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Abstract

Under certain conditions, a periodic signal of unknown fundamental frequency can
still be recovered when sampled below the Nyquist rate, or twice the highest frequency
present in the waveform. A new sampling criterion 'as been proposed which enumerates
such conditions. It has been shown that in theory, if the signal and sampling frequencies
are not integrally related, and the signal is band-limited (to a range the extent of
which is known but otherwise unrestricted), then the signal waveshape can always be
recovered. If the fundamental frequency is known to lie within a range not spanning
any multiple of half the sampling rate, then the temporal scaling for the reconstructed
waveform can be determined uniquely, as well. Procedures have also been proposed for
reducing time-scale ambiguity when the latter condition is not met.

A previously presented time domain algorithm for reconstructing aliased periodic
signals has been implemented and modified. A new algorithm, operating in the fre-
quency domain, has been proposed and implemented. In the new algorithm, the signal
fundamental frequency is first estimated from the discrete Fourier transform of the
aliased data through an iterative procedure. This estimate is then used to sort -the
aliased harmonics. The inverse discrete Fourier transform of the resulting spectrum
provides the reconstructed waveform, corresponding to one period of the original sig-
nal. Empirical analysis has indicated that the proposed algorithm is comparable to the
time domain algorithm in terms of reconstruction quality, robustness, and efficiency.
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Title: Professor of Electrical Engineering
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Chapter 1

Introduction

1.1 Nature of the Problem

In many instances, knowledge of some special property of an analog signal can be

exploited to reduce the sampling rate or the number of samples necessary to retain

all the information in the signal. Nyquist sampling of bandlimited signals certainiy

represents one example. As another example, it might be known that the waveform

under observation corresponds to one of only a few candidates, and therefore relatively

few samples are needed to identify it uniquely. In an extreme case, the signal is known

completely beforehand to within a scale factor, in which case only one sample is needed.

In this thesis, we shall first propose a set of sufficient conditions under which a

periodic signal can still be recovered after uniform sampling below the Nyquist rate,

or twice the frequency of the highest harmonic present in the waveform. Next, we will

discuss, implement, and modify a time domain algorithm developed by Rader [1] for

determining the period of such waveforms and reconstructing them from the samples.

For brevity, hereafter we will refer to the combination of these two steps as dc-aliasing,

under the assumption that only periodic signals will be treated. A new frequency

domain de-aliasing algorithm will then be developed, and it will be compared with the

Rader algorithm.

The work summarized in this thesis should have practical significance since periodic

signals abound in both natural and synthetic environments, and it is not always possible

_�1_1�11�



to sample them above the Nyquist rate. While undersampling is typically due to the

physical limitations of the available sampler hardware, there are others reasons, as

well. It might be desirable to use hardware configured for a low frequency application

to sample infrequent or unanticipated high frequency or harmonically rich periodic

signals, as may be the case in a satellite in space. Undersampling might be desired for

purely economic reasons, since high-speed sampling systems are relatively expensive.

The savings would be even greater if it was necessary to sample several periodic signals

(whose frequencies need not be related) concurrently, or at least nearly so. A single

commutating sampler could be used if the effects of undersampling could be removed

at a later time. Applications in bandwidth compression of periodic signals are also

possible.

The algorithms to be presented have the benefit of being insensitive' to the band-

width of the original signal, i.e., to the extent of the frequency range containing all

signal harmonics. This is a significant advantage over methods such as those compris-

ing decomposition of wide-band signals into several narrow-band components, sampling

(at a low rate), and-subsequent recombination of the samples to yield a sequence which

is not aliased. Multiple samplers are required for such methods, and their number is

proportional to the total bandwidth.

It should be emphasized that the goal of this research is to yield solutions in sit-

uations where undersampling is unavoidable, or desirable for reasons similar to those

mentioned above. It is the minimum sampling rate and not the minimum number of

samples necessary that we wish to reduce.

1.2 Background

Signal reconstruction from corrupted data has been and remains a popular topic

in discrete-time signal processing. Techniques for removing or reducing noise, rever-

beration, and other such degradations have been implemented successfully in many

instances. However, relatively little work has been published on removing the distor-

'At least in theory, and for the most part, in practice as well.
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tion introduced by undersampling.

Marks 21 has provided a closed-form method for recovering any continuously sam-

pled (i.e., pulse-amplitude modulated) band-limited signal. Nevertheless, the method

cannot be extended to discrete time sampling since it is based .on the fact that the

non-zero portions of the sampled waveform essentially comprise an infinite number of

discrete samples. This can be stated formally in terms of function analyticity. Swami-

nathan [31 has used linear system identification techniques for signal restoration from

data aliased in time. Since the method consists of modelling the causal and time-

reversed anti-causal parts of the time-aliased signal as the impulse responses of stable,

causal filters, it too cannot be used for the problem at hand. Powell [41 has enumer-

ated the conditions under which a broad-band sparse spectrum is not destroyed by

undersampling. However, only the particular band about the origin is protected from

aliasing, and therefore the method cannot be applied to periodic signals, all of whose

harmonics must be recoverable.

The only previously known practical algorithm for de-aliasing an undersampled

periodic waveform has been given by Rader [11. The Rader algorithm exploits the

fact that samples obtained from many periods of a waveform can be sorted into a

single period to dramatically increase temporal resolution, effectively removing aliasing

distortion. While the same approach is used in conventional sampling oscilloscopes,

these devices require operator intervention to adjust the triggering system so that the

displayed periods truly correspond to the original waveform. The operator in effect

must determine2 when the proper signal. period is being used to sort the samples,

thereby relieving the oscilloscope of the most difficult task.

In both the Rader algorithm and the new algorithm to be presented in Chapter 4,

the principal issue will be the determination of a signal's period. In both algorithms,

waveform reconstruction is relatively straightforward once this has been accomplished.

We will discuss the Rader algorithm in detail in Chapter 3, then implement and modify

it. It will also serve as the basis for much of the other work in this thesis, the remainder

of which is original for the most part.

:Or else provide a trigger signal whose period is the same as the waveform to be observed.



1.3 Scope, Contribution, and Organization of the

Thesis

In Chapter 2, we will address theoretical issues which arise in sampling periodic

waveforms. A new de-aliasing procedure and a new sampling criterion, both specifically

for periodic signals, will be developed. Though stated for non-realizable conditions,3 the

new criterion will illustrate the upper bounds on performance which can be expected

from the algorithms described in the chapters that follow.

The next two chapters contain detailed descriptions of algorithms for reconstruction

of undersampled periodic waveforms. Chapter 3 describes the time domain de-aliasing

algorithm mentioned briefly in the previous section. All work in Sections 3.1 and 3.2

is directly attributable to Rader 1,51, though some liberties have been taken in inter-

pretation. Section 3.3 contains a new, simple modification of the relatively complex

Rader algorithm, intended to increase algorithm efficiency when possible. Chapter 4

describes an original algorithm for de-aliasing in the frequency domain which, though

perhaps not as elegant as the Rader algorithm, will be shown to be comparable in many

instances. Typical reconstructions for natural and synthetic signals, along with other

pertinent data, are presented at the conclusion of each of these two chapters.

The research is summarized in Chapter 5, in which we discuss the relative str-ngths

and weaknesses of all algorithms and their variants, and perform empirical comparisons,

as well. Issues such as speed, robustness, and reconstruction quality are considered.

Suggestions for future research are enumerated in Chapter 6.

It will be most convenient to introduce new notation as it is needed. Whenever

possible, results from previous works not directly related to de-aliasing will merely be

stated, and appropriate references will be cited. 4

3 A property it shares with perhaps all other criteria, including the Nyquist criterion.

4
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Chapter 2

Development of a Sampling Criterion

for Periodic Signals

The principal concern of this thesis is the recovery of a periodic continuous-time

signal, of unknown frequency, from a set of uniformly spaced samples obtained using

a sampling frequency below the Nyquist rate. This chapter will provide the necessary

theoretical background, and more importantly, new extensions of conventional theory

better suited for the problem at hand. Implementation issues will be treated in the

chapters that follow.

A sampling criterion will be needed to indicate when a set of samples retain all of

the information in a periodic analog signal. We will briefly review the classic Nyquist

sampling criterion for lowpass and bandpass signals. The greater portion of the chapter

will be devoted to reformulating the Nyquist criterion for the special case of periodic

waveforms. In the process, a theoretical procedure for de-aliasing such signals will also

be developed. Finally, methods for reducing ambiguity problems exposed during the

development of the new criterion will be discussed.

2.1 The Nyquist Sampling Criterion

Many practical signals are generated by physical processes and as such, can be

regarded as approximately band-limited by neglecting the minute amount of energy at

-9;



frequencies above a judiciously chosen cutoff n,2o. If such a signal is sampled uniformly,

then there exists a minimum sampling rate for which the original signal can still be

completely recovered.

Enumeration of a sampling criterion which specifies this minimum rate has been

attributed to several authors, including [61: Nyquist, Shannon, Whittaker, and Ko-

tel'nikov. Because it was first introduced by Nyquist in 1928, in the context of tele-

graph transmision theory, we hereafter will refer to it as the Nyquist sampling crite-

nron. The Nyquist criterion is well documented in the literature of signal rocessing

and communications, as well as that of several other fields. It is repeated here only for

completeness:

Criterion 2.1 If an analog signal z,(t) contains no energy at frequencies fl outside of

the range ll < rad/sec, then it is completely determined by its ordinates at a series

of points equally spaced by r/G, seconds or less.

The Nyquist criterion actually applies to a wider variety of signals than just those

of a lowpass nature. Destructive aliasing will not occur in sampling any analytic2

bandpass signal which contains no energy outside of some range

-f, + n < f , + l

provided that the sampling rate fl, is greater than or equal to the Nyquist rate 2,.

In addition, a non-analytic signal sampled at fl, will not be aliased s if it contains no

energy outside of the union of the ranges

p 2 , < < -

P p+l < <, < n,
2 2

where p is any integer. For each case above, if the respective parameter nR or p is

known, then the recovery procedure will be well defined. These are perhaps the two

simplest cases to which the Nyquist criterion can be extended.

'The uppercase fl will be used hereafter to denote continuous-time frequency (in radians/second),
with the lowercase w being reserved for the discrete-time case (radians/sample).

2 0ne which has no energy at negative frequencies.
3We will use the term aliasing to imply destructive aliasing when clear from context.

4
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The Nyquist criterion specifies a set of conditions which is sufficient but not ec-

essary to permit reconstruction of a band-limited waveform from uniformly-spaced

samples. Clearly, we can choose other criteria which may be more amenable to other

signal representations, sampling methods, etc. In the next section, it will prove ad-

vantageous to do so, though we still must be sensitive to the basic issues of spectral

overlap and reconstruction ambiguity.

2.2 The Pseudo-Nyquist Sampling Criterion

Many types of waveforms can be recovered from their samples even when they

occupy a frequency band larger than the maximum permitted by the Nyquist criterion.

Signals having sparse spectra form one such class, and include periodic signals and

frequency-modulated narrow-band signals. They typically are non-analytic functions

which do not meet the generalized Nyquist criterion passband requirement specified at

the conclusion of section 2.1. Non-destructive undersampling of modulated signals is

treated in [41, and will not be discussed further here. In this section, we will determine

a set of conditions for which an undersampled periodic waveform can still be completely

recovered, and outline a hypothetical reconstruction procedure. These conditions will

then be incorporated in a new sampling criterion specifically for periodic signals.

We begin by addressing the issue of spectral overlap due to aliasing. An analog

signal z.(t), periodic for all time, is characterized by a line spectrum X.(jfl). Sampling

the signal over all time at constant intervals T yields a spectrum X(ecjT) exhibiting

no spectral overlap unless two or more harmonics, each inherently having zero width,

are aliased to the same frequency. Because X(ei nT) is periodic in fl, we need only

determine where all aliased harmonics appear in the baseband 0 < fl < 2r/T rad/sec

in order to check for overlap.

Using a sampling rate4 ,, the n harmonic of a waveform with a fundamental

frequency fl, is modulated down to (nfl,)n., where ()v denotes the quantity x modulo

y. If the ratio fl,/f, can be expressed as a rational number u/v with u and v in

lowest terms (i.e., their greatest common denominator (u, v) = 1), then each harmonic

-I
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is aliased to one of only u (or fewer) distinct frequencies. The new location of the

(n - u)th harmonic is

((n + u)Q,)n. = (ni,, += (nfl)n.

i.e., the same as the n harmonic.

If there are more than u consecutive analog harmonics, signal recovery is impossible

since at least two harmonics overlap in the aliased spectrum. Therefore, unless a signal

is known to contain fewer than u harmonics, we must require l/fl, to be irrational.

If the latter condition is met, all harmonics will be aliased to unique frequencies. The

number of harmonics must be finite, but is otherwise unrestricted and in fact can be

unknown.

In order to determine fl., we first must be able to identify the locations s of the

aliased harmonics. If the number of non-zero harmonics is finite, then their locations

can be detected and stored in a list. If the first harmonic in the analog waveform is

non-zero, its location after aliasing ((P.)n.) will be included in the list above. We only

need to determine the list entry to which it corresponds.

Suppose the periodic analog signal is band-limited to any known range, in'l < n.

This clearly guarantees a finite number of harmonics. Another requirement is needed:

either the (analog) spectral component at fl, (which we will call 'f21'), the component

at -fl, (u'sl 1"), or both must be non-zero. For the common case of real signals, we

must require that both be non-zero. We do not need to know which of the cases above

is true, but at least one of the harmonics at fl and nl 1 is necessary in the recovery

procedure to follow in order to determine fl..

The first step of the procedure consists of listing the abscissas, i.e., frequency loca-

tions, of all spectral lines in the region 0 < fl < l,. Each value is then used as a guess

4 In general, subscripts s will denote quantities related to the sampler, and subscripts w will correspond
to the waveform to be reconstructed.

5 At least in theory, harmonic amplitudes do not help in determining fl., only in the subsequent
reconstruction prQcess.

5G Note that the choice of Ofl is completely arbitrary, viz., independent of both fl. and fl,. Therefore,
cases in which Oh ::~ , are acceptable.

8
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of the aliased fundamental, (2,)na. We observe the spectrum at positive and negative

multiples (interpreted modulo if,) of each guess. The arbitrary but known signal cutoff

flt indicates when to stop this process in each direction along the nf-axis. The number

of multiples for which the spectrum is non-zero is recorded.

The guess yielding the maximum tally must be either (l)n. or (F-L)a. (the latter

= (-fl)n.). If both are present, there will be two best" guesses. Each incorrect

guess, corresponding to an analog frequency flN or fl-N (the harmonics at Nfl, and

-Nl,, respectively, where N > 1), results in a lower tally because only one of every

N harmonics which might be non-zero has been counted. The numbers of positive and

negative harmonics in the waveform need not be equal. In addition, missing harmonics

cause no harm unless both fll" and 'fl- 1" are absent.

We now must itemize any additional contraints which are mandatory for obtaining

fl, unambiguously from the value(s) found above. The maximum unambiguous range

of l, cannot be greater than or equal to Qi,. Consider two signals with the same wave-

shape (or equivalently, the same Fourier series coefficients) but different fundamental

frequencies flA and fB = flA + rfl,, where r is some integer. The nth harmonic from

each is aliased to the same frequency, rendering the two sampled signals indistinguish-

able.

Unfortunately, the restriction above is insufficient. Whether real or complex, a

periodic signal might have energy at both positive and negative multiples of its funda-

mental. Since

(-nf,). = (, - (nQ)n.

the -nh and n th harmonics will be aliased to mirror image locations about fi,/2. In

listing aliased-harmonic abscissas as done above, the same set of entries are obtained

from a signal of frequency fA and another of frequency 1a = -a + rfl,, where r

is any integer, if the same8 harmonics are present. If r = 0 and the two signals have

the same harmonic coefficients, one signal is simply the time reversal of the other. We

must know that fl, lies in a particular range pfl,/2 to (p + 1)fl,/2, for some integer p.

The maximum unambiguous range is thus only fl,/2, and it cannot span any multiple

sThis refers to the harmonic numbers (alnt, 2"d,...) and does not concern the harmonic amplitudes.
q,



of n,/2.

If there is only one best guess f,,t, the value of p indicates whether or not to

negate it. If there are two best guesses, the value of p uniquely determines which of the

two to use since Qf, can only differ from (,)n. by a multiple of fi,. (p indicates the

proper frequency range of width fR,/2.) After negation (if necessary), the appropriate

multiple of fl, is then added, and we proceed to reconstruction. The latter consists

of uaravelling the aliased harmonics, and is simple once fn,, and fi, are both known.

Figure 2.1 contains a flowchart summarizing the procedure described above. It is

assumed that fl,/f1,, is irrational, and that fl,, flQ, and p are known.

There exists at least one inefficiency in the de-aliasing procedure described above.

We checked for non-zero harmonics at positive and negative multiples of (lN)n., not

fiN. Because these multiples were interpreted modulo i, as well, the exact same

sequence of spectral locations would have been checked if we had known and used fiN

and its multiples instead. The only difference concerns just how quickly the process

would have terminated in each of the positive and negative frequency directions.

Had we used N, we properly would have stopped searching the aliased spectrum

when nlN > fh. However, the termination condition we actually used was n(fNV)n. >

fit. We effectively checked for analog harmonics above 0h. Since these harmonics

were non-existent, the tallies remained undistorted. If the fl,, range parameter p was

known, we could have adjusted each guess (N)n. beforehand to lie in the allowable

range. However, the generality gained from not requiring this will be advantageous

later.

Based on the above discussion, we now define a new sampling criterion for periodic

signals which we will call the pseudo-Nyquist sampling criterion:

Criterion 2.2 If an analog signal z,(t) is periodic, contains no energy at frequencies i 

outside any range Ii1 < nh rad/sec, and its fundamental frequency fl, lies in the range

pfl,/2 to (p + 1)1fo/2 where p is an integer and the quantity Rf/fl is irrational, then

it is completely determined by its ordinates at series of points spaced apart by 2r/flo

seconds.

We would be able to relax one limitation imposed by the pseudo-Nyquist criterion

10



aliased data,
range parameer (p),
sampling rate ( s),
signal cutoff (0.)

Figure 2.1: Ideal case procedure for recovering an aliased signal in the frequency do-

main.



de-aliased data,
fundamental frequency ( 2b, )

Notes:
t Equivalently, Qbest < fQ /2 if p even, Qbst > Qs /2 if p odd.

Figure 2.1: continued
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if it were not for the fact that the number of harmonics is unknown. Since only a

finite number of harmonics can be present, f,/1,, need not be irrational. Recall that

if fl,/fl, can be expressed as a rational number u/v where (u, v) = 1, then up to u

consecutive harmonics can still be present in the signal without resulting in destructive

aliasing. The probability of this happening with u simultaneously being prohibitively

small is very low.

Finally, consider the effects of p being unknown. In this case, we could temporarily

assume p = 0. Determination of nf,, and signal recovery would proceed in exactly the

same manner as before. The only difference(s) between the reconstructed and true

waveforms would be a constant scale change along the time axis and/or a reversal of

time. There are probably applications where this is tolerable. If if is not, there are still

means for effectively removing these two ambiguities, as described in the next section.

2.3 Reducing Signal Fundamental Frequency Am-

biguity

Two ambiguities arise when the range of permissible values for the signal funda-

mental frequency fl,, is unknown. (We will assume this is true for the remainder of

the chapter.) Given only the sampling frequency f2, and setting p = 0, the procedure

from the previous section yields a unique value in the range 0 to fl,/2 corresponding

to either (l,)n. or (-fl)n.. We cannot determine which of the two it is, and even

if we could, we would not know what multiple of f, to add to that value (negated if

necessary) in order to obtain (2,.

Two possible solutions to the first problem are:

1. Only allow periodic waveforms which are analytic.

2. Filter non-analytic signals with a Hilbert transformer, before sampling, to remove

all energy at negative frequencies.

Either one insures that the ambiguous value found is identically (fz,)n. since the ana-

log harmonic at -, has zero amplitude. If a signal is not analytic and waveform



reconstruction is required (in addition to a value for Q,), then both the filtered and

original signals must be sampled. Samples of the former are needed for determining

fi,, and those of the latter for signal recovery.

The Chinese remainder theorem from number theory provides a convenient solution

to the second ambiguity problem mentioned previously. Before describing this we first

present some necessary notation from number theory. ()M denotes the residue of x

modulo the modulus M. This residue is defined as the remainder of x divided by M.

Since all integers z + kM (for arbitrary k) are congruent, i.e., they yield the same

residue modulo M, they are said to form a residue class modulo M. There are M

residue classes. Using this notation, the Chinese remainder theorem can be stated as

follows:

Theorem 2.1 The congruences (z),,, = ri possess a unique solution among the residue

classes modulo M = nl rn if the moduli rN are mutually prime in pairs. The solution

for x is the residue class R = riNi.fi where each Mi = M/mi, and each Ni is the

solution of an equation (NMi),,,. = 1.

In the above theorem, all variables are integers. Proofs of the theorem can be found in

most texts on number theory [7,8,9,101.

Using the Chinese remai-der theorem, several highly ambiguous residues ri of an

unknown quantity z can be combined into a single, much less ambiguous residue R,

provided that the moduli mn are pairwise coprime. The uncertainty range of each of

the residues r is the corresponding modulus rnm, while the uncertainty range of R is

Application of the Chinese remainder theorem is not restricted to problems involv-

ing only integers, however. It can be utilized for rational operands, as well. Since

all practical situations involve finite precision arithmetic, all quantities are rational, re-

gardless of the units used. Given the units and the size of a quantum, we first normalize

the dimension of interest in terms of a unit quantum, Integral, 9 mutually prime moduli

are then chosen, and integral residues are found. The single unambiguous (or at least

9 After normalization.
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less ambiguous) residue determined using the Chinese remainder is then de-normalized

to yield the desired quantity.

Suppose that after normalizing time in the manner above, we sample an analytic

periodic signal at several integral, mutually prime sampling rates, simultaneously. The

procedure in Section 2.2 can be used to produce a residue (viz., the frequency of the

aliased fundamental harmonic) from each of the resulting sequences. If the residues

from this ideal procedure are quantized, a unique value of the true fundamental fre-

quency modulo the product of the sampling rates can be obtained. By using either

higher sampling rates or, more appropriately from our standpoint, additional sampling

systems, the ambiguity problem can be virtually eliminated.

Consider the following simple example. The clock rates of four samplers are 7, 8,

9, and 11 samples per second, respectively. All measurements are to be quantized in

Hertz. Using the output from each of the four samplers in the procedure from the

previous section, we obtain values for the aliased fundamental frequency of 2, 5, 5, and

6 Hz, respectively. To get the true value of the fundamental frequency f,, we utilize the

Chinese remainder theorem: z is f; the sampling rates are ml = 7, m 2 = 8, ms = 9,

and m 4 = 11; and the residues are rl = 2, r2 = 5, r 3 = 5, and r4 = 6. Therefore,

M = 7'8'9 11 = 5544

M = 8 9 11 = 792

M- = 7 9 11 = 693

Ms = 7 8 11 = 616

M4 = 7*8*9 = 504

Continued fractions [101 can be used to solve

(792N1) 7 = 1

(693N2 )s = 1

(616NV3)9 = 1

(504N4) 11 = 1

yielding N = 1, NV2 = 5, N3 = , and N 4 = 5. Finally,

R = r1(792 1) - r(693 3) - r(616 7) r 4(504 5)



The values NVi can be pre-computed and reused for any set of measurements r.

Entering the present values of ri into the formula above yields R = 149. This is the

residue class modulo 5544 Hz to which the fundamental frequency belongs. Equiva-

lently, f, = 149 + 5 544j Hz, for some unknown integer j. If f, is known to lie in some

range whose width is less than or equal to 5544 Hz, then it can be uniquely determined

from the four aliased sequences above. If a greater unambiguous range is desired, one

or more additional samplers with appropriate clock rates will be required.

The usefulness of the Chinese remainder theorem is readily apparent from the ex-

ample above. For any one sampler used alone, the maximum unambiguous range of

f, would have been the sampling rate, less than 12 Hz. But because the four clock

rates are pairwise mutually prime, the maximum unambiguous range was extended to

greater than 5 kHz.
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Chapter 3

Rader Time Domain Sample Sorting

Algorithm

In the previous chapter, we specified a set of conditions under which a periodic signal

can be completely recovered from its samples, even after undersampling. However, these

conditions cannot be met, and therefore much of the remainder of this thesis will be

devoted to the practical aspects of the recovery problem.

In this chapter we will review the theory and discuss our implementation of an

efficient time domain de-aliasing algorithm developed by Rader [11. An iterative tech-

nique is used for determination of the signal period T,, and constitutes the bulk of

the processing required. Subsequent waveshape recovery consists of time series sorting,

and is straightforward once T., is known. Results from number theory are exploited to

make the approach practical.

Section 3.1 will describe the general approach of the Rader algorithm. It will include

the development of a criterion proposed by Rader for indicating the best reconstructed

signal among several trial reconstructions, simultaneously providing an estimate of

T,. The second section will discuss the algorithm in detail, and will include flowcharts

summarizing our implementation of it. Unless noted otherwise, all work to be described

in Sections 3.1 and 3.2 is due to Rader 1,5], though some liberties will be taken in

interpretation. In a few instances, it will be beneficial to supplement the discussions

provided by Rader.
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Section 3.3 will discuss a new modification of the Rader algorithm in which the

iterative procedure for estimating T, is accelerated by decomposing it into a series of

successively finer searches, with a coarse search being used on the first iteration. Typical

reconstructions for undersampied natural and synthetic signals will be presented in the

closing section, along with other pertinent data.

It will be convenient to normalize time using the sampling period T,. We will refer

to the ratio T,/T, as r,, the normalized waveform period (or simply the waveform

period, when clear from context). More generally, r (= t/T,) will be used as a dimen-

sionless independent variable for continuous time. Likewise, we will define a normalized

frequency variable' 6 = fl/n,, where , = 27r/T,.

In both this chapter and the following one, we shall assume that T, is known, and

that T,, is not. Since all processing involves time-normalized data, the same algorithms

can be used when the reverse is true. The degree of accuracy to which T, is known will

not be critical in any of the algorithms presented in this thesis since the value is only

needed for computing the output sample spacing. For now, we will also assume that

both T, and T, are stable. The repercussions of unstable periods will be discussed in

Chapter 5.

3.1 General Approach

If both the signal and sampling periods are known, waveform recovery is simple.

Each sample zxn, corresponding to the analog signal z,(t) at t = nT,, is equal to the

sample that would have been obtained at time t = (nT,),.. To recover the original

waveshape, we can place each sample in a composite period at t = (nT,)Tr, or equiva-

lently, r = (n),. The composite period thus extends over the range 0 < r < < ,,. We

have chosen to view its formation as wrapping the samples onto a cylinder of circum-

ference r,, as depicted in Figure 3.1.

The sample spacing within a composite period typically is not uniform. In general,

LWe ue , measured in revolutions, to distinguish it from f, and w, typically corresponding to
quantities measured in Hertz, radians/second, and radians, respectively.
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successive samples zInj are scattered to non-integral locations along the r-axis. Never-

theless, the waveshape of the original signal x,(t) should be apparent, even for m;odfst

quantities of samples and for arbitrarily large T,.

We know from Chapter 2 that the procedure above generally will fail if r, is rational.

In fact, the irrationality requirement in the pseudo-Nyquist criterion can be justified

with a time domain argument similar to the frequency domain argument presented

earlier. If r,, (= fl,/n,, from Chapter 2) can be expressed as a rational number u/v

where (u, v) = 1, then each sample has one of only u (or fewer2) distinct ordinates.

Since

(n + u), = (n + vo),, = (n),W

the (n + u)th sample is identical to the n th sample.

However, we also know from Chapter 2 that if r, can be expressed as a fraction

t./v as above, destructive aliasing still will not occur if all harmonics in the original

waveform spectrum occupy u or fewer spectrally adjacent harmonic locations. If this is

the case, the signal can be completely recovered by taking only the first u (i.e., a unique

subset) of N available samples (assuming N > u), forming a composite period, and

interpolating as desired. The interpolation method must be insensitive to non-uniform

sample spacing.

The sample sorting algorithm above is insufficient for the more common case where

the signal period is not known. However, suppose that we repeat the reconstruction

process for several guessed or trial periods r, one of which is the correct period, r,.

Assuming enough samples are used, it is not unreasonable to expect the composite

period formed with the true period to be smoother" than the others so formed.

In order to implement such an iterative technique, we need a method for estimating

the 'smoothness" of a composite period. For this purpose, Rader has defined the van-

ation of a composite period as the sum of the absolute values of the differences between

successive composite period samples z,,[n], including the last and first samples.3 The

21n the case where the ordinates of one period of the analog waveform are not unique.
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subscript r indicates the trial period used to form the composite period.

L-1

V(rg) z= .,ti~o - Z,[L - i! E C :Zi,tni - z,,[n- 1II (3.1)
n=l

L is the number of samples available. and for now, also the number in the composite

period. The indices of the z,,nl only indicate temporal ordering. They do not imply

uniform sample spacing.

If we were to reconstruct an aliased sinewave with amplitude A using its true pe-

riod r,, and many samples (so that the composite period contained samples near the

maximum and the minimum of the sinewave period), V(r,)l,. would be very nearly,

if not exactly, 4A. The sinewave samples would be in the wrong temporal order if an

incorrect period was used. This would yield a larger ,alue of V (r,)I,, unless 1/r and

either 1/r, or -1/r. were congruent modulo one ("1/r,", where r, is the normalized

sampling frequency), in which case V (r)1,,, would be the same. (Refer to Section 2.2.)

We would expect similar results for many other types of waveforms, including those

rich in high frequency components.

Based on the assumptions above, Rader has proposed the following criterion for

choosing the 'best" value of r, from a properly chosen, finite set used in the prescribed

manner:

Criterion 3.1 The trial period which yields the waveform of smallest variation is the

correct period, and the resulting waveform is the correct waveform.

We will refer to this as the minimum variation criterion. The choice of a suitable set

of trial periods will be treated in Section 3.2.

It is probably impossible to justify the criterion deterministically. This might be

made possible by redefining variation using squares rather than absolute values of

successive differences. Since the criterion has yet to be proven using either definition,

the original one should be retained for a purely practical reason. Most of the processing

required by the algorithm described in the next section involves computation of many
3The bracket notation used for the time variable n is somewhat misleading since, in the most general

sense, ,, is a function of a continuous variable (r). However, it will be accurately described as a discrete
time function when implemented.
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trial variations. Therefore, using squares (viz., multiplies) instead of absolute values

would incur a substantial penalty.

The minimum variation criterion can be supported, however, with a probabilistic

argument. Although the manner in which we state the argument here is different from

that used by Rader, the key issues remain unchanged. We will consider the effect of

using a given trial period r with increasing N, the quantities of samples used. Two

cases will be examined: r = r, and r, & r,. In either case, as more samples are used,

the variation may increase, and it cannot decrease. However, the. effects in the limit

(as N - oo) are distinct in each case.

Suppose that we form several composite periods using the correct period T,, (which

must be irrational) with different N. As N increases, the variation4 VN(r,) asymptot-

ically approaches V, the variation' of one period of the original analog signal:

lim V () = , (3.2)

In the limit, there would be no inflections (local maxima or minima) of the original

waveshape between any two successive samples in the reconstructed' period. An example

involving four different values of N is shown in Figure 3.2. Note that each of the

variations for the last three plots is approximately equal to 16 (i.e., V,).

Now suppose that an incorrect period r ( r,,) is used. Increasing N should 4

always result in a larger variation. V (r,) almost certainly will increase without bound

since, in the limit, each ordinate of the original waveform will be next to every other,

after formation of the composite period. It thus seems reasonable that the minimum

variation criterion will hold for finite N when N is somewhat greater than the number

of significant harmonics present in the waveform, since the latter governs the number

of inflections in a true period of the original waveform. Empirical evidence (viz., plots 4

of actual variation functions for various N) will be presented in Section 3.4, along with

all other experimental results pertaining to this chapter.

We can now discuss the algorithm provided by Rader to implement the preceding

procedures for determining r,, and recovering the original waveform z,(t).

'As defined using absolute, not squared, differences.
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aliased sequence z(ni.
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3.2 Detailed Description of the Algorithm

Once we have V(^r), the composite period variation for all AT, we should be able to

determine the true signal period r, (and thus recover the original waveform) using the

minimum variation criterion presented in the preceding section. However, two problems

must be circumvented in computing V (rg): it is a function of a continuous variable r,,

and it has infinite extent in this dimension. We are limited to finite search ranges for

r , , and only those composed of discrete points.

In developing the pseudo-Nyquist criterion we showed that sampling two signals

having identical Fourier coefficients yields identical sequences z[n] and z 2[n] if the

signal fundamental frequencies differ by a multiple of the sampling rate. We also

showed that if the sum of their fundamental frequencies is a multiple of the sampling

rate, one sequence is the time reversal of the other. (The consequences of ignoring

phase are minimal here.) Therefore, the limits on the search range, r,,, and r,,, must

be chosen such that their reciprocals do not span a multiple of 1/2. This includes the

requirement that
1 1 1

< - (3.3)
Tmsn rm= 2

No additional restrictions need to be imposed in order to insure finite search ranges.

We now direct our attention to the need for a discrete set of trial periods. Fortu-

nately, the function V (rg) is always piecewise-constant. To show this, Rader first defined

a cnritical penriod r as a value of r, for which two or more samples (z, (rl), zr, (r 2),...) in

the corresponding composite period z,, (r) would have he same abscissa (r 1 = r = " ),

as shown in Figure 3.3. Referring back to Figure 3.1, we see that in continuously vary-

ing r, (which replaces ,, as the circumference of the cylinder), the location of the n th

sample z,((n),) also varies continuously. Note that V(r,) cannot change unless two

or more samples interchange. It is ambiguous at each critical period, and constant

between any two which are adjacent.

A hypothetical variation function is shown in Figure 3.4. The limits of the search

range, r,,, and rm, and the (unknown) true signal period r,, are labelled. All other

markers correspond to locations of critical periods.
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Figure 3.3: Ambiguity of variation for composite period formed using a critical period
(r, = r).
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Figure 3.4: Hypothetical variation function showing ambiguity at critical periods (un-
labelled markers).

We only need to compute V (r,) at one point between each pair of adjacent critical

periods. Any such value of r can be used, though we will see that certain choices

yield faster execution than others. According to the minimum variation criterion, the

range of r, over which the variation is smallest should contain the true period r,,. If

we retain the value of r in this region at which V (r,) was computed as our estimate

of r,,, the corresponding composite period can be used as the reconstructed waveform.

We will call this estimate rbr,t. The samples in the composite period formed using r,.,t

will presumably have the same temporal ordering they would have had using the exact

value of r, instead. Since rb.,t cannot be a critical period, all samples will have unique

abscissas.

Rader has shown that the critical periods rp can be found by solving congruences

relating the abscissas ri and r2 of any two composite period samples z,,(ri) and x,, (r2)

which would coincide (rl = r2). If these two samples are the m t h and per samples from

the unsorted sequence x[ni, then

(p),, = (m),, (3.4)
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Since we are only sorting a finite set of samples zini where n = ... , N - 1, and the

roles of the two samples are interchangeable, we can assume

0 < (p - m) < N (3.3)

Defining the difference p - m as j, we note that

(r,, = 0 (3.6)

or, equivalently

j = k%, . (3.7)

where k is a positive integer which cannot be greater than L, the maximum number of

periods between the mth and pah samples:

k < L (3.8)

where

L Iv -1 (3.9)

The delimiters LJ indicate the integer part or floor' function.

In summary, a critical period r can be expressed as a ratio

J
kep = k (3.10)

where

O < j < N (3.11)

and

0 < k < L (3.12)

Given a search range [,,, rT.] which satisfies the constraints enumerated in

the pseudo-Nyquist criterion, we can list all possible critical periods satisfying Equa-

tions 3.11 and 3.12. However, if r,n is small and/or N is large, the number of critical

periods may be enormous. Sorting them (to determine which ones form adjacent pairs)

would be an arduous task, and storage requirements could be prohibitive. An algorithm

for generating successive critical periods is desirable.
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Rader has indicated that the critical periods r form a sparse subset of a Farey

seres ([7,8,9!. A Farey series of order L is defined as the sequence of all rational numbers

u/v (where (u, v) = 1) whose denominators do not exceed L, arranged in increasing

numerical order. For our purposes, the Farey fraction order is given by Equation 3.9.

If the numerator of a Farey fraction is less than N (Equation 3.11), then it is also a

critical period.

A graphical interpretation of the generation of a Farey series of order L = 4 is

given in Figure 3.5. Posts are placed on a grid (perpendicular to it) at all integral

locations in the first quadrant whose -coordinates are less than or equal to L. An

observer is placed at the origin of the grid, and is instructed to sweep his line of sight

counterclockwise and name only the coordinates (z, y) of each post he can see. Each

succeeding pair (z,y) forms the next member y/z of the Farey series. This series is

indicated by the collective dots in Figure 3.5. Farey fractions which are also critical

periods (for N= 3) are marked with solid dots.

Of course, a graphical method is not suitable for our purposes. However, given two
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successive Farey fractions ab and cd of order L, it is possible to generate the next

one, e/ f. Specifically, let

Z = L-b (3.13)

The next Farey fraction is then given by

e = Zc -a
(3.14)

f = Zd-b

The proof is as follows. From [7] we know that two successive Farey fractions a/b

and c/d of order L satisfy both

cb - ad = 1 (3.15)

and

b+d> L (3.16)

If elf follows c/d in the Farey sequence, then ed - f must equal 1. Any e = Ze - a

and f = Zd - b satisfies this equality. We therefore must find a value of Z satifying

both

Zd - b < L (3.17)

and

d + (Zd - b) > L (3.18)

Equivalently

Z< d < Z + (3.19)

The unique solution is given by Equation 3.13.

Given two successive Farey fractions u,/v, and u/v 1 spanning rm,,,, we can use

Equations 3.13 and 3.14 to generate all the rest. We store the first Farey fraction

uo/vu, then alternate between searching for the next critical period and computing

V(r,) for some r, between that critical period and the previous one. If a new V(-r) is

less than the previously stored minimum, it replaces that value, and the corresponding

r, is also recorded.

We can use u/vo for r3 in the initial iteration if it is not a critical period. The last

variation is computed when a critical period greater than r,,z is generated. Critical
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periods are found by testing each new Farey fraction for a numerator less than NV. Any

Farey fractions between the previous and current critical periods (r,,ev and rp,,cu,)

are stored separately for use in computing the variation.

Recall that any value between r,,p,, and r,,, can be used as a trial period r. We

could calculate V (r,) by storing the pairs ((n),,, zjn]) for n = 0,..., N-1, sorting them

by abscissas (n),,, then using the resulting composite period ,,mj in Equation 3.1.

All samples z,,[m] would have distinct ordinates. For the trial period between the

same two critical periods that surround the true period r,, the samples would be in

the correct order, as well.

However, if we choose a rational value u/v ((u, v) = 1) for r which also is not a

critical period, it is possible to avoid storing and sorting the location/value pairs before

calculating each V(rg). In addition, the composite period samples will have integral

locations. We can calculate V (rg) by determining which samples succeed one another

in the composite period and alternately accumulating successive absolute differences.

The samples znj] are to be sorted on (n)u/. or equivalently, (vn)u, since temporal

ordering is independent of time scale. There will thus be u samples in the composite

period. Since u/v cannot be a critical period, u > N, and there will be u - N missing

samples in the composite period. If we were to use the original method of storing and

sorting, we would provide u empty registers, then fill them with the N samples z(ni.

The u - N registers which would remain empty would be skipped in computing V (r,)

with Equation 3.1.

It is desirable to avoid providing the u registers for accumulating the absolute

differences of successive composite period samples. We only need to determine which

sample zfml would have been placed in register r + 1, given that sample zfp] would

have been placed in register r. We know that

(VP) = (r),

and

(vm)U = ( + ),

30

�



Therefore,

/yp +1) = (vm) 

(vm - p)) = 1

and

(m) = (p t -j (3.20)

where s is the multipiicative inverse of v for the modulus u, i.e., any solution of

(vS), = 1 (3.21)

The complete set of solutions s is a residue class5 of the modulus u, though the unique

value less than u will be used. A method for solving Equation 3.21 will be presented

near the end of this section.

To compute V (r), we store the first input sample, z{01, then alternate between de-

termining the next composite period sample with Equation 3.20, and accumulating the

difference between it and the last sample stored. Whenever the index of the next sam-

ple is greater than the number available, a sample will be missing from the composite

period. We simply skip this sample by determining the next sample and retaining the

previously stored sample, since missing samples should not contribute to the variation.

Computation of V (r,) terminates when the next input sample is [0!, i.e., the starting

sample. We then will have alternated as above u times and accumulated N absolute

differences.

Each composite period formed using r = u/v will contain u uniformly-spaced

samples. As mentioned earlier, u - N samples will be missing. We therefore should

choose r whose numerators are as small as possible (= N, ideally). Recall that in

searching for critical periods, we might find Farey fractions y/z between them. Since

these values are all in lowest terms (i.e., (z, y) = 1), any of them is convenient for use as

a trial period. Therefore, if more than one are found between a pair of critical periods,

we should choose the one with the smallest numerator y. Doing so has the additional

benefit of accelerating the variation computation without affecting the value obtained.

5See section 2.3.
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If no Farey fractions (of the order given by Equation 3.9) exist between two particu-

lar critical periods a/b and c/d, we must find some other rational number u/v between

them for r. The mediant [7] of a/b and c/d, u/v, provides a convenient solution:

u = a - c
(3.22)

v=b+d

Clearly,
a u c
b v d

In addition, u/v is sure to be in lowest terms. To prove this, suppose that u and v have

a common factor g. Then

a c = ge

b + d = gf

where e and f are some integers. Now

C = ge - a

b = gf - d

and

cb = g2ef - g(af + ed) + ad

Utilizing Equation 3.15, we note that

g2ef - g(af + ed) = 1

i.e., g is an integer factor of one. Therefore, g must equal one, and (u, v) = 1.

Once we find rbt = u/ v, a value of r, for which V (r,) is smallest, we can reconstruct

the analog waveform by storing the samples zfnl in the same order that they were

used in computing V(rb,,t). In particular, the multiplicative inverse of v, modulo u

(Equation 3.21) is the increment s for the index n. As before, each successive index

must be interpreted modulo u. Missing samples, indicated by n > N, must be blanked.

Since there are u samples in the reconstructed period and the true period T, is very

nearly rbtT, (in units of real time), the sample spacing is rbctT,/u, or T,/v.

The remainder of this section will contain descriptions of procedures presented by

Rader for computing a multiplicative inverse and initializing the Farey sequence used
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to generate trial periods. Finally, flowcharts summarizing our implementation of the

entire algorithm will be provided.

To solve Equation 3.21 for s, the multiplicative inverse of v, modulo u (assuming

(u, v) = 1), we begin by expressing u/v as a continued fraction [7,10!:

- = ao -
V

1
1

al +
a 2 +

(3.23)

1

as+

1

a,

The integers a are determined by the following equations:

ro

v

= al +

t2
= a 2 + -

t1r

t3
= as + -

r2

0 < tr < 

O < rl < ro

0 < r < rl

0 < r3 < r2

= aM,

The continued fraction expansion of any rational number u/v has to terminate (i.e.,

r, = 0) since each remainder ri must be a non-negative integer smaller than its prede-

cessor, rt i-.
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The expressions

Po ao

qo T
P 1 1

P2 1
-- = ao ---

q2 al t --
q2

(3.25)

pQ 1 U
a( + 1

a 2 +
as+

a,

where (p i ,qi) = 1 for i = 0,..., , are called convergents to the continued fraction in

Equation 3.23. It can be shown [7! that the even convergents P2i/q2i are all < u/v and

increase strictly with i, and the odd convergents pi+,l/q2i+l are all > u/v and decrease

strictly with i. Therefore, increasing values of i yield successively better approximations

of u/v. The last convergent p/q,, is identically u/v.

For n > 2, the convergents can be generated iteratively [7,10! using

pm = aps,_ .. 1 ~+ p-2 (3.26)

qn = anqn-. + q-2

In addition,

qnPn-1 - Pnqn- 1 = (-1)" (3.27)

Equations 3.26 and 3.27 can also be used for n = 1 if we define

P-1 P- = 1 (3.28)
q-l O

We can now specify a procedure for solving Equation 3.21. Store the first two

convergents: - = 1, q-1 = 0, p = ao (= u/vJ), and qo = 1. Use Equation 3.24 to

compute the integers a,, until a remainder r,, is zero. Also, as each a, is calculated,

compute the next pair (p,, q,) using Equation 3.26. If the zero remainder is found when
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We know that the denominator of P,-l /q,-l is < L. (If this was not the case, convergent

generation would have had to terminate earlier.) Since

qn-lpPn-2 - p-qn- = (-1) - 1

we can easily verify that

qpn- - p'qn-j = (-1)"

which meets the requirement imposed by Equation 3.15.

Finally, we see from Equations 3.36 and 3.37 that Equation 3.16 is also satisfied

since

q+ q.n- = q 1-l(1 + L - q,-2) + q,-2

and 1 + r > r for any r.

Figures 3.6 through 3.11 contain flowcharts summarizing our implementation of the

procedures reviewed in this section. They comprise a main program (RADER) and

five subroutines, four of which are called directly from the main program. Subroutine

calls are indicated by boxes with two additional vertical lines.

3.3 A Modification of the Algorithm

The success of the Rader algorithm in recovering a given aliased signal depends

largely on N, the number of samples used. This can be inferred from the probabilistic

arguments supporting the minimum variation criterion which were given in Section 3.1.

N indirectly determines the density of the search for r, along the r-axis. The density

increases directly (though non-uniformly) with increasing Farey fraction order L. Since

the search range lower limit Tr,n for a given signal must be known beforehand, L is

determined by (and approximately proportional to) N, as evident from Equation 3.9.

If too few samples are used, then the algorithm will fail. Specifically, for a given r,.,,

there is an (approximate) minimum number of samples M yielding a search density

insuring that the estimated period rb.,t and the true period r,, both lie between the

same two critical periods in the corresponding Farey series. However, M is impossible

to quantify, and we must proceed under the assumption that enough samples will be
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starting with a denominator of zero (q_l), until a denominator q > L is found. Rader

has shown that the last two convergents p,,l/ qn,,_ and pn/q found in this manner

provide the two desired Farey fractions, either directly or with a few additional, mince

steps.

The only difficulty we may encounter is that a remainder of zero (see Equation 3.24)

might be obtained before the termination condition above is met. If r,, is irrational,

this problem cannot occur. Unlike that of a rational number u/v, the continued fraction

expansion of an irrational number is infinite. The integers a, in Equation 3.23 (in which

we replace u/v with r,,,,) are unique, and are computed using the greatest integer

function:

a1 = mLMr

al = Kf, ..... 2-aOO . (3.35)

as= L -a.!

In practice, rational numbers with many non-trivial digits must be used for r,,,,. If a

zero remainder is obtained before a value q > L is found, we must adjust r,,,, by some

arbitrarily small amount , and restart.

If the last convergent q,, equals L, then by Equations 3.33 and 3.34, p,_l/qn _ and

p,,/qn are the desired Farey fractions. If qn, > L, then p,,/qn cannot be a Farey fraction

of order L. However, it will be shown that p,-l/qn- is still one of the two we seek,

and that the other (p'lq') is given by

a=IL - qn-2 (3.36)

and

p = a'p,-I + Pn-2

q = a'qn-1 + qn-2

The denominator q' must be < L since

< L - qn-2

qn-I
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n = , then pg = u and q,, = v. Using these values in Equation 3.27 and interpreting

both sides modulo u, we see that

K(....1)M= ((-1)#),(3.29)

If A is even, then ,,-l is the solution to Equation 3.21:

S = P-1i (3.30)

If it is odd, then multiply both sides of Equation 3.29 by -1, and again interpret the

results modulo u. This yields the solution

= u - PM-i (3.31)

Several of the results presented above for determining a multiplicative inverse can

also be used for initializing the Farey fraction generator needed to produce trial periods.

We desire two consecutive Farey fractions of order L (Equation 3.9) spanning r,,, the

lower limit of the signal period search range:

- < r < - uV, v2 < L (3.32)
Ul v2

We begin by noting the similarity between Equation 3.27 and Equation 3.15. Succes-

sive convergents P.,- /q,- 1 and p,,/q,, generated using Equation 3.26 are also adjacent6

Farey fractions of some order L, where L satisfies Equations 3.12 and 3.16, i.e.,

(3.33)
q. L

and.

qn- + qn > L (3.34)

Equation 3.26 indicates that both the numerators and denominators of successive

convergents increase with increasing n, though not necessarily by constant increments.

Therefore, we can generate convergents to the continued fraction expansion of rm,,n
6 We use the term adjacent rather than consecutive since the two Farey fractions are in either ascending

or descending order, depending on whether n is odd or even, respectively.
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aliased data (N samples),
search range (i , )

Notes:
t Either T 2 is first candidate for next trial period g (i.e., NCPF = FALSE), or

numerator of t 2 < numerator of previously stored candidate (if NCPF = TRUE).
Using new value will result in fewer missing composite period samples.

Figure 3.6: Program RADER.
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Figure 3.6: continued
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search range (t m , m )

(no value)

Notes:
t Negative min or Orua, orT mi. > ma -
t One which does not satisfy the pseudo-Nyquist criterion.

Figure 3.7: Subroutine PS-NYQ-CRIT.
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search range lower limit
Farey fraction order

I

(t ).
(LTo

r

Subroutine
TNIT-FF-SEQ

l -

4
yt

.

Compute 0'
Convergent:

Pn= a, q, 1

,
|N

Another Convergent
(q. < L)

Set x to Reciprocal
of Remainder:
x = (x - a) l-I

Noes

ots:
t Algorithm failed - restart.

Figure 3.8: Subroutine INIT-FF-SEQ.
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Farey fractions of order L
(P. /qu-1, Pa /q ) spanning h:, .

Figure 3.8: continued
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aliased data (x[n]),
ai period ( = u/v)

of v, modulo u (s)

Figure 3.9: Subroutine VARIATION.
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integer (v),
modulus (u)

I

Subroutine
MULT-2RVRSE

Set Convergent
Counter: t
n=O

lI -

Compute - 1l'
Convergent:

PU-I =1, qu-1 - 0

Compute 0 
Convergent

P n a,,, q = 1

________________________I

4l 

4_

4

p

N

Store Multiplicative
Inverse:
S = P-I

Return

I

multiplicative
inverse

(s: (vs)U = 1)

Notes:
t Equals number of terms in continued fraction expansion of u/v.
t Never true on first iteration (greatest common denominator (u, v) cannot = 1).

Figure 3.10: Subroutine MULT-INVERSE.
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aliased data (xin]),
estimate of period ( b = u/v),

multiplicative inverse of
v, modulo u (s)

de-aliased data (y[m])

Figure 3.11: Subroutine RECONSTRUCT.
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used. The minimum variation criterion presupposes the latter. If N is much greater 7

than the number of significant harmonics in the waveform, then the algorithm should

not fail, and r&bt should approximately equal r,. We shall continue to assume that N

is always sufficiently large.

We now consider the effect of using a quantity of samples substantially exceeding

the unknown minimum M. This should increase the accuracy of the estimate of r, and

yield better waveform reconstruction. However, the computational expense incurred

is generally very high since the order of the search time s is much greater than 0 {N(}.

The search time consists primarily of the time required for computing composite period

variations using the trial periods. The number of trial periods is equal to the number

of critical period Farey fractions in the search range.

Suppose that the number of samples available is substantially greater than M.

Assuming M can be estimated very roughly (perhaps from the number of harmonics

postulated), t seems probable that the minimum acceptable search density can be used

in an initial search to substantially reduce the uncertainty range of r,,. This range, over

which the corresponding variation function would be constant (and minimized, as well),

would be delimited by the two critical periods spanning the returned estimate rb,,t. A

reduced quantity of samples (NR), slightly greater than M, would be used for this

coarse search. Successively finer searches, requiring increasing NVR, could then be used

to reduce the uncertainty and refine the estimate of r,, further. This iterative procedure

would be terminated once either all samples had been used, the estimate was sufficiently

accurate, or the additional processing time became prohibitive.

In order to insure that the search density increases monotonically between iterations,

we must increment the Farey fraction order, rather than directly incrementing the

number of samples. We choose an initial Farey fraction order Lo,, and a Farey fraction

order increment AL. Equation 3.9 can be rewritten to show the relationship between

'By perhaps an order of magnitude or more.

sThis quantity is difficult to enumerate due to the irregular distribution of Farey fractions.
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the Farey fraction order and the reduced number of samples used on an iteration:

L = LY -1 (3.38)

rs,,n is the lower limit of the reduced search range on a given iteration, and will be

specified below. Directly increasing NR does not insure monotonically-increasing L

since Ran,, also increases monotonically.

Given rRi,,, we compute the reduced number of samples necessary to yield the

desired search density (approximately):

Ni = LRmin + 1 (3.39)

If this value exceeds N, the number available, then all samples are used (i.e., NVR = N)

for one final iteration. Once :VR is determined, the Farey fraction order must be

recomputed using Equation 3.38, due to the greatest integer function involved, and

also since NR may be limited, as above.

The search range for the initial iteration is the original, full search-range: rR,mn =

r,,,, and TR,,. = rm . On each iteration, the two critical periods spanning the estimate

rb,,t are retained to be used as the reduced search range [rnr, rR,,1] on the next

iteration. Since a Farey series of order L includes all members of an order-(L - 1)

Farey series, and NR must increase between iterations (since rR.n. can never decrease),

we know that these two critical periods will be among the critical periods in the next

iteration. (Recall that critical periods are Farey fractions whose numerators are less

than NR.)

On the first search, initialization of the trial period generator consists of determining

the two order-L Farey fractions (rl and r2) spanning the lower search range limit rR,mn

(in this case, = rin), in the same manner as in the original algorithm (see Figure 3.8).

However, the initialization algorithm typically requires some adjustment when given a

rational value TRmin Thus on successive iterations, Farey fractions spanning the original

lower limit rin (always < rRin), rather than Tmin, should be found. A negligible

amount of computation is then necessary to generate'successive Farey fractions using

Equations 3.13 and 3.14 until a critical period greater than 9 or equal to Rin is found.
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This value would correspond to r. rl would be the preceding (non-critical period)

Farey fraction. The Rader algorithm would then proceed as described in the previous

section.

Figures 3.12 through 3.14 contain fowcharts summarizing our implementation of

our modifications to the Rader algorithm. Together, the main program FAST-SCAIN 

and subroutine RADER-SRCH replace the main program RADER previously shown

in Figure 3.6. In addition, another module (subroutine RAISE-INIT) has been added

to implement the modification in trial period generator initialization. All other sub-

routines in Section 3.2 remain unchanged.

3.4 Examples

The Rader algorithm, as well as all other algorithms presented in this thesis, was

implemented in the C programming language on a VAX-11/750 minicomputer'0 under

the UNIX 4.2 BSD operating system." Pairs of integers were used to represent rational

quantities such as trial periods. Double precision floating point numbers were used for

most other quantities (e.g., input and output samples, and variations).

Figures 3.15 through 3.17 compare several recovered signals with their aliased coun-

terparts. Oversampled signals are also shown for comparison, though their normalized

time scales differ from those of the aliased and recovered versions, as noted in the

captions. Figure 3.15 shows the simple case of a single sinewave originally having nor-

malized frequency ,, = .734531, aliased to ' = .265469 (with a phase shift of r). The

frequency determined using the algorithm was .734375, in error by only .02%. Approx-

imately 8 seconds were required to process 50 samples. The missing composite period U

samples are clearly evident in the plot.

Figure 3.16 contains a more harmonically rich, synthetic waveform comprising ten

equal-amplitude sinusoids superimposed on a small d.c. offset. While the original signal
9The 'greater than' applies only to the first iteration since rR,,,, must be a critical period in all

subsequent iterations.

'°VAX is a trademark of the Digital Equipment Corporation.
11UNIX is a trademark of AT&T Bell Laboratories.
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aliased data (N samples),
full search range frm. (t max ),

initial Farey Fraction order (L 0),
F.f. order increment (AzL)

Program
FAST-SCAN

I v

!

V

D

m

A

Notes:
t Also determine new, narrower

C
4

End

final estimate of
period (bs, = u/v),

de-aliased data (u samples)

search range for next iteration.

Figure 3.12: Program FAST-SCAN. Bold blocks indicate additions to or modifications
of Figure 3.6. (Also see Figure 3.13.)
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Subroutine
RADER-SRCH

Store Potential
Trial Penod:
tg = 

aliased data (first NR
samples), reduced search
range (tRin,: Rmax ),

original lower limit ( m )

-I.

I
N

p

4

N

4
Calculate Median Initialize Best
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(
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numerator of zC2 < numerator of previously stored candidate (if NCPF = TRUE).
Using new value will result in fewer missing composite period samples.

+ 2 returned will be smallest critical period > T Rm .

Figure 3.13: Subroutine RADER-SRCH. Bold blocks indicate additions to or modifi-
cations of Figure 3.6. (Also see Figure 3.12.)
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Figure 3.13: continued
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successive Farey fractions spanning X rin (T , ),
reduced search range lower limit (- , ;2 X ti m,

successive Fary fractions spanning Rin ( 1 , r2 )

Notes:
t Full search range lower limit.

Figure 3.14: Subroutine RAISE-INIT.
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Figure 3.15: Aliased sinewave recovered using Rader algorithm. (a) Oversampled sig-
nal. (b) Aliased signal ((a) downsampled by 10). (c) Recovered signal (same normalized
time scale as (b)).
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is completely ooscured by aliasing, as shown in Figure 3.16(b), it is readily apparent in

Figure 3.16(c). 200 samples were used, requiring 146 seconds. Identical reconstructions

were obtained using our FAST-SCAN version of the Rader algorithm with an initial

Farey fraction order of 100 and an order increment of 10% per iteration. In this case,

only 11 seconds were required.

The execution time is almost completely independent of the harmonic content of the

waveform. However, we see from comparing the two previous examples of the unmod-

ified Rader algorithm just how strongly the number of samples affects it. Experiments

with 500 or more samples have confirmed this. Execution time will be discussed in

greater detail in Chapter 5.

Figure 3.17 contains waveforms originating from 60 Hz line interference sampled at

10796.123 Hz. (This rate was chosen to meet the pseudo-Nyquist criterion irrationality

requirement.) Identical reconstructions were obtained using the Rader (unmodified)

and FAST-SCAN algorithms, the latter with an initial Farey fraction order of 250 and

an order increment of 10%. 250 samples were used, requiring 551 and 15 seconds,

respectively.

We conclude this chapter with a brief look at typical Rader algorithm variation

functions VN(r,), where N is the number of samples used. Figure 3.18 shows three

variation functions, all obtained from the aliased test signal of 10 sines which was used

above. They differ only in the number of samples (V) used in each case. The most

striking feature of the illustration is that the Rader algorithm converges to the true

signal period r, as N is increased (though there is a slight undershoot for N = 50). In

addition, VN(r) continues to increase at all points r # r, as N is increased, while it

quickly reaches a limiting value at rg = r,.

The widths of the uncertainty ranges, i.e., the intervals over which the variations

are constant and minimized, decrease for increasing N. However, it is clear from the

plot that N = 25 would be insufficient as the number of samples to use in the initial

iteration of the FAST-SCAN algorithm since the resulting initial uncertainty range

would not completely contain the proper uncertainty ranges for subsequent iterations.

Nonetheless, FAST-SCAN would successfully determine r,, if an initial iteration sample
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_ e

Figure 3.16: Aliased synthetic signal (ten sines with d.c. offset) recovered using Rader
algorithm. (a) Oversampled signal. (b) Aliased signal ((a) downsampled by 100). (c)
Recovered signal (same normalized time scale as (b)).
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signal (same normalized time scale as (b)).
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count CNR of 30 or more was used.
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Chapter 4

SPEC-PEAKS - A Frequency

Domain Alternative to the Rader

Algorithm

Like the Rader algorithm, the new algorithm to be presented in this chapter consists

of estimating the normalized period' r. of an analog signal from aliased data, then re-

constructing the signal by using the estimate in an appropriate data sorting routine. As

before, a anite set of guesses is chosen, and some criterion is used to select the best one.

However, the guesses will now be determined in the frequency domain. Specifically, we

will use guesses of the fundamental frequency ,,. Since they are analogous to the trial

periods in the Rader algorithm, they will be called trial frequencies. Reconstruction

will consist of sorting spectral samples corresponding to aliased harmonics using the

best estimate of ,, among the trial frequencies, then inverse transforming the results.

Because the trial frequencies will be obtained by peak-picking the spectrum obtained

from the discrete Fourier transform of the aliased data, we will refer to the proposed

method as the spectral peaks algorithm, or simply 'SPEC-PEAKS".

Development of the SPEC-PEAKS algorithm is closely related to the theoretical

work in Chapter 2. Since we will often be able to draw upon'this earlier work directly,

'Or equivalently, the normalized frequency, ,..
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it will be appropriate to condense discussion of the general approach and a detailed

description of the algorithm into a single section, Section 4.1. Section 4.2 will discuss a

modification of the SPEC-PEAKS algorithm which, although not mandatory for signal

recovery, will yield lower reconstruction error in certain cases. The closing section of the

chapter will present examples of waveforms reconstructed using SPEC-PEAKS (with

and without the modification), along with the corresponding oversampled and aliased

signals.

4.1 General Approach and Detailed Description of

the Algorithm

Whether or not the normalized signal fundamental frequency a, is known, the first

step towards signal reconstruction comprises a discrete Fourier transform X[k, of the

aliased data zin i. Our ultimate objective is to estimate the relative complex amplitudes

of all. significant harmonics in the original signal directly from the DFT samples. The

aliased harmonics can then be sorted into a composite spectrum2 whose inverse discrete

Fourier transform provides one period of the original signal.

We begin with the simple case where h, is known precisely. The relative harmonic

amplitudes are approximately equal to the DFT samples Xlkj which are nearest positive

and negative multiples of the fundamental frequency. In order to yield the appropriate

DFT indices, each multiple is first interpreted modulo the normalized sampling rate

X,, which is unity by definition, and then scaled with the DFT length R:

k = R(i,)11 i 0, 1, 2,... (4.1)

The new notation Li has been introduced to represent the nearest integer or rounding'

function.

Since only a finite number of time samples are used to compute the DFT, the

observed harmonics have measurable amplitudes. Observed harmonics never have zero

width; therefore, we can expect that large quantities of samples will be needed to avoid

2Here again we choose notation which is consistent with that used by Rader.
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destructive aliasing. If an insufficient number are used, adjacent aliased harmonics in

the observed spectrum may overlap, even when the signal and sampling rates are not

integrally related. Assuming overlap does not occur, the relative harmonic amplitudes

found will be correct (to an arbitrary degree of accuracy, through zero-padding prior to

the DFT), and we can proceed to sort the aliased harmonics in frequency using these

values.

Harmonics from negative multiples of 0, (Equation 4.1) are placed in the upper

portion of a composite spectrum3 X,.[jJ, and the remainder in the lower portion.

For simplicity, we hereafter will assume that there are equal numbers of significant

harmonics in the original signal at positive and negative analog frequencies (excluding

d.c.), unless the signal is analytic. If a total of P harmonics including the one at d.c.

are- localized using Equation 4.1, then they are sorted as follows:

XIkoi] , X,io

X[k1 X0.[

X[k2] ' X,[21

X[k - (4.2)

- XO, P - 2.

X'k_21 - X .[P -

X[k,l - X,.iP-11

Of course, onjugate symmetry should be exploited when recovering real signals.

The IDFT of the composite spectrum X,.[j] yields the recovered waveform z,.[m,

the SPEC-PEAKS equivalent of the Rader algorithm composite period z,. (ml. If de-

sired, X,. [jl can be padded with an arbitrary number of zero samples inserted between

the samples at j = (P - 1)/2 and j = (P + 1)/2, prior to inverse transforming.

We now consider the more common case where the signal fundamental frequency

d, is not known. We begin by briefly reviewing the theoretical, iterative procedure
3 We use the index here to distinguish it from our other index k since the frequency scaling of the

composite spectrum X,. [jj and the aliased spectrum XIk! will differ.
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outlined in Chapter 2 (Figure 2.1).

The exact locations of the aliased harmonics were to be used as trial frequencies

i, or guesses of O,.. Knowledge of the signal high-frequency cutoff Oh (= h/fl,) was

required, though the allowable range of values for fh was completely independent of

the sampling rate ,. Each b0 was to be used in computing a tally of the number of

its multiples' less than Oh at which the aliased spectrum was non-zero. The true signal

frequency , would be given by the particular o, yielding the greatest tally.

For the moment, we assume that a set of trial frequencies 0, including 0, can

be found. Nonetheless, we cannot collect an infinite number of samples, nor can we

compute an infinite length DFT, so the true line spectrum of an aliased signal cannot

be obtained. Therefore, we cannot compute meaningful tallies as in the ideal procedure

'rom Chapter 2. The procedure must be modified in order to yield a practical algorithm.

Suppose that each O~ is used to compute a corresponding partial energy E (X9), which

we define as the total spectral energy at all non-zero multiples of O. whose absolute

values lie below some cutoff frequency h:

Lo

= Z X(kll
*-Ll (4.3)

= LR(i )1I
The limits L 1 and L 2 are given by

L = -LI L 'OJ (4.4)

The partial energies can replace the tallies in the theoretical procedure from Chap-

ter 2. They will serve the same purpose as the variations V (rg) in the Rader algorithm,

viz., to indicate the best estimate of the signal fundamental frequency. (,,) should

be maximized at g, = ,. Assuming this is true in general, we now state a criterion

for selecting the "best" trial frequency Ob.,t from some suitably chosen set:

Criterion 4.1 The trial frequency which yields the greatest partial energy is the correct

fundamental frequency, and the resulting waveform is the correct waveform.

4Positive and negative multiples would be used for non-analytic signals, and their absolute values
would be compared with h.
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We will refer to this statement as the maximum partial energy criterion.

Trial frequencies can be obtained by peak-picking the aliased spectrum Xki over

the range between the known 5 limits

keMn = IR(Qmin)i1

and

kz, = R(z) 

The spectrum must be sampled finely since the trial frequencies are now given by inte-

gers k which should correspond closely to the desired continuous frequency locations

of the harmonics. We will see that, as was true in Chapter 2, using 'baseband' trial

frequencies k, (i.e., values corresponding to residues modulo the sampling rate) will not

affect the reconstruction process. Other issues related to the choice of trial frequencies,

such as spectral sample spacing and number of trial frequencies, will be discussed in

greater detail below.

We now have specified the basic framework of the SPEC-PEAKS algorithm: a pro-

cedure for choosing trial frequencies, a criterion for selecting the one which is the best

approximation of the true fundamental frequency, and a procedure for reconstructing

the signal using this estimate. However, there are three practical matters which still

must be considered in implementing the maximum partial energy criterion.

First, due to spectral leakage, the collective peaks in the observed spectrum do not

consist solely of aliased harmonics, as in the true spectrum. It follows that using all of

these peaks as trial frequencies may produce erroneous results. For example, a leakage

peak occurring at a submultiple of X,, would surely yield a higher partial energy than

the desired peak at , itself would, since all energy in the latter case would have to

be included in the former. If this frequency was chosen as the best estimate of O,, the

reconstructed waveform period would contain several periods of the true signal. Due

to the nature of the algorithm to be specified below, the waveform probably would

lack more high-frequency information and certainly would contain more energy from

spectral leakage than would a waveform reconstructed using 0,,. We therefore must

5As required by the pseudo-Nyquist criterion.
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choose some subset of all the observed spectral peaks. It will be necessary to estimate

the minimum number of trial frequencies needed to insure proper reconstruction.

Second, in the procedure in Figure 2.1, the energy summing process was terminated

when the next computed multiple of the current pg was greater than some cutoff Oh. The

choice of Oh was completely arbitrary in the sense that excessively" large values would

have no effect whatsoever on the tallies obtained. The true spectrum would be zero

except at harmonic locations. However, this is not true for the observed spectrum, and

thus all partial energies will include some spectral leakage components from the highest

multiples of 0,. Therefore, it is desirable to terminate the partial energy summation

as soon as possible. We should either use a small h, or choose another termination

condition.

The last problem is due to the fact that the locations of the aliased harmonics

can be determined only approximately from the sampled spectrum. Therefore, the

partial energies computed using the resultant trial frequencies k will be slightly in-

correct. In addition, even if the trial frequency closest to ,- is chosen as kb,ot, and

it does correspond to the index of the spectral sample nearest ,, the estimated har-

monic amplitudes found using multiples of this value (just prior to reconstruction) will

probably differ from their true values. Since this error increases in proportion to the

original (analog) harmonic number, it may be desirable to omit high frequency har-

monics in reconstructing the waveform. The IDFT of the composite spectrum would

thus correspond to a low-pass filtered version of the original signal.

For simplicity, we require that P, the number of significant harmonics in the origi-

nal signal, be known. We define significant harmonics as all analog harmonics in some

frequency range -f < < fl (regardless of amplitude) which includes every har-

monic whose amplitude is greater than some arbitrarily chosen minimum. Therefore,

the number of significant harmonics at either positive (non-d.c.) or negative frequencies

is given by

M = 1 (4.5)
2

We now propose that the number of significant harmonics be used in all of the

following cases, each intended to alleviate one of the three problems above:
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1. Use M as the number of trial frequencies k.

2. Use M as the number of pairs of positive and negative multiples of each kg to

sum in computing the partial energy (kg).

3. Use P as the number of harmonics (including d.c.) in the composite spectrum

for waveform reconstruction.

The reasons for these choices follow.

In general, there are equal numbers (M) of aliased significant harmonics in the

lower and upper halves of the aliased spectrum, i.e., in the ranges 0 < k < R/2 and

R/2 < k < R. Since one of these two ranges must bound the baseband search range

r,,,,,,,, M is appropriate as the limit on the number of trial frequencies. The

algorithm will fail if the spectral sample nearest the true fundamental frequency is not

among the M largest spectral peaks in the search range (or if it is not a peak at all).

With regard to the second case enumerated above, we need to change the limits

L 1 and L 2 in Equation 4.3 so that when the correct trial frequency is used, the cor-

responding partial energy contains no leakage components. The new limits are given

by
P-1

L 2 = -LI = M = (4.6)

for non-analytic signals, and by

L1= 1 ~~LI=1~~~~~~ ~(4.7)

L = M =P -1

for analytic signals. Beginning with Equation 4.2, we have assumed equal numbers

of positive and negative harmonics, plus the one at d.c., for non-analytic signals. We

will continue to concentrate our attention on non-analytic signals since in practice they

are far more common, and the algorithm modifications needed for analytic signals are

minor.

Using P as the number of harmonics in the composite spectrum is consistent with

our choice of M as the number of pairs of positive and negative multiples of each trial

frequency to sum in computing the corresponding partial energy.
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The aiased input data zini should be weighted with some windowing function

hin and then zero-padded before the DFT is computed. The choice of window type

and size, as well as the total DFT length, has a significant impact on the quality of

signal reconstruction. From our standpoint, the maximum amplitude of the window

spectral sidelobes is most important. The signal cannot be recovered with the proposed

algorithm if the fundamental is masked by leakage. A hamming window is a reasonable

choice.

It is advantageous to use as many input samples as are available 6 since doing so

decreases the chance of observed harmonics overlapping. On the frequency axis we

have been using, the width of a hamming window main lobe is 4/N, where N is the

number of samples to be used, and therefore the length of the window, as well. When

-ising such a window, the widths of observed aliased harmonics are approximately equal

to this value.

There is another important implication of the data/window size N. T.e DFT

length R is also involved. Consider the effect of quantization along the frequency axis

on partial energy computation. Figures 4.1(a) and 4.1(b) compare the ideal and non-

ideal locations of the first few 0g multiples used in computing ( g)jl,. In the first

case, P, = , exactly, while in the second, 0, = ,, + a. The frequency uncertainty

An, due to quantization in , is bounded by the spectral sample spacing:

AO 1 (4.8)

We now propose that the windowed sequence z'In = ztnlh[n be padded with

enough zeros so that the value of () j1,. computed with the quantized X, will consist

exclusively of energy from the smeared harmonics, as shown in Figure 4.1(b). This

is equivalent to requiring that each multiple of the quantized ho, correspond to a fre-

quency somewhere on the appropriate smeared harmonic. Ideally, these multiples would

correspond to the observed harmonic peaks, i.e., to the true harmonic locations.

If there are P significant harmonics, with equal quantities '(M in Equation 4.5)

8With the possible limitation of maximum tolerable processing time.
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Figure 4.1: First few trial frequency multiples used in computation of partial energy
E(~g). Images of harmonics due to aliasing not shown, for clarity. (a) Ideal case:

9 = , (no quantization in 0). Hamming window width also indicated. (b) Non-ideal
case: ¢p = -,,A .
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at positive and negative frequencies, then the greatest error occurs in estimating the

locations (and therefore, the amplitudes) of the M 'h and -Mth harmonics. From

Equation 4.8, we see that the localization error of each of these two harmonics is less

than MW/2R. We desire that

MAO < 4/
Z

(4.9)

Therefore, the DFT length must satisfy

R 4 (4.10)

where fl denotes the least higher integer or 'ceiling' function.. R - N zeros must be

appended to z'fn!.

Figures 4.2 through 4.4 contain flowcharts summarizing our implementation of the

SPEC-PEAKS algorithm for non-analytic signals. They comprise a main program

(SPEC-PEAKS) and three subroutines, all of which are called directly from the main

program. Subroutine PS-INYQ-CRIT was shown previously in Figure 3.7.

Though the choice of the significant number of harmonics is clearly not well de-

fined, the preceding algorithm has been used successfully in many instances, as will be

shown in Section 4.3. We first will present a minor modification of the SPEC-PEAKS

algorithm.

4.2 An Enhancement of the Algorithm

Towards the end of the previous section, we discussed the effects of quantization

along the O-axis on the computation of partial energies & (,O,). We are given N samples

(or may elect to use only N samples when more are available) and assume the original

signal contained P significant harmonics. We then choose the DFT size R so that when

the location of the discrete spectrum peak nearest ,. is used as a trial frequency p2,

& (bg) will contain energy from some portion of each smeared significant harmonic, and

from no other regions of the aliased spectrum. Assuming the maximum partial energy

criterion is correct, this peak location will be retained as the estimate of the true signal

fundamental, b,,t
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aliased data (N samples),
search range (m, max ),

no. significant harmonics (P, odd)

r-r

Compute P-point
IDFT of Composite

Spectrum Y[i]

i

C End

fund. frequency (best),
de-aliased data (P samples)

Notes:
t Add appropriate multiple of 0 s (unity by definition).
t (See previous chapter.)

Figure 4.2: Program SPEC-PEAKS.
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R-point magn. squared array (X[k]),
no. significant harmonics (P=2M+ 1),
M-point tial frequency array (k, [])

4~
Subroutine

MAX-HARM-E

IF

Reset Best Energy,
Trial Freq. Counter

Ebst = 0
j =0

Store New Estimate:

EbestEbcst

= temp
= Etcmp

All
Y' TrialFrequencis

Used UŽ M)
1)

I

Get New Trial
Frequency:

k Mp =kg]l

Reset Temp. Energy,
Harmonic Counter:

1 = 1

Return

Sum Energy:
E]temp =E +

X[k] + X(R-k]

Increment Harmonic
Counter
i =i+ 1

id i

index corresponding to estimate
of true fund. frequency (kbet )

Figure 4.3: Subroutine MAX-HARM-E.
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R-point aliased spectrum (X[k]),
no. significant harmonics (P = 2M 1)

Y

P-point composite
spectrum (Yfi])

Figure 4.4: Subroutine SORT-HARM.
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X(e: ,)l -
jri

6
markers: -+ -+ - + _

Figure 4.5: Adjustment of estimated harmonic locations for reconstruction.

In reconstructing the waveform with $b,,t, the relative amplitudes of the sorted

harmonics in the composite spectrum may deviate considerably from the original signal

harmonic amplitudes. This is. caused by error in aliased harmonic localization using

multiples of Ob.,t, interpreted modulo 0,.

If each estimated harmonic location lies on the correct smeared harmonic, this error

can be reduced with the following procedure. Each estimated location is adjusted to

the location of the peak of the lobe on which it lies,7 just prior to forming the composite

spectrum. The maxima and minima of the magnitude-squared spectrum are marked,

as shown in Figure 4.5. The spectrum is then searched for the peak marker between

the two minima markers that span the original estimated location. If a sufficiently

large DFT size is used, and leakage ripples do not create extra peaks on the smeared

harmonic main lobes, then the reconstructed waveform should more nearly resemble

the original waveform.

The adjustment procedure can only be used in reconstruction. It cannot be used to

increase the accuracy of the partial energies, all but one of which are computed using
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an incorrect trial frequency.

A flowchart depicting the harmonic adjustment procedure is given in Figure 4.6.

Also shown are the necessary modifications to program SPEC-PEAKS in Figure 4.2

and subroutine SORT-HAR.M in Figure 4.4.

4.3 Examples

Figures 4.7 and 4.8 show examples of signals recovered with the SPEC-PEAKS algo-

rithm, with and without the harmonic adjustment procedure described in Section 4.2.

Since the same test signals were used for this chapter and the previous one, only the

corresponding oversampled signals are repeated here, since they are useful for compar-

ison with the recovered waveforms. The aliased signals can be found in Section 3.4

using the references provided in the new figures. Also noted in each caption is the

normalized time scale factor by which the oversampled and recov, ted signals differ.

Figure 4.7(a) contains a test signal composed of ten equal-amplitude sinusoids su-

perimposed on a small d.c. offset. The signal shown in Figure 4.7(b) was recovered with

the unmodified SPEC-PEAKS algorithm. Figure 4.7(c) shows the signal recovered after

harmonic adjustment. This waveform more nearly resembles the one in Figure 4.7(a).

Less high frequency information has been lost, and the phase is correct. On the other

hand, the error in the middle of the reconstructed period has been accentuated by

harmonic adjustment. 1000 input samples were used for both cases, each requiring 7

seconds. (The harmonic adjustment time is negligible.)

Figure 4.8 contains waveforms originating from 60 Hz line interference sampled at

10796.123 Hz. The signal in Figure 4.8(b) was recovered with the unmodified algorithm.

It is quite similar to the one in Figure 4.8(a), with the exception of the loss of a minute

amount of high frequency information. As before, the third plot provides the recovered

signal after harmonic adjustment. 1000 samples were used for each, requiring 8 and 9

seconds, respectively.

In both examples above, harmonic adjustment results in greater retention of higher

harmonics since the estimated locations are moved to nearby spectral peaks (see Fig-
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estimated harmonic location (kbe ),
R-point max/min marker array (mark[k])

Notes:
t Reverse search direction.

(a)

Figure 4.6: Subroutine ADJ-HARM. (a) Subroutine. (b) Modification
SPEC-PEAKS, Figure 4.2. (c) Modification to subroutine SORT-HARM,

to program
Figure 4.4.
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Figure 4.6: continued
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A

ure 4.5). However, the adjustment procedure clearly increases reconstruction error

when the original harmonic locations lie on the wrong spectral peaks, as is the case for

at least one harmonic in each of the two examples.
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Chapter 5

Analysis and Conclusions

In this chapter, we will examine the accuracy and efficiency of the reconstruction

algorithms described in the preceding chapters. There are four algorithms and variants

to compare: the original Rader algorithm, with and without the FAST-SCAN mod-

ification entailing successively finer searches; and our SPEC-PEAKS algorithm, with

and without the harmonic adjustment modification. Many of the trials will correspond

to unfavorable conditions such as wavering signal amplitude and frequency, dynamic

harmonic content, and additive noise. Representative output will be provided in the

accompanying figures and tables.

Section 5.1 will discuss the quality of reconstruction achievable with the various

algorithms. Particular attention will be paid to algorithm robustness, and cases likely

to yield poor results. In Section 5.2, we will evaluate algorithm efficiency in terms of

execution speed, and input and output data storage requirements. Since our harmonic

adjustment modification affects only the accuracy (and not the speed) of our SPEC-

PEAKS algorithm, it will only be treated in Section 5.1. Likewise, since our FAST-

SCAN modification only increases the speed of the Rader algorithm, discussion of it

will be limited to Section 5.2. Assuming the number of samples usedl always exceeds

the minimum number needed for sufficient reconstruction quality (see Section 3.3), the

output from the unmodified and modified Rader algorithms will be identical.

' Per iteration in the FAST-SCAN case, and overall in the unmodified case.
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5.1 Reconstruction Quality and Algorithm Robust-

ness

In the course of algorithm development. many assumptions have been made, the

validity of which can be ascertained only empirically. In this section, we will conduct

tests which will indicate the classes of signals and types of conditions for which these

assumptions fail. Plots of data from these tests will also permit subjective comparisons

of the various algorithms.

Most plots will contain segments of the oversampled 2 and aliased sequences. Seg-

ments of the former typically will correspond to one or two periods of the original

waveform; segments of the latter will represent portions of algorithm input correspond-

ing to many periods. In contrast, the recovered waveforms will contain all the data

used, and will always correspond to exactly one period, as evident from the algorithm

descriptons presented earlier.

We know from Chapter 2 that any signal whose fundamental frequency is integrally

related to the sampling rate generally cannot be recovered. Specifically, if the normal-

ized signal period r, (or 1/,, where ,, is the normalized fundamental frequency) is a

rational number u/v, then destructive aliasing (i.e., spectral overlap) may occur unless

all signal harmonics occupy u or fewer adjacent harmonic locations. No algorithm,

including the Rader algorithm and SPEC-PEAKS, can completely reconstruct such

aliased signals. Nonetheless, it is interesting to examine distorted results.

Figure 5.1 contains reconstructions of an aliased, harmonically-rich test signal whose

period r is 10/7 (on the time scales in (b) through (d)). No matter how many aliased

samples are collected, each corresponds to one of only 10 values, as apparent from the

periodicity of the sequence in (b). This is also clear in Figure 5.1(c), in which the time

samples have been sorted using the Rader algorithm. It might be possible to improve

this reconstruction by discarding the redundant samples in this plot and interpolating

the results, but this has not been investigated.

2The oversampled sequences will be shown only for comparison. In no case were they used as input
to a reconstruction algorithm.
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Had the aliased signal been reconstructed with the Rader algorithm using the true

signal period r, (which is itself a critical period) instead of the value found rest, consid-

erable output sample overlap would have occurred. Since the Rader algorithm always

returns an estimate rb,,t which is not a critical period, this can never happen. In all

cases similar to the present one, we would expect composite period samples with equal

ordinates to be adjacent since r,,t and r, typically are nearly equal.

The corresponding results from the SPEC-PEAKS algorithm (Figure 5.1(d)) are

also unacceptable. Note the presence of an unwanted peak between the two largest

positive peaks, and the corresponding region in the Rader algorithm reconstruction.

These effects were caused by the higher harmonics in the original signal being folded

into the lowest ten harmonics.

Figure 5.2 presents an example of how the Rader algorithm excels in recovering

aliased discontinuous waveforms. Provided that a waveform is smooth, with the excep-

tion of a few discontinuities, the minimum variation criterion would seem to hold. The

results obtained using SPEC-PEAKS and assuming 40 significant harmonics are good,

but a loss of high frequency information is evident. When the number of harmonics to

be recovered was increased, the errors in localizing higher harmonics detracted from

the quality of reconstruction.

The improvement obtained with the SPEC-PEAKS harmonic adjustment procedure

is visible in comparing Figures 4.7(b) and (c) from Section 4.3. However, in many

other cases this procedure proved to accentuate rather than reduce the error of SPEC-

PEAKS in estimating harmonic amplitudes. In almost half the trials performed, the

reconstructions were worse when harmonic adjustment was used.

The SPEC-PEAKS algorithm performs better than the Rader algorithm in de-

aliasing waveforms whose relative harmonic amplitudes change over the sampling in-

terval, such as the one shown in Figure 5.3. This is due to the fact that the locations

of the largest spectral peaks (i.e., the harmonic locations) typically remain unaffected

when the complex harmonic amplitudes change. SPEC-PEAKS effectively integrates

the information obtained over the sampling interval - the harmonic amplitudes in the

reconstructed waveform represent average amplitudes.
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We see in Figure 5.3(e) that the Rader algorithm formed a composite period which

appears to contain three similar periods. The width of the composite period (Tb.,t =

1.39161) is also incorrect. The minimum variation criterion does not hold here (nor

was it intended to) since the ordinates of the original waveform at the same temporal

positions within different periods are not equal, as they normally would be.

The performance of all algorithms is poor in recovering a waveform whose frequency

or amplitude is not constant. The examples shown in Figure 5.4 correspond to a steady

tone (the vowel a) from a male speaker. Both the frequency and amplitude of the tone

waver slightly over the sampling interval. The results from the Rader algorithm are

similar to those in the previous example (Figure 5.3(e)). The images of several similar

periods appear in the composite period (reversed in time, as well). Again, the minimum

variation criterion does not hold for the same reason.

SPEC-PEAKS is only marginally better in that it is at least useful for determining

the average fundamental frequency of the signal. The estimated frequency and average

true frequency were very close. This is not an unreasonable result since the aliased

harmonics are smeared by wavering frequency and amplitude, but the location of the

main peak of each harmonic. typically remains undisturbed. In both reconstructions,

the original waveshape is distorted considerably.

Both the Rader and SPEC-PEAKS algorithms proved to be robust in terms of

sensitivity to additive white gaussian noise. The four plots (a, c, e, and g) on the left

side of Figure 5.5 correspond to a noiseless 60 Hz line interference test signal. Those

on the right (b, d, f, and h) correspond to the test signal plus white gaussian noise.

The signal-to-noise ratio (SNR) in Figures 5.5(b) and (d) is 18.4 dB.

Figure 5.5(f) shows the noisy aliased waveform in Figure 5.5(d) recovered with the

Rader algorithm. The period determined here, rbe,t = 1.79723, is identical to that in the

noiseless case (Figure 5.5(e)). This is also true of the corresponding waveforms shown

in Figure 5.5(g) and (h), recovered using SPEC-PEAKS. In both plots, rb,,t = 1.79499.

In addition, the SPEC-PEAKS algorithm removed nearly all the noise present in the

aliased signal. However, since r,, is known approximately, it seems reasonable that

the Rader algorithm output can be processed with a comb filter to achieve results
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comparable to those from SPEC-PEAKS. This has not been pursued further.

For the noise tests, the point of algorithm failure was defined as the SNR for which

the estimated periods rbest found in the noiseless and noisy cases (using a given al-

gorithm) were no longer equal. The Rader algorithm did not fail until the SNR was

decreased to 12.4 dB. SPEC-PEAKS was extremely robust, successfully estimating r,

for SNR = -9.53 dB. However, all of these excellent results are surely due to the

presence of a strong fundamental in the original signal.

Another additive corruption test was performed, consisting of the superposition of

the two aliased test signals shown in Figures 5.6(c) and (d). For these tests, we defined

a "signal-to-signal ratio'

SSR= 10 lo ( , .)

where a denotes the variance of signal Q.

The Rader and SPEC-PEAKS algorithms were used to recover the stronger of the

two superimposed signals for various SSR, as summarized in Table 5.1. The definition

of algorithm failure was analogous to that used previously in the noise tests. The weaker

signal in each case was considered the corruptive one; thus, it replaced the noise in the

definition above. By this criterion, SPEC-PEAKS was considered successful on every

trial, as indicated by the boldface values in the table. The Rader algorithm failed to

determine ,, for SSRs in the range 10.1 to -19.4 dB.

Reconstructions from four of the trials enumerated in Table 5.1 are shown in Fig-

ures 5.6(e) through (p). These plots are arranged in groups of three (e.g., e, f, and g)

comprising the aliased test signal and the waveforms recovered using the Rader and

SPEC-PEAKS algorithms. The advantages of each algorithm are consistent with those

seen in previous experiments: SPEC-PEAKS is much better at determining ai at low

SSR (magnitudes), and in addition, removes most of the unwanted signal for higher

SSR. On the other hand, the Rader algorithm retains more high frequency information

in the dominant or recovered signal when successful.

We conclude this section with a few general reconstruction issues not discussed

elsewhere. From Section 4.1 we know that the accuracy of the SPEC-PEAKS algorithm

in determining ,, depends directly on the DFT size. Therefore, the typical spectral
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SSR ObatI

[dBj Rader algorithm SPEC-PEAKS

19.6 0.554987 0.554932
13.61 0.554987 1.554932
10.1 0.910979 0.554932
7.60 0.910979 0.554932
5.66 T 0.910979 I 0.554932
4.07 0.910979 0.554932
2.74 0.910979 T 0.554932
1.58 0.856187 r 0.554932

O.5 T 0.856187 1 0.554932
-0.36t 0.856187 0.712402
-6.38 0.856187 0.712402
-9.90 0.856187 0.712402
-12.4 0.856187 0.712402
-14.3 0.856187 0.712402 
-15.9 0.856230 0.712402
-17.3 { 0.856230 0.712402
-18.4 0.856230 0.712402
-19.4 0.856230 0.712402 

-20.4 0.712435 0.712402 

Table 5.1: Estimation of 0, from two superimposed waveforms. Test signal #1: 60 Hz
line interference, ,.AgI = 0.555755. Test signal #2: three sines, two sawtooths, one
square-wave, Ow,Ag2 = 0.712431. Boldface numbers indicate results identical to those
obtained from stronger aliased signal alone (using same algorithm). t signify trials
plotted in Figure 5.6.
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resolution is
2

R, NM (5.1)

in units of normalized frequency, where N is the number of samples used, and M is

the number of significant harmonics at positive frequencies.

The accuracy of the Rader algorithm is a function of the search density or Farey

fraction order, which in turn depends on both N and the lower period search range

limit rm. However, it can be estimated only roughly since the Farey fractions are

distributed non-uniformly. Rader has stated that the average period accuracy can be

obtained from the reciprocal of the density of the Farey fractions. For a given order L,

there are approximately
3L 2

+ O {LlogL}

Farey fractions on any interval3 (r, r + 1), where r is a real number. Since L = (N -

1) / r,, the average temporal resolution is

f2T2n
Rt ( 3N^ (5.2)3N 2

in units of normalized time. Rader has also mentioned that in the worst case, Rt

becomes r,,,/N, and in addition, both this and the estimate in Equation 5.2 are

optimistic in that the density of the critical periods (which truly determines the search

density) is less than the density of all the Farey fractions.

It would be desirable to avoid the u- N missing samples in Rader algorithm recon-

structions, where u is the numerator of the period rb,,t returned. One might consider

not using all the available data so that u - N leftover samples could be inserted into

the reconstructed period. However, this should not be done since these u - N samples

would have very erroneous ordinates for the missing samples they were intended to fill.

Had we used u (> N) samples in the first place, the search density would have been

finer (L = (u - 1)/rmJ), and there still would have been missing samples.

3The Farey fractions in any interval (r + i, r + i + 1), where r is a real number and i is an integer,
can be obtained by adding i to each Farey fraction in (r, r + 1). Therefore, the average densities in any
such pair of intervals are equal.
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j N tecaot nSec

25 3

dSw i 7
100 35"
200 120
300 300
500 1400
1000 11000'so 'I4

Table 5.2: Rader algorithm recovery time vs. number of input samples, N. Typical
values shown. Search range: 0.5-1.0.

5.2 Algorithm Efficiency

As could be expected, the speed of all algorithms is dominated by N, the number

of samples used. The speed of the Rader algorithm, like its accuracy, depends on the

density of the critical periods in the search range. One value of the variation function is

computed between each pair of successive critical periods, each requiring computation

of order 0 N}. Therefore, from the previous section (Equation 5.2) we know that for a

given search range, the total computation is typically ( {N3 }. In all cases, it is greater

than 0 V 2}.

Typical reconstruction times versus number of input samples are given in Table 5.2.

The values in this table, as well as the tables to follow, correspond to real time (i.e.,

elapsed, not cpu time). All timed experiments in this thesis were performed during

periods in which system load averages were low (typically overnight, when there were

no interactive users on the system).

Equation 5.2 indicates that the Rader algorithm speed also depends on the upper

limit of the fundamental frequency search range, ,, = 1/r,,,,. We will now show that

any search range ' i,-, whose respective limits are congruent modulo one (w,)

to the true limits ,, and ,, can be used. This allows us to pick a range expected

to reduce execution time. We would then reconstruct the waveform czactly as before.

Finally, we would relabel the time axis of the reconstructed period and temporally
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reverse the data (if necessary) to yield the same results that would have been obtained

with the original search range.

Recall from Chapter 2 that identical sequences are formed in sampling two analog

signals whose normalized fundamental frequencies p,1 and ¢~2 differ by some integer.

Alternately, if the sum of >,1 and 0,w2 is an integer, one sequence is the time reversal

of the other. In fact, it is for these reasons that the correct waveshape can always' be

recovered, even if the proper search range is unknown. In the latter case, any search

range not spanning a multiple of 1/2 could be used with either the Rader algorithm or

SPEC-PEAKS.

Figure 5.7 contains two plots of the variation function produced while recovering

the waveform shown in Figure 5.8(a) using the Rader algorithm. A search range ,,,-

On= spanning several multiples of 1/2 (thereby violating the pseudo-Nyquist criterion)

was used. Plotted versus the reciprocals of the trial periods r, (Figure 5.7(b)), V(r 2 )

is periodic. Note the similarity between the portions of the variation function in the

regions 0q = 0.5 to 1.0 and O, = 1.5 to 2.0, as well as the symmetry about integral

0, (in particular, , = 1.0). The presence of equivalent minima in these three regions

clearly indicates the fundamental frequency ambiguity problem addressed in Chapter 2.

We now return to our examination of the effect of different search ranges on Rader

algorithm execution time. The pseudo-Nyquist criterion dictates that each search range

must lie between two successive multiples of 1/2. Figures 5.8(b) through (h) contain

reconstructions of the test signal in Figure 5.8(a) after it was downsampled by 100.

The corresponding search ranges are listed in Table 5.3, along with the reconstruction

times. The seven reconstructions are identical (with the exception of the time reversal

in every other plot). However, the search times for search ranges p/ 2-(p + 1)/2 (for

integral p) decrease monotonically, as do those for ranges (p + 1)/ 2 -p/ 2 . The decrease

of the aggregate is almost monotonic, as well.

The latter result can be explained as follows. The same number of Farey fractions

of a given order lie in each range (i, i + 1) along the r,-axis for all integers i. Therefore,

4 Assuming no destructive aliasing has occurred.
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Figure 5.8: continued
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-Pmsn'maz i 0 found treconst seci figure i

0.5-1.0 0.87662 i 47 b
1.0-1.5 r 1.12338 i 33 c

1.5-2.0 1 1.87662 i 29 1 d
2.0-2.5 2.12338 1 16 e
2.5-3.0 2.87662 1 21 f
3.0-3.5 3.12338 14 g
3.5-4.0 3.87662 16 h

Table 5.3: Rader algorithm search time vs. search range. Same number of samples
from same aliased signal used in each case. References to Figure 5.8 also given. Correct
search range: 1.0-1.5.

they become increasing sparse along the positive h,-axis since 0b = 1/yr. On the other

hand, a higher search range 0,,-b,,,ma (equivalently, l/r,,z-l/rm, ) causes the Rader

algorithm to use a higher Farey fraction order, as indicated by Equaticn 3.9. The

decrease in the search times given in Table 5.3 is due to the fact that these two effects

do not cancel. The former seems to be slightly stronger. Therefore, the search density

and execution time tend to decrease for higher search ranges.

While the reductions in Rader algorithm reconstruction time can be larges when us-

ing our FAST-SCAN modification, they cannot be quantified even roughly (empirically

or otherwise) since the initial Farey fraction order and increment are chosen heuris-

tically. The minimum initial order for which the minimum variation criterion holds

cannot be determined.

The time required by SPEC-PEAKS is typically of order O{NM log NM} where

M is the number of significant harmonics at positive frequencies, since most of the

processing time is spent computing the finely sampled DFT. In practical situations, the

size of the IDFT producing the output is much smaller. Recovering waveforms using

1000 samples and assuming 10 significant harmonics at positive frequencies typically

required 5-11 seconds. An example of the dependence of SPEC-PEAKS on the number

of harmonics is summarized in Table 5.4, in which 1000 samples were used on each

5 An order of magnitude or more was not uncommon, but the comparision has little merit.
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i M t.cot isec: x

10 7 1
20 l 12 i
30 I 14 

t 40 ' 25 1
50 26
60 27
70i 53

Table 5.4: SPEC-PEAKS recovery time vs. number of significant harmonics at positive
frequencies (M). Typical values shown. 1000 samples used.

trial. No other tables are given since the speed performance of SPEC-PEAKS versus

N is predictable from the discussion above.

In contrast to the Rader algorithm, neither the accuracy nor the speed of SPEC-

PEAKS are effected by the search range n,,,,-. One of the first steps in the

SPEC-PEAKS algorithm consists of converting the search range to the corresponding

(baseband) DFT indices.

It was found that SPEC-PEAKS typically required an order of magnitude more data

than the Rader algorithm to yield comparable reconstructions. SPEC-PEAKS was still

much faster in these cases, but the comparison must be viewed in light of the fact that

SPEC-PEAKS always loses some high frequency information. Another advantage of

the SPEC-PEAKS algorithm is that it can place the output data in minimum storage

form (i.e., sampled just above the Nyquist rate) with no additional computation. In

such cases, the composite spectrum would not be zero-padded.
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Chapter 6

Suggestions for Future Research

We conclude this thesis with a list of suggestions for future research.

The pseudo-Nyquist criterion we have developed may be too restrictive in certain

cases (as was true of the original Nyquist criterion, as well). We have shown that the

irrationality requirement is unnecessary if f,/f,, can be expressed as a rational number

u/v where (u, v) = 1, and fewer than u consecutive signal harmonics are present. This

issue is coupled with the requirement for an arbitrary high frequency cutoff fh since the

latter insures a finite (though unknown) number of harmonics. Alternative definitions

of the pseudo-Nyquist criterion are certainly plausible.

Most of the Rader algorithm processing time is used to compute the collective

variation functions. Significant savings should be possible by exploiting the fact that

only a few composite period samples interchange in moving from one trial period to

the next. (Visualize the effect of increasing the diameter of the cylinder in Figure 3.1.)

If the original indices n of these samples zfin can be determined, the variation from

the previous iteration can be reused. A few terms would then be added to correct for

the interchanging samples. Only one of the samples must be located since for a given

trial period r, = u/v, the multiplicative inverse of v for the modulus u can be used to

locate the others (see Section 3.2). The fact that aliased samples z[n] at higher indices

n would move clockwise' in the composite period faster as r is increased might also

be useful here. Finally, if it appears that the overhead incurred is high (e.g., if many

'Viewing the cylinder in Figure 3.1 from the top.
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samples interchange), the variation could be computed in the original manner.

Interpolation of missing samples in Rader algorithm reconstructions should be ex-

plored. Methods which are insensitive to sample spacing (e.g., Lagrange interpolation)

would seem to be most suitable. Conventional discrete time filtering techniques may

also be appropriate since the reconstruction samples (including those which are miss-

ing) lie on a uniformly spaced axis. Rader has suggested moving median filtering,

followed by linear filtering. The median would be redefined as the mean of the medians

of subgroups of points. Redefinition is necessary since the conventional median of three

consecutive points is undefined if one or more of the three are missing.

Another interpolation method which may be applicable has been proposed by Naidu

and Paramasivaiah [11. It comprises an extension of the Gerchberg-Papoulis algo-

rithm 121, originally for extrapolation of band-limited signals, to interpolation of miss-

ing samples. Knowledge of the bandwidth of the original signal and an average sampling

rate' above the Nyquist rate are required, but neither condition should pose a problem

here. Marks 131 has also succeeded in extending the Gerchberg-Papoulis extrapolation

algorithm to missing sample interpolation.

The harmonic adjustment modification of the SPEC-PEAKS algorithm does im-

prove reconstruction in many cases. However, it would be desirable to determine when

this is not true so that harmonic localization errors would not be compounded by

unwanted adjustments.

Rader [1] has suggested that his algorithm may be useful in simultaneously recon-

structing several signals z,,i(t) with equal periods, each sampled at the same rate. The

aliased sequences xi[n] could be treated as a vector sin]. The corresponding variations

Vi(rg) would be combined into a vector 1 (r,) to be minimized when its length is short-

est. The variation components could be weighted by the importance of the respective

zi[n. An analogous approach could be used with the SPEC-PEAKS algorithm in which

a partial energy vector E(4O,) would be maximized.

Rader [51 has also suggested that the vector waveform approach could be applied

to the FAST-SCAN algorithm to decrease the probability of algorithm failure. All

2This corresponds to the incomplete time series, which in our case is the reconstructed period.
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available samples would be used on each successively finer search. On earlier. coarse

searches. the entire input sequence would be divided into several short sequences of

length NR, with the .VR for each iteration being determined as before, i.e., as a function

of monotonically increasing Farey fraction order (Section 3.3). The same series of

reduced search densities would be used as before, but more data would be utilized.

thus reducing algorithm sensitivity to noise, waveform type, etc.

Also worthy of further consideration are cases in which several signals with unequal

periods are superimposed, such as those in Figure 5.6. We might wish to separate

and reconstruct them from a single aliased sequence. In such cases, none of the signal

periods T,,i could be integrally related to the sampling period T, or to each other.

Otherwise, irreversible aliasing could occur. The Rader algorithm might be useful

for determining the T,.i from the minima of the variation function. However, signal

separation and reconstruction would be arduous (if not impossible) tasks.

Since the SPEC-PEAKS algorithm automatically eliminates all unwanted portions

of the aliased spectrum, it might be more suitable for this purpose. It probably would be

necessary to determine the fundamental frequency of the strongest3 signal, reconstruct

and subtract it from the aliased signal, then repeat the process. However, amplitude

normalization and output sample spacing may make this approach cumbersome. These

two problems also must be circumvented to permit measurement of the distortion (e.g.,

mean-squared error) introduced by each algorithm presented in this thesis. This should

be examined, as well.

3 The one yielding the greatest partial energy.

104



Bibliography

[1j C.M. Rader. Recovery of undersampled periodic waveforms. IEEE Trans. Acous-
tics, Speech, and Signal Processing, 25(3):242-249, June 1977.

[21 R.J. Marks II. Restoration of continuously sampled band-limited signals from
aliased data. IEEE Trans. Acoustics, Speech, and Signal Processing, 30(5):937-
942, December 1982.

[3] K. Swaminathan. Signal restoration from data aliased in time. IEEE Trans.
Acoustics, Speech, and Signal Processing, 33(1):151-159, February 1985.

[4! F.D. Powell. Periodic sampling of broad-band sparse spectra. EEE Trans. Acous-
tics, Speech, and Signal Processing, 31(5):1317-1319, October 1983.

[51 C.M. Rader. Personal communication.

[61 A.J. Jerri. The shannon sampling theorem - its various extensions and applica-
tions: a tutorial review. Proceedings of the IEEE, 65(11):1565-1598, November
1977.

[7! G.H. Hardy and E.M. Wright. An Introduction to the Theory of Numbers. Oxford
University Press, London, fourth edition, 1938.

181 O. Ore. Number Theory and its History. McGraw-Hill, Inc., New York, NY, 1948.

[91 N.S. Szabo and R.I. Tanaka. Residue Arithmetic and its Applications to Computer
Technology. McGraw-Hill, Inc., New York, NY, 1967.

[101 J.H. McClellan and C.M. Rader. Number Theory in Digital Signal Processing.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1979.

[111 P.S. Naidu and B. Paramasivaiah. Estimation of sinusoids from incomplete time
series. IEEE Trans. Acoustics, Speech, and Signal Processing, 32(3):559-562, June
1984.

[121 A. Papoulis. A new algorithm in spectral analysis and band-limited extrapolation.
IEEE Trans. Circuits and Systems, 22(9):735-742, September 1975.

1131 R.J. Marks. Restoring lost samples from an oversampled band-limited signal.
IEEE Trans. Acoustics, Speech, and Signal Processing, 31(3):752-755, June 1983.

105

__�111



14i N.S. Reddy and M.N.S. Swamy. Time-domain estimation of unambiguous doppler
frequency in low and medium prf radars. In ICASSP Proceedings, pages 687-690,
1983.

15}` A.V. Oppenheim and R.W. Schafer. Digital Signal Processing. Prentice Hall,
Englewood Cliffs, NJ, 1975.

'161 M.I. Skolnik. Radar Handbook. McGraw-Hill, Inc., New York, NY, 1970.

[17] P.G. Bartley. The practicality of processing undersampled waveforms. In IEEE
Southeastcon, pages 199-200, 1981.

[181 R.T. Gregory. Residue arithmetic with rational operands. In IEEE Symposium
on Computer Arithmetic, pages 144-145, 1981.

19j W.K. Jenkins and C.F. Lee. Complex residue number arithmetic for digital signal
processing. In IEEE Asilomar Conference on Circuits, Systems, and Computers,
pages 480-483, 1981.

i20! S.A. Hovanessian. An algorithm for calculation of range in multiple prf radar.
IEEE Trans. Aerospace and Electronic Systems, 12(2):287-290, March 1976.

'211 S.A. Hovanessian. Medium prf performance analysis. IEEE Trans. Aerospace and
Electronic Systems, 18(3):286-296, May 1982.

106



UNCLASSIFED

ir 'JlI?' CI' AS3F&CATlON OF T)S PAG
I

REORT OOCUMENTATION PAGE
1&. AEOMT SIEUCITY CASSIFICATION -| 1 AElSRICTIVE II MAKINs

SIC IIltv ClASSIPICAlIIN AUT4ORlITY 3. OISTISUTlONIAVA1AlIt.TY Of i1EPOlT

Approved for public release; distribution
. aCLcArPICATION100VWNGnAO scAOING unlimited

*. 2NORMNING OrGANAZATLON N4PONT e MSEUilnl1(S) S. M' NITORING ORGANIlZAION REKRT NUMIA(S)

N& NMi O PPORIMING OIGANIZATION I. OPPICI SYM OI. o. NAMi OP IONItONIING OIGANIZATION

Research Laboratory of Elec taloflesum. Office of Naval Research
' ,Iassachusetts Institute of Te hnology Mathematical and Information Scien. Div.
, AOOr SSlCt. 3MM ee ZZ P Codes 7 AOONS (CU7T Sfw aug ZIP Cade$

77 Massachusetts Avenue 800 North Quincy StreetIambridge, MA 02139 Arlington, Virginia 2Z217

. n.ME OF MLnOlnGOnSONING . OPPIC1 SYMIel. L . PORCUGNMIlN? INSTRUMINT IOINTICATIlON NiNUMa
ONGAN4Z4TION (t iodde)

' dvanced Research Projects Agency N0001A-81 -K-0742
.C. A IOOS (Ci. 4J1 and ZP Code la. SOuc Os PUNOING NO.

1400 Wilson Boulevard I rOgRAM PROJCT tASK wOrAK UNIt

rlington. Virginia 22217 O. L 4T NO . NO

t11. ttrarvaixizelPecnesil Knia icn{Crfrr ecOnStrUUtC on OI 049-506
I'T nndersampled Periodic Sinals 

; .NONAL.rAIOR Anthony J. Silva

1t3 frlP Of ASPO4NT a116 TlPS i CV4OQ 1. oAT2 OF R PORT Yr.. Mo.. Oy | Il. PAG COUNT

.' Technical riOM 'to January 1986 118
.SPPI.M-NTAAY NOTATION

Under certain conditions, a periodic signal of unknown fundamental frequency can
still be recovered when sampled below the Nyquist rate, or twice the highest frequency
present in the waveform. A new sampling criterion has been proposed which enumerates
such conditions. It has been shown that in theory, if the signal and sampling frequencies
are not integrally related, and the signal is band-limited (to a range the extent of
which is known but otherwise unrestricted), then the signal waveshape can always be
recovered. If the fundamental frequency is known to lie within a range not spanning
any multiple of half the sampling rate, then the temporal scaling for the reconstructed
waveform can be determined uniquely, as well. Procedures have also been proposed for
reducing time-scale ambiguity when the latter condition is not met. (cont.)

20. OITRI IUTIONOAVAILASLIUTY OF AISTACT

4C.lSlIeO//uNLMitO SAMe AS *ar _" OTIC USIER C

22. NAMe OI RSSPONSISLE INOIVIOUAL

21. ASTFAC SaECUITY Ca ASSIPCArT1ON

Unclassified
1" ?W lS 0.NUI^usR it'-na a i" e t ^Or6 @Ef9 0

(617) 253-.56 C 9o

(617) 253-2569I Kyra M. Hall
I T n n nvor -# or=e

I

---

I



DSColJMrr C$A IIC&ltlON OP 1'iS PA4a

19. Abstract continued.

A previously presented time domain algorithm for reconstructing aliased periodic
signal has been implemented and modified. A new algorithm, operating in the fre-
quency domain, has been proposed and implemented. In the new algorithm, the signal
fundamental frequency is first estimated from the discrete Fourier transform of the
aliased data through an iterative procedure. This estimate is then used to sort the
aliased harmonics. The inverse discrete Fourier transform of the resulting spectrum
provides the reconstructed waveform, corresponding to one period of the original sig-
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time domain algorithm in terms of reconstruction quality, robustness, and efficiency.
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