up of steady shear in a cone and plate set-up. The

two sets of data did not overlap each other, but it seems plausible that the shear-

thinning behavior can be extrapolated from the cone and plate data to the

capillary data.

Lan a Cans wd Puft

qV IA
* 2.1
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Figure 22 Apparent viscosity from a LEN 89 wheat flour. Values from start-up of
steady shear in the cone and plate geometry was computed from the Gleissle
rule. Capillary data was obtained through a pressure driven capillary rheometer.
[80]
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Another often cited result was published by Phan-Thein et al [104] in which they

computed the relaxation spectrum from dynamic oscillatory data and step strain

relaxation and found them to be in good agreement.
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Figure 23 Comparison between relaxation spectra computed from dynamic
oscillatory data and step-strain relaxation [104].

Such results are encouraging for they confirm the ability of the well-developed

shear rheometry methods in measuring material functions accurately.

But shear rheometry alone is insufficient to characterize the functional properties

relevant to bread-making. Since the deformations are in shear and usually of

small amplitude, the results cannot be readily translated into properties relevant

to the large extensional flows relevant to baking.

3.5. Extensional Rheology

Extensional rheology recently celebrated its hundredth birthday [113]. The study

of extensional properties formally began when Trouton described his famous

result in the Proceedings of the Royal Society [114]. Since then Schofield and

Scott-Blair has developed a method to apply these ideas in a manner relevant to

the measurement of "resistance" in bread doughs [10-13] [see chapter 2].
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Uni-axial Compression

Uni-axial compression can be performed on instruments such as INSTRON and

texture analyzer. A typically disc shaped sample is compressed along its axis of

symmetry [591. To generate a shear free flow, the end plates must be lubricated

to allow perfect slip and the resulting deformation will be equivalent to bi-axial

stretching. Unfortunately, maintaining perfect slip motion is perhaps more

difficult than ensuring no-slip in a shear experiment. Consider the case where

no-slip is occurring, The small aspect ratio (A = L/R <1) suggests that a

lubrication approximation should be appropriate. Performing the analysis will

show that the pressure arising from extension scales like:

Text - (3.14)
L

while pressure arising from shear:

V
Pshear ~ -> Tex (3.15)AL

We see that the lubrication pressure can overwhelm the force measured at the

endplates; extracting extensional properties can be difficult. Furthermore, stick-

slip situations are often observed, therefore generating a steady flow can be

tricky.
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Figure 24 Two approximations of uni-axial compression streamlines.

Despite these difficulties, uni-axial compression has been performed on doughs

and the response was found to approximate an upper convected Maxwell model

with relaxation time in the range of 10 to 50s [59].

Filament stretching

Filament stretching is a technique more commonly associated with samples of

lower viscosity range (i - 1-100 Pa s) [115-117], but can also be adapted to

use for stretching dough systems which have viscosities in the range of

17+ ~ 104 - 106 Pa s .

The Filament Stretching Rheometer, FiSER III, allows a large dynamic range

(strain rates up to 0.001 e 5s-1 are possible), produces good accuracy in force

measurements and is able to monitor in real-time the evolution of the mid-plane
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diameter during the experiment. The last item is particularly important because

under large strains the axial profile of the stretched filament is often not uniform.

This extra piece of information gives us more accuracy in calculating rheological

parameters such as true tensile stress and true Hencky strain. It also allows us to

study the growth of non-uniformity that ultimately leads to rupture.

Figure 25 shows a schematic of the FiSER set-up.

Top-plate

Sample

Laser Micrometer

Mid-plane plate

Force Transducer

Figure 25 Schematic of Filament Stretching Rheometer

A sample of dough was attached between the top- and bottom-plates by means

of sandpaper disks punched from a sheet of self-adhesive sandpaper. At the

beginning of the test, the top-plate moved away from the stationary bottom plate

at an exponential rate, stretching the dough at a nominally constant strain rate:

L = Loebt (3.16)

From this relationship, we define the nominal strain:
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E = Et = In L(t) (3.17)
LO

Mounted on the middle plate is a laser micrometer. This plate travels at half the

velocity of the top-plate allowing the laser micrometer to monitor the evolution

of the diameter at the mid-plane during the experiment. The laser micrometer

was manufactured by OMRON (Z4LA), which measures diameters in the range

of 50prm to 9mm with an accuracy of ±10gm.

$, the axially-imposed or 'nominal' strain rate is based on the total length of the

sample. In an ideal experiment for an incompressible material involving a

fictional end-plate clamp which deforms accordingly so that the entire sample

remain cylindrical, E will be the true strain everywhere in the sample. In practice,

as a result of the no-slip condition at the end-plates, the filament shape is

concave, and the true strain will vary along the axial length of the sample. The

true strain experienced by the fluid elements near the axial mid-plane can also be

calculated from the diameter measurements from the laser micrometer through

the relationship

C(t)= J(t)dt = -2In D'd (t) (3.18)
Do

Where Dmid(t) is the measured diameter from the laser micrometer and Do is the

initial sample diameter. The local or effective strain rate can also be found from

differentiation of this expression

dE(t) 2 dDmid ()
dt Dmid(t) dt

In general, the relationship between the two strains has to be computed

numerically.

A force transducer was mounted on the stationary bottom plate to monitor the

tension within the dough filament. The force transducer was manufactured by

Futek (L2338) and can measure forces up to 1ON with an accuracy of ±0.05N. The

force transducer has a characteristic time constant of 50 ms.
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Figure 26 Force balance on a sample undergoing filament stretching

The stress within the sample can be found by performing a force balance at the

mid-plane of the sample [118, 119].

P = r, +- a
R

FP=(r. - p) rR 2 + a, (2tRJ+p ) - P L(t12R 2 ( v (2, t) dzmp2 f R t03

(3.20)

(3.21)

Before writing out the explicit expression for computing stress evolution from

FISER data, a few simplifications can be obtained by considering the relative

contribution from each of the terms. We make an estimate of each of the terms:
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Extensional Stress difference = cr7rRmid 2 -?ER etI7

Surface tension = as (2rRid) - aRoe 2 7

Gravitational force = pg - P RLO72 2
L(t)/2

Inertia = px7 f av(z,t) dz
R2 (z,t)

Jt

SprRLOE
2 e2Et

4

The characteristic size of experimental parameters:

Parameters Typical Values

10 4 Pas-1

$

a,
S

10-3to 10 1s-1

0 to 3

10-3m

10-3M

10-2 NM-

101ms-2

We can show that for the case of filament stretching of dough, all other terms can

be considered negligible to the stress difference by evaluating their ratios:

Surface tension

Stress difference

-- FEt -E't

cyRoe 2 X= arse2 ~10-4= Ca-1
=ER 2  Rr e0lRe~~ ~E 0 10=C

Gravitational force pgR Lor

Stress difference 27l$R'e -b 7r

Inertia
Stress difference

prR L2P2 e pL ee 31

417$R 2e-tEr 4n

We conclude that capillary, gravitational and inertia effects are insignificant

compared to the visco-elastic forces within the dough under filament stretching
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pgLoett
2E

~10-2 =
Ca

(3.23)
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for strain rates investigated in these experiments. Thus the force balance simply

results in the following relationship:

F (t) 4FP (t)
'z(t-r(t) - t - ,Dd (3.24)

Initially, some crude filament stretching experiments were performed on the

Texture Analyzer TA.XT2, we identified the need to improve on the systematic

handling and loading of samples, especially during the mounting procedures.

For this purpose, we designed and built a specialized end-plate assembly. Using

this assembly, the sample could be mounted, pressed to the required thickness

and cut into the required diameter, then allowed to relax without further

deformation before mounting onto the FISER for testing. The design is illustrated

below in Figure 27.
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for testing

Figure 27 Procedures for preparing dough samples

Self-adhesive sandpaper was attached onto each end of the custom built end-
plates. A sample of dough was then placed between them and pressed to the
required thickness. The cookie cutter was then used to cut the sample into a
cylindrical shape of the same diameter as the lower end-plate.

Dough sample of approximately 5g were mounted on to the customized end-
plates. They are compressed to a thickness of 2.5mm then cut into a disc shape
with radius 19.05mm. Next, a pre-stretch was performed so that the disc of
dough was elongated to a cylinder of height 7.5mm and diameter of
approximately 7.5mm, which is an initial aspect ratio AO of 2. The sample was
painted with a thin film of silicone oil and left to relax for 30 mins before testing.
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Figure 28 Pre-stretch of sample

The purpose of the pre-stretch is two-fold. Firstly, it increases the aspect ratio,

by-passing the initial "lubrication" flow regime. The filament can be considered

as almost cylindrical through most of the experiment. This greatly simplify the

kinematics as discussed in the previous section. Secondly, the cross-sectional

area is reduced, thus reducing the adhesive load required at the end-plates.

The thin film of silicone oil prevents excessive drying of sample. Vegetable oil

and glycerol is not used because we found that the dough can absorb some of

this coating fluid. The silicone oil used has viscosity 100 Pa s. This viscosity was

selected so that it the oil is thick enough to resist draining by gravity yet not

provide any significant contribution to the force balance in equation (3.21).

During the 30 minutes of relaxation, the force drops from 10-1 to 102 N. The

length of relaxation was established through trial and error; experiments with

shorter period of relaxation showed poor repeatability.
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Figure 29 Typical Force/ Diameter vs time data from FISER

Presented in Figure 29 are typical results obtained from filament stretching

experiments. The diameter decreases exponentially (straight line on a log-linear

scale), corresponding to a linear increase of strain in time. The profile of the

stretched sample strongly resembles a cylinder because of reasons discussed in

the previous section and the extreme care in ensuring a uniform initial condition.

We note that over most of the experiment, e = E, i.e. uniform uni-axial extension.

SER Method

More recently, Sentmanat et al developed a technique (Sentmanat Extensional

Rheometer or SER) that is well-suited for materials with high viscosity range

[120-122]. Compared to the specialized techniques of filament stretching (see

previous) and other extensional rheometers [123], the greatest advantage of this
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system is that it is a simple extension to the conventional rotational rheometer

technique. Samples are prepared by pressing and cutting the dough into

rectangular sheets of known initial dimensions. The sheets were coated with a

layer of silicone oil to prevent drying and mounted onto two cylindrical drums

as shown in Figure 30. The two drums are interconnected with a gearing system

[120-122] to counter-rotate and stretch the sample.

L4

/ ~ Oil film

R)I

sample

Figure 30 Schematic of the Sentmanat Extensional Rheometer. Sample is

stretched between two counter rotating cylindrical drums.

The tension F within the sample can be inferred from the torque T acting on the

drums.

F = T/2R (3.25)

The nominal extensional strain rate in the horizontal direction (H) is given by:

EH = 2QR/L0 (3.26)
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In existing work with the SER, the deformation has always been assumed to be a

purely affine uni-axial deformation such that H = PH = -2tV (where V is the

vertical direction as shown in the figure). However the layer of low viscosity oil

coating the dough can lead to partial slip between the sample and the drums. It is

thus essential to directly measure the true deformation rate in the sample.

Similar systematic differences between the imposed and actual deformation rates

are well-known in other extensional rheometer designs that use strips of

viscoelastic material [1241. As shown in Figure 31, we use an initially rectangular

grid that is painted onto the dough to follow the homogeneity of deformation

with high speed digital video. After correcting for the fluid slip the resulting

strains were found to indeed approximate uni-axial elongation but at a strain rate

25% slower than the nominal rate.
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Figure 31 Deformation of a dough sample on the SER at = 10s-. Slip leads to
an actaual deformation rate in the sample that is -25% slower than the nominal
imposed value; however the strains remain approximately uni-axial. True
strains were calculated by measuring the change in length of material lines
marked on the surface of the undeformed dough sample.

Results obtained from this method were found to be in good agreement to data

from filament stretching (Figure 32).
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Figure 32 Comparison of extensional behavior of a wheat flour dough recorded

on the FISER vs SER at = 0.3s-1 .

3.6. Conclusion

In this thesis, we focus on test methods described in the latter part of this section.

The mixograph, extensigraph and alveograph suffer from a lack of control and

information concerning the actual deformation of the dough. Furthermore, these

experiments are usually performed at a constant rotation rate/inflation

rate/ cross-hair speed, rather than constant strain-rate. Achieving a constant

strain-rate through a specific profile of inflation/ cross-hair movement is not

possible either, because the actual strains are not known. Controlling and

understanding the kinematics of these tests is important; it allows us to translate

the results to fundamental rheological quantities such as stress and strain; by

controlling the rate of deformation so that the strain rate is constant, we can

obtain true material functions such as transient extensional viscosities. Material

functions serve to classify fluids, they are used to determine constants in non-

Newtonian constitutive equations. By using the more well controlled techniques

we can accurately reproduce the viscometric flows required to assess these

material functions. We conclude by summarizing the relative deformation range
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possible on these rheometric techniques and their relevance to dough baking

performance in Figure 33.

10,

-
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Figure 33 Operation chart of typical rheological tests on dough.
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4. Power law rheology of doughs

4.1. Introduction

In the previous chapter, we provided an overview of the experimental

techniques and conceptual models that are used to understand the mechanical

behavior of doughs. Of particular interest here is the Weak-gel model introduced

by de Cindio et al [69]. The advantage of this model lies in its simplicity: it is able

to describe the rheology of a wide range of dough like materials with a

surprising degree of accuracy.

We first ask the question: are current opinions on dough microstructure

compatible with the idea of a critical gel like material? Various researchers have

come to the consensus that the gluten macropolymer forms a three-dimensional

network throughout the dough [8, 48, 49]. The initially distinct gluten molecules

in the flour swell in size due to hydration and begin to interact with neighboring

glutenin molecules in the process of mixing/working. The large molecular

weight of the gluten macropolymer is essential to form a critical number of

interactions. This gives rise to a sample-spanning structure that imbues the

dough its elasticity. This process can be viewed as a form of physical gelation

[771.

In this chapter, we present linear viscoelastic data that confirms the suitability of

using the gel model as a basis for studying dough. Our investigation then moves

to deformations of larger magnitudes and we will discuss the mechanical

response of the dough under these different conditions in context of the gel

model. Detailed mathematical derivations will be dealt with in a later chapter.

Linear Viscoelasticity of Dough

The linear viscoelastic properties of doughs have been well studied in the past

and are known to contain a very broad spectrum of relaxation processes [17, 61,
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125]. Recently it has been suggested by de Cindio and co-workers [69] that a

simple way of describing the linear visco-elastic properties is through the critical

gel model of Winter and Chambon [74, 76].

At the critical gel point, the stress relaxation modulus follows a power-law-like

decay and is described by the gel equation:

G(t)= St-" (4.1)

Where S is the gel strength and n is the gel exponent. This behavior is illustrated

in Figure 34 (a). Note that for small strains (y ~10-3), the relaxation modulus is

roughly independent of strain amplitude, i.e. within the viscoelastic range.

With the appropriate Fourier transformation [741, one can show that the linear

viscoelastic response in an oscillatory shear flow also behaves in a power-law

fashion:

G= = F(1 - n)cos(nc / 2)SaO" (4.2)
tan(nr /2)

where 7(n) is the gamma function. This behavior is confirmed in Figure 36 (a).

The gel parameters obtained by fitting to Figure 34 (a) (S = 6068 Pa s", n = 0.23)

and Figure 36 (a) (S = 5060 Pa s", n = 0.21) are consistent, thus confirming the

validity of using the critical gel model for describing the mechanical behavior of

bread dough under small strain deformations. We will also show in the next

section that the critical gel model is also a suitable constitutive model for doughs

formed from a range of flour types, water content and mixing time.

Values of n are surprisingly similar for different dough varieties, they typically

fall between the range 0.15 < n < 0.3. The values for the gel strength S can vary by

an order of magnitude (103 < S < 104 Pa sn), and is extremely sensitive to factors

such as water content, protein composition and mixing time (See next section).

The power law relaxation behavior persists throughout the range of time scales

that can be practically studied on a conventional rheometer. There are some

slight hints of a flattening out of the slopes at long time scales or low frequencies

suggesting that the system is slightly to the gel side of the critical gel point (i.e.
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solid like behavior). However we discuss in a later chapter how such

measurements at long time scales are inherently inaccurate for a slowly relaxing

powerlaw like system; effects of thixotropy and residual relaxation from the

loading process are convoluted with the true relaxation resulting from the

experimental deformation.

Large strain deformation of dough

The gel equation was initially developed to describe linear viscoelastic

deformations. However, non-linear behavior becomes apparent in doughs even

at relatively small strains (y - 10-) and are depicted graphically in Figure 34 (a).

We note a decrease in relaxation modulus as the strain amplitude of the step

strain is increased. Since the slope on the log-log plot remains unchanged, we can

conclude that this softening can be described as simply a decrease in the gel

strength S with little change to the gel index n. We account for the decrease in

modulus through a damping function h(y) as shown in Figure 34c. In Figure

34b, we show that the damping function is simply a vertical shift factor that

collapses the data onto a single master curve and can be described by the

following expression:

h(y) 2k (43)
1+qy

where q = 13.51, k = 0.2 are fitted constants. Through this expression, we can

show quantitatively that the non-linearities begin at very small

strains: y* - q-1/(2k) = 1.5 x 10-3.
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To formally describe the corresponding non-linear properties in large straining

deformations of dough, we construct a rheologically admissible constitutive
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equation of Lodge rubber-like liquid form by combining the linear viscoelastic

relaxation modulus of the critical gel with finite strain kinematics [126]2.

We first consider a simplified equation in which the dough behaves like a quasi-

linear material. Mathematically, this is equivalent to setting the damping

function h(y) to unity. This, as we have already showed, is far from the actual

measured damping function (equation (4.3)), but will be a useful for considering

the general form and behavior of the full constitutive equations. With the

appropriate finite strain measure and using the Lodge Rubber-like Liquid

description for the kinematics [75, 77], the constitutive equation can be written

as:

o-(t)=- G(t -t')h(y)y 1 1(t,t')dt' (4.4)

a(t) = -JG(t -t')'r1l(t,t')dt' for h(y)=1 (4.5)

Where G(t) is the relaxation modulus from (4.1) and ymis the finite strain rate

tensor, defined by:

S(tt')= aY 0 (t, t')= 'C-1(t,t') (4.6)at, at,

and y, is the finite strain tensor [60] and C- 1 is the finger strain tensor.

2 Tanner et al, also independently realized how the Lodge Rubber-like liquid

formulation can be used to extend the useful range of the gel equation for

describing nonlinear deformations of wheat flour doughs

127. Tanner, R.I., F. Qi, and S.-C. Dai, Bread Dough Rheology and Recoil I.

Rheology. Journal of Non-Newtonian Fluid Mechanics, 2007. Accepted

Manuscript..

Instead of a damping function, they used a damage function which records the

amount of irreversible damage and softening accumulated by the dough i.e. The

gel equation is multiplied by the damage function outside the integral.
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The resulting set of equations (4.4) - (4.6) can be integrated for different

kinematics to evaluate the stress in the dough at large strains.

We first discuss this in the context of start up of steady shear flows. The shear

component of the rate of strain tensor for this flow is given by:

Y = o (4.7)

This strain rate is substituted into equation (4.5) to give an expression for the

transient shear stress:

+ So 1-n
1-n

1- *n 1-n

=Sf ( O)(D(y)

The expression predicts a power law growth in shear stress in time and strain.

Furthermore, we note that the equation is of a time-strain separable form: the

expression for stress can be written in terms of a rate dependent function

f (?)= ?" multiplied by a master strain function D(y) = .1-/1 - n.

In general, for h(y)#1, a+ = Sf(?0)(D(y).

We compare these predictions to the actual experimental transient stress growth

in Figure 35 (a) for a range of strain rates ?0 = 0.01-10 s-1. All the curves appear

to follow a similar linear viscoelastic regime at small strains and short times and

begin to deviate as the rate of increase in transient shear viscosity decreases. The

curves also show an over shoot at large strains.
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Figure 35 (a) Transient start-up of steady shear of a typical flour water dough. (b)

Data can be collapsed onto a master strain function.

In Figure 35 (b) we show that a master strain function can indeed be obtained by

dividing the transient shear stress by the rate dependent function f(?0) = ?0". S =

6032 Pa s" and n = 0.22 are obtained through linear viscoelastic measurements

discussed in the previous section and we stress that there are no additional fitted
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parameters. However, the master strain function <D(y) obtained from the

experimental data is of a different form to that predicted by equation (4.8): it

deviates from the power law growth ~ yl-" (solid line) at small strains

- 1.5 x104). This of course is not surprising, for we have neglected the

damping function in the formulation of the simplified equation. Therefore to

account for this softening, we reinsert the damping function and solve the

equation numerically. This gives a much improved prediction that is valid up

to y - 2. The modified equation is still unable to predict the stress overshoot, and

it is possible to further improve on the model by including strongly non-linear

elastic terms in the manner of Phan-Thien et al [104]. However, we suspect that

part of the reason for the failure of the constitutive model lies in the fact that the

sample undergoes a viscometric instability: the strong normal stresses at these

strains causes the edges of the sample to deform non-uniformly and eventually

leads to it being completely ejected from the gap. Since, the flow ceases to be

viscometric around this instability, we do not expect any constitutive model to

give an accurate prediction of the shear stresses unless the full dynamic

equations are solved together with the kinematics. This issue is discussed in

greater detail in the section concerning gluten gels under the same deformation.

Nevertheless, the time-strain factorazibility is an interesting feature of the

generalized gel equation and we shall see how it is also applicable to material

functions in other start-up of steady flows.

Moving on, we next consider the case of transient uniaxial extension, the finite

strain rate tensor takes the form:

a exp[-t,,(t -t')] 0 ~_2 0
ril - ~Y7l ] EO2 (4.9)

at, 0 2exp[2tO(t-t')] _ 0 2A,

Substituting eq. (4.1) and eq. (4.9) into eq. (4.5) results in an integral equation for

the stress field as a function of strain rate and elapsed time.

a 2 - a,, =- S(t -t')~" [ 2to exp(2t, [ t - t' ])+to exp (-t [ t - t']] dt' (4.10)
0
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First perform a change of variable such that

r=t-t'

dt' = -dr

= t - r =0

'=0 r =t

0

a - u,, = Sf r" [2to exp(2tor) + to exp(-t 0 r)]dr
t (4.11)

= S r-" [2to exp(2tor) + to exp(-tor)]dr
0

This integral expression can then be integrated by parts:

= fr [2to exp(2tor) + to exp(-tor)]dr
0

1-n -0t= 2t exp(2tor) -(-t )exp(-tor)]

t r1-n

- f [(2to )2exp(2-0r)- (- )2exp(-tr)] dr

tl [2to exp(2Uot) - (-tO)exp(-tOt)]
1-n

[(2- ) -n) [(2to )2 exp(2Uor) - (- 60 )2 exp(-tOr)1]

t 2-n

+ (2-n)(1 -n) )3exp(2tor) -(-to) exp(-ter) dr

This process is applied repeatedly to yield a summation:

Ozz - arT ,+1 tm -" [(260)' exp(2Uot) - (--6)m exp(-60t)]
- " = $ -1)(4.12)

S M=1 (m -n)...(1-n)

Equation (4.12) can be simplified by recasting it in terms of the dimensionless

variable Ext:
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Ext z n

t '-"tm-" [(2)' exp(2tot) - (-1)m exp(-tot)] (4-13)
H)

m=1 (m -n)...(- n)

Substituting for e = tot we arrive at the master strain function:

E '-n [(2)m exp(2e) - (-1)m exp(-e)

M=1 (m -n) ...(1 n)

The stress exhibits a power-law dependence on strain rate and a more complex

dependence on strain. This expression is represented by the dotted lines in

Figure 36b and c. We also note that Eq. (4.14) has an asymptotic limit in the form

given by (a, - a,) - exp(2e) at large strains, i.e. an affine scaling in strain. After

the rate dependence is factored out by dividing the measured stress by the

known power-law dependence on the strain rate (i.e. f(to) = to, experiments

from a range of strain rates can be collapsed onto a single curve that defines a

strain function C(s) of the following form:

(D(E) = (a. - a,)/(St") (4.15)

The function (D(E) is shown Figure 36(c) and is of simple exponential form. This

factorizability of the rate-dependence in dough rheology is a consequence of the

power-law dependence of the relaxation modulus on time t (see eq. 6) and is

applicable to both shearing and extensional deformations.
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Although this Rubber-Like Liquid model offers an improved description to the

linear viscoelastic response (shown by the broken lines in Figure 36 (b) and (c)) it

clearly over-predicts the experimentally measured response. This relative strain-

softening (as compared to a purely affine strain response) is due presumably to

changes in the network structure with the progressive deformation and

disruption of the physical crosslinks between the glutenin molecules and starch

granules. Similar to the case of shear flows, an appropriate strain-softening or

damping function can be used to account for this phenomenon. At large strains the

stress appears to tend toward a simple exponential function exp(kE) as shown in

Figure 36 (c) by the black dotted line. An estimate of this damping function can

be calculated from the ratio of the large strain approximations to the asymptotic

limit of the integral gel model of Eq. (4.14).

Conclusions

We observed striking similarity in the linear viscoelastic response between a

critical gel and our model dough system that confirmed the suitability of using a

powerlaw relaxation function to build up a constitutive equation. This led us to

use the gel equation of Chambon and Winter as a starting point in formulating a

rheologically admissible constitutive equation capable of describing finite

deformations in shear (step strain) and elongation. The resulting predictions of

the transient stress evolution in the deforming dough specimen are greatly

improved; however the dough shows some additional strain softening at finite

strains.

Thus to summarize, we find the generalized gel equation to be an appropriate

description for the rheological behavior of dough:

a(t)= S(t - t')" h(y)y11(tt')dt' (4.16)

In this chapter, we have presented data from a single flour type at fixed water

content and mixing time, thus the all the material parameters (S, n, h(y)) are held

constant. In effect, we have changed the functional form of y,, by utilizing
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different rheological experiments to measure these material parameters. It is

gratifying to see that the measured values are consistent between the tests, thus

confirming the validity of the gel model and the generalized gel equation. The

time-strain separable form (a(t) = Sto<D(y) for start-up of steady flows) predicted

by this equation is confirmed and will be a useful way of collapsing data over a

range of strain rates. In the next section, we see how each of the material

parameters introduced here varies with different dough conditions.

4.2. Rheological aging

The difficulty of testing dough is compounded by the fact that freshly mixed

dough sample shows rheological aging. The stiffness of a dough was found to

increase gradually in time even when left undisturbed - presumably due to an

evolution of the microstructure. This phenomena is first quantitatively reported

by Hibberd et al [14] (see chapter 2). Samples left sitting undisturbed will show a

gradual change of properties. This has important implications regarding

experimental techniques, special procedures must be adhered to to ensure

samples are tested at the same "age". 3

Typically, a predetermined amount of rest time (-1hr) is set for the dough to rest

after mixing and another period (-1hr) for the sample to rest after being

mounted onto the rheometer [6]. But this can lead to many practical issues: to

perform test on a dough at the same age, a new batch has to be mixed up and

rested for every single test. Other than being wasteful, the variability introduced

through each round of mixing and sample loading is greatly increased and will

more often than not offset any potential gain in accuracy from the regimented

resting procedure. A technique that allows the rheologists to use the same batch

of mixed dough will greatly increase the efficiency and accuracy in testing.

3 It is important to point out that in these experiments, the mass exchange

between the surrounding environment and the samples are negligible since the

samples are either coated or submerged in a bath of silicone oil.
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Since the change in properties are associated with the evolution of

microstructure, a possible way round the problem is to ensure a consistent state

of microstructure at the beginning of each experiment. Such an idea has been

routinely applied by scientists studying the rheological aging of other glassy gels

such formed from laponite, bentonite etc... A high strain rate or stress (above the

yield stress) is usually used to "breakdown" any structures within the sample,

and tests are performed at a predetermined amount of time after the cessation of

the high rate deformation [128].

In practice, the technique of high rate of shear over prolonged period is not

suitable for breaking down structures within the dough because dough samples

have the tendency to undergo a viscometric instability and roll out of gaps at

shear strains of y - 10. Therefore, as an alternative, a large amplitude oscillatory

deformation is used. All samples are put through a few cycles (-5) cycles of

oscillatory shear at strain amplitude of yo - 3 immediately after loading, and

tests are performed on the dough after a predetermined period (~1hr).

The validity of using this procedure to ensure consistent samples is illustrated in

Figure 37. The magnitude and loss tangent of the dynamic modulus is plotted in

the figure beginning from t = 0 corresponding to the cessation of the initial large

amplitude oscillatory shear. From 0 < t < 3000 s, the dynamic moduli is

measured by applying a small amplitude oscillatory strain to the sample. The

amplitude of this oscillation is small (yo = 10-3), so that the deformation does not

interfere with the evolution of microstructure. Similar to the observations by

Hibberd et al [17], the magnitude of the modulus gradually increases while the

loss tangent remains constant. This growth in modulus is probably associated

with a growth in microstructure. At t = 3000 s, a single cycle of oscillation at

70 - 3 is applied to breakdown this growing microstructure. A dramatic decrease

in stiffness can be observed, but the growth resumes as soon as the large

amplitude oscillation is ceased.
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Figure 37 Magnitude and loss tangent of dynamic modulus of dough as a
function of time. The amplitude of the oscillation is within the linear regime
(y) = 10-) and the temperature is held constant at 22*C so as to
minimize /eliminate external disturbances that might affect the change in
rheology /microstructure. At t = 3000 s, the amplitude of the oscillation is
increased for one cycle to yo =3. A dramatic reduction in modulus can be
observed which corresponds to a breakdown of microstructure. Upon the
resumption of small amplitude oscillations, the modulus increases once again.
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The manner of this growth is identical and is illustrated by overlaying the curves

for t < 3000 s and t > 3000 s in Figure 37. This experiments confirms that samples

can be brought to a consistent initial conditions by waiting for a predetermined

amount of time after a large initial deformation. Furthermore, instead of

discarding the dough sample after each tests, the sample can be used for further

testing provided another round of large oscillatory shear is applied to it, and the

same predetermined amount of time is allowed between the tests. It was found

that by following these procedures, the repeatability and efficiency of doing

rheological tests on dough can be greatly increased.

4.3. Effect of Water Content on Dough Rheology

The rheological reponse of dough depends on an extremely wide range of

factors. A few obvious factors are flour formulation, water content, gluten

content, glutenin/gliadin ratio and mixing time. Other less obvious factors which

are difficult to control include ambient humidity and temperature, rest time etc.

To gain an overall appreciation of the large amount of experimental results

generated in the many studies conducted on such flour water systems and be

able to view them in the correct context, it is essential to understand the

consequence of varying each of these factors and how they are interlinked. In this

document, we begin by studying the impact of water content in terms of its

mixing properties, linear and non-linear rheology. We use a rheologically

consistent methodology based on the gel equation and water moduli

correspondence principle to quantify the respective effects.

The composition of the doughs used in the current study is reported in Table 2.
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Flour Added Water [g] Total water content [Fraction]

bJ~

(~0

-

15

16

17

18

19

20

21

22

23

24

0.413

0.426

0.438

0.450

0.461

0.472

0.482

0.492

0.502

0.511

Table 2 Composition of doughs used in current study. Water
content of 0.45 was chosen as the reference condition (WO)

Mixograph

30g of HRS flour and 19-23g of water was mixed in a National Mfg pin mixer for

600s. Assuming an initial moisture content of 12% within the flour, we estimate

the mixture to have a water content fraction of 0.46-0.50. The resulting signal

from the mixograph was plotted on Figure 38 as a function of time and water

content. We found that a mixture containing less than 46% water required

extremely high torque inputs from the mixograph. The lever arm for measuring

torque was deflected all the way to the limiting stops. Therefore doughs with low

water content were not included in Figure 38.
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Dough mixed from 30g
HRS flour. 19-23g of
additional water.
Assuming an initial flour
moisture content to be
12%, we calculate the
range of total water
content in the doughs
studied to be 46 - 50%.

Dough stiffness
decreased for
increasing water -

content.

Peak mixed condition occurs
at later time as water content
is increased.

P I

22 5

V

20

Mixograph signal
filtered by averaging
over 1 minute.
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0)

400 SooV

Mixing time [s]

Figure 38 Mixograph torque input as a function of time and water content

In a chapter 3, we identified four key features for the slowly varying signal on a

typical mixograph output strip-chart, these are summarized in Table 3.
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Stage Time Feature

1 0 ~ < 100s Rapid initial torque increase.

2 100 ~ 400s Gradual torque increase. Usually associated with

under-development.

3 420±20s Peak mixed condition

4 > 400s Gradual decline in torque. Referred to as over-

mixing.

Table 3 Various stages of dough mixing.

We found the variation of water content has two significant impacts on the key

features. First of all, increasing water content decreases the stiffness of the dough

and the required mixograph torque. Secondly, the peak mixed condition was

shifted progressively to longer times as the water content is increased.

Linear Viscoelasticity

The relaxation modulus of doughs can be reasonably well approximated over a

significant time span (0 to 500s) as a power-law-like relaxation:

G(t) = St-" (4.17)

where S [Pa s"] is the gel strength (a measure of stiffness) and the dimensionless

parameter n is the gel exponent which describes the rate of stress relaxation. This

equation was found to successfully predict many aspects of linear visco-elasticity

with only two parameters. The effect of water content on S and n for HRS

doughs mixed for 360s are plotted in Figure 39.
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Figure 39 Effect of water content on linear visco-elastic properties. HRS flour,
mixing time = 360s. Averaged between stress relaxation (y = 10-3), oscillation

frequency sweep (yo = 10- 3 ,co = 10-2 to 102).

We find that the gel strength decreases with increasing water content, in a

consistent manner predicted by the mixograph. While the gel exponent does not

show significant changes as the water content is varied.

n = 0.23 ±0.03 (4.18)

Water content moduli correspondence

Figure 39 suggests that the variation in the relaxation modulus as water content

is varied can be written in a self-consistent form:

G(t) = S(W- )t-" (4.19)
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where W, is an arbitrary reference water content . This observation is consistent

with the water content moduli correspondence principle suggested by Hibberd

et al [17]. A simplified form of the principle can be written as:

G'(w,W )= G'(w,W ).Q(W - W)
G"(o, W) = G"(o, W).Q(W - W)

where the function Q(W - W) is only a function of the water content and not the

frequency. In the original experiment, Hibberd studied doughs in small

amplitude oscillatory shear experiments, since the principle concerns behavior in

the linear viscoelastic regime, we can translate it to describe stress relaxation

experiments.

G(Wt) = Q(W - WO).Go(t) (4.21)

where G.(t) is the relaxation modulus at the reference water content W = W.

Applying this to the particular case of gel-like behavior in doughs:

G(W,t) = Q(W W )SOt-" (4.22)

where:

Q(W - W) = S(W - W) / so (4.23)

where S. is the gel strength at reference water content. The function

Q(W - W) for this particular dough formulation is plotted on Figure 40 and can

be approximated by:

Q(W - W)= exp(-(W - W)/ A) (4.24)

with

A = 0.028 (4.25)
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Figure 40 Water moduli correspondence function Q for HRS mixed for 420s with
WO =0.45. Solid line is best fit for Q(W - W) = exp(-(W - W) / A), A = 0.028.

The principle can be stated most succinctly as "the loss tangent is independent of

water content", of course in the case of a critical gel, the loss tangent also

happens to be independent of frequency!

It might seem surprising that a complex system such as dough can be reduced

through such a simple principle, however, as Hibberd [15] correctly pointed out,

within the linear region, rheological measurements reflect primarily the short

range interactions which can be very similar for a wide range of doughs

irrespective of gluten type or composition.

In general the water content function Q(W - W) and gel strength S at reference

content will also be a function of dough formulation parameters such as mixing

time, starch content, functional gluten quality and quantity. Hibberd et al [14]

performed a study on the effect of starch/protein ratio, they suggest the

correspondence principle can be written in a more general form as:

G(t, W) = Q(W- W,P / S).GO(t, P / S) (4.26)
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where P/S is the protein-starch ratio (for the HRS system, P/S - 0.14). They

found the correspondence principle to be valid for the range of protein-starch

ratios studied, but the shift factor (and the reference values) are now a function

of P/S ratios.

Non-linear Rheology

The non-linear rheology of doughs with varying water content was investigated

through two extensional techniques: Filament stretching (FISER) and the SER.

The response of doughs for various water contents is plotted on Figure 41.

I I I I I I
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1 41
0 44
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M 47
* 48
E 49

103 1 1 1 1 1 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Strain e

Figure 41 Stress extension data generated on the SER ate = 1.os'. HRS, 360s mixing
time.

In the previous section, we proposed a constitutive equation that can be

constructed from a linear superposition principle of the stress relaxation

modulus.

= S(t -t')-" r 1 h(,y)dt' (4.27)
0
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S and n are the gel parameters extracted from linear viscoelastic measurements.

yiis the finite strain rate tensor. h(y)is a damping function that represents the

non-linear softening observed in flour-water dough systems.

The damping function can be estimated by considering the asymptotic

approximation of the integral (4.27) at large strains. If h(y) =1, then the model is

a form of the Lodge Rubber-like liquid and the tensile stress difference

approaches the following function:

iff h(y) =1, Aa - 2"r(1 - n)Skn exp(2e) (4.28)

While at large strains, the measured stress appears to take the form:

Aa ~ K exp([2 - ale) (4.29)

where0 < a < 2. This suggests the use of a damping function in the form:

h(y) = exp(-ae) (4.30)

where the large strain response will be:

Aa - f(-n)St" exp([2 - a]e) (4.31)
2-a

The damping function parameter a that characterizes the softening behavior

and the gel strength prefactor K can be extracted by fitting equation (4.29) to the

measured data. We compare the measured prefactors to the calculated values

from equation (4.28) and (4.31) in Figure 42.
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K was found to decrease with increasing water content in the same manner as a

critical gel with an exponential damping function. The absolute values are

slighty smaller, possibly due to different levels of rheological ageing between the

linear viscolastic and extensional measurements. The calculated shift factors

Q(W - W) are also plotted on Figure 40 and was found to be well described by

the same equation ((4.24) and (4.25)).

The damping exponent a obeyed a simple linear relationship:

a(W - W) = 0.486 -7.1(W - W) (4.32)
-0.21<W -W <0.068

We see that the damping function decreases with increasing water content. Or in

other words, a greater degree of strain-hardening is expected from doughs with

higher water content. Generally speaking, the damping function is dependent on

water content, h = h(y, W): non-linear rheology is not simply related through the

water content moduli correspondence principle. An additional function is

required to describe the dependence on water content. The role of water under

non-linear rheology cannot be understood by simply performing linear

viscoelastic measurements.

Perhaps a more consistent way of viewing this is through considering the stage

of dough development under mixing. As seen in Figure 38, the peak-mixed

condition occurs at later times for doughs with increasing water content,

indicating that dough development under mixing is "retarded" by the addition

of water. As reported in a separate document [129], the peak-mixed condition is

not indicative of optimum dough development in terms of strain-hardening, in

fact dough mixed for the shortest times exhibited the largest degree of strain-

hardening. Following this line of argument, since the doughs presented in Figure

41 and Figure 42 are all mixed for the same amount of time (360s), one might

conclude that doughs with lower water content are more "developed" and will

thus show decreased strain-hardening capability.
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Mixing and water content are intrinsically linked, the addition of water increases

the time for a dough to reach a certain stage of development. The relationship

between the two is still not well defined. The reason is that rheological ageing

and day-to-day variability can change the response of a dough significantly,

masking the effect of mixing and water content. To increase consistency among

the results, we made every effort to perform experiments concerning a particular

area on the same day with a single batch of dough. Such a requirement is in

conflict with the need to perform experiments at a fixed time after mixing to

avoid "contaminating" the results with rheological ageing (which requires a new

batch of dough for every single experiment). The large number of experiments

required for the water content study makes this unfeasible. Therefore it is

difficult to view the large amount of data in context without an understanding

the how such variability affect the results. In view of this, we recommend

breaking down the system to its respective components and build up a more

complete understanding of variability, rheological ageing and water content for

each individual component beginning with the obvious: glutens and starches.

4.4. Effect of Flour Type on Dough Rheology

The quality of flour is one of the most obvious factors that can affect a dough's

bread making properties. Bloksma [6] outlined two requirements for producing

high quality loaves: "1) the dough must have sufficiently large viscosity to

prevent the ascent of gas cells, and 2) it must remain extensible for a long enough

time during baking to avoid premature rupture of membranes between gas

cells." Bloksma concluded that the first condition is met by virtually all doughs

while the second can serve as a discriminator for flours of different baking

performance. Extensibility stems from the quality (or gluten functionality) and

quantity of protein in the flour [7, 99]. Physically, large molecular weight protein

molecules known as glutenin form an elastic network capable of strain-

hardening under extension and gives stability under large extensional strain..

The three basic tests performed on the doughs are: step strain relaxation, step

rate shear and SER extensional tests. The doughs used in the current studies are

all mixed to a water content of 45%.
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Step strain relaxation experiments

Step shear strain relaxation data was fitted to the critical gel model:

G(t) = St-" (4.33)

The fitted parameters from step strain relaxation experiments are presented in

Table 4. Samples were rested for t, = 1200s before a step strain of yo =10-3 was

applied.
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Figure 43 Stress Relaxation Data for wheat flour water doughs at 45% water
content. All samples were mixed for 240s and rested for t, = 1200s before a step

strain of yo = 103 was applied. Solid lines are best fit of equation (4.33) to the
power law region.

The rest time allows the residual stress accumulated during loading to relax. The

magnitude of the step strain was chosen to be within the usual quoted linear

range of dough systems.
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All doughs showed a prominent power-law relaxation regime from t -1 to 100s.

Deviations from this regime are noticeable at short times and long times. Short

time deviation can be attributed to:

. Rouse like relaxation at short time.

ii. Rheometer response - The AR G2 is a controlled stress device but is

well optimized for viscous or material with large loss tangents. For

elastic materials such as dough, coupling between the moment of

inertia of the rheometer and springiness of the material leads to

ringing.

At long times, the can roll off more rapidly than power law like or it may plateau

out to a constant value, again two effects are at work here:

. Rheological aging

ii. Residual stress relaxation.

All the listed possibility to the deviations are also applies to gluten gels will

be further discussed in a more a in-depth manner in chapter 5.

The gel strength S and exponent n are fitted to the power law regime from the

relaxation experiments and presented in Table 4.
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Flour S [Pa s"] n

Silo

HRS

OSRW

TSRW

HRW

DF

DS

WWFA

WWFB

15929

16360

5298

18910

12593

22318

9735

53023

63185

0.19

0.21

0.19

0.19

0.16

0.21

0.20

0.20

0.20

Table 4 Fitted parameters from stress relaxation test for all flours tested.

Yo = 10 3 , t, = 1200s. All doughs were mixed at 45% water content for 240s.

Transient extensional rheology at different strain rates

The extensional data were performed on an SER and were fitted to a simple

exponential type behavior:

Aa = F(t)exp(ae) (4.34)

Samples were tested under strain rates from 0.003 to 30 s'. Results for OSRW are

plotted in Figure 44.
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Figure 44 Extensional stress difference of OSRW flour dough mixed for 4 mins at
45% water content. Data for strain rates of 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10, 30
s-1 are presented. Solid lines represent best fit for equation (4.34) between strain
of e ~ 0.5 to rupture. In general, increasing rates resulted in increased stress in
accordance with equation (4.37). The data was collected on the SER.

All samples showed a linear viscoelastic response at small strains (e < 0.5):

flExt 3S t1-n (4.35)
1-n
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Figure 45 Extensional viscosity of OSRW flour dough mixed for 4 mins at 45%
water content. Data for strain rates of 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10, 30 s-
are presented. All data followed the linear viscoelastic limit (solid black line) at
small strains predicted from step strain relaxation experiments.

Going back to Figure 44, for rates t > t, = 0.01s-1, an exponential stress growth

can be seen. This exponent is roughly constant for a given flour type (Figure 46).

At rates t i, the exponent appears to suddenly increase. However, this is an

artifact from assuming that the shape of the stress strain curves resembles an

exponential. Examining the stress strain curves, we see that the shapes at these

low rates are "concave" and it is difficult to assign a consistent value for an

exponent. It is unclear whether this shape is a true material function or if it is

merely due to non-uniform deformation. For convenience, we define an

alternative description of the transient extensional stress through an offset

powelaw function:

Ext = (t)+G(t) (4.36)
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This material function is not frame invariant, but will be useful in comparing the

extensional behavior.
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Figure 46 Extension parameters extracted from SER extensional tests performed
on OSRW flour dough at 45% water content that has been pin mixed for 4 mins.
Blue squares correspond to exponent a while red squares correspond to F.

In general, we expect the exponent a is dependent on the dough (i.e. flour type,

mixing time). Above ti, the behavior is well described by equation (4.34), and

from (4.15)the constitutive equation analysis [126], we expect:

F(t) oc S" (4.37)
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Figure 47 Rate sensitivity of various flour type doughs c(t)= F / S (Gel strength S
obtained through step strain relaxation experiments.. Most flours showed a
power law increase in rate as predicted by equation (4.37) with n ~ 0.22. OSRW
(0.25) and WWFB (0.26) showed a slightly steeper slope. While HRS exhibited a
shallow slope corresponding to n = 0.12. Results obtained from dough at 45%
water content mixed for 240s and stretched on the SER.

The rate dependence of the doughs were small and appear to vary almost

universally because all the doughs tested have similar values of n. We plot c(t)

(equation (4.36)) against strain rate (Figure 47). Despite the variable nature of the

doughs leading to significant spread, the trend is clear in that stress increases

with the strain rate raised to the power n~=0.22. This is consistent with the

exponent values measured through stress relaxation.

The failure behavior of the various flour type doughs were also investigated. The

ultimate failure strain for the various strain rates and doughs are illustrated in

Figure 48.
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Figure 48 Ultimate failure strain of various doughs at 45% water content mixed
for 240 as a function of strain rate. Data sets were collected on the SER.

We can quantify the failure behavior by assuming it takes the form:

Efail = A log(t)+ B (4.38)

The quantities A and B are a measure of rate sensitivity and characteristic failure

strain respectively and are summarized with the rest of the relevant material

parameters in Table 4.
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Flour a ic A B

DF

WWFB

DS

OSRW

WWFA

SILO

HRS

HRW

1.05

1.13

1.16

1.16

1.2

1.32

1.38

1.5

0.03

0.01

0.03

0.01

0.01

0.01

0.01

1.0

0.6

0.06

0.46

0.63

0.3

0.55

0.57

0.43

2.56

1.18

2.44

2.65

2.52

2.35

2.56

1.61

Table 5 Failure parameters for various flour type doughs. All doughs mixed to
45% water content for 240s. Results correspond to data collected on the SER
presented in the appendix.

Conclusions

In this section we provided a brief overview of the rheological behavior of dough

mixed from different flour types. We have tabulated the material parameters as

characterized by the generalized gel model (S, n and a), and also a few other

candidates functions (ite,, ). However, similar to the water content study of

the previous section, it is difficult to draw conclusions due to the inherent

variability when dealing with dough. As warned in the introduction, it is

difficult to form a general picture or comprehensive understanding of the

different rheological phenomena measured over such a wide variety of

parameters. Thus pursuing this line of research alone is insufficient, and we turn

our attention to more fundamental questions on the source of these rheological

properties in the next few chapters.
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5. Power Law and Gluten Gels at Finite Strains

5.1. Introduction

Materials showing power-law relaxation behavior are often encountered in

rheology. Examples include many foodstuffs [130, 131], biopolymer networks

[132], nanocomposites [133, 134] and some liquid crystals [135]. Frequently these

systems involve interacting microstructural features over multiple length scales.

In terms of soft glassy dynamics, power-law material functions are predicted for

certain effective temperatures [128, 136], while in the field of cellular mechanics,

the term power-law rheology is often used to describe the frequency response of

protein networks [137, 138]. As another example, both the Rouse [139] and Zimm

[140] models will show power-law behavior under time scales that are longer

than the segmental relaxation time but shorter than the longest relaxation time

(kiL, !t A,). In general, polymeric systems with a large degree of polydispersity

or an extremely broad relaxation spectrum will also exhibit power law relaxation

over a significant span of time scales. One subset of materials that falls under the

broad umbrella of power-law rheology and which has been studied relatively

well is the critical gel first described by Winter and Chambon [74, 76]. Linear

viscoelastic measurements show that in critical gels both the storage and the loss

moduli scale as G', G" - " and the loss tangent is constant over a wide range of

frequencies. Theoretical models show that this power law scaling can arise from

the fractal nature of a flocculated gel [71, 72]. At the critical gel point, the material

forms a percolated, sample-spanning structure that exhibits power-law

frequency dependence in the dynamic moduli.

The linear viscoelastic functions of a critical gel have been discussed in detail by

Chambon and Winter [74, 76] and by Larson [141]. Winter provides an excellent

review of these systems that are near the liquid-solid transition [77]. However,

there have been very few systematic investigation of such materials under finite

strain deformations. Venkataraman and Winter [75] adopted the Lodge rubber-

like liquid formulation originally suggested by Chambon and Winter [74] to

analyze the non-linear large strain behavior of PDMS gels during start-up of
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steady shear and creep experiments. They noticed a stress overshoot at shear

strains of y* ~ 2 and a subsequent yield at yp ~ 4. Watanabe et al also studied

the non-linear rheology of a polyvinyl chloride critical gel. To the best of the

present authors' knowledge, no such study exists for critical gels under uniaxial

extension.

Finding a suitable material is not easy. Firstly, critical gels are hard to formulate.

One needs a reliable and reproducible method to bring the material to the critical

gel point and then quench it to prevent additional percolation. Secondly, the

percolated structure of gels can collapse under large deformations which will be

manifested as strain-softening in rheometric tests. The specific form of the non-

linear material response exhibited by a particular critical gel (for example strain-

softening or stiffening) provides an additional rheological signature about the

microstructure beyond the simple linear response [104, 126]. We first begin by

identifying a suitable candidate material to serve as a model critical gel system

that shows relatively simple non-linear behavior.

Curiously, many foodstuffs show power-law/ critical gel like behavior [70, 78,

79]. Of particular interest here, are wheat flour-water doughs. Despite these

numerous early observations of power-law like frequency response in the linear

viscoelastic moduli [15, 19, 61, 68], Gabriele and co-workers [69] were the first to

use the concept of a critical gel and a power-law relaxation modulus to describe

the rheological behavior of dough. This descriptive framework has also been

used recently [126, 142] to explore other types of deformation including creep

relaxation, uniaxial and biaxial extension. This so-called 'weak gel model' [69] is

extremely attractive because of its relative functional simplicity. Material

functions in the linear viscoelastic regime can be well described by only two

parameters.

In simple terms, dough may be described in the following way: a viscoelastic

matrix of gluten (a branched polymer) filled with hydrated starch particles. In

many aspects, the resulting composite is analogous to a carbon-black filled

elastomer. The interactions between the polymeric and filler constituents lead to

severe non-linearities and complex response [14, 143]. The precise microstructure
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of the gluten forming the matrix is still poorly understood due to its high

molecular weight and the high degree of chain branching, both of which result in

poor solubility characteristics. Opinions can be broadly classified into two

schools of thought. One school maintains that gluten, though a high molecular

weight compound, takes the shape of a tight globule - neighboring protein

molecules aggregate to form a network through hydrogen bonds and

hydrophobic interactions [50, 51, 55, 58]. In this article, we refer to this idea as the

particulate gel model. The other school believes that the gluten molecule is

sufficiently swollen that it forms an entangled matrix or polymeric network with

flexible chains spanning between junction points [48, 49, 53]; we refer to this

picture as the polymeric gel model.

Despite the ease of formulating flour-water doughs, obtaining repeatable

measurements and understanding the material rheology is difficult due to the

strong time-dependent and non-linear softening effects observed in doughs [80].

Comprehensive studies on these systems, which can lead to insight into the

microstructure, are hampered by the difficulty in collecting reproducible data. In

our laboratory, we observe day-to-day variations of up to ±50% in modulus just

by simply varying the mixing and testing schedule.

Eliminating the starch fillers to focus exclusively on the rubbery gluten network

removes at least one level of complexity. The rheology of gluten doughs had

been investigated by various workers [51, 55, 107, 144, 145]. Uthayakumaran et al

reported shear and extension data for gluten gels that has been mixed with

different amount of starch (0-100% starch weight content) and contrasted these

results with tests performed on wheat flour doughs. They observed an

exponential decrease in the limiting strain of linear viscoelastic behavior with

increasing starch content; Lefebvre and co-workers investigated the linear
viscoelastic behavior in the long time-scale terminal regime [52]. Critical-gel-like

behavior in gluten doughs has also been observed: Letang et al [47] showed that

the dynamic moduli both follow a power-law behavior with n = 0.3 (see
equation (5.12) in section 0), they also noted that gluten doughs possess a larger
linear range when compared to wheat flour doughs.
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To prepare critical gels with a well-defined and reproducible power-law linear

viscoelastic response, we follow these earlier studies and isolate the viscoelastic

response of the biopolymeric matrix forming the dough. In addition to being a

'model' system with a power-law relaxation spectrum, developing a quantitative

understanding of the rheology of gluten is also of great practical interest. Despite

the relatively small weight proportion of gluten in a typical flour (5-20%), the

viscoelasticity of a wheat flour-water dough is largely determined by this protein

phase [99] and it is widely believed that the bread-making qualities of a wheat

flour dough are strongly linked to its mechanical properties [6, 27]. In particular,

the large strain rheology of the dough has an impact on the texture and

distribution of gas cells in the bread [8, 9, 46]. The most commonly-cited

relationships are those between final loaf volume, dough extensibility and gluten

quantity: beginning from the work of Bailey and others in the first half of the 20'

century [2, 3, 146] to more recent studies such as those by Sliwinski et al [5, 147],

Weegels et al [148] and Dobraszcyk et al [4, 7, 431. An accurate constitutive and

microstructural model will aid in documenting differences between wheat-flour

doughs of different gluten content and 'functionality' - which are the key

mechanical properties relevant to breadmaking. A robust rheological equation of

state is also a good starting point for cereal scientists who would like to

investigate systematically the effects of other components (e.g. starch, water

content etc...), with the aim of increasing the complexity level until ultimately

arriving at a real dough system.

There are three primary objectives of this paper. The first is to demonstrate that a

gluten dough exhibits the rheological characteristics of a critical gel with

relatively-well controlled material properties (i.e. a variability in modulus of less

than 10%). We report rheological data for gluten doughs using both shear and

extensional deformations that span the linear to non-linear regimes. The second

objective is to identify a constitutive model that can provide a description of the

stresses arising in non-linear deformations in terms of well-defined material

functions which can be measured directly in the linear viscoelastic range. Finally,

using the rheological evidence collected, we infer certain aspects regarding the

microstructure of the gluten gel.
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5.2. Gluten dough preparation

Gluten dough was prepared by placing 10g of vital gluten (Arrowhead Mills - ~

12% moisture content) in a mixograph bowl with 14g of water (total dough

moisture content = 63% by weight). The mixture is then stirred, stretched and

folded through the action of the mixograph pins for 12 minutes [85]. Mixing over

this length of time allows the dough to become 'fully developed', the appearance

of the dough changes from dry and lumpy to a smooth, sticky and elastic paste.

No significant changes to the dough properties could be observed when the

mixing time was increased. We use a customized mixograph which has been

digitally instrumented to record both the rapid temporal fluctuations and longer

time variations in the mixograph torque output. Representative data for mixing

of a vital gluten gel are shown in Figure 49. The torque signal shows a rise

towards a steady plateau after approximately 11 minutes. The magnitude of the

short time scale fluctuations (corresponding to stretching of material elements

between interacting pairs of pins in the bowl) also remains constant. The dough

is removed from the mixing bowl after 12 minutes (720s) of mixing and then

allowed to rest for 1 hour at 220 C, before testing.
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Gluten dough begins to stick to pins,
increased amount of stretching. Gluten
occasionally balls up on one side of
mixograph leading to large amplitude
fluctuations

3.5

3.0 -
3.0 Raw data

- Moving average 50s

2.5 -- - Average peak amplitude

2.5 -

C 2.0 - -

1.5

1.0

0.5

0.0
0 200 400 600 800

Water completely
incorporated into gluten Gluten dough is fully developed -
powder. Gluten dough smooth sticky and elastic. Peak
feels dry to peak fluctuations remain

approximately constant. No
noticeable change in properties
thereafter. Sample is taken out
of mixograph for testing at 720s.

Figure 49 Mixograph output for 24g of gluten dough at 63% moisture content by

weight. After the gluten dough has been fully developed, it is removed from the

mixograph at 720s.

The window of practical moisture content for preparing a homogeneous gluten

gel sample is surprisingly small as compared to a wheat flour dough. At

moisture contents of less than 60%, the dough appears to be too dry and some
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gluten powder around the edge of the mixing bowl remains unincorporated. By

contrast if the moisture content exceeds 65%, the dough appears wet, with

unincorporated water pooled at the bottom of the bowl.

5.3. Rheometry

Shear rheometry are performed under controlled strain mode on the ARES

rheometer and under controlled stress mode on the AR-G2 rheometer (TA

instruments). A Peltier plate and a 25mm parallel plate fixture at 1mm separation

were used. Approximately 2 g of gluten dough was placed on the Peltier plate,

and the upper plate was then brought down to compress the sample to the

specified thickness. Excess dough was trimmed with a razor blade. The Peltier

plate was held at a fixed temperature of 22*C, to approximate typical room

temperature. Slip was eliminated by applying adhesive-backed sandpaper (600

grit McMaster Carr 47185A51) to the surfaces of both the Peltier plate and the

parallel plate tool. Drying of the sample was minimized by painting the exposed

surface of the dough with a low-viscosity silicone oil.

Measurements of the transient extensional stress growth were made on a wind-

up drum type rheometer (the Sentmanat Extensional Rheometer or SER fixture)

which was used in conjunction with the ARES rheometer [121]. Samples of 2 x

25mm were formed by pressing the gluten dough to a thickness of 2 mm, then

cutting to shape using a Guillotine cutter. A thin film of silicone oil was painted

onto the sample before mounting on the SER fixture to minimize drying.

5.4. Linear Viscoelasticity

We first investigate the linear viscoelastic response of the gluten gel. This enables

us to compare and contrast our measurements with previously published data

on gluten gels [47, 52, 107] and other critical gels [74-77, 149]. From these

experiments, we extract two key constitutive parameters; the power-law

exponent n and the gel strength S of the critical gel.
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Step Strain Relaxation

Under linear viscoelastic conditions a critical gel will exhibit a power-law

behavior in its material functions [74, 76]. For example, following an infinitesimal

step strain of amplitude yo at time t =0, the modulus decays like:

0-
Y=G (t)=St-"

70
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Figure 50 Stress relaxation behavior of a gluten gel. The relaxation modulus
approaches a power-law as expected for a critical gel with
S=1260 ±50 Pas", n=0.175 ±0.005 over a wide range of time 0.2 t! 100s . At
short times, an additional Rouse relaxation regime can be observed,
with GR =803 Pa and R = 0.05 s.

In Figure 50 we show the extent of power-law relaxation for a typical gluten-

water dough. We find that the relaxation can be well described by equation (5.1)

with S =1260 ±50 Pas, n =0.175 ± 0.005 for approximately three decades of

elapsed time 0.2 < t <100s. At short times (t < 0.05 s), an additional Rouse-like

response can also be observed. The overall response of the system can be

accurately described by the following expression:
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G(t) = Ggci (t) + GROU, (t) = St-" +G Ry exp (- tk2/ R ) (5.2)

Where GR 803 Pa and XR = 0.05 s are the modulus and relaxation time of the

Rouse modes. The existence of this short time scale regime is consistent with the

generic rheology of polymeric gels described by Winter [77]: the Rouse modes

characterize the "molecular building blocks" of the critical gel, i.e. they represent

the response of the segmental structure size within the gluten network. This

segment length scale estimated from network theory f - (k BT/GR )1/3 = 20nm is

close to the typical structural sizes observed with transmission electron

microscope [150], but is far smaller than the diameter of gluten gel particles

(D -10um) seen through confocal microscope observations of gluten dispersed

with SDS [51].

Departure from the power-law regime at long times (t > 100s) has often been

attributed to a long time terminal relaxation and appears to be sensitive to the

amount of rest time the sample is allowed before testing [151, 152]. The fact that

dough properties appear to change if left to rest is also well-known to bakers,

they refer to this effect as "slackening" [151]. We find that it is in fact related to

residual relaxation from the initial mounting and compression of the sample in

the test geometry. This particular sample was rested for 1 hour before testing. It

was found that by increasing the rest time, the upper temporal limit of the

power-law relaxation could be extended; however it is difficult to extract a

simple relationship between rest time and onset of this residual relaxation, in

part because the specific material history of the loading deformation is unknown.

To help comprehend this behavior, we consider the characteristic or 'mean'

relaxation time of a viscoelastic material. A power law relaxation modulus with

0 < n < 1 will imply a characteristic relaxation time that diverges:

frG(r)dr fSr -"dr
ar 0 -0 - (5.3)

f G(r)dr fSr-dr
0 0
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where r = t - t' is the elapsed time.

Material functions at fully equilibrated initial conditions are therefore difficult to

obtain for such systems with power-law relaxation. Unless the material sample

was constituted on the rheometer plates, any residual stress from loading will

require an infinite amount of time to relax away.

When a sample is first loaded onto the rheometer, the gluten gel is typically

compressed from an irregular shape to a flat disc, then cut to shape. Of course,

the deformations accumulated in this process are far from simple shear, and will

most likely be unevenly distributed throughout the sample. During a typical

loading event the compression process in which the sample is squeezed from a

thickness of ho =20 mm to h, =1mm, we find yo ~-In(ho/h,)-3. This strain is

significantly larger than the typical step shear strains applied in the stress

relaxation tests, therefore residual stress relaxation will be significant. As an

illustration, we consider experimentally the situation depicted in the inset of

Figure 51. We impose a large uniform torsional shearing strain yo on the sample

in the 6-direction at t = -t, to emulate the effects of sample compression. The

material is then allowed to relax for a waiting time t, before the actual stress

relaxation test in which a step strain of y, is applied in the same direction

at t =0. Assuming that the material response is linear in strain, the stress

response measured from t =0, will consist of a superposition of relaxation due to

both the initial 'loading' strain yo and the subsequent 'test' strain y,:

a = S[yt-" +yo(t+t)-"] for t>0 (5.4)
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Figure 51 Deviations from power-law relaxation due to the effects of loading
history for various values of sample rest time. Dashed lines represent predictions
from the critical gel equation for the apparent modulus (equation (5.5)) with t" =
0.1, 1, 10 ,100, 1000, 10000 s and tw -+ oo (dotted line). Open symbols are
measured data for gluten gels with t, = 10 ,100, 1000 s. Inset illustrates the strain
protocol imposed on the sample during the experiment. Note that the rheometer
resets or 'zeroes' the stress at t = 0.

For many conventional rheometers, such as the ARES used in these experiments,

any residual stress values are automatically "zeroed out" at the beginning of the

experiment: as a result, the apparent modulus will be smaller than the true value

by an offset Goff,,t = St-" y0 /a7 .The apparent or measured response is thus:
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G apparett(t) = ff w(5 
)

= S t-" + L (t + t')-"- " tW
Ya

The resulting decay in the apparent modulus of a critical gel is plotted in Figure

51 for yo = 3, y, = 0.1 using a range of values for t.. We also compare the

predictions of the gel equation with measured data obtained in gluten samples

with various waiting times (t. = 10,100,1000 s). A rapid decay in the apparent

modulus occurs at time t - O(t) due to the subtraction of the residual relaxing

stresses and this is captured qualitatively by equation (5.5).

Very long time scale processes such as the power-law stress relaxation in Figure

50 are therefore difficult to probe because the relative contribution of residual

relaxation from initial loading histories will always become significant at long

times t > tw. From an experimentalist's point of view, this means that in systems

showing power-law relaxation, one can only access time scales that are

significantly shorter than the amount of rest time provided to the sample.

Continuous and discrete relaxation spectrum

For materials with relaxation processes spanning a wide range of time scales,

such as the critical gel, it is sometimes more convenient to express the material

properties as a continuous relaxation spectrum over a logarithmic time scale [77,

81]:

G(t)=f R(A)exp - dln A

-t (5.6)

R(A)- s=_
r(n)

Where R(A) is the continuous relaxation spectrum of a critical gel and A is the

range of relaxation time scales. Alternatively, it is common for numerical

simulations to seek a suitable description of the relaxation modulus in terms of a
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set of discrete Maxwell relaxation modes with moduli Gk and relaxation times

Ak [104, 153, 154]. As Dealy (2007) notes, this decomposition is, in general, ad hoc

and non-unique; in the case of power-law relaxation, there exists a very elegant

relationship between each successive relaxation mode which can be written in

the following way [155]:

G(t) = XGexp I(
k=O \ 0k (5.7)

k

Where Gk= G sets the scale of the modulus for each mode and a characterizes

the rate of relaxation. Relaxation spectra of the form in equation (5.7) can be

converted into an integral form through the Euler Maclaurin series:

K K

Xf(k)= Jf(s)ds+ 2[f(K)+ f(0)]+... (5.8)
k=O 0

Where K is the desired range of the summation. Substituting equation (5.7) into

equation (5.8) gives:

tk" tsa Go
IGexp = exp ds+2 (5.9)

After performing the integral and rearranging we obtain:

G0_" G, (1/a)t-1" 0 = YGo exp (k" 5.10)
a 2 k=1

Comparing the final result to equation (5.1), it is clear that the power law

relaxation modulus of a critical gel can be approximated by a series of discrete

relaxation modes in the form of equation (5.10) with
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a = 1/n

k = k " (5.11)

Go =
nF (n))"

A relationship of this form for the single specific case n =1/2 was first noted by

Winter et al [76].

This discrete relaxation spectrum starts from an arbitrary or user-specified

maximum time scale AO (which we may expect from Section 0 to scale

as A- 0(t.)). Although an infinite summation is indicated in (5.10), in practice

only a finite series of terms 0 i k 5 K need be considered. Since n 1 and a >1,

the series converges smoothly.
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Figure 52. Expressing the power-law relaxation of a critical gel as a series of
Maxwell modes. Deviations can be seen at either end of the spectrum
corresponding to the longest A. and shortest A,, = OK-"" time scales of the

summation.

In Figure 52, we compare the predicted relaxation modulus of a critical gel (with

properties close to that of gluten) as computed with a range of discrete Maxwell

modes to the true power-law response. The discrete spectrum of relaxation

modes accurately describes the relaxation modulus over a finite time span from a

minimum time A, = A/K/" to a maximum time kax= A0. Beyond this range

the relaxation modulus given by (5.7) rolls off to asymptotic values of

Gm = GO/2 and Gmax = (K + 1/2)Go respectively. Reconsidering the experimental

data in Figure 50, it is clear that we would need at least
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K =(Ax/2 )"=_(tW/AR) 7 discrete relaxation modes (14 model parameters)

to approximately describe the relaxation modulus of a gluten gel. The economy

of the two parameter description in equation (5.1) for timescales greater than the

Rouse time AR and less than the rest time tw is apparent.

Conceptually, expressing the relaxation spectrum in the forms described in this

section reconciles the observed power-law relaxation with the traditional view of

exponential stress decay. These spectra represent the range of length-scales

present in a fractal network: successive exponential relaxation processes at

longer times occur revealing the contributions from progressively longer length

scales.

Small Amplitude Oscillatory Shear Flow

For a critical gel undergoing small amplitude oscillatory shear flow, the storage

and loss moduli will also show power-law behavior. The dynamic moduli can be

evaluated by Fourier-transforming equation (5.1) to obtain [76]:

G'e ()) - 'Gl = (1-n)cos -- So" (5.12)
tan(n~r/2) 2

In addition to having dynamic moduli that follow the same power-law exponent

n, another distinguishing feature of the critical gel model is the relationship

between the loss tangent tan S and n:

tan3= G= -tan (5.13)
G"gel 2

This ratio is unique and independent of o and S, in contrast to some other

power-law models and takes on a different value to that of the SGR model [156].

Of course, the relaxation processes in the Rouse regime can be similarly

transformed:
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G'R = GR - )2 , G "R = GR 2 A' (5.14)=GR R k=#1 (Xk(o) 2

k=11+AkO) k=1 +

where k -- AR= .

The dynamic moduli obtained from small amplitude controlled stress

experiments at a stress amplitude of o =50 Pa are plotted in Figure 53. The

experimental data are in excellent agreement with predictions from the Fourier

transformation of the step-strain relaxation response

(G'= Gge+ G'R, G"= G"gel+G"R indicated by solid lines). The Rouse-like regime

dominates at high frequencies (o > 1/R ), while at low frequencies some small

deviation from a perfect power-law response can be detected, and we attribute

this to the residual relaxation described in the previous section.
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Figure 53 a) Storage and loss moduli measured in small amplitude oscillation.
Solid lines represent predictions from equation (5.12) and incorporating Rouse
modes: S = 1260 Pas", n = 0.17, GR = 803Pa,'R = 0.05s. These parameters were

obtained from independent measurements of the relaxation modulusG(t). b)
Comparison between dynamic moduli of vital gluten and native (i.e. 'washed')
gluten doughs, showing strong qualitative similarities in the frequency response.
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We return here briefly to consider the relevance of using doughs formulated

from vital gluten powder. The production of vital gluten involves drying and

milling which may irreversibly damage or alter the 'functionality' of the network

that is formed upon hydration. Ideally, the rheology of a gluten network directly

washed-out from wheat flour doughs should be investigated. Unfortunately, the

mechanical properties of native gluten networks are difficult to control: the

washing process involves gently massaging the dough under running water; it is

difficult to maintain consistent mechanical work input and ultimate water

content. In Figure 53b, we compare the dynamic moduli of the vital gluten

dough with those measured in a gluten network that has been washed out from a

freshly mixed wheat flour. Both doughs show viscoelastic moduli of similar

magnitudes and the segmental relaxation at high frequencies can also be

observed in the native gluten dough. This regime transitions smoothly at

c- ' = 20s' to gel-like behavior at low frequencies in the same manner as the

vital gluten dough. Similarities in the low frequency power-law regime are

partially masked by the greater variability in the native dough. However the

close correspondence between the two sets of linear viscoelastic material

functions are sufficient to validate the use of vital gluten doughs as a basis for

discussing the role of gluten rheology to realistic breadmaking processes.

Creep

Measuring the creep compliance of soft solids and weak gels has certain

advantages, and some of the difficulties encountered in directly measuring the

relaxation modulus can be bypassed. Most significantly, while the measured

forces decays to diminishingly small values at long times in a relaxation test and

become obscured by residual relaxation processes (discussed in section 0), the

applied stress is constant in a creep test and the resulting strain grows in time.

Consequently, long time scale processes are often better characterized through

creep [52].
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Creep experiments are performed by incrementing the shear stress from zero to

a, such that a, = ao H(t), where H^(t) is the Heaviside step function. From the

resulting increase in strain with time yx, (t), we define the creep compliance in

the following manner:

J(t)= y(t) (5.15)

We can also consider the theoretical predictions of creep compliance for a critical

gel. The compliance must satisfy the well known relationship given by Ferry [81]:

t = G(t - t')j(t't' (5.16)
0

Thus with the relaxation modulus of equation (5.1) we can calculate the

theoretical compliance [75] through the following expression:

1J1) t" (5.17)
SF(i - n)F(1 + n)

Once again, the material function predicted shows a power-law dependence:

strain and compliance grow without bound in time as t", and no steady state

flow viscosity can be measured even as t -> oo.
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Figure 54 Creep compliance of a gluten gel. Dashed line represents predictions of
the critical gel model from equation (5.17) with gel strength S = 1280 Pa s" and
gel exponent n = 0.175: these parameters are obtained independently from step

strain relaxation experiments. Data at t <0.1 s for o- = 30 Pa are included to
illustrate the observed "creep ringing".

In Figure 54, we compare the measured creep compliance of a gluten gel

evaluated using equation (5.15) with the response of an ideal critical gel given by

equation (5.17). The values of the gel strength S = 1280 Pa and gel exponent

n = 0.175 used in equation (5.17) are obtained independently from step strain

relaxation experiments.
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One cycle of "damped oscillation" in strain is observed at short times (t <0.1s).

This is a consequence of the coupling between instrument inertia and sample

elasticity [157], therefore only data from t > 0.1s are included in the analysis.

For an applied stress below 3000 Pa, the gluten gel exhibits a linear behavior, i.e.

the compliance is independent of applied stress. The qualitative and quantitative

agreement with the critical gel model is excellent: the compliance grows as a

power-law with exponent n = 0.175 over four orders of magnitude in time

(0.1< t < 2000s ).

For the case in which a shear stress of ao = 3000 Pa is applied, the material shows

an initial power-law increase. This continues up to a shear strain of y* 5

(t = 12s) when the gluten gel yields abruptly, and this is manifested as a rapid

increase in strain and compliance. This is followed by an instability at large strain

y -10 of the same form depicted in Figure 57. The nature of this "yield" event

and progression into non-linearity is explored in greater detail in section 5.5

using controlled strain experiments.

Over the duration of the experiments, no steady state was observed for any of

the shear stresses tested, this feature of gluten and dough rheology has also been

discussed in detail by Lefebvre and co-workers [30, 52].

General Linear Viscoelastic Response

We have demonstrated through small amplitude oscillations, stress relaxation

and creep measurements that gluten doughs exhibit a linear viscoelastic response

that is strongly reminiscent of a polymeric critical gel. We now conclude this

section by considering the linear viscoelastic stress response to an arbitrary

deformation together with a brief summary of the historical development of the

gel equations.

Using the Boltzmann superposition principle, we can write an integral

constitutive equation for an arbitrary deformation history:

138



f-t) S (t -t-' " (t' Pt' (5.18)
0

where (t) = Vv + (Vv)T is the infinitesimal strain rate tensor [60]. However, it

must be stressed that this equation is only valid for infinitesimally small

deformations. The response under finite strains is the subject of the following

section.

The relaxation function of a critical gel (equation (5.1)) is also known as the

Nutting's equation [158] and has long been used as an empirical approximation

of material functions. Well before the concept of a critical gel was proposed, Scott

Blair [159] generalized Nutting's equation by adopting the framework of

fractional calculus [160] and arrived at the differential form of equation (5.18)

given in the following expression:

S -(t) (5.19)
F(1-n) st"

Equation (5.19) can be considered to be a generalization of the mechanical

analogs of springs (n = 0) dashpots (n = 1) and is often referred to as a Scott Blair

element [161]. Scott Blair himself described the material parameters S and n as

quasi-properties [159], he suggested that the non-integer exponents are a

consequence of a "non-Newtonian equilibrium" and are closely correlated with

perceptions of texture and firmness. Friedrich and Heymann [162] recognized

this link between fractional calculus models and the critical gel, they generalized

the stress relaxation function to include the post- and pre-gel states that exists

near the solid-liquid transition.

Despite the sharp conceptual difference with traditional models that show

exponentially decaying stress, these fractional calculus models have proven to be

of great practical utility because they allow engineers to accurately model

damping properties for many viscoelastic polymers with a minimum number of

parameters. Winter and Mours noted that the damping properties (characterized

by the loss tangent) is independent of temperature and frequency [77]; however,
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a critical gel can still undergo dynamic oscillations at a characteristic frequency

when coupled with a free mass. A convenient example is the viscoelastic ringing

already encountered during the initial transient response of creep experiments

depicted in Figure 54. We can write the equation of angular motion for the

instrument coupled with the viscoelasticity of the sample as:

S a" o10 + b _-= P(t) (5.20)
IF(1 -n) at"

Where I is the instrument moment of inertia, b is the geometry factor, $ [rad] is

the angle of plate rotation and P [Nm] is the instrument-applied torque. For our

experiments shown in Figure 54 we have:

1=21.04 x 10-6' Nms-2

b= rR 4 /(2h)= 3.9 x10- m3

R= plate radius = 12.5 x 10-3m

h = sample thickness = 1 x 10-3 m

The ringing frequency is given by the minima of the (complex) characteristic

equation:

S
- 2I + b (i(O)" =0 (5.22)

F(1-n)

This frequency can be evaluated numerically and is found to be 68.5 rad s-1

(t* = 0.09 s) which is in good agreement with the heavily damped ringing

frequency observed in creep experiments. Such excellent agreement is perhaps

surprising, since the fixture response during the initial transients should also be

influenced by the Rouse modes of the system (t - XR =0 .05 s).

5.5. Critical gel response under finite strain

We have examined the linear viscoelasticity of a critical gel and showed that for

time-scales greater than the segmental relaxation time 4R, the rheology can be

economically described by two parameters, the gel strength S, and the gel
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exponent n. As mentioned in the introduction, characterizing the non-linear

deformation of a critical gel is essential in many applications. For example, in

adhesives applications [77], information on the strain to failure can be useful. In

bread and gluten dough, researchers have found little or no correlation between

linear viscoelastic material functions and baking qualities. This of course should

not be surprising, because non-linear deformation (kneading, proofing, baking

etc...) feature prominently in the process of breadmaking [4, 6, 7, 44, 147].

Large Step Strain Relaxation

We begin probing the non-linear deformation of the gluten gels by simply

increasing the amplitude yo of the step strain relaxation tests discussed in section

0. The results are plotted in Figure 55a.

Qualitatively, the relaxation modulus at large strain amplitude is observed to be

a function of both time and strain G = G (t, y). Both the Rouse segmental

relaxation and power-law gel regimes are still clearly visible. Since it is the

power-law/ critical gel region that we are most interested, we can gain insight

into this non-linear behavior by seeking a function that will collapse the data in

this regime onto a single curve. The power-law exponent of the relaxation

remains approximately constant despite the increase in strain, therefore a simple

vertical shift factor - or damping function - suffices to collapse the data. In other

words, the data can be taken to be time-strain separable in the power-law regime:

G (t,7 y) = G (t) h (y) )= St-" h(yo ) (5.23)
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Figure 55 a) Stress relaxation function G(t) of gluten dough for a range of finite

step shear strains with magnitude yo. b) Damping function for finite strain
amplitude stress relaxation experiments. Lines correspond to algebraic fit to the

data set, h (y) = 1/1+ (qy 0 )2k). Unfilled gluten dough (q = 0.2, k = 0.4 ) shows
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dough systems (q = 25, k = 0.4).
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The resulting damping function is plotted in Figure 55b. The strain softening

effect in the gluten gel is relatively weak, especially when compared to the

highly-filled wheat flour systems, in which non-linearity begins at extremely
small strains [163]. To quantitatively compare the two sets of data, they are fitted

to a simple algebraic function that is motivated by the form commonly used to

describe strain-softening in entangled melts h(y)=1 + (qy)2k) [126]. The rate of

softening k = 0.4 is the same for both systems; the onset of non-linear behavior

corresponding to a critical strain y* ~ q occurs at y* - 0.04 for wheat flour

dough but not until y* ~ 5 for gluten systems.

The weak damping characteristic of gluten dough is consistent with critical gels

that are formed from randomly cross-linked networks of flexible polymeric

strands. Even though particulate gels can also form self-similar fractal structures

that exhibit power-law rheology in their linear viscoelastic material functions,

they are typically "brittle". Non-linear behavior of particulate gels are commonly

characterized by rapid softening or yielding at strains that are seldom greater

than unity i.e. y*tt <1[141, 164].

In fact, the behavior seen here is very similar to the damping function for critical

gels polyvinylchloride in dioctyl phthlate (PVC-DOP) reported by Watanabe et al

[149]. They argue that in contrast to highly entangled systems which show

reptation dynamics, the recovery of polymer chains to their equilibrium length

occurs at the same rate as orientation rearrangements in fractal networks; thus

resulting in a damping function that is close to unity. The similar lack of

reptation dynamics or a distinct yielding process observed in the present work

strongly suggests that gluten gels should also be viewed as a polymeric network

rather than a particulate gel or highly entangled melt.

The large range of linear response also suggests that gluten doughs can be

treated up to moderately large strains approximately as a quasi-linear elastic

material [60]. If we are to express the constitutive equation for the gluten gel as

an integral model of the factorized Rivlin-Sawyer form, a simplification to the
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strain-dependent function can be made, such that h(y) =1; the non-linearity in

the constitutive equation associated with large strains is then contained

exclusively in the deformation tensors. This leads to greatly simplified

constitutive equations and analytical solutions are possible for a wide variety of

flow conditions. The construction of such a constitutive model will be the subject

of the following section.

Transient Experiments

For quasi-linear models under finite deformation, the infinitesimal strain rate

tensor y in equation (5.18) must be replaced by a finite strain rate

tensor -C-1 (t,t') to preserve frame invariance [60]. C-1(t,t') is the Finger strain
at

tensor. We can write a frame invariant constitutive equation [77] by considering

a linear superposition of stress relaxation modes associated with this finite rate of

strain C~1(t,t'):
a3t

-(t)=-f G (t -') C- (t, t') dt'
0 (5.24)

=- S(t - t')~ -C1 (t,t') dt' for the gel equation

This form of constitutive equation (with an unspecified form of G(t - t')) is

generically referred to as a Lodge rubber-like network model [165]. We refer to

the particular constitutive model in equation (5.24) with a power-law relaxation

modulus as the generalized gel model.

By analogy to the discussion in the previous section, equation (5.24) can also be

expressed in a differential form:

o(t)=- ( n D C-1 (t,t')] (5.25)
r'(1 -n)
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where the fractional differential operator denoted D" is the convected fractional

derivative which satisfies material objectivity [166].

In the limits of infinitesimal strains, equations (5.24) and (5.25) reduce to (5.18)

and (5.19) respectively. To explore the constitutive response of gluten gels at

large strains, we now consider the form of C' (t, t') and C-1 (t, V) for specific

modes of deformation commonly used in rheometric testing and the resulting

form of the stress tensor.

Start-up of Steady Shear

In a step shear rate experiment, in which

incremented from zero to i, such that i (t)=

tensor takes the form:

io(t - t') 0
1 01
0 1

the rate of shearing strain is

,,ft(t), the finite strain and rate

for 0 t' t

(5.26)

C

? 2tz ? t 0

= Ot 0 0 for t'< 0

0 0 0

-2?02(t-_t') -?O
C-1= -? 1

L 0 0

=0

0

0 for 0 t' t

i 
'for t'< <0

(5.27)

Inserting the respective components into equations (5.24) or (5.25) gives an

expression for the transient growth in the shear stress:
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UXY=-f S (t -t')-"(- dt'
0 t(5.28)

= SO (t -t')-"dt'
0

Substituting r = t - t' and integrating, we find:

+ ___ r -n t _? t_

X! =Sf r-"dr =Sh= 1n 1 -" (5.29)
00

So that the shear stress in a critical gel grows in time without bound as a power-

law with t1-. The total strain imposed is y = fo dt' = ?Ot. We also note that the

response (5.28) is factorizable into shear-strain and shear-rate contributions:

a. (fo,y)- noy- for y (530
1-n (.31)

= S f(?0 ), (r)

Where f( 0 )= ?n and (D ?,)= y-"/(1-n).

In Figure 56 we demonstrate the ability of this generalized gel equation to

predict the growth in the shear stress of gluten gels during the start-up of steady

shear flow. After an initial short time response (t 0.1s) which is governed by

the Rouse modes convoluted with the finite response function of the rheometer,

the material functions increase as power laws (i.e. straight lines on a log-log

scale). The shear stress increases with shear strain as y1- (equation (5.30)) and

the data can be collapsed onto a single power law strain function , (y) by

factoring out the rate-dependent component, f(?0 ) = ?o. All of the samples show

slip and/or fracture at large strains y ~10 despite our efforts to prevent slip

(Section 5.2).
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dependence f (?0)= ".
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At the highest strains and shear rates tested (y >5, fo > 0.1s'), the gluten gels

exhibit a stress overshoot, in contrast to the softening observed in the previous

section for step strain relaxation. The rheological significance of this overshoot

remains unclear. Phan-Thien and coworkers [104] attempted to model the

overshoot behavior through the use of a highly non-linear strain function that

incorporates both strain stiffening and softening of the form:

o, (y)= G', (y)(C-1 - aC)

,(T)= 1 2 exp(-y4y) (5.31)

( + y2)(1m/ X

Where F1, I , a and m are material constants, C is also known as the left-

Cauchy-Green tensor. However in our experiments, we observed this

phenomenon to be closely associated with a torsional elastic instability as

depicted in Figure 57. This instability occurred shortly after the transient shear

stress deviated from the predicted power-law form and becomes extremely

severe at the point of stress softening: the sample rolls up and is ejected from the

geometry gap. The flow is no longer viscometric at the onset of this instability

and therefore we have made no attempts to model it constitutively.
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Figure 57 Torsional elastic instability at ?0 = 1 s-1 . a. Initial conditions, b. Onset of
instability; Initially vertical lines drawn on the sample with ink indicate uniform
deformation up to this point; c. Sample becomes asymmetric and is retracted
away from point of view while being ejected from the other side of the geometry,
d. Sample rolls up and is ejected from rheometer.
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Nevertheless, the fact that linear deformation persists without yield up to large

strains is once again a strong indication that gluten doughs are polymeric gel

networks consisting of flexible or semi-flexible filaments. This class of systems

include many biopolymer gels that often exhibit extremely large linear range and

has non-linear regimes that are typified by a stiffening behavior before yield

[137, 167], in a manner very similar to the behavior of the gluten gel.

In fact the behavior of these gluten gels also bears a strong resemblance to the

data reported by Venkataraman and Winter [75] on a synthetic critical gel. The

PDMS they studied also forms a cross-linked polymeric network with flexible

chains between junction points; they observed a relatively large linear range

during start-up of steady shear flow (y* - 2) and a mild stress overshoot at large

strains. However, the separability of the measured material response into rate-

dependent and strain dependent functions cannot be checked in this previous

study because data at only a single shear rate (?0 = 0.5 s) was presented.
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In these start-up experiments, we can also follow the evolution in the first normal

stress difference of the gluten gels. From equation (5.24) we find:

Nj+ ot)= ,()(t)t =- S(t-t')"-'[2?2(t-t')] dt'
0

t-
=2S2 f(t- t')n dt'

= 2S [ 2 n(t - t')2-n (5.32)

__2S ?02t2-n

(2 - n)

=2 n,2-n

(2-n)

Notably, this result is again strain/strain-rate separable and can be written in the

form:

a" (t)- U (t) = Sf(?)DN(y) (5.33)

Where, as in equation (5.30), the function f(f')= " and the strain function for

the normal stress difference is DN = 22-n /(2-n).

In Figure 58 we show that the first normal stress difference measured in a gluten

water dough system can also be described quite well by equation (5.32). The data

shows a positive power-law increase in the normal stress difference with strain

(typical of polymer networks) corresponding to an exponent of y 2-n. The values

of S = 1280 Pa Sn and n = 0.175 are consistent with those obtained from linear

viscoelastic measurements. These curves can also be approximately collapsed

onto a single curve by factoring out the rate-dependent component f(?) = ?"
The normal force data show less perfect superposition when compared with the

measured shear stress response. When the plates are brought together during

loading and the sample is squeezed into a disc shape, the axial compressive
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strain can result in substantial normal forces even when slow compression rates

and long waiting times are employed, and this contributes to the observed

variability at low deformation rates. The effect of this residual stress relaxation is

analogous to that described in section 0. Nonetheless, the power-law growth in

N at large shear rates is very clear across several decades in stress. It is

interesting to note that in the generalized gel equation, the ratio between

transient shear stress and normal stress difference is given

by N 1/aU, = 2y(1 - n)/(2- n). For an ideal critical gel, this relationship is valid

even in the limit of infinitely rapid deformations. This modified elastic response

can be contrasted with that expected of typical viscoelastic materials which show

purely elastic behavior at time shorter than the most rapid relaxation time: the

Lodge-Meissner relationship [168] shows that the stress ratio

approaches N1 /og = y. The modified elastic behavior noted above is a

distinguishing feature of a critical gel but might not be of practical utility in

determining the gel point, especially for materials with small values of n.

Furthermore, for gluten gels, the presence of a cut-off at the segmental relaxation

time scale AR reported in the previous section will obscure the observation of this

relationship at very high shear rates when WiR =4R0 >1.

Start-up of Uniaxial Extensional Flow

Elongational deformations provide a litmus test for the robustness of the

generalized gel equation. The applicability of a rheological constitutive equation

such as the critical gel model is greatly increased if material parameters obtained

from small amplitude shear experiments can be used to predict the rheological

behavior under vastly different flow conditions such as those observed under

large extensional strains.

In strong flows such as uniaxial elongation, the integral expression to be

evaluated for the stress becomes slightly more involved because the components

of the finite strain-rate tensor increase exponentially with strain rather than
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polynomially. For extensional stress growth following inception of a uniaxial

extensional flow at a finite constant strain rate, the Finger strain tensor C-'(t,t')

and finite rate of strain tensor C-'(t, t') are:
at'

C-1 exp[-t. (t - t')]
0

0

exp[2t, (t - t')]_
for 0 t' t

exp[-to (t')]

0
for t' <0

0

-2to exp[2to (t - t')]j for 0 t'! t

=0 for t' <0

The normal stress difference predicted by the generalized gel equation in steady

uniaxial extension is then:

u,(t)- U,,(t) = S(t - t')"to {2exp(2te [t'- t'])+exp(-t,0 [t - t'])}dt' (5.35)

We first perform a change of variable to recast the solution into a separable form

composed of a rate-dependent term and a strain-dependent integral. Substituting

for the Hencky strain e(t) = tj and the strain difference r = t (t - t'), we obtain:

Au(s) = Sof r" f2exp(2r) + exp(-r)}dr
0

(5.36)

The extensional stress growth in a critical gel can once again be written in terms

of rate- and strain-dependent components by factorizing equation (5.36) to give:

au(to,e) = Sf(to)DExt(s) (5.37)

where
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(DExt _ -n {2exp (2r)+ exp (-r)}dr (5.38)

0

The integral for the strain dependent function can be integrated repeatedly by

parts to yield a solution in the form of a summation. However, this approach is

rather cumbersome and the result converges slowly. It is more convenient to

consider approximations to the expression at large and small strain limits.

For small strains (i.e. e <1), equation (5.37) approaches the linear viscoelastic

limit:

3S n 1-n
Aa(e 0 e)-+ 1 el-", as e->O

1at , ) - n 1 - n E s E 0(5 .3 9 )

DExt =3 
-

1-n

The corresponding Trouton ratio approaches:

Tr = u Exto, E) ->3, forE <l (5.40)

where o = sIt and y = E is used in evaluating the ratio.

At large strains (i.e. e >> 1), an asymptotic approximation can be made such that:

Aa = Stoe-"exp(2E)

'DExt E-n exp(2e) (5.41)

Tr =(1-n)e- exp(2e)

An approximation is made to equation (5.38) by considering a function that

smoothly connects the two limits (equation (5.39) and (5.41):
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Aer, =Ste"E [ exp (2E) +E-1

(D+ =n E *exp (2E) + E-1] (5.42)
Ext 1- n

+(1- n)
Tr* ~ exp(2E) -1] +(1 + 2n)

Equations in (5.42) are a surprisingly accurate approximation and is barely

distinguishable from the true solution over the range of strains discussed in this

article.

Oil film 0

R Ht

W0=2mm

sample

Figure 59 Schematic of the Sentmanat Extensional Rheometer (SER). The sample

of initial cross-section area Wo x Ho and gage length Lo is stretched between two

counter-rotating cylindrical drums.

We examine the response of gluten gels experimentally under uniaxial extension

using a wind-up drum type rheometer. The geometry is shown in Figure 59. A

Sentmanat Extensional Rheometer (SER) fixture [122] is mounted onto the ARES
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rheometer. Samples of gluten gel (LO = 12.5mm, HO = W = 2mm ) are held in place

between two cylinders by clamps and then stretched uniaxially as the cylinders

are rotated by the drive system of the rheometer. The resulting torque and

sample deformation are measured independently through the ARES torque

transducer and digital video imaging respectively. Figure 60 illustrates the

measurements obtained during a typical experiment.

The counter rotating cylinders apply a nominal strain rate of:

$= R (5.43)
LO

However, the true strain rate in the sample is also independently measured from

video images. A thin film of oil is painted onto the surface of the sample to

eliminate evaporation and sample drying, this film can also inadvertently lead to

slip in the contact area with the rotating cylinders [126]. Measurements with

polyisoprene have shown that if the sample aspect ratio is small,

i.e. A = H/W < 1, the deformation will deviate from uniform uniaxial stretching

[169] and approaches the planar limit instead as A -> 0. In the present

experiments, the aspect ratio is close to unity (A - 1), therefore the actual

deformation can be well approximated by homogeneous uniaxial stretching.

Video imaging at 100 frames/sec. confirms the assumptions of uniform uniaxial

deformation and no-slip at the cylinder-sample interface. The strain rate

calculated from lateral contraction of the sample t(t) is identical to the imposed

longitudinal strain $(t), and the width W(t) of the sample thus decays as a

simple exponential:

2 dW(t)
W(t) dt (5.44)

W (t)~= W,, exp (-Pt/2)

157



i

1.0x10-3

0.8w

z
0.6

0.4

0.2

U

[

I
L

62 4 8

-I

0

hi
Figure 60 Wind-up drum rheometry of a gluten gel using the SER fixture.
Deformation and torque measurements were provided by the host ARES
rheometer while true strain measurements were made by studying images
collected with high-speed digital videography (at 100 frames/sec). Initial width
of sample is W = 2 mm. Solid line is the calculated variation in width under
ideal uniaxial elongation given by equation (5.44)

From the torque P(t) and sample width W(t) measurements collected, it is

straight forward to calculate the true evolution in the normal stress difference

during uniaxial elongation:
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oW(t) - o(t) = Pt)exp(+e(t)) (5.45)
2RHOW

The results from three different strain rates to = 0.03, 0.3, 3.0 s-1 are plotted in

Figure 61a. The experiments for each strain rate were repeated to confirm their

reproducibility; because of sample-to-sample variability such reproducibility is

not often achieved in typical dough systems [80, 126]. Deviations between

individual experiments at the same strain rate are only discernible at small

strains. These differences can be attributed to slightly different preloads

associated with the backlash inherent to the SER gearing system, and the torque

signal for data collected at strains e <0.1 have been omitted for analysis

purposes. The samples were stretched at constant strain rates till they ruptured,

usually around total Hencky strains of e - 2-3, corresponding to the point

when the torque measurement drops rapidly. Some fluctuations are apparent at

low stresses, however these only occur below the stated resolution of the torque

transducer; Aa. = (Pm )/(2RHOW). For typical values of sample dimensions

HO = 2mm, W = 2mm and cylinder radius R = 5.25 mm, we find the minimum

resolvable stress to be approximately Aun =5 x 103 Pa.
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Once again we can separate the rate- and strain-dependent contributions by

using equation (5.37). The tensile stress growth data can be collapsed onto a

single master curve of the strain function by dividing the tensile stress difference

by f( 0) = t" as shown in Figure 61b. The strain function DExt(E) is well

described by equation (5.38), and the gel parameters used to collapse the data at

different rates are obtained through the linear viscoelastic step-strain relaxation

experiments discussed in section 0 (S = 1260 Pa s"andn = 0.175) i.e. we do not

refit the material properties and there are no adjustable parameters.

As we also noted in equation (5.3), the effective characteristic time constant for a

critical gel diverges (A. -> oo), therefore the effective Deborah number in a

critical gel also approaches infinity and nonlinear elastic effects always become

important. As a result, the tensile stress growth measured at all strain rates will

deviate from the linear viscoelastic power-law response <DExt = 3E1-/(1 - n) at

moderate strains e >1. At large Hencky strains, the stress response approaches

the asymptotic approximation of the form = St-"exp(2e). This large strain

behavior highlights the fact that a critical gel does indeed lie on the point of

solid-liquid transition: the material exhibits both neo-Hookean-like affine

network deformation Aa+ - f(x) = exp(2e) = x1
2 (where x1 = (W/W) 2 is the

principal stretch in the SER device) as well as fading memory dependence in

time, Aa oC t-".

We observe no need to incorporate additional strain-dependent damping in the

gluten gel which would lead to non-affine deformation in Figure 61b. This is in

contrast to analogous measurements with wheat flour doughs which show

exponential, but sub-affine, stress growth at large strains [126]. These differences

are consistent with our step shear strain measurements in Figure 55. The gluten

gels rupture at Hencky strains of e - 3 before such non-linearities would become

important.
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As a final confirmation that gluten gels should be considered as flexible elastic

networks, we note that few (if any) particulate gels can withstand such large

stretch ratios (x1 = (W/WO ) 20) without yield or rupture. by contrast such

behavior is rather common for crosslinked polymeric networks such as rubber

elastomers, collagen etc...

5.6. Conclusions

In this paper we have demonstrated that a vital gluten dough exhibits a power-

law relaxation modulus characteristic of that observed in polymeric networks at

the liquid-solid transition i.e. the response of a critical gel. We applied the

generalized gel equation by incorporating the well-known relaxation modulus for a

critical gel into the Lodge rubber-like-liquid formulation. We performed a

comprehensive set of experiments on a gluten dough and showed that the

generalized gel equation provides an accurate description of the rheological

response in flow situations ranging from linear to non-linear deformations in

both shear and extension. We also demonstrated the implications for these

slowly-relaxing systems of residual stress relaxation from deformation incurred

during sample loading. The power-law decay in relaxation modulus G(t) = St-

at long times was found to be substantially affected by the waiting time t,.

The linear viscoelasticity of gluten doughs can be well-characterized by the two-

parameter critical gel model over a wide range of timescales and this is an

indication of the self similarity in the polymeric network comprising the gluten

gel. At very short length scales 1 20 nm, this self similarity breaks down as the

structure of individual strands in the network become important and is reflected

by the Rouse regime observed at short time scales t - 4R =O.05 s .

At large strains, the gluten gel only shows a very weak damping behavior which
is consistent with the idea of strong physical crosslinks in a fractal polymeric
network. We contrast this observation with examples of entangled and
particulate gel systems that have strong damping functions due, respectively, to

162



either the mismatch in the rotation/ stretch relaxation times or to plastic yielding

events between neighboring particles.

In start-up of steady shear flow, power-law growth in both the shear stress and

the normal stress difference are observed, and these are in good agreement with

the generalized gel equation up to y* ~ 5. Beyond this critical strain, the shear

stress exhibits an overshoot and attains a peak value at y2 ' 12. Just before the

point of peak stress, the gluten gel undergoes an edge instability that eventually

leads to the sample being ejected from the geometry at yE - 30. In uniaxial

extension, the transient response of the tensile stress difference progressively

changes from power-law growth in the linear viscoelastic regime to an

exponential increase in agreement with the constitutive prediction of the

generalized gel equation. This exponential growth can be observed for a wide

range of deformation rates (0.03 to 5 3 s') up to the point of rupture at Hencky

strains of rupture ' 3.

We can compare these observations with earlier experiments performed on

critical gels of cross-linked polydimethylsiloxane. In start-up of steady shear

flow, Venkataraman and Winter [75] observed a similar departure from linearity

at y* - 2 followed shortly by an overshoot and a peak in shear stress at yp ~ 4.

The rheological signatures of the PDMS and gluten gels are qualitatively similar;

but evidently, the gluten system has a significantly larger range of quasi-

linearity. The percolated gel structure of the gluten remains intact even under

large deformations pointing to significant tensile strength of the gluten backbone

and strong interchain binding at network junctions.

The strain/rate factorization observed in the present experiments (in both

shearing and extensional flow) strongly supports the extension of the simple

linear viscoelastic gel model to large strains by application of the Lodge rubber-

like network formulation. Finally, we note that because of the power-law

dependence of the relaxation modulus, critical gels exhibit a special form of

viscoelastic behavior: They will show characteristics akin to those of ideal elastic
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networks, with increasingly affine deformation of the form AaE, ~ exp(2e)

observed up to large Hencky strains e ~ 3 in uniaxial elongation; however, at the

same time, they also exhibit nonlinear viscous characteristics with a fading

power-law dependence in time Aa' m t-". In addition to the measurements

presented here, we have also performed large amplitude oscillatory shear

(LAOS) tests to further assess the predictions of the proposed rheological

equation of state, these results will be discussed in a later publication.

To summarize, the rheological evidence provides a compelling indication that

the gluten gel is a polymeric network consisting of flexible or semi-flexible

filaments between network junctions. This is not necessarily incompatible with

the particulate microgel structure sometimes observed under confocal

microscopy [170]. These observable length scales might lie beyond those that can

be practically probed by rheological measurements within a reasonable time

window. Exactly what individual roles di-sulphide bonds, hydrogen bonds and

physical entanglements play in the resulting gel structure is still hotly debated [8,

47-49, 51, 55]. Future rheological tests to progressively large strains may be able

to shed light on the individual contributions of each type of crosslink;

preliminary experiments on disrupting the network structure by dissolving the

gluten gels in sodium dodecyl sulphate (SDS) or in concentrated urea solution

indicate that hydrogen bonding plays a central role in the formation of networks

structure.

The ability of such a simple two parameter constitutive model to predict

quantitatively the material functions for vital gluten doughs over several orders

of magnitude in stress and time scales is both surprising and encouraging. Food

stuffs are notorious for being "hopelessly non-model" [171]; and soft solids or

wheat flour doughs are considered one of the worst offenders [80]. The model

behavior of gluten gels may prove to be invaluable in providing a framework or

foundation from which more complex models that fully capture the functionality

of a realistic flour-water dough formulation can be constructed. For example, it

provides a natural framework for incorporating a damping function to capture

more complex non-linear behavior [126].
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Moving forward, the logical step to take next is to reintroduce these additional

non-linear effects through the addition of a well-characterized filler. Obviously

in real bread doughs the filler of interest consists of the starch particles.

Unfortunately, simply mixing wheat starch, vital gluten powder and water

already reintroduces excessive complexity. The rheology of the resulting dough

changes significantly with time and it is challenging to obtain reproducible data

[126]; this is due to the gradual swelling and strong interactions between starch

particles. An alternative route may be to separate the effects of the filler; for

example, by first asking what is the effect of filling the gluten gel with non-

reactive hard spheres such as glass beads [143]? Preliminary rheological data

collected on such a system in our laboratory suggests that many of the

characteristic differences between a critical gluten gel and real dough systems,

e.g. non-linear strain softening, can indeed be explained by the interactions of

the elastic network with these hard particles and this will form the subject of

future work.
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6. Power Law and Gluten Gels in Large Amplitude

Oscillatory Shear

6.1. Introduction

The rheology of biopolymer networks exhibit an intriguing variety of non-linear

phenomena. Commonly observed features include non-linear

softening/stiffening , reversibility and thixotropy... etc. Currently, there exist a

wide variety of measurement techniques and a range of constitutive models have

been developed towards understanding these systems [132, 137, 167, 172]. In this

article, we will illustrate some of these features observed in a biopolymer gel

formed by a hydrated gluten network.

Gluten is the generic name given to the insoluble proteins present in wheat flour.

It is widely believed that the mechanical properties of this hydrated network

state are intrinsically linked to the quality of the bread dough formed when the

flour is mixed with water [6, 8, 13, 48, 49, 99, 173]. The discussion here will be

based around the molecular structure of gluten gels proposed in an earlier

publication [174]. Rheological behavior under small amplitude oscillations and

large deformations in both shear and extension have demonstrated that the

gluten gel should be considered as flexible/ semi-flexible segments that are

interconnected as a gel network. The interstitial spaces are filled with water but

have little contribution to the rheology as little or no solvent viscosity can be

detected. We also demonstrated that over time scales that are greater than the

Rouse relaxation time, the quasi-linear behavior extends up to large strains and

can be well-described by the generalized gel equation:

-(t)= S (t -t')~" C- (t, t') dt' (6.1)
0

where C-1 is the finger strain tensor. The expression can also be rewritten in

terms of the finite strain rate tensor in the following way:
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a (t)=f S (t-t')_",ytydt' (6.2)
0

where 'C-1 .

In start-up of steady shear tests, both transient shear stress and normal stress

showed power-law growth up to a critical strain y* -5 at which non-linear stress

growth becomes significant and is followed rapidly by a viscometric instability

leading to sample roll-up and ejection from the rheometer. The quasi-linear

behavior before the instability is given by equation (6.1) and can be integrated to

give:

S , 1 n (6.3)
1-n

While the transient extensional stress difference in strips of gluten undergoing

uniaxial elongation also closely followed the predicted behavior up to the point

of rupture:

AC(s) = Stg" r-"{2exp(2r)+exp(-r)}dr (6.4)
0

In general, the material functions up to the onset of non-linearity for these start-

up tests can be shown to be of a time-strain factorizable form in which the stress

response is separated into a power-law rate dependent component multiplied by

a master strain function:

a(t) = Sn"D(y) (6.5)

Because of the difficulty in maintaining viscometric flow at large strains, the

details of this progression into non-linear behavior are still not well understood.

Nevertheless, there are clear hints of strain-hardening in the network, however

this large additional stress growth leads to sample disruption (either by ejection

from gap in shear or cohesive rupture in extension).
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Unlike deformations in the linear viscoelastic regime, there exists no standard

non-linear rheological test that will provide all the parameters that characterize a

material's non-linear rheological behavior. Typically, different tests are required

to probe different aspects of the non-linearity. Large amplitude oscillatory shear

(LAOS) flows are one of the more common methods used [175], but

unfortunately, the interpretation of the measured response is far from obvious.

The experimental and analytical techniques of LAOS and Fourier transforms was

neatly summarized by Wilhelm [176]. Due to the conceptual familiarity of

Fourier transforms, this framework of collecting and analyzing data is the most

widely adopted. An alternative to Fourier analysis have been proposed by Cho

[177]. The method is based on symmetry arguments that decompose Lissajous

curves into non-linear elastic and viscous components. While more recently,
Ewoldt et al [109, 1101 also suggested some alternative measure of moduli that

captures the physical features observed in Lissajous figures, they were able to

generate a rheological fingerprint for pedal mucus collected from snails and

slugs.

To our best knowledge, the only published study in which gluten gels were

subjected to large amplitude oscillations was performed by Uthayakumaran et al

[107]. Their experiments consisted essentially of a strain sweep at fixed frequency

in which the strain amplitude was gradually increased and the corresponding

dynamic moduli were reported. The data show a gradual decrease in moduli for

increasing strains that they interpreted as a strain-softening behavior. As we

shall discuss later, simply reporting the dynamic moduli is insufficient because a

simple harmonic analysis cannot adequately capture the response of the system

[176] if it is not discussed in context with the Lissajous curves or a more detailed

Fourier decomposition of the stress-strain response during an oscillation cycle.

Lefebvre [30] studied the Lissajous figures of the more complex wheat flour

dough. The experiments were performed on a controlled stress rheometer, in

which the stress amplitude was gradually increased. Lefebvre analyzed the

corresponding strain response in terms of a Fourier series and he suggested that

the relative magnitude of the higher harmonics could be considered to be a

measure of the non-linearity. Though this Fourier decomposition approach is
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complete and mathematically consistent [176], it is difficult to obtain a physical

interpretation of these higher harmonic components. Furthermore, the controlled

stress nature of these experiments makes it extremely awkward to compare data

against candidate constitutive equations that typically have material stress

written as a non-linear function of input strain or strain rate. Nevertheless, the

Lissajous figures presented by Lefebvre do indeed show distinct non-linear

behavior, the most prominent being the dramatic distortion from the elliptical

shapes observed from moderate stresses (i.e. o- <100 Pa) and small strains

(Y -0.05).

Phan-Thien et al [178] on the other hand performed large amplitude oscillations

on a wheat flour dough using a controlled strain approach. As a result, they were

able to propose a constitutive equation that described the extreme softening

behavior observed when the dough is subject to large strains. The resulting

constitutive model [104, 178] is essentially a linear viscoelastic response

multiplied by an empirical softening function that is dependent on the strain.

We conclude this section by summarizing our objectives: we will study the non-

linear rheological behavior of a model biopolymer network of hydrated gluten.

Following the earlier work performed by Lefebvre [30] and Phan-Thien [178],

we analyze the resulting Lissajous figures of the gluten gel under various

amplitudes of oscillations. The experimental data collected will lead us to a

constitutive model that can describe all the non-linear phenomena observed. This

model will be based on the transient network ideas described in our earlier work

[174] and we will explain how such rheological features can arise from

underlying changes in microstructure.

6.2. Gluten dough preparation

Gluten dough was prepared by placing 10g of vital gluten (Arrowhead Mills - -

12% moisture content) in a mixograph bowl with 14g of water (total dough

moisture content = 63% by weight). The mixture is then stirred, stretched and

folded through the action of the mixograph pins for 12 minutes [85]. The torque

exerted by the mixing action is monitored on an instrumented mixograph. In
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Figure 62 (a), we plot the typical torque signal as a function of mixing time.

Frequently, a moving average signal corresponding to the slow variation of

torque is cited to be indicative of dough development [6]. The various stages of

development can be summarized by the following:

i. 0 - 500 s. Under-developed dough - mixing torque is low. The sample is

dry and lumpy.

ii. 500-600 s. Dough development - both moving average torque signal and

amplitude of fluctuations rise rapidly. Sample begins to form a cohesive

dough that is stretched around the mixograph pins.

iii. 600-900 s. Fully developed dough - average signal and fluctuations reach

a plateau. Gluten samples harvested at this stage give consistent results

under rheometric tests. The detailed fluctuations of the signal is plotted in

Figure 62 (b).

iv. > 900 s. Over developed dough - gradual decrease of torque signal.

Dough samples collected at this stage are believed to have weak

"functionality" [6].

In fact, the mixing motion can be thought of as a series of large amplitude

oscillatory tests. The epitrochoidal motion of the mixograph pins are given in

Cartesian coordinates with origin at the center of the mixing bowl by the

following equations [851:

x= r, cos(6 + e:) + r2 cos 1+ n) O+4M) 
(6.6)

y = r, sin(O + ej) + r2sin 1 + n +$}

where r, = 1.78cm, r2 = 0.89cm are the geometric parameters of the mixograph

with four moving pins positioned at (0,#) = (0,0), (0,n), (n, 1/4n), (7c, 5/4n)

respectively. The resulting epitrochoidal deformation imposed on the dough by

the four moving pins whirling around the three stationary pins is extremely

complicated, and we plot the power spectrum of this motion in Figure 62 (c).

The power spectrum is calculated from the kinematic function that describes the
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distances between each of the moving pins with respect to the stationary pins.

Few of the peaks are clearly identifiable in the corresponding power spectrum

calculated from the torque response.

The transfer function that transforms the kinematic spectrum of the rotating pins

into the measured torque spectrum must therefore be solely a function of the

dough properties. It is this rheological response that we ultimately seek to

characterize.

Because of the complex harmonic content of this deformation we seek to

decompose the response into contributions that depend on the strain amplitude

and deformation frequency using the ideas of large amplitude oscillatory shear

flow (LAOS).
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Figure 62 (a) Measured mixograph output (torque in arbitrary units) vs. mixing
time for a typical gluten dough. (b) Detail of temporal oscillations in the torque
due to the periodic motion of the pins from 700-720s. (c) Power spectrum of the
measured mixograph torque from 700-800s. Peaks correspond to harmonics
calculated from the motion of moving pins in relation to stationary pins.
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6.3. Rheometry

Shear rheometry experiments are performed under controlled strain conditions

on the ARES rheometer and under controlled stress mode on the AR-G2

rheometer (TA instruments). A Peltier plate and a 25mm parallel plate fixture at

1mm separation were used. Approximately 2 g of gluten dough was placed on

the Peltier plate, and the upper plate was then brought down to compress the

sample to the specified thickness. Excess dough was trimmed with a razor blade.

The Peltier plate was held at a fixed temperature of 22*C, to approximate typical

room temperature. Slip was eliminated by applying adhesive-backed sandpaper

(600 grit McMaster Carr 47185A51) to the surfaces of both the Peltier plate and

the parallel plate tool. Drying of the sample was minimized by painting the

exposed surface of the dough with a low-viscosity silicone oil.

6.4. linear viscoelasticity and network structure of gluten gels

We begin by outlining the important concepts discussed in the previous

publication [174]. In this study we showed that the gluten gel forms a

polydisperse network of macromolecular strands held between junction points.

This polydispersity is reflected in the power-law like relaxation function which

can be thought of as a series of Maxwell modes capturing the response of the

fractal gel at different length and time scales. In terms of material functions we

showed the basic response could be categorized by two regimes. For the dynamic

moduli plotted in Figure 52b, at low frequencies (o <20 s-), the gluten dough

exhibits a critical-gel-like behavior [74, 76, 77], in which both dynamic moduli

are power-law functions of the frequencies and are related by the following

expression:

G"l (01) nic)O~

- tan(nir/2) - 2-n~cos(j2 6.7

where S is the gel strength and n is the gel index/exponent.
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We can draw upon the idea that this power-law behavior is a summation of

contributions from structures of varying length scales, and express it neatly as a

summation over a finite range of time (tm < t < t.

GXk K 2 K ko
G'g =C k+Go + ( ) 2 , G"G =G 1 2 (6.8)

l2 k=11+ 0)20 k=11+ (_)2

where = tm., XK = t and the individual relaxation modes are connected by a

recursion relationship Xk = Alk-'I. The modulus scale for each relaxation mode is

set by the expression:

Go = (6.9)
n]F(n)A"

Under high frequency excitation, the gel also exhibits a Rouse-like regime that

reflects the response of network segments within the gel [771. The additional

contributions to the dynamic moduli under this regime can be expressed as:

G'R = GR -2 , G'R = GR 2 (6.10)
k=11+ (Xk) k=11+ k

where Ak = XR /k 2 , and 2 R, GR are the relaxation time and modulus of the Rouse

segments.

Therefore, in general, we can write the total dynamic moduli as:

G'()= G',e (o)+G'R ()
G) G gel (co) + G R ()(6.11)

The dynamic moduli obtained from small amplitude controlled stress

experiments at stress amplitude of o =50 Pa are plotted in Figure 63. The

experimental data are in excellent agreement with equation (5.12) to (6.11) and

the linear viscoelastic parameters (S = 1300 ± 100 Pa, n = 0.175, GR = 803 Pa, XR=

0.05s) are consistent with data obtained through other small strain measurements
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such as step strain relaxation and creep [1741. From the Rouse relaxation

modulus, we estimate the segment length between junction points in the

network to be I- (kT/GR 1320 nm.

10 4
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Figure 63 Storage and loss moduli of a gluten gel measured in small amplitude
oscillation (hollow symbols) at T = 220 C. Solid lines represent predictions from
equation (5.12) to (6.11): S=1260 Pas",n=0.17, GR =803Pa, AR= 0.05s. The
response of a gluten gel dissolved in 8M Urea solution (triangles) and the
corresponding reconstituted dough (solid symbols) are also shown. The
dissolved gluten show a viscoelastic fluid-like behavior with significantly lower
moduli. The gluten gel reformed by diluting the solution with water to wash out
the Urea is almost identical to the original sample.

Figure 63 also illustrates the physical/ chemical nature of these cross-links.

Though the gluten gel is formed by hydration in water, it is not soluble in water:

introducing more water during the process of mixing does not "dilute" the gel,
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instead the excess water forms a pool at the bottom of the mixing bowl [174].

However, it is possible to breakdown the network structure by diluting the

gluten gel in 8M Urea solution (5 g gluten in 35 ml of 8M Urea solution). The

resulting mixture exhibits a viscoelastic fluid response, evident from the relative

magnitudes of the storage and loss moduli. Draining this solution through a 30

pm sieve leaves no significant residues. The diluted solution still shows a

viscoelastic response that suggests structures below Rouse network size (20 nm)

are still present. This indicates the original gel network to be predominantly held

together by physical interactions at junction points such as hydrogen bonds or

possibly hydrophobic interactions [179, 180], while the macromolecular

backbone is not significantly affected by the Urea treatment.

Furthermore, the screening effect of the Urea is reversible, if the mixture is

poured into a large beaker of water, filaments will appear which coagulate

rapidly into a dough. The linear viscoelastic properties of the dough harvested

from this reforming process are also plotted in. The gel shows a complete

recovery to the original moduli indicating the physical interactions at junction

points are reversibly disrupted by the presence of Urea. These observations are

consistent with the proposed structural model of Letang et al [47]; hydrogen

bonds or hydrophobic interactions allow structure elements composed of gluten

molecules to percolate and form a sample spanning network structure.

We can highlight some features of gluten gels and many other biopolymer

networks in general by comparing and contrasting the results from this set of

experiments to a familiar substance: vulcanized rubber consists of polymer

strands that have been cross-linked at network junctions [181]. Due to the

permanence of the covalent cross-links, rubbers display strong elasticity with

little dissipation. However, beyond a typical yield strain or stress, the intra-

molecular bonds within the macromolecular strands can rupture, causing the

network to be irreversibly damaged; this event is manifested macroscopically as

strain-softening or cohesive failure. In the case of gluten gels, these permanent

cross-links are replaced by hydrogen bonds and hydrophobic interactions. Since

the strength of these junctions are typically weaker than those in covalently

bonded systems, the tensile force accumulated under large strains within the
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intra-molecular strands can be released by yielding of these inter-molecular

junction points, thus avoiding severe rupture of the network segments.

Furthermore, these transient junction points have the potential to reform if the

material is returned to a state of lower stress, allowing the network to regain its

strength.

Thus as an alternate approach to disrupting the junction point interactions

through chemical means, we can also explore the possibility of breaking these

bonds through mechanical methods, i.e. through the application of large stresses

and strains. We should expect a decrease in modulus as the applied strain is

increased because the tensile force carried by individual network segments will

also correspondingly increase, thus leading to a greater probability of breakage

[1821. This phenomenon has already been observed in gluten gels as the strain-

softening presented by Uthayakumaran et al [107], and we wish to be able to

model such observations in the context of the change in microstructure described

above.

But up to this point, we have only presented data on the linear viscoelastic

response of the gluten gel, the strain amplitude of the oscillation was largest for

the data at the lowest frequency o) = 0.003 s-, yo = 0.125, and was still well

within the linear regime: the linear viscoelastic moduli are independent of strain

amplitude and the corresponding Lissajous figures [183, 184] are found to be

elliptical for all frequencies.

Under these linear viscoelastic conditions, the output signal (strain in this case) is

sinusoidal; the two dynamic moduli G' and G" are clearly defined as the in-phase

and out-of-phase component with respect to the input signal. Unfortunately, for

high molecular weight polymeric materials, this simple way of decomposing the

data is insufficient as the strain is increased because the output signal deviates

from a purely sinusoidal form [108, 110]. From another point of view, measuring

this deviation can be thought of as a technique to highlight the distinguishing

features of a given material, especially if one has the means to quantitatively

describe it. The modeling and quantifying of these non-linear features will be the

subject of the following sections.
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6.5. Non-linear deformation of gluten gel

In this section, we first describe and quantify the features exhibited by a gluten

gel under large amplitude oscillatory shear (LAOS). Next we construct a

constitutive model based on the network structure of the gel and demonstrate

how this formulation is able to predict a range of non-linear rheological

phenomena observed in gluten gels.

Large amplitude oscillations provide a number of advantages. First of all, since

the amplitude of oscillation can be gradually increased, we can probe

deformation ranges close to the point of viscometric instabilities (e.g. the ejection

of samples from the gap at large strains). The measurements are taken under

quasi-steady state (the oscillations are continued till any initial transient response

has decayed and the shape of the Lissajous curves remain time invariant),

therefore the accuracy and repeatability are greatly improved when compared

against transient start-up tests. Also, since the tests are performed on

conventional rotational rheometers, the experimental protocols are simpler and

more convenient compared to non-linear tests involving large extensional

deformations such as filament stretching or wind-up tests [126].

Large Amplitude Oscillatory Shear

In contrast to linear viscoelastic experiments, for large amplitude oscillations, the

material parameters are formally treated as functions of the oscillation frequency

and strain amplitude rather than just frequency alone. The most common

method to express this idea is through the use of Fourier decomposition [176] in

which the departure from linear (sinusoidal) response is contained in the higher

Fourier harmonics:

N

=G* (t;w,yo) = G', (c,yo)sin(nwt) + G"1 (w,yo)cos(nwt) (6.12)
70 n=1

In the linear viscoelastic domain (y. -> 0), we require the contribution from these

higher harmonics to tend to zero such that the simple sinusoidal response is

recovered.
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> G* (t;yj ) = G'1 (w)sinct + G", (w)Coscot (6.13)

In this framework, each experiment can be thought of as the material response at

a particular point in the two-dimensional parameter space with frequency 0) on

one axis and strain amplitude yo on the other. This is often referred to as the the

Pipkin space of an experiment matrix [185]. Ewoldt et al. [1091 described a

systematic process to analyse behavior in this Pipkin space, and we will adopt

this framework here.

The shapes of these Lissajous figures for a range of strain amplitudes

(0.02 < yo <6.0) at (o = 1.0 s-lare plotted in Figure 64. At small strains (r, <1), the

Lissajous figures are essentially elliptical and are consistent with the linear

viscoelastic regime described by equation (5.12) through (6.11). The shapes of the

ellipses and the moduli are only a function of frequency and are independent of

strain amplitude. Equation (6.13) can be rewritten to eliminate the time

dependence:

a2 - 207G'+y2(G'2+G"2) G" 2 y0 (6.14)

As the strain amplitude is increased, the response and shape deviate significantly

from this simple behavior. A number of visually distinguished features can be

observed: Firstly a gradual softening indicated by the rotation of the major axis

towards the x-axis. Secondly, a distinct stiffening indicated by the "upturn" of

the shear stress is observed at large strains. The magnitude of the enclosed area

also increases with increasing frequency.
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It is evident that this wealth of non-linear features cannot be fully captured by

simply reporting the dynamic moduli G' and G" familiar from linear

viscoelasticity. To illustrate this, we plot three different measures of the elastic

moduli as a function of strain in Figure 65.

The parameters G'and G3' are the first and third in-phase (real) Fourier

coefficient of the output signal (equation (6.12)). The first coefficient G1 '(co) is the

typical method of calculating storage moduli for rheometer software. For strain

sweep experiments, frequently only the values G1' and G1 " are reported, this is

often justified by the fact that the higher harmonics are small (i.e. G3 'is less than

12% in this case) [19, 186]. But simply inspecting these linear viscoelastic material

functions will not reveal the dramatic changes observed in the Lissajous curves

of Figure 64.

181



1000

-

0.0

0.6

0.4

0.2

0.0

-0.2
0.0

(b)
-e- S

-- G'31G'l

0.1 1 10

9-

/

/

- ,..,,,, I .... i..ii..i I

0.1 1II 10

Figure 65 Dynamic moduli of gluten gel undergoing strain-sweep (ARES
rheometer, controlled strain mode) at o = 1.0 s 1 . G1 ' and G3 ' are the first and

third in-phase Fourier coefficient of the output signal, G'is typically quoted as

the storage modulus. GM'and GL' are the small and large strain modulus
respectively. S is the stiffening ratio defined in equation (6.19).

Instead, we use the definitions proposed by Ewoldt et al [110] as a simple yet

practical method of quantifying these features through the use of some

complimentary definitions of elastic moduli: G' is the small strain dynamic

modulus, it is defined as the slope of the Lissajous curve as it crosses through

zero strain.
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G's = -- (6.15)
ay , o

Similarly, GL'is the large strain modulus and is defined as the secant or slope of

the line connecting the origin to the point at maximum strain.

G'L = - (6.16)
70

In the linear viscoelastic regime, we show that G', Gm' and GL' are all

mathematically equivalent measures of the dynamic modulus by substituting

these definitions into equation (6.14). For G'L we calculate the stress at the

maximum strain aUm:

a2 - 2amyOG'+ y(G2+G2 =G2 y2

max = YOG' (6.17)

GL' = "mx =G'
70

And similarly for G'M, we calculate the rate of change of the stress at Y=0.

[a 2 - 2OyG'+ y2(G'2+G"2 ) =G"2y2]I

ar 0
2- -a2G'=0 (6.18)

G'= =G'

As the strain amplitude is increased, Gm' does not remain constant, instead we

see a gradual decrease that corresponds to the observed softening or clockwise

rotation of the ellipse. The absolute value of GL' also decreases, however, this

decrease is less "severe" compared to that of Gm'. These features can be

interpreted in conjunction as the stiffening at large strains observed in the
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Lissajous figures and can be unambiguously parameterized by defining the ratio

between these two moduli.

S= GL"-GM (6.19)
GM '

The ratio S may be referred to as the stiffening ratio [110]. For an ideal linear

viscoelastic system S = 0. A positive stiffening ratio implies stiffening of the

viscoelastic network at large strains as is observed in the Lissajous plots.

Alternatively, we can visualize the elastic component by considering the method

of decomposition described by Cho et al [108]. This method utilizes symmetry to

define an elastic and viscous component that are purely odd functions of strain

and strain rate respectively:

a = a'+ al" (6.20)

in which a' is the elastic component calculated through the following

expression:

a = 7 (6.21)
2

where y = yo sin wt and = yow coswt . The normalized elastic components are

plotted in Figure 66.
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Figure 66 Normalized elastic stress of the Lissajous curves for yo= 0.03, 0.1, 0.3,

1.0, 3.0, 6.0 ato = 1.0 s-1 and T = 220 C.

The normalized stress is calculated by dividing the stress by the "zero strain"

modulus G" = G'1 (yo -*0) and strain amplitude yo, the value is calculated from

small strain experiments and is found to be 1400 Pa for this gluten gel. The

clockwise rotation and non-linear stiffening of the elastic stress as the strain

amplitude is increased are both clearly demonstrated through this technique.

To summarize, the rheological fingerprint [110] of the gluten gel in this Pipkin

space is illustrated in Figure 67. Each Lissajous curve represents the stress strain

response over a single oscillation cycle after the initial transient response has

decayed and reached a quasi-steady state, or in other words, the shapes of the

curves is time invariant for successive cycles. Typically, this requires a minimum

of 4 cycles. Presenting the data in this manner gives a qualitative overview of the

salient features as the material response changes from the linear to non-linear

regime over the range of strain amplitude and oscillation frequency.
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Figure 67. Rheological fingerprint of a gluten gel in Large Amplitude Oscillation
Shear Flow. The shapes and maximum stress amplitude are presented over the
Pipkin space 0.10 <co <10 s-, 0.10 < yo <6.00. In each case, the data represents
the sixth cycle of the oscillation and there are at least 80 data points in each cycle.
The relative error 4 (defined in equation (6.33)) is given on the top right of each
figure, while the maximum stress is plotted on the bottom left. Solid lines
represent the predictions from the FENE network model of equation (6.24).

6.6. Network Model

We have discussed the non-linear features exhibited by a well-mixed gluten-

water system under oscillatory shear qualitatively and introduced quantitative

measures that highlight their physical significance. In the next part of this paper,
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we consider how such features can arise from the microstructural behavior of the

gluten gel. In terms of constitutive modeling, we will choose a level of

complexity that is sufficient to explain the observed features, but yet simple

enough so that we are not overwhelmed by a large number of material

parameters and equations.

In our previous work [174] and in section 6.4, we have shown that the rheology

of gluten can be well represented by an elastic network response, therefore we

begin by modeling the gluten gel as a transient network of interacting filaments.

The basic concepts underlying such network theories are succinctly outlined in

Bird et al [187]. The gel is idealized as an affinely deforming network and we

refer to the filaments spanning junction points as elastic segments. These

segments are assumed to have a distribution of end-to-end vectors Qk.

The total stress tensor Ck resulting from the distribution of chain stretch and

orientation can be written as:

rk = nkHf (Qk)(QkQk) (6.22)

Where (QkQk) is the ensemble average of the second order tensor QkQk, nk is the

number density of segments in the network, H is the Hookean spring constant of

an elastic segment and f(Qk) represents the non-linearity of the elastic restoring

force as the stretch of the segment is increased. The transient nature of the

network is reflected in a continuous dissociation of network junctions

characterized by a rate of destruction -' (Qk,t), and a rebirth of junctions that

are in the equilibrium state at a constant rate L. Hence the evolution equation of

the second order tensor (QkQk can be written in the following way:

(Qk0k)(1) = LkQ2 (QkQk) (6.23)
'4(Qk)

Equations (6.22) and (6.23) can be expressed in terms of the dimensionless

microstructural tensor Ak:
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irk =Gk[f (Ak)Ak]

Ak() LkI A ) (6.24)
A~~ =LA-

Where Ak =QQ kQ2,,q and Gk= nHQ .

To capture the stiffening effect, we consider a commonly used non-linear spring

law of the FENE-P form:

f(Ak ) (6.25)
k -Tr(Ak)/b

where Tr(Ak) =Ak11 +Ak 22 + Ak33 is the trace operator and b is the FENE

parameter that characterizes the limit of extensibility of a polymer strand. The

functional form of equation (6.25) is illustrated in Figure 68 (b).

Next we turn our attention to the term describing the rate of destruction A;'. For

a viscoelastic material composed of transient network at equilibrium, by

definition, the rate of creation of network junctions has to be exactly balanced by

the rate of destruction. However, under increased deformation, as individual

filaments become increasingly stretched, the probability of them breaking off

from the neighboring strands increases and thus the corresponding rate of

destruction should also increase. In effect, the average "magnitude" of (QkQk) is

reduced for increasing oscillation amplitudes, leading to a softening that is

manifested in the Lissajous figures as an apparent clockwise rotation of the major

axis. We model this effect by assuming an empirical first order network

destruction rate as a function of the magnitude of microstructural stretch Ak:

A; =k (1+ C [Tr(Ak)-3]) (6.26)

where C, is a constant to be determined, it characterizes this increased rate of

network breakage. A,, is the linear viscoelastic the relaxation time, i.e.
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characteristic structural relaxation time under infinitesimal microstructural

deformation (Tr(Ak) -> 3).

Furthermore, we require the rate of network destruction to become increasingly

rapid as the tension in the network filaments diverges near the finite extensibility

limit (in that Tr (Ak) - b). Once more, we express this as a FENE like term:

A,1 (6.27)
1-Tr(Ak )/b

We combine equations (6.26) and (6.27) to write a non-linear rate of network

destruction that captures these two physical ideas:

1+Cl(Tr( Ak)-)
)-1 (A )=1-11C, (T Ak)3 (6.28)kO 1-Tr(Ak )/b

The corresponding rate of creation required to maintain steady state at

equilibrium conditions (A,,q = I) is then:

Lk =27 1,- =-2C (6.29)
Lk ='O,0(131b) k, eq (.9

The deviatoric stress tensor ak can then be written as:

ak= Irk- PI

= I - ,q (6.30)

= G(f(Ak)Ak - feq

where Gfq = G(1-3/b) ' is the equilibrium isotropic pressure.

Finally, we recall that the linear viscoelastic network response of the gluten gel

can be represented as a summation of individual modes such that:
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a-= G(t - t')? dt'

0 m(6.31)

= G ,, , (t - t')' ?dt'+ fJGmRt - t')? dt'
k 0 m 0

Various techniques towards obtaining the linear viscoelastic parameters that

characterize these modes were outlined by Ng and McKinley [174]. Here, we

extend the idea and represent the non-linear response as a series of non-linear

network modes like equation (6.30) such that:

K

O-= Y -k (6.32)
k

In this form, the network model will give linear viscoelastic response that is

identical to equation (5.12) through (6.11) and yet still allow for the non-linear

features to become apparent at large strains.

We summarize the construction of this model in Figure 68. The linear viscoelastic

parameters of the model S =1400 Pa s", n = 0.175, GR = 803 Pa and AR = 0.05 s are

obtained by fitting equations (5.12) through (6.11) to the small amplitude

oscillatory shear (SAOS) data or other equivalent linear viscoelastic

measurements. The gel parameters S and n are then combined with ) (an

arbitrarily chosen maximum time scale) and K (total number of gel modes to

span the relevant time scale) to generate a series of discrete modal relaxation

times Ak= )k-" with zeroth order modulus Go = S/(nr(n),R"). This conversion

is illustrated in Figure 68 (a). This series of gel modes

(G (t)= + G, exp(-t/A,)) together with the Rouse modes
2 ( k=1

M
(GRouse (t = GR Yexp(_tM2/AR)) give the entire spectrum of discrete modes.

M=1
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The non-linear model parameters C, = 3.0 and b = 90 are obtained by a manual

fitting process to the large amplitude oscillatory shear (LAOS) data. For the sake

of simplicity, the same values for C, and b are used for all modes. The respective

contributions from each of these non-linear parameters are illustrated in Figure

68 (c). This value of b is within the range of typical reported values of finite

extensibility (10 < b < 1000) [187] and corresponds to a stretching of the network

segment through approximately 10 times its original length.

We now return to the Lissajous curves presented in Figure 64 and Figure 67, we

compare them with the predictions of the FENE network model that are also

plotted on the same figure. Overall, the network model is able to capture both

the rotation and stiffening of the measured data with reasonable quantitative

agreement. An estimate of the relative R.M.S. error is also given on the plot. The

relative error is calculated from N data points through the following definition:

N x FENE(n) - ad.. (n)2
n=1 a n

adt=( (6.33)
N

The deviations are most apparent at intermediate to large strains (1.0 < yo). This

presumably is due to an over-simplification of the softening function used in

equation (6.26). Further improvements to this function are discussed in the

section 6.7.

Frequency Dependence of Lissajous Figures

Returning once more to the Lissajous fingerprint of Figure 67, we see that the

qualitative effect of increasing strains are similar at all frequencies. As already

noted in the figure and equation (6.14), at small strains y, <1, the Lissajous

curves are elliptical and the resulting frequency response is well predicted by the

integral and differential forms of critical gel and Rouse modes presented in
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section 6.4 or by the linear viscoelastic limit of the multi-mode FENE network

model.

Instead, in Figure 69, we focus on the comparison between the network

predictions and the measured Lissajous curves of varying frequencies at large

strains. The model gives excellent qualitative agreement, the changes in shape

and enclosed area of the Lissajous curves are captured by the network model

while other salient features such as the clockwise rotation and local strain

hardening are also present in the predicted response. Further improvements to

the quantitative accuracy of the model are discussed briefly in the conclusion

section.
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Figure 69 Lissajous curves of a gluten gel performed at large amplitude for a
range of frequency o = 0.1, 1,0 and 10 s-1 at yo = 6. The FENE network model
correctly predicts the trends and magnitude of stress over the frequency range.
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Transient Response

The progressive change in network structure as the network junctions are broken

and reformed following the inception of deformation can be considered as a form

of thixotropy. The transient behavior arising from these changes is conceptually

different from linear viscoelastic transients that involve the stress response to

infinitesimal changes to microstructure.

We illustrate these differences by considering a situation in which the amplitude

of oscillation is suddenly changed while we monitor the transient changes to the

oscillatory stress amplitude. This is realized experimentally by changing the

amplitude of oscillation from yo = 0.10 to y, = 3.0, then back to yo = 0.10 again.

The transient stress response is plotted in Figure 70 a and b.

In Figure 70 c, we plot the transient modulus defined as:

GAt =

yft= 3.0 for 106.8 < t <169.6 s (6.34)

= 0.1 otherwise

The experimental data clearly shows a pronounced transient during the first five

cycles after the increase in oscillation amplitude. During this time the material is

progressively softened as indicated by a decrease of the transient modulus by as

much as ~40% (from 1300 Pa to 800 Pa). Quasi-linear or linear viscoelastic

constitutive models of the form:

S= fG(t - t')yo) cos()t dt' (6.35)
0

will in fact predict an increasing stress amplitude that converges rapidly to the

linear viscoelastic modulus with a response of the form -1- e . This is plotted

in Figure 70 as a dotted line.
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Instead, this transient softening or thixotropy is almost perfectly captured by the

inclusion of finite-extensibility and strain-dependent network destruction terms

as shown by the solid line in Figure 70. These lines represent the response of the

constitutive model given by equations (6.24) to (6.32). We emphasize that there

are no adjustable parameters here; S and n are determined from linear

viscoelastic experiments, the corresponding discrete spectrum for the linear

response is given by equation (6.10). The nonlinear response is given by

integrating equations (6.24) to (6.32) with b = 90, and C1 = 3.0 (determined by

fitting to the data in Figure 64). Furthermore, the predicted complete recovery to

the small amplitude modulus is also observed experimentally. This can be

understood in context of the experiments conducted by "breaking" the network

structure through dilution with Urea and the subsequent reconstitution by

washing out the Urea with water. In large amplitude oscillations, the hydrogen

bonds at network junctions are reversibly broken through application of large

strains on the network. Thus upon cessation of large deformations, the reversible

nature of hydrogen bonding events means that the material is able to reform its

network structure. Both mechanical and chemical treatment have negligible

effect on the covalent interactions within the filaments thus allowing complete

recovery of the network modulus when the "interruptions" are removed. This

complete recovery contrasts with the incomplete recovery of wheat flour doughs

in which additional bonding interactions between chains and starch particles

must be considered. These latter interactions can be described by damage

functions [127] in which the network changes are permanent and irreversible.
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Figure 70 Transient behavior of gluten gel. a). Lissajous figures depicting
material response when the strain amplitude of oscillation is increased from

y0 = 0 .10 to yo = 3 .0, then back to yo =0.10 again at a fixed frequency of 0) =
1.0 s-1. b). Stress response against time illustrating the transient nature of the
network. The FENE network correctly predicts the transient stress growth and
complete recovery of the gluten gel.
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Comparison with other non-linear deformations

So far we have focused solely on the mechanical response under large amplitude

oscillatory deformations, next we address briefly the rheological implications of

the finitely extensible network model in the start up of transient deformations.
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Figure 71 Start-up of steady shear flow at ?0 = 1.0 s-1. Power-law growth in shear

stress and normal stress difference is well predicted by the FENE network model
up to y* = 5, after which the non-linearity of the model overpredicts the stress
over-shoot. Improvements to the predictions can be made by using the modified
network model. However, accurate constitutive modeling at large strains is
difficult because the sample deformation deviates substantially from viscometric
flow at y - 9.

We first compare the model predictions to the transient growth in the shear

stress during the start up of steady shear. The model and data show good

agreement in the power-law regime y* 5 in which:

a ~ t"

N1+ ~ t2n
(6.36)
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Deviations from power law growth and time-strain factorizablity discussed in

equation (6.5) begin to be discernible when the strain-stiffening effect becomes

significant. In fact the stress overshoot is grossly over predicted by the FENE

network model. It is possible to capture the apparent stress overshoot

empirically by using an extremely non-linear elastic term [104] that bounds the

stress at very large strains.

Here we will discuss the causes of this apparent overshoot. Firstly, as discussed

in our previous work [174], video imaging shows that the sample begins to

undergo an instability shortly after the onset of strain-stiffening (7* - 5). This

instability ultimately leads to the sample being ejected from the gap. The

deformation in the gluten gel is no longer viscometric from the point of

instability onwards and thus we do not expect the constitutive equation to give

accurate predictions unless the full dynamic equations are solved.

Secondly, we attribute part of this discrepancy once again to the over-simplistic

evolution equation. The proposed form of equation (6.27) relates to the fact that

the probability for the breaking of a junction point should increase as the tension

in the stretched filament is increased. Upon further consideration, though

reasonable, there is no reason to suppose the rate of breakage should only

diverge when the chains reach the finite extensible limit (i.e. Tr (Ak) -> b), i.e. the

ultimate tensile strength of a junction point can be a finite value or in other

words, the probability of survival of a junction point can tend to zero when a

critical but finite value of tension is sustained by a elastic segment. Therefore we

consider improvements to the model by allowing the junctions to be completely

destroyed slightly before the FENE limit. The modified rate of destruction can

then be written as:

1+C (Tr(Ak )-3)-1( A,=\-*o(6.37)
' 1-Tr(Ak)/(b- )

The resulting stress response of this modified network model is essentially the

same as equation (6.27) through (6.32), but the stress overshoots are slightly
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tempered. In figure Figure 71 we show that the predicted magnitude of the

overshoot is much more reasonable for the chosen value of 3= 5.

Finally, the use of FENE-P type models with closure approximations are known

to result in over-prediction of transient stress growth [188]. The reason being that

the Peterlin closure approximation cannot accurately capture the statistical

distribution of segment lengths at intermediate deformations near the point of

finite extensibility and instead predicts a fraction of the filaments to be deformed

beyond the maximum allowable length. More accurate simulations utilizing

Brownian dynamics will reveal a much weaker overshoot behavior.

The qualitative behavior is similar for start-up of uni-axial extension flow as

depicted in Figure 72. The data are collected on a wind-up drum type rheometer

that has been discussed in detail in a previous publication [174]. The FENE

network over-predicts the magnitude of the stress difference that occurs just

before the sample ruptures, while the modified network model gives more

reasonable stress growth functions. The fact that the point of rupture occurs

extremely close to the finite extensibility plateau should not be surprising, since

the mass rupturing of network junctions dramatically reduces the rate of stress

growth in the system and can lead to tearing or necking as implied in the

Considere criterion [126, 189-191].

Significantly, the extensibility of dough is often quoted as a measure of its quality

[6, 8, 9, 27, 43, 147, 173], and this is the first piece of direct evidence that shows

how the extensibility (defined as the maximum strain achieved before rupture) of

a dough can be linked to molecular phenomena, and and be predicted or at least

estimated by performing shear experiments at large amplitude oscillations: a

reasonable estimate of the extensibility of a dough like material can be inferred if

the linear viscoelastic relaxation function G(t - t') and finite extensibility

parameter b are known. The magnitude of the stress may be over predicted (as

shown in Figure 71) without additional experiments but this does not affect the

critical strains.
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Figure 72 Transient extensional stress difference upon inception of uni-axial
elongation for deformation 0.03 < to< 3.0 s-1. The FENE network over predicts

the magnitude of stress, this can be remedied by including a modification term 8.
However, the strain and time to rupture corresponds closely to that predicted by
the finite extensibility limit determined from LAOS with b= 90 and 3 =5.

6.7. Conclusions

In this article, we investigated the mechanical properties of a gluten gel through

large amplitude oscillatory shear (LAOS). This experimental technique allowed

us to study the rheological response over a range of strain amplitudes yo and

frequencies a with good accuracy and repeatability up to the point of

viscometric instability without destroying the sample. From the data, we are able

to generate a rheological fingerprint of the gluten gel that in turn forms the basis

for devising a constitutive equation.
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We have built upon the critical gel-like response documented in our earlier work

to construct this constitutive model that illustrates the origin of the non-linear

behavior in a gluten gel. The non-linearity of the constitutive equation is

encapsulated in two simple functions, namely a FENE spring law that captures

the strain-stiffening and a non-linear network destruction term that reflects the

observed softening behavior at intermediate strains. We have demonstrated how

using a relatively low level of complexity in the constitutive model is sufficient to

capture the important non-linear features observed in both shear and extension,

while further improvements to the quantitative agreement between experiment

and model can be made by fine tuning these non-linear functions and will be the

subject of future work. We briefly describe some of the possible modifications

here.

Perhaps most importantly, we have based our model on the multi-mode

approach described in equation (6.8). Because of the frequency independence of

the Lissajous fingerprint in Figure 67, we have assumed all the modes to have the

same non-linear behavior (i.e. same b, 8 and C1) in order to minimize the

number of adjustable model parameters. This allowed us to concentrate on the

essential features of these non-linearities and highlight their respective

relationships to physical material properties. We compared the model

predictions to experimental observations and showed that indeed using just four

linear (S, n, GR and R) and three non-linear (b, 8 and C1) viscoelastic

parameters are sufficient to capture the rheological behavior of this complex

cross-linked gel to a surprising degree of accuracy over a wide range of strains

yo and frequencies o). We could of course relax this assumption and allow each

of these modes (which represent network structures at different length scales) to

exhibit different non-linear behavior. To map out these effects thoroughly, a

detailed sweep of the Pipkin space shown in Figure 67 would be required to find

the corresponding modal parameters (bk, 8k and Clk).

We have also, perhaps naively, assumed an extremely simple form for describing

the non-linear softening (equation (6.28)). One can easily imagine more
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sophisticated functions to describe the complex energy landscape. For example,
we can increase the order of the polynomial such that:

- ~ -1 1+C,(Tr(A A-3]+C(Tr(A A -3]2 (6.38)

Alternatively, other functions such as exponential, hyperbolic or even functions

that include the rate of strain can be adopted. Rather than the empirical

approach, Evans and Ritchie [182] suggested a bond dissociation model with an

energy landscape that has a single energy barrier. The characteristic of this

barrier is determined by both the magnitude and rate of loading of the tensile

force in the elastic segments.

Finally, we will like to mention that more complex spring laws can be used to

better approximate the semi-flexible nature of the network segments [192]. A

possible candidate is the Worm-like chain law (WLC) that has been used with

reasonable success in describing bioipolymer gel networks [167]. Evans and

Ritchie [182] also investigated the force extension behavior of a WLC when it is

coupled with their non-linear network destruction equation; the resulting rate of

network dissociation is of an exponential form.

Currently, there exists no strong evidence to prefer one function over another

and this seemingly endless list of possible modifications merely illustrates the

flexibility of the transient network approach [193].

To conclude, we note the strong similarities between the gluten gel and other

bio-polymer networks in terms of the strain-stiffening observed and the ability to

regain the equilibrium strength even after severe deformations and softening

[137]. The latter feature also bears strong resemblance to the so called reversible

polymer networks that are held together by hydrogen bonding at the network

junctions [194]. These junctions can yield before the macromolecular strands are
irreversibly ruptured due to the application of external strain and are reformed
when the material is returned to its equilibrium state. This idea can be simply
demonstrated by the fact that if a gluten dough is cut into halves, the two halves
can be recombined by simply holding them together. An analogous method is to
disrupt the hydrogen bonds chemically with 8M urea solution; The gel can then
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be reconstituted by simply reintroducing water to wash out the Urea. Such

similarities suggest that the multiple mode finitely extensible network model

developed here can find applications in a much a wider context.
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6.8. Apendix - Measuring nonlinear rheological properties using

parallel plates geometry with large amplitude oscillatory shear

(LAOS)

Conceptually, rectilinear shear flow is most easily visualized. Velocity and its

gradient can be simply expressed in the Cartesian system. Unfortunately, the

presence of boundaries limits the range of strain accessible, costly linear drive

systems have to be used to motivate these deformations. Also the idealized

situation for which material functions are truly independent of position can

never be attained; a boundary layer has to be present at the end interfaces.

In view of these limits, most commercially available rheometers utilize rotational

drive systems and axi-symmetric geometries. The Couette cell and the cone-plate

geometries are examples of systems of this kind. In a Couette cell, a cylindrical

bob is driven within a concentric cup, the local flow between the bob and the cup

closely approximates that of a rectilinear shear flow provided the gap between

the two fixtures is small compared to the overall radius. In a cone-plate

geometry, the cone is aligned so that its axis of symmetry is perpendicular to the

plane of a flat plate, and the vertex of the cone lies on the plane. The local

shearing motion generated between the cone and the plate once again closely

approximates that of a rectilinear shear flow and can be considered as uniform

within the swept volume along the axis of symmetry between the cone and the

plate.

The recent interest in complex materials such as biopolymer gels, yield stress and

shear thickening materials has led to difficulties when testing samples with high

bulk viscosities; slip is frequently observed at the sample geometry interface. Slip

can be eliminated by using roughened surfaces that increase the traction between

the sample and the geometries. The most common and convenient method of

introducing roughened surfaces is by simply applying a layer of adhesive backed

sandpaper onto the surfaces. Cleaning is minimized since used samples can be
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simply peeled off along with the adhesive backed sandpaper. Care must be taken

when applying the sandpaper to ensure that it lies flat on the surface of the

geometries with no "wrinkles". This turns out to be extremely difficult for both

the Couette cell and the cone-plate geometries; it is difficult to coax the stiff

sandpaper to conform to the radius of curvature of the said geometries. A very

precise shape of sandpaper also has to be pre-cut so that the edges of the sand

paper closes upon itself without introducing too much irregularity.

Under these circumstances, the parallel-plates geometry becomes far more

attractive. Simple circular sheets of sandpaper can be simply attached to the flat

surfaces of the parallel-plates geometry. But this convenience comes at a cost: the

shear flow between the parallel plates is not homogeneous. In a well-made pair

of parallel plates, the gap h between the two plates is constant. From the axial-

symmetry of the geometry, we find that the velocity V of the rotating plate

increases linearly with the distance r from the axis of symmetry. Thus the shear

rate at a distance r can be written as:

V Ur
(6.39)

h h

We can see from the expression that it also increases linearly with r.

Though the flow is inhomogeneous, the strain field is still largely independent of

material properties provided the gap is small compared to the radius of the

plates and inertial effects are negligible. It is convention to cite the shear rate at

the edge of the plate (r = R) as the characteristic rate of the geometry, i.e.:

E R (6.40)
h

The corresponding shear stress U-R is then calculated by the rheometer from the

measured torque F by assuming a linear relation between shear stress and r:
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F= 2rf a-(r)r 2 dr
0

R 3
IF= 21r a R

= R (6.41)

r= TCURR3
2

2r
-R = cR3

The assumption of linear relationship is of course valid for linear viscoelastic

systems; stress is linearly proportional to strain and its time derivatives. In this

short article, we discuss the limits for calculating this characteristic "edge" stress

for material that exhibit nonlinear viscoelastic behavior.

Example of nonlinear material behavior and the calculated edge shear stress

To illustrate the shortfalls of the above-mentioned linearized analysis, we take a

FENE-P model that exhibits cyclic weakening and strong stiffening at finite

strains. The model can be succinctly expressed by a differential equation that

describes the evolution of the microstructure:

A L [f(TrA)A- (6.42)

where the function f = 1/(1 - TrA/b), fq = 1/(1 - 3/b) and the finite extensibility

parameter b describe the nonlinearity of the system. A can be thought of as a

finger strain tensor of the microstructure and X is a characteristic relaxation

time.

A nonlinear spring law is then used to convert the state of microstructure

deformation to a resulting state of stress:

a = G(f(TrA)A - feq) (6.43)

The Lissajous figures calculated for a FENE model (with A - 5.0 s, G = 1200 and

b = 2) under dynamic oscillatory shear at co = 1.0 s-1 after 6 cycles are plotted in
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Figure 73. The model, shows typical viscoelastic behavior at small strains. At

intermediate strains, the Lissajous figures exhibit mild inter-cycle softening

(overall rotation of major axis of Lissajous curves). At large strain amplitude due

to the relatively large Deborah number (De = co= 5.0), it shows both dramatic

intra-cycle stiffening as indicated by the distortion of the Lissajous curves and

inter-cyclic stiffening (maximum stress increases more rapid than linearly with

strain).

Lissajous curves for both the true edge shear stress and the simulated rheometer

output stress (equation (6.41) for parallel-plate geometry) are plotted in the

figure for comparison. In the intermediate strain softening regime, UR slightly

overpredicts the true edge stress UE. While at large strains, the true stress and

degree of stiffening can be grossly underpredicted. Not unexpectedly, the

largest differences are for instances in which material functions are strongly

nonlinear i.e. in the region of dramatic intra-cyclic stiffening as the finite

extensibility limit is approached.
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Figure 73 Lissajous figures plotted for idealized homogeneous stress and strain

for FENE-P model under a range of strain amplitude as red lines. Also plotted as

black lines are the simulated Lissajous figures of rheometer output stress for the

same material under equivalent edge shear strain.
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Possible corrections

Despite the large potential errors arising from using equation (6.41), currently

there exists no general method for correction. However, there does exist a

correction commonly used for calculating true steady state edge viscosities [60],

and Parker et al have also introduced a correction for dynamic moduli in axial-

Couette geometries. In this section we introduce some general methods for

calculating the true edge stress oE in parallel-plates geometry under oscillatory

shear. The method can be generalized to arbitrary controlled strain deformations;

oscillatory and steady shear are special cases of the general correction.

Method of plate size variation

A simple correction is to consider the difference between experiments performed

on parallel plates of two different sizes (R1 and R2 ). In the two experiments (case

1 and case 2), the oscillation frequency is kept constant, but the oscillation

amplitude is modified such that for r < R1, the deformation and thus the stresses

are identical i.e. both experiments are performed at the same angular

displacement amplitude. Provided the edge effects are negligible, the difference

in torque between the two measurements must be the contribution from the

annular material of the larger plate between R1 < R R2 . If the difference in plate

sizes are small (R2 - R=3), the edge shear stress can then be approximated by:

T 2 - 1= 2R 3C2,E

I _ 1F1 (6.44)
2,E 2nR 3

6

Method of strain amplitude variation

Perhaps a more elegant work around is to consider the differences between two

separate experiments performed at the same frequency (case 1 and case 2) for

which the oscillation amplitude is related by 72 = ky and ? 2 = k?, (recall that

209



even though the deformation is inhomogeneous, the velocity field can still be

easily calculated and is independent of the material functions). The torque

measured in the quasi-steady oscillation cycles of the two cases can be written as:

R

Fi=2;f aY(r)r2dr

R (6.45)
F 2 = 2;rf a2(r)r2dr

0

We define a radius R' as the distance from the axis of symmetry for which the

strain and strain rate of case 2 is identical to the edge strain and strain rate of

case 1. i.e. Y2 (R') = y (R) and f2(R')= f (R). The condition for this to be satisfied

is kR'= R.

The torque measured in case 2 can be decomposed into two parts, one resulting

from the contribution of material that has coordinates r > R' and a second part

that comes from material within r > R':

R R

r2= 2 a2(rfr2dr+'fa 2 (r)r2dr (6.46)
R' 0

The material in the second part experience stress that varies from zero at r = 0 to

62 = a2(R') = a, (R) at r = R'. Upon further inspection, this portion of material

can be considered to be dynamically similar to the stress state in case 1, or in

other words, deformations of the same strain history within r > R' can be

mapped onto case 1:

a 2(r)= a,(kr) (6.47)

Thus rewriting the expression for the torque in case 2:

R R

r 2 =2zf a 2 (r)r2dr+2r fa,(kr)r2dr letkr=r'
0 (6.48)R 2 r')Rr2

IF2 = 2;rf a, (r)r dr + k 3 fa,(r) rdr'
R' 0
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It is now clear the second integral can be expressed in terms of the torque in

case 1:

R 2 I

I2 = 27 a2(r)r dr + (6.49)

For two cases with strain amplitude that are sufficiently similar, we can

substitute k =1+8, where 8 is the small fractional difference between the two

strain rates. The first integral can then be rewritten in terms of the edge stress of

case 2:

(2 = 2R3a2,E 3 (6.50)

This expression can be linearized and rearranged to give the edge shear stress in

terms of the torque difference and 8:

U = 1R3 [I]2 -F(1 -38)] (6.51)

To check the validity of this analysis, we consider a linear viscoelastic material,

for which torque is proportional to the applied strain amplitude,

i.e. F 2 = kId 1 = (1 +8). The expression yields a result that is consistent with

equation (6.41):

TI [1+8-1+381
E 2 R3 8 (6.52)

21F

7CR3

Finally, we consider equation (6.51) for vanishingly small changes to the strain

amplitude (i.e. 8 -* 0):
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1 [F+AT-v(1-38)1
UE rR S J (6.53)

IF Ar/F +38
2CR3 _ 3]

We recall that Ayo = 8y0 . Subsituting this into equation (6.53) we find:

S= IF 3+E =2R 3  1

F [3+ (6.54)
27rR3 Ayo/y.

I F y 1 F [3F anF
= 3+Z- or 3+

2;rR3 I IFa 0 _ 27rR 3 [ lnyo _

It is sometimes more convenient to write equation (6.54) in terms of the

rheometer output stress UR calculated from equation (6.41):

C-E Lo a R (6.55)
4 a-R a7

This result agrees with the calculations performed on the model FENE-P

simulation in which inter-cyclic stiffening results in aR underpredicting the true

edge stress aE and vice-versa for the case of inter-cyclic weakening.

We demonstrate the ideas discussed in this article by considering some large

amplitude oscillatory shear (LAOS) experiments performed on gluten gels in the

nonlinear regime. Results from three sets of data collected at yo = 4.0, 5.0, 6.0 and

o) = 1.0 s- are illustrated in Figure 74. The nonlinearity is evident from the wave

shapes of the cycle, a linear viscoelastic material will exhibit sinusoidal response

when excited by a sinusoidal strain input. We apply a centered difference

method to calculate the correction factor in equation (6.55). Note that the

correction factor is a function of time, i.e. it is different during different parts of

the cycle.
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Figure 74 Rheometer calculated stress as a function of time for gluten gels
deformed under a range of oscillatory strain amplitudes yo = 4.0, 5.0, 6.0
ato) = 1.0 s-1. The data are collected at quasi-steady state, i.e. the cycles remain
invariant in time. Also plotted is the rate of change of calculated stress w.r.t.
strain amplitude as a function of time calculated from the centered difference of
the three sets of data.

In Figure 75, we compare the rheometer output stress to the true corrected edge

stress. Over most of the cycle, UR is slightly greater than aE due to the overall

softening.
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Figure 75 Quasi-steady state Lissajous curves of large amplitude oscillatory shear
experiments performed on gluten gels at yo = 5.0 and o = 1.0 s1. The rheometer
output stress is plotted as open circles, while the true corrected stress is plotted
as a solid red line. The shapes of the curves are similar. The strain softening
(decrease in modulus for increasing strain) leads to rheometer calculated stress
that is slightly greater than the true corrected edge stress.

The calculation of this correction is not trivial since it is a function of the time.

However, for strongly elastic materials for which variation in loss angle is small,

a rough estimate for the overall fractional error ( incurred by using equation

(6.41) instead of (6.54) can be calculated by considering the change in dynamic

modulus G*:

1 aInG* (6.56)
4 alnyo

It must be stressed that this is only an overall estimate on the errors in the

magnitude of the stress, the shape of the Lissajous figures can be dramatically

altered for samples that show strong variation in loss angle
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Due to the weakly softening nature of the gluten gels in the range of tested

strains, the overall errors are small. For this particular set of experiments,

= -0.2 Using the rheometer output stress is a reasonable approximation to the

true behavior of the material. However for other strongly nonlinear materials

such as biopolymer gels comprising of semi-flexible filaments [167], the inter-

cyclic stiffening can be extremely large (1 - 2 orders of magnitude per decade

increase in strain) and it is extremely important to consider the correction factors

described here.

Finally, we note that the analysis can be generalized to arbitrary deformations for

which the edge strain on the parallel plate is specified by YE (t, V) such as start-

up of steady shear and step strain relaxation. The inclusion of t' in the function

denotes the strain history of the deformation. The strain field within the parallel

plate can then be written as y(t,t',r) = YE (t,t')r/R and the stress resulting from a

deformation of this strain history is then a(y(t,t'),r)= a(YE (t,t')r/R). Note that

the dependence in strain rates and other higher derivatives are included in the

history of the deformation. Without any loss of generality, we once again put

down the expression for the torque exerted by the sample between the parallel

plate:

R

F = 2zf a(y(t,t'),r)r2 dr
0 (6.57)

= 2Xj a yE Rr2dr

Analogous to the development for the special case of oscillatory shear flows, we

perform a change of variables to the integration k = YE r/R:

S= 2,R 3  a(k)k2 dk (6.58)
YE 0

The expression is then differentiated with respect to YE using the Leibniz

formula:
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-T a [2,R3 YE k2dk
ay, , f(k) k~

aYE E E 0

'T 3 )YE 2d,1 Y d
27R3F J-(k)k2dk+ -(kk2dkl (6.59)

0 E30YE

3 YE E
=21rR3 7-f a(k)k2dk+--a(YE)

_ E 0 YE

The last expression can be rearranged in terms of the edge shear stress

aE Ey (Y

WF 27rR 3  3 YEk 2
-r afk)k Ak+ -(yE

SYE E YE 0

_r 3 2,rR 3

E EEaYE YE YE ar(6.60)

Y__ F 1
YE 27R3 I 3&E
2rR [3- YEJ

YE ER T YE

and the corresponding equation for rheometer output stress:

-E= 4[3+ ] (6.61)
4 -R a'E

For the special case of calculating steady state viscosities where

a= u(Y(tt')) = a(t), the expression reduces to the well-known correction

function [601:

_ E ?EaF

E E 27rR 3
?E L F aE

= 3+
27rRE I an ?E_
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7. Highly Filled 'Glassy' Gels

7.1. Introduction

In the previous chapters, we explored the origins of the distinct rheological

behavior of flour-water-dough by first considering the mechanical properties of

the gluten gel alone. Through this simplified system, we showed that many of

the features exhibited by flour water dough, such as power-law rheology and

time-strain separability, stem from the rheology of the gluten macromolecules.

We then refined our model to capture additional nonlinear rheological features

such as that are exhibited by gluten gels.

In this chapter, we refocus our attention to more realistic systems by

reintroducing the presence of filler particles. Wheat-flour-water doughs can be

usefully considered as a highly filled gluten gel. The filler in this case consists of

starch particles which absorb water from the hydrated gluten matrix over time

leading to significant changes in their size and stiffness. Thus their rheological

response is typically extremely complex with the effects of thixotropy and

rheological aging convoluted into the measured data. As a result, most

constitutive models concerning these systems have been largely empirical; it is

difficult to associate individual elements within the constitutive equation to real

physical processes occurring in the material.

We bypass the difficulties involved when dealing with starch-filled systems by

first asking the question: what is the most pronounced effect of filling a gluten

gel with starch? We do this by substituting the starch particles with spherical,

inert, glass spheres of similar size (Potters Industries Speriglass A3000). The

visual similarity between a real flour-water dough and a glass filled gluten gel is

illustrated in Figure 76.
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Figure 76 Micrographs of (a) flour-water-dough (average starch granule size
~30 jim). (b) glass filled gluten gels (average glass bead size -50 gm).

Surprisingly, the relationship between filler content and rheology has scarcely

been investigated for gluten gels. Edwards et al [143] also used glass beads as a

replacement for starch particles. They illustrated the change in linear viscoelastic

properties of dough as an increasing portion of the starch volume is substituted

by an equivalent volume of glass beads filler. They showed a gradual weakening

of the dynamic moduli as the starch is replaced suggesting that protein-starch

bonding plays an important role in the rheology of the dough. They also altered

the surface property of the starch granules by coating it with bovine serum

albumin (BSA) which decreases the degree of adhesion of the fillers (both starch

and glass beads) and found a decrease in viscoelastic moduli measured in small

strain dynamic oscillations. However, the suggested explanation for the observed

rheology is incomplete. Edwards et al assumed that the surface adhesion

property of gluten on glass is weaker than on starch granules, this is inconsistent

with the fact that while starch granules can be easily washed out of a dough by

gently massaging it in running water, the same procedure will not wash out the

glass beads from a filled gluten gel; which in turn suggest the bonding between

glass and gluten gel is in fact much stronger than the starch-gluten interactions.

Uthayakumaran et al [107] performed a series of experiments to investigate the

small to large strain rheological properties of a gluten gel with a range of starch

content (0-100% gluten-starch weight ratio). They concluded the starch decreased
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the range of strain amplitude for which linear viscoelastic approximation is valid

for dough, but has a complex effect on the large strain rheology.

Overall, studies that involve starch are difficult to interpret, because of the

competing effects between the gluten gel and starch particles for the water

present in the system. Simply changing the amount of starch present can have a

complicated effect on the gluten gel. Therefore, the results from these studies are

often inconclusive.

On the other hand, the progressive increase in viscosity for a Newtonian matrix

fluid with particles suspended within has been a subject of study since the

beginning of the century. Other than simple mixture rules, Einstein' [196, 197]

was the first to calculate the increase in viscosity of a fluid comprising of a dilute

suspension of hard spherical particles. He considered the increase in rate of

viscous energy dissipation of the system due to the presence of the spheres and

concluded that the effective (or bulk) viscosity should increase with volume

fraction according to the following formula:

= Tatrix + (7.1)

where q., is the viscosity of the base matrix and 0 is the volume fraction of

particles..

Einstein has based his approach by first assuming the viscosity to have a

polynomial dependence on the volume fraction:

n= n (1+ B10+ B202+...) (7.2)

* Einstein's derivation was in fact rather complex. The current author is still

struggling with some of the ideas involved and takes solace in the fact that even

the brilliant scientist who laid down the laws of relativity and quantum physics

made an error in the initial publication and were corrected in a subsequent paper

195. Einstein, A., Correction to my paper: "A New Determination of Molecular

Dimension". Annalen der Physik, 1911. 34: p. 591..
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And there has been many subsequent efforts to calculate the higher order terms.

Batchelor [198] gave a solution that includes the effects of two-body interactions:

= l 1+ 5+6.22 (7.3)

The problem concerning the increase in modulus due to the presence of filler

particles in a viscoelastic medium is mathematically similar to that of the

increase in viscosity of a fluid. In an earlier paper [199], Batchelor also gives an

expression for the case in which a dispersion of identical hard spheres are

embedded in an elastic medium of shear modulus Gmedium:

G = Gmedim (1 + 2.50 + 5.202) (7.4)

Guth, Simha and Gold [200] also introduced terms that allow for interactions

between particles and found that up to moderate volume fractions ($ <0.30), the

following expression can be used to describe the increase in modulus:

G = Gmedi (1+ 2.5@ + 14.142) (7.5)

In theory, this type of formulation can be further extended by considering

interactions of increasing numbers of particles and calculating the higher order

coefficients. However, they are only valid for systems in the dilute or semi-dilute

regime. At higher concentrations, the rheology becomes strongly dominated by

the short-length scales between particles and an alternative approach such as that

suggested by Krieger and Dougherty [201] (equation (7.16)) is required.

Many of these theories are originally developed for the rubber industry in which

carbon black fillers are routinely added to reinforce the strength of the

crosslinked synthetic polybutadiene or natural rubber networks. Unfortunately,

the typically small carbon black particles (-30 nm) are colloidal in nature and

tend to aggregate to form complex fractal structures during the processing that

are difficult to model, let alone predict the changes in properties [200]. However,

the relatively large length scales of starch and glass particles and the high

modulus and viscosity of gluten means that colloidal interactions can probably
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be safely neglected in dough systems and glass-filled gluten gels, thus increasing

the range of validity of these models.

Now, to summarize the objectives of this chapter: We will investigate the

rheological properties of gluten gels with a range of filler volume fraction. We

use inert, spherical, glass beads as the filler to avoid the complex behavior

encountered when dealing with starch-filled systems. By understanding the

prominent rheological features of this hard inert filler, we hope to elucidate the

principal role of the starch particles by comparing the results with data obtained

on a real flour-water-dough.

7.2. Methods

Gluten dough preparation

Gluten dough was prepared by placing 10g of vital gluten (Arrowhead Mills - ~

12% moisture content) in a mixograph bowl with 14g of water (total dough

moisture content = 63% by weight ratio to gluten solids) and the appropriate

amount of glass beads to give the desired volume fraction. The mixture is then

stirred, stretched and folded through the action of the mixograph pins for 12

minutes [85].
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Figure 77 Glass beads with average diameter 50 pm.

The glass beads (~50 jim diameter Potters Industries Speriglass A3000) are

chosen to approximate starch particles (-30 gm diameter) in terms of size and

distribution. The resemblance to a flour-water-dough when viewed under a

microscope is striking (Figure 76).

Volume fraction measurement

To calculate the volume fraction, we have to know the density of the gluten

portion. We do this by first weighing a piece of gluten dough, then submerging it

in a bath of silicon oil to find the volume displaced by it. The density is simply

calculated as the ratio between the weight and volume found through the two

procedures, assuming the gas cell content is negligible. Silicon oil is used instead

of water for the displacement measurement because water will soak into the

dough.

An average was taken from the calculation done on three different pieces of

dough and the density was found to be p =1.1 ±0.1 x 103 kgm-3. The density of

the beads are given by the manufacturer to be Pb,,,d, = 2.5 x 103 kgm-3 which is
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typical of glass. Thus the volume of gluten and glass beads can be calculated by

the following formulas:

( Mwaa + Mglut)
gel-

Pgel (7.6)

beads 
bea

Pbeads

and the volume fraction 4 used throughout this chapter is simply the ratio

between Vbead, and the total volume:

mbeads

Mwater +mgluten Pbeads jPgel +beads

Rheometry

Shear rheometry experiments are performed under controlled strain conditions

on the ARES rheometer and under controlled stress mode on the AR-G2

rheometer (TA instruments). A Peltier plate and a 25mm parallel plate fixture

with 1mm separation were used. Approximately 2 g of gluten dough was placed

on the Peltier plate, and the upper plate was then brought down to compress the

sample to the specified thickness. Excess dough was trimmed with a razor blade.

The Peltier plate was held at a fixed temperature of 22*C, to approximate typical

room temperature. Slip was eliminated by applying adhesive-backed sandpaper

(600 grit McMaster Carr 47185A51) to the surfaces of both the Peltier plate and

the parallel plate tool. Drying of the sample was minimized by painting the

exposed surface of the dough with a low-viscosity silicone oil.
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7.3. Rheology of filled gluten gels

Under linear viscoelastic conditions, gluten gels show dynamic moduli that can

be considered to be composed of two distinct regimes (see chapter 5). Firstly, at

low frequencies ((o < 20 s-1), a powerlaw regime that arise from the structural

rearrangement of the fractal gluten gel. The dynamic moduli in this regime can

be described by the expression below [74]:

GG'e (O) "G =(-n)cos - Sjo (7.8)
Ge tan(nsr/2) - 2

where S = 1300 Pa s" is the typical gel strength and n = 0.175 is the gel

index / exponent for the gluten gel formed from the protocol described in the

previous section.

At shorter time scales (o > 20 s-), the dominant mode of relaxation is through

the configuration rearrangement of polymer segments between network

junctions. The rheological behavior in this regime can be described by a Rouse-

like distribution of Maxwell modes:

(Xk(0)2 ( )
G'Rouse =GR ( 2k( , G" Rouse =GR k (79)

k=1 1 + k)
2  k=1 1 + (XkcO) 2

where ak = ./R 2 , andk)LR, GR are the relaxation time and modulus of the Rouse

segments.

The overall dynamic moduli can be written as a sum of the contributions from

these two regimes:

G'(c)= G'g, (co) + G'Rouse (c)

G "(co) = G "e, (co) + G Rouse (c)(

In Figure 78, we plot the storage modulus of unfilled gluten gels (solid circles)

under small amplitude oscillatiory shear (SAOS). The same data is also presented

in Figure 79 along with the loss modulus (hollow circles). We compare equations

(7.8) to (7.10) (G1' solid line, G1" dashed line) to the data obtained with the
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unfilled gluten gels system and show that they are indeed an apt description of

the rheological behavior of this network gel.

Also plotted in Figure 78 are storage modulus G,' of filled gluten gels for a range

of filler volume (0.2 < 0 < 0.48). Qualitatively, the shapes of the curve remain

similar, and both power law gel regime and Rouse regime are still discernible at

increased volume fractions. However, there is an increase in the modulus for

increasing volume fractions.

10-3 10-2 10 100
o [s-1]

10 1 102 103

Figure 78 Storage modulus G' of gluten gels filled with glass beads for a range of
filler volume fraction, 4 = 0.0, 0.20, 0.35, 0.42, 0.48. The storage modulus in each
system show a similar powerlaw and Rouse-like variation over the frequency
range i.e. see equation (7.8) : G'ge, (o) = (1 - n)cos(n7n/2)So". All samples show

similar values of n - 0.175 ± 0.15, however the magnitude of the moduli increases
with volume fraction.

In Figure 79, we show the dynamic moduli of gluten gels with a range of filler

volume fraction that have been shifted vertically to lie on the data for the unfilled

system and the prediction of equation (7.10). Presenting the data in this manner

reinforces the idea that the dynamic moduli at small strains are of essentially the
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same shape, thus adding suspended particles to the gluten gel does not change

the distribution of relaxation time scales, it simply serves to rescale the

magnitude of the modulus (or stiffness) of the system.

10 4 -r "rmq11 111111 1 11 11 111 1 1111

G' B, G" B, p

0.0
N D 0.20
A A 0.35
A V 0.42 -O:

< 0.48N
F

103

10 10 10 10 10 10o>[s]

Figure 79 Dynamic moduli. G', G" shifted vertically through the application of
shift factors in the manner of equations (7.11) and (7.12). The dynamic moduli
are of essentially the same shape, thus adding suspended particles to the gluten
gel do not change the distribution of relaxation time scales.

We can understand this modification to the rheology by considering the theory

of strain amplification suggested by Mullins et al [202].

Since the particles (glass in this case) are chemically inert; and we assume that

they do not cause any significant changes (through changes to the mixing
conditions) to the mechanical properties of the gluten gel medium; changes to

the strain field within the gluten must be the source of the modification to the

rheological behavior. At the simplest, we can consider an amplification factor

[202] for strain B, such that:

local = B~ g (7.11)
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where y,,, is the effective strain actually experienced by the gluten medium due

to the presence of the filler, and ym. is the apparent or macroscopic strain that is

measured by the rheometer. We illustrate how this amplification in strain is

equivalent to an increase in the linear modulus by considering the stress

generated in a linearly elastic material (with unfilled modulus G,) by a

macroscopic deformation of magnitude ymar:

ax = Guy170 a (7.12)

The external or effective modulus is defined as the measured stress divided by

the applied macroscopic strain i.e.:

G = =G *" = GGUB (7.13)
Ymacro V'macro

5
Thus from the Guth Simha Gold theory [200], we have B, =1+-$ + 14.1$2.

2

We can also deduce a possible functional form of B, at higher volume fractions

by considering the situation where the volume fraction $ is close to the

maximum packing ratio Om.. We denote the average diameter of the particles to

be D and the average gap between adjacent particles to be h. The parameters can

be related through geometric considerations and written as:

D h+ D 
(7.14)

D~ $)

The value of the maximum packing ratio qm for a random distribution of hard

spheres was calculated by Onoda and Liniger max ~ 0.55-0.65 [203].

In Figure 80, we illustrate how during shearing deformation, since the particles

are assumed to be hard (cannot be deformed), they have to displace vertically as

they pass over one another. Thus an amplification to the local strain sustained by
the elastic medium is required in order to satisfy the (assumed) no-slip boundary
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conditions on the particle surfaces. This increase in strain will be the of the

order(h+D)/h for closely packed systems, and can be found by rearranging

equation (7.14):

h+D p1/3
B = K aB h o1ma

(/.13)
1

1-(p/$ma)

h

SD

V

Figure 80 Schematic of strain magnification

A more established theory is in the form of the Krieger-Dougherty relationship

[201]:

(7.16)
Omrax)

This is a general expression for the strain amplification in concentrated

suspensions of particles in a variety of shapes and stiffness. Krieger et al arrived

at this expression by considering the viscosity increment due to adding particles

to a suspension already containing particles. x takes the value of 2.5 for hard

spherical particles:
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B = 1- (7.17)

The expression reduces to the Einstein relationship in equation (7.1) at the limit

of low volume fractions.

Alternatively, the form of this strain amplification factor can also be found

through finite element simulations. Hwang et al calculated the change in bulk

viscosity of a viscoelastic material with different volume fraction of hard fillers

[204]. They simplified their calculations by only considering the effects of circular

discs in a two-dimensional geometry but reasoned that the qualitative features

are invariant for spheres in three-dimensional geometries.

Stickel and Powell [251 have recently reviewed other possible candidates for the

shift functions. Bergstrom and Boyce [2051 also provides an excellent review of

the typical shift factors used in the field of solid mechanics such as the Mori-

Tanaka estimate [206] and the Govindjee Simo model [207]

The shift factors B, are plotted in Figure 81. At low volume fraction (0 <0.4), the

magnitude of amplification observed experimentally is consistent with the

theory of Einstein, Guth, Simha and Gold (equation (7.5)), but the range of

validity is greater than that originally suggested by Guth (0 < 0.2). As hinted in

the introduction, this presumably is due to the fact that colloidal structures are

not formed in this system. At higher volume fractions (0 > 0.4), as we expected,

the rheology is dominated by the decreased length scales between the particles

and the data diverges and follows the trend suggested by equation (7.15) instead.

The formula suggested by Krieger and Dougherty (equation (7.17)) is able to

smoothly span these two regimes.
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Figure 81 Strain amplification factors calculated from different experiments.
Compared with predictions from different theories. The shift factors are
compared to Guth-Gold's formula (equation (7.5)), a geometric scaling (equation
(7.15)) with $max = 0.55 and the Krieger-Dougherty relation with x =2.5 and

max = 0.55.

Thus we show that the data are consistent with the gel network model of

equations (7.8) to (7.10), but with magnitude of the modulus simply shifted due

to this increase in local strain amplitude. Even though mathematically equivalent

in the linear viscoelastic regime (where stress is proportional to strain and its

higher order derivatives), there is an important conceptual difference between a

direct increase of modulus and an amplification of local strain. This is especially

apparent when we consider nonlinear deformations.

Unfortunately, in the nonlinear regime, there is no single viscoelastic parameter

that can sufficiently describe the features on the Lissajous figures and underlying
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changes in microstructure. Amongst the variety of typical measures in the

nonlinear regime, the most commonly used is the first coefficient in the Fourier

transformation G1' and G1" introduced in the previous chapter. We plot the

variation of G' as a function of strain amplitude for gluten gels with a range of

filler volume fraction in Figure 82.

G'
-&-Silo
Gluten Gels
Filler 0

10+ 01-
--0.20
--0.35

T - -e- 0.42
-0- 0.48-

Figure 82 Magnitude of the in phase (i.e. real) component of the first Fourier
coefficient G,' at increasing strain amplitude for gluten gel systems with a range
of filler volume fraction 0 = 0.0, 0.20, 0.35, 0.42, 0.48.

From the figure, we can see that G,' decreases with strain amplitude. The gluten

gels shows a larger region of linear viscoelasticity in which modulus is

approximately constant for a range of strain amplitudes before it begins to

decrease as a weak function of strain amplitude. The domain of this linear

viscoelasticity decreases in range for increasing filler volume fractions, such that

for the highest volume fraction tested, the modulus begins to decrease even at

the smallest strains investigated i.e. no data could be obtained within the linear

viscoelastic range.

Once again, we turn to the idea of strain amplification to interpret these

observations. In Figure 82 we show that the data can be collapsed in a similar
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fashion onto a master "softening" curve. The scaling argument is essentially the

same as that given in equation (7.13). The modulus is scaled by the small strain,

unfilled limit of G1': Go = G1 '(y -> 0, = 0)= 1208 Pa, and since it is calculated

from the stress amplitude divided by the strain amplitude the strain

amplification factor B,. The strain on the x-axis is also scaled by B,.

10

~0.1

0.01

0.001 ' ' '' ' | ' ' '' " ' ' ' " ' " '
0.01 0.1 1 10 100 1000

y0B,

Figure 83 First in-phase Fourier coefficient Gj' for a range of volume fractions $
= 0.0, 0.20, 0.35, 0.42, 0.48 can be shifted onto a master curve by application of
strain amplification factor B,.

The extreme softening of wheat flour dough was also noted by Uthayakumaran

et al. [107]. They compared the values of storage moduli obtained through a

strain sweep experiment to those of a gluten gel under the same procedure. They

showed a decrease in the storage modulus for both of these materials as the

amplitude of oscillation is increased. However, the onset of this non-linearity

occurs at much smaller strains for the wheat-flour-water-dough system.

Encouragingly, this is consistent with the idea that the local strain experienced

by the gluten network is amplified by the presence of filler particles (starch in

Uthayakumaran's case and glass beads in the current work).
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Further insight to the rheological behavior and strain amplification of the glass

filled gluten gels can be gained by considering the shapes of the Lissajous curves

corresponding to the data presented in Figure 82.
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Figure 84 Lissajous curves at small strains. yo = 0.03, o) = 1.0 s-. (a) Experimental
data on gluten gels with a range of volume fraction 0 = 0.0, 0.20, 0.35, 0.42, 0.48.
Data for a typical flour-water-dough are also plotted as open circles. (b)
Theoretical predictions obtained by integrating the FENE gel network model
with imposed yo replaced by the rescaled amplitude y, = yoB,.

At small oscillation amplitudes, the curves are elliptical. The increase in modulus

due to the increase in filler volume fraction is reflected by the anti-clockwise

rotation of the ellipses.

We can also compare the Lissajous curves obtained through these experiments to

predictions of the FENE network model'. Details of the model and its parameters

' A smaller number of nodes was used in the discrete representation of gel modes

to improve the time integration stability: Am = 5000, K = 20 compared to

A. = 100000, K =50 used in the previous chapter. This simplification leads to

slightly reduced stiffening at large strains, but does not affect the general

trends/change in shape of the Lissajous figures generated as # is increased.
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can be found in the previous chapter. The model is integrated with values of

macroscopic strain Ym,, replaced by the local strain yloal =7 nacroB,, i.e.

Ufilled (Ymacro) = o gluten (BT ($) Ynmaco) Since we are plotting stress rather than a

modulus, the y-axis does not need to be rescaled.

o Silo
0 Glass filled gluten

0.0 (a) Experimental
0.20 data
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Figure 85 Experimental and computed
0) = 1.0 s-.
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Lissajous curves at large strain yo = 6.0,

At large strains, the nonlinear features become apparent in both the experimental

data and the FENE model. Firstly, the area enclosed within the Lissajous curves

is equivalent to the energy dissipated per unit volume of the material (see

chapter 6). This area increases for systems with a greater filler volume fraction.

For the unfilled system, there is also a significant strain-stiffening at large strain,

indicated by the upturn in stress at the extremes of the Lissajous curves. As the

filler fraction is increased, the strain stiffening becomes progressively reduced.

This reduction is so severe at the highest filler volume fraction that the stresses

for p = 0.48 are lower than p = 0.42 (the Lissajous curve for 0 = 0.48 lies on top of
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that recorded for p= 0.42 in the small strain region. The reduction in stiffening is

apparent at large strains, at which the higher volume fraction shows lower stress

levels).

These observations can be described quantitatively by considering the physical

quantifiers of small and large strain elastic moduli introduced in the previous

chapter. G'M is the tangent modulus at the point of zero strain, while G'L is the

secant modulus defined by the line joining the origin to the stress at maximum

strain. Figure 86 and Figure 87 illustrates how these nonlinear moduli can be

shifted onto a master curve by considering the effects of strain amplification. The

shift factors are plotted in Figure 81. They follow the same trend as those found

through shifting the first Fourier coefficient. The Krieger-Dougherty relation

provides a reasonable estimate of the values.

236



10 10, 10

0.1

JO

101

100

10.1

10,

I I .. 111 I I I "" II

10

0 1 1  100 10 102
)6B"

10
~2 104 10

i , ib' 10 10
To

Figure 86 Nonlinear physical quantifiers G'M and . Both moduli can be shifted
onto a master curve by applying the idea of strain amplification equations (7.11)
to (7.13).

As we discussed in the previous chapter, the amount of stiffening can be

characterized by a ratio between the small and large strain moduli (Gm' and GL').
We denote the stiffening ratio as S and plot the ratio for each filled system in

Figure 87. We note that in Figure 86 the nonlinear moduli themselves can be

shifted onto their respective master curves, but S, the ratio of them, when plotted

on a linear scale in Figure 87 can show some significant differences when plotted

on a linear scale. It is clear from the range of volume fraction presented, that the

onset of this stiffening occurs at progressively smaller strains as the volume

fraction of the filler is increased.
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In Figure 87 (b) we attempt to collapse the data using the Krieger-Dougherty

relationship (equation (7.17)). The figure shows that a reasonable level of

agreement is achieved for all volume fractions up to an effective or local strain of

yOB, - 10. For the lowest filler fraction, the shifted data suggests that it lies on

the same master curve as the unfilled gluten for all levels of effective strains

investigated. We refer to this curve as the "master stiffening curve" of the gluten

gel. It also agrees surprisingly well with the predictions from the FENE network

model and can be approximated by an exponential function in effective strain:

S= exp (yOB(7.18)

C = 2 is the characteristic effective strain at which nonlinearity in S becomes

significant and is related to C1 and b introduced through the FENE network

model. Deviations from this master stiffening curve begin at progressively

smaller strains as the volume fraction is increased; the degree of stiffening S at a

particular effective strain also decreases. Instead of increasing monotonously, S

for the filled systems reaches a maximum and decreases for increasing strain

amplitudes thereafter. We recall that this can also be observed in the Lissajous

figures in Figure 85: the curve for the highest volume fraction at the largest strain

shows dramatically less stiffening compared to curves at lower volume fractions.
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Figure 87 Strain stiffening ratio S. The unfilled gluten gel shows a clear region
(yo <1) for which the stiffening ratio is close to unity. Strain amplitude greater

than yo >1 shows stiffening (S > 1). Increasing filler volume fraction clearly
decreases the strain amplitude that this nonlinear stiffening occurs at. All curves
can be shifted onto the master curve of unfilled pure gluten gel up to small
effective/local strains (yOB, <10). The behavior of high filler volume fractions

deviate from the master curve at large strains (yOB, >10).

The deviation from the master stiffening curve is probably due to the fact that

significant tensile stresses have built up around the surface of the glass beads

along the principle axes of the deformation and the gluten gels begins to detach
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from the glass beads at these large strains. Parsons [208] suggested a method to

account for this debonding. He calculated the level of tensile stress normal to the

filler particle surface by considering only the secant modulus of the matrix.

Debonding was assumed to occur if the level of this stress rises above a critical

value So. Experimentally they found that the debonding takes place over a range

of macroscopic stresses/ strains and a cumulative fraction of debonded particles

can be specified by a Weibull distribution as a function of the maximum

principal stress in the particles:

Cd 1-eXp - "x (7.19)
so

where cd is the fraction of debonded particles, &y is the maximum principal

stress, and m, is a constant that describes the distribution of stresses over which

debonding occurs.

Applying this idea to our framework, we assume that once the filler has

debonded, it has no further effect in strain amplification. The fraction of

remaining active filler is thus:

Oa = OCd= Oexp - ma (7.20)
SO

and the strain amplification factor should then be only a function of this active

filler volume fraction, i.e.(2.1):

B, = B, (O) (7.21)

Using this modified strain amplification factor in the FENE network model

integration will be able to reconcile some of the differences between the

predicted behavior and the actual measured data in Figure 92. We expect the
reduction of effective strain amplification at high stress levels of the highly filled

systems (0 > 0.35) will reduce the energy dissipated since fewer modes are
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extended beyond the finite extensibility limit and the Lissajous curves will be

more similar in shape to the unfilled gluten gel.

We also expect the values of S, and mo to be a function of dough conditions and

can be experimentally increased by the method described by Edwards et al (i.e.

coating with BSA) or reduced by a coating of fluorinated (teflon-like)

chlorosilane molecules which are extremely hydrophobic and will not bond well

with the hydrophilic/hydrogen bonds of the gluten matrix. We shall see in the

next chapter that they are also a function of flour-type and water content, i.e.

debonding (maximum in stiffening ratio S) occurs at different stress/ strain levels

for different flour types and water content.

Before moving on, we also note the similarities between the flour-water-dough

system and the glass filled systems at high volume fractions - 0.42- 0.48 in

Figure 84 and Figure 85. The Lissajous figures of these two systems are almost

identical, with similar values of small strain modulus, energy dissipation,

intermediate softening (clockwise rotation of curves when the strain is

increased), and large strain stiffening (shape distortion of Lissajous curves).

Furthermore, the gluten gel filled to $=0.48 also show the maximum in

stiffening ratio S exhibited by the flour-water dough i.e. filler-matrix debonding.

Transient start-up of steady shear

In addition to large amplitude oscillations, we also show that the framework of

strain amplification can be used to interpret data collected during the transient

start up of steady simple shear flow. Equation (7.16) is applied equivalently to

the data presented in Figure 88 (a) by once again considering the relationship

between local and macroscopic strain [209]:

Iot = f,,afB, (7.22)

and thus the data can be collapsed by multiplying the elapsed time by the shift

factor:

tshfed = tB, (7.23)
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Figure 88 Transient start-up of steady shear of filled gluten gels at , = 0.3 s-. (a)
Transient growth of shear stress. (b) Transient growth of shear stress reduced by
application of strain amplification.

The shifted data is replotted on Figure 88 (b). The experiments performed on the

different volume fractions show a similar initial powerlaw increase - t-". But

they begin to deviate from one another at increasing strains, with the samples

with higher volume fractions deviating at progressively lower strains. Once

again, we find the shift factors to be consistent with those collected through the
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various measures in oscillation experiments. The large strain deviations are

consistently lower than the simply shifted curves. These deviations are consistent

with the idea of matrix debonding: the release from the no-slip restriction at the

particle-matrix interface reduces the effect of strain amplification, therefore the

actual local strain will be at a lower level compared to the case of no debonding.;

the corresponding stress will thus be lower.

7.4. Conclusions

The similarity between the flour-water dough and the highly filled gluten gels

are certainly encouraging. A large part of this thesis was spent discussing model

systems and idealization in order to reduce the complexity of flour-water dough

to a level that can be understood on a structural component basis. In some sense,

it feels that we have rounded a corner; through this series of experiments and

modeling, we have taken another step towards more realistic formulations. We

have once again built upon the critical gel and the FENE network model. On

these ideas, we have added another layer of complexity in the form of "strain

amplification" which allow us to extend the existing theories for continuum

viscoelasticity to filled systems that more closely approximate the starch filled

systems of dough. In many senses, we feel that we have captured a large part of

the key rheological features exhibited by wheat flour dough through these model

systems.

Spherical, inert, glass beads were selected as a replacement for starch granules

due to the strong time-dependent swelling effects of the latter. Now that we have

outlined the rheological properties of the gluten gels filled with glass beads, we

will be able to separate the effects caused simply by the presence of inert

particles from other chemical, colloidal or time dependent interactions that the

starch might have with the gluten [94]. In the final chapter, we will further

discuss how these various levels of idealization can help us further understand

the mechanical properties and perhaps predict the baking qualities of a real

dough system. For example, we can start explaining some of the rheological

features recorded in the earlier chapters of the thesis: What happens when we

increase the water content of a dough? Does the extra water get absorbed into the
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starch granules, causing it to swell and effectively increase the filler volume

fraction? Or does it cause the gluten gel that forms the matrix to swell more thus

decreasing the filler volume fraction instead? These are all interesting questions

that we are now in a position to investigate.
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8. Conclusion

Since bread is such a large part of the world's diet, it's been a popular research

topic since the 1930s. Despite this long history, the complexity of bread baking

and the difficulty of working with gooey dough and its unstable nature has

limited research. In the literature review, we summarized the important works

conducted in the field. The roots of the subject are traced to the seminal work of

Schofield and Scott Blair in the 1930s [10-13]. They outlined the importance of

good experimental technique, strongly nonlinear and time dependent nature of

dough, and the basis of the gluten network. A large portion of the subsequent

was performed on wheat flour dough of different formulations. Researchers

varied each component (water content, flour type, deformation conditions etc...)

individually and measured the subsequent change in rheology.

In the first part of this thesis, we followed this line of investigation, and tested a

range of wheat flour dough over a range of conditions. But before attempting to

measure the rheological properties of a dough, we must first identify the

appropriate techniques and protocols, a brief survey on some of the existing

techniques are given in Chapter 3. Standard shear rheometry protocols are

similar to those employed by polymer scientist and can be performed on most

rheometers, but the handling and preparation can vary from lab to lab. Most

published results will include some method to prevent drying. A solvent trap is

insufficient, and a thin film (or bath) of paraffin or silicone oil is usually used as a

barrier to evaporation.

To these standard techniques, we added filament stretching (FISER), wind-up

drum rheometry (SER) and Large Amplitude Oscillatory Shear (LAOS). We

provide a detail record of the required corrections and procedures to give good

reproducible results.

With these techniques, we go on to show how the critical gel model can be used

as an appropriate description of the dough under linear viscoelastic deformation

(y <10-3). We extended the result to larger deformations by using a Lodge-

rubber-like liquid formulation and the inclusion of a nonlinear damping function
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and arrived at the generalized gel equation. We showed that this equation is able

to describe the rheological behavior of dough with good accuracy with a minimal

number of parameters (i.e. Linear viscoelastic gel strength S and gel index n,

damping factors q and k). This is a huge improvement compared to more

complex formulations such as the Phan-Thien model that requires more than 20

parameters.

Having set down a suitable mathematical description of the dough, we next

investigate and tabulate how each of these gel and damping parameters vary

with different dough conditions (i.e. mixing time, water content, flour type

etc...).

Of course there already exists a vast amount of work published on the rheology

of wheat flour dough, but unfortunately there are an even larger number of

variations possible. Wheat flours from the same farm grown in different years

can have different rheological properties [210]. While obvious factors such as

water content, mixing time and additives can all have dramatic influence on the

final property of the dough. Thus work along this line without some deeper

understanding of the physical origins of these variations can really only be

considered as case studies. It is extremely easy to lose oneself in this mountain of

literature without ever gaining an overall picture of the behavior of the system.

To rectify this, we follow another line of investigation and consider the origins of

these properties in the second part of the thesis. It is believed that these

properties primarily arise from the protein content of the flour; and within the

protein contents, the large molecular weight non-soluble proteins known as

gluten are the prime suspects. Armed with this belief and with encouragement

from Professor Windhab from ETH, we began to pursue the rheological

properties of a simplified system, namely, gluten gel. Effectively, we are moving

down in length scale and simplifying the problem by considering the

microstructure and rheology of the gluten phase only.

The critical gel model discussed in the context of dough rheology has an unusual

powerlaw like relaxation that is significantly different to the conventional

exponential relaxation predicted by simple models. The origin of this unusual
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behavior lies in the multiple length scale present in the gluten fraction of the

dough.

The first order of business is to identify an appropriate physical model for this

gluten phase that can explain the unusual rheology of dough and gluten. In the

literature survey, we presented a number of candidate models that have been put

forth to describe the microstructure of gluten, but there are none that also show

conclusive rheological evidence that supports the proposed molecular picture.

Hence we performed some detailed investigation on the linear and non-linear

rheometric behavior of our gluten gels to show that in terms of mechanical

proeprties, it should be best described as a viscoelastic polymeric network:

material functions show a powerlaw regime that arise from the fractal nature of

the network, and a Rouse regime that reflects the segmental building blocks of

the network. The rheological behavior is incompatible with the particulate gel

(significant elasticity and extensibility) or reptation models (weak damping

function). We also show (through chemical decomposition and reconstitution)

this network to be held together at junction points by hydrogen bonds and/or

hydrophobic interactions.

With this picture in mind, we explored in greater detail the linear to nonlinear

rheology of the gluten gel through the use of LAOS. We proposed a constitutive

model that models the nonlinear rate of detachment of junction point under

strain and the effect of finite extensibility of the network.

The predictions of this network was compared to experimental data obtained in

small to large amplitude oscillatory shear and were found to be consistent both

qualitatively and quantitatively.
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Model Linear Nonlinear Nonlinear Transient Physical # of

behavior softening stiffening Interpretation parameters

U.C.M.

Weak gel

2

8

Pom-Pom 3

Reptation 5

Phan-Thien 10

Damage

functions

FENE

network

8

8

Table 6 A survey of some proposed constitutive models for gluten/bread dough.
A subjective score (out of 10) are given for each category.

In Table 6, we show that this constitutive model has two outstanding features

that ranks it above other models that have been proposed. Firstly, each

component of the model can be attached to its physical origins. Secondly it is

able to describe the linear to nonlinear features with only four parameters (i.e.

two linear viscoelastic parameters gel strength S and gel index n, and two

nonlinear parameters C1 that describes the intermediate softening and b the finite

extensibility parameter).

At this point, we have grasped the basics of gluten gel rheology: we have come

to understand the physical origins of the rheological features and have

successfully modeled the behavior quantitatively these behavior. Encouraged by

this, we felt ready to reintroduce the next layer of complexity and explored a

dough at a length scale/idealization in which the composite nature of the dough

is apparent, i.e. we explored the effect of the starch filler. Unfortunately, the
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presence of wheat starch gives rise to all sorts of nonlinear time dependent

effects which are difficult to independently investigate.

As a first order approximation, we isolate the possible roles of the starch filler,

and consider them as inert fillers. We modeled this idealized dough by mixing

the gluten gel with various volume fraction of spherical glass beads that are of

similar size and distribution to starch granules. In doing this we show that it is

possible to "synthesize" a dough that closely approximates one that is mixed

from a real flour.

We also show how the idea that the dominant contribution to the rheology of the

starch phase is through the strain amplification effect of an inert filler. That is not

to say the other properties of the starch phase such as surface conditions etc are

not important. But rather, the most prominent features exhibited in the

rheological measurements can be understood through this model. Considering

the deviations from this idealization can then highlight other properties that are

relevant.
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Figure 89 Summary of thesis

We summarize the work presented in this thesis in Figure 89. Spatially, the left

most column represents the length-scales present in dough. And each row

represents the conceptual abstraction, experimental tests and modeling

performed at each level, and is finally condensed in the last column as a

mathematical equation.

In terms of this outline, most of the work in the literature review concerns the

topmost row, representing data done with a wide variety of dough, but

nonetheless dough without much consideration for the microstructure. While

there also exists some work that proposes candidate microstructure but without

much consideration of the rheological behavior. Our work is intended to fill up

the large space in between these two lines of investigation in order to gain a

more complete picture of the whole system.
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8.1. Applications

In this section, we briefly outline some applications of this framework to

practical situations in a couple of case studies.

Experimental technique

One of the most useful experimental techniques introduced in this thesis is the

Large Amplitude Oscillatory Shear (LAOS). We take three different systems to

illustrate the ability of this technique to differentiate between dough. We choose

two flour-water dough that have material functions that are practically

indistinguishable in the linear viscoelastic regime (i.e. Silo 48% water content and

WWF3 44% water content). In Figure 90, we show that their dynamic moduli are

of similar magnitudes and show the same variation in frequency over the

practical test range of the rheometer. For comparison, we also plotted the

dynamic moduli of an unfilled gluten gel (63% water content). Flour-water

dough are typically stiffer than gluten gels due to the effect of strain

amplification of the starch filler (chapter 7).
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Figure 90 Dynamic moduli of two different flour-water dough and a gluten-
water gel. The material functions of these two flour-water dough are practically
indistinguishable in linear viscoelastic experiments. Typically, unfilled gluten
gels are much softer in the linear viscoelastic regime.

A closer look at the Lissajous figure plotted in Figure 91 collected at - =1.0 s-'

yields the same observations. All the curves are elliptical in shape indicating they

are within (or very close to) the linear viscoelastic range. The two flour-water

dough show similar moduli (slope of the major axis) and similar elliptical shapes.
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Figure 91 Lissajous figure of three different dough system at (0 =1.0 s-1
andy=0.03. All curves are approximately elliptical indicating that they are
taken within the linear viscoelastic range.

However, if we allow the amplitude of the oscillation to increase, the differences

between these systems can be extracted. Like the unfilled gluten gels described in

chapter 6, both flour-water dough show intermediate strain softening (rotation of

major axis of Lissajour curves) and local stiffening (upturn distortion from the

initial elliptical curve shape). However, these effects occur at much smaller

strains when compared to the gluten gel. This is once again expected: flour-water

dough should be considered as highly filled systems and the effect of strain

amplification is strong (chapter 7). The two flours can be qualitatively

distinguished by the fact that Silo shows a stronger strain stiffening character at

large strains when compared to WWF3. At yo = 6, the strain stiffening is almost

imperceptible in WWF3, and the Lissajous figure resembles that of a yield stress

material (abrupt decrease of stress at strain extremes, rectangular shape of

Lissajous figure).
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Figure 92 Medium and large amplitude oscillatory experiments performed on three
different dough systems. Flour-water dough exhibit the same the softening and
local stiffening observed in the unfilled gluten gel (Chapter 6) at relatively small
strains. The Silo exhibits a strong degree of stiffening while WWF3 exhibited an
strong shear thinning/yield stress-like behavior at large strains.

We can quantitatively represent these differences by plotting the different

nonlinear measures introduced in chapter 6. These are shown in Figure 93 (a) -

(c). Both the (a) conventional dynamic moduli (first order Fourier coefficient

expansion of the Lissajous figures) and (b) small-large strain moduli alone does

not show any conclusive differences between the flour-water dough: both dough

show a similar softening behavior. However, the stiffening ratio (defined as the

ratio between large and small strain moduli) is most able to clearly illustrate the

differences in behavior. Both show a departure from linear behavior at small

strains (S > 1 aty ~0.05) indicating a high filler volume fraction (0 0.42 in

chapter 7). But the WWF3 reached a maximum in stiffening ratio S at a smaller

strain (y ~1.0) compared to SILO (y ~ 2.5). This agrees with our earlier

observation that WWF3 shows less stiffening qualities at large strains.
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Through this example, we have showed how the methodology of LAOS can be

used to distinguish between two flour-water doughs. We demonstrated that both

flours have a similar filler volume fraction but different stiffening behavior at

large strains. The physical reason behind this difference is unclear. As hinted in

the previous chapter, we suspect the maximum in stiffening ratio corresponds to

the point when the large stresses built up at the interface between filler and

medium causes one to debond from the other and it is our belief that

understanding the surface properties and behavior of this interface to be the next

important step towards understanding the rheology of flour-water dough.

Water content revisited

In chapter 4, we discussed the change in rheology when the water content of a

dough is varied. In linear viscoelasticity, we noted the gel strength decreases

with increasing water content. On the other hand, from our gluten mixing

experiments in chapter 5, we find that gluten admits only a small range of water

content. So even though increasing the water content of gluten can lead to a

decrease in the modulus, the effect is some what limited. This implies that the

additional water is possibly taken up by the starch. If we naively assume the

starch to swell due to this additional water, we should expect exhibit an increase

in gel strength due to the increase in filler volume fraction. This of course, is

contrary to our observations, and the resulting change is more complex and will

be affected by the decrease in stiffness of the starch particles. Another possibility

is that the excess water exists as a separate phase. We will briefly discuss how the

technique of LAOS can help us understand these effects.

We first consider the change in storage moduli as a function of strain for doughs
of different water content. The experimental data is plotted in Figure 94. Even

though the magnitude of the moduli decreases dramatically with increasing

water content, the general shapes of the curves on a log-log plot are similar. In
other words, the softening behavior seems to be independent of the water
content.
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Figure 94 Storage moduli vs strain for a Silo flour dough mixed to different levels
of water content. Water content moduli thingy appears to be valid.

However, water content does have an effect on the degree of large strain

stiffening. This idea is illustrated in Figure 95. The curve for stiffening ratio of the

flour-water dough at the highest water content (52.2%) shows a slightly more

rapid increase with strain. Using the idea of strain amplification discussed in

chapter 7, we expect higher volume fractions to show a more rapid increase in

stiffening ratio, and can therefore conclude that the hypothesis of starch swelling

leading to a slight increase in volume fraction is indeed consistent. This is effect,

is rather mild, the change in volume fraction (estimated by comparing to the

experiments with glass beads gluten gel) is only about 3% (42 to 45%o).
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Figure 95 Change in stiffening ratio S for different water content. Dough at
highest water content show a more rapid increase in stiffening ratio at small
strain amplitudes. Though the strain at which maximum in the stiffening ratio
occurs is not monotonous with water content.

Furthermore, there is also a change in the large strain amplitude behavior. From

the baseline case of 47.2% water content, the maximum of S occurs at a lower

strain for both increasing and decreasing water content. This change can be likely

attributed to a modification to the surface properties. An investigation on the

details of this phenomenon can be the basis of a possible future work.

8.2. Future work and recommendations

Through these two examples, we briefly illustrated how some of the ideas

presented in this thesis, can be used in practical situations. However, there

remains a lot to be learnt about the mechanical properties of dough. We outline

two areas which we feel are the natural steps to take next.

Starch properties

In chapter 7, we studied a simplified system in which the filler material is

assumed to be indeformable. We also modeled the system by assuming a no-slip
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boundary condition at the surface of the filler. This we showed to be a reasonable

approximation and a large part of the rheology of a flour-water dough can be

understood by considering such an idealized situation. On the other hand, the

water content experiments mentioned in the previous section and chapter 4

suggests that the truth is rather more complex than this idealized system, and the

properties of the starch granules probably have an important role especially at

large strains.

Specifically, we showed that the strength of the bond between matrix and filler

can be an important factor especially at large strains. The large stresses generated

at these strains can lead to detachment between the matrix and filler. A possible

way to account for the effect of detachment is an analysis along the lines of void

formations can provide the link between these apparent differences [2111. This

along with the effect of filler stiffness will form an interesting line of

investigation.

Mixing revisited

At its simplest, dough is formed by simply mixing flour and water. Mechanical

energy is supplied to disperse the ingredients and develop the gluten structure

through stretching and folding. A method that estimates the relevant rheological

parameters during this mixing process is of great practical utility. One can

imagine a production line in which ingredient ratios and mixing intensity can be

varied "on the fly" in order to achieve a required dough consistency.

The most common method of doing this is already described in chapter 3. The

long time variation (averaged over 1mins) is usually reported as the mixing

characteristic of a particular dough [27]. In a separate document [129], we have

discussed how this pseudo-material function only describes the intermediate

strain behavior of a dough and can give misleading information regarding the

full constitutive behavior.

The mixing process can be considered as a form of oscillatory deformation and

we suggested in chapter 6 that more detailed information on the rheological

properties can be extracted from the torque signal by considering its Fourier

spectrum.
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In a separate document [212], we proposed an alternative non-dimensional

measure that considers the ratio between the rapidly varying component and

this slowly varying component. We refer to this measure as the mixing number:

Mn = Rapidly varying component (9.1)
Slowly varying component

In Figure 96, we show that this measure showed some universal correlation with

the rheological properties (characterized by c, a stiffening index obtained by

fitting curves of extensional stress difference vs strain by A4o, = H + Gec) of

different doughs in the overmixed regime when viscous effects are significant.

A line of investigation that seeks to understand the relation between these

different pseudo material functions measured from mixing will be of invaluable

use to the bread-making industry. To start with, we suggest using the more

robust material functions proposed in this thesis such as the stiffening ratio S and

b the finite extensibility parameter to establish more definite correlations with the

mixing functions.

260



Strong strain hardening,
dough is extremely elastic,
point of failure is sudden with
significant recoil.
FiSER/SER test required in
this region.

3.5

3.0

HRS added water [g]
+-v 20

- 21
i-22

..w. 23

- - - OSR
--- HRW

2.0-

1.5 L-
Viscous behavior dominate in
this region, resulting in slow 1.0
ductile necking.
Strain-hardening directly
proportional to mixing number, 0.5
data from a variety of flours
can be collapsed onto a single 0.0
line in this region 0.

--

0 0

W 20g added water
2g added water

-d w

4r'

02 0.04 0.06 0.08 0.10

Mn

0.12

Figure 96 Mixing number vs strain stiffening index of a range of dough.

8.3. Final words

In this thesis, we presented a comprehensive treatment of the rheological

properties of dough. The aim is to provide a conceptually clear basis from which

to launch analysis and to facilitate the understanding of specific case studies

often encountered in this field.

The most striking idea we hope to leave the reader with is the strong analogy

between the starch-filled-gluten-dough systems with carbon-black filled rubber

networks. In fact, throughout the thesis, we have borrowed heavily from the

ideas established in polymer science and applied them to this unusual food

system. In doing so, we arrived at a scientific framework for studying dough and
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its constituents. We hope to have convinced the reader that this rheological

approach to understanding dough rheology is useful and appropriate.
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