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Abstract

It is now well established that cells can sense mechanical force, but the
mechanisms by which force is transduced into a biochemical signal remain poorly
understood. One example is the recruitment of vinculin to reinforce initial contacts
between a cell and the extracellular matrix due to tensile force. Talin, an essential
structural protein in the adhesion, contains the N-terminal five-helix bundle in the rod
domain with a known cryptic vinculin binding site 1 (VBS 1). The perturbation of this
stable structure through elevated temperature or destabilizing mutation activates vinculin
binding. Here, molecular dynamics (MD) is employed to demonstrate a force-induced
conformational change that exposes the cryptic vinculin-binding-residues of VBS 1 to
solvent under applied forces along a realistic pulling direction. VBS 1 undergoes a rigid
body rotation by an applied torque transmitted through hydrogen-bonds and salt bridges.
Activation was observed with mean force of 13.2±8.OpN during constant velocity
simulation and with steady force greater than 18.OpN.

The crystal structure of vinculin head subdomain (Vhl) bound to the talin VBS1
implies that vinculin undergoes a large conformational change upon binding to talin, but
the molecular basis for this, or the precise nature of the binding pathway remain elusive.
In the second part of the thesis, MD is employed to investigate the binding mechanism of
Vhl and VBS1 with minimal constraints to facilitate the binding. One simulation
demonstrates binding of the two molecules in the complete absence of external force.
VBS1 makes early hydrophobic contact with Vhl through an initial hydrophobic
insertion. Then, other solvent-exposed hydrophobic residues of VBS 1 gradually embed
into the hydrophobic core of Vhl further displacing helix 1 from helix 2. These highly
conserved critical residues are experimentally shown to be essential in Vhl-VBS1
binding, and are also the same residues that are shown to become exposed by applied
tension to talin in the first part of the thesis. Similar mechanisms are demonstrated in
separate MD simulations of Vhl binding to other VBSs both in talin and e-actinin.

Together, these results provide molecular insights, for the first time, into the early
force-induced recruitment of vinculin to the mechanosensitive mechanisms of cell-matrix
adhesion complex, and establish the basis for further numerical and experimental studies
to fully understand the force response of focal adhesions.

Thesis supervisors: Roger D. Kamm and Mohammad R. K. Mofrad
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1 Introduction

1.1 Mechanotransduction

Living cells respond to mechanical stimulation in a variety of ways that shape

their phenotype in health and disease. Such mechanosensing is essential for cells to

probe their environment and respond accordingly to their fate of cell growth,

differentiation, or death. Although the biochemical signaling pathways activated by

mechanical stimuli have been extensively studied, little is known of the basic

mechanisms. At least two general mechanisms of mechanotransduction have been

suggested. In one, the mechanical signal is transduced into a chemical signal through

protein activation leading to the upregulation of intracellular signaling proteins.

Alternatively, the forces transmitted via individual proteins either at the site of cell

adhesion to its surroundings or within the stress-bearing members of the cytoskeleton can

cause conformational changes that alter their binding affinity to other intracellular

molecules. This altered equilibrium state can subsequently initiate a biochemical

signaling cascade or produce more immediate and local structural changes; see reviews

(1-3). Examples of mechanotransduction include mechanosensitive ion channels, cellular

response to substrate stiffness, and force regulated focal adhesion assembly. Many have

investigated the signaling cascades that become activated as a consequence of mechanical

stress, and these are generally well characterized (4-7). The initiating process, however,

by which cells convert the applied force into a biochemical signal, termed

"mechanotransduction", is much more poorly understood, and only recently have

researchers begun to unravel some of these fundamental mechanisms. Several theories

exist that might explain the process of mechanotransduction, but most are still in their
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infancy. Various mechanisms have been proposed to explain this phenomenon. Some

studies have suggested that a change in membrane fluidity acts to increase receptor

mobility, leading to enhanced receptor clustering and signal initiation (8,9). Stretch-

activated ion channels or strain-induced activation of G proteins represent other means of

mechanotransduction (10). Others have focused on the role of mechanosensing surface

glycocalyx in endothelial mechanotransduction (11). Mechanical disruption of

microtubules (12) or forced deformation within the nucleus has also been proposed (13).

Constrained autocrine signaling is yet another mechanism whereby the strength of

autocrine signaling is regulated by changes in the volume of extracellular compartments

into which the receptor ligands are shed (14). Changing this volume by mechanical

deformation of the tissues can increase the level of autocrine signaling. Finally, others

have proposed conformational changes in intracellular proteins in the force transmission

pathway connecting the extracellular matrix with the cytoskeleton through FAs as the

main mechanotransduction mechanism (9,15,16). While all or a subset of these theories

may contribute to mechanotransduction, little direct evidence has been presented in their

support.

In the rest of chapter 1, a brief introduction will be given for mechanosensitive

ion channels and cellular response to substrate stiffness in this subsection, and more

detailed introduction will be given in the next subsection for the force regulation of focal

adhesion, which is the main topic of this thesis.

Mechanosensitive ion channels. Organisms use mechanosensitive ion channels as

means of detecting mechanical stimuli and turn it into electrical signal by opening up the

14



gates for ion current (17). Many of the sensory functions such as hearing and touch are

governed by these mechanosensitive channels (18). Even in nonsensory cells, different

channels can respond to various mechanical stimuli, such as osmotic pressure, tensile

stress on the lipid bilayer, etc (10,19). Propagation of Ca2+ waves can be triggered by

mechanical stress on Ca2+ ion channels, which may occur through tethering of the gate to

some cytoskeletal component (20). Membrane tension experienced by an animal cell is

usually many orders of magnitude lower than the tension experienced by bacterial

membranes (21). The tension needed to activate some of the bacterial mechanosensitive

channels is near the lytic limit (11 dynes/cm) of the membrane (22). One example, the

bacterial mechanosensitive channel of large conductance (MscL) transmits K+ at a

conductance of 3.2 nS when activated (23). With the available crystal structure of MscL

(24), molecular dynamics studies were carried out to investigate the gate opening

mechanism (25). Tension applied to membrane transmits force to an interfacial polar

group, which causes helix tilting to open the pore interior of MscL (25).

Mechanosensitive channel of small conductance (MscS) has a smaller conductance of 1

nS and is characterized by its voltage sensitivity (26). Applied surface tension on the

numerical MscS model obtained from the crystal structure (27) provided new insights

into the molecular mechanism of channel pore widening (28). Taken together, these

studies provide for a molecular-level understanding of MscL and MscS which constitute

the bacterial osmotic control system (29). Even in this example, however, the complexity

of true biological systems becomes evident in that the osmotic balance breaks down only

when both MscL and MscS genes are not expressed (29), and that the MscL knocked out

exhibited no observable osmotic malfunction (30).
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Probing substrate stiffness. Cell adhesion to solid substrate is essential for cell viability

(31). Furthermore, cells have the ability to sense variations in substrate rigidity and

respond accordingly (32). This is thought to occur as a consequence of actomyosin

contractions that apply contractile forces to the substrate or extracellular matrix via focal

adhesions. Only when the substrate has the rigidity to resist contractile force, does the

cell form stable focal adhesions and elongated stress fibers, whereas on a soft substrate,

the cell displays dynamic focal complexes and few if any stress fibers (33). This rigidity

sensitivity has been observed in fibroblast, epithelial, endothelial and smooth muscle

cells (33-35). The ability of a cell to sense gradients in substrate stiffness gradient and to

migrate toward the stiffer substrate is called durotaxis (36). Presumably, the cell operates

in a feedback loop, exerting contractile force to the matrix, measuring matrix stiffness,

and responding by forming static focal adhesions when the substrate can withstand the

force (32). Although myosin is necessary for the internal generation of contractile force

and the subsequent formation of focal adhesion in response to stiff substrate, external

forces can also be applied to the cell to promote focal adhesion formation even in the

absence of myosin contractile force (37).

1.2 Force regulation of focal adhesion assembly

A focal adhesion (FA) is a protein complex forming a physical linkage between

cytoskeleton and extracellular matrix (ECM) (Figure 1.1). A cell can use FAs to gain

traction on the ECM surface during the process of spreading and migration. The FA

protein complex contains a rich mixture of structural proteins as well as signaling
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proteins, and can also be used by a cell to probe the stiffness of its environment (38,39).

A sequence of maturation stages leads to the formation of focal adhesion complexes.

Initial adhesions consist of the minimum essential set of proteins to link the ECM with

the cytoskeleton, and is only able to withstand tensile force on the order of 2 pN (40).

When an initial contact is activated or sustains a force, it grows into a focal complex,

which is a short-lived dot-like (~ 1 pm) adhesion structure containing, for example,

vinculin, paxillin, a-actinin, and Arp2/3 (41-43). The focal complex can eventually

mature into a focal adhesion, which is characterized by its larger size (1-10pm),

elongated shape, and association with stress fibers (38). Arp2/3, which is related to actin

nucleation and polymerization, is absent in focal adhesion making it relatively more static

in nature compare to the focal complex (41).

Focal complexes require a stiff substrate in order to mature into a stable focal

adhesion (33). The myosin-mediated contractile force transmitted to the ECM and the

tension applied to the adhesion complex is necessary for promoting focal adhesion

development (44). However, externally applied mechanical force can also promote the

formation of focal adhesions (40) even in the absence of myosin contractile force (37).

Galbraith et al. (40) employed fibronectin-coated micro-beads of various diameters to

study the force response of adhesion strengthening. When small diameter beads (1ptm)

are attached to lamellipodia of fibroblasts no focal complexes are formed in the

submembrane beneath the bead. However, focal complexes are formed when larger

diameter beads (> 3pm) are attached to the fibroblasts. Interestingly, focal complexes are

formed beneath the 1 pim bead when external tensile force is applied using an optical

laser trap (Figure 1.2). With the larger beads, the cell was able to apply intracellular
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myosin-mediated contractile force leading to focal complex formation, whereas the small

beads (1 lpm) could not apply intracellular contractile force, and only formed focal

complexes with externally applied force.

A GTPase protein Rho is involved in the formation and regulation of focal

adhesions in response to growth factors (45,46). Two downstream targets of Rho are

Rho-associated kinase (ROCK) and Dial, which are responsible for myosin II activation

(47) and nucleation of actin polymerization (48), respectively. By promoting cell

spreading through focal adhesion regulation, Rho may be a key regulator of cell

proliferation (38). In the absence of either cell adhesion or growth factors, the cell is sent

to the path of apoptosis (49). Tension applied to focal adhesions can activate a number

intracellular signaling proteins including focal adhesion kinase (FAK) (50), which can in

turn phosphorylate other focal adhesion proteins. FAK may be involved in promoting

cell migration as it activates Rac, another Rho family GTPase, which is involved in

lamellipodia formation (45). With the evidence that FAK suppresses Rho activity (51), it

is likely that a cell uses this collection of signaling proteins and focal adhesions in

deciding on spreading, migration, or programmed death.

1.3 Molecular basis for the early adhesion complex

Molecules involved in the early adhesion complex. Applied tension on initial adhesion

between ECM and cytoskeleton allows recruitment of vinculin to reinforce the linkage to

form a focal complex (40). Jiang et al. (52) identified that the initial adhesion consists of

an ECM-integrin-talin-F-actin linkage. Separate from the force-regulated signaling

pathways, the local immediate force response of adhesion re-assembly is thought to be
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through conformational changes in the linking proteins that enhance their binding to other

reinforcing proteins (2,3). Indeed, talini is critical in force-dependent vinculin

recruitment to adhesion sites independent of Src family kinase and focal adhesion kinase

activities (53). Talin is present in both the initial adhesion and the focal complex,

whereas vinculin is only found in the focal complex (40). Vinculin has binding sites for

both talin (54) and F-actin (55), making it a candidate for strengthening an initial

adhesion. Interestingly, talin contains 11 potential vinculin binding sites with a number

of them known to be cryptic (56-58). Therefore, the proposed model for force regulation

of early adhesion strengthening is (i) tension generated within initial adhesion linkage

either through intracellular contractility or externally applied force gets transmitted to

talin, (ii) the tensile force within talin exposes the cryptic vinculin binding site to solvent,

and (iii) inactive vinculin within the cytosol gets targeted to the adhesion site and

reinforces the connection (Figure 1.3).

Focal adhesion protein: vinculin. Vinculin is a highly conserved cytoplasmic protein

that functions as a structural reinforcing link for cell-cell and cell-matrix junctions. It

consists of a globular head domain, a proline-rich neck region, and a rod-like tail domain,

which contain binding sites for numerous other cytoplasmic proteins (59,60). Vinculin

head is known to bind to ct-actinin (61) and talin (54), whereas vinculin tail is known to

bind to paxillin (62), F-actin (55), and phosphatidylinositol 4,5 bisphosphate (PIP2) (63).

The neck region binds to VASP (64), vinexin (65), and ponsin (66). In its inactive state,

vinculin head binds to vinculin tail masking its cryptic binding sites for many of its

ligands (67,68). A cell with vinculin disruption can still form FAs, yet it displays

19



reduced ability to spread and increased cell motility (69). Therefore, along with its

structural function, vinculin has also been suggested to be a regulatory protein in cell

adhesion (70).

It has been shown that PIP2 can disrupt the autoinhibitive vinculin head and tail

interaction (67). However, recent studies suggest that talin might also play a role in

vinculin activation (71,72). Bakolitsa et al. (73) suggested a combinatorial pathway in

activating vinculin, where PIP2 partially releases vinculin tail from the head exposing the

talin binding site, and the head and tail interaction is severed as talin binds to vinculin

head. The crystal structure of the full-length vinculin in the inactive autoinhibitory

conformation provides many insights into vinculin function (73) (Figure 1.4A). Vinculin

tail domain (Vt; residue 897-1066) is bound most significantly to DI domain (residue 1-

258) and relatively weakly to other domains (73). Izard et al. (71) reported the crystal

structure of vinculin head subdomain (residues 1-258; same as Dl domain in ref (73))

associated to Vt domain. The conformation of this complex is almost identical to the

vinculin head and tail structure within the full-length vinculin structure; Figure 1.4B is

showing just vinculin head and tail from the full-length vinculin. In the same paper, they

also reported vinculin head associated with a talin vinculin binding site, and suggested a

mechanism for activation of vinculin by talin binding. Intriguingly, talin peptide binding

to vinculin head induces large conformational change to vinculin, named 'helical bundle

conversion,' where talin peptide is embedded in the N-terminal four-helix bundle of

vinculin head forming a combined five-helix bundle (71). A model for the activated

vinculin with vinculin head and tail dissociated is shown in Figure 1.4C. The actual

conformational state of the activated vinculin is, however, unknown.
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Focal adhesion protein: talin. Talin is another cytoplasmic protein with a globular head

domain and an elongated rod domain that provides a structural link between integrin and

actin cytoskeleton (70), which forms a dimer at concentrations in excess of 0.7 mg/mi

(74). Talin's globular head domain has the FERM (4.1, ezrin, radixin, and moesin) motif

that binds to cytoplasmic tails of certain p-integrins (75). FERM can also bind to and

activate phosphatidylinositol 4,5 phosphate kinase type y (PIPKI-y) (72,76), which can, in

turn, locally increase the production of PIP2 (72). Since PIP2 is known to activate a

number of focal adhesion proteins (e.g. vinculin, talin, and paxillin), it has been

suggested that talin might play an important role in rapid regulation of cell-matrix

interactions (72). The talin extended rod domain contains binding sites for integrin (77)

and F-actin (78). Talin rod domain is also initially known to have three high affinity

vinculin binding sites where each binding sequence forms an amphipathic helix (79),

however, a recent study shows that talin may have total of 11 potential vinculin binding

sites (VBSs) (56). Bass et al. (80) showed that initially identified three vinculin binding

sites are mutually exclusive, therefore suggested, given also that they are all amphipathic

helices, that they bind to the same site on vinculin through an identical binding

mechanism. Since the vinculin-binding sites share only a partial sequence identity (80)

and a-actinin, another cytoplasmic protein, is shown to bind at the same binding site on

vinculin (71), this suggests that the binding site on vinculin for vinculin-binding-sites of

talin or the cc-actinin is not highly specific. Unlike vinculin disrupted cells, which still

formed FA (69), mouse embryonic stem cells with disrupted talin genes failed to form

focal adhesions and showed spreading defects (81).
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The crystal structure of full-length talin is not available, but subdomains of the

talin rod (talin residues 482-789) containing the VBS1 (57) and talin rod (talin residues

755-889) containing the VBS2 (82) are reported. Although VBS1 can strongly bind to

vinculin (83), the five-helix bundle containing VBS1 is unable to bind to vinculin as the

binding surface is cryptic (58). The crystal structure determined by Papagrigoriou et al.

(57) is the N-terminal nine-helix bundle of the talin rod containing the VBS1 and two

more VBSs is shown in Figure 1.5 (VBSs are red helices).

Vinculin-talin binding interactions. VBSs cab bind to Vhl at high binding affinities

(83), but longer full-length talin only weakly binds to Vhl (58) indicating that many of

the VBSs are cryptic. Vhl is a subdomain of vinculin head that contains the binding site

for talin and is used in various talin-binding experiments (58,71). In a thorough

mutational study on VBS 1 on binding to Vhl, most of the hydrophobic residues of VBS 1

that are embedded within Vhl are shown to be important in stable binding to Vhl (57).

Interestingly, these same hydrophobic residues are also embedded within the

hydrophobic core of N-terminal five-helix bundle of talin rod (TAL5) (57). Experiments

have shown that isolated TAL5 has a low binding affinity for Vhl, whereas a four-helix-

bundle with helix-5 (H5) removed from TAL5 (58), a mutated TAL5 with an unstable

hydrophobic core (57), or the wild-type TAL5 molecule in elevated temperature solvent

(58) can each disrupt TAL5 stability and strongly bind to Vhl. One working hypothesis

is that the tensile force transmitted through TAL5 is the destabilizing cue that exposes the

cryptic binding surface of VBS1, but direct evidence has been lacking.
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1.4 Experimental and numerical studies on force response on proteins.

Molecular dynamics (MD) has been used to study the force response on various

molecular structures (84-86). Mostly, unfolding pulling forces were applied between two

atoms (e.g. C- and N-termini), and the results were compared with the corresponding

Atomic Force Microscopy (AFM) experiments (87,88). AFM systems usually involve a

protein domain or a tandem repeats of the domain anchored at the bottom and attached to

the AFM probe tip (Figure 1.6A). A theoretical model representing the protein unfolding

energy landscape by parabolic well is shown in Figure 1.6B. As the probe tip moves up

at constant rate, the molecular extension and force applied can be measured; it has the

characteristic sawtooth shape with each force drop corresponding to sequential domain

unfolding (Figure 1.6C) (88-91). Corresponding MD studies, called steered molecular

dynamics (SMD) (92), usually involve holding one terminus fixed and pulling on the

other terminus at constant velocity or constant force (Figure 1.7) (84,85,93). Similar

force drops were observed as force-bearing hydrogen bonds within the structure are

broken, and the molecules displayed a number of stable intermediates during the

unfolding pathways (85,86,93,94). The importance of using explicit water molecules in

these unfolding simulations was emphasized as a single water molecule can play a critical

role in breakage of these force-bearing hydrogen bonds (85,94). During the forced

unfolding simulations, fibronectin exposed its cryptic binding site in the unfolding

intermediate (85) suggesting a possible force regulation pathway to mechanotransduction.

Fibronectin contains multiple type III modular domains with considerable

sequence variability, but with surprisingly high structural homology (2,88). Structural

stabilities of these modular domains vary widely due to the different residue sequences as
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determined by both SMD and AFM experiments (88,94). Such variation may actually

have a functional role in sensing different levels of force applied to fibronectin, especially

if each module has different molecular recognition sites (2). The relative variation in

rupture force measure using AFM (88) agrees very well with the relative variation

measure using SMD (94), but the overall magnitude of the rupture force estimated by

SMD is usually overestimated compared to the AFM measurement (2). The loading rates

between numerical and experimental studies are many orders of magnitude different with

the SMD loading being much faster. Since the rupture force for molecular unfolding is

dependent on the pulling rate (95), force predicted by SMD tends therefore to be larger

than those measured by AFM.

AFM experiments on a tandem repeat spectrin construct have identified more than

one unfolding pathway of a single domain and simultaneous multi-domain unfolding

(96,97). A SMD study from the same group has helped to identify a possible molecular

mechanism for such multiple unfolding pathways, which was related to the hydration of

the backbone of the linker helix (98).

SMD simulation has also been used to calculate the free energy landscape along a

predetermined reaction coordinate (99,100) by utilizing the SMD and Jarzynski's

equality (101). Zhang et al. (100) identified the most probable unbinding pathway of

acetylcholine from the human alpha7 nicotinic acetylcholine receptor by evaluating the

potential of mean force (PMF) along multiple trajectories and selecting the path requiring

the lowest free energy cost. Umbrella sampling (102) is another method to obtain the

PMF along a reaction coordinates (99,103).
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1.5 Thesis objectives

Force regulation of focal adhesion assembly has been extensively studied

experimentally (38,39). Vinculin is recruited to the initial adhesion site with applied

external force, and the reinforced linkage eventually matures into a focal contact (40).

Although a model of force-induced activation of talin is proposed to recruit vinculin

(Figure 1.3), the molecular basis of talin activation or vinculin binding to talin is still

elusive. MD has been employed in studying the force response of protein domains, but

most studies focused on understanding the forced unfolding of proteins that complements

AFM experiments (2), and no MD studies on force-regulated focal adhesion assembly are

reported to date.

Therefore, the main goal of this thesis is to explore the possibility of MD in

investigating more realistic molecular events not observable through experiments, namely,

force-induced vinculin recruitment in early cell-matrix adhesion complex. Abundant

structural (57,71,73) and experimental (56-58) data on talin and vinculin are available to

support this numerical study. The outcome will not only provide molecular insights on

this mechanotransduction pathway, but similar MD methods can be employed for

studying other force-related protein complexes.

The remainder of this thesis is organized as follows. Chapter 2 describes the

model setup, simulation methods, data analysis, and computer resources used for the

molecular systems presented in this work. As a simplest possible protein model, an a-

helix model is considered in Chapter 3 and used, along with a coarse-grained, theoretical

model, to study force-induced protein deformation and conformational variation. This

simple system employs many of the forcing techniques used in the subsequent chapters.
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The result from the coarse-grained model is shown to be in good agreement with the

result from MD simulation using this simple ai-helix model. Chapter 4 presents force-

induced activation of a talin subdomain involving hydrogen-bond mediated VBS1

rotation to expose the cryptic binding site to the solvent. This is thefirst direct evidence

of forced activation of talin that is potentially taking place during the early adhesion

assembly. A vinculin subdomain and talin subdomain binding mechanism is presented in

Chapter 5 with initial hydrophobic interactions between the molecules followed by a final

locking mechanism that induces a large conformational change to the vinculin subdomain.

Binding of the two molecules proceeds with no or little external force, which is the first

reported natural binding simulation that involves large conformational change upon

binding. Finally, all the findings of these simulations are summarized and future

directions are discussed in Chapter 6.
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1.6 Figures

Figure 1.1. Image of focal adhesion protein complex linking the cytoskeleton with the

cytoplasmic domain of the transmembrane protein, integrin. The integrin runs through

the plasma membrane and is linked to the extracellular matrix. Focal adhesion protein

complex consists of many structural and signaling proteins.
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Figure 1.2. (a) Small 1-pm bead coated with fibronectin forms initial adhesion on the

cell surface, but does not mature into focal contact or focal adhesion. (b) Beads of larger

size (> 3-ptm) can induce focal complex formation as the cell exerts myosin generated

tensile forces on the bead. (c) With pulling force applied on the 1-pLm bead using laser

tweezer, the initial adhesion can mature into focal complex. Adapted from (40).
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Figure 1.3. (A) Model of the initial adhesion consisting of integrin-talin-F-actin linkage.

The vinculin is present in the cytosol as inactive, autoinhibitory conformation, and tensile

force is applied to integrin from the outside of the cell membrane. (B) The transmitted

force through the linkage alter the talin configuration, and recruits vinculin to reinforce

the initial adhesion linkage.
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Figure 1.4. (A) Crystal structure of the full-length vinculin in its autoinhibitory

conformation with DI (cyan), D2 (purple), D3 (tan), and D4 (green) connected to Vt

(orange) through a flexible linker. Inset box shows inactive vinculin model as shown in

Figure 1.3. (B) Same structure as Figure 1.4A, but only showing the Dl-Vt domains.

This configuration has an almost identical conformation as the Dl-Vt crystal structure

(71). (C) Hypothetical activated vinculin when D1-Vt interaction is broken. Inset box

shows the corresponding activated vinculin model similar to ones shown in Figure 1.3.
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N-terminus

Figure 1.5. Crystal structure of the nine-helix bundle of talin rod subdomain as it is

assumed to be oriented within the full-length talin model as shown in Figure 1.3. Three

of the potential 11 vinculin binding sites are indicated as red helices.

31



0)
a)
C
a)
a)
a)

x=vt
0

B

vt

extenson x
C/

extension x

Figure 1.6. (A) A setup for AFM single molecule pulling experiment. (B) Parabolic free

energy surface representing unfolding of pulled molecule. (C) A sawtooth force-

extension curve obtained from AFM experiments, where each peak represents the

unfolding of one molecular domain repeat. Adapted from (95).
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Figure 1.7. Molecular dynamics study of forced unfolding of 9Fn3 titin domain. At

constant force pulling of 200pN, (a) crystal structure, (b) first intermediate, (c and c') two

intermediates found near rNc = 140A, and (d) final configuration at the end of 1400ps

simulation. Adapted from (93).
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2 Methods

The methods of employing MD for molecular system involves preprocessing of

the available structural data into a molecular model, setting up and running the simulation

on the molecular model, and postprocessing of the trajectory data into representative

plots describing the observed mechanism. Crystal structures obtained from the PDB

Databank usually have missing atom coordinates that need to be approximated and

sometimes are needed to be trimmed to obtain the model for the structural domain of

interest from a larger structure. Appropriate setup for the numerical experiments on the

numerical model requires pre-analysis of available experimental data in terms of applying

constraints in order to simulate the desired numerical experiments. On the resulting MD

trajectories, creative data processing techniques are needed for pertinent interpretation of

the proposed arguments. In this chapter, the general details of model preparation and

model setup are described. The actual scripts used for these steps and data analysis

appear in the Appendix section, which provide enough details for the reproduction of the

presented work or the necessary tools to perform the subsequence future studies.

2.1 Model preparation

Commercial molecular dynamics software, CHARMM (Harvard University,

Cambridge, MA) (104), was used with polar-hydrogen representation CHARMM19 force

field (105) for implicit solvent simulations, and all-hydrogen representation

CHARMM27 force fields (106) for explicit solvent simulations. Crystal structure of the

molecule of interest is obtained from the online PDB Databank (www.rcsb.org). The

PDB file may need manual alteration if some of the residue names are inconsistent with

34



the notation in the force field. A typical example is the notation of histidine, which need

to be either HIS, HSD, or HSC depending on the protonation state in CHARMM19.

Residue notation for histidine other than these three using CHARMM19 will result in

error in reading the PDB. Both the residue sequence and the coordinates will be read in

from the PDB file. In most cases the hydrogen coordinates and also coordinates of some

atoms will be missing, which can be filled in within CHARMM by using the topology

file and the internal coordinates of the molecule. In cases where a short residue sequence

is missing in the middle of a molecule, manually input the residue sequence inside the

PDB file with default coordinate values of (x = 9999.000, y = 9999.000, z = 9999.000).

This will produce the correct molecular topology, then the approximate coordinates can

be incorporated by 'coordinate fill' command. This technique can be used to manipulate

the total number of residues within a molecule or even to splice two separate molecules

into one.

The molecular model built needs to be thoroughly energy minimized before being

used for the molecular dynamics study. The energy minimization will relax high energy

atomic interactions, especially when the atomic coordinates are approximately filled in by

the 'coordinate fill' command. It is important to use the identical simulation parameters

in the minimization as will be used for the MD simulation. For example, SHAKE

constraint used to fix the bond lengths between hydrogen and heavy atoms (107) and the

solvent parameters to be used in the upcoming MD simulation must be set prior to the

energy minimization. By fixing the high frequency movement of hydrogen bonded to

heavy atoms, SHAKE allows the use of larger time step (2 fs) in all of the simulations

used in this work. The molecular structure is minimized by alternating the Steepest
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Decent and Adopted Basis Newton Raphson methods with 3000 steps, and at each

minimization set reducing the level of atomic constraints. This allows a thorough

minimization of the given molecule without deviating it too far from the original

conformation.

Sometimes it is convenient to orient the molecules in predefined directions when

applying tensile force or in analyzing one molecular complex with respect to another

molecular complex that share the same domain. A typical way of achieving this is to

defined three points in space, usually the center of mass of three collections of atoms (e.g.

helix 1, helix 3, and helix 4-6), and align the vectors defined by these points to the

principle axes using vector calculus.

2.2 Solvent models and nonbonded parameters

Selection of solvent model to use and the nonbonded parameters has the most

direct effect in the accuracy and the efficiency of the MD simulations. For implicit

solvent simulation, the Effective Energy Function (EEF1) (108) solvent model was used

with the CHARMM19 force field (105). EEF1 is an empirical method that has

considerably high computational efficiency compared to other theoretical implicit solvent

models (109,110). Many pulling simulations have used EEF1 and reported reasonable

trajectories (108,111,112). Most importantly, equilibration simulations are performed

using various implicit models and explicit model as a test, and both the EEF1 and the

explicit simulation resulted in similar trajectories with most of the critical hydrophobic

and hydrogen-bonding interactions intact. Therefore, EEF1 was used for most of the

simulations presented in this thesis, and other related simulations and corresponding
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explicit simulations were performed afterward to check for consistency. Use of EEF 1

needs to be invoked in CHARMM command line and the default nonbonded parameters

of (CTONNB=7.0, CTOFNB=9.0, CUTNB=10.0) are used.

eefl setup temp 300.0 unit 93 name solvpar.inp
update ctonnb 7.0 ctofnb 9.0 cutnb 10.0 group rdie

The use relatively short cutoff distance in EEF1 is to enhance its computational

efficiency and the correction for the long-range effect beyond the 9A cutoff has been

hard-coded in the EEF1 method (108).

For explicit water simulation, the molecular system needs to be solvated in a

water block. There are number of water blocks that can be used: spherical, orthorhombic,

cubic, rhombic dodecahedral, and etc. However, in order to use periodic boundary

condition, only the water blocks with flat faces can be used. The orthorhombic box can

be used for elongated shaped molecule (Figure 2.LA) to minimize the total number of

atoms and still have at least 1 OA of solvent buffer from the edge of the molecule to the

edge of the solvent block. The solvated system is obtained by overlapping the solid water

block with the molecule and removing all the overlapping water molecules. There are a

few disadvantages for using orthorhombic water blocks. Constant pressure simulation

does not work on orthorhombic box, and the elongated molecule can rotate and have a

region of it sticking out of the box and interacting with itself. This problem can be

addressed by using constraints to prevent the molecule from rotation, or by using cubic or

rhombic dodecahedral water box.

Rhombic dodecahedral box is created from a spherical shaped water block.

Rhombic dodecahedral periodic boundary condition is applied on the surface of the

spherical block and the system is minimized until the box is obtained (Figure 2.1B). It
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benefits of having about 1/3 fewer water molecules than a corresponding cubic box, but

with uniform solvation from the center of mass of the molecule. This reduction in

number of water molecules amounts to a significant computational time save, and should

be ideal for running constraint-free simulations that is free to rotate. As an example,

Figure 2.1 B has a globular shaped five-helix bundle system for simulations with elevated

temperature. It is recommended to make the total charge of the solvated system to zero,

especially when using periodic boundary condition. The sodium (Na') or chloride (Cl~)

ions can be added in place of random water molecules in the system to neutralize the

system. The system in Figure 2.1 A already has a charge of zero, and no ions were added.

The system in Figure 2.1 B has a charge of -6, so six sodium ions (yellow spheres) were

added to neutralize the system. When studying the effect of salt concentration on the

molecular behavior, additional sodium and chloride ions can be added to neutralize the

system and also match the salt concentration based on the volume of the water block.

An all-hydrogen representation was used with CHARMM27 force fields (106) for

all the explicit water simulations. The SHAKE constraint and 2 fs time-step was used.

When EWALD method is not used to treat the nonbonded interaction beyond the cutoff

distance, SHIFT truncation was imposed with nonbonded parameters of (CTONNB=10.0,

CTOFNB=12.0, CUTNB=14.0), which has been found to exhibit reasonable accuracy in

explicit water simulations (113). The following commands should appear in CHARMM

script for turning on the periodic boundary conditions for non-EWALD simulations.

open unit 88 read form name stream/waterbox.img
read image card unit 88
image byres sele .not. prot end
image byseg sele prot end
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For using EWALD, SHIFT truncation was imposed with nonbonded parameters of

(CTONNB=8.0, CTOFNB=10.0, CUTNB=12.0), and the following commands are used

to switch on the periodic boundary condition.

crystal define ortho @XSIZ @YSIZ @ZSIZ 90.0 90.0 90.0
crystal build cutoff 12.0
image byres sele .not. prot end
image byseg sele prot end
energy ewald pmewald kappa 0.34 order 6 -

fftx 64 ffty 128 fftz 64 qcor 0.0

2.3 Force manipulations and constraints

Harmonic constraint is used to hold an atom near a point in the Cartesian space,

and applies a force, F = k*(x0 -x), to the atom where k is the force constant, xo is the

reference position, and x is the current position. Nuclear-Oberhauser-Effect (NOE)

constraint in CHARMM correspond to atom pair distance constraint, where the restoring

force is only applied when the pair distance exceeds the specified reference distance. For

example, force of F = ka*(dma-d) is applied to the atom pair only if d > dm.ax, where

kma is the force constant, dma is the maximum reference distance, and d is the current

distance between the atom pair. Similarly, a NOE lower bound constraint can be applied

by specifying kmin and dmin, where the atom pair coming closer than dmin is now pushed

away from each other. NOE constraint is useful in controlling parts of the molecule from

deviating too much from the original configuration or to confine two or more molecules

to near each other. A good example of using NOE constraint is to constrain the backbone

hydrogen bonding pairs within an a-helix to 3.5A. This will ensure the a-helix to retain

its secondary structure during the forced MD simulations. A constant force can be

applied to a collection of atoms to a pre-specified direction. The specified force is
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applied to each atom in the collection, therefore the total force applied to the molecule is

Ftot = Nappfied*Fspecified, where Napplied is the number of atom selected. Constant velocity

pulling can be achieved by harmonically constraining two end atoms (e.g. two termini) of

a molecule to two dummy atoms, and holding one dummy atom fixed in space and

moving the other at constant velocity away from the fixed atom. It would be convenient

to align the molecules along the forcing direction during the system setup to simplify the

force application and the data analysis. Force response on molecular systems was

investigated by employing various combinations of these constraints and applied forces.

2.4 Computer resources

All the simulations in this work are performed on 8-node (2 processors per node)

Linux cluster in our lab and at San Diego Supercomputer Center (SDSC) using DataStar

IBM p655. Most of the implicit simulations were conducted at the Linux cluster using

one node per simulation, and the explicit simulations were conducted at SDSC using 64

or 96 processors. In order to use the computer resources more efficiently, benchmark

simulations were run on various solvent models with different number of processors

(Table 2.1). The same molecular system was used for all four cases in Table 2.1. The

differences in the number of atoms arise from the use of different solvent method. The

simulation time is indicated as seconds per 1000 steps of simulation, e.g. using 2

processors solving EEF1 method needs 27 seconds to simulate 1000 time-steps. In

comparing GBSW and EEF1 implicit methods using 2 processors, GBSW is more than

20-fold more computationally intensive than EEF 1 simulation. Using 4 processors in

solving explicit simulation at the Linux cluster and at SDSC, simulation at SDSC was
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about 4-fold faster. Plots of simulations at SDSC for solving explicit system at different

number of processors and simulations at the Linux cluster for solving GBSW system at

different number of processors are shown in Figure 2.2. The black dashed lines represent

the ideal speed up with increase in the number of processors. The plots indicate that the

scalability is reasonable for the explicit simulations (47,500 atoms), but poor for the

GBSW simulations (4400 atoms), which is probably due to doing more calculations per

processors than message passing for larger system (i.e. explicit system). Consistently,

going from 2 processors to 4 processors for EEF1 simulation (2600 atoms) increased the

time from 27 to 38.7 seconds per 1000-steps. For the best use of the computer resources,

all the implicit simulations were carried out at the Linux cluster using one node each time

and all the explicit simulations were run at SDSC.

41



2.5 Table and figures

SDSC Linux Linux Linux
47,500 atoms 47,500 atoms 4,400 atoms 2,600 atoms
Cutoff=oA Cutoff=10A Cutoff=14A Cutoff=9A

# of Proc Exp, EWALD Exp, EWALD GBSW EEF1
2 3474 - 645.5 27
4 1749.6 6017.1 370 38.7
6 - - 280.4 -
8 959.4 - 234 -
10 - - 208.1 -
12 - - 193.3 -
16 621 - - -

32 360 -

64 207 -_-_-

Table 2.1. Time in seconds for calculating 1000-steps of corresponding molecular

systems. These are all from the same protein system with different salvation methods.
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Figure 2.1. (A) Vinculin subdomain (Vhl) and talin VBS1 solvated in a orthorhombic

water box. The net charge of the system is zero. (B) N-terminal five-helix bundle of

talin rod containing cryptic VBS 1 is solvated in rhombic dodecahedral water block. The

yellow spheres represent sodium ions added to neutralize the total charge of the solvated

system.
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Figure 2.2. Time requirement for solving 1000 time-steps when using various number of

processors. (Above) Using in-house Linux cluster for simulating GBSW system. (Below)

Using SDSC for simulating explicit water system. The data points are from the Table 2. 1.

The dashed lines represent the ideal speed-up with increased number of processors.
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3 Simple a-helix Model for Force-induced Extension and

Kinetics *

3.1 Introduction

A generic coarse-grained model linking force to protein conformational change

was developed and analyzed in terms of the mechanical properties of the protein states.

Assuming that binding is a force-independent event and occurs preferentially in one

conformation (relaxed or extended), our model links force applied to a protein to its

propensity to initiate a signal. We consider a simplifying case of a protein having just

two conformational states: CI, dominating without force application, and C2, an extended

state favored by force. Our analysis is based on the simplest possible energy landscape

corresponding to this situation: two harmonic wells whose minima represent the two

states (Figure 3.1), connected via a one-dimensional trajectory. Even though most

proteins are likely to sample several intermediary conformations (local minima between

the wells) while traversing a complex reaction trajectory (114), our model accounts only

for the highest energy peak, or the last one encountered before the reactive state is

attained. Both the equilibrium distribution of states as well as the rates of reaction are

considered.

The work in this chapter was in collaboration with H. Karcher (115), who has developed
the presented coarse-grained model.
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Here we adopt a widely-used microscopic approach based on Smoluchowski

equation to deduce mean passage times and derive kinetic rate constants of diffusion-

controlled reactions (116). This approach has been successfully applied to non-forced

reactions (117,118), as well as forced reactions of bond rupture by escape from a single

energy well (92,95,119). Another method to account for force dependence of kinetic rate

constants is to apply Bell's phenomenological exponential dependence on force for the

rate of bond dissociation (120). This approach has been extended to time-dependent

applied forces to find statistics on the rupture forces in AFM experiments (95).

Several methods have been proposed to extract kinetic information from single-

molecule pulling experiments leading to unbinding from a substrate or unfolding. AFM

experiments to unbind the avidin-biotin complex have been analyzed using mean first

passage-times (92) on one-dimensional energy landscapes, similar to the approach taken

in this work. Whereas unbinding was then modeled as escape from a single energy well,

the present method introduce a two-well landscape to model the transition between two

stable, native conformational states of a single molecule. Hummer and Szabo (95) present

another method to extract rate kinetics from pulling experiments, also based on escape

from a single energy well.

Most kinetic models for protein deformation or unbinding consider only the

energy barrier between states, whereas the proposed model takes into account the shape

of the landscape along the entire reaction path. MD offers ways to link conformational

changes of specific proteins under forces applied at specified protein locations. However,

such simulations require knowledge of the full atomic structure specific to the particular

protein, and typically are confined, due to computational constraints, to forces large
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compared to those experienced in vivo. A simple a-helix model was designed to test the

coarse-grained model. Our approach is complementary in that it only considers a single

degree of freedom trajectory and a single transition between states. All intra-protein

force interactions are therefore represented by the two parabolic wells to produce a

simplified model for the purpose of the examining both equilibrium states and rate

kinetics.

3.2 Methods

Coarse-grained energy landscape for protein extension

Consider a protein having two conformational states: C1, preferentially populated

when no force is applied, and C2, an extended state, and acted upon by a contact force

(Figure 3.1). A simple energy landscape E(x) describing this situation consists of two

parabolic wells:

E(x) = Kx 2 - Fx for x < x,

E(x)= 2 K 2(x - x 2 )
2 + E2 - Fx for x > xt,

with Ki and K2 stiffness values of the first and second well, respectively, x,, the position of

the transition state, x2 the position of the extended state C2 when no force is applied, E2

the zero-force free energy difference between C, and C2, and F the force applied to the

protein.

A single reaction coordinate, x, is chosen, corresponding to the direction of

protein deformation and force application. Energy minima (describing Ci and C2 states,

respectively) are located initially at x = 0 and x = x, The two parabolas intersect at a

transition state x = xtr* With increasing force, the transition state remains at the same

47



reaction coordinate xIr , but the minima shift to x = xminI = F/KI

and x = xmin= x2 + F/K1  . For simplification, the following four non-dimensional

parameters were used to calculate the rate constants:

,=Fx,, LICX,) E2
H Ir9' I tr 1)F C c !I ~ F 2

kT kT K2  kT

The forward rate constant k1 for the protein to change conformation from CI to C2

was approximated as the inverse of the mean first-passage time associated with the

transition from CI to C2 : tf , a quantity that was used before as a measure of reaction

rates (117,119,121). tf is the average time necessary for the protein extremity to diffuse

from its equilibrium state C1 (minimum of the first well) to the elongated state C2

(minimum of the second well) (Figure 3.1). Similarly, the reverse rate constant kr for the

protein to change conformation from state C2 to state C1 is the inverse of the passage time

t,. in the reverse direction (Figure 3.1). The details of evaluating the first-passage time

for the present model can be found in reference (115).

Steered molecular dynamics simulations on a simplified protein model

For the purpose of comparison to the coarse-grained simulation, we constructed a

simple cc-helix (a 15-mer of poly-alanine; Figure 3.2) and analyzed it using SMD (92).

One advantage of an c-helix is that the helical axis uniquely defines a uni-directional

reaction coordinate, along which the external force is applied. An extensive free energy

calculation using constant velocity SMD and Jarzynski's equality has recently been

reported by Park et al. (99) on a very similar deca-alanine c-helix. Here however, rather

than attempting to evaluate the potential of mean force, we applied a constant force and
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used distance constraints on the 15-mer of polyalanine to compare the SMD results with

those from the coarse-grained model. The number of alanines and the distance

constraints have been selected so as to yield a stable and simple model that exhibits two

distinct conformations. Many parameters extracted from the constant force SMD of this

specifically designed model can be better related to our coarse-grained model, as seen in

the results section.

The poly-alanine cc-helix was constructed by creating a linear polyalanine

sequence and specifying all the 4 dihedral angles to -57' and all the Y dihedral angles to

-470 which is characteristic dihedral angles for an cc-helix. The N- and C-termini were

capped with an amino group and a carboxylate group, respectively, with ionic states

representative of the physiological pH level. The CHARMM script for creating an cc-

helix is available online (75). CHARMM was used to carry out the SMD simulations

with the ACE2 implicit water module (122) and SHAKE constraints for efficiency.

Energy of the a-helix structure was minimized in 15000 steps, heated to 300K in 40ps,

and the system was equilibrated for 120ps using a time step of 2fs. After equilibration,

the helix was repositioned placing the N-terminus at the origin and the C-terminus along

the x-axis. Holding the helix fixed by a harmonic constraint at the N-terminus, the C-

terminus was pulled with constant force along the x-axis. After a sequence of

simulations in which several polypeptides arrangements were tried, we chose an cc-helical

system with 11 potential H-bonds, with six forced to remain intact under force and the

other five allowed to form or break due to the combined effects of electrostatic attraction

and VDW repulsion. The criterion for this choice was that the system exhibits two

distinct states, with no apparent intermediate states. We imposed NOE constraints to the
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six H-bonding pairs, out of 11 possible, starting from the N-terminus carbonyl group, by

specifying a limit distance of 4.25 A between ith carbonyl carbon and (i+ 4 )h amide

nitrogen with a force constant of 10.0 kcal/mol-A 2 . This model leaves five H-bonding

pairs near the C-terminus to simultaneously either all break or all form to yield two

distinct conformations (Cl and C2). Simulations were performed for 100 ns per

simulation at forces of 30pN, 65pN, 70pN, 75pN, 80pN, 85pN, and IOOpN.

Thermal fluctuations caused the forced end to exhibit relatively large

displacements perpendicular to the direction of force application (Figure 3.2; left end is

fixed and right end fluctuates). To compare with our single-dimensional coarse-grained

model, we therefore present results in terms of the time-averaged component of force

acting along the helical-axis.

Parameters were extracted from SMD simulations for comparison with our

coarse-grained model. End-to-end distances, defined as the distance between the two

termini (Figure 3.2), were traced with respect to time (Figure 3.3) and recorded every 4ps

and used to generate histograms (Figure 3.4) to identify the most frequently sampled

configurations.

Forward mean passage time from the coiled to extended conformation (t.) was

determined, assuming ergodicity, as the average time the molecule resides in state C1

before undergoing a transition to C2 , while reverse mean passage time ( t, ) was

determined as the time residing in the extended conformation (C2) before returning to the

coiled conformation (C1) (Figure 3.3). These SMD-determined parameters are

introduced into the coarse-grained model, and compared the forward and reverse mean

passage times obtained by both methods (SMD and coarse-grained model).
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3.3 Results

The end-to-end distance (1) was extracted at each time frame (4ps per frame) from

all of the SMD simulations (e.g., F=78.2pN shown in Figure 3.3). Plotting the histogram

of 1, the molecule is seen to sample two predominant conformations (end-to-end distances

with the most occurrences on Figure 3.3 and 3.4). Assuming ergodicity, these

conformations correspond to energy minima of our idealized energy landscape:

Xmin = F/ 1 , and xmi 2 = X 2 + F/K2 'Plotting the end-to-end distance with the most

occurrences (xmin and Xmin ) as a function of force (data not shown) yields the zero-force

end-to-end distance of C, and C2 (l, = 2.1185nm and 12 = 2.9307nm respectively, hence

the reaction coordinate x 2 = 12 -1, = 0.8122nm ). The locations of x.,, and Xmi2

determined from the peaks of the histograms, follow a linear trend with applied force:

Xmm = F/, and xm =2x2 + F/K2 . The slope ratio of xmmnI and xmn 2 from the same

plot gives H K 0.44. Thermal fluctuations are greater at small forces (CI) than at large

forces (C2) (Figure 3.3), hence K2 > KI, roughly by a factor of two. At F=74pN, the SMD

simulations show that the molecule spends an equal amount of time in states C1 and C2.

This, as well as the geometric constraints described in Methods, lead to the parameter

values: E & 13.2, r,, ; 20 and a transition state xtr = 0.6nm (0 < x,, < x,). Finally, it

follows that VIF ~ 0.14 x F(pN), KI 1070pN /nm and K2 ; 2183pN /nm .

The passage time tj decreased with applied force, and t, increased with applied

force both with lower and upper limits of zero and infinity, respectively (Figure 3.5).

Hence, the coarse-grained model and SMD simulations yielded similar trends though
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extension rates exhibited a stronger dependence on force with the coarse-grained model.

Since the extension rates are dependent upon the shape of the energy landscape, one

explanation for the difference in extension rates could be that the actual shape of the

wells is different from the assumed parabolic wells.

3.4 Discussion

A generic model is developed for protein extension employing the physics of

diffusion under force inspired by Kramers theory. The protein is assumed to have two

distinct conformational states: a relaxed state, Ci, preferred in the absence of external

force, and an extended state, C2, populated under force application. The present model

takes into account the mechanical features of the protein, as influenced by the weak

interactions within a single protein. Its main purpose is to mechanically characterize the

behavior of a protein's force-induced deformations and kinetics using a coarse-grained,

approximate method. For now, we focus on the simplest system, and present an approach

based on Kramers rate theory that incorporates a two-potential well energy landscape.

Equilibrium results show that transitions to an activated state can occur over a narrow

range of applied force. Reaction rates initially follow the anticipated exponential

dependence on force, but the behavior deviates as the energy landscape becomes

increasingly distorted. When cast in dimensionless form, all these results can be

expressed in terms of four dimensionless parameters.

Simulations of complete unfolding of a protein (e.g., titin in Rief et al. (91),

fibronectin domain in Gao et al. (85)) or unbinding from a substrate (e.g., avidin-biotin in

Izrailev et al. (92)) have typically used large forces (-nN) to be computationally feasible
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with SMD, and hence fall within a drift motion regime (92). As this probes a different

regime from the thermally activated one used in our coarse-grained model (92,123), we

performed new simulations with smaller, steady forces (30-90 pN), inducing small

deformations (<mnm, compared to -28nm for unfolding of a single titin domain, (91))

and slow kinetics (time scales on the order of ns rather than ps). These slower transitions

with smaller displacements are perhaps of more interest in the context of

mechanotransduction. Using parameter values taken from equilibrium conditions,

reasonable agreement was obtained for the variation in rate constants with applied force

(Figure 3.5). Values of kf and k, extracted from SMD do not vary as rapidly with force

as those computed with the coarse-grained model. A reason for this discrepancy could be

that more energy dimensions are sampled in SMD than in our one-dimensional coarse-

grained model.

Interest in the fundamental mechanisms of mechanotransduction has led to an

increased focus on force-induced conformational change, producing subsequent

alterations in binding affinity or enzymatic activity. Progress has been slow, however,

since numerous proteins are involved in the transmission of force into and throughout the

cell, and only a small fraction of these are sufficiently well characterized to permit

detailed analysis, either by molecular dynamics simulation or experimentally.

Alternative, more approximate methods are therefore needed if progress is to be made in

the near term. A simple coarse-grained model of protein conformational change is

presented with the capability of simulating some of the basic characteristics of protein

kinetics and conformational change. Despite its simplicity with numerous simplifications,

the current model can serve as a useful starting point for more detailed models. This has
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been indeed demonstrated through comparison to MD results of a simple a-helix model,

which resulted in a good agreement in terms of evaluated time extension (Figure 3.5).

Since the solutions for the coarse-grained model are obtained numerically, features can

be augmented for a more sophisticated model, such as non-harmonic potential wells with

multiple minima or allowing deformations in two or three dimensions. Similarly,

simulation of multiple proteins, such as those comprising a focal adhesion, becomes

computationally feasible. Coarse-grained models can be an additional tool along with

MD and experiments to be developed, and together they can complement the study of

mechanotransduction.
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Figure 3.1. Idealized protein energy landscape when extended in the direction x. The y-

axis is the Gibbs free energy G. The boxes contain the equations used to calculate the

passage times and hence the protein extension rate. Ci is an initial, relaxed state, C2 a

final, extended state. The times tf and t, the first passage times to travel the distance

depicted by the associated arrow, are computed to obtain the protein extension rate kf and

reverse rate k,.
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Figure 3.2. Two distinct conformations, C1 (top) and C2 (bottom), of the simplified

protein model used in SMD. Left end of the helix is held fixed, while the right end is

pulled with a constant force in the direction shown by the arrow. Six hydrogen-bonding

pairs near the fixed end are constrained not to break.
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Figure 3.3. Time trace of the end-to-end distance of the helix at F=78.2pN (corrected

from F=80pN). A forward passage time and a reverse passage time are shown. Mean

passage times are obtained by averaging throughout the simulation.
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Figure 3.4. Histograms showing single and double peaks at various force magnitudes.

Linear shift on the peaks are evident with varying forces.
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Figure 3.5. Protein extension rate from coarse-grained model and SMD model as

functions of applied force along the helix axis direction. (Dotted line) SMD results from

pulling on 15-mer of poly-alanine forming a a-helix. Kinetic rate constants are extracted

as explained in Methods. (Solid line) results from coarse-grained model with H, = 0.44,

[I E~ 13.2, Htr =20 (see text for parameter extraction). Both coarse-grained model and

SMD simulations exhibit similar trends for the rates transforming the initial into the

extended state (k 1 ) or the reverse (kr).
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4 Force-Induced Activation of Talin and Its Possible Role in

Focal Adhesion Mechanotransduction

4.1 Introduction

One key mechanosensing protein in focal adhesions is talin, a cytoplasmic protein

with a globular head and an elongated rod that provides an essential structural link

between integrins and the actin cytoskeleton (70). The globular head of talin binds to P-

integrin (75) and can also bind to and activate phosphatidylinositol 4 phosphate 5-kinase

type y (PIPKI-y) (72,76). This, in turn, locally increases the production of

phosphatidylinositol 4,5 bisphosphate (PIP2) (72), which is known to activate a number

of focal adhesion proteins (e.g. vinculin and talin), hence promoting focal adhesion

assembly (72). The talin rod can bind to P-integrin (77) and F-actin (78), and contains 11

vinculin binding sites (VBSs), each of which is an amphipathic a-helix (56,79). Vinculin

is a cytoplasmic protein that may function as a structural reinforcement. It consists of a

globular head, a proline-rich neck region, and a rod-like tail domain, which contains

binding sites for many other cytoplasmic proteins (59,60). Cells with disrupted talin

function fail to form focal adhesions and exhibit spreading defects (81). Cells with

vinculin disruption, however, can still form focal adhesions, but display reduced ability to

spread and increased cell motility (69).

Since mechanical force is needed for vinculin recruitment to focal adhesions (40),

force-induced activation of cryptic VBSs on talin through conformational change may be

the mechanosensing pathway leading to recruitment (2). Such recruitment could also

60



lead to reinforcement of the focal adhesion. Indeed, talinl is critical in force-dependent

vinculin recruitment to adhesion sites independent of Src family kinase and focal

adhesion kinase activities (53). Jiang et al. (52) identified that the initial contact that a

cell makes with the extracellular matrix (ECM) consists of ECM-integrin-talin-F-actin

linkages.

Some of the talin VBSs are inactive and unable to bind to the vinculin subdomain

(Vhl; residues 1-258) (58). Vhl is a subdomain of vinculin head that contains the

binding site for talin and is used in various talin-binding experiments (58,71). The first

vinculin-binding-site (VBS1; residues 606-636) is the fourth helix (H4) of a stable N-

terminal five-helix bundle (TAL5) of talin rod (57). VBSI has hydrophobic residues that,

upon binding to Vhl, become deeply embedded in a hydrophobic core of the Vhl (71).

The same vinculin-binding residues form a tight hydrophobic core within TAL5 (57).

Experiments have shown that isolated TAL5 has a low binding affinity for Vhl, whereas

a four-helix-bundle with helix-5 (H5) removed from TAL5 (58), a mutated TAL5 with an

unstable hydrophobic core (57), or the wild-type TAL5 molecule in elevated temperature

solvent (58) can each disrupt TAL5 stability and strongly bind to Vhl.

Here, using computational methods, we demonstrate that realistically transmitted

force acting on the focal adhesion protein talin leads to a conformational change that

exposes the cryptic vinculin-binding-residues of VBS1. This then enables force-induced

recruitment of vinculin, a critical early step in the process of focal adhesion

reinforcement. Sequence homology of VBS1 with other VBSs suggests that the proposed

mechanism may be a general force-induced activation mechanism of cryptic VBSs, and

perhaps even be one of the general mechanotransduction mechanisms of helical bundles.

61



4.2 Methods

TAL5 simulation with EEF1

The structure of TAL5 was obtained by removing the C-terminal four-helix-

bundle from TAL9 (PDB ID: 1 SJ8) (57). The location and the assumed orientation of

TAL9 within talin are shown in figure 4.1A. The longest principle length of TAL5 is

aligned along the y-axis and the cross product of the vectors along HI and H5 is aligned

along the z-axis (Figure 4.1B). CHARMM was used with EEF1 solvent model and the

CHARMM19 force field. The crystal structure was minimized by alternating the

Steepest Decent and Adopted Basis Newton Raphson methods with 3000 steps. Bond

lengths between hydrogen and heavy atoms were fixed using SHAKE constraint, and a

2fs time-step was used. Heating of the molecule to 300K occurred over 40ps, followed

by a 560ps equilibration period at 300K.

Umbrella sampling (102) module of CHARMM with parabolic potential force

constant of 5.Okcal/mol-A 2 imposed on the reference reaction coordinates. One atom of

each of the four residues of H5 (Q635, Q646, E650, and Q653) was harmonically

constrained in space (k=0.2kcal/mol-A 2). Forces were applied along a reaction

coordinate defined as distance along a line from the center of mass of the HI atom

selection (side chain atoms of T498, S501, and S502) to a dummy atom with neutral

charge and no mass located at coordinate (25.OA, -17.oA, 4.oA) (Figure 4.1B). At each

reference distance separated by (.A, an 800ps canonical ensemble calculation was

performed with Nos6-Hoover (124,125) thermostat for constant temperature control at

300K. NOE constraints were imposed to the backbone hydrogen bonding pairs within
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HI to prevent unraveling. In order to start the simulations with intact VBS1-Hi

interaction, NOE constraints were imposed to polar sidechains between VBS1 and HI

during equilibration, which were removed at the beginning of the production runs. It

should be noted that the sequential stepping (0.lA) used is smaller than the fluctuation

along the reaction coordinate around the reference value (- ±1A), and therefore, the

trajectory from the umbrella sampling simulation is similar to a constant velocity MD

calculation (92) with effective pulling velocity of 0. 125A/ns.

Constant force simulations with force magnitude varying between F= 15.0 to

25.OpN were performed using the same TAL5 model described above. Constant force of

F/(# of atoms on which the force is applied) was applied to each of the side chain atoms

on HI (T498, S501, and S502) toward the positive x-direction, such that total force

applied is F.

Mutational study on TAL5

Three mutated TAL5 structures were constructed using the MMTSB toolset (126):

(i) H5 residues N636 and Q639 mutated to alanines; (ii) VBSI residues R606, Q610,

K613, E621 and R624 all mutated to alanines; (iii) HI residues N500, Q504, Q507, D514,

and D515 all mutated to alanines. Umbrella sampling simulations identical to those

described above are performed on each mutated structure.

Explicit water simulation on TAL5

TAL5 was solvated in an orthorhombic solvent box with each face at least 10A

away from TAL5 resulting in 23,775 atoms. Periodic boundary conditions were imposed
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using the image module. Electrostatic charge of the solvated system was neutralized by

replacing seven water molecules with sodium ions. An all-hydrogen representation was

used with CHARMM27 force fields. The SHAKE constraint and 2fs time-steps was used.

SHIFT truncation was imposed with a cutoff distance of 12A for non-bonded interactions,

which has been found to exhibit reasonable accuracy in explicit water simulations (113).

Long range non-bonded interactions, beyond the cutoff distance, were not taken into

account in our explicit water simulations. The model was thoroughly minimized. The

system was heated to 300K in 40ps and equilibrated for 960ps. An umbrella sampling

potential of 5.Okcal/mol-A 2 was used. H5 sidechain atoms (Q646, E650, and Q653) were

harmonically constrained with force constant of 1.5kcal/mol-A2 . Using a reference

distance step size of 0.2A, and 400ps simulation at each step a canonical ensemble

simulation was performed with Nose-Hoover at each reference distance, which is

equivalent to 0.5A/ns pulling rate. A constant force simulation with F=50.OpN was also

performed. All explicit solvent simulations were performed on DataStar IBM p655 at

San Diego Supercomputing Center (SDSC).

4.3 Results

TAL5 forms a stable structure with cryptic VBS1, which cannot bind to Vhl in

intact TAL5, but elevated temperature can effectively disrupt its stability and allow it to

strongly bind to Vhl (58). Explicit water simulations at 300K, 360K, and 420K were

performed to investigate what constitutes TAL5 stability and the destabilizing effects of

elevated temperature. Hydrophobic residues of H5 (L65 1, A647, V644, and A640) form

a tight groove-fitting interaction with hydrophobic residues of VBSI (A61 1, L615, A618,
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and L622) (Figure 4.2B). This interaction prevents VBS I hydrophobic residues, which

are the vinculin-binding-residues, from becoming exposed to the solvent. The

trajectories of elevated temperature simulations (360K and 420K) did not differ much

from those at room temperature (300K) other than the expected increase in thermal

fluctuation. The RMSD of backbone atoms from crystal structures and average distances

with fluctuations of VBS1-H1, VBSI-H2, VBS1-H3, and VBS1-H5 for three simulations

are shown in Table 4.1. H5 and H3 closely interact with VBS 1, and with other helices to

a lesser extent (Figure 4.2B). It is likely that this interaction must be disrupted in

elevated temperature or force-induced activation of VBS 1.

In the TAL5 simulations displaying VBS 1 activation, the hydrophobic residues of

VBSI (L608, L609, L615, V619, L622, and L623) form a tight hydrophobic core with

the hydrophobic residues of H3 (V577, 1580, L584, M587, V591, and L594) and the

hydrophobic residues of H5 (L637, A640, V644, A647, L651, and 1655) before extension.

Polar and charged residues on VBS1 interact with HI and H5 through hydrogen-bonds

and salt bridges. RQK (R606, Q610, and K613) cluster on VBS1 interacts strongly with

HI (D514 and D515) by forming salt bridges (Figure 4.1B and 4.3B). ER (E621 and

R624) cluster on VBS1 interacts with H5 (N636 and Q639) and more strongly with HI

(N500, Q504, and Q507) as N500, Q504, and Q507 of HI surround and form hydrogen

bonds with R624 of VBS1 (Figure 4.1B and 4.3B). As force is applied to TAL5, it is

transmitted through these hydrogen-bonds. Since VBS1-Hi interaction is stronger, the

transmitted force applies a torque through the RQK and ER clusters on VBS1 and the

VBS1-H5 interaction is broken. As shown in figure 4.3, the hydrophobic contact formed

by VBS1 with H3 and H5 eventually slips, and the hydrophobic residues of VBS1 are
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exposed to the solvent as VBS1 undergoes a rigid body rotation (Figure 4.3B and 4.3D).

The hydrophobic residues of H5 fit into the V-shaped groove of VBS1 as one side of the

'V' (L608, L615, and L622) gets exposed to the solvent and the other side (L609, V619,

and L623) forms a new hydrophobic core with H5 and H3 (Figure 4.3C and 4.3D).

Solvent accessible surface area (SASA) of the hydrophobic residues of VBS1

(Figure 4.4A, 4.4D, and 4.4G) show how much of these residues are exposed. The extent

of VBS1 rotation is shown by measuring the angle made by L622 (only selected as a

reference, which is within the hydrophobic core of TAL5 and gets exposed to solvent

later) with the vector connecting the centers of mass of VBS 1 and H5 (Figure 4.4B, 4.4E,

and 4.4H; angle definition in Figure 4.5). VBS 1 activation is defined by L622 angle

becoming negative, since this is the clearest measure of helix rotation to expose VBS1 for

possible binding. An increase in SASA is also indicative of activation, although this

measure is also influenced by exposure of VBS1 residues internally, caused by HI

peeling away from VBS1. Note that the force peaks (figure 4.4C) are sharp, but the

corresponding changes in rotation angle are more gradual and tend to lag behind the

reduction in force. This may be due to rotation being diffusive in nature, occurring

subsequent to the drop in force impeding rotation. Results from two VBSI activated

simulations and one non-activated simulation (for comparison) is shown in figure 4.4.

By visual inspection on the VBS1 rotation plots displaying negative angles (e.g. Figure

4B, 4E, and 4H), 71.4% of the TAL5 simulations (n=20 out of 28) exhibited the VBS1

activation. Analyzing only the simulations with VBS1 activation, 157.5±70.9A 2 of

hydrophobic SASA of VBS 1 was exposed to solvent, VBS 1 rotated by 62.0±9.5*, and a

mean force of 13.2±8.OpN was required for activation.
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Activation of VBS 1 follows disruption of the tight hydrophobic interaction of

VBS 1 with H3 and H5 rather than resulting from hydrogen-bond breakage. Rotation due

to the applied torque through RQK and ER handles is opposed by the hydrophobic

contacts from H3 and H5 (Figure 4.6). Non-bonded components of the interaction force

on the hydrophobic sidechains of H3 and H5 experience force drops that correspond to

the yielding of VBSI to rotation (Figure 4.6B). The identified sidechains opposing

VBSl rotation exhibit simultaneous drops in force magnitude near 2ns. Time traces of

the non-bonded force on A640, L651, L584, and V591 are shown in the subset of figure

4.6B.

4.4 Discussion

VBS1 activation in TAL5 is triggered by torque transmitted through the RQK and

ER handles (Figure 4.3A and 4.3B). Polar side groups of H5 (N636 and Q639) oppose

VBS 1 activation by stabilizing the non-extended TAL5 structure. Indeed, in simulations

that did not undergo VBS1 activation, the ER handle formed hydrogen-bonds with H5

after breaking the hydrogen-bonds with H1. This, however, did not cause VBS 1 rotation

in the opposite direction, suggesting that VBS1 activation can only occur when VBS1

forms strong hydrogen-bonds with H1. Simulations on three mutated structures were

performed to verify the role of polar side chains on H1, VBS1, and H5. Simulation with

H5 mutation (N636 and Q639 to alanines) enhanced VBS1 activation, whereas VBS1

mutation (RQK and ER are all mutated to alanines) and HI mutation (N500, Q504, Q507,

D514, and D515 mutated to alanines) impaired VBSl activation, all consistent with our

argument (data not shown).
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Interestingly, the RQK and ER handles or similar motifs are ubiquitous in talin

rod VBSs suggesting this mechanism as a general force-induced VBS activation

mechanism of talin. For example, VBS2 (residues 852-876) contains sequences (KILAD

and KMvEAAK) (79) similar to ER (ELLR) and RQK (RPLLQAAK) handles of VBS 1 in

terms of charges. Also, VBS3 (residues 1944-1969) contains (KKELiECARRvsEK) (79).

Charged and polar residues are shown in bold-face to highlight the similarity with ER and

RQK sequences of VBS1. Another protein, a-actinin, localizes to cell-cell and cell-

matrix junctions. Similar to talin, a-actinin has an amphipathic a-helix (aVBS; residues

731-760) that can also bind to the same binding site on Vh and contains a sequence

(RTINE) (127) similar to the ER handle of talin VBS1. As the vinculin-binding-residues

of aVBS are also cryptic in an intact a-actinin structure (128), it is possible that a-actinin

may be another force-sensitive protein, which gets activated by a similar mechanism, in

vinculin recruitment.

The EEF1 model used in this study is empirically-based method characterized by

high efficiency (108). Other implicit solvent methods (109,110) are theory-based, and

they are 5-10 times slower than EEFL. EEF1 has been demonstrated to produce

reasonable MD trajectories (108,111,112). To verify the validity of the EEF1 results, a

constant velocity simulation with an effective pulling rate of 0.5A/ns and a constant force

simulation with F=50.OpN were performed on TAL5 with explicit solvent. In both

explicit simulations, RQK and ER handles formed persistent hydrogen-bonds with HI,

and the vinculin-binding surfaces of VBS1 became partially exposed in the 3.2ns

constant velocity simulation or the 1.6ns constant force simulation (Figure 4.7). Explicit

water molecules are known to slow diffusion-like transitions in proteins, and require
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much longer simulation times than the implicit simulations (8ns) to obtain similar range

in motion. Full rotation of VBS 1 therefore was not observed. The critical factors in

VBSI activation in EEF1 simulations are strong VBS1-H1 interaction, applied torque

through RQK and ER handles, and disruption of VBS1-H5 hydrophobic interaction. In

both the constant velocity simulation (10.58±0.25A) and the constant force simulation

(11.03±0.22A), the average distances between VBS 1 and H5 are clearly larger than the

ones observed in the non-forced simulations (Table 4.1).

It is important to recognize that the conformational changes critically depend on

the manner and direction in which the force is applied (2,111,129). Previous MD

simulations have generally pulled on the N- and C-termini, and the results are often

domain unfolding; e.g. (85,86). Complete unfolding is rarely observed in normal protein

binding, however, so there is no reason a priori to expect that it would be necessary for

force-induced reactions. We have attempted to apply a force in a realistic direction that

mimics the force transmission within talin. Adjacent secondary structures of a protein

commonly interact by forming hydrophobic contacts and hydrogen-bonds around the

hydrophobic patch. Applied forces, therefore, are likely transmitted through the

hydrogen-bonds between the secondary structures (85,86). The notable difference of

pulling in this study compared to other unfolding simulations is that we apply the force

on the hydrogen-bonding residues, which is a likely site of force transmission between

secondary structures, rather than on the two termini. Since the pulling direction is

primarily determined by the relative locations of force application sites and fixed points,

in choosing to apply force to the polar residues of HI, and to fix the polar residues of H5,

forces tend to be directed nearly perpendicular to the TAL5 principle axis (figure 4.1 B).
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VBS 1 activation was found to be somewhat dependent upon the sites of force application

and, consequently, on the direction of pulling (data not shown). However, given what is

currently known about the structure of talin, and the probable sites of interaction with

neighboring domains of the protein, these assumptions seemed reasonable.

The force extension curves have the typical sawtooth shape (Figure 4.4C, 4.4F,

and 4.41) with the force-drops corresponding to rupture of the hydrogen-bonds or

slippage of hydrophobic contacts between secondary structures, which are similarly

observed in other AFM and MD studies (84,87). Thus, VBSI activation occurs through

rotation of VBS 1 relative to the TAL5, as a consequence of torque applied via hydrogen-

bonds and salt bridges between HI and VBS 1. Thus, the conformational change required

for activation is subtle, involving an extension of less than 2A and no domain unfolding,

as has been found in the activation of other cryptic sites, such as fibronectin (85).

The potential of mean force (PMF), or free energy landscape along the extension,

has a monotonically increasing profile without any apparent local minima (130),

suggesting that the zero force structure resides in the global minimum (Figure 4.8).

There is, however, a region of decreased slope on the PMF curve near extension of

x=1 .4A that corresponds to the hydrophobic slip of VBS 1. Activation can be interpreted

in the context of the PMF curve representing the free energy change along a specified

reaction coordinate in the absence of force (130). The plateau at x=1.4A becomes a local

minimum when the molecule is exposed to a force as low as 20.OpN, allowing it to

undergo the conformational change (115,130). This is reflected, for example, by an

increased probability of 50% in the activated state under a force of 20.OpN compared to a

zero force case. An extended state from one of the simulations with VBS 1 hydrophobic
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residues partially exposed was used in a relaxation explicit water simulation for Ins with

all the constraints removed. In the absence of force, the exposed hydrophobic residues

rotated back into the hydrophobic core indicating that the non-extended state indeed is

the global minimum (Figure 4.9) and that de-activation occurs almost immediately

following the release of force.

Varying magnitudes of force are applied to TAL5 during the constant velocity

simulations as VBSI undergoes activation (Figure 4.4C, 4.4F, and 4.41). Although the

peak magnitude applied through TAL5 is 55.4U19.lpN, the mean force applied

throughout the simulations is 13.2±8.OpN. In order to verify this finding, constant force

simulations were performed. All constant force simulations (n=8) with force magnitude

> 18.0pN underwent VBS1 activation, whereas all simulations (n=4) with forces <

17.OpN did not (data not shown). The effective pulling rate of 0.125A/ns is still many

orders of magnitude faster than the pulling rates we might expect in vivo or with AFM

experiments (-nm/ms ~10 5 A/ns). Such rapid pulling results in significantly larger force

levels in bond rupture (119) or protein unfolding (95) compared to the corresponding

AFM measurements. In both cases, the forces measured by AFM were -30% of the force

computed using MD (95,119). Using this value as a very rough approximation, the force

needed to activate VBSI (13.2±8.OpN) at more realistic, slower rates of pulling would lie

in the range of -4pN. This estimated lower force at slower pulling rate is on the order of

(i) forces generated by a single myosin, -4pN (131); (ii) forces needed to rupture a talin-

F-actin bond, -2pN (52); and (iii) the estimated force experienced by a single integrin

linkage, based on close packing in a focal contact, -pN (44). On the extracellular side,
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the force required to break a single integrin-fibronectin bond is -20pN (132), and a single

integrin-fibrinogen bond can withstand 1 OOpN (133).

In conclusion, we identify a potential mechanism for VBS 1 activation, involving

a force-induced conformational change causing the hydrophobic vinculin-binding

residues on VBS1 within TAL5 to become accessible for vinculin binding. This would

then constitute the initiating event leading to force-induced focal adhesion strengthening

by vinculin recruitment.
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4.5 Table and figures

Dist between Dist between Dist between Dist between
VBS-Hi (A) VBS1-H2 (A) VBSI-H3 (A) VBSI-H5 (A) RMSD (A)

T = 300K 14.03 ± 0.26 14.38 ± 0.25 10.46 ± 0.21 8.04 ± 0.20 1.9635
T = 360K 13.79 ± 0.26 14.43 ± 0.25 10.57 ± 0.20 8.10 ± 0.20 2.3258
T = 420K 13.51 ± 0.35 14.33 ± 0.28 10.86 ± 0.26 8.44 ± 0.24 2.7919

Table 4.1. RMSD from crystal structure and average distances between

elevated temperature explicit water simulations.

helices from
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Figure 4.1. (A) Crystal structure of TAL9 (PDB ID: 1 SJ8) in ribbon representation is

shown superimposed on a hypothetical talin model. Three VBSs within TAL9 are shown

in red, and HI is shown in blue. Since the talin rod has tandem repeats of helical bundles,

TAL9 is aligned such that the centers of mass of the two helical bundles lie on the talin

rod axis. (B) Detailed view of the N-terminal five-helix bundle (TAL5) used in the

TAL5 simulations. Each of the five helices is shown in a different color: HI (blue), H2

(yellow), H3 (tan), H4 (or VBS1; red), and H5 (green). Some important polar residues

are shown in stick representations. A dummy atom with no mass or charge is shown in

white. H5 polar side chains (black sticks) are harmonically constrained in space

(constraints shown as triangles). HI polar side chains (yellow sticks) are pulled toward

the dummy atom (effective pulling direction shown as an arrow).
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LAIL

651
A611

647
L615

#644 A61

640 L622

Figure 4.2. (A) TAL5 in the same orientation as Figure 4.1 B with hydrophobic residues

shown in surface representation for HI (pink), H3 (cyan), VBS1 (orange), and H5 (white).

Exposed ribbon sites are polar residues, whose side-chains are not shown for clarity.

VBS1 and H5 form a tight groove-fitting contact, which stabilizes VBS1 in TAL5's

hydrophobic core preventing VBS1 from being accessible for vinculin binding. (B)

VBSI and H5 are shown separately with labels for residues participating in the groove-

fitting interaction.
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(A)
D515

+-D514

Q639 Q507

Q504
N636

N500

(P

(B) R606

0610

E621 K613

R624

Figure 4.3. Conformations showing VBS1 activation from the TAL5 simulation: HI

(blue ribbon), H2 (transparent yellow), H3 (transparent tan), VBS1 (red ribbon), H5

(green ribbon), hydrophobic residues of VBS1 (orange VDW; also the vinculin-binding-

residues), hydrophobic residues of H5 (white VDW), and some important polar residues

(stick representation with color denoting the atom type). Polar residues are labeled on the

figures. (A) Conformation at t=2.08ns. The hydrophobic residues of VBS1 (orange

VDW) are hidden in the hydrophobic core. (B) Conformation at t=7.40ns showing the

hydrophobic residues of VBS1 being exposed to solvent. Hydrogen-bonds between H5

and VBS 1 are broken. The hydrophobic residues, or the vinculin-binding-residues, point

into the page in (A) and point to left in (B). (C) Conformation at t=0.86ns viewed from

top. The V-shaped VBS I hydrophobic residues are packed within the hydrophobic core
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of TAL5 (cyan dotted lines). (D) Conformation at t=9.24ns showing VBS 1 rotation. The

hydrophobic residues H5 (white VDW) fit into the 'V' of the VBS 1 hydrophobic residues

(orange VDW).
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(C) Force-Ext (F) Force-Ext (1) Force-Ext
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0 0 0----- 0-
0 -30 -30 -30

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
Time (ns) Time (ns) Time (ns)

Figure 4.4. Results from three TAL5 simulations: from two simulations undergoing

VBS I activation (A)-() and (D)-(F), and also from a simulation without activation (G)-(I).

(A) (D) (G) Change in SASA of hydrophobic (red) and polar (blue) residues of VBS 1.

(B) (E) (H) Angle of rotation of VBSI relative to H5 (defined in Figure 4.5). Positive

angle corresponds to the inactive state of VBSI, and negative angles correspond to

activation. (C) (F) (I) Force applied to TAL5.
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L622

Figure 4.5. The angle of VBS 1 rotation is defined by the angle formed

VBS1 and a vector connecting the centers of mass of VBS1 and H5.

application, the angle is positive with L622 inside the hydrophobic

forcing, the angle is negative with L622 outside the hydrophobic core.

between L622 of

(A) Before force

core. (B) After
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//
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(B) "4- (C)

4

A.

Figure 4.6. (A) TAL5 in the same orientation and color coding as in Figure 4.2A. (B)

Only H3 and H5 are shown in the same orientation as in (A) at t=1.52ns to highlight the

force magnitude exerted on the hydrophobic residues by the hydrophobic residues of

VBS 1 (not shown for clarity) with force magnitude below the average force in blue, near

average in white, and above average in red. Residues shown in red are opposing VBS1

rotation. Once the hydrophobic residues slip, corresponding force drops are as shown in

blue. The snap incident is indicated on the VBS1 rotation plot (Figure 4.4B) as a red

vertical line. Time traces of force magnitude are shown for A640, L65 1, L584, and V591

in the subset. Force peaks near 2ns are indicated by red arrows, which correspond to

events in which the hydrophobic contacts yield to VBS 1 rotation. (C) Forces on
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hydrophobic sidechains at t=2.40ns just before slip of hydrophobic residues yielding to

VBS I rotation. (D) Forces on hydrophobic side-chains at t=3.04ns after the hydrophobic

slip and corresponding force drops.
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Figure 4.7. Two conformations from a constant force (F=50.OpN) explicit water

simulation. (A) Conformation at t=0.112ns and (B) conformation at t=1.2ns. The

simulation lasted 1.6ns. The hydrophobic residues of VBS1 seem to be beginning to

expose to solvent. Although VBS 1 rotation is much smaller in extent compared to those

measured in the implicit solvent simulation, VBS 1 still has very strong hydrogen-bonding

interactions with HI, where the torque applied through transmitted force. Trajectory

from constant velocity simulation in explicit solvent (3.2ns in duration) also show strong

interaction between VBS 1 and HI, but VBS 1 rotation is not observed to the same extent

as in the implicit solvent simulations.
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Figure 4.8. (Left) Calculated potential mean force (PMF) curves from TAL5 simulations

(n=5). Each PMF is shifted vertically so that the mean value for each is zero. (Right)

Averaged PMF.
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(A)

(F)

(C)5(B)

(G)

(D)

(I)

Figure 4.9. Surface representation of VBS 1 and H5 from the TAL9 simulation at (A)

t=Ons, (B) t=5.12ns, (C) t=10.24ns, and (D) t=15.36ns. Hydrophobic residues are shown

in white, polar residues in green, negative residues in red and positive residues in blue.

These views show that the hydrophobic residues of VBS1 are partially exposed to the

solvent. (E) The ribbon representation of TAL5 at t=15.36ns is shown with HI in blue

ribbon, H4 in red ribbon, H5 in green ribbon, VBS1 hydrophobic residues in red VDW,

and H5 hydrophobic residues in green VDW. The dotted box indicates that the surface

representations are only showing VBS1 and H5. The extended TAL9 at t=15.36ns is

truncated to TAL5, solvated in rhombic dodecahedron water-box, removed all external

forces, and simulated for Ins. The configurations at (F) t=Ops, (G) t=352ps, (H) t=704ps,

and (I) t=1056ps of the relaxing dynamics show that the exposed hydrophobic residues

return to their cryptic conformation.
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5 Molecular Dynamics Study of Talin-Vinculin Binding

5.1 Introduction

Talin and vinculin are essential in forming stable focal adhesions. Talin is a

cytoplasmic protein with binding sites to other focal adhesion proteins including P-

integrin (77), F-actin (78), and containing 11 possible vinculin binding sites (VBSs), a

number of which are cryptic (56,79). Vinculin likely provides structural reinforcement

since it can simultaneously bind to talin and F-actin. It consists of a globular head, a

proline-rich neck region, and a rod-like tail domain that contains binding sites for many

other cytoplasmic proteins (59,60). Vinculin head is known to bind to a-actinin (61) and

talin (54), whereas vinculin tail is known to bind to paxillin (62), F-actin (55), and

phosphatidylinositol 4,5 bisphosphate (PIP2) (63). The neck region binds to VASP (64),

vinexin (65), and ponsin (66). Vinculin forms an autoinhibitory head-tail interaction

within cytosol, which masks many of its binding sites for other proteins (73,134). Recent

findings show that the high affinity autoinhibition interaction in a full-length vinculin is

due to cooperative effect of two low affinity binding interfaces (135). Therefore,

complete vinculin activation requires a combinatory signaling pathway of vinculin

interacting with one or more of its binding partners (73). Cells with disrupted talin

function fail to form focal adhesions and exhibit spreading defects (81) whereas cells

with vinculin disruption can form focal adhesions, but display reduced ability to spread

and increased cell motility (69).

Some of the talin VBSs are inactive and unable to bind to the vinculin subdomain

(Vhl; residues 1-258) (58). Vhl is a subdomain of vinculin head that contains the

binding site for talin and is used in various talin-binding experiments (58,71). The first
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vinculin-binding-site (VBS1; residues 606-636) is the fourth helix (H4) of a stable N-

terminal five-helix bundle (TAL5) of talin rod (57). VBS 1 has hydrophobic residues that,

upon binding to Vhl, become deeply embedded in the hydrophobic core of Vhl (71).

Izard et al. (71) also demonstrated that VBSl can bind to Vhl of Vhl and vinculin tail

(Vt; residues 883-1066) complex and effectively sever the Vhl-Vt interaction. Purified

talin, however, binds to full-length vinculin at a low affinity suggesting that talin is only

one of a number of binding partners needed for full vinculin activation (73). The same

vinculin-binding residues of VBS1 that gets embedded within Vhl form a tight

hydrophobic core within TAL5 (57). Experiments have shown that isolated TAL5 has a

low binding affinity for Vhl, whereas a four-helix-bundle with helix-5 (H5) removed

from TAL5 (58), a mutated TAL5 with an unstable hydrophobic core (57), or the wild-

type TAL5 in elevated temperature solvent (58) can each disrupt TAL5 stability and

strongly bind to Vhl.

Recent molecular dynamics (MD) simulations have demonstrated a mechanism

by which transmitted mechanical force disrupts TAL5 stability and activates it to bind to

Vhl by a process in which a torque is applied to helix 4, causing it to rotate and making

the binding site accessible (Chapter 4) (136). The hydrophobic residues exposed under

applied force (Chapter 4) (136), are those that are known to be important in binding to

Vhl (56). In order for VBSI to bind to Vhl, however, it must separate two helices and

embed itself in between. How this occurs has been a matter of considerable speculation

(71).

Here, MD is used to investigate the binding mechanism of Vhl to VBS 1, which is

the immediate next step after force-induced talin activation (136). Together these two
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steps comprise the early mechanotransduction events in the force-induced recruitment of

vinculin (40).

5.2 Methods

Vhl-VBS1 binding simulation with EEF1

Unbound and bound models of the Vhl-VBS1 complex (Figure 5.1) were

obtained from crystal structures of Vhl-Vt (PDB ID: IRKE) and the Vhl-VBS1

complexes (PDB ID: ITOl), respectively. When Vhl binds to VBSl, the N-terminal

four-helix bundle of Vhl bends over and undergoes considerable conformational change,

whereas the C-terminal four-helix bundle of Vhl remains unchanged (71). Therefore, the

Vhl structures from the bound and unbound models are aligned by the backbone atoms

of the C-terminal four-helix bundle of Vhl to highlight the conformational difference

between the two models. The vinculin tail domain (Vt) is removed from the Vhl-Vt

complex and VBS 1 is aligned with its binding site but translated 12A away from Vh 1 to

obtain the unbound Vhl-VBS1 model (Figure 5.IA) whereas the known Vhl-VBSI

crystal structure is used as the bound Vhl-VBSl model (Figure 5.1B). Views from the

top show the separation of the molecules (Figure 5.1 C) and the associated conformational

change upon VBS1 binding toVhl (Figure 5.lD). All of the visualizations presented in

this paper were done using Visual Molecular Dynamics (137).

Commercial molecular dynamics software, CHARMM (Harvard University,

Cambridge, MA) (104), was used with the Effective Energy Function (EEFl) (108)

solvent model and the CHARMM19 force field (105). Energies of these models were

minimized by alternating the Steepest Decent and Adopted Basis Newton Raphson
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methods with 3000 steps. Bond lengths between hydrogen and heavy atoms were fixed

using the SHAKE constraint (107), and a 2fs time-step was used. Molecules were heated

to 300K over 40ps, followed by a 560ps equilibration period at 300K. During the heating

and equilibrium process, weak harmonic constraints (0.1kcal/mol-A 2) were applied to the

Ca atoms in order to minimize deviations from the original position. After equilibration,

Ca constraints were removed, and the production simulations were run using the Nose-

Hoover (124,125) thermostat for constant temperature control at 300K.

Vhl-VBS1 binding simulations were performed beginning with the unbound Vhl

and VBS1 model (Figure 5.1A and 5.1C). In some simulations, VBS1 was initially

rotated around the helix axis +2 degrees to determine the effect on binding of VBS1

orientation relative to Vhl. Two types of Vhl-VBS1 binding simulations were carried

out. In one, all constraints were removed after equilibration to determine how the two

molecules, initially separated, might interact in the complete absence of external forces.

In the other, distance constraints were imposed, where the atom pair is pulled toward

each other when they are separated by the pre-specified reference distance, between

residues on VBS1 (L608, L615 and L622) and Vhl (V16, L23, V44, L116 and F126) for

800ps after equilibration in order to enhance the probability of Vhl-VBS1 binding.

These constraints were removed after 800ps, and the simulations were continued for 32ns.

A 30ns simulation was conducted on the Vhl-VBS1 bound complex (Figure 5.1B and

5.11D) with no constraints to characterize the binding interaction between the two

molecules.

Mutational studies on Vhl-VBS1 binding, and Vhl binding to other VBSs
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A number of Vhl-VBS1 unbound models were obtained with various VBS1

mutations: (i) L622 mutated to alanine (L622A); (ii) L623 mutated to alanine (L623A);

and (iii) K613 mutated to proline (K613P). Unbound models of Vhl with other VBSs

were constructed by the same method used for obtaining the Vhl-VBS1 unbound

structures instead using Vhl-Vt, Vhl-VBS2 (PDB ID: 1U6H), Vhl-VBS3 (PDB ID:

1RKC) and Vhl-aVBS (PDB ID: lYDI) crystal structures. Identical constraints as the

ones applied between Vhl and VBS1 were applied for 800ps to Vhl and other or

modified VBSs. Only in the case of Vhl-VBS3 binding simulation, for which the C-

terminal end of VBS3 tended to unfold and did not bind to Vhl, were additional distance

constraints on the hydrogen-bonding pairs of the VBS3 backbone helix imposed to retain

helicity. As before, these constraints were removed after 800ps, and simulations

continued for 32ns.

Simulation on Vhl-TAL5 binding

The structure of activated TAL5 (i.e. hydrophobic residues exposed to solvent)

was obtained from the end state of force-induced activated TAL5 (136). VBS1 of TAL5

was aligned to VBS1 of the Vhl-VBS1 bound complex model (Figure 5.1B and 5.lD).

After the heating and equilibration, stronger distance constraints between Vhl and VBS1

of TAL5 were applied throughout the simulation to force the binding of Vhl to TAL5

through VBS1. Additional helicity constraints were also applied to Vhl and TAL5

helices to force them to retain the secondary structures.

89



5.3 Results

Unconstrained binding

In the first series of Vhl-VBS1 simulations with no external constraints and the

initial condition of Figure 5.1 A, one simulation proceeded to complete binding, for which

the end configuration is very similar to the bound Vhl-VBSl crystal structure (Figure

5.1 B and 5.1 D). For this binding simulation and equilibration simulation starting from

the bound complex (Figure 5.1 B), the average root mean square deviation (RMSD) of the

Ca atoms of Vhl's N-terminal four-helix bundle and VBSI are 2.33A and 1.97A,

respectively (Figure 5.2A). The superimposed configurations from near the end of the

binding simulation and equilibration simulation show that the two are very close in their

relative orientations (Figure 5.2B and 5.2C).

In this constraint-free Vhl-VBSI binding simulation, VBS1, initially separated by

12A, moves toward Vhl through hydrophobic targeting. A large hydrophobic patch is

exposed to solvent on the HI and H2 interface, and the hydrophobic residues of VBSI

become inserted between helices HI and H2. Through this hydrophobic insertion, L608,

L615, and L622 of VBS1 form contacts with V16, L23, V44, A50 and L54 of Vhl, and

this contact stabilizes the interaction of the two molecules (Figure 5.3A and 5.3D).

Hydrogen-bonds are formed between Q627 of VBS1 to H22 of Vhl, and also between

Q610 and K613 of VBS1 to N53 and R56 of Vhl. VBSl moves further between HI and

H2 with time as it separates HI and H2 (Figure 5.3B and 5.3E). During this stage, VBS1

also moves closer to H4 of Vhl. Binding of Vhl and VBSI is complete when VBS1

rotates and effectively locks the exposed hydrophobic residues (L619 and L623) into the

hydrophobic core of Vhl (Figure 5.3C and 5.3F). When L623 moves into the
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hydrophobic core, R624 of VBS1 swings over to form hydrogen-bonds with Q19 and

H22 of Vhl's Hi. This Vhl-VBSl binding mechanism viewed from the front and on a

cross-sectional plane is shown in Figure 5.3.

Of the 20 simulations conducted with no constraints, only one progressed to the

fully bound state during the 40 ns simulation window. In order to promote binding,

external constraints as described above were imposed for the first 800 ps of simulation.

Constrained binding

Vhl-VBS1 binding is enhanced when VBSi is constrained so that its

hydrophobic residues are inserted between Hi and H2 of Vhl in the beginning of the

binding simulations. Even though the constraints between Vhl and VBS 1 are completely

removed after 800ps, this proved sufficient to induce Vhl-VBS1 binding that occurred

many nanoseconds later. The 800ps of applying constraints increased the chances of

VBSl forming the initial and necessary hydrophobic insert into Vhl (Figure 5.3A and

5.3D), however, the separation of HI and H2 of Vhl did not occur during this 800ps and

happened much later in the simulations. The 30ns equilibration simulation of the Vhl-

VBSi complex (Figure 5.1B) was analyzed to determine the characteristics of the Vhl-

VBS1 complex. Three measures: (i) the angle formed by L623 with VBS1-Hi vector

(A(623)), (ii) the distance between HI and H2 of Vhl (D(1-2)), and (iii) the distance

between VBSl and H4 (D(V-4)), are chosen to be the indicators of Vhl-VBS1 binding

status (Figure 5.3E). Average values for A(623), D(1-2), and D(V-4) from the

equilibration simulation were evaluated to be 30.1*, 20.9A, and 12.2A, respectively. In a

given Vhl-VBS1 binding simulation, these three indicators were monitored to decide
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whether the molecule underwent binding. For example, the first instant when A(623) >

30.10, D(1-2) > 20.9A, and D(V-4) < 12.2A simultaneously is defined as the time when

the Vhl-VBSl binding is complete. Note that this is only used to define Vhl-VBS1

binding, and the three values actually fluctuate about the threshold values shown above.

Out of 12 simulations with slightly different initial conditions, six simulations (50%)

underwent binding with the averages of these values to be A(623) = 36.90±6.90, D(1-2) =

20.2±0.8A, and D(V-4) = 12.6±0.8A; all values are very close to those obtained from the

Vhl -VBS 1 complex equilibration simulation. The average time for binding to occur was

13.9±8.Ons.

Binding of vinculin with other VBSs

Simulations between Vhl with VBS2, VBS3, and aVBS all underwent complete

binding similar to that observed with Vhl-VBS1. The plots of the three indicators

defined above provide evidence to support that all VBSs bind to Vhl through a

combination of hydrophobic insertion, H1-12 displacement, and VBS rotation (Figure

5.5). Simulations between Vhl and VBSl with various mutations on VBSl (K613P,

L622A and L623A) and Vhl (A501), however, as expected, did not bind (Figure 5.6). In

order to investigate VBS1 secondary structure stability, the extent of helicity, as

measured by the number of hydrogen bonds, is evaluated for (i) Vhl-VBS1 complex

equilibration, (ii) Vhl-VBS1 constraint-free binding simulation, and (iii) Vhl-VBS1 with

K613P mutation binding simulation (Figure 5.7).
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5.4 Discussion

Simulations demonstrate that the critical early interaction between Vhl and VBSl

is the insertion of the hydrophobic residues of VBS1 between HI and H2 of Vhl (Figure

5.3A). Following the hydrophobic interaction of Vhl with VBSI, HI and H2 in the N-

terminal four-helix bundle of Vhl are displaced to make room for VBS I in between. By

packing their hydrophobic residues in the core, the bound N-terminal four-helix bundle

and VBS 1 form a new five-helix bundle structure as previously suggested by Izard et al.

(71). In one constraint-free simulation with Vhl and VBSL initially separated by 12A,

this binding mechanism occurred during a simulation time of 34ns. Successful binding of

Vhl-VBS1 can be enhanced by forcing this initial hydrophobic insertion in the beginning

of the simulations. With initial 800ps distance constraints to position VBS 1 between HI

and H2 (without yet displacing HI and H2 apart), 50% of the simulations (6 of 12)

underwent the binding by the same mechanism in 13.9±8.Ons. Therefore, the critical step

in the binding mechanism is the hydrophobic insertion of VBS1 into Vhl, and once this

occurs, VBS 1 continues to push its way into the hydrophobic core and finally snaps in by

rotating the remaining exposed hydrophobic residues (L619 and L623) into the core. It is

important to note that during binding, the secondary structures of both proteins remain

largely intact. This observation leads us to believe that the forced activation of talin is a

subtle change in conformation, and that complete unfolding is not necessary.

Only one constraint-free simulation actually underwent the Vhl-VBS1 binding

mechanism out of 20 attempted constraint-free simulations. In a majority of the

unsuccessful binding simulations, the hydrophobic residues of VBS1 (L608, L615 and

L622) were displaced away from the H1 -H2 groove of Vhl. For example, simulations in
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which VBS 1 hydrophobic residues interacted only with the opposite side of H2 failed to

displace HI from H2, and did not bind. Nonetheless, this is the first reported simulated

binding between two molecules in the complete absence of external forces that involves

significant conformational change and for which the crystal structures are known for both

non-bound and bound states for verification. This suggests that the key to simulating

molecular binding is to ensure the correct orientation and initial contact between the two

molecules. While this could be achieved without knowledge of the structure of the bound

complex, it would require a large number of calculations to identify the correct approach,

and this would be computationally prohibitive for most cases.

The proposed binding mechanism is further supported by successful binding

simulations of Vhl with four different VBS peptides through the identical binding

mechanism: hydrophobic insertion, displacement of H1 and H2, and rotation of VBS

(Figures 5.3 and 5.5). All the critical hydrophobic residues involved in the hydrophobic

insertion are also found in nearby positions for VBS1, VBS2, VBS3 and aVBS (Figure

5.4). Interestingly, the residue sequence in aVBS is reversed to that of talin VBSs, but

the critical hydrophobic residues are still found in the corresponding positions needed to

undergo the proposed binding mechanism to Vhl. Similar to talin, a-actinin contains a

cryptic VBS and is possibly subjected to mechanical force within cell-cell junction (127).

Therefore, vinculin and a-actinin binding may proceed in the similar mechanism within

cell-cell junctions as well as cell-matrix junctions. Also, this generality provides a

critical insight into how talin, containing 11 potential VBSs (56), might modify its

conformation when subjected to tensile force to recruit multiple vinculins with a

concomitant increase in adhesion strength, as has been observed experimentally (138).
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When Vhl and VBS1 form the initial hydrophobic contact, a number of

hydrogen-bonds are formed surrounding the hydrophobic interface. In particular, the

hydrogen-bond formed between Q627 and H22 was persistent throughout the binding

simulations, and was initially suspected to be a critical interaction that stabilizes the

initial hydrophobic insert in place. However, this hypothesis was disproved by mutating

either Q627 on Vhl or H22 on VBS1 to alanine and demonstrating through additional

simulations, that binding still occurs in these mutation simulations. The hydrogen-bond

persisted because hydrophobic insertion stabilized the interaction of the two molecules

and placed Q627 and H22 in close proximity, allowing the bond to remain intact, rather

than the other way around. This is yet another example that supports the importance of

the initial hydrophobic insertion of VBS1, and also demonstrates the power of using

molecular dynamics to quickly test hypotheses.

Gingras et al. (56) identified the critical residues on VBS1 for binding to Vhl

through a comprehensive mutational study. The identified critical residues were mostly

hydrophobic, a finding that is consistent with the present numerical study. The

mutational study showed that L608, L615, L622 and L623 are each individually critical

for the stable binding of VBS1 to Vhl (56), the mechanism for which can be derived

from the numerical results. L622 is apparently important in the hydrophobic insertion of

VBS1, and when it is mutated to alanine (L622A), Vhl-VBSl binding does not proceed

because the hydrophobic insertion is inhibited (Figure 5.6C, 5.6H and 5.6M). In contrast,

the simulation with L623A underwent the initial hydrophobic insertion and nearly

completed the entire binding process, but the smaller alanine residue was insufficient to

snap into the core and remain bound, hence destabilizing the Vhl-VBS1 bound complex
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(Figure 5.6D, 5.61 and 5.6N). An interesting finding in the mutational study (56) was that

when any one of VBS 1 residues was mutated to a proline, binding was abolished. A

binding simulation with K613P mutation on VBS 1 shows that the proline induces a break

in the a-helix, which significantly reduces VBS 1 helicity and prevents VBS 1

hydrophobic insertion into Vhl (Figure 5.6B, 5.6G, 5.6L and 5.7). One mutation on

vinculin, A50I, has been also identified to inhibit vinculin-talin binding by stabilizing the

interaction between HI and H2 of vinculin (73). Indeed, the A50I mutation simulation

did not undergo Vhl-VBS1 binding as the bulk of Ile prevented L615 of VBS1 from

inserting in between HI and H2 (Figure 5.6E, 5.6J and 5.60).

Interestingly, the hydrophobic residues (L608, L615, and L622) of VBS1

involved in the hydrophobic insertion between HI and H2 of Vhl are the exact same

residues that are exposed to solvent in force-induced activation of TAL5 (136). In the

activated TAL5 structure, however, the hydrophobic residues (V619 and L623) that snap

into the hydrophobic core in the later stages of binding are still embedded in the

hydrophobic core of TAL5 (Figure 5.8). There must therefore be a secondary

conformational change in TAL5, not captured in the previous simulations, that exposes

these two residues. Based on these observations, we propose that transmitted tensile

force alters TAL5 structure to expose hydrophobic residues that are essential in the initial

interaction with vinculin binding. In order to approximate the bound configuration of

Vhl and TAL5, binding simulations on Vhl and force-activated TAL5 were performed

with excessive distance constraints between Vhl and VBS1 of TAL5 to force binding.

The resulting configuration of the Vhl-TAL5 complex is shown in Figure 5.8C, which
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forms a nine-helical bundle together with VBS 1 donated to the N-terminal four-helix

bundle of Vhl. The binding mechanism viewed from the side is shown in Figure 5.8D-F.

All the simulations presented here are conducted without Vt, therefore, we are

proposing a binding mechanism of Vhl and VBSs. Further studies are needed to

determine the vinculin activation mechanism in the presence of talin VBS (71,127).

Recent evidence shows that vinculin autoinhibition and vinculin activation are achieved

by cooperative efforts (73,135), that is, talin binding must be accompanied by other

molecular binding, for example PIP2 (67), to vinculin for full vinculin activation.

In conclusion, a Vhl-VBS binding mechanism has been proposed, which involves

hydrophobic insertion of VBSl into Vhl, separation of HI and H2 of Vhl, and VBSl

rotation to snap in exposed hydrophobic residues into the hydrophobic core. Results

from mutational simulations and binding simulations with other VBSs suggest that the

proposed mechanism may be more generally valid. This work constitutes the potential

early stages of force-induced focal adhesion strengthening by vinculin recruitment

immediately following the force-induced talin activation mechanism (136).
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Figure 5.1. (A) Vhl (obtained from PDB ID: 1RKE) and VBS1 (obtained from PDB ID:

IT01) unbound structures viewed from the front. VBS1 is translated by 12A from its

corresponding position within the Vhl-VBS1 complex. (B) Vhl and VBS1 bound

complex (PDB ID: IT01) viewed from the front. (C) Vhl and VBS1 unbound structures

viewed from the top. Only the first four helices of Vhl (a seven-helix-bundle) are shown

for clarity. (D) Vhl and VBS 1 bound complex viewed from the top.
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RMSD from crystal structure
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VBS1

Figure 5.2. (A) Root mean square deviation (RMSD) of the equilibration simulation from

the Vhl-VBS1 complex crystal structure (red dashed line) and RMSD of the Vhl and

VBS1 binding simulation from the Vhl-VBS1 complex crystal structure (black solid

line). (B) One conformation from Vhl-VBS1 binding simulation (same coloring scheme

as in Figure 5.1) superimposed with a conformation from Vhl-VBS1 equilibration

simulation (purple) viewed from the top and (C) viewed from the front.
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Figure 5.3. Snapshots from one Vhl-VBS1 binding simulation with ribbon

representations for helical backbone, stick representations for polar and charged residues,

and spherical representations for hydrophobic residues at (A) VBS 1 hydrophobic insert

(t=0.8ns) between the hydrophobic patch of HI and H2, (B) Vhl's HI and H2 separation

(t=23.6ns), and (C) VBS1 rotation (t=39.2ns) to snap in the exposed hydrophobic

residues, i.e., L623, into the hydrophobic core. Some of the critical residues in Vhl-

VBS 1 binding are labeled: residues on VBS 1 (labeled red), residues on HI (labeled blue)

and residues on H2 (labeled green). (D-F) Corresponding cross-sectional views to (A)-(C)

at the plane represented by the dashed line in Figure 5.3C.
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L615 L863
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1956 1754
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Figure 5.4. Crystal structures of Vhl bound to various VBSs. The backbones of helical

sequences are shown in ribbon representation, polar and charged residues shown in stick

representation, and the hydrophobic residues are shown as spheres. (A) Vhl-VBS1

complex (PDB ID: ITOI) with critical residues important in binding of the two molecules.

VBS1 is shown as red ribbon. (B) Vhl-VBS2 complex (PDB ID: 1U6H) and

corresponding critical residues labeled. VBS2 is shown as a gray ribbon. (C) Vhl-VBS3

complex (PDB ID: 1RKC) and the corresponding critical residues labeled. VBS3 is

shown as a purple ribbon. (D) Vhl-aVBS complex (PDB ID: IYDI) and the

corresponding critical residues are labeled. aVBS is shown as a silver ribbon.
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Figure 5.5. (A) Angle formed by L623 with vector connecting

'A(623)' in Figure 5.3E. (B) Angle formed by V871 with vector

(C) Angle formed by L1964 with vector connecting Hl-VBS3.

Hl-VBSl, defined as

connecting Hi-VBS2.

(D) Angle formed by

L746 with vector connecting H1-aVBS. (E-H) Distance of HI and H2 in Vhl-VBS1,

Vhl-VBS2, Vhl-VBS3, and Vhl-aVBS binding simulations. This distance is defined as

'D(1-2)' in Figure 5.3E. (I-L) Distance of VBS and H4 in Vhl-VBSI, Vhl-VBS2, Vhl-

VBS3, and Vhl-aVBS binding simulations. The distance of VBS1-H4 is defined as

'D(V-4)' in Figure 5.3E.
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Figure 5.6. Results from the binding simulation of Vhl with mutated VBS1 similar to

Figure 3. (A) Angle formed by L623 (of wild-type VBS1) with vector connecting Hi-

VBS1. (B) Angle formed by L623 with vector connecting H1-VBS1, where VBS1 has

K613P mutation. (C) Angle formed by L623 with vector connecting H1-VBS1, where

VBS1 has L622A mutation. (D) Angle formed by A623 with vector connecting Hi-

VBS1, where VBS1 has L623A mutation. (E) Angle formed by A623 with vector

connecting H1-VBS1, where Vhl has 150A mutation. (F-J) Distance of HI and H2 in

Vhl-VBS1 binding simulations with wild-type, K613P, L622A, L623A mutations on

VBS1, and 150A mutation on Vhl, respectively. (K-O) Distance of VBS1 and H4 in

Vhl-VBS1 binding simulations with wild-type, K613P, L622A, L623A mutations on

VBS 1, and 150A mutation on Vhl, respectively.
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Figure 5.7. Helicity of VBS1 at Vhl-VBS1 bound complex equilibrium simulation, Vhl-

VBS 1 binding simulation, and Vhl-VBS 1 with K613P mutation binding simulation.
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Figure 5.8. Proposed binding model for Vhl and TAL5. (A) The N-terminal four-helix

bundle of Vhl is shown with the same coloring scheme as in Figure 5.1. Inactivated

TAL5 containing VBSI is shown in red as viewed from the top. The hydrophobic

residues necessary for Vhl binding are shown as orange spheres. (B) With application of

mechanical force on TAL5, VBS1 undergoes a rigid body rotation to expose the

hydrophobic residues (136). The applied force is represented by the red arrows and

VBS1 rotation is indicated by the black arrow. (C) Final configuration of Vhl with

TAL5 in a binding simulation. (D-E) The corresponding configurations to (A-C) viewed

from the side.
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6 Conclusions and Outlook for Future Directions

Molecular dynamics provides a tool to investigate protein structural dynamics at

the molecular scale not possible experimentally. However, few major advancements had

been made in protein mechanics other than in the forced unfolding of proteins (2,3) due

to limitations in available computational power and a lack of structural information (i.e.

crystal structures or NMR structures). MD simulation of full protein unfolding, although

very useful in understanding protein response to large mechanical forces, does not

address the more subtle conformational changes that may be present in intracellular

force-sensitive proteins. One major hurdle in the use of numerical simulation to simulate

these more subtle changes is that, in most cases, we lack the essential experimental data

needed for model verification. Even though many numerical pulling experiments can be

carried out on available protein structures, due to approximations inherent in the models,

they have little merit without the independent support of corresponding experimental

results. A major problem lies in the fact that numerical and experimental studies are

conducted on time scales that differ by many orders of magnitudes, and it is very difficult

to make a direct comparison between the two methods. Force-regulation of focal

adhesion has been in the spotlight recently, and a large number of experiments have been

conducted on vinculin and talin interactions (56,58,71,73,80,82,83). In the present study,

we have introduced a potential force-induced talin activation mechanism and the

subsequent vinculin binding mechanism. This not only provides a big step toward

understanding the force response mechanism of focal adhesions, but also demonstrates

the possibility to use MD for studies on intracellular force-sensitive proteins with subtle

conformational changes.
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The present work progressed in three stages, chosen to systematically develop and

validate methods that could be used to extend current capabilities for investigating the

role of force in producing conformational changes. In the first part of this study, we used

MD to model a single a-helix to investigate the kinetics of folding and unfolding and

compared these results with a coarse-grained model developed to simulate the force

response in terms of protein conformational change. The peptide was designed to have

only two distinct conformational states, where the folded state is favored in the absence

of external force. When external force was applied to the peptide, it started to sample the

unfolded conformation. Increasing the magnitude of the force resulted in longer

sampling of the unfolded conformation, and the characteristics of the simulations aligned

well with the parameters of the coarse-grained model. Good general agreement was

observed in the extension rates obtained from the MD model and the coarse-grained

model. In this first study, MD was used in lieu of experimental data, justified in this

instance because of the simplicity of the modeled system, for which simulation data could

be viewed as reliable and accurate. This demonstrates the power of MD in visualizing

and detailing the behavior of a simple protein system and using the results, in this case, to

help validate a less detailed, coarse-grained model.

In the second phase of this study, we considered the effect of force on a more

complicated system, one that has been suspected of playing an important role in

intracellular force sensation. Considering the structural information and the protein

characteristics of talin, a realistic tensile force was applied to one subdomain of the focal

adhesion protein, talin and led to an entirely new concept for the force-induced activation

of talin. Implementation of this model required a number of assumptions based as much
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as possible on available structural or experimental data. One example is the nature in

which forces are transmitted along the protein. In our simulations, we assumed that force

transmission occurs through the hydrogen-bonds between secondary structures (2,85,94).

We focused on one of the vinculin binding sites in talin rod, VBS1 within TAL5, for

which the structure was know, which has salt-bridge and hydrogen-bonding interactions

with one adjacent helix but no such interaction with another helix on the opposite side.

As a result of the precise nature of force application, protein extension created a torque

on VBS1, causing it to undergo a rigid body rotation which, in turn, exposed its cryptic

binding site to the solvent. In contrast to an unfolding process, this conformational

change left all hydrogen-bonds intact, and due to the small change in conformation,

relaxation of the applied force allowed the exposed hydrophobic residues to embed back

to their hydrophobic core.

In the final part of the thesis, a potential binding mechanism was proposed for the

binding of vinculin subdomain (Vhl) and talin peptide (VBS1). It has been

experimentally shown that these two molecules bind with strong affinity (80), and their

bound and unbound crystal structures are known (57,71), but the precise mechanism of

their binding has not been identified. This is the first reported simulation work that

demonstrates the binding of two molecules involving large conformational changes in the

absence of external force. Briefly, VBS1 first inserts it hydrophobic residues into the

hydrophobic groove between helix 1 and 2 of Vhl, helix 1 and 2 are separated as VBSl

settles in, and ultimately VBS1 rotates and its other hydrophobic residues lock into the

hydrophobic core completing the binding process. Additional mutational studies and

binding with different VBSs are consistent with the proposed binding mechanism, and
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the binding of Vhl to a-actinin's aVBS also suggests that a similar binding mechanism

occurs in other intracellular proteins with helical bundle domains.

Together, these results shed light on two of the key steps in the force-induced

reinforcement of an initial contact. This is the critical first step in gaining full molecular

understanding of the force-sensitive processes within the adhesion plaque, and these

suggest a possible pathway leading to the next set of numerical and experimental studies

to further elucidate focal adhesion maturation. One potentially fruitful direction would

be to use MD to investigate the activation mechanism of vinculin. It is still not clear

whether vinculin binds to talin when vinculin is already activated or if talin binding to

vinculin itself activates vinculin. Evidence shows that talin may be involved in the

activation of vinculin (71,73). Crystal structures of autoinhibitory vinculin head-tail

complex are available for the study of potential vinculin activation through talin binding

(71,73).

More experimental studies are needed for the validation of the proposed

molecular mechanisms. Mutational studies in living cells would be the easiest set of

experiments to verify the current findings. For example, the torque applying polar and

charged residues of VBS1 in talin activation are essential for the force response of talin in

vinculin recruitment. Cells transfected with vectors to produce talin with these point

mutations in these critical residues, mutated to nonpolar residues, are expected to show

decreased force sensitivity compared to the cells with wildtype talin. Care should be

taken in isolating the role of this talin domain in the overall force sensitivity of talin,

however, since talin has redundancies such as 11 total potential VBSs (56). Single

molecule force spectroscopy can also be envisioned to validate the predicted mechanism
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of activation. The ability to apply force to a single molecule talin or just the TAL5

domain (or tandem repeats of it) would enable the mentioned mutational studies in more

controlled and isolated environment. Application of force with simultaneous

visualization of vinculin (e.g., by tethering a fluorescent antibody) would allow direct

detection of talin activation. Collaborations are underway with another lab specializing

in single-molecule experiments in order to make continuing efforts in trying to

completely understand the focal adhesion mechanotransduction. With this revealing MD

study as the stepping stone, numerical methods, experiments and coarse-grained

modeling will be employed concurrently for the fundamental understanding of focal

adhesion dynamics, which can eventually lead to a variety of clinical applications,. The

future is bright, and the potential now exists to use a combined experimental/

computational approach to gain new insights into these essential phenomena in which

force can regulate or activate intracellular signaling. Recognition of these "mechanical"

signaling pathways holds the further potential for the use of "mechanical therapeutics" or

ways of controlling cell behavior through mechanical as opposed to biochemical

approaches.
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Appendix

A.1 Adding missing residues in the model

The PDB file in the Databank may have missing residues, and need to be

incorporated into the PDB file. This section shows an example of a PDB file with

missing residues (607, 608 and 609), a modified PDB file, and a CHARMM script to read

in the modified PDB file that fills in the missing coordinates. The missing coordinates

can be assigned to the CHARMM default values of (9999.000, 9999.000, 9999.000), and

in the CHARMM script, these are replaced based on the topology and parameter files.

A PDB file with missing residues

ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM

1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2031
2032
2033
2034
2035
2036
2037
2038
2039

N
CA
C
0
CB
CG
CD
NE
Cz
NH1
NH2
N
CA
C
0
CB
CG
CD
OE1
NE2

ARG
ARG
ARG
ARG
ARG
ARG
ARG
ARG
ARG
ARG
ARG
GLN
GLN
GLN
GLN
GLN
GLN
GLN
GLN
GLN

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

606
606
606
606
606
606
606
606
606
606
606
610
610
610
610
610
610
610
610
610

43.037
42.486
43.336
42.992
41.066
40.938
39.518
39.229
39.202
39.448
38.929
42.752
42.481
43.538
43.237
42.422
41.122
41.052
40.018
42.156

8.025
7.894
7.111
7.045
7.313
5.902
5.391
4.173
4.110
5.197
2.963
7.477
6.371
6.314
5.973
5.045
4.866
3.552
3.206
2.810

24.093
25.433
26.432
27.609
25.392
24.858
25.093
24.338
23.008
22.286
22.396
30.352
31.264
32.361
33.503
30.502
29.738
29.002
28.427
29.006

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

N
C
C
0
C
C
C
N
C
N
N
N
C
C
0
C
C
C
0
N

Modified PDB file with added missing residues

ATOM
ATOM
ATOM
ATOM
ATOM

1997
1998
1999
2000
2001

N
CA
C
0
CB

ARG

ARG
ARG
ARG
ARG

B
B
B

B

B

606
606
606
606
606

43.037
42.486
43.336
42.992
41.066

8
7
7
7
7

.025

.894

.111

.045

.313

24.093
25.433
26.432
27.609
25.392

1.
1.
1.
1.
1.

00
00
00
00
00

1.00
1.00
1.00
1.00
1.00

N
C
C
0
C
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40.938 5.902 24.858
39.518 5.391 25.093
39.229 4.173 24.338
39.202 4.110 23.008
39.448 5.197 22.286
38.929 2.963 22.396

9999.0009999.0009999.000
9999.0009999.0009999.000
9999.0009999.0009999.000
9999.0009999.0009999.000
9999.0009999.0009999.000
9999.0009999.0009999 000

ATOM
ATOM
ATOM
ATOM

ATOM
ATOM
ATOM

ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM

ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM

2002
2003

2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021.
2022"
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039

CG
CD
NE
Cz
NH1
NH2
N
CA
C
0
CB
CG
CD
N
CA
C
0
CB
CG
CD1
CD2
N
CA
C
0
CB
CG
CD1
CD2
N
CA
C
0
CB
CG
CD
OE1
NE2

ARG
ARG
ARG

ARG
ARG

ARG
PRO
PRO

PRO
PRO
PRO
PRO
PRO
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
LEU
GLN
GLN
GLN
GLN
GLN
GLN
GLN
GLN
GLN

606
606
606
606
606
606
607
607
607
607
607
607
607
608
608
608
608
608
608
608
608
609
609
609
609
609
609
609
609
610
610
610
610
610
610
610
610
610

0009999.000
0009999.000

0009999.000
0009999.000
0009999.000
0009999.000
0009999.000

7.477
6.371
6.314
5.973
5.045
4.866
3.552
3.206
2.810

30.352
31.264
32.361
33.503
30.502
29.738
29.002
28.427
29.006

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

CHARMM script to read in the modified PDB file and to assign missing coordinates

* This script builds PSF from reading a PDB file
* Written by: Seung E. Lee
* Last modified: 1/17/07

Parameter definition and reading in the structure information

set str dir /home/selee/stream

READ THE RTF AND PARAM FILES
open read unit 11 card name -

"/home/selee/stream/toppar/tophl9_eefl add.inp"
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9999.0009999.
9999.0009999.
9999.0009999.

0009999.000
0009999.000
0009999.000

9999.0009999.0009999.000
9999.0009999.0009999.000
9999.0009999.0009999.000
9999.0009999.0009999.000
9999.0009999.0009999.000
9999.0009999.0009999.000
9999.0009999.0009999.000
9999.0009999.
9999.0009999.
9999.0009999.
9999.0009999.
9999.0009999.
9999.0009999.
9999.0009999.

42.752
42.481
43.538
43.237
42.422
41.122
41.052
40.018
42.156

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00



read rtf unit 11 card

open read unit 12 card name -
"/home/selee/stream/toppar/paraml9_eefladd.inp"

read parameters unit 12 card

READING THE SEQUENCE AND COORDINATE FROM THE PDB FILE

set pdb_in pdb/vbslorig
set segnamel vbsl

open read unit 20 card name pdbo/@{pdb_in}.pdb
read sequence pdb unit 20
generate @{segnamel} setup
open read unit 14 card name @{pdbin}.pdb
read coordinates pdb unit 14

FILLING IN THE MISSING COORDINATES WITH THE INFO FROM

TOPOLOGY AND PARAM FILES
ic purge
ic param
ic fill preserve
ic build
hbuild

ACTIVATION OF THE IMPLICIT SOLVENT
fast 1
shake bonh
set solvfile /usr/common/charmm/c29bl_i_lam/test/data/solvpar.inp
eefl setup temp 300.0 unit 93 name @solvfile

update ctonnb 7.0 ctofnb 9.0 cutnb 10.0 group rdie

RUNNING MINIMIZATION FOR THE STRUCTURE

set nmin 1000
set mstep 0.001
set npr 50
cons harm force
mini sd nstep

cons harm clear
cons harm force
mini abnr nstep

cons harm clear
cons harm force
mini sd nstep

cons harm clear
cons harm force
mini abnr nstep

cons harm clear
mini sd nstep
mini abnr nstep

20.0 sele .not. type H* end

@nmin nprint @npr step @mstep

10.0 sele .not. type H* end

@nmin nprint @npr step @mstep

50.0 sele back end
@nmin nprint @npr step @mstep

25.0 sele back end
@nmin nprint @npr step @mstep

@nmin nprint @npr step @mstep
@nmin nprint @npr step @mstep
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WRITING THE BUILT AND MINIMIZED STRUCTURE TO A NEW NAME
set outfilename vbsl new

open write unit 17 card name @{outfilename}.psf
write psf unit 17 card
open write unit 18 card name @{outfilename}.crd
write coor unit 18 card
open write unit 19 card name @{outfilename}.pdb
write coor unit 19 pdb

stop
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A.2 CHARMM scripts for different simulation models and data extraction

Essential input commands for implicit model, explicit model, umbrella sampling

model, and data extraction are shown in these CHARMM scripts. To avoid redundancies

and to only show the essential commands, parts of the scripts are removed with dotted

lines to indicate the missing lines as follows:

These examples contain most of the key commands needed to reproduce the presented

simulations.

CHARMM script for running EEF1 simulation

* This script is for a typical EEF1 implicit simulation
* Written by: Seung E. Lee
* Last modified: 1/17/06
*

Parameter definition and reading in the structure information

set strdir /home/selee/stream
set homedir /home/selee/ss/charmm/vhtabind/eef

READ THE RTF AND PARAM FILES
open read unit 11 card name -

"/home/selee/stream/toppar/tophl9_eefladd.inp"
read rtf unit 11 card

open read unit 12 card name -
"/home/selee/stream/toppar/paraml9_eefl add.inp"

read parameters unit 12 card

DEFINE THE NUMBER OF TIME STEPS TO USE

set il 3
set nst 80
set nt 200000
set meq 200000
set timestep 0.002

READING THE STRUCTURE FOR SIMULATION
set psf_in @{homedir}/buildh/pdbb/vhta_i
set crdin @{homedir}/build h/pdbb/vhtai
set crdino @{crd in}
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if @il ne 1 set crd in crd/out02
set segnamel vinc
set segname2 vbsl
set outname out

open read unit 20 card name @{psf in}.psf
read psf unit 20 card
close unit 20
open read unit 14 card name @{crd_in}.crd
read coordinates card unit 14
close unit 14

DEFINING ATOM SELECTIONS TO BE USED IN DURING AND AFTER SIMULATION
stream @{homedir}/stream/def.str

ROTATE THE VBS1 BY ANGLE @PHI ABOUT ITS AXIS
set phi --14.7
stream @{homedir}/stream/vbsaxis.str

coor stat sele atom * * ca .and. segid @segname2 end
coor trans xdir ?xave ydir ?yave zdir ?zave fact -1.0 -

sele segid @segname2 end
coor rotate xdir @nx ydir @ny zdir @nz -

phi @phi sele segid @segname2 end
coor trans xdir ?xave ydir ?yave zdir ?zave fact 1.0 -

sele segid @segname2 end

ACTIVATION OF THE IMPLICIT SOLVENT
fast 1
shake bonh
set solvfile /usr/common/charmm/c29bl_i lam/test/data/solvpar.inp
eefl setup temp 300.0 unit 93 name @solvfile
update ctonnb 7.0 ctofnb 9.0 cutnb 10.0 group rdie

! RUN HEATING AND EQUILIBRATION

! RUNNING SCRIPT TO KEEP ALPHA-HELIX INTACT DURING THE SIMULATION
noe

reset
end
set hl 606
set h2 625
set kval 0.5
open read unit 14 card name @{crdino}.crd
read coordinates card unit 14 comp
stream @{home dir}/stream/hel_noe.str

RUNNING HEATING AND EQUI FOR BEGINNING SIMULATION
SKIPPING THIS STEP IF CONTINUING SIMULATION FROM EXISTING RST FILE
if @il ne 1 goto continue

cons harm force 0.1 sele 8hel end
set nheat 20000
set nequi 280000
set timestep 0.002
stream @{strdir}/heat noimage.str

if @il eq 1 set il 3
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label continue

STARTING THE LOOP FOR THE PRODUCTION RUN

set 1 1
calc iO @il - 1
label loop

set nnt @nt
if @{il} eq 3 calc nnt @nt + @meq

set indO @iO
set indl @il

if @{i0} lt 10 set indO 0@{i0}
if @{il} lt 10 set indl 0@{il}

APPLYING BINDING CONSTRAINTS ONLY IN THE BEGINNING OF A SIMULATION
THE CONSTRAINTS ARE NOT APPLIED AFTER 800PS
if @{il} ne 3 goto skipconst

noe
reset

end
set kval 0.5
set rval 3.0
stream @{homedir}/stream/pho.str

open read unit 14 card name @{crd ino}.crd
read coordinates card unit 14 comp

stream @{homedir}/stream/hel noe.str
label skipconst

RUNNING THE PRODUCTION SIMULATION
open read unit 30 card name rst/@{outname}@{ind0}.rst
open writ unit 31 card name rst/@{outname}@{indi}.rst
open writ unit 32 file name dcd/@{outname}@{indl}.dcd
open writ unit 34 card name ene/@{outname}@{indl}.ene

dyna vverlet nose qref 50.0 tref 300.0 ncyc 5 -

restart verlet nstep @{nnt} time @timestep -

iprfrq 2000 ihtfrq 0 ieqfrq 0 inbfrq @frq ihbfrq 0 -
iunrea 30 iunwri 31 iuncrd 32 iunvel -1 kunit 34 ntrfrq 2000 -

nprint 2000 nsavc 2000 -
firstt 300.0 finalt 300.0 -
twindh 10.0 twindl -10.0 -
iasors 0 iscvel 0 iasvel 1 ichecw 1

open write unit 18 card name crd/@{outname}@{indl}.crd
write coor unit 18 card
noe

reset
end

incr 1 by 1
incr iO by 1
incr il by 1
if 1 lt @{nst}.5 goto loop
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stop

CHARMM script for running explicit simulation

I READ RTF AND PARAM FILES
open read unit 11 card name "stream/toppar/top_all27_prot na.rtf"
read rtf unit 11 card
close unit 11

open read unit 12 card name "stream/toppar/par_all27_protna.prm"
read parameters unit 12 card

close unit 12

DEFINITION OF NONBONDED INTERACTION PARAMETERS
set frq -1
set von 8
set vof 10
set vnb 12

SETTING UP BOX SIZE
set xsiz 54
set ysiz 89.3192
set zsiz 48.708
crystal define orthorombic @XSIZ @YSIZ @ZSIZ 90.0 90.0 90.0
crystal build cutoff 12.0

SETTING UP PERIODIC BOUNDARY CONDITION
image byres sele .not. prot end

image byseg sele prot end

ACTIVATION OF THE EWALD FOR THE LONG-RANGE NONBONDED INTERACTION
fast 1
shake bonh
energy cdie eps 1.0 fswitch vfswitch inbfrq @frq imgfrq @frq -

ihbfrq 0 cutnb @vnb ctofnb @vof ctonnb @von cutim @vnb -

nbscale 1.4 ewald pmewald kappa 0.34 order 6 -
fftx 64 ffty 128 fftz 64 qcor 0.0

CHARMM script for running umbrella sampling simulation
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! DEFINING ATOMS TO BE FIXED IN PULLING SIMULATION

define hold sele ( (resid 646 .and. type OEl) .or. -
(resid 650 .and. type OEl) .or. -
(resid 653 .and. type NE2) ) end

cons harm force 10.0 sele hold end

I DEFINING ATOMS TO BE PULLED IN PULLING SIMULATION

define ppul sele .not. back .and. .not. (type H .or. type 0) .and. -

(resid 498) .or. -
(resid 501) .or. -
(resid 502) ) end

I DEFINING REACTION COORDINATES FOR UMBRELLA SAMPLING SIMULATION
REACTION COORDINATES DEFINED BY DISTANCE BETWEEN @HOLD AND @PPUL

rxncor: define cl point select hold end
rxncor: define c2 point mass select ppul end
rxncor: define d12 distance cl c2
rxncor: set d12

EVALUATING THE STARTING DISTANCE BETWEEN @HOLD AND @PPUL
coor stat sele hold end
set xl ?xave
set yl ?yave
set zl ?zave

coor stat sele ppul end

set x2 ?xave
set y2 ?yave
set z2 ?zave

calc xx @x2 - @xl

calc yy @y2 - @yl

calc zz @z2 - @zl

set wsiz 5.0
calc rxnd (@xx*@xx + @yy*@yy + @zz*@zz) ** 0.5
calc rxnl @rxnd - @wsiz
calc rxnh @rxnd + @wsiz

START THE LOOP

set deld -0.1

label loop

set nnt @nt

if @{il} eq 3 calc nnt @nt + @meq

set indO @iO

set indl @il

if @{i0} lt 10 set indO 0@{i0}
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if @{il} lt 10 set indl 0@{il}

calc delta (@il-2-1) * @deld
calc refd @rxnd + @delta
calc refl @rxnl + @delta
calc refh @rxnh + @delta

! SETTING UP THE UMBRELLA SAMPLING RUN
rxncor: umbrella kumb 5.0 delO @refd form 1

rxncor: statistics lowdelta @refl hidelta @refh -
deldel 0.1 start 20000

! RUNNING THE PRODUCTION SIMULATION
open read unit 30 card name rst/@{outname}@{ind0}.rst
open writ unit 31 card name rst/@{outname}@{indl}.rst

open writ unit 32 file name dcd/@{outname}@{indl}.dcd
open writ unit 34 card name ene/@{outname}@{indl}.ene

dyna vverlet nose qref 50.0 tref 300.0 ncyc 5 -
restart verlet nstep @{nnt} time @timestep -
iprfrcq 2000 ihtfrq 0 ieqfrq 0 inbfrq @frq ihbfrq 0 -

iunrea 30 iunwri 31 iuncrd 32 iunvel -1 kunit 34 ntrfrq 2000 -

nprint 2000 nsavc 2000 -
firstt 300.0 finalt 300.0 -

twindh 10.0 twindl -10.0 -

iasors 0 iscvel 0 iasvel 1 ichecw 1

! WRITING FREE-ENERGY VS. REACTION COORDINATE DISTANCE
rxncor: write unit 21
close unit 21

incr 1 by 1
incr iO by 1
incr il by 1
if 1 lt @{nst}.5 goto loop

stop

CHARMM script for extracting data

* Script to extract data from the finished simulation
* Written by: Seung E. Lee
* Last modified: 02/09/06
*

' PARAMETER DEFINITION AND READING IN THE STRUCTURE INFO
-------------------------------------------------------------------

stream /home/selee/stream/iofilel9 eef add.str
set homedir /home/selee/ss/charmm/vhtabind/eef

! Definition of input parameters and segid parameters
set inpdir /home/selee/inp bank/anal bind
set psf in @{home dir}/build h/pdbb/vhta i
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set crd in @{homedir}/build h/pdbb/vhtai
set crd ac @{homedir}/build h/pdbb/vhta_a
set segnamel vinc
set segname2 vbsl
set dcd_in dcd/out

set if 3 ! Index for file number

set nst 80 Number of files
set nsk 10000 ! Number of skip steps

--------------------------------------------------------------------
READING STRUCTURE FROM THE PDB FILE

!-------------------------------------------------------------------

Read the PSF file for orientated structure

open read unit 20 card name @{psf_in}.psf
read psf unit 20 card
close unit 20

Read the crd coordinates

open read unit 14 card name @{crd in}.crd

read coordinates card unit 14
close unit 14
coor copy comp

-------------------------------------------------------------------
OPEN MULTIPLE DCD OUTFILES TO READ

!-------------------------------------------------------------------

set 1 1 ! counter
set fu 51 First unit

set iu @fu ! Index for unit number

label loop
set indO @iu
set indl @if

if @{iu} lt 10 set indO 0@{iu}
if @(35) lt 10 set indl 0@(35)

open read unit @{ind0} unformat name @{dcd in}@{indl}.dcd

incr 1 by 1
incr iu by 1
incr if by 1
if 1 lt @{nst}.5 goto loop

-------------------------------------------------------------------------------------------

CREATE MERGED DCD FILE FROM MULTIPLE DCD FILES
-------------------------------------------------------------------
open writ unit 301 unformat name mdcd/o.dcd

merge coor format firstu @fu nunit @nst skip @nsk outputu 301 -

sele atom * * * end

open writ unit 302 unformat name mdcd/m.dcd
merge coor format firstu @fu nunit @nst skip @nsk outputu 302 -

sele atom * * * end orie mass sele ca end
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PERFORM THE FOLLOWING DATA EXTRACTION FOR EACH TIME FRAME

heli.str - EXTRACT HELICITY INFO
rms.str - EXTRACT RMS INFO
dist.str - EXTRACT DIST BETWEEN SELECTED ATOM PAIRS W TIME
force.str - EXTRACT FORCE APPLIED AT EACH TIMESTEP
cont.str - EXTRACT CONTACT INFO BETWEEN SECONDARY STRUCTURES
rot.str - EXTRACT DATA TO EVALUATE VBS1 ANGLE OF ROTATION
coor.str - EXTRACT COORDINATE INFO

.---------------------------------------------------------

trajectory firstu @fu nunit @nst skip @nsk

set 2 1

set ntot 99999

open writ unit 351 format name out/helicity.dat
open writ unit 401 format name out/rmshel.dat
open writ unit 451 format name out/nonbf.dat
stream @{inp dir}/stream/copen.str

open wril: unit 701 format name out/4h.dat
open writ unit 702 format name out/vbs.dat
open writ unit 801 format name out/coor.dat
open writ unit 901 format name out/dist.dat

label loop2

traj read comp

coor copy

stream @{inpdir}/stream/heli.str

stream @{inpdir}/stream/rms.str

stream @{inpdir}/stream/dist.str

stream @{inpdir}/stream/force.str

stream @{inpdir}/stream/cont.str

stream @{inpdir}/stream/rot.str

stream @{inp dir}/stream/coor.str

incr 2 by 1

if 2 lt @ntot.5 goto loop2

!----------------------------------------------------

stop

-----------------------------------------------------
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A.3 Sub-scripts used by the CHARMM input scripts

CHARMM commands that are used repeatedly can be saved in a separate file to

be used as sub-scripts. These files have extension of .str and can be called from a

CHARMM script by 'stream test. str.'

Sub-script 'def.str'

* DEFINE ATOM SELECTIONS

DEFINITION OF SOME USEFUL ATOM SELECTIONS FOR LATER USE

define prot sele segid @segnamel .or. segid @segname2 end
define back sele prot .and. (type N .or. type CA .or. type C) end
define ca sele prot .and. type CA end

define hell sele prot .and. resid 6:29 end
define hel2 sele prot .and. resid 39:65 end
define hel3 sele prot .and. resid 67:97 end
define hel4 sele prot .and. resid 101:149 end
define hel4a sele prot .and. resid 101:128 end
define hel5 sele prot .and. resid 159:180 end
define hel6 sele prot .and. resid 184:218 end
define he17 sele prot .and. resid 222:251 end
define vbs sele prot .and. segid @segname2 end
define 3hel sele hell .or. hel2 .or. vbs end
define 4hel sele hell .or. hel2 .or. hel3 .or. hel4 end
define 4hela sele hell .or. hel2 .or. hel3 .or. hel4a end
define 7hel sele hell .or. hel2 .or. hel3 .or. hel4 .or. hel5 -

.or. hel6 .or. hel7 end
define 8hel sele hell .or. hel2 .or. hel3 .or. hel4 .or. hel5 -

.or. hel6 .or. hel7 .or. vbs end
define hphobic sele prot .and. resname ala .or. resname leu .or. -

resname val .or. resname ile .or. -
resname pro .or. resname phe .or. -
resname met .or. resname trp end

return

Sub-script 'heat.str'

* This script contains the heating and equilibrating commands for
implicit.
* Need to specify:
* set nheat 20000 - number of timesteps for heating

* set nequi 40000 - number of timesteps for equilibrating
* set timestep 0.1 - time step size in ps
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* set outname blah - name of outfile

! HEATING THE STRUCTURE

open write unit 31 card name rst/@{outname}01.rst
open write unit 32 file name dcd/@{outname}01.dcd
open write unit 34 card name ene/@{outname}01.ene

dyna strt verlet nstep @nheat time @timestep -
iprfrcq 1000 ihtfrq 50 iegfrq 0 inbfrq @frq ihbfrq 0 -
iunrea -1 iunwri 31 iuncrd 32 iunvel -1 kunit 34 ntrfrq 1000 -

nprint 500 nsavc 1000 -
firstt 0.0 finalt 300.0 teminc 3.0 -
twindh 10.0 twindi -10.0 -
iasors 1 iasvel 1 ichecw 0

open write unit 18 card name crd/@{outname}01.crd
write coor unit 18 card

! EQUILIBRATING THE STRUCTURE
open react unit 30 card name rst/@{outname}01.rst
open write unit 31 card name rst/@{outname}02.rst
open write unit 32 file name dcd/@{outname}02.dcd
open write unit 34 card name ene/@{outname}02.ene

dyna restart verlet nstep @nequi time @timestep -
iprfrq 1000 ihtfrq 0 ieqfrq 100 inbfrq @frq ihbfrq 0 -
iunrea 30 iunwri 31 iuncrd 32 iunvel -1 kunit 34 ntrfrq 1000 -

nprint 500 nsavc 1000 -
firstt 300.0 finalt 300.0 -
twindh 10.0 twindl -10.0 -
iasors 0 iscvel 0 ichecw 1

open write unit 18 card name crd/@{outname}02.crd
write coor unit 18 card

return

Sub-script 'pho.str'

* DISTANCE CONSTRAINTS APPLIED IN THE BEGINNING OF BINDING SIMULATION
* ONLY APPLIED FOR 800PS IN THE BEGINNING AND REMOVED AFTERWARD

noe
assign sele segid @segnamel .and. resid 126 .and. type CEl end -

sele segid @segname2 .and. resid 608 .and. type CD1 end -
kmax @kval rmax @rval

assign sele segid @segnamel .and. resid 16 .and. type CG2 end -
sele segid @segname2 .and. resid 615 .and. type CD2 end -
kmax @kval rmax @rval

assign sele segid @segnamel .and. resid 116 .and. type CD2 end -
sele segid @segname2 .and. resid 615 .and. type CD2 end -
kmax @kval rmax @rval

end
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return

Sub-script 'helnoe.str'

* APPLYING DISTANCE CONSTRAINTS TO ALPHA-HELIX H-BONDING PAIRS
* TO RETAIN THE HELICAL CONFIGURATION
*

set ri @hl

calc r2 @hl + 4

START THE LOOP
label loop

coor stat sele
set x1 ?xave
set yl ?yave
set z1 ?zave

coor stat sele
set x2 ?xave
set y2 ?yave
set z2 ?zave

resid @rl .and. type 0 end

resid @r2 .and. type N end

calc xx @x2 - @xl
calc yy @y2 - @yl

calc zz @z2 - @zl

calc dd ((@xx*@xx + @yy*@yy + @zz*@zz) ** 0.5)

noe
assign sele segid @segname2 .and. resid @rl .and. type 0 end -

sele segid @segname2 .and. resid @r2 .and. type N end -

kmax @kval rmax @dd

end

incr ri by 1
incr r2 by 1
if r2 le @h2 goto loop

return

Sub-script 'vbs-axis.str'

* DETERMINING THE VECTOR REPRESENTING THE AXIS OF A HELIX

coor stat sele vbs .and. resid 608:616 .and. ca end

set x1 ?xave
set yl ?yave
set z1 ?zave

coor stat sele vbs .and. resid 617:625 .and. ca end

set x2 ?xave
set y2 ?yave
set z2 ?zave
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calc xx @x2 - @xl
calc yy @y2 - @yl
calc zz @z2 - @zl

calc norm (@xx*@xx + @yy*@yy + @zz*@zz) ** 0.5
calc nx @xx / @norm
calc ny @yy / @norm
calc nz @zz / @norm

return
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A.4 Extracted data files

Although CHARMM has means of analyzing the results, it has limitations in

doing detailed analyses. Therefore, CHARMM scripts are used to extract the coordinates

and other data, and the extracted data are read into Matlab to do further analysis. The

extracted data files from CHARMM have their own data format, which must be filtered

through in order to get the needed values for Matlab. This section shows examples of

data files created by CHARMM, which contains the coordinates at different time frame

of the molecular trajectory and distance time trace between specified atom pairs, and one

example of analyzed data file obtained from Matlab. The file obtained from Matlab reads

in the distance information created by CHARMM and reports the atom pairs that stay

close to each other throughout the simulation. This file is useful in understanding the

critical stabilizing atom pairs at a glance.

Extracted CHARMM file with atom coordinate information at each time step

COORDINATE FILE MODULE

TITLE> * 832.784 1034.21 168.63 327.19 -4.62 -5.37

TITLE> *
24

2436 255 GLY CA 18.20063 4.18328 21.68251 VBS1 605 56.22499

2441 256 ARG CA 16.95080 7.49486 22.89267 VBS1 606 2.21000

2458 257 PRO CA 16.57340 8.90384 19.31336 VBS1 607 6.84091

2465 258 LEU CA 13.34876 6.78124 19.34623 VBS1 608 5.08552

2474 259 LEU CA 11.87169 8.27222 22.36288 VBS1 609 0.12306

2483 260 GLN CA 12.77118 12.08687 22.16191 VBS1 610 0.74575

2495 261 ALA CA 10.66101 12.16537 18.96935 VBS1 611 17.67962

2501 262 ALA CA 7.60023 10.83480 20.71139 VBS1 612 7.88216

2507 263 LYS CA 8.12198 13.25786 23.56445 VBS1 613 5.91553

2520 264 GLY CA 8.66815 15.96971 20.82964 VBS1 614 32.94937

2525 265 LEU CA 5.26983 15.23309 19.27809 VBS1 615 3.90814

2534 266 ALA CA 3.45018 15.26344 22.58485 VBS1 616 10.25164

2540 267 GLY CA 5.00444 18.69353 23.28445 VBS1 617 38.12208

2545 268 ALA CA 4.44255 20.42629 19.94653 VBS1 618 1.48692

2551 269 VAL CA 0.84319 18.92647 19.47422 VBS1 619 1.03366

2559 270 SER CA -0.17404 20.30557 22.93382 VBS1 620 1.57655

2567 271 GLU CA 1.27838 23.70001 22.06115 VBS1 621 0.00000
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2577
2586
2595
2612
2620
2626
2638

272
273
274
275
276
277
278

LEU
LEU
ARG
SER

ALA
GLN
PRO

CA
CA
CA

CA
CA

CA

CA

-0.81675
-4.07070
-3.56810
-2.42234
-3.22358
-6.80280
-9.36488

23
22
25
28
27
27
27

.52929

.46802

.36893

.04008

.56927

.05577

.47264

COORDINATE FILE MODULE
TITLE> * 827.554 1038.89 167.12 297.57

TITLE> *

24
2436
2441
2458
2465
2474
2483

255
256
257
258
259
260

GLY
ARG
PRO
LEU
LEU
GLN

CA

CA
CA

CA
CA
CA

16.46142
16.12251
15.93096
12.37974
11.39470
13.05098

2.12652
5.81334
6.63055
4.95546
7.26817

10.62100

18.91935
20.60320
23.26451
20.89989
17.13227
17.54744
14.79384

VBS1
VBS1
VBSI

VBS1
VBS1
VBS1
VBS1

-1.5 -5.32996

24.
23.
20.
20.
22.
21.

02084
82071
02704
00913
81620
85820

VBS1
VBS1
VBS1

VBS1
VBS1
VBS1

Extracted CHARMM file with distance time trace information

DISTANCES FOR SELECTED ATOMS

lBS1
VBS1
VBS1

VBS1

IBS1
/BS1
VBS1

LBS 1
IBS1
IBS1
lBS1
IBS1
lBS1
IBS1
lBS1
IBS1

BS1
iBS1
VBS1

IBS1
VBS1
lBS1
BS1
BS1

lBS1
IBS1

ARG
PRO
LEU
LEU
LEU
LEU
ALA
ALA
ALA
LEU
LEU
LEU
ALA
ALA
VAL
VAL
GLU
LEU
LEU
LEU
LEU
ALA
ALA
GLN
PRO
PRO

606
607
608
608
608
609
611
612
612
615
615
615
618
618
619
619
621
622
623
623
623
626
626
627
628
628

CZ

CB
CG
CD1
CD2
CG
CB
CA
CB
CD1
CD1
CD2
CB
CB
CG2
CG2
CB
CG
CD2
CD2
C
CB
C
CB

CB
CB

EXCLUSION COUNT =
1-4 EXCLUSIONS =
NON-EXCLUSIONS =

622
623
624
625
626
627
628

5.11069
2.20533

11.80998
12.01371
21.04213

0.31163
17.24632

605
606
607
608
609
610

61.03071
1.61720
2.26813

11.24105
0.00000
0.42362

2447
2459
2467
2468
2469
2476
2496
2501
2502
2528
2528
2529
2546
2546
2554
2554
2568
2579
2590
2590
2591
2621
2622
2627
2639
2639
TOTAL
TOTAL
TOTAL

-1638
- 517
-1165
-1165
-1136
- 84
- 484
- 120
- 120
- 118
- 120
- 145
- 416
- 424
- 145
- 147
- 394
- 393
- 207
- 208
- 212
- 249
- 249
- 212
- 325
- 327

ASP
VAL
PHE
PHE
LEU
THR
LEU
ILE
ILE
ILE
ILE
PRO
ALA
VAL
PRO
PRO
PRO
PRO
HSC
HSC
HSC
MET
MET
HSC
LYS
LYS

176
57

126
126
123
8
54
12
12
12
12
15
46
47
15
15
43
43
22
22
22
26
26
22
35
35

VINC

VINC
VINC
VINC
VINC
VINC
VINC

VINC

VINC
VINC
VINC
VINC
VINC
VINC
VINC

VINC
VINC

VINC

VINC
VINC
VINC

VINC
VINC
VINC

VINC

VINC

0
0

26

CG
CG2
CEl
CE1
CD1
CG2
CD2
CD
CD
CG2
CD
CB
CB
CG2
CB
C
CG
CB
CB
CG
CE1
CE
CE
CE1
CB
CD

3.9960
3.9137
3.9153
3.6100
3.9635
3.8523
3.8424
3.9152
3.6267
3.8037
3.5903
3.9281
3.7647
3.9471
3.8489
3.9936
3.7878
3.9192
3.6371
3.9117
3.9409
3.7607
3.7864
3.6551
3.9312
3.9490
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DISTANCES FOR SELECTED ATOMS

2436 VBS1 GLY 605 CA -1646 VINC GLU 177 CB 3.7880

2468 VBS1 LEU 608 CD1 -1165 VINC PHE 126 CE1 3.8804

2469 VBS1 LEU 608 CD2 - 483 VINC LEU 54 CD1 3.9802

2469 VBS1 LEU 608 CD2 - 484 VINC LEU 54 CD2 3.6499

2528 VBS1 LEU 615 CD1 - 120 VINC ILE 12 CD 3.5083

2529 VBS1 LEU 615 CD2 - 448 VINC ALA 50 CB 3.7184

Matlab analyzed file determined by reading in the CHARMM distance file

Pair Atomi Atom2 Occurance

1 606 ARG CZ
2 606 ARG CZ

3 607 PRO CB

4
5
6
7

8

608
608
608
608
608

LEU
LEU
LEU
LEU
LEU

CB
CD2
CD2
CD1
CD1

9 609 LEU CD2

10 612 ALA CB

177 GLU CG
180 GLN CD

57 VAL CG2

8
54
54

126
126

THR
LEU
LEU
PHE
PHE

39 / 200 19 % H9-H5
64 / 200 32 % H9-H5

49 / 200 24 % H9-H2

CG2
CD1
CD2
CE1
CE2

8 THR CG2

12 ILE CG1

35
40
55
52
32

/
/
/
/
/

200
200
200
200
200

17
20
27
26
16

H9-H1
H9-H2
H9-H2
H9-H4
H9-H4

42 / 200 21 % H9-H1

33 / 200 16 % H9-H1

615 LEU CD1
615 LEU CD2
615 LEU CD2

618 ALA CB
618 ALA CB
618 ALA CB

17 619 VAL CG2 15 PRO CB 78 / 200 39 % H9-H1

18 621 GLU CB 43 PRO CG

622 LEU CD2
622 LEU CD2
622 LEU CD2

623
623
623
623
623

LEU
LEU
LEU
LEU
LEU

CD1
CD2

C
CA

CD1

19
23
43

18
18
22
22
22

GLN CG
LEU CD2
PRO CB

GLN
GLN
HSC
HSC
HSC

72 / 200

36
33
36

38
52
52
32
82

CB
CB
CE1
CE1

CB

27 626 ALA CB 40 LEU CD1

/
/
/

/
/
/
/
/

200
200
200

200
200
200
200
200

36 % H9-H2

18
16
18

19
26
26
16
41

H9-H1
H9-H1
H9-H2

H9-H1
H9-H1
H9-H1
H9-H1
H9-H1

35 / 200 17 % HO-H2
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11
12
13

14
15
16

16
16
50

43
46
47

47
43

37

/
/
/

VAL CG2
VAL CG2
ALA CB

PRO CA
ALA CB
VAL CG2

200
200
200

200
200
200

23
21
18

27
52
18

54 /
105 /
37 /

H9-H1
H9-H1
H9-H2

H9-H2
H9-H2
H9-H2

19
20
21

22
23
24
25
26

%
%

%

%

%

%
%

%

%

%

%



89 / 200 44 % HO-Hi

628 PRO CD
628 PRO CG

26
26

MET CG
MET CG

37 / 200
49 / 200

18 % HO-Hi
24 % HO-Hi
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30

28 627 GLN CD 22 HSC CEl



A.5 Scripts for data analysis

Data files extracted from CHARMM have their own data format, and must be

filtered into different format that is readable for Matlab scripts. The most convenient

way to do this is to write a shell script that makes such modifications. The filtered data

files are then read into Matlab for plotting and statistical analysis. This section shows a

few examples of the shell scripts and Matlab analysis scripts.

Shell script to modify the CHARMM out-files into Matlab readable files

#!/bin/tcsh -f

grep CA vbs.dat > t.d
awk '{print $5, $6, $7}' t.d > vbs.d

grep VINC 4h.dat > t.d

awk '{print $5, $6, $7}' t.d > 4h.d

grep VBS1 helicity.dat > t2.d

awk '{print $3}' t2.d > helres.d

awk '{print $5, $6, $71' t2.d > hel coor.d

foreach n ( 1 2 3 4 5 )
sed 's/-I /g' cont/hb$n.dat > cont/hb$n.d

sed 's/-/ /g' cont/ph$n.dat > cont/ph$n.d
end

rm -f t.d t2.d

exit 0

Matlab script that reads in CHARMM distance file and creates the close-contact

information

% Program: onlyhb.m
% Written by: Seung E. Lee
% Last updated: 9/16/2005

% Read in the output from CHARMM: e.g. line

%1621 TALI GLU 948 CG 512 VHN VAL 57 CG2 3.5553

% And sort the data and save it to var.mat to be used by onlyhb2.m
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function subcont(workdir,filename,outfile,nn,per2);

% READ IN THE DATEFILE AND ORGANIZE
fid = fopen([workdir filename],'r');
nset = nn; % Number of trajectories
fac = 1000; % Just a factor for future use

fid2 = fopen([work dir outfile],'w');
Si = fscanf(fid,'%s',l); % Skipping 2 lines
S2 = fscanf(fid,'%s',3);

% Loop over all the traj

nn = 0;
S1 = fscanf(fid,'%s',1);
while S1(1,1) = 'T', %

nn = nn + 1;
S2 = fscanf(fid,'%s',1);
S5 = fscanf(fid,'%s',1);
S6 = fscanf(fid,'%g',1);
S3 = fscanf(fid,'%s',1);
S9 = fscanf(fid,'%s',2);
S7 = fscanf(fid,'%s',1);
S8 = fscanf(fid,'%g',1);
S4 = fscanf(fid,'%s',1);
S9 = fscanf(fid,'%s',1);
S1 = fscanf(fid,'%s',l);
ires(S6,1:3) = S5; %
ires(S8,1:3) = S7;
if length(S3) 1, S3 =
if length(S3) == 2, S3 =
if length(S4) == 1, S4 =
if length(S4) == 2, S4 =
CN(nn,1) = S6*fac + S8; %
atype(nn,1:6) = [S3 S4];

manage
end
N(i,1) = nn; %. Numb
if nn ~= 0,

CT(1:nn,i) = CN; %
atypet(l:nn,1:6,i) = aty

end
clear CN
clear atype

Loop thru each interaction of traj

%

%-

%

1st resname
1st resid
1st res type

2nd resname
2nd resid
2nd res type

% First variable of next line
resid associated w/ resname

S3]; end
[' ' S3]; end

' 'S4]; end

' ' S4]; end
resid's combined for easy sort

% restype's combined for easy

of interactions for each traj

Array with all resid stored
pe; % Array with all restype stored

L = fgets(fid); L = fgets(fid); L = fgets(fid);
L = fgets(fid); L = fgets(fid); % Skipping some lines

end

E = CT(1:N(1),1);
F = atypet(1:N(1),1:6,1);
for i = 2:length(N),

E = [E; CT(1:N(i),i)];
F = [F; atypet(1:N(i),1:6,i)];

end % All resid and restype in one col
nE = size(E,1);
for i = 1:nE,

rT = int2str(E(i,1));
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for i = 1:nset,



if E(i,l)
if E(i,l)
T (i, 1:12)

end

100000,
10000,

[rT F(i,

rT =
rT =
: )I;

['0' int2str(E(i,1))]; end
['00' int2str(E(i,1))]; end
% Both resid and restype in one col

% Saving to var.mat:
% N = number of interactions per traj
% CT = Array w/ all resid stored
% atype = Array w/ all restype stored
% E = All resid in one column
% F = All restype in one column
% ires = indexed interaction of resid and resname

% save var N CT atypet E F T ires

% =uuu===============================================================--
[TS,ind] = sortrows(T); % Sorting based on resids and restypes
ES = E(ind,:);
FS = F(ind,:);

% Condensing the sorted TS and ES to remove all the overlaps

% They are stored in TSF and ESF and the number of each occurance is

% stored in M.
M = zeros(length(ES),1);

n3 = 1;

TSF(n3,1:12) = TS(1,1:12);
ESF(n3,1) = ES(1,1);
M(n3,1) = M(n3,1) + 1;
for ii = 2:length(ES),

if TS(ii,1) -= TSF(n3,1) I TS(ii,2) -= TSF(n3,2) I TS(ii,3)
TSF(n3,3) I TS(ii,4) -= TSF(n3,4) TS(ii,5) ~ TSF(n3,5) TS(ii,6) -=

TSF(n3,6) TS(ii,7) ~ TSF(n3,7) I TS(ii,8) ~ TSF(n3,8) I TS(ii,9) ~
TSF(n3,9) I TS(ii,10) ~ TSF(n3,10) I TS(ii,11) -= TSF(n3,11) I
TS(ii,12) TSF(n3,12),

nl = floor(ES(ii,1)/fac);
n2 = ES(ii,1) - nl*fac;
n3 = n3 + 1;
TSF(n3,1:12) = TS(ii,1:12);
ESF(n3,1) = ES(ii,1);

end
M(n3,1) = M(n3,1) + 1;

end
M = M(1:n3,1);

% Store everything as integer in 'finl': [resi res2 numoccur]

D1 = floor(ESF(:,1)/fac);
D2 = ESF(:,l) - D1*fac;
finl(l:n3,1:3) = [Dl(1:n3) D2(1:n3) M(1:n3,1)];

% Write out the statistics of the occurances to a file.

nn = length(N);

sub listhb(finl(:,l),finl(:,2),fin1(:,3),TSF(:,7:12),ires,nn,per2,fid2);
fclose(fid2);

return
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Matlab script that reads in CHARMM coordinate file and evaluates various

distance and angular information

% SCRIPT TO GET VBS1 ROTATION AND DISTANCES BETWEEN HELICES, THEN
% ANALYZE THE RESULT TO PLOT ON SCREEN

% SETUP THE DRAWING TOOLS FOR THE OUTPUT
1w2 = 1w + 4;

p = 1 24;

25 51;
52 82;
83 131];

th = 0 : pi/20 : 2*pi;
rad = 3;
cirx = rad * cos(th);
ciry = rad * sin(th);

thd = 180;
thr = thd *
Rx = [

pi

Ry = [ cos(thr

sin
Rz [ cos

-sin

/

(thr)
(thr)
(thr)

0

180;
1 0
0 cos(thr)
0 -sin(thr)

0
0 1

0
sin (thr)
cos (thr)

0

0;
sin(thr);
cos (thr)];

-sin(thr);
0;

cos (thr) ] ;
0;

0;
1];

% READ IN THE COORDINATE OUTPUT DATA FROM CHARMM
A = load([workdir '4h.d']);
nA = 131;

B = load([workdir 'vbs.d']);
nB = 24;

A = Rx * A'; A = A';

B = Rx * B'; B = B';

ct = [ 14 16;
28 30;
73 75;
90 92;
18 201;

if ihel == 2,
nB = 24;
ct(5,1:2) =

elseif ihel ==

nB = 26;

ct(5,1:2) =

elseif ihel
nB = 24;

ct(5,1:2)
end

18 20];
3,

[ 20 22];
4,

5 7];
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% EVALUATE ANGLE AND DISTANCES BETWEEN SECONDARY STRUCTURES

ct = ct';
sk = 1;

k = 0;
for i = 1:sk:nn,

ml = 1 + (i-1)*nA;
m2 = ml + nA - 1;

ji = 1 + (i-1)*nB;
j2 = j1 + nB - 1;

tAO = A(ml:m2,:);
tBO = B(jl:j2,:);
tA= [tAO(:,1) tAO(:,3)];
tB= [tBO(:,l) tBO(:,3)];
pt(1,1:2) = mean(tA(ct(:,1),:),1);
pt(2,1:2) = mean(tA(ct(:,2),:),1);
pt(3,1:2) = mean(tA(ct(:,3),:),l);
pt(4,1:2) = mean(tA(ct(:,4),:),l);
pt(5,1:2) = mean(tB(ct(:,5),:),1);
p 2 2(1,1:2) = tB(ct(1,5),:);
p23(1,1:2) = tB(ct(1,5)+l,:);

p22 = (p22 - pt(5,:)) / norm(p22-pt(5,:));
p221 = [p22*rad; p22*rad*1.8];
p23 = (p23 - pt(5,:)) / norm(p23-pt(5,:));
p231 = [p23*rad; p23*rad*1.81;

k = k + 1;

rl(1,1:2) = (pt(1,:)-pt(5,:)) /norm(pt(l,:)-pt(5,:));
r2(1,1:2) = (pt(2,:)-pt(5,:)) /norm(pt(2,:)-pt(5,:));
r3(1,1:2) = p23;
rl(1,1:3) = [rl(1) 0 rl(2)];
r2(1,1:3) = [r2(l) 0 r2(2)];
r3(1,1:3) = [r3(1) 0 r3(2)];

ang23(k) = acos( dot(rl,r3) ) * 180 / pi;
cv = cross(rl,r3);
if cv(2) < 0, ang23(k) = - ang23(k); end

ang3(k) = acos( dot(r2,rl) ) * 180 / pi;
cv = cross(r2,rl);
if cv(2) > 0, ang3(k) - ang3(k); end

dist12(k) = norm(pt(1,:)-pt(2,:));
dist54(k) = norm(pt(5,:)-pt(4,:));

end

% PLOT THE EVALUATED VALUES

zz = zeros(size(time));
ifig = ifig + 1; figure(ifig);
subplot(2,2,1); hold off; plot(time,ang23,'k');
subplot(2,2,1); hold on ; plot(time,zz,'k--');
xlabel('Time (ns)'); ylabel('Angle (degrees)');

title([kres ' angle with VBS1-H1']);
set(gca,'fontsize',fs);
axis([-inf inf -inf infi);

subplot(2,2,2); plot(time,ang3,'k');
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xlabel('Time (ns)'); ylabel('Angle (degrees)');
title(['Angle of H1-VBS1-H2']);
set(gca,'fontsize',fs);
axis([-inf inf -inf inf]);

subplot(2,2,3); plot(time,distl2,'k');
xlabel('Time (ns)'); ylabel('Dist (Ang)');
title(['Distance Hl-H2']);
set(gca,'fontsize',fs);
axis([-inf inf -inf inf]);

subplot(2,2,4); plot(time,dist54,'k');
xlabel('Time (ns)'); ylabel('Dist (Ang)');
title(['Distance VBS1-H4']);
set(gca, 'fontsize',fs);
axis([-inf inf -inf inf]);

% SAVE THE EVALUATION TO A FILE FOR LATER USE
fidnag = fopen('o-ang.out','w');
for i = 1:length(ang23),

fprintf(fidnag,' %8.4f %8.4f %8.4f %8.4f
%8.4f\n',time(i),ang23(i),ang3(i),dist2(i),dist54(i));

end
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