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Abstract

Block copolymers (BCPs) are a relatively new class of thermoplastic elastomers. Their
macromolecular chain consists of covalently bonded repeating blocks of thermoplastic and
elastomeric molecular chains. When given the thermodynamic freedom, the chain con-
stituents phase separate into domains of various morphologies with sizes that can range
between ten to hundreds of nanometers. BCPs are in essence nanocomposites with chemi-
cally bonded interfaces. As such, their mechanical behavior is consistent both with that of
elastomers, and of thermoplastics. Due to this unique behavior, BCPs are among the most
popular polymeric materials with diverse commercial applications that cover a number of
industries. Furthermore, BCPs are emerging as instrumental for the future of nanotech-
nology as an increasing number of new techniques and applications seek to utilize their
nanostructural features. BCPs, whether as polycrystalline configurations or as "highly"
oriented single-crystals, attract an accumulating number of applications, and the increas-
ing demand for efficient material design and product development extends over a range
of length scales. Hence, there exists a need for continuum models that will predict both
the oriented as well as the polycrystalline response of block-polymer materials to generic
loading conditions.

This thesis presents a general micromechanical framework for the derivation of large-
strain continuum constitutive models for hyperelastic materials with layered micro- or
macro-structures. The framework was implemented for the case of oriented (single-crystal)
lamellar BCPs with Neo-Hookean phase behavior, and an analytical continuum model was
derived for their large-strain hyperelastic response. The model was used to study the behav-
ior of styrene-butadiene-styrene (SBS) triblock polymers, the behavior and micromechan-
ics of which have been extensively investigated experimentally. Micromechanical unit-cell
calculations were used as direct parallels to experimental (x-ray, microscopy, and stress-
strain) data in order to verify the model's predictions. The presented continuum model
describes the stress and deformation response of an oriented microstructure accurately, and
was further implemented in multigranular numerical studies for the mechanical behavior
of polycrystalline lamellar configurations. Simulations of the polycrystal structures reveal
the manner in which the individual grains collectively deform and interact with each other
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to accommodate the macroscopic deformation. These results reveal the key roles of inter-
lamellar shearing, lamellar dilation, rotation, and buckling.

Thesis Supervisor: Mary C. Boyce
Title: Gail E. Kendall (1978) Professor of Mechanical Engineering
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Chapter 1

Introduction: Deformation Micro- and

Macromechanics of Lamellar Block

Copolymers

1.1 Thermoplastic Elastomers:

Historical Background and General Trends.

Thermoplastic elastomers (TPEs) emerged as a new class of polymers in the late 1960's.

Since then they have taken over a large share of the plastics market which traditionally was

monopolized by vulcanized rubber. The attractive properties of TPEs, combined with their

ease of processing and recyclability forced a dramatic growth in TPE technology over the

last 15 years. Aiming to optimize TPE products, new processing and production techniques

have been invented, which boosted both the progress in the plastics industry and improved

the quality of polymeric materials developed henceforth [22, 1].

With the invention of TPEs, a structural way to combine the properties of elastomers

and thermoplastics was materialized. Their inherent characteristics such as resilience,

thermal stability, solvent-, chemical-, creep-, and abrasive resistance, paired with their

thermoplastic-like processing behavior of high processing rates, recyclability and low cost,

have granted TPEs a vast number of uses [22, 1]. Major TPE markets today are the au-
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tomotive, footwear, wire and cable industries. They are extremely profitable as adhesives,

sealants and coatings. Finally, an area where these materials have had an enormous impact

and a fast growing influence is the medical industry [23].

Styrenic block copolymers are the most widely used TPEs because they meet the hard-

ness, stiffness, and tear resistance standards for commercial use. Block copolymers (BCPs),

as the name suggests, are macromolecules containing repeating blocks of two or more dif-

ferent polymers, covalently bonded with each other at their block ends. What makes BCPs

so successful is their ability to blend polymers with very different properties, to achieve

a material possessing a tailored combination of properties. In styrenic BCPs for example,

the stiffness of PS and the resilience of PB are both present, creating materials extendable

far beyond the failure strain of brittle PS, and manyfold stiffer than PB. Similar results are

not only achieved for mechanical properties, but also for the optical and thermal properties

of BCPs [1]. These constructive combinations arise from the covalent chemical bonding

between the different polymer blocks and the well-ordered microstructures they phase-

separate into at the nanoscale. Phase separation in BCPs is a well studied and understood

phenomenon [2, 1]. It takes place spontaneously when immiscible copolymer constituents

(blocks) develop separate domains in an effort to allow enough volume for the blocks to

conform to their bulk chain configuration. At the same time, minimization of the domain

interface area reduces the energy penalty imposed by the repulsive forces between incom-

patible blocks at their domain interface. This interplay determines the volume fraction

dependency of the domain shape, size and distribution in the BCP microstructure. The

morphology is shown in Fig. 1-1 for a linear dual phase BCP as a function of the volume

fraction. Domain sizes can range from 1-100nm depending on the molecular weights (or

lengths) of the polymer blocks [1].

Owing to their wide range of nanostructural features, BCPs have attracted a lot of at-

tention in the last decade for their potential utilization in a multitude of nanotechnological

applications [24, 25, 26]. Microdomain patterns designed with long- or short-range or-

der and engineered with specific domain orientation can be accomplished with emerging

techniques via nanopatterned substrate topographies [27], or by application of an external

electromagnetic field [28, 29, 30]. These hierarchically engineered materials find uses as
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Figure 1-1: Known phase-separated morphologies for a dual phase BC as a function of the

constituents' volume fraction: BCC lattice of spheres (0-20%), HCP lattice of cylinders

(20-35%), bicontinuous interconnected tetrahedral arrangements of short rods in the form

of a double diamond or the ordered bicontinuous double-diamond ( 35-40%), lamellae of

about equal thickness (40-60%) [1, 2].

lithographic masks or nanoporous membranes. Furthermore, preferential positioning of

nanoparticles within the nanodomain structure enables BC/inorganic nano-particle com-

posites to be manufactured for novel photonic devices, such as mirrors and high efficiency

optical wires, as well as for a new generation of storage devices with superior memory

capacity [31].

Three decades after their first appearance, styrenic BCPs are already a material sector

of colossal industrial, financial, and social influence. It is thus necessary to understand how

their microstructure determines their mechanical behavior, and develop tools that will al-

low designers to predict the material response at various loading conditions. Although most

of the current commercial BCP applications utilize these materials in their polycrystalline

form, the nanotechnological and thin film applications outlined previously demand highly

oriented microstructures. Therefore, the need for predictive models that will guide in ef-

ficient material design, selection and product development, from nano- up to macroscopic

scales arises both for polycrystalline as well as oriented BCPs.

1.2 Problem Statement and Research Objectives.

The present research aims in the development of a continuum constitutive description

for the large strain response of lamellar glassy-rubbery-glassy triblock copolymers, con-
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structed on a knowledge of the micromechanics that govern the deformation of the under-

lying material nanostructure. The objectives are three-fold:

" explore the correlation between the underlying anisotropic nanostructure of the single-

crystal material and its nonlinear anisotropic mechanical response,

" develop a continuum constitutive description that captures the large strain anisotropic

behavior of oriented microstructures, namely that of a "single-crystal",

" develop a micromechanical model for the large strain deformation behavior of ran-

dom multigrain (polycrystalline) aggregates to explore and predict the underlying

micromechanics of deformation and the resolving macroscopic mechanical behav-

ior.

The following sections present a short overview, representative of experimental and mod-

eling studies investigating the relation between the microstructure and the macroscopic

mechanical behavior of lamellar SBS block copolymers.

1.3 Lamellar SBS Block Copolymers: Macroscopic

Response and Deformation Micromechanics.

1.3.1 Single-Crystal (Oriented) Behavior

Early studies on BCPs, and lamellar BCPs in particular, were performed on multigrain, ran-

domly oriented samples. Small angle X-ray scattering (SAXS) and transmission electron

microscopy (TEM) were used to correlate microstructural rearrangements with character-

istics of the macroscopic tensile u- - c response. Subsequently, techniques which allowed

the production of highly oriented materials aided in a systematic investigation of the single-

crystal behavior.

One of the first studies performed on oriented lamellar BCPs was that of Allan et al. [3].

It was known from earlier studies that partially oriented microstructures of extruded BCP

samples respond in an anisotropic manner when loaded at directions parallel and perpen-

dicular to the extrusion direction [32, 33]. The anisotropy stems from the directionality of
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the microstructure, analogous to oriented macroscopic composites, which exhibit a stiffer

response in the direction of reinforcement.

Allan et al. were among the first to consider BCPs as composite materials and to invoke

composite material mechanics to quantify this anisotropy of the axial modulus in oriented

BCP systems. Highly oriented lamellar SBS samples were fabricated with a modified injec-

tion molding technique, which involved oscillatory shear of the melt inside the molds. The

sample orientation was examined visually with inspection of surface-microcracks, and with

TEM (Fig. 1-2a). The two constituent phases were assumed to be amorphous isotropic, and

their elastic properties were derived using micromechanics and measurements of the (effec-

tive) axial modulus, E0, at five different orientations to the material microstructure. Data

fitting showed a very good agreement between the experimentally measured Young's mod-

ulus and its theoretical prediction for the following constituent properties: Eps = 2GPa,

EPB = 5.91MPa, vps = 0.33, for 46vol% in PS and assuming VPB = 0.44 1 (Fig. 1-2b).

E

E

200n0

z0

200nm-Angle of aria..atIon 8

(a) (b)

Figure 1-2: (a) Oriented SBS lamellar morphology. (b) Dependency of Young's modulus

on the loading direction 0. Square points correspond to actual measurements and dots on a

continuous curve correspond to predicted values [3].

Allan's study concerned only the small strain uniaxial behavior of oriented BCPs,

namely the anisotropy in their effective elastic modulus. The yield and large strain behavior

of lamellar BCPs and their links to micromechanical deformation processes were the topics

I Eps was taken from tensile measurements of a PS with MW comparable to the PS-block length; vps

was taken from the literature; EPB and VPB were then adjusted to best fit the experimental data.
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of later experimental and analytical investigations by Yamaoka [4], Cohen [5, 6, 13], and

Read [14].

Yamaoka and Kimura [4] studied the effect of morphology on the mechanical-impact,

tensile, and flexural-properties of star-shaped SBS lamellar triblock copolymers containing

~ 75.5wt% PS. Injection- and compression-molding were used to provide different sam-

ple microstructural orientations. Rapidly- and slowly-cooled compression-molded samples

were prepared by varying the melt-cooling-rate in the molds to study the effect of the lat-

ter on the final orientation. TEM on undeformed morphologies showed that the different

manufacturing routes resulted in nearly equal lamellar thickness (ranging between 15-20

and 20-25nm for PB and PS lamellae, respectively), the lattice disorder was higher for

injection-molded samples, due to the different cooling and shear-flow processing condi-

tions. The microstructure in injection-molded samples resembled a "spinodal" structure

with curved, randomly oriented, and discontinuous PB lamellae, dispersed in a network of

continuous PS-matrix lamellar domains (Fig. 1-4a). Rapidly-cooled compression-molded

specimens possessed microstructure of continuous, nevertheless wavy lamellae in the plane

normal to the melt flow direction, with a high degree of alignment along the melt flow di-

rection (Fig. 1-4b).

The tensile stress-strain behaviors of injection- and compression-molded samples, shown

in Fig. 1-3, exhibit striking differences. The injection-molded specimen possesses a decid-

edly lower strain to failure, the response is stiffer, has a distinct yield point followed by a

brief constant stress-plateau, and finally, after necking has propagated through the entire

specimen, failure ensues with a rapid upturn in stress at a macroscopic strain of 50% (curve

(ab in Fig. 1-3). TEM on fracture surfaces showed that the microstucture deforms by ori-

entation and stretching of the initially randomly distributed PS lamellae, in the direction

of loading (Fig. 1-4). Subsequent failure of the PS microdomains, as the authors specu-

late, takes place after yielding and accelerates during the final rapid-stress-increase stage

of deformation. On the other hand, compression molded samples were more compliant, did

not develop a macroscopic neck, and their response did not show a clear yield point, but a

rather gradual transition to plastic deformation with a smoothly decreasing tangent modu-

lus (curve (a) in Fig. 1-3). Micrographs of the deformed microstructure (Fig. 1-4), revealed
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continuous PS lamellae deformed into chevrons, an indication that kinking, interlamellar

shear, and incidental cavitation are the prominent plastic deformation mechanisms. The

relatively ordered, continuous lamellar microstructure allowed large straining through PB

shearing, granting the sample its ductile behavior and larger elongation at break.

20 - (a)

- 15

0 6 0 _4 O 16E8-OI 120 105

Strain (%)

Figure 1-3: Stress-strain behavior of star-shaped lamellar SBS triblock copolymers.
Injection- (a) vs. compression molded (b) material [4]. The differences between (a) and (b)
are morphology related (see Fig. 1-4).

The same deformation processes of kinking and shear yielding explain the higher im-

pact strength. of rapidly-cooled compression-molded samples in comparison to injection-

molded samples. In the latter, the disordered microstructure of networked PS-lamellae in-

hibits the free stretching of PB domains to their full extensibility, causing PS microdomains

to fail earlier. Considerable anisotropy was also observed for rapidly-cooled samples de-

pending on the direction they were machined out of compression molded plates. The

mechanical anisotropy was assessed by directing pendulum strikes or the loading during

tensile and flexural2 testing at different angles to the lamellar orientation (Fig. 1-5). The

highest moduli were measured for tensile specimens with lamellae oriented perpendicular

to the tensile direction and for flexural samples with lamellae parallel to the loading nose 3.

The slow-cooling conditions during compression molding provided uniformn cooling

2 Three-point bending.
3 The results appear to be inconsistent, self-contradicting and in disagreement with the well established

directional dependency of composite materials' stiffness (see for example Fig. 1-2). It is possible that the
sample microstructure was mapped incorrectly.
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Figure 1-4: TEM micrographs of injection- and compression-molded microstructures [4]:

(a) and (b) as processed (undeformed), and (c) and (d) deformed under tension. (a) Un-

deformed injection molded morphology as viewed for any cross-section aligned with the

injection direction. (b) Undeformed compression molded morphology viewed for two or-

thogonal cross-sections. (d) Lamellar kinking and shearing are evident in the deformed

compression-molded morphology. Different micrograph scales are chosen for display clar-

ity. Arrows indicate: in (a) the injection flow direction, in (b) the compression direction, in

(c) and (d) the deformation axis.

through the samples and sustained the melt state of the BCP longer, thus allowing suffi-

cient time for relaxation of the lamellar disorder. The produced samples possesed highly

oriented, nearly parallel lamellar microstructures in the plane of the compression molded

plate. Due to this in-plane symmetry, the impact strength did not vary appreciably and no

mechanical anisotropy was observed. Analogous to rapidly-cooled samples, the deformed

morphology showed lamellar kinking and shearing.

Despite the clear link between anisotropic behavior and microstructural orientation that

Yamaoka's study managed to establish, the samples used were quite disordered and not
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Moulding method Injection moulding Compression moulding

Machine direction T Z

Izod impact strength 19.6 77,5 (Zi)r 229 (Yifb
(Jm~1)

Tensilestrength(MPa) 22.6 14.6 13.6
Tensile modulus (MPa) 1230 728 534
Elongation at break 50 110 140

Flexural strength 33.3 12.6 12.1
(MPa)

Flexural modulus 1470 661 535
(Ma)

Deflection temperature 71 57 56
-under flexural load
(CC)

(Fibre stress 1820 kPa)

I Striking direction Z!
'Striking direction Yi

Figure 1-5: Schematic of the sample geometries used in [4] for impact, tensile and bend-

ing tests. Also shown is the relative orientation of the rapidly-cooled compression-molded

morphology. The table summarizes the mechanical properties of injection- and compres-

sion molded samples.
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well oriented. A more detailed and comprehensive treatment on the deformation response

of lamellar SBS BCPs was recently offered by Cohen et al. [5] with a series of experiments

on highly-oriented film specimens. The samples used were produced with the roll-casting

technique, a powerful method to control the microstructural orientation and packing order

of block copolymer films [34]. As shown in Fig. 1-6, this method offers the flexibility

to obtain specimens with initial microstructures oriented differently relative to the defor-

mation axis. The microstructure of an annealed roll-cast SBS specimen with a lamellar

microstructure is shown in the micrograph of Fig. 1-7, aside with its 2D SAXS pattern.

The lamellar period appears to be approximately 27nm.

The material used in Cohen's experiments was a commercial BC 4 containing 45wt%

PS (-43vol% PS). Uniaxial tension was applied in three loading orientations relative to the

lamellar microstructure: perpendicular, parallel and at 450 to the lamellae. In-situ SAXS

during stretching and TEM were used to monitor the micromechanics of deformation. The

anisotropic o - E response to uniaxial tension is shown in Fig. 1-8. The initial elastic re-

sponse was highly anisotropic with axial moduli values that measured 180MPa, 65MPa,

and 43MPa for parallel, perpendicular, and diagonal loading, respectively. After a short

elastic regime, all samples exhibited yielding behavior, which for parallel loading was fol-

lowed by distinct softening of the stress response and macroscopic necking, consistent with

the behavior of PS, which dominates the response at this orientation. At strains higher than

300%, all samples exhibit similar rubber-like response.

y

z

ZX

z x

Figure 1-6: Schematic of an oriented roll-cast lamellar film and samples cut at different

orientations to the roll-casting direction, which here coincides with the x-axis. (Roller

radial direction: y-axis) [5].

4Vector 446 1-D: MWps= 18500, MWPB=45000
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- 250 nm

Figure 1-7: Oriented unstretched morphology from a roll-cast lamellar BC.

Samples that underwent tensile loading perpendicular to their lamellar microstructure

did not develop a macroscopic neck. The evolution of SAXS scattering patterns with strain

is shown schematically in Fig. 1-9. Patterns from small strains show arched azimuthal- and

weak meridional reflections, which indicate layer waviness and dilation. With increasing

strain, higher order reflections disappear gradually, and each arched reflection polarizes to

two maxima to finally evolve into a 4-point pattern of elongated horizontal streaks. This

pattern is typical to microstructures of tilted diffracting layers within elongated and narrow

grains, which are separated by tilt grain boundaries that run parallel to the loading direction

[35, 36]. Consistent with SAXS results, the TE micrograph of Fig. 1-9, taken from a sam-

ple strained to 300%, shows a zigzag or herringbone structure, known as chevron, which

is observed in a variety of layered microstructures and across several length scales-from

compressed geological structures [37, 38] down to liquid crystals [9, 39], nematic elas-

tomers [40], diblock copolymers [15], and diblock copolymer melts [11, 10, 41], as well as

in BCPs with cylindrical microdomains [42, 43].

The nonlinear elastic o - e material response to stretching and the gradual transition to

plasticity differs from the linear elastic behavior and a distinct yield-point that analytical

and numerical models predict [14, 9, 44]. The increasing arching of SAXS reflections and

the absence of significant lamellar dilation for strains below 20%, suggest a population of

increasingly undulating lamellae. Initial arching from 100 increases to 16' for 7% and to

28' for 15% strain. An "apparent" yield-point lies within this strain range. In essence,

the continuous increase of undulation allows inter-lamellar shearing to dominate the mi-

cromechanical deformation response, which macroscopically is reflected in the continu-

ously decreasing slope of the o- - 6 curve. This gradually increasing, inherent and possibly
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Figure 1-8: Stress-strain response of oriented lamellar SBS samples (43%volPS) for three
different lamellar orientations with respect to the deformation direction: (a) small, (b) large
strains, and (c) unloading behavior [5].
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Figure 1-9: (a) Schematic of the "chevron" morphology from [5], where a is the tilt lamel-
lar angle, n is lamellar normal, z is the deformation axis, d and dz are the lamellar repeat
lengths in the tilted limbs and in the hinge regions, respectively, and A is the undulation
wavelength. (b) Schematic of SAXS pattern evolution during perpendicular stretching. (c)
TEM micrograph of a lamellar BCP tensioned perpendicular to the lamellae. PS layers
appear as white. The deformed zigzag microstructure is known as a chevron.
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processing-induced, lamellar waviness smears out the abrupt yield behavior which buck-

ling analysis attributes to lamellar micro-buckling, and which can be predicted to occur at

strains as low as 2% when the rubber phase is modeled as strictly incompressible, and the

lamellae are assumed to be perfectly aligned [14, 9].

With increasing strain, the undulations evolve into a chevron pattern of straight limbs

and sharp hinges. The progressive reduction in fold-roundness has been explained in

Bayly's analytical work on the compression of sedimentary rocks [37], and was simu-

lated with micromechanical FE models by Read et al. [14]. Plastic deformation of PS

layers and PB dilation localize at hinge areas, where eventually, either PS layer fragmen-

tation or PB voiding occurs. This process converts hinge "trajectories" to new tilt grain

boundaries, usually parallel to the loading direction. The constant, throughout the de-

formation, radius of the diffraction vector in both arched and 4-point reflections signifies

constant lamellar spacing, which is consistent with the process of interlamellar shearing be-

tween continuously rotating lamellae, in agreement with what has been reported elsewhere

[19, 17, 18, 15, 35, 36]. The stress increase in the final stages of deformation (strains

>200%), and the asymptotically constant 680 azimuthal angle in SAXS patterns reflect the

increasing difficulty to accommodate additional deformation by interlamellar shear alone.

As this "locking" tilt angle is approached (Fig. 1-I Oc), additional stretch corresponds to

dilation in both PS and PB layers, hence the increasing slope of the final upturn in the a - E

response.

In an effort to understand the initiation of kinking, two different -according to the

authors [6]- mechanisms were considered: layer misalignment around defects, and layer

buckling. We note that these processes are coupled. Their view, also shared by Qiao et

al. [10], is that layers around edge imperfections are the first to kink, and subsequently

propagate the kink band to neighboring lamellae (Fig. 1-15). Different kink bands finally

impinge with further deformation. This can be a reasonable explanation for the wavelength

variation and kink boundary impingement observed in deformed microstructures such as

the one in Fig. 1-9b. A TEM micrograph from a deformed sample taken on a cross-section

perpendicular to the load (Fig. 1-11) shows that the observed irregularity in layer folds is

three-dimensional in nature [45, 46, 7, 8]. This is in contrast to the regular egg-box or
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Figure 1-10: (a) RVE of a tilted lamellar morphology from [5]: a is the tilt lamellar
angle, n is lamellar normal, z is the deformation axis, d and dz are the lamellar repeat
lengths in the tilted limbs measured along the lamellar normal n and along the stretching
direction z, respectively, do is the lamellar repeat lengths in the undeformed configuration,
and A = L/LO is the macroscopic stretch. (b) Tilt angle a SAXS data plotted as 1/cos(a)
versus the macroscopic elongation A = L/Lo. The linear representation of the data with
a solid line of slope equal to unity verifies the invariance of the lamellar repeat length d
for stretches 1 [5]. (c) Lamellar tilt angle a evolution (A) measured as the angle between
the meridian and a peak of the SAXS four-point pattern shown against the macrocroscopic
stress-strain response (solid line) [6]. The angle increases with a continuously decreasing
rate as it approaches an upper limit, the "locking tilt angle".
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checkerboard buckling pattern (Fig. 1-12) that is analytically predicted to minimize the

total energy in layered liquid crystalline materials [9, 7, 8].

Figure 1-11: TE micrograph of a microstructure deformed under perpendicular loading.

The cross-section is perpendicular to the loading direction [5].

Loading at 450 to the lamellae is an intermediate loading state between the extremes of

perpendicular and parallel loading. The measured axial stiffness is lower in this direction,

as also in Allan's experiments (Fig. 1-2b), due to the shear behavior of PB, which domi-

nates the composite's response in this direction, as compared to the bulk modulus, which

dominates the response to perpendicular loading. The tensile -- E behavior exhibits identi-

cal trends with those observed during perpendicular loading. As SAXS and TEM revealed,

the similarities in the macroscopic behavior stems from the micromechanics of deforma-

tion, which at the microstructural length-scale are the same for both loading cases. Fig. 1-

13b summarizes schematically the evolution of SAXS patterns during diagonal loading [5].

With increasing strain, the reflection streaks rotate away from the stretching direction along

a circular trajectory without considerable changes in the d-spacing, even at strains as high

as 500%. Similar to perpendicular deformation, a new, asymmetric 4-point SAXS pattern

appears, consistent with asymmetric kinking. The kinking is due to the resultant dilative

component of stress in the direction perpendicular to the layers (Fig. 1-14b), and imper-

fections in the lamellar microstructure (Fig. 1-15). TEM micrographs on microstructures

deformed to 60% strain confirm the development of asymmetric kink bands (Fig. 1-13a).

The kinks are composed of two uneven members: a long limb which with increasing strain

rotates to align closer with the loading direction, and a much shorter one that tilts away

towards the direction perpendicular to loading. Similar asymmetric kink bands have also
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Figure 1-12: (a) Herringbone buckling mode of a thin film on a elastomeric substrate.
Columnar (one-dimensional)and checkerboard buckling modes also shown [7, 8]. (b) Sym-
metric egg-box pattern fold evolution for a layered material in dialtive strain [9].
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been observed in oriented BCP melts during shear parallel to the lamellae [11, 10, 41]

(Fig. 1-14). This kinking transforms the microstructure into a striped domain of alternat-

ing short and wide bands parallel to the loading direction, which comprise of dilating and

shearing layers, respectively. In the early stages of stretching, the deformation is accom-

modated mostly by the PB phase, by interlamellar shear parallel to the long members, and

dilation perpendicular to the short limbs. With increasing strain, the layers within the short

dilating bands undergo excessive deformation which leads to voiding in PB domains, and

plastic deformation and fragmentation of the PS layers. As for perpendicular loading, this

process generates new grain boundaries parallel to the loading direction. After unloading

from 500% strain, SAXS patterns show a residual 12' tilt away from the original diagonal

orientation, possibly due to plastic deformation of the PS lamellae and voids locked in the

newly created grain boundaries.

z
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Figure 1-13: (a) Asymetric kink bands in a lamellar BCP microstructure deformed in

diagonsl tension. (b) Schematic of SAXS pattern evolution during diagonal tension.

Loading parallel to the lamellae yields the highest elastic modulus and yield stress,

in agreement with composite material mechanics. Contrary to the observations from per-

pendicular and diagonal loading, the material exhibits a clear yield-point and softening

for loading in this direction, as well as a macroscopic neck that progressed in a stable

manner. SAXS patterns taken either outside the neck or prior to the yield-point show a

reduction in the lamellar repeat distance and loss of higher order reflections (Fig. 1-16d,

e). With stretching, the reflection streaks become gradually diffuse, and finally disappear

for patterns taken at strains higher than 200% when the specimen has necked entirely. This

indicates loss of order in the lamellar structure, due to lamellar fragmentation and material
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Figure 1-14: (a) Asymmetric kink bands in sheared BCP melt [10]. (b) Schamatic of kink
band formation for loading perpendicular and diagonal to the lamellae [11].
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Figure 1-15: Schematic illustration of kink initiation in the vicinity of an imperfection.
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voiding. The authors postulate that PS layer fragmentation occurs at the macroscopic neck

front (Fig. 1-17a), and that the stress increase at strains higher that 300% results from fur-

ther fracturing of already fragmented layers. Contrary to what is reported by Cohen et al.,

my FE-based micromechanical simulations (see Section 2, Fig. 1-27) showed that the neck

propagates by microneck cascading along neighbouring PS lamellae [16]. The post-yield

increase in macroscopic stress is related to further drawing of the micronecked PS layers

(and strain-induced chain orientation within), which eventually leads to their fragmenta-

tion, and grants the material its rubber-like response at strains larger than 300% -a process

known as the "plastic-to-rubber" transition.

b 27%

C 61%

d 200%

290%

funloaded

Figure 1-16: SAXS pattern evolution for loading parallel to the lamellae [5]. The elliptical
diffraction pattern in (f) shows partial restructuring of the lamellar microstructure after
unloading from 400% strain.

- 0 00

(a) (b)

Figure 1-17: Schematic of PS layer micronecking during parallel tension. (a) Lamellar mi-
crostructure [5]. (b) Cylindrical microstructure [12]. The cascaded (diagonal) arrangement
of micronecks in (b) is more realistic.

To visually and quantitatively assess the micro- and macromechanical influence of im-

perfections on the perpendicular deformation behavior of lamellar morphologies, iden-
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tical samples with different annealing histories were also tested [13]. Annealing is ex-

pected to annihilate any processing-induced bias in the imperfection distribution and ren-

der it isotropic (Fig. 1-18a). The microstructural difference between carefully annealed

and as-processed (unannealed) samples was reflected in their distinctly different necking

processes, and their respective stress-strain response (Fig. 1-18b). Unannealed specimens

develop a one-dimensional neck-drawn geometry (Fig. 1-19b), in contrast to annealed sam-

ples, which exhibit no necking, but a rather equibiaxial, and affine with straining, shrinking

in their cross-section. SAXS patterns taken from well inside the neck region, from the

neck's boundary, and outside the necked region reveal a 4-point pattern that is pronounced

inside the neck and fades outwards. A similar trend was observed for the magnitude of

lamellar tilt from measurements within and outside the neck region. Also, the measured tilt

angle stabilizes asymptotically with increasing strain and lamellar spacing remains unal-

tered everywhere in the sample, in accord with results from other studies [5, 47, 15, 19]. It

was concluded that if necking were a sample-geometry-induced nonlinearity, due to plane-

strain conditions, then it would be independent of the annealing history. Thus, the one-

dimensional necking morphology, which is observed only for unannealed samples, must

be a nonlinearity induced by the material microstructure, and was ascribed to columnar

buckling of the lamellar microstructure. A conceptual illustration is shown in Fig. 1-19a.

The relation between macroscopic yielding of lamellar TPEs, when these are loaded

perpendicular to their lamellae, and internal buckling of their lamellar microstructure was

studied by Read et al. [14] on the basis of a strain energy minimization approach. The

analysis bridges the macro- and nano- length scales by expressing the strain energy den-

sity in terms of global and local deformation variables augmented with two additional mi-

cromechanical deformation modes: layer bending, and in-plane deformation of the soft

phase (Fig. 1-21) to capture the buckling instability. The two phases are assumed to be

isotropic. Minimization of the energy with respect to the local deformation variables yields

the (lowest) critical buckling load and corresponding buckling wavelength as a function

of the macroscopic strain. The model was used for a lamellar SBS BC, and the predicted

critical buckling stress was compared to computational results from simplified microme-

chanical FE models. Buckling caused a sharp turnover in the calculated a - e curve, which
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Figure 1-18: (a) Schematic representation of the morphology in as-cast (left) and annealed

(right) films, with a nonuniform distribution of defects in the as-cast film. (b) Engineering

stress-strain response of oriented lamellar samples to perpendicular deformation: solid line,

as-cast films; dashed line, annealed films [13].

was associated with the "apparent" macroscopic yield-point for loading in this direction

(Fig. 1-20). Analytical and numerical predictions converged for starker moduli contrasts

between the hard and soft phases. The simulations showed that the initially sinusoidal buck-

ling profile evolved quickly to a chevron pattern of alternating straight limbs and hinges,

with the latter developing at the peaks and valleys of the sinusoid. Hinge sharpness was

more pronounced when the hard layers were described as elastic-plastic (Fig. 1-20), due to

localized plasticity in the hinges.

Alternative loading states were not investigated, and certainly, the model, being devel-

oped for buckling analysis, cannot predict the deformation behavior for stretching parallel

to the layers. In an instability analysis, Nestorovic and Triantafyllidis [44] studied the

influence of different loading orientations, material properties, and volume fractions on

the material response, where the Blatz-Ko material model for porous rubbers was used to

model the mechanical behavior of the rubbery phase. This eigenvalue analysis calculates

the buckling load and wavelength for the lowest instability mode. Neither analysis was

compared to actual data, thus the predictive aspect of these analyses is not clear, especially

with the strong dependence of these instabilities on inherent material structural imperfec-
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Figure 1-19: (a) Photographs of a "one-dimensional" neck (reduction of the cross-section
only in the y-direction) in an as-cast sample under perpendicular deformation. Arrows
indicate the neck front. (b) Schematic representation of the chevron morphology inside a
"one-dimensional" neck [13].

tion content.

Hermel and coworkers [15] have investigated the effect of coupling between morphol-

ogy and chain architecture on the large strain behavior of glassy/semicrystalline block

copolymers with lamellar microstructures. Shear alignment was used to produce oriented

samples from two molecularly different copolymers, a triblock CEC and a pentablock CE-

CEC, where C and E denote polycyclohexylethynene and polyethylene, respectively. This

glassy/semicrystalline lamellar BCP was observed to exhibit deformation mechanisms sim-

ilar to those observed in the TPE lamellar structures when axially loaded perpendicular to

the lamellae. TEM and in-situ SAXS showed that, similar to glassy/rubbery copolymers

[5], the pentablock accommodates perpendicular deformation by layer folding and con-

secutive interlamellar shear. After the yield-point and until failure, the d-spacing remains

constant as seen in respective SAXS 4-point patterns, and the lamellae maintain a tilt an-
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Figure 1-20: Loading/Unloading stress-strain response and the corresponding buckling

profile for a lamellar SBS RVE, showing the effect of PS-layer plasticity on both [14]. Left:

PS layers (thin) modeled as elastic-plastic. Right: PS layers modeled as purely elastic.
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Figure 1-21: Squishing out or sucking in of the soft phase with respective dilation and

compression by the transverse deformation of the hard layers [14].

gle of about 660 relative to the stretching direction, as also verified by TEM images from

fractured specimens (Fig. 1-23). These results demonstrate that different materials with
5

lamellar morphology deform with the same basic micro-mechanisms

1.3.2 Finite-Element-Based Micromechanical Modeling of the Lamel-

lar Block-Copolymer Single-Crystal

The numerous X-ray and microscopy studies of the literature aim to clarify the link between

the morphology of lamellar BCPs and their mechanical properties. Such in-situ monitor-

ing techniques however, collect information mostly at discrete time instances, and usually

5Hermel's study was referenced here to illustrate the universality of the deformation mechanisms met in

layered polymeric materials, regardless of the nature of the different blocks present. Hermel's study however,

claims a periodic void development to explain the appearance of two additional reflection pairs in SAXS

patterns taken from specimens deformed at low strains (before the material yield). Even though periodic

voiding seems to be an unsual and unlikely deformation pattern and (to my knowledge) has not been reported

elsewhere, Helmel et al. offer no connection to alternative, absolutely legitimate events, such as the dilation

of domains within the hinge areas, or strain induced crystallization within the domains. Thus to my opinion,

this report did not unravel additional deformation micromechanisms, had there been any.
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Figure 1-22: Differences in the o - e response between lamellar: (a) triblock CEC, and (b)
pentablock CECEC glassy/semicrystalline block copolymers, for uniaxial tension perpen-
dicular to the lamellae [15].

Figure 1-23: TE micrograph of a CECEC pentablock microstructure deformed in tension
perpendicular to the lamellae [15]. The deformed morphology exhibits the familiar from
other lamellar BCPs chevron morphology. Bar length equals 50nm.
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average over a finite volume, which can be in the order of a fraction of a mm3 or even the

entire specimen, and thus cannot always be exact about the nature of the phenomena taking

place. In the current research, micromechanical representative volume elements (RVEs)

of the BCP microstructure are used to simulate the deformation process and to provide

the undestanding and insight needed for the development of a continuum level constitutive

model. The structural changes that take place during loading are recorded continuously,

and the modeling precision is evaluated by comparing the numerical predictions with ex-

perimental data from the literature.

The lamellar BCP microstructure was modeled with a "banded" 2-D plane strain RVE

containing 4.3vol% PS. The stress-strain behavior of PS is modeled as elastic-plastic with

strain hardening, while PB is modeled as a neo-Hookean hyperelastic material with com-

pressibility. The four unknown elastic constituent properties, Eps, EPB, vps, and vPB,

have been derived in the same manner as in Allan's composite material micromechanics

study [3]. By substituting the macroscopic elastic moduli reported by Cohen [5], Eoo,

Ego., and E,[5o, in the expression for the effective modulus, E0 , and assuming Vps = 0.3,

a system of three equations remains to be solved for the three residual unknowns6 . The

yield and post-yield behavior of PS was estimated from the BCP -- e response to par-

allel deformation. The PS and PB layers were discretized with biquadratic, plane-strain,

reduced-integration and hybrid elements, respectively, with a sufficient mesh density. Peri-

odic boundary conditions were applied on facing boundaries of the RVE. The RVEs were

subjected to uniaxial tension normal and parallel to the lamellae. The simulated microstruc-

tural deformation evolution is presented in terms of the macroscopic a - E RVE response,

and as vonMises-scalar-equivalent-stress contours on deformed meshes at various stages of

deformation.

A variety of morphological imperfections are observed in block copolymers. Two types

6As commented before on Allan's work [3], the derivation of constituent properties is sensitive to the
choice of directions used. Layer misalignment is associated with a large error for stiffness measurements
at, or near 0* orientations relative to the lamellar plane. Even harder is the accurate estimation of PB's bulk
modulus purely from stiffness measurements perpendicular to the lamellae. Depending on the degree of
misalignment, the measured elastic modulus is a resultant of both bulk and shear PB response. Due to the
high contrast between the bulk and shear PB moduli, large discrepancies arise between the actual and the
estimated properties for the rubbery phase. Owing to this complexity, numerical simulations are also needed
to verify whether the calculated constituent properties can predict the experimental -- c material response.
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of imperfections are used here to initiate the anticipated deformation instabilities that dom-

inate the material response in different loading orientations. For tensile loading normal to

the lamellae, the initial RVE profile was perturbed with a very low amplitude sinusoidal

undulation. Waviness7 is an inherent imperfection in BCPs with a lamellar or cylindrical

morphology. The wavelength was chosen to be equal to that of the 2nd buckling mode for

this RVE (equal here to L/do = 22, where L is the wavelength, and do the initial layer

periodic spacing, equal to the combined thickness of a PS and a PB layer), such that two

wavelengths span the RVE length. The imposed initial waviness is identical to that shown

in Fig. 1-24, however, with a smaller amplitude (A/do = 0.08, where A is the amplitude).

The particular mode was chosen as an approximation to the average chevron wavelength

observed in the TEM image of a deformed microstructure shown in Fig. 1-9b from [5],

which equaled L/t = 17.5. This allows us to directly compare the experimental stress-

strain behavior to the predicted one by the RVE simulation. Various other commonly

observed microstructural imperfections, such as lamellar-interface perturbations, layer mis-

alignment, and paired edge-dislocations 9 were also studied and will be reported elsewhere.

A thorough eigenmode analysis for the lamellar RVE has also been conducted. The influ-

ence of internal buckling modes on the calculated macroscopic behavior is summarized in

Fig. 1-26.

During loading normal to the lamellae, the material responds initially via dilation of

the soft phase (PB). The stiff PS layers constrain the desired lateral contraction of the PB

layers and, therefore, the PB layers experience volumetric straining during this normal

loading condition. PB being a rubber-like material is nearly incompressible. It strongly

resists the volumetric strain, and thus, experiences a lateral tensile stress in addition to

the imposed axial tensile stress. In turn, the PS layers experience a lateral compressive

7This inherent layer misalignment can be quantified by an appropriate for these materials "orientational
order parameter" in terms of the arching and the intensity distribution in SAXS refelections of undeformed
samples. This parameter can be used to weight material quantities, such as the modulus, which theoretical
models otherwise predict for perfectly aligned microstructures.

8The simulated micro- and macroscopic deformation response to perpendicular loading, being determined
by the buckling instability, are substantially sensitive to model size and imperfection content. Here, I directly
compare simulations to experimentally observed data and thus set the imperfection to capture the average
chevron wavelength observed in the corresponding experiments (see Fig. 1-9b.)

9Symmetric line defects.
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Figure 1-24: Mises-stress contour-plots for loading normal to lamellae. The initial sinu-
soidal buckling profile forms localized plastic hinges and evolves into a chevron pattern
[16].
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Figure 1-25: Calculated and experimental engineering o- - c response to perpendicular and
parallel loading. Constituent properties used in simulations: Eps = 385MPa, vps = 0.33,

0s = 9.55MPa, EPB = 4MPa, VPB = 0.487. The experimental data are from Cohen et

al. [5].

stress. This lateral compressive stress increases with increasing axial strain until it reaches

the critical buckling stress for the PS layers. The PS layers then buckle with an initially

smooth sinusoidal profile of low amplitude. This elastic buckling event corresponds to what

appears as a clear rollover in the macroscopic stress-strain curve akin to the characteristic

macroscopic yielding behavior in polymers. The buckled configuration enables continuing

macroscopic axial deformation to be accommodated by shearing of the PB layers and tilting

of the buckled PS layers. Additionally, the shear modulus of PB is orders of magnitude less

than its bulk modulus and thus, shear of the PB layers is not only kinematically, but also

energetically more favorable than dilation. The post-yield slope of the stress-strain curve is

thus governed by the PB shear modulus and is significantly more compliant than the initial

stiffness, which was governed by the PB bulk modulus.

With continuing macroscopic deformation, the sinusoidal waviness develops plastic

hinges due to local yielding of the PS layers, resulting in chevron folds and kink bound-

aries parallel to the loading direction, consistent with microscopy images of deformed mi-

crostructures [5, 15] and analytical studies [37, 14]. Fig. 1-24 and Fig. 1-25 show this

lamellar microstructure evolution and the calculated stress-strain response, respectively' 0 .

'0The simulations revealed that the ratio of PB bulk to shear moduli primarily, and secondly, the stiffness
and yield behavior of PS, are critical quantities for the development of plastic hinges. For example, temper-
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Figure 1-26: RVE buckling eigenmode analysis for perpendicular loading: stress-strain
response (top), corresponding buckling wavelengths (middle), and tilt angle, a, evolution
with strain (bottom). The lamellar tilt angle rises abruptly at the onset of the buckling
instability and saturates to an upper limit as stretch increases.
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Macroscopic strain hardening emanates from the increasing resistance of the formed

PS plastic hinges as well as the kinematic restraint introduced by further PB dilation and

shearing PB. In fact, a locking azimuthal (tilt) angle exists for the chevron folds, beyond

which further tilting is difficult, and additional deformation can only happen via increased

dilation of the rubbery (PB) layers. The simulations permit study of the evolution in other

structural features such as the lamellar spacing, d, and the azimuthal angle, which can be

directly compared to SAXS and TEM data from the literature.

The response of the BCP RVE to loading parallel to the lamellar orientation is dom-

inated by the behavior of the PS layers. With increasing stretch, micronecks initiate in

individual PS layers at imperfection sites (Fig. 1-27). The micronecks follow the basic

behavior observed in macroscopic necking of polymers where the neck initiates, localizes,

then stabilizes and propagates upon reaching the draw ratio. Double shear bands initiate

in the immediately adjacent PB layers (Fig. 1-27). The shear bands progress from one

PS/PB interface to the next and, due to perfect interface bonding, shear the neighboring PS

layer and cause the initiation of a new microneck at an angle of about 45'. This produces

a cascading of micronecks throughout the PS layers, which is responsible for the gradual

reduction in the copolymer stiffness after the initial linear response to loading. With this

deformation process, the micronecks multiply and, at a macroscopic level, form a macro-

scopic shear band and eventually a macroscopic neck. Once the micronecks have fully

cascaded, each will locally draw through its respective layer (stress plateau on the stress-

strain curve), ultimately producing the observed macroscopic strain hardening (Fig. 1-25).

A similar deformation cascade has been observed in microlayered polymers where an in-

terplay between shear bands in ductile thermoplastic layers and crazing in brittle layers

results in a mutual cascading of these two deformation processes in microlayered polymer

ature studies by Cohen et al. [6] on the micromechanical response to perpendicular loading at temperatures
above the Tg of PS (100'C), when the system is viscous/rubbery, have shown that the (temperature-induced)
low interlayer modulus contrast eliminates the folding instability which governs the material nonlinearity
at ambient temperatures. The low modulus contrast effect was partially realised by D.J. Read et al. [14]
as well. In addition, coexistence of layer dilation in both PB and PS, as well as micro-buckling, however
without the development of hinges, were observed at temperatures around the Tg of PS (80'C), when the
material is rendered viscoelastic/rubbery. Thus, the influence of constituent properties on the micro/macro-
mechanical behavior is an issue that deserves carefull analytical treatment, which however is lucking in the
current literature.
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laminates [48].
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Figure 1-27: Top: Symmetric shear bands initiate from the PB/PS interface at the site of
a PS-layer microneck, and propagate through the adjacent PB-layer to the next PB/PS in-
terface. At that location, due to strain compatibility, the shear band acts as an imperfection
that stimulates the initiation of a new microneck. With this cooperative deformation pro-
cess, micronecks cascade between neighboring PS-layers to span the entire microstructure.
Bottom: Mises stress contour-plots for loading parallel to the lammelae. PS micronecking
advances through the structure by shearing adjacent PB layersc [16].

The close agreement between experimental data from the literature and the numerically

predicted material response to normal and parallel loading suggests that the behavior of

each constituent, as well as the physics of deformation, have been well understood and

successfully reproduced. The response of multigrain copolymer morphologies can now be

interpreted based on findings from the micromechanics of single-crystal lamellar morphol-
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ogy. These simulations were performed on perfectly oriented, 2D microstructures and thus

important effects such as processing induced disorder or line defects are not captured, yet

clearly have strong influence on the micromechanics [13] and require further investigation.

Three-dimensional analysis, which is lacking in the literature, is expected to offer further

insights. Also, the single-crystal nonlinear response to uniaxial loading at different orien-

tations to the initial microstructure remains to be explored, as well as the behavior when

subjected to multiaxial loading conditions.

1.4 Thesis Outline

The objective of the current thesis is to develop a micromechanically-based hyperelastic

continuum constitutive model for the anisotropic stress-strain response of lamellar glassy-

rubbery-glassy triblock copolymers, which will be implemented for egineering applications

with the finite element technique. The layered microstructure of the considered BCP com-

bined with the well identified, both experimentally and computationally, elements that de-

termine its anisotropic behavior from small to large strains, allow for a detailed physically-

based constitutive formulation. The outline of the thesis is as follows:

Chapter 2, presents the general micromechanical framework for the development of

micromechanically/physically-based continuum constitutive descriptions for the large-strain

behavior of hyperlestatic materials with layered underlying morphologies. The presented

framework is based on equilibrium and compatibility constraints that must be satisfied

on the layer-interface, and are therefore, independent of the constituent behavior or the

length-scale of the microstructure. For this reason, the presented framework can be used

to describe a variety of layered materials by choice of an appropriate hyperelastic material

model for each of the involved constituents. In the current thesis, the framework is ap-

plied for the lamellar SBS BCP of interest with the rubbery (PB) and glassy (PS) phases

described as a neo-Hookean materials with compressibility. An analytical closed-form

solution is derived, which fully describes the BCP's stress and deformation response to

any type of macroscopically imposed deformation. The analytically derived continuum

constitutive model is physically/micromechanically-based and thus inherently captures the
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directional dependence in each layer's/phase's contribution to the overall effective mate-

rial response, and hence, the orientation-dependent anisotropy in the BCP's response. The

model is formulated as a FORTRAN subrutine and implemented in the commerical finite

element software ABAQUS Explicit for use in numerical calculations on generic bound-

ary value problems. The numerical predictions of the analytical model for the directional

anisotropy of the BCP's single-crystal stress response and for the evolution of specific

internal microdeformation quantities are validated against the corresponding results from

finite-element unit-cell calculations with a 2D discrete bilayer RVE of the oriented lay-

ered morphology, under three types of applied macroscopic deformation: plane-strain axial

extension, plane-strain biaxial deformation, and plane-strain simple shear, for different un-

derlying material orientations to the respective loading axes.

In Chapter 3 the analytical constitutive model is used to study the effect of isolated

boundary constraints on the deformation behavior of oriented BCP structures. Two types

of tests are performed: (i) plane-strain iaxial extension on single-crystal tensile strip spec-

imens with clamped-end conditions, and (ii) plane-strain axial extension of bicrystal strip

specimen configurations, also with clamped-end conditions. The results from the micro-

and macromechanical study of the anisotropic single-crystal behavior in Chapter 2 are used

to elucidate the differences in the force/displacement response of the extended specimens

and the nature and spatial extent of the boundary influence on the deformed specimen con-

figurations, based on the underlying material orientation with respect to the loading axis

and the specimen geometry/dimensions. The deformation results from both oriented and

bicrystal specimens are qualitatively compared to existing experimental data.

In chapter 4, the developed continuum constitutive model is further utilized for numer-

ical studies on the mechanical behavior of lamellar BCP polycrystals. 2D finite-element-

based micromechanical models containing a sufficiently large number of randomly ori-

ented grains are developed to represent the multigrain lamellar aggregate. The continuum

model is used to assign the behavior of the invidual grains, and to predict intergranular

compatibility and equilibrium interactions among them, which collectively result in the

effective macroscopic stress and deformation response of the polycrystal configuration.

The model enables a thorough investigation of the occurring micromechanical deformation
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modes within each individual grain, based on single-crystal results and the specific grain

orientation and boundary influences. In order to evaluate its capability to capture complex

micro-deformation/stress processes and intergranular interactions at the length scale of the

microstructure in an accurate and physically consistent manner, contour plots of homoge-

nized and layer-specific stress/deformation quantities are counter examined and correlated

to RVE-calculated macroscopic stress-strain curves. Furthermore, histograms of the evolv-

ing distribution of grain orientation within the RVEs are compared to corresponding SAXS

data from the literature. To gain insight for the development of physically-based contin-

uum constitutive descriptions for the behavior of polycrystalline lamellar BCPs or analo-

gous lamellar morphologies, histograms depicting the evolution of deformation gradients

within the deforming RVEs are studied and the calculated macroscopic stress-strain curves

are compared to corresponding Taylor/Sachs predictions.

Finally, Chapter 5 summarizes key conclusions, and suggests directions for future work.
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Chapter 2

Micromechanically-based Constitutive

Model for the Mechanical Response of

Lamellar Block Copolymers

Block copolymers (BCPs) are a relatively new class of thermoplastic elastomers (TPEs).

Over the last three decades, modem copolymerization techniques have enabled covalent

bonding between repeating chain blocks of two or more, otherwise chemically incompati-

ble, thermoplastics and elastomers to produce a single (BCP) macromolecule. Due to their

incompatibility, when given the freedom the constituents spontaneously phase separate into

domains of various shapes, morphologies and sizes from tens to hundreds of nanometers.

In essence, BCP TPEs are nanocomposites (with perfectly bonded interfaces), and as such

exhibit behavior consistent with both that of elastomers and of thermoplastics. Due to this

unique behavior and despite their novelty, BCP TPEs have become today some of the most

commonly used polymeric materials counting numerous commercial applications over di-

verse industries'. Furthermore, block copolymers are emerging as instrumental in future

directions of nanotechnology as an increasing number of new nano- techniques and appli-

cations seek to utilize their nanostructural features[24, 25, 26, 31]. BCPs, whether as poly-

crystalline configurations or as "highly" oriented single-crystals, attract an accumulating

number of applications, and the inquiry for efficient material design and product develop-

'Automotive, footwear, wire and cable, adhesives and sealants, coatings, medical[22, 1, 23].
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ment extends over a range of length scales, from nano up to macro. Hence, there exists a

need for continuum models that will predict both the oriented as well as the polycrystalline

response of block-polymer materials to generic boundary value problems.

This chapter presents a micromechanically-based hypereslastic continuum constitutive

description for the large strain response of oriented (single-crystal) block copolymers with

lamellar microstructures. Here we offer a specific application to styrene-butadiene-styrene

(SBS) triblock polymers, the behavior and micromechanics of which have been extensively

investigated by experimental means [5, 6, 13]2. Micromechanical finite-element-based unit

cell models, representative of the underlying material microstructure -noted as representa-

tive volume elements (RVEs)- are used to reproduce the deformation processes, which take

place at the inherent length scale of the microstructure during loading, and to monitor the

concomitant evolution of the microstructure. The micromechanical simulation results are

direct parallels to experimental (x-ray, microscopy, and stress-strain) data from the litera-

ture, and are a toll to provide the insight needed for the development of a physically-based

continuum constitutive model. Operationally, the continuum model is derived from equilib-

rium and compatibility considerations along the lamellar interface. Hence the constitutive

model is length-scale independent and general enough to describe point-wise hyperelas-

tic materials with layered microstructures. A similar framework has been implemented

in a numerical iteration scheme by vanDomellen et al. [49] to describe the elastic-plastic

behavior of semi-crystalline polymers.

The material presented here is organized in the following manner. First we describe

the BCP microstructure in order to introduce the micromechanical RVE, which is used: (i)

to derive the continuum constitutive model analytically, and (ii) in unit-cell finite-element

simulations to study the deformation micromechanics of the microstructure and how these

relate to the macroscopic material response. Second, using the RVE, we describe the

generic micromechanical framework for the hyperelastic continuum model: (a) we give

the generalized form for the hyperelastic strain energy density of a dual-phase lamellar

2Styrenic block polymers are among the most utilised TPE classes. Their mechanical response combines
the stiffness (stuctural robustness) of the styrenic component and the hyperelasticity (resilience) of the elas-
tomeric blocks. In addition, in comparison other TPEs they appear as more chemically stable in relatively
aggressive enviroments.
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material, which will be used to derive the stress-strain relationship, and (b) we state the

equilibrium and compatibility requirements that must be satisfied at every material point

within a layered continuum. Third, the framework is applied in the case of lamellar SBS

BCPs and an analytical continuum model is derived assuming Neo-Hookean behavior for

both phases - styrene and butadiene. Finally, for different loading cases the predictions

of the analytical continuum model are verified against results from finite-element unit-cell

calculations3 .

2.1 Continuum Modeling.

2.1.1 The Oriented Lamellar Block Polymer Microstructure.

The microstructural morphology of block copolymers has been studied extensively in the

past. Microphase separation in block copolymers results in well-defined morphologies in-

cluding a BCC lattice of spheres within a matrix, HCP cylinders within a matrix, bicontin-

uous double-diamond networks, and lamellae. The formed microstructure depends on the

relative volume fraction of the constituent blocks. Initial volume fractions ranging between

40-60% result in layered lamellar microstructures. The microstructural features are on the

order of a few nanometers in thickness with perfect bonding between domains, due to the

covalent chemical bonds between the constituent blocks. An oriented lamellar microstruc-

ture of a styrene-butadiene-styrene (SBS) triblock is shown in the TEM of Fig.1-7. This

highly ordered ("near single-crystal") morphology has been induced by the shear-aligning

process of roll-casting[5]. In the absense of an alignment factor, a polygranular aggregate

is found consisting of lamellar structures of grains at different orientaions. For complete-

ness, a polycrystalline configuration of the triblock is also presented in Fig. 4-5. Distinct

grains containing highly oriented lamellae are visible clearly in the micrograph. The sharp

grain boundaries are narrow regions across which the lamellae reorient abruptly without

generally disrupting their continuity.

3The model can be implemented in multigrain finite-element simulations to reproduce the isotropic re-
sponse of polycrystalline lamellar BCPs, and to investigate the deformation micromechanics of individual
grains.
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2.1.2 Micromechanically-based Continuum Model.

Microstructurally-based Represenatative Volume Element.

To study the mechanical response of lamellar block polymers, the microstructure of a "sin-

gle crystal" is modeled with the representative volume element (RVE) shown in Fig. 2-1,

which consists of two layers, each corresponding to a constituent phase, which are mechan-

ically coupled at their interface. The initial volume fraction of the copolymer is replicated

by appropriate adjustment of each layer's thicknesses as hr = #0 H and hg = (1 -- #, )H ,

where 0 is the initial volume fraction of phase r and H the total RVE thickness. Notion-

ally, the RVE extends to infinity in all directions and in a repeating manner, such that it can

be considered a representative material point.

F2

No

U2 U;

h~Uso

Figure 2-1: (a) 3D Schematic illustration of the bi-layer representative volume element
(RVE) and (b) the RVE counterpart used in 2D analysis.

Microstructurally-informed 2D Continuum-level Constitutive Model.

We seek to develop a microstructurally-informed hyperelastic constitutive description for

the anisotropic, hyperelastic, mechanical behavior of lamellar block copolymers. Using

the given RVE, a hyperelastic strain energy density function for a lamellar material will

be developed in terms of the applied macroscopic deformation gradient. The stress-strain

response of the material will follow by simple derivation of its strain energy function with

respect to the macroscopic deformation gradient. The model will account for large rotations

of the microstructure and for the non-affine distribution of deformation and stress within

the constituent phases.

The macroscopic deformation is accommodated inhomogeneously between the two

phases, however, within each layer it is considered to be piecewise homogeneous. Ma-
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terial continuity is satisfied by the imposed mechanical coupling at the layer interface. In

agreement with Hill's lema, the effective response of the material is the volume-weighted

average of each phase's individual contribution. The structure has to be in equilibrium with

the traction boundary condition and maintain compatibility with boundary displacements.

For the current model, these conditions correspond to the volume-weighted average in the

RVE's true (Cauchy) stressf, and deformation gradient, F:

= . + (1 (2.1)

F = F + (1 - 9)F (2.2)

where F denotes the macroscopic deformation gradient and and -9 the macroscopic Cauchy

Stress, 'F is the microdeformation gradient and Wo- the Cauchy Stress within phase w,

while #o and q are the initial and current volume fraction of the rubbery phase. Since de-

formation gradients are defined with respect to the reference (undeformed) configuration

(of the RVE), the initial volume fraction 4 of phase r is used to average the microdefor-

mation gradients. True (Cauchy) stress is defined in the current (deformed) configuration,

therefore, the current volume fraction, 0, is appropriate for averaging the stress contribu-

tions. At each instance of the deformation, the volume, and thus the volume fraction, of

each phase is changing due to dilatation. The current volume fraction for the rubbery phase

is given by:
#q - Jr

0  0 -J) (2.3)
#0 - Jr + (1 - #0) - Jg

where Jr = det(rF) and Jg = det(gF) are the volume ratios of the constituents. Mechan-

ical integrity is maintained by enforcing compatibility and equilibrium on the interface.

If no is the unit normal on the interface in the undeformed configuration (Fig. 2-1), and

so a unit vector in the plane of the interface (normal to no), then compatibility at the in-

terface is expressed by enforcing compatibility on the microdeformation gradients of the

constituents:

E -so= F-so = -sog F .s-- 0 F . =Compatibility (2.4)
(1 - #o) -9F -no + # - . fj = r J
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Likewise, in the current configuration, with n' and ' denoting the respective unit vectors

normal to- and in the plane of the interface, stress continuity (equilibrium) across the inter-

face has the form:

g0 . .j n r. .i _ n

(1 -q$ . + ., . g = S.g }Equilibrium

In the indicial notation introduced

restrictions are reduced to:

FsOS = rF= . =9Fs,

nIOS F= Fn = TFoso

nn r =

sn r Osn

in Fig. 2-1, the above averaging laws and continuity

FSen, = 0 Fson. + (1 - qo) -gFson.

Fnono = qo -rFno + (1 - O0 ) -Fa0no

g0.

Ess= -r,, + (1 - ) . S

In the above relations, the components of the macroscopic deformation gradient, F,

need to be expressed in terms of the local orthonormal basis R, defined in the reference

frame by vectors SO and no. It will also be useful to define the components of the macro-

scopic deformation gradient in the global orthonormal basis g. To distinguish between

the two equivalent expressions for F, we denote by F, the tensor presented in the global

basis, and F denotes the expression w.r.t.the local reference basis. Thus a simple basis

transformation between g and R is required:

F, = Qgk FgQQgi , (2.8)

where QAB is a proper orthogonal rotation from frame A to frame B.

Using Eqn. 2.6 one of the unknown micro-deformation gradients, here 9F, can be elim-

inated from all subsequent expressions, which will then depend only on F and rF .

For hyperelastic materials, the true stress is calculated from a strain energy density

function by derivation w.r.t. to the deformation gradient.

60

(2.5)

(2.6)

(2.7)



Assuming hyperelastic behavior for both phases, the total strain energy density of the

RVE can be expressed as the volume-weighted average of the individual hyperelastic strain

energy densities:

U = #o -Ur(rF) + (1 - # 0) -Ug(9F) (2.9)

Since the each constituent's deformation gradient is a function of the specified macro-

scopic deformation gradient, the strain energy density of the composite can be completely

described in terms of F :

U = #o-Ur (rF)+(1-#o)-Ug(9F)

= #o - Ur(F) + (1 -o) - Ug(F) =* U = U(F)

(2.10)

(2.11)

We can use a variational argument to solve for the unknown quantities rF,.. and rFa.no ;

the resulting strain energy of the composite should be minimized for the applied macrosco-

pioc deformation gradient, F:

=0
O (Fsen.)

(2.12) and
u_. = 0 (2.13)

a (F....1)

These lead to:

u 0a (Fsono) *a0 (rFsno)

r son= pon # + on

(1 -4#o) -
0 (rFs)

(1 - a_) -
a (TFs on)

a (ffs0 r0 )
a (T P, ,)

1 - 0
(2.14)

and similarly for the other in-plane direction:

Likewise:

au =a= =- 0)
a (Faono)

a Ur aU_
=a (rF no) + (1 - a r F )

== rPno = gPnon .
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This is the equivalent form of stress equilibrium on the interface (Eqn. 2.7), albeit in the

undeformed configuration and in terms of the 11 Piola-Kirchhoff stress tensor, 'P. As

before, no denotes the unit vector normal to the undeformed interface, and stress continuity

in the reference configuration follows as 4:

rp no=gpnon0

rP p rPono =Psono . (2.16)

Pkon0 = TPkn 0

The reader should be cautioned here, that stress continuity can only be enforced on these

stress components, whose definition is tied to the layer interface, i.e., the normal, WPnono ,

and the in-plane shear stress components, "Pso... The thicknesses of the RVE layers are

not changing affinely because the phases dilate by different amounts. Thus, the 11' Piola-

Kirchhoff stress tensor is not symmertic and shear stress equilibrium cannot be used for the

1 " P-K shear stress components, "Pn .

Hence, the compatibility conditions as expressed in Eqn.2.6 and the equilibrium equa-

tions as expressed in Eqn.2.7 provide the equations needed to determine the deformation

gradients of each constituent, rF and 9F, in terms of the macroscopic deformation gradi-

ent, F. As a point of clarity, writing the equilibrium constraints in terms of the 11' Piola-

Kirchhoff stress, 'P, as opposed to in terms of the Cauchy stress, 'a, was found to greatly

simplify the algebraic solution process.

The Cauchy stress, 'a-, within each layer follows from the corresponding 18' Piola-

Kirchhoff stress, 'P , and the micro-deformation gradient, 'F, as: 5

4This approach could have been used from start instead of describing equilibrium in terms of true stresses.
However, we believe that this presentation of the micromechanical framework is more insightfull for the
reader.

5Alternatively, the Cauchy stress, o, for a material w with neo-Hookean behavior can be calculated as:

W. 1 w wwFT 2 wi Ui I+ UW+ I B- +JU wB2
\J, I J a w13s 49 Wi 4Iw2 a w12 I

- (B - I) + kw ( J - 1) I (2.17)
2 JGy

where 'B =-' wF FT is the left Cauchy-Green deformation tensor. The copolymer's effective stress follows
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Wa = - wF wPT =- 1 P wFT . (2.18)
Jw Jw

The effective true stress response of the RVE is calculated as the volume-weighted average

of each constituent's stress contribution:

f = - + ( - )- a = - . 'rp FT + (9P 1F T (2.19)
Jr Jg

Since both "F and WP are defined in the reference frame, the Cauchy stress tensor cal-

culated above is expressed in terms of the local reference basis. Expression in terms a

different orthogonal coordinate system requires a simple change of basis transformation:

aB = QAB3 W QJB , (2.20)

where QAI is a proper rotation from frame A to frame B.

2D Plane-Strain Application for Neo-Hookean Materials with Compressibility.

For ease of showing the solution process, the 2D plane-strain case is chosen as an example.

We assume that both the rubbery and the glassy phase are amorphous and we model their

stress-strain behavior as a hyperelastic neo-Hookean solid with compressibility 6. The strain

energy density function for a hyperelastic neo-Hookean material with compressibility is

given by:

UW = cW (wI1 - 3) - -w ln(Jw) + (w ( J 1)2, (2.21)
2 2

then as:

b Ur rF T + (1 -). - -- 9FT
r * r &F a 9 F

= - [f (rB-I)+kr(Jr 1)i + - C(g B-I)+kg (Jg--1)I21 Lr I Jg 2 LtgIJ 1)

6By assigning rubbery behavior to both materials, we neglect plasticity effects in the deformation of the
glassy phase. Hlowever, this approximation should be sufficient up to moderate strains and for deformation
modes that evolve without buckling or necking instabilities.
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where w denotes the material (here w = r, g for rubber and glass, respectively), c" =

p,/2 is one half of the shear modulus and kw is the bulk modulus. wI1 is the first invariant

of the stretch tensor7

w1, = trace[wB] = trace[wFwFT ]

= (wFss.) 2 + (WF5 0n 0 )2 + (wFn 050)2 + (F )2 + 1,

and Jw , is the volume ratio between the current and reference configurations:

WV
J -= 1 _1/2 = det [10F] - w,r - WF 5 5 . - 0Fen - ",. Fe,

(2.22)

(2.23)

where W13 is the third invariant of the stretch tensor. As stated, the composite strain en-

ergy density is the volume-weighted average of the individual constituents' strain energy

densities:

U = -Ur + (1 - Oo) - Ug

S 00 -cr(rI-3)- 2 ln(Jr) + - (Jr1)2
2 g21'1

+ ( -#0 -eg (%EI - 3 ) - Lg n(Jg) + g-( Jg - 1)2
+ (1#th) t 

with 0, the initial volume fraction of the rubbery component, and

Jr = FsOS, _ rFnono -- rFso. -POS , Jg = Fss, - Fno - Tsono -Pnoso . (2.24)

7 For plane-strain conditions WFkk. = 1 and wFs.k. = wFnk, = wFks = wFnk = 0.

64



Using Eqn. 2.6, two unknown components, F.. , TFon., and the corresponding determi-

nant, J, = det [9F ], are eliminated by rewriting:

gF 5sn
S- #r

1-0

- . r F"*"*

1-#0

(2.25)

(2.26)

(2.27)Jg = 0 0 r

The two remaining unknowns, 'F,.,, and rnon., are determined from Eqns. 2.14 and

2.15. The 1" Piola-Kirchhoff stress tensor, 'P, for a hyperelastic material w with strain

energy density U, is given by:

M u
= wF

or WP MWZ
(wFi) ' (2.28)

which for the neo-Hookean strain energy function of Eqn. 2.21 yields:

MW

au_

au _

(9 WFsn

auw

M W
= w F k Onk

= 2 c - FsOs - wFnon-

= 2cw Fnoso + Fsono
[2cw
[2c

~2 c
= 2 c F - Fsono + Pos -0  kw

Sc.w
= 2 cw - wFann - FSOSO - * kw

= 2 c. - wFkk =

+ kw - (Jw - 1) I (2.29)

- kw - (Jw - 1) (2.30)

(J- 1) (2.31)

(J - 1) ](2.32)

2 cw (2.33)

Applying equibrium Eqns. 2.14 and 2.15 we obtain:

rps = gPsono
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.-rFser, + FS - [2cr - kr (Jr -1) =

2cg * Tsno + Ffso [2- C - k (J - 1 (2.34)

rp no = gPno =>

2 cr , Fno - Fsos. [ - kr (Jr -1) =

2cg -9Fa0  - FS [- - kg - (Jg 1) (2.35)

This is a 3rd order system of nonlinear equations in rF O, and rFanen, with the two un-

knowns coupled due to denominator terms Jr and Jg. The system is thus intractable and an

analytical closed-form solution for the unknowns is unwieldy, unless a realistic assumption

is made to decouple the unknowns and reduce the order in the equations.

For the majority of deformations these materials undergo a minimal volume change

and J,'s are not expected to differ from unity considerably 8 . Thus, we can assume that

CW/J" ~ cw . The following approximation can be made with little compromising in the

accuracy of numerical calculations:

- kw- J. - 1) ~ cw - kw-( Jw-1) . (2.36)
Jw

Hence, the system is reduced to a linear one with two equations and two unknowns, which

can be solved by simple substitution. We arrive at the forthcoming closed-form solution

8As will be shown in the results section, this is true even up to moderate strains, and in particular, up to
strain levels at which instabilities begin to occur.
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for the distribution of deformation within each phase910:

= Psos

= Pnos.

G -A + B - C
E-A - B2

C + B. (rFn )
A

gFs s = Psoso

_ nono - 00 - (rFno )

1-#0
rF sono

where:
B = kr + k ]- Fss' Pnoso

A = 2 r + cg 1  + [kr +k *g )] (Fnos0 )2

ECr + Cg + [kr +k (Psse)21-#0r k 1-#0 Fo s

(cg)G= (C1- 9

2G

- kg + [kr
1-# _ 0

Fno + kg (j-)+1-#00 I k

+kg ( 1 +2(Cr - cg)} -Fnoso

r +kg (1 - 0 ) +2(Cr - cg) }- Psos

In 2D, the coordinate system rotation of Eqn. 2.8 corresponds to:

= F11 -cos 2o+ (F12 + F2 1 ) -cos 0 -sin 0 + F 2 2 . sin28

= F 12 cos2 o- (F1 1 - F 22 ) -cos*-sin8 -F 2 1 -fsin20

= F21 -COS2o- (F1 1 - F 22 ) -cos -sin9 -F 12 -sin 20

= F 22 - cos 2o - (F12 + F 2 1 ) - cos 6 -sinO +"F1 - sin2 0

9Note that due to the aforementioned assumption, in expressions C and G term ( cr - Cg ) appears in place

of the term - ), which depends on the unknowns.

10The solution precedure presented above was based on equilibrium requirements on the interface in terms
of the 1" Piola-Kirchhoff stress. True stress equilibrium could have been used instead as stated in Eqns. 2.7.
The true stress expression though, is far more complex than that of the 11t P-K stress. The extra multiplica-
tions required in calculating the true stress (see eqn. 2.17) increase the coupling among the unknowns and
the order of the nonlinear system that needs to be solved. It is doubteful that the given assumption alone can
render the resulting system tractable. A solution is therefore much less cumbersome to obtain as presented
here in terms of 1st P-K stress considerations in the reference frame.
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where 0, the angle of rotation from the fixed global frame, g, to the interface-tied lo-

cal frame in the reference (undeformed) configuration, R, corresponds here to the initial

orientation of the undeformed microstructure w.r.t. a reference axis. As anticipated, the

distribution of deformation between the layers and the relevant intralyer deformation trade-

offs (i.e., layer shear vs dilation) depend on the initial volume fractions 0, = 0 and

#g = (1 - # , and on the interlayer property contrast between shear and bulk mod-

uli, cw and kw.

a e *

Figure 2-2: Schematic of a generic boundary value problem.

The analytical constitutive model was numerically implemented as a user subroutine

(VUMAT) in ABAQUS Explicit for single-element calculations on the BCP's mechanical

response to different types of loading. The analytical model's predictions are compared

to corresponding micromechanical unit-cell calculations. The results and the details of

unit-cell modeling are presented in the following section

2.2 Finite Element-based Micromechanical Modeling and

Results for Neo-Hookean phase behavior

The constitutive model is used to describe the BCP response at different loading orienta-

tions to the undeformed lamellae under three types of plane-strain loading: uniaxial tension,

isochoric biaxial deformation, and simple shear. The constitutive model was implemented
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in ABAQUS through a user subrutine (vumat) and its numerical predictions from single-

element calculations are compared to FE-based micromechanical unit-cell results. The

quantities used to compare the two models are: the effective BCP stress response, the mi-

crodeformation gradient and the stress of each constituent, the evolution of volume ratios,

and the lamellar tilt angle.

2.2.1 Unit-cell calculations

The Representative Volume Element (RVE)

We are interested in monitoring microstructural kinematic quantities in the absense of struc-

tural instabilities (i.e., no layer buckling or necking), and thus it suffices to model the ori-

ented lamellar microstructure of Fig.1-7 with a 2-D plane-strain bilayer RVE such as the

one shown in Fig. 2-1. Since no layer buckling is present it is both sufficient and computa-

tionally efficient to use one element per layer to capture the evolution of microdeformation

gradients rP and Tp1. The relative volume fractions of the constituents is determined by

the thickness of each layer. Here, the BCP of interest contains 43vol% PS in its undeformed

state. Both constituents are modeled as a neo-Hookean hyperelastic material and for this

reason are discretized with biquadratic, plane-strain, hybrid elements.

To verify numerically that the developed continuum description reproduces the distri-

bution of the deformation field between the engaged layers, the finite-element unit-cell

RVE was subjected to various characteristic deformation modes and the calculated mi-

cromechanical deformation quantities are compared to corresponding predictions from the

analytical continuum model in the next section. In the following two subsections we de-

scribe: the type of perodic boundary conditions that enforced on the RVE, the application of

a generic macroscopic deformation, and the process to calculate the effective stress-stretch

"The deformation micromechanics are particularly sensitive to material and structural instabilities. It has
been shown that, depending on the loading orientation either cascade micronecking or columnar microbuck-
ling of the glassy lamellae are the dominant material and structural instabilities responsible for the nonlinear-
ity in the macroscopic stress response of the given materials. In order to capture the particular material and
structural instabilities which for different loading conditions dominate the deformation at the microstructural
level , the height-to-length RVE-aspect-ratio and the mesh density are critical. Depending on the anticipated
instability, a single long bi-layer RVE might sufficient or an RVE with several layer repetitions might be
necessary.
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response of the RVE.

Boundary Conditions for Different Loading Cases.

Periodic boundary conditions were enforced on opposite facing boundaries of the RVE

(Fig.2-1):

UIBC - U|AD = UIB - UIA

UIDC -- UIAB = D- UIA

UIA = 0

U1|BC - U11AD U11B - U11A

U2IBC -2 AD 2 B -2 I A

U11CD -1AB UD - U1IA

U2|CD - U2|AB U21D - U21A

UiA = U21A = 0

Given any generic macroscopic deformation gradient F, the displacement of RVE node C

should follow the relation:

Xjc = Fn Xjc ==> ulc = (VR - 1) xIc = HRzXce

Noting that here u1 corresponds to the displacement in direction so, and u2 to the diplace-

ment in direction no, the above relation can be rewritten as:

u1lc =(sos - 1) -XC + FS01 0 YC

u21c =Fas- Xc + (Fnno0 - 1) . YC
(2.39)

For the simple parallelogram RVE geometry used here, Xc = L (RVE length) and Yc = H

(RVE height).

Operationally, the evolving components of the macroscopic deformation gradient FY

can not be applied directly to the RVE nodee. Instead, two dummy nodes K1 and K2

with no physical connection to the material are used as a vehicles on which to apply the

components of FR as displacements:

1 = oo

U2 1K = Fson.

u 1 1J2 = Pnoso

u2Ir 2 = Fnono

(2.40)
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where the components of Fz are given in Eqn. 2.38. The dunmmy node displacements are

then tied to the displacements of RVE node C through the following equations:

u11C = (uil1 . - 1) -XC + u2 |g 1 Yc (2.41)

u21c = u Ig2 - X c + (u2 12 - 1) YC

The last set of equations (eqns.4.2.1) combined with eqns.2.38 tie the macroscopic defor-

mation gradient F to the displacements of every node within the RVE, and thus, drive the

RVE deformation.

The RVE is subjected to three types of plane-strain loading: tension, isochoric exten-

sion, and simple shear. The macroscopic deformation gradients for these three loading

conditions, expressed in a fixed global reference frame G, are:

" Plane-strain Tension:

Fg = A el 9 el + 1 e3  e3  (2.42)

The plane-strain condition is enforced in direction-3 and A is the applied stretch in

the direction of tension. Direction-2 is traction-free and its stretch is calculated from

the boundary constraints.

" Plane-strain Isochoric (Volume Preserving) Extension:

Fg = Ae (gel +A-e 2  e2 + 1e 3 O e3  (2.43)

" Plane-strain Simple Shear:

Fg = 1e, (gel +tan()ei ®De 2 + 1e 2 @e 2 + 1e 3 0 e3  (2.44)

where -y is the applied shear angle.

Eqn. 2.8 is used to transform the components of the applied macroscopic deformation

gradient Fg from the global fixed frame of reference 9 to the local (layer-tied) frame R

(Eqn. 2.8), as needed for the application of deformation.
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Application of Deformation.

Given the various periodic boundary conditions described above for different loading cases,

the next step is to operationally specify the imposed macroscopic deformation gradient,

F, within this finite element analysis. F is imposed following the precedure introduced

by Danielsson et al. [50]. The components of the macroscopically applied displacement

gradient, H = F - 1, are entered in the finite-element RVE models as displacements

applied on two "dummy' nodes'2 . The schematic of Fig.2-1 illustrates this approach. The

dummy nodes are external to the RVE and do not correspond material points, but their

displacements are tied to the displacements of the RVE nodes through specific equation

contraints (Eqns. 2.38). The RVE's reaction to the applied deformation is in this way

concentrated in reaction forces at the dummy nodes, [E]jj, in the directions of the imposed

displacements (with i denoting the dummy node and j the direction of the reaction force).

The reaction forces are monitored and used to calculate the effective true-stress response

of the RVE using the "Principle of Virtual Work". According to the PVW, any increment

of virtual work supplied to the material externally must equal the corresponding change in

the internal virtual energy stored in the material:

j(Wext ) = j(Wint) . (2.45)

The external virtual work here is equal to:

2 2 2

6 (Wexl) Z j -J (Hij) = z ( 6(F. -i.) = Ej -J (Fij) ,(2.46)
ij=1 ij=1 ij=1

where Hij = - is the displacement gradient, =ij the reaction force on dummy node i in19xj
the j-direction, and 1 = Jij the identity matrix.

The internal virtual work is calculated as the volume integral of the product between a

12For 3D RVEs the deformation gradients consist of nine elements. Thus, three dummy nodes are needed
to apply all nine deformation components. For dummy node-I for e.g., the imposed displacements in the x-,
y-, and z-directions, respectively, are: ui = H1 = F11 - 1, vI = H 12 , and w, = 1113.
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work conjugate pair of stress and strain measures:

2

j (W i" = V P:c(F) = - 6 (F) (2.47)
i,j=1

here using the work conjugate pair of the applied macroscopic deformation gradient, F,

and the 1 t Piola-Kirchhoff stress, P , both of which are defined in the reference configu-

ration where the RVE's volume is V.

Substitution in Eqn.2.45 gives the relation between reaction forces on dummy nodes

and the corresponsing 1st Piola-Kirchhoff stress response of the RVE:

- 1
04 orP o Pg = Eg . (2.48)

The true stress response of the RVE, which represents the effective BCP stress response,

6 , follows then as:

i -p = . (2.49)
JV

where , = det [7] = V/V is the volume ratio between the deformed and undeformed

configurations13 . The macroscopic logarithmic strain tensor is calculated from R = InU,

with U = F' A ei Oei , the right stretch tensor calculated from the polar decomposition

of the macroscopic deformation gradient, F = If U 14.

2.2.2 Results:

Constitutive Model and Numerical Micromechanical Model

The analytically derived constitutive model for the lamellar BCP is now used to predict

the mechanical behavior when subjected to various macroscopic loading conditions. Three

types of loading conditions will be studied: plane-strain tension, plane-strain isochoric ex-

tension, and plane-strain simple shear. These loading conditions will be applied to the BCP

13For 2D analyses, J simply corresponds to the change in area.
14For the loading cases we will explore here -plane-strain tension, plane-strain biaxial deformation, and

plane-strain simple shear- R = I .
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lamellar material at different angles with respect to the lamellae plane. The constitutive

model results will be compared to results obtained for the same loading conditions applied

to the finite element based discrete micromechanical model. Results will be presented in

terms of macroscopic quantities (the effective stress-strain behavior of the lamellar mate-

rial) and microscopic quantities (the micro-deformation gradient in each phase as a func-

tion of applied macroscopic strain, the stress components within each phase as a function

of macroscopic strain, the lamellar tilt angle as a function of macroscopic strain). Results

will be reported in detail for three cases: imposing the macroscopic loading with lamellae

at initial orientations of 00, 450, and 900, followed by overall comparisons which include

additional off-axis loading conditions.

Plane-Strain Extension

Plane-strain tension is enforced by imposing a stretch in a prescribed direction, while re-

straining the through-thickness deformation of the RVE (F33 = 1) and leaving the third

orthonormal face to be traction-free. The stretch in the traction-free direction is then calcu-

lated by satisfying the applied boundary conditions'5 .

Plane-Strain Extension Normal to the Lamellar Plane: As seen from the components

of the microdeformation gradients in Fig. 2-3, for loading normal to the underlying micro-

layers, deformation is accommodated at the microstructural level solely by layer dilatation

since the only non-zero component in both microdeformation gradients is the component

coresponding to deformation normal to the layer-plane, F,,,O. Dilation within rubber is

however much higher than in the glassy phase, due to the property (bulk modulus) contrast

between the two phases, and is in fact maximized at this orientation. No layer tilting is

observed (WFroso = 0) and hence, no layer shear (WFs.n. = 0). Due to the mismatch in

the Poisson effect between the two layers, rubber layers are contrained in their lateral iso-

15The model predicts accurately the deformation micromechanics and the stress response for the case of
uniaxial tension. However, only component F11 is specified in the applied macroscopic deformation gradient,
F,, while the remaining components are solved for. This results in minor discrepancies between the predicted
from the constitutive model F 12 , F 21, and F22 components and those calculated with the unit-cell. For both
of the other two studied cases of plane-strain tension and plane-strain simple shear, the macroscopically im-
posed deformation gradient, is fully prescribed. Therefore, the corresponding calculated components overlap
completely with the continuum model's predictions.
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choric contraction by the glassy layers, thus experiencing a state of volumetric extension,

while glassy layers experience contraction. This is evidenced quantitatively by the tensile

in-plane deformation component for the rubber phase, 'F,,., > 1, and the compressive

corresponding component for the glassy phase, 9Fs0 S0 < 1. The effective BCP stress re-

sponse (Fig. 2-4) for loading in this direction is therefore dominated by the bulk modulus

of rubber.

Plane-Strain Extension Tangential to the Lamellar Plane: For loading in a direction

tangential to the underlying morphology, the microdeformation gradient component which

correspond to in-plane deformation for the underlying layers is maximized and equals the

macroscopically applied stretch F.so0 = F,,5 =Fl=A. No layer tilting or shear occur

(wFn.0 s = CI and wFs,,O = 0, respectively), and deformation is accommodated by layer

extension alone. For this orientation, the stress contribution of glassy layers to the effec-

tive BCP resposne is maximized, thus resulting in the stiffest among orientations stress

response, since the tensile modulus of glass is much higher than both the shear and bulk

moduli of rubber. The isochoric deformation of rubber is not constrained in this case; as

can be seen in Fig. 2-3, rFa.no = (rFs, )-1 continuously.

Plane-Strain Extension at 450 to the Lamellar Plane: Loading diagonally to the under-

lying layers results in layer tilting (wF... > 0) and gradual alignment of the microstructure

with the loading axis, as seen for the evolution of 0 in Fig. 2-6. The off-axis orientation in

this case results in the accommodation of applied deformation by a combination of layer

extension, shear, and dilation, as can respectively be inferred from the numerical values of

components wF Os., wFo,8 ., and wF,... The stress response is therefore due to the com-

bined contribution of the previous deformation modes. By comparing the shear deforma-

tion components in the microdeformation gradients of the two phases, the shear response

of rubber is much more prominent than that of glass (rFs0 n. > 'Fs,10). The same holds

for the normal components rF.. > 9F...., while extension is minimal for both phases

(wF..n. ~~ 1). Deformation is therefore accommodated by rubber shear and dilation. The

shear modulus of the rubber phase is much less than both its bulk modulus and the tensile

modulus of the glassy phase. Therefore, the effective stress response of the BCP for this

loading orientation appears more compliant than for loading normal or tangentially to the
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underlying layers as seen in Fig. 2-4.

Plane-Strain Extension at various angles to the Lamellar Plane: Similar to what has

been described for diagonal loading, for off-axis loading orientations (other than normal or

coaxial with the underlying morphology), the imposed displacement causes layer tilting,

which gradually aligns the underlying morphology with the loading direction. As a result,

the imposed deformation is accommodated by different amounts of layer shear, dilation and

extension, depending on the initial orientation of the underlying layers. Three orientation-

dependent micromechanical deformation mechanisms can be identified from the studied

micromechanics and as can be identified by the orientation dependent-stiffness of the BCP

in Fig. 2-5: (i) for loading orientations between 00 and 30*, (ii) for loading orientations in

the 30'- 700 range, and (iii) for loading at angles in the range of 750 - 900 to the underlying

layers.

For orientation angles less than 30' to the loading direction, the least rotations are re-

quired to align the underlying microstructure with the loading axis. Thus, for orientations

between 00 and 300 a high degree of alignment is achieved (the final orientation 6 (Fig2-6)

is the lowest among all orientations) much earlier than for other orientations. Due to this

alignment with the loading axis, the BCP accommodates the imposed deformation through

layer tension as seen from the in-plane tensile microdeformation components wF,,,, in

Fig.2-3, which for these orientations attain positive (tensile) values. The glassy layer's

contribution to in-plane shear is the least observed among all orientaions as seen from the

gFron0 plots in Fig. 2-3, while rubber layers undergo the highest observed shear deformation

as the corresponding shear component TF.no attains the highest values among all orienta-

tions (Fig.2-3). The dilatation component for rubber, rFfnlf, even though substantial, is for

small angles the least observed (Fig.2-3). Thus, for orientations in the range 00 - 300 the

BCP accommodates deformation predominantly through glassy layer tension and rubber

layer shear. The stiffer for these orientations BCP stress response, CP, (also see Fig.2-5

for the tensile modulus EBCP) can therefore be attributed to the glassy phase's tensile be-

havior, which is far stiffer and thus more prominent than the shear and tensile contribution

of rubber.

The 30'-direction to loading is the "break-even" point for the projected local tensile
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component; no layer tension corresponds to this orientation (F,,O ~ 1), while at an-

gles higher than 300 the in-plane deformation component wF 5 5,, turns compressive. Layer

tilting is higher as can be seen from the corresponding wF,..8 components, but high align-

ment with the loading direction -as for 0' - 300 orientations- is not attained as seen from

the final orientation 0 in Fig.2-6. For orientations within the 300 - 750 range, the imposed

deformation is accommodated by increasing layer rotation and shear, and rubber dilation

(increasing FriOs., wFsof., and rFeno values). The additional tilting results in further layer

shear for both phases (seewFsono components in Fig. 2-3). However, accommodating addi-

tional deformation by glassy layer shear is energetically costlier than by rubber dilatation.

The tilting rate is thus gradually decreasing, as seen from the tilting component wFno5., and

layer rotation saturates at earlier stretches for this orientation range (see Fig. 2-6). There-

fore, the determining deformation mechanism for the given range of material orientations

is such that the stress response results from a trade-off between the shear contribution of

both phases and the volumetric response of rubber. The possible combinations of these de-

formation modes result in equally compliant combinations. Hence, any observed variations

in the initial tensile modulus, EBCP, and the overall effective stress response, CP are

minimal for the given orientations.

For orientations higher than about 700 (-+ 900), large layer rotations to achieve align-

ment with the loading axis are not possible, and the imposed deformation is thus accommo-

dated mainly by dilation of the rubber layers as can also be inferred from the microdefor-

mation components wFan. As already described, for the extreme case of loading at 90*,

layer tilting does not occur and dilation within rubber is maximized.

The constitutive model predicts accurately the orientation-dependent BCP deformation

micromechanics and the resulting anisotropy in the BCP effective stress-stretch response

as shown in Fig.2-4. The initial slopes of the ECP - A curves correspond to the effec-

tive tensile modulus EBCP. The predicted 9-dependence is in excellent agreement with

the numerical unit-cell results and with experimental data from Allan and Arridge []. For

orientations in the range of 250 - 750 the initial deformation is accommodated primarily

through shear in the softer rubbery layers. This results in the most compliant initial stress

responses. Similarly, for loading in close alignment with the BCP microstructure (0 -+ 0*),
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the effective material stiffness reduces to the volume-fraction-weighted stiffness of the hard

glassy layers (with a negligible contribution from rubber). With increasing misalignment

the deformation ceases to be completely tensile and the stiffness modulus decreases dra-

matically due to the increasing participation of rubber shear in the deformation response.

For loading near-normal to the layers deformation occurs through volumetric expansion of

the rubber phase, due to the lateral constraint imposed by glassy layers on the isochoric

deformation of rubber. Therefore, the effective composite modulus depends highly on the

bulk modulus of the rubber phase. Since the rubber is modeled as near-incompressible, its

resistance to volumetric deformation is much higher than that to shear; hence, the increased

effective modulus for loading directions near normal to the layers (0 -> 90").

The model also predicts accurately the large strain response of the material (Fig.2-4).

For intermediate orientations the evolution in layer tilting allows for additional shear in

the rubber layer, hence the tangent modulus gradually reduces with increasing stretch. On

the other hand, for loading directions near-parallel to the lamellae, layer rotation results

in firmer alignment between the load and the glassy constituent, which results in a grad-

ually increasing tangent modulus and a stiffer stress response. The model's predictions

are excellent for all loading orientations, but for perfect or near perfect alignment of the

microstructure with the stretching direction (00). In this case the model overpredicts the re-

duction in layer thickness for both phases (rFn10 o and gFr0.n). This is an inherent handicap,

due to the approximation of negligible volume change (J,.0 1) used in an intermediate

stage during model-derivation. Volume changes are not however negligible for stretch val-

ues higher than A = 1.2, as seen from unit-cell calculations in Fig.2-7, while the projected

local tensile component 9F,,,. is maximized at 0'. For loading parallel to layers, the vol-

ume change reduces to: J = wFsoso . wFnono Neglecting the significant volume increase

is equivalent to enforcing Jg = 1. This causes the largest (among orientations) error in

calculating nFno- With J underestimated, the predicted in-plane stress contribution of

the glassy layers, gal, (Eqn.2.17) is exaggerated. This in turn compromises the model's

prediction for the effective BCP stress response at 0*-loading, which depends on the tensile

response of the glassy phase. A similar discussion is valid for loading orientations at 90' to

the layers. The effect however, is not as detrimental because the effective stress response in
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this case is determined by the volumetric behavior of the rubber phase, which is far more

compliant than the response of glassy layers to in-plane tension. Thus, for 900 loading the

model's predictions remain very reasonable 16

Plane-Strain Isochoric Biaxial Deformation

Isochoric plane-strain biaxial deformation is applied by imposing a macroscopic stretch

Fl, = A in one direction and a stretch of F 22 = A in the transverse direction, as shown

in Fig.??, while restraining the through-thickness deformation of the RVE (F33 = 1 or

633= 0), such that the total composite volume is kept constant during deformation ( = 1).

This deformation condition will necessarily result in a multiaxial macroscopic stress. The

current case study offers additional verification for the constitutive model's performance.

However, it is more interesting to contrast isochoric deformation results to observations

from plane-strain extension in order to evaluate how the imposed lateral deformation com-

ponent A-- 1 affects the microdeformation mechanisms.

Plane-Strain Isochoric Biaxial Deformation with Principal Stretch Direction Normal

to the Lamellar Plane: The response to uniaxial extension in the direction normal to

layers is distinctly characterized by rubber's response to volumetric extension. The lat-

eral BCP contraction under uniaxial plane-strain extension is not entirely isochoric due

to the glassy constituent's contrain on the deformation of rubber layers. Therefore, the

applied isochoric component, F 22 = A-l, corresponds to imposing a larger -and for this

reason compressive- lateral contraction than what would occur naturally under axial ten-

sion (compare the coresponding in-plane deformation components wFr,.F in Figs. 2-3 and

2-8). In addition, plane-strain unidirectional extension results in volumetric expansion for

the composite (J > 1), and thus, an isochoric deformation gradient alleviates the (normal)

dilative pressure which would develop otherwise due to the volumetric extension of rubber

layer. It should also be noted that for loading normal to layers (90') o-2 = El. The result
16It should be noted here that beyond stretches of 1.2 (e = 20%), instabilities such as microbuckling and

micronecking change the microstructure. Thus the current model would a-priori be an inaccurate description
of the morphology and the behavior at such stretch levels. However, the post-buckling deformation behavior
is shear-based, and therefore, the assumption for negligible volume change is still a valid approximation.
Thus, the constitutive model remains a very good description, however it may be enhanced with a criterion
for the initiation of layer buckling.
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Plane-Strain Extension:
Microdeformation Gradients
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Figure 2-3: Plane-strain Extension: Constitutive Model predictions (-) and Unit-Cell cal-

culations (- -) for the microdeformation gradients 'F and 9F.
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Figure 2-4: Plane-strain Extension: Constitutive Model predictions (-) and Unit-Cell cal-

culations (- -) for the effective stress response in the direction of loading, El. Details of
the stress response at small stretches are easier to view in the bottom figure.
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Figure 2-5: Plane-strain tension: Constitutive Model predictions (-) and Unit-Cell cal-

culations (- -) for the effective tensile modulus, E0, for different loading directions to the

microstructure.
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Plane-Strain Uniaxial Extension:
Current Orientation
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Figure 2-6: Plane-strain Extension: Constitutive Model predictions (-) and Unit-Cell cal-

culations (- -) for the evolving orientation of the microstructure, 0.

from the reduced dilative component is two-fold: (i) less volume increase J, for the rubber

phase, and thus less local axial tension ra ,; (ii) higher volume reduction Jg for the glassy

phase, mainly due to the increased imposed local axial compression through the resulting

'Fs,,, component.

Plane-Strain Isochoric Biaxial Deformation with Principal Stretch Direction Tangen-

tial to the Lamellar Plane: For perfect alignment between the principal stretch direction

and the microstructure (00), the BCP's lateral contraction to uniaxial plane-strain exten-

sion is almost entirely due to the unrestricted isochoric reduction in the thickness of rubber

layers. The appliction of the lateral isochoric stretch component should not alter the mi-

cromechanics for this material orientation. It is verified by comparing the evolution of the

microdeformation gradient components in Figs. 2-8 and 2-3, that the deformation char-

acteristics for plane-strain uniaxal extension tangential to the layers (01 orientation) are

essentially preserved by isochoric biaxial deformation with principal stretch direction tan-

gential to the layers.

Plane-Strain Isochoric Biaxial Deformation with Principal Stretch Direction at 450

to the Lameliar Plane: Both extreme loading orientations at 00 and 900 cause no layer
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Plane-Strain Uniaxial Extenion:
Volume Change
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rotation or shear. For all other material orientations, the fundamenatal mechanism to ac-

commodate deformation is by increasing layer tilting in order to facilitate the lower energy

deformation mode of shear within rubber layers. Plane-strain isochoric biaxial deformation

with principal stretch direction at 450 to the underlying morphology, results in a larger ro-

tation component than the one observed for uniaxial plane-strain extension (compare com-

ponent wFno,, between Figs. 2-8 and Figs. 2-3). Increased layer tilting results in a higher

alignment between the underlying BCP morphology and the principal loading axis. Thus,

the in-plane deformation component is now tensile, i.e. WFEes. > 1, and glassy (as well as

rubbery) layers are for this deformation state under extension (as opposed to compression

in the case of uniaxial extension). Deformation is thus accommodated, in this case, mainly

by layer extension. Due to the higher alignment, glass dilation is reduced (i.e. lower wF.,,

component). In addition, the volume change for both phases is isochoric, therefore the dila-

tive pressure experienced by glass is reduced. (Even though rubber dilation is unaffected,

this is due to the compressive effect of the isochoric lateral stretch component.)

Plane-Strain Isochoric Biaxial Deformation with Principal Stretch Direction at vari-

ous angles to the Lamellar Plane: Similar to what has been described for plane-strain

isochoric biaxial deformation with principal stretch direction at 450 to the underlying mor-

phology, isochoric deformation influences the microstructural rotation and concurrent layer

shearing mechanism by which layered materials with off-axis orientations accommodate

the applied deformation. During uniaxial plane-strain extension, layer tilting increases with

increasing orientation angles as indicated by the rotation component wFn05 0 in Fig. 2-3. On

the other hand, the layer rotations imposed by the isochoric biaxial deformation gradient

are symmetric about 450; the local rotation component wF 0.5. (Fig. 2-8) is the same for ori-

enttion pairs 300/600 and 150/750. Comparing the results in Figs. 2-8 and 2-3 for wFa ,

we deduce that: (i) for orientations up to about 700 the imposed tilt is higher than what

is naturally attained under uniaxial plane-strain extension, and (ii) for orientations higher

than 700 the imposed isochoric component places a limitation on the natural tilting of the

microstructure.

For orientations higher than 30' in the case of uniaxial tension, the resolved in-plane

stretch component, WF,, 5 , is compressive (Fig. 2-3), and deformation proceeds through in-
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creasing rubber dilation (rFa0 n0 ). The isochoric deformation state has altered the microme-

chanics completely. The increased rotation component WF.0 0 implies additional layer tilt-

ing toward higher alignment with the principal direction of deformation. The shear and di-

lation components of the rubber phase have been significantly reduced, while the in-plane

deformation component WFs,,8 has turned tensile. Thus, deformation is accommodated

mainly through layer extension. Furthermore, the isochoric constraint has significantly

perturbed the shear and dilation response of rubber. This is an additional indication that

rubber accomodates most of the deformation during plane-strain uniaxial extension.

As mentioned, isochoric stretching hinders layer tilting, which for deformation ori-

entations > 700 to the underlying morphology is the strongest observed during uniaxial

plane-strain extension. Since layer rotation and therefore layer shear are constrained by

the orthonormal stretch component, deformation can only be accomodated by layer dila-

tion. Layer tilting combined with shear was more prominent for glass, thus this phase will

be influenced more by the isochoric constraint. It is interesting to observe that only glass

experiences such a significant increase in dilation by comparing the normal deformation

component in Figs. 2-3 and 2-8. The micromechanics of rubber layers' deformation -being

naturally determined by isochoric volumetric deformation- have shown minimal sensitiv-

ity. Also, due to the isochoric deformation requirement, both phases exhibit a reduced

volume increase when compared to uniaxial extension results, however the reduction is

mostly observed for rubber.

Plane-Strain Simple Shear

As will be evident from the analysis in Chapter 4, for polycrystalline materials deformed

under uniaxial plane-strain extension shear is the predominant microdeformation mecha-

nism for most grains. Experimental studies both on the deformation micromechanics of

polycrystalline lamellar aggregates[19] as well as on isolated grain boundaries[51] have

verified that grains gradually rotate with increasing deformation in a manner that allows

individual layers to convert their corresponding deformation state from a combination of

tension and dilation to that of shear. Biaxiality will develop in grains whose tilting mo-

tion is kinematically constrained by neighboring material. Such grains will buckle even
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Plane-Strain Isochoric Biaxial Deformation:
Microdeformation Gradients
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Figure 2-8: Plane-strain Isochoric Deformation: Constitutive Model predictions (-) and
Unit-Cell calculations (- -) for the microdeformation gradients IF and 9F.
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Plane-Strain Isochoric Biaxial Deformation:
Current Orientation
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Figure 2-9: Plane-strain Isochoric Deformation: Constitutive Model predictions (-) and
Unit-Cell calculations (- -) for the evolving orientation of the microstructure, 0.

Plane-Strain Isochoric Biaxial Deformation:
Volume Change
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Figure 2-10: Plane-strain Isochoric Deformation: Constitutive Model predictions (-) and

Unit-Cell calculations (- -) for the constituent volume ratios, J and Jg. For the BCP mate-
rial, J = 1 for isochoric deformation.
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at very small strains to subdue to shear deformation as well. As a result, biaxial loading

will have little influence on the effective response of a polycrystalline aggregate, unless (i)

the imposed macroscopic deformation is already biaxial in nature, or (ii) the glassy layers

are too thick, and therefore too stiff to allow buckling and the associated shear. Therefore,

for biaxiality to matter the grain size has to be decidedly small (comparable to the layer

thickness)". In this section we present the continuum model's predictions for the case of

plane-strain simple-shear deformation for different orientations of the underlying lamellar

microstructure.

Macroscopic plane-strain simple shear is applied by restraining the through-thickness

and lateral deformations of the RVE (F33 = 1 and F2 2 = 1 or 622 = 0 and E33 = 0), while

imposing a macroscopic shear angle y in the transverse direction such that F12 = tan(y).

Two different behaviors can be identified for each phase's kinematic response and their

relative microdeformations: (a) for loading directions at angles higher than 450, and (b) less

than 450 to the underlying material orientation. For orientations up to 450, the macroscopic

shear deformation is mostly accommodated by the rubbery layer, due to its significant

shear compliance (Gr << Gg), as manifested in the relative magnitudes of the in-plane

shear microdeformation components TF... > F 5,,, (Fig.2-1 1).

The level of shear deformation each layer assumes depends on the shear moduli contrast

between layers and the direction of loading. For higher alignments between the underlying

layers and the shearing direction (angles -+ 00), the amount of shear deformation the rub-

bery layer accommodates increases, rendering the effective BCP response to shear more

compliant. This is reflected in the composite's effective shear stress response, E12, (Fig2-

12) and effective shear modulus, GBCP, (Fig2-13).

For less aligned deformation situations, the deformation each layer must undergo is

no longer shear alone. Instead macroscopic simple shear translates into both shear and

biaxial stretching in the local frame of the layered microstructure. The stiffer initial BCP

stress response and modulus stem primarily from the increasing tensile contribution of the

glassy layers. As seen in the tensile component of the microdeformation gradients, WF

17For polycrystalline aggregates of such grain sizes the present RVE would not describe a typical material
point, because it assumes infinite layer extension and repetition in all directions
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(Fig.2-1 1), the level of tension imposed on layers increases with the misalignment between

the underlying layers and the shear direction (i.e. increasing 6). The second contribution

to the increasingly stiffer initial BCP shear stress response derives from the increasing

shear deformation of glassy layers (component gF,.,) with increasing misalignment 6.

The orientation-dependent tensile effect is maximized at 450, consistent with the trends

manifested in the effective BCP's initial shear stress response and modulus (Figs. 2-13

and 2-12, respectively). (Tension of course is followed by a reduction in layer thickness as

indicated by microdeformation components 'F,,,1.)

For loading angles > 450, the characteristic symmetry which shear loading possesses

for this composite about 450 orientations is also inherent in the model's initial, small-

deformation shear stress response and effective modulus. The initial effective shear stress

appears to be decreasing for loading directions higher than > 450 since the projected local

tensile component WF,,. is decreasing. As the imposed shear angle increases, this de-

creased projection is counterbalanced by: (i) the increased shear contribution of the glassy

layer (increasing 9F..,), and (ii) the layer rotation (increasing 9Fno0 .), the subsequent in-

creasing alignment of glassy layers with the direction of loading, and the resulting in-plane

layer extension. This is the main cause for the upward trend in the tangent shear modulus

and the reduction in glassy layer's thickness (EFnno) as shear deformtion progresses. The

trend is more prominent for 901 material orientation, because in this case, layer alignment

with the loading requires larger rotations.

The volume change for each phase can be well explained in accord with the previous

description for the evolution of microdeformation within each layer. The overall agreement

with unit-cell results is excellent in Fig.2-15, but for loading directions in the vicinity of

450 degrees, where the tensile deformation component is maximized, and this only for

shear strains higher than -y ; 0.6. Beyond this level of shear strain the volume changes for

these loading orientations are in the order of 10%. Hence, the negligible volume change

approximation breaks down and the model's performance is somewhat compromised.

The constitutive model's predictions for the BCP's shear stress response is in excellent

agreement with numerical unit-cell results for shear strains even up to 7 = tan(6) = 1. For

all orientations however the model predicts an increasingly stiffer response than does the
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unit-cell, due to the gradual tilting and increasing alignment of the layers with the loading

direction, which promotes layer extension. Consistent with the disagreement observed for

uniaxial tensile deformation tangential to the lamellar plane, the error in the constitutive

model's predictions is increasing as orientations appoach 450, where layer extension is

maximized.

2.3 Conclusions.

This work presents a micromechanical framework for the derivation of large-stain con-

tinuum constitutive models for hyperelastic materials with layered microstructures. The

lamellar morphology is represented by a planar bi-layer RVE, which is used to derive

the appropriate continuity and equilibrium arguments that must be satisfied at every ma-

terial point. A generic description for the strain energy function of the composite and the

resulting system of equilibrium and continuity equations, complete the micromechanical

framework.

The strain energy function was presented here as an (initial-)volume weighted average

of the constituents' strain energies. The framework of micromechanical constraints was

applied for the case of contituents with hyperelastic Neo-Hookean behavior. An analytical

closed-form solution was elaborated for the distribution of macroscopic deformation within

the individual layers. The solution for each phase's microdeformation gradient was a func-

tion of the applied macroscopic deformation gradient. The composite strain energy density

can then be fully described in terms of the macroscopic deformation gradient, and the ma-

terial stress-strain response is simply obtained by deriving the strain energy function with

respect to the macroscopic deformation gradient. The effective composite stress response

follows as a (current-)volume weighted average of each constituent's stress contribution.

Stress and microdeformation predictions from the constitutive model were in excellent

agreement with micromechanical finite element calculations on a 2D bilayer unit-cell. The

constitutive model describes the stress and deformation response of the oriented microsc-

tructure accurately, and it will be used in multigrain calculations to study the mechani-

cal behavior of polycrystalline lamellar aggregates. The model predicts the rotation and

large deformations of the underlying lamellae, however, it does not account for critical mi-
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Plane-Strain Simple Shear: Microdeformation Gradients
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Figure 2-11: Plane-strain Simple Shear: Constitutive Model predictions (-) and Unit-Cell
calculations (- -) for the microdeformation gradients IF and 9F.
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Figure 2-12: Plane-strain Simple Shear: Constitutive Model predictions (-)
calculations (- -) for the effective shear stress response, E 2 .
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Figure 2-13: Plane-strain Simple Shear: Constitutive Model predictions (-) and Unit-Cell
calculations (- -) for the effective shear modulus, Go, for different shearing directions with
respect to the microstructure.

92

60

50

EL

t04

40

30

20

cell

5

y ----

10

0.8 I

o vumat
*- cell

8 -

0 6

SC



0

Plane-Strain Simple-Shear Deformation:
Current Orientation
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Figure 2-14: Plane-strain Simple Shear: Constitutive Model predictions (-) and Unit-Cell
calculations (- -) for the evolving orientation of the microstructure, 6.
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Figure 2-15: Plane-strain Simple Shear: Constitutive Model predictions (-) and Unit-Cell
calculations (- -) for the constituent volume ratios, Jr and Jg. For the BCP material, J = 1
for Plane-Strain simple shear deformation.
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crostructural instabilitites such as lamellar microbuckling and micronecking. To describe

such microstructural transformations the constitutive model needs to be augmented with ap-

propriate criteria for the initiation of instabilities, and should account for plasticity-related

localization phenomena. Even though these are decisive mechanisms for the large strain re-

sponse of an oriented structure (single-crystal), we expect the model to be accurate enough

for numerical studies on polycrystals.

The presented framework is general and the solution precedure can be followed for any

choise of hyperelastic phase behavior. It is very possible that a numerical scheme will be

needed to reach a solution for other material descriptions. Nevertheless, the neo-hookean

behavior is an excellent approximation, pending on ajudicious choise of material properties

for the constituents.
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Chapter 3

Mechanics of Single and BiCrystal

Lamellae Structures during Tensile

Testing

The layered structure of the lamellar block copolymer materials together with the strong

contrast in mechanical properties of the constituent layers provides the highly anisotropic

stress-strain behavior of the material. In this chapter, we study the effect of isolated defor-

mation constraints on the deformation behavior of these lamellar block copolymers. The

first study examines the plane strain tensile extension of the lamellar structures when the

lamellar normal is at various angles to the tensile axis; the strip specimen is constrained

from lateral deformation at its ends in order to emulate the grip constraint during a test.

The second study examines the plane strain tensile extension of bicrystal configurations

where a specimen tensile strip now consists of two crystals at different orientations per-

fectly adhered to one another at the center of the strip along a plane normal to the tensile

axis; this centrally located adhesion plane constitutes an isolated grain boundary. Again,

strips are subjected to tensile extension with the lateral deformation constrained on the

strip ends (capturing the grip effect on specimen deformation) and each grain will now

also contain an additional separate deformation constraint due to the grain boundary en-

abling a study of the influence of the orientation of neighboring grains on the deformation

of differently oriented lamellae.
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3.0.1 Model Description

The plane strain tensile strips of single crystals were of relative dimensions of width =1 and

length =10. The tensile strips of single and bicrystal lamellar block copolymers were mod-

eled using plane strain finite elements (ABAQUS type CPE4R) with 20 elements across the

width and 140 elements along the length. The lateral displacement of the top and bottom

edges were both constrained. The bottom edge was also constrained in the axial direction;

the top edge was subjected to a uniform, monotonically increasing axial displacement giv-

ing the imposed axial extension. The bicrystal strips were of width w = 2.25mm, but total

length L = 9.5mm with each crystal of length 1 = 4.75mm (with the grain boundary lo-

cated midway along the specimen length). The elements were assigned the lamellar block

copolymer stress-strain behavior detailed in Chapter Two where the constitutive model was

formulated as a Fortran VUMAT subroutine for use with the ABAQUS Explicit nonlinear

finite element code. Elements were assigned different initial lamellar orientations depend-

ing on the particular crystal orientations under investigation.

Results: Tensile Testing of Single Crystals

The simulation results for the tensile testing of single crystal lamellar block copolymers are

depicted in Figures 3-1 through 3-4. Figure3-1 depicts the simulated axial force versus axial

displacement behavior for different lamellae orientations. The gradual reduction in initial

stiffness as the initial lamellae orientation moves away from the tensile axis is observed

until reaching an initial orientation of 45 degrees. The 60 degree orientation is initially

stiffer than the 45 degree orientation and the 75 degree orientation is initially stiffer than the

60 degree (aid it is even initially stiffer than the 30 degree orientation). The relatively high

initial stiffness of the 75 degree case is a result of the initial sampling of the bulk stiffness

of the rubbery layer as a result of the lower resolved shear stress on the lamellae plane (and

hence the initially relatively lower sampling of the shear behavior of the lamellae). We also

note that the 75 degree and the 60 degree cases are rather nonlinear - this is a direct result

of the tilt of the lamellae orientation towards the tensile axis as the strip is axially strained;

the tilting increases the resolved shear stress on the lamellae plane and hence gradually
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increases the relative shear contribution as opposed to dilation contribution of the rubbery

lamellae deformation to accommodate the imposed extension.

Tension Test
Force vs. Displacement

18

16

14

12

10- 15 3
8 -45

6 75
4

2-

0 0.1 0.2 0.3 0.4 0.5
A/Lo

Figure 3-1: Force-Displacement curves for different specimen microstructure orientations.

The nature of the deformations for each initial orientation can be seen in greater detail

by looking at contours of axial strain and shear strain in each strip (Figures 3-2, 3-3 and 3-

4). The imposed extension is seen to be accommodated by both shear and axial stretching,

with relative contributions of shear and extension depending on the initial orientation as

well as the imposed strain level. The grip boundary is also seen to have a very strong

influence on the homogeneity of the deformation field. The spatial extent of the influence

of the boundary constraint is seen to strongly depend on the initial lamellae orientation.

These results begin to show the strong interaction between the lamellae strain and any

boundary constraints.
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E22=50%

0
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Figure 3-2: Deformed meshes at 50% macroscopic strain and axial strain contours for

specimens with different initial microstructure orientations to the loading direction. The

imposed extension is accommodated by both shear and axial stretching, with relative con-

tributions of shear and extension depending on the initial orientation as well as the imposed

strain level. The grip boundary also has a very strong influence on the homogeneity of the

deformation field. The spatial extent of the influence of the boundary constraint depends

strongly on the initial lamellae orientation.
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Figure 3-3: Axial strain contours at 50% macroscopic strain for specimens with different initial microstructure orientations to the

loading direction.
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3.0.2 Tensile Testing of Bicrystals

Background

The mechanical behavior of polycrystalline block copolymers depends largely on the in-

fluence of grain boundaries on deformation micromechanics. To investigate the effect

of different grain boundary structures Wanakamol[51] fabricated tensile strip specimens

containing isolated grain boundaries by joining oriented film strips of a glassy-rubbery

(SIS) cylindrical block copolymer material. The morphology in the vicinity of the struc-

tured grain-boundary between the two single-crystals was examined using atomic force

microscopy (AFM). The model bicrystal specimens were then extended to 100% nominal

strain and the microstructural evolution within the grain boundary region and within each

grain was monitored using small angle x-ray scattering (SAXS). In addition, the specimens

were marked with a fine grid of small square cells to allow for quantitative measurements of

the developing strain field with optical microscopy. Three grain boundary geometries were

tested: a symmetric tilt grain-boundary with grains oriented at 450 and -45* to the loading

direction (grains oriented normal to each other), and two asymmetric tilt boundaries with

grain orientations at 900/450 and 900/00. The type of deformation patterns which evolve

through the specimen illustrate the effects of the property mismatch between the grains and

the spatial extent of the grain boundary influence.

The bicrystal behavior is studied here numerically using the developed analytical con-

stitutive model to describe the deformation behavior of each grain. The same model which

was used to study the plane-strain extension of oriented BCP samples will be adopted to

investigate the bicrystal's response to extension with a minor (from a modeling standpoint)

modification to account for the existence of two different material orientations. The speci-

men area is divided into two equal regions which represent the two grains in the bicrystal,

and the constitutive model is used to assign the grain orientation and the mechanical behav-

ior to each of the two corresponding element sets. The nodes in the left face of the model

are encastred, while those on the right face are not permitted any motion in the 2-direction.

Specimen extention is applied by translation of the right face's nodes along direction-1. In

accord to Wanakamol's experimental work, the model is 9.5mm in length and 2.25mm in
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width, and is used to test three bicrystal configurations: the symmetric, with grains oriented

at 450 and -450 to the loading axis-1, and two asymmetric specimens with grains oriented

at 900/450 and at 900/00 to the loading direction (1-axis).

In the following subsection we present the experimental results from each bicrystal

configuration's extension and compare them to the corresponding results from numerically

simulated bilayer extension experiments using the constitutive model. The comparison

is qualitative between optical observations and strain measurements from the deformed

bicrystal specimen and strain contours and deformed mesh grids calculated from the nu-

merical model. The intention is twofold: (i) to interpret the bicrystal deformation and the

influence of the grain boundary based on knowledge from the previously described de-

formation behavior of oriented single-crystal specimens under uniaxial extension, and (ii)

to demonstrate the model's capability to reproduce the deformation fields observed dur-

ing the extension of bilayer specimens in a micromechanicanically and physically accurate

manner.

Apart from macroscopic strain measures, the constitutive model also calculates all the

layer-related micromechanical quantities that describe the microstructural evolution any-

where within the bicrystal model. However, the current constitutive model describes lay-

ered morphologies. Its microstructural predictions, although relevant, will not be presented

here because they cannot be directly compared to the corresponding x-ray measurements

from cylindrical morphologies presented in P. Wanakamol's thesis [51].

3.0.3 Symmetric Bicrystal: 450/450 Grain Boundary

Experimental Results Optical images of the deformed grid are shown in Fig. 3-5 for a

symmetric specimen at different macroscopic nominal strains. Polarized transmitted light

was used to take advantage of the optical anisotropy between the two grains and locate

the grain boundary, which is here denoted with a dashed line. The overall specimen de-

formation is inhomogeneous, however symmetric about the grain boundary, due to the

microstructural symmetry. As observed in the optical images, the grain boundary remains

straight and normal to the stretching direction; however, there is a triangular region of
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constrained deformation extending across the grain boundary (giving a grain boundary in-

fluence zone), which influence zone translates upwards in a direction normal to the load-

ing axis. A constrained triangular region is also seen to emanate from the grip boundary.

Material between these two zones experiences the more homogeneous shear and dilation

response of a single-crystal (with no boundary effects).

The schematic in Fig. 3-6 replicates the specimen deformation. Each grain deforms

as a specimen under uniaxial extension oriented at 450 to the loading direction (Figs. 3-2

and 3-3). The triangular regions denoted by letters "a" and "c", located at the grip and

adjacent to the grain boundary, are influenced in their deformation behavior by the applied

boundary conditions. Similar to the case of a single-grain under uniaxial extension, blocks

"a" and "b" exhibit negligible deformation and behave as almost rigid. In between these

boundary influenced regions, the specimen portion denoted by "b" extends by shear as re-

vealed by the shape of the deformed grid. The difference between the two experiments,

that of uniaxial extension of the 450 single-crystal and that of bicrystal extension, is that

in the latter case the rigid grip on side "c" is allowed to translate freely in the vertical

direction as if the grip was on rollers. The lack of this degree of freedom in the case of

uniaxial extension and the compatibility constraint between sections "b" and "c" result in

a rotated "b" region as seen in Fig.3-2. Rotation is not needed in this case in order for the

two symmetric grains to satisfy deformation compatibility on the grain-boundary. Instead,

compatibility is attained with a "rigid" upward translation of the grain boundary and of

each grain's boundary affected region "c". Local strains within regions "a", "b", and "c"

at different levels of macroscopic specimen stretch were measured using the deformed grid.

The locally measured axial strain, ex, and lateral contraction, eyy, for these three regions

are shown in Fig. 3-7 as functions of the overall axial strain imposed on the specimen. It

can be seen from the graph that the extension in region "b" is nearly affine but slightly

higher than the overall imposed extension, because it has to compensate for the limited

extensibility of regions "a" and "c". The deformation in region "c" reaches a plateau after

a macroscopic strain of 25%, which indicates that region "c" does not extent beyond that

point. The grain boundary acts as a rigid grip for both the oriented grains of the bicrystal,

and thus, deformation in region "c" corresponds to rubber dilation between the glassy rods.
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Figure 3-5: Schematic of the symmetric bicrystal 450/450 specimen configuration and

optical images of the deformed specimen grid at 25%, 50%, 75% and 100% macroscopic
specimen strain.
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Figure 3-6: Schematic illustration of how specimen deformation is accommodated be-
tween grains of incompatible deformation modes in the symmetric 450/450 bicrystal con-

figuration.
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Figure 3-7: Axial and Shear Strains from regions "a" and "c from the symmetric 450/45'
bicrystal as functions of the applied macroscopical strech.

Beyond the strain of 25%, the cylindrical morphology within region "b" has rotated to a

configuration which allows for uninhibited rubber shear between the glassy rods. There-

fore, any additional deformation is accommodated entirely by each grain's compliant "b

region rather than by additional dilation of the rigid blocks "c". Due to the Poisson effect,

the highest contraction, cy6, is observed in region "b", which experiences the highest axial

stretch. Region's "c" contraction is significantly less and ceases beyond the macroscopic

strain of 25%, in correspondence to the plateauing observed in its local axial strain.

The shear strains measured locally within regions "b" and "c" are also shown in Fig.3-7.

There is a stark contrast between the levels of shear strain observed within the two regions.

It is more important to note however, that the shrear strain of region "b" corresponds to

a simple shear deformation, since there is no rotation observed (Ov/Ox ~ 0). As already

discussed, this kinematic condition results to the vertical shift of the grain boundary.

Simulation Results The simulation results for the deformed specimen and the axial

strain within the bicrystal are shown in Fig. 3-8. Despite the differences in the microstruc-

ture between experiments (cylindrical) and numerical calculations (layered), the deformed

mesh is in perfect agreement with optical images of the deformed specimen grid. Each

diagonal grain is seen to deform by shear, and macroscopic deformation appears to be ac-

commodated almost entirely by the shearing "b" region in each grain. Regions of limited
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deformation are seen at the grip ends and at the grain boundary. In particular, the grain

boundary influence region ("c") has the same characteristic shape, spatial extent, and up-

ward motion as has been observed in experiments.

Ei1
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Figure 3-8: Symmetic 450/45' Bicrystal: Axial strain contours at different macroscopic
specimen extensions.

3.0.4 Asymmetric Bicrystal: 900/450 Grain Boundary

Experimental Results Fig. 3-9(top) shows a schematic of the specimen morphology for an

asymmetric bicrystal configuration with grains oriented at 900 and 450 to the 1-axis. Also

shown in the figure are optical images of the deformed specimen grid at 25% and 100%

nominal macroscopic strains. The deformed grain boundary is denoted by a dashed line.

The schematic of Fig. 3-10 illustrates how each grain's deformation, constrained by the

required compatibility at the grain boundary, result in the overall deformed specimen con-

figuration. The crystal on the right, oriented at 450 to the horizontal, deforms by shear. The

grain on the left, oriented normal to the stretching direction, deforms by dilation of the rub-

bery matrix around the glassy cylinders. Deformation compatibility at the grain boundary

results in the latter's rotation in the direction of shear for the diagonal grain. At 25% nom-

inal extension, the grain boundary appears also slightly shifted downwards in agreement
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to the corresponding translation observed for the grain boundary of the symmetric bicrys-

tal. The lateral motion in this case is restrained by the normal grain, which act as a grip,

however not entirely encastred. This effect vanishes at larger strains, when the cylindrical

morphology within the normal grain, right at the grain boundary, has rotated enough to de-

form by shear and not only by dilation of the microstructure, such that both grains shear in

tandem. Shear deformation within the diagonal grain results in a higher lateral contraction

than the resulting contraction in the dilating normal grain. Thus, the cylidrical domain in

the 90' grain experiences a contraction imposed by the diagonal grain, due to deformation

compatibility at the g'rain boundary. This compression is visible in the horizontal lines of

the deformed specimen grid, which tapped down as they approach the grain boundary. This

compression results in asymmetric kinking of the oriented cylindrical microstructure near

the grain boundary as SAXS patterns from that vicinity have shown'. SAXS patterns have

shown that the spatial extent of the grain boundary influence is minimal for this bicrystal

configuration, since for the given orientations both grains have very compliant behaviors,

and in essence allow each other to deform as the corresponding single-crystal in isolation.

25%

100%

Figure 3-9: Schematic of the asymmetric bicrystal 90'/45' specimen configuration and
optical images of the deformed specimen grid at 25% and 100% macroscopic specimen
strain.

Simulation Results The deformation results for the 90O-451 bicrystal are presented in

'For the cylindrical morphology, microstructural buckling occurs at high stretches of about 80% because
the rubbery matrix is relatively free to deform around the glassy rods before sufficient dilative pressure builds
up to compress and to buckle the cylindrical microstructure. In the case of lamellar morphologies, the glassy
layers impose a much stronger constraint on the almost isochoric deformation of rubbery layer, and thus the
compressive stress exerted on glassy layers is already high enough to cause their buckle at quite small strains.
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Figure 3-10: Schematic illustration of how specimen deformation is accommodated be-
tween grains of incompatible deformation modes in the 90'/451 bicrystal specimen config-
uration.

Fig.3-1 1. The axial strain contour and the deformed mesh at 12.5% nominal specimen

strain show that deformation in the diagonal grain is accommodated by shear. The stress

contour for the axial stress in glassy layers, a-,,, shows that the glassy layers experience

compressive forces at the grain boundary due to the mismatch in the lateral contraction of

the two grains. Due to the compression, buckling initiates in the 90' grain at 15% macro-

scopic strain. Buckling initiation is easier viewed in the shear strain (E12) contour plot of

Fig. 3-11 (bottom), where opposite shearing, due to buckling, element rows are colored

differently (red and blue). Due to the constitutive model's inherent capability to capture the

initiation of buckling, hourglassing instabilities are excited in the numerical calculations

for strains higher than 15%. For this reason, numerical results from beyond this strain level

are not presented. These results are in agreement with the previously discussed experimen-

tal observations. The model captures the relative differences in the deformation across the

grain boundary and is capable of reproducing critical microstructural rearrangements. Ini-

tiation of microstructural kinking within the 900 grain at the grain boundary occurs at much

smaller strains than observed in the experiments, because the constitutive model describes
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Figure 3-11: Asymmetric 900/450 Bicrystal: Strain and microstructural stress contours.
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layered and not cylindrical morphologies.

3.0.5 Asymmetric Bicrystal: 900/00 Grain Boundary

Experimental Results Fig. 3-12 presents a schematic of an asymmetric bicrystal config-

uration with grains oriented at 900 and 00 to the 1-axis, named the "T"-grain bicrystal.

For materials with cylindrical morphologies, single-crystal morphologies oriented paral-

lel to the stretching direction exhibit the stiffest response to loading, while those oriented

normal to the stretching direction are the most compliant. Therefore, the "T"-bicrystal is

the configuration which combines grains with the highest possible stiffness contrast for the

cylindrical morphology.

1PM

Figure 3-12: Schematic of the asymmetric 900/00 bicrystal and deformed specimen grid at

100% nominal specimen strain.

The grid of the "T"-grain bicrystal is shown in Fig. 3-12 deformed at 100% nominal

strain. In the undeformed specimen both grains have equal lengths. Due to the high stiffness

contrast between the two grains, with the 00 (parallel) grain being 25-fold stiffer than the

900 (normal) grain, deformation concentrates entirely in the compliant normal grain. As

can be viewed in cell snapshots taken from the deformed grid within each grain at equal

overall specimen deformations, the stretch in the normal grain is twice the macroscopically

imposed stretch to compensate for the relative inextensibility of the parallel grain. For

specimen strains higher than about 50% (about 100% extension for the normal grain) the

morphology of the normal grain has kinked and deformation in this grain proceeds not only

by dilation of the rubber matrix, but also by cylinder rotation and rubber shear. Due to this

restructuring, the lateral contraction in the normal grain becomes prominent enough and a
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Figure 3-13: Left: Deformed grid cells from within the two grains. Right: Axial strains in
the two grains vs. the macroscopically imposed strain.

deformation mismatch occurs at the grain boundary. At high stretches shear bands develop

in the parallel grain due to cylinder fragmentation, and extend through the grain boundary

causing the slight waviness of the grain boundary visible in Fig. 3-12.

The spatial influence of the grain boundary is minimal. Due to the high stiffness contrast

between the two grains, each one deforms as a single-crystal in isolation, with the parallel

grain acting as a rigid grip for the compliant normal grain2

3.0.6 Simulation Results

The deformation results for the 90-0' bicrystal are shown in Fig.3- 11. The figure presents

contours of the in-plane stress within the glassy layers at very early stages of the deforma-

tion. The vertical grain deforms by dilation of rubbery layers in the microstructure. Due

to the nearly incompressible behavior of rubber, the glassy layers experience a distributed

compressive stress. The contours correctly indicate that the glassy layers in the parallel

grain are extended, while glassy layers in the normal grain are under compression, which

causes microbuckling. It can be seen in the contour legends that the compression exerted

2There is also minimal spatial influence from the grain boundary in the case of the 90-/451 bicrystal. The

reason there being the high compliance of both grains.
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on the glassy layers in the normal grain is relieved as microbuckling initiates. Subsequent

deformation is accomodated by the normal grain through interlamellar shear. The onset of

shear deformation due to microbuckling is clearly indicated by the coloring in the shear

strain contour plot, where alternating rows of elements are seen to shear in opposite direc-

tions within the normal grain. Hourglassing instabilities do not permit the study at strains

Asymmetric Bicrystal 90*- 00
Glass ass
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+4.254e+00Ei=25
+-3.617e+00OO25
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+2.341e+00
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+5.897e+00______________________
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Eii=6.5%

E12
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Figure 3-14: Asymmetric 90010 Bicrystal: Contours of in-plane stress within the glassy
layers.

higher than 7%. Also, as described before, microbuckling initites at smaller strains for

layerd morphologies. However, the presented results qualitatively agree with the microme-

chanical experimental findings from cylindrical morphologies.

Conclusions

The effect of isolated deformation constraints on the deformation behavior of lamellar

block copolymers was examined with plane-strain numerical calculations of the tensile
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behavior of oriented and bicrystal strip specimens, when grip constraints are imposed at

the specimen ends.

The simulations have shown that the imposed extension on oriented material strips is

accommodated by both shear and axial stretching, with relative contributions of shear and

extension depending on the initial orientation as well as the imposed strain level. The grip

boundary constraint and the specimen length have a very strong influence on the homo-

geneity of the deformation field. The spatial extent of the boundary influence depends

strongly on the initial lamellae orientation and the specimen length.

For the case of bicrystal specimens, three bicrystal grain arrangements were examined.

The resulting deformation patterns across the boundary and throughout the entire speci-

men are in excellent agreement with the experimental findings by Wanakamol and Thomas

[51]. The nature and spatial extend of the grain boundary influence on the deformations

of such bicrystal configurations strongly depends on the relative orientations of the neigh-

boring grains and on the nature of the imposed loading. Micromechanical observations

from the plane-strain extension tests on tensile strip specimens closely correlate to micro-

and macrodeformation modes present during the extension of bicrystal strip speciens. The

constitutive model was able to capture buckling instabilities which occur due to deforma-

tion incompatibilities at the grain boundary. A buckling criterion has not been rigorously

implemented in the model, and due to the models inherent tendency to capture lower en-

ergy deformation modes, the finite element models used to calculate the deformation field

within the asymmetric bicrystals exhibited hourglassing instabilities during the analysis.
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Chapter 4

Deformation Mechanics of

PolyCrystalline Lamellar Block

Copolymers

4.1 Background

Unless an orientation technique is used during BCP solidification, BCPs develop poly-

granular structures analogous to the polycrystalline structure of metals. Fig. 4-5 depicts

a micrograph of a polygrain lamellar BCP structure. Some of the earliest in-situ stud-

ies on the microstructural evolution of lamellar SBS triblock copolymers during tensile

stretching were conducted on polygrain microstructures by Fujimura and Hashimoto et al.

[17, 18]. TEM and SAXS were used to investigate the micromechanics that govern the

softening behavior, and the stress rise observed after the stress-plateau region, termed the

"plastic-to-rubber transition". The specimens were polycrystalline spin cast films of var-

ious PS contents, some of which possessed a lamellar morphology with lamellar thickness

d = 26.9nm.

The a - c response and SAXS pattern evolution during two loading cycles is shown

in Fig. 4-lb for samples of SBS and SBS-PS blends. Akin to ductile polymer behavior,

the response to first loading exhibits an initial linear region, followed by a distinct yield-
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point and rapid softening, a subsequent constant-stress plateau during neck-drawing, and

finally a rapid increase in stress prior to failure. Unloading takes place with substantial

strain recovery, while reloading reveals a rubber-like material response devoid of yielding

and necking phenomena. As it appears from deformed microdomain micrographs (Fig. 4-

la), yielding and neck-drawing are governed by lamellar reorientation, kinking, shearing,

dilation, and finally, at very large strains, fragmentation mechanisms. Consistent with the

diffuse SAXS patterns and the rubber-like behavior observed at strains higher than 200%,

micrographs from that strain range displayed fragmented PS lamellae dispersed in PB.

The schematic of Fig. 4-ic illustrates the micromechanical deformation processes that take

place at different stages of the deformation response.

Further quantitative analysis on small strain (< 30%) SAXS data verified that lamellae

originally oriented perpendicular to the load direction exhibit an increase in their lamel-

lar repeat distance but lose their packing order by micromechanical mechanisms such as

lamellar rotation, shearing, kinking, and fragmentation. On the contrary, at the early defor-

mation stage, lamellae originally oriented parallel to the stretching direction do not reorient

and their lamellar spacing does not vary appreciably; thus, they retain their packing order.

This is a consequence of their increased stiffness with respect to abutting grains, which

renders them to be far less extensible, and thus behave as "hard grains/fillers" at these

low macroscopic strain levels. Upon further stretching, the equatorial SAXS maxima cor-

responding to these particular grains disappear, indicating that the packing order in the

specimen microstructure has been destroyed by aforementioned deformation micromecha-

nisms, due to compatibility issues and grain interactions with neighboring grains. During

neck-drawing, the evolution of the 4-point SAXS pattern indicates further lamellar tilting

of grains initially oriented off-axis toward the stretching direction with constant lamellar

spacing along the lamellar normal.

The yield and post-yield deformation behavior and micromechanics of polycrystalline

lamellar SBS triblocks were studied in detail by Seguela and Prud'homme [19]. The speci-

mens were solvent cast films containing 29vol% PS. During uniaxial tension, in-situ small

angle X-ray scattering analysis was coupled with local strain-ellipsoid measurements from

the neck region to monitor grain orientation and interlamellar shear at different strain in-
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Figure 4-1: (a) Deformed microstructures of multigrain lamellar SBS block copolymers
at different macroscopic strains: (i) 0%, (ii) 85%, and (iii) 500%. (b) Stress-strain re-
sponse for the 1st and 2"d tensile cycle shown without the unloading curve. Superposed
are schematics of the corresponding SAXS pattern at each strain. (c) Schematic illustration
of the micromechanical deformation processes within an isolated grain, initially oriented
normal to the loading axis, during the deformation of lamellar block copolymers [17, 18].
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stances. As the local measurements verified, the deformation inside the neck was volume

preserving and the lateral contraction isotropic, leading to the conclusion that strain was

mostly accommodated by the rubbery domains. The first-order SAXS diffraction maxima

formed the characteristic four-point pattern, which corresponds to symmetric grain rota-

tion about the stretching direction. The pattern evolution suggests that, despite the random

orientation in the as-cast material, grains gradually attain a favorable orientation of ~22

and accommodate additional deformation only by interlamellar shear. Grains with a differ-

ent initial orientation, either lost their stacking order, or rotated to assume this preferential

configuration. The kinematics of this deformation process involve large grain elongations

along the stretching direction by rotation and shearing of the rubber layers, a process that

preserves d-spacing (see schematic in Fig. 4-2)1. The dominant grain inclination of 22' re-

sults from an energetic competition between: (i) the energetically inexpensive deformation

mode of grain rotation toward the loading direction and concurrent shearing of the rubbery

layers (Fig. 4-3a), and (ii), the counterbalancing increase in stiffness for continuous grain

rotation toward orientations parallel to that of loading (Fig. 4-3b).

(a) 0(b)'

Figure 4-2: Schematic of grain reorganization and corresponding SAXS patterns at differ-

ent levels of tensile strain for a multigrain lamellar microstructure [19].

It is known that the mechanical behavior of poly-crystal aggregates is determined by the

collective response of individual grains. In turn the behavior of each grain is determined

'In contrast to the previously desribed interpretation of the micromechanics by Fujimura and Hashimoto

[17, 18], Seguela and Prud'homme do not consider intragranular lammelar kinking in their reasoning of

deformation kinematics. The dominance of kinking in polycrysatlline BCP deformation micromechanics has

however been established by several TEM studies.
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Figure 4-3: (a) Accommodation of strain by rotation and shear in a lamellar glassy/rubbery
microstructure. (b) Increasing grain stiffness for lamellar orientations near parallel to the
direction of loading [19].

by the deformation modes excited through interactions with neighboring grains through the

influence of grain boundaries. The effect of grain size and grain boundaries on the stiffness,

yield, and post-yield behavior of lamellar SBS triblock copolymers was studied by Myers

and Cohen [20]. Styrene- and butadiene rich triblock samples 2, containing 75 and 45wt%

PS, respectively, with multi-grain lamellar microstructures 3 of various grain sizes were

compared under uniaxial tension. Grain sizes ranged between 0.27 and 3.3 1[Am for the

PS rich-, and between 3.72 and 5.80pm for the PB rich copolymer. In addition, extruded

("highly textured") samples of the styrene rich BCP were deformed in tension at various

orientations to their textured microstructure to establish stiffness bounds (Fig. 4-4a).

An interesting trend was established for the styrene rich material, for which the yield

stress was reported to increase with increasing grain size (Fig. 4-4b). The trend was re-

versed for the PB rich samples with the yield strength being higher for smaller grain sizes

(Fig. 4-4c). For all but one of the materials tested, the elastic modulus appeared to be

2Commercial name for styrene rich (75wt% PS) triblock copolymer: KK3 1, MW= 187,000, lamellar spac-
ing d~35nm. Commercial name for butadiene rich (45wt% PS) triblock: 4461, MW=82,000, d~28nm.

3A lamellar microstructure for 75wt% PS is surprising.
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grain-size independent4 . Also, as can be seen in Fig. 4-4b, the multigrain material yield-

stress for KK31 is between the respective maximum (at 900) and minimum (at 30*) val-

ues measured for extruded samples (Fig. 4-4a)5. The authors attribute these differences

to higher PS and PB concentration at the grain boundaries for PS- and PB-rich samples,

respectively. They offer however no proof of this related to their data, neither do they

report the amount of the suggested material excess. Since the two triblocks tested had dif-

ferent molecular weights and non-overlapping grain sizes (not to mention that the grain

variation is in fact quite small), and due to the increased complexity introduced by the

chosen molecular architecture of the polymer blocks used (which also strongly affects the

response), it is unclear whether the coupling between the grain size and the mechanical

response of polycrystalline BCPs was succesfully isolated6 . Grain boundaries have been

early realized as a controlling factor in the mechanical properties of multigrain BCPs. The

morphology of grain-boundary defects has been studied both experimentally via TEM and

analytically with interphase-area minimizing theories by Gido et al. [52, 53, 54, 55], and

experimentally with TEM by Cravalho et al. [21]. Various grain-boundary structures are

shown in Fig. 4-5. All but T-junctions maintain phase connectivity across grain-boundaries

4 Only a 3-arm star BCP (KRO3, MW=217,000) containing 79wt%PS showed appreciable stiffness in-
crease with increasing grain size.

5The lowest axial stiffness is expected for loading at 450 to the plane of the lamellae. In Mayer's study the
lowest stiffness is measured at 30* (or 00; the reported data data and the corresponding o- - e curves appear
to be very inconcistent!), either because extrussion did not produce perfectly oriented microstructures, or due
to incorrect measurement of the sample's microstructural orientation.

61n the absence of other relevant experimental and/or FE-based micromechanical studies, one can only
be cautious and very reluctant in offering alternative explanations to Myers' results. With this in mind, an
extrapolation based solely on single-crystal micromechanical studies will be attempted here. Depending on
the grain-size and BCP composition, different micromechanical deformation modes are expected to domi-
nate, with a different impact on the macroscopic response. Namely, grain rotation is more difficult for large
as opposed to small grains. Small grains can immmediately tilt and assume a configuration that encourages
interlamellar shear in the rubbery domains. Large grains overcome the rotation constraint by accomodating
deformation initially through dilation and subsequently by kinking. On the other hand, kinking is energeti-
cally expensive for short lamellae, due to their high bending resistance. Thus, by immediately commencing to
PB shear, small grains respond to deformation with a mode of reduced micromechanical resistance and result
in lower macroscopic yield-stresses. Analogously, large grain polycrystalline structures, due to the nearly
incompressible response of PB to dilatation, exhibit a higher deformation resistance at the microstructural
level, and consequently, higher macroscopic yield-stresses. Previous experimental studies on polycrystalline
lamellar SBS BCPs [17, 18, 19] lend support to both conjectures. It was shown that the favorable deformation
mechanism was that of interlamellar shear, which all grains try to achieve by tilting toward the loading direc-
tion. Grains for which rotation was impeded resorted to kinking in order to accomplish a configuration that
would finally allow them to shear. These conjectures however, remain to be evaluated with future multigrain
FE-based micromechanical models.
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Figure 4-4: Modulus and yield strength variation versus grain size [20] for: (a) Extruded

(textured) lamellar KK31 samples (75wt% PS). (b) Cast (multigrain) lamellar KK31 sam-

ples (75wt% PS), and (c) Cast (multigrain) lamellar 4461 samples (45wt% PS).

by a gradual change of lamellar orientation. This microstructural grain-boundary feature

might be important for multigrain micromechanical modeling. It is not known whether

specific defects are related to particular grain sizes, constituent compositions, or molecu-

lar architectures. Furthermore, despite on-going efforts [51], no research yet has isolated

the influence of specific defects on the overall mechanical behavior. Thus, we cannot cor-

relate the influence of specific grain boundary imperfections with Myers' findings on the

grain-size-dependency of the mechanical behavior.

4.2 Polycrystal Simulations

Polycrystal simulations aim to investigate and predict how the interactions and collective

response of individual grains determine the effective mechanical behavior of the polycrys-

talline lamellar BCP aggregate. The analytical constitutive model was shown to predict ac-

curately the highly anisotropic stress-strain behavior of the single-crystal lamellar material

121

15

14

13

12

11

10

9



Figure 4-5: Multigrain lamellar morphology and grain boundary types: Chevron (C) and
Omega (Q) (tilt boundaries), Scherk (S) and Helicoid (H) (twist boundaries), and T-junction
(1) defects [21].

122



and will be used to assign the behavior of individual grains within polygranular finite-

element-based representative volume elements (RVEs). During tensile experiments on

polycrystalline lamellar BCP samples, it has been observed that small macroscopically im-

posed deformations are accommodated by dilatation of rubbery layers within grains which

are oriented normal to the deformation axis, and by rubber layer shear within grains ori-

ented other than normally or tangentially to the loading direction. With increasing defor-

mation, the increase in rubber layer dilation within grains oriented normal to the loading

direction results in lamellar buckling and subsequent accommodation of deformation by in-

creasing layer tilting and rubber layer shearing. On the other hand, grains originally aligned

with the loading axis exhibit minimal extensibility. For all grains, a tendency to gradually

align with the loading direction has been observed until a universal locking orientation is

attained for all grains, beyond which deformation occurs mostly by additional dilatation of

rubber layers.. These deformation micromechanisms have been schematically outlined in

Figs.4-lc and 4-2.

The objective of the polycrystalline numerical simulations presented in this chapter is

to reproduce the observed micromechanics accurately, and allow for a detailed investiga-

tion of the polycrystalline lamellar BCP response. It is shown in the results section that the

numerical polycrystalline RVEs predict microstructural evolutions which are in successful

correspondence with the fine details from the above experimental observations. In addi-

tion, stress- and strain-field information from such polycrystalline studies provide insight

as to whether simple homogenization schemes such as the Taylor and Sachs models for

polycrystalline materials can reproduce accurately the mechanical behavior of the poly-

crystal, and suggest directions for averaging schemes which are appropriate and physically

meaningfull for these, as well as for analogous, highly anisotropic materials.

4.2.1 The Polygranular Representative Volume Element

The representative volume element used to calculate the mechanical response of a poly-

crystalline microstructure is depicted in Fig. 4-6. The RVE is a simple parallelogram di-

vided into 56 identically shaped, hexagonal regions, each one of which represents a single
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grain. For the current analysis, all hexagonal grains have been identically discretized with

400 four-noded, reduced integration, plane-strain elements (type CPE4R in ABAQUS Ex-

plicit). Each grain is assigned a randomly chosen orientation with respect to the 1-direction,

and its response to loading is described with the analytical constitutive model for lamellar

BCPs. For a periodic RVE, grains that appear discontinued at one RVE boundary (face),

actually continue as mirror images across the opposite facing boundary, should be assigned

the same material orientation across the associated boundary. This assignment imposes

material periodicity. Geometric periodicity is guaranteed by imposing periodic displace-

ment boundary conditions on opposite faces of the RVE, such that the deformations these

attain are always compatible for RVE stacking. Using the notation of Fig. 4-6, the periodic

displacement boundary conditions applied on opposite facing boundaries of the RVE are as

follows:

U1IBC - U11AD U11B - U11A

U|BC - UIAD = UIB - UIA U21BC - U21AD U21B - U21A

U\DC - UIAB = UID - UJA U1ICD - U11AB U1ID - U11A (4.1)

UJA = 0 U2|CD - U2AB U21D - U21A

U11A = U21A = 0

Using the RVE of Fig. 4-6, the behavior of the polycrystalline microstructure was studied

under two loading situations: plane-strain extension and plane-strain simple-shear defor-

mation.

Plane-strain Extension: Plane-strain extension is imposed by restraining deforma-

tion in the 3-direction, prescribing a stretch in one direction, and leaving the remaining

third orthonormal direction traction-free. A hexagonal grain has inherent anisotropy, due

to its geometry. In the global frame of Fig. 4-6, loading along direction-1 translates in

loading along grain boundaries while extension in direction-2 results in loading normal to

grain boundaries. The behavior of the RVE is thus studied under extension both along the

1-direction (with direction-2 being traction-free), and along direction-2 (with direction-1

left traction-free) 7. The imposed macroscopic deformation gradients for these two loading
7The calculation results show that the layered material's anisotropy is more influencial for the RVE re-

sponse than the anisotropy induced by the grain shape. However, the considerable variation observed for
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Undeformed Polygranular RVE mesh containing 56 hexagonal grains.

orientations are, respectively:

F 1 = A el 9 el + 1 e3 0 e 3

F 2 = A e 2 0 e 2 + 1 e 3 0 e 3

(4.2)

(4.3)

The plane-strain condition is enforced in direction-3, and A is the applied stretch in the

direction of extension. The resulting stretches (contractions) in the traction-free directions

are calculated by satisfying the traction boundary conditions.

The imposed displacement on node C for a given macroscopic deformation gradient

F, follows from Eqn. 4.2.1. Noting with u1 the diplacement in the 1-direction and u2 the

diplacement in the 2-direction, extension in direction-I is imposed by:

uilc = (F1 1 - 1) -X c = (A - 1) .LO
(4.4)

ten calculated stress-strain curves indicates that 56 grains might not be a large enough grain population to

decouple these two effects.
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The stretch in the traction-free direction, F 22 , is calculated from the boundary conditions.

For the simple parallelogram RVE used here, Xc = L0 (RVE length) and Yc = H0 (RVE

height). Likewise, extension in direction-2 is applied as:

U21 C= (F22 - 1) - Yc = (A - 1) -HO (4.5)

and the stretch in the traction-free direction, Fl]_ in this case, remains to be calculated by

satisfying the traction boundary conditions.

The applied deformation, boundary conditions, and the deformed meshes for the above

two extension directions are shown in Fig. 4-7 at 20% nominal extension.

U1 III

j2

HT

Figure 4-7: Plane-strain Extension: Deformed Polygranular RVE mesh. Displacements in

the respective traction-free directions are shown in gray.

Plane-strain Simple Shear: Macroscopic plane-strain simple-shear is applied by re-

straining the through-thickness (F33 = 1 or E33 = 0) and lateral deformations of the RVE,

while imposing a macroscopic shear angle y in the transverse direction. Shear was im-

posed tangentially in two different orthonormal directions: direction-1, and direction-2.
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The respective macroscopic deformation gradients are:

F 1 = 1 el 9 ei + tan(y) ei 9 e 2 ± 1 e2 0 e 2 +1 e3 0 e3  (4.6)

F 2 = 1 el 9 el + tan(y) e2 0 e + 1 e2 ®e2 + 1 e3 0e 3  (4.7)

where -y is the applied shear angle.

The displacement imposed on node C for simple shear applied in direction-i with

macroscopic deformation gradient F 1, follows from Eqn. 4.2.1:

ui1C = F 12 -Yc= tan(7) - HO (4.8)

U21C = 0 (4.9)

Likewise, for simple shear applied in direction-2 with macroscopic deformation gradient

F 2, the imposed displacement on node C equals:

uilc = 0 (4.10)

U21C = F2 1-Xc=tan(7)-LO . (4.11)

Fig. 4-8 illustrates the boundary conditions, the imposed deformation, and the deformed

RVE meshes for the given shear direction at ~ 50% macroscopic shear strain.

4.2.2 Results

Using the derived analytical continuum model to describe the deformation behavior of

grains within the multigranular RVE allows us to investigate in detail the different mi-

cromechanical mechanisms by which individual grains respond to the imposed loading and

interact with neigboring grains. Contour plots of deforming RVEs monitor the evolving

contrours of various field quantities including the distribution in axial strain, the distribu-

tion in "'microdeformation" gradient components (mainly the normal, shear and in-plane

components of deformation gradients of the glassy and rubbery layers) as well as the lamel-

lar orientations at three different levels of macroscopic stretch. Stress-related field quan-
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Figure 4-8: Plane-strain Simple Shear: Deformed Polygranular RVE.

tities are also contoured, including the axial stress and the micro-stress components of

glassy and rubbery layers. The constitutive model maps the laminated single-crystal to a

homogenized anisotropic medium. In order to understand the underlying deformation mi-

cromechanisms behind the effective behavior of the homogenized grain, its deformation

needs to be decomposed into the deformation of its constituents8 (hence, the contours of

"'micro-deformation" components are provided). Therefore, cross-examination between

layer-specific and grain-related kinematic quantities is necessary to interpret simulation

results.

At the given macroscopic stretch levels, the calculated results are presented in contour

plots and histograms. To allow qualitative cross examinations of kinematic and stress quan-

tities, the contour plots are organized in two sets, each one of which correlates the initial,

90, and current (deformed) grain orientation, 0, to:

(a) rubber layer shear (component rF, 0n.), rubber layer dilatation (component rF 0 n.),

glassy layer in-plane stretch (component 9F,.,.), and effective grain strain in the stretch

direction, E 2 2 .

(b) rubber layer shear stress, rO-s0 n0 , rubber layer dilative (normal-to-layers) stress, rj.n0 ,

8The same change in the shape of a grain can, for example, occur through layer shear, dilation, extension,

or any possible combination of these.
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glassy layer axial (in-plane) stress, ga..,, and effective grain stress, -22, (the grain stress

component which is coaxial with the imposed stretch ).

The micromechanical observations from contour plots are verified quantitatively with

histograms that track the evolving distribution of grain orientations -as these have been

calculated at every element (integration point) throughout the RVE-, and the distributions

of effective grain-deformation quantities.

Plane-strain extension: RVE-3 is chosen to present the micromechanical details of

polycrystalline calculations. The results for plane-strain extension are given in Figs. 4-9

through 4-25. Fig. 4-9 gives the RVE's stress-stretch response to plane-strain extension in

two different orthonormal directions, and the distribution of initial grain orientations, 9o,

within the RVE. The uniform distribution of initial grain orientations results in a highly

isotropic RVE behavior. The calculated response is nonlinear isotropic with an initial lin-

ear regime and a departure from linearity at macroscopic stretch F22 ~ 1.03, beyond which

the stress response continues to increase monotonicaly, however with a reduced tangent

modulus. Rough Taylor- and Sachs predictions for the small strain response of the given

polycrystalline lamellar BCP material are superposed to the RVE's stress-stretch response.

Taylor approximations determine a volume averaged response assuming all grains are sub-

jected to the macroscopic deformation gradient. Sachs approximation computes a volume

averaged stress-strain response assuming all grains experience the macroscopic stress state.

It is already evident, and will be discussed in detail later, that simple Taylor and Sachs ap-

proximations give very wide bounds for the effective response of the given polycrystalline

material, and thus, neither one can represent the polycrystalline behavior accurately. This

motivates examining the micromechanical details of how the grains are deforming in order

to gain insight that can lead to the development of appropriate micromechanically-based

models for materials with such highly anisotropic single-crystal behavior.

Figs. 4-10 and 4-11 present deformation and stress contours from RVE-3 for extension

in direction-2 and at macroscopic stretch F 22 = 1.01. At this very early stage of defor-

mation, lamellar rotations are insignificant. Grains with initial orientations normal to the

loading direction (0, = 00, 1800), colored in the 90 -contour as blue and red, accommodate

deformation by rubber layer dilatation as can be seen from the high rFanen values in the
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Plane Strain Extension:
PolyGranular RVE-3 (56 G rains)
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Figure 4-9: Plane-strain extension - RVE3:
tial grain orientations, 60.

Stress-Stretch response and histogram of ini-

corresponding contour (see grains "A" and "B"). Likewise, the normal to layers (dilative)

stress is higher for grains oriented normally to the loading axis as seen in the roaJ-contour

of Fig. 4-11. Consistently, glassy layers in these grains experience compression as shown

by stress contours of g7, in Fig. 4-11.
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Figure 4-10: Plane-strain extension - RVE3: Strain contours at macroscopic stretch F 22 = 1.01.
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Figure 4-11: Plane-strain extension - RVE3: Stress contours at macroscopic stretch F 2 2 = 1.01.
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Grains with their morphologies initially aligned or nearly-aligned to the loading axis

(0 ~ 900; appearing green in 90-contours) show limited extension in the E2 2 strain contour

(grains "C" and "D" in Fig. 4-10), due to the high stiffenss contrast with grains of other

orientations, and act similar to hard fillers. Grains "C" even shield their highly compliant

grain neighborhood. Due to the alignment with the load, the axial stress on glassy layers,

gor, within these grains is tensile (Fig. 4-11).

Grains with intermediate initial orientations with respect to direction-2 deform mostly

by interlamellar rubber shear. Some of the highest values of shear deformation and stress

with the rubber layers (rFs.no and ro.ono, respectively) are seen within grains initially ori-

ented at 00 ~ 450, 1350 to the loading direction. Grains "E" and "F" in the contours are

characteristic.

The homogenized stress (E22) and strain (E22 ) contours in Figs. 4-10 and 4-11 show

that stress and strain values vary considerably from grain to grain throughout the RVE, due

to the high anisotropy in the single-crystal behavior. Strain is accommodated by the most

compliant grains, while stress is balanced by the stiffest ones. It is therefore physically

incorrect to map an affine, homogeneous stress or strain field to the respective fields within

the polycrystal body. Hence, the Sachs and Taylor models are inappropriate descriptions

for these polycrystalline configurations.

Figs. 4-12 through 4-15 give micromechanical contours at macroscopic stretches F 22 =

1.1 and F 22 = 1.2. It is evident from all contours that significant micromechanical restruc-

turing has occurred between a stretch of F 22 = 1.01 and F22 = 1.1. These deformation

processes are visible in the evolution of 9-contours. Also, Fig. 4-16 summarizes the in-

terrelated micromechanics, and presents among others the layer tilt angle, a, contour in

reference to initial grain orientations, 0. Grains initially oriented parallel to direction-2

experience limited or no rotation at all; their tilting is negligible in Fig. 4-16 (grains C

and D). Grains with initial orientations belonging to color-regions adjacent to green, have

gradually tilted to the 900 ± 20' regime, thus rendering the current orientations contour (9)

mostly green. Grains with inital orientations nearly normal to the loading axis whose glassy

layers were under compression (negative values for the stress component 9U.) due to the

dilatation in rubber, appear "crumpled". Grains A and B clearly undergo this microstruc-
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tural reconfiguration. Orientation contours within these grains show columnar striations

of alternating color shades, which coincide with regions of large antisymmetric tilting (see

Fig. 4-16). Microstructural buckling is a mechanism by which these grains can rotate and

increasingly accommodate deformation by interlamellar rubber shear, rather than by dila-

tion alone. This is verified by the evolution of rFs.., rFno0 , and E22 contours within these

grains. Between F22 = 1.1 and F 22 = 1.2 macroscopic stretch, both rubber layer shear and

dilatation concentrate within the narrow buckling striations. These buckled configurations

are locked in place by the neighboring material without much freedom for rotation, and

thus can continue to deform only by increasing shear and dilation. Finally, grains of inter-

mediate initial orientation have tilted towards the stretching axis, and extended their shape

by interlamellar shear (see grains E and F). Many of the prominent shear bands (circled in

Fig. 4-12) have formed through grains initially oriented at 450 or 1350 in the direction of

the rubbery layers, which effectively act as "slip planes " in lamellar BCPs.
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Figure 4-12: Plane-strain extension - RVE3: Strain contours at macroscopic stretch F 2 2 = 1.1.

(J'

E22
+7.11 e-01
+4.00e-01
+3.67e-01
+3.33e-01
+3.00e-01
+2.67e-01
+2.33e-01
+2.00e-01
+1.67e-01
+1.33e-01
+1.00e-01
+6.67e-02
+3.33e-02
+0.00e+00
-9.13e-02

ISoso

+I.12e+00
+1.10e+00
+1.06e+00
+1.03e+00
+9.88e-01
+9.50e-01
+9.13e-O1
+8.75e-01
+8.37e-01
+8.00e-01
+7.62e-01
+7.25e-01
+6.88e-01
+6.50e-01
+4.11e-01



F22=1.2

rFnono

+4.71 e+00
+3.15e+00
+2.95e+00
+2.75e+00
+2.55e+00
+2.35e+00
+2.15e+00
+1.95e+00
+1.74e+00
+I.54e+00
+1.34e+00
+1.14e+00
+9.41e-01
+7.40e-01

2 -+5.95e-02

I

rFsono
+2.79e+00O
+1.40e+00
+1.17e+00
+9.33e-01
+7.00e-01
+4.67e-01
+2.33e-01
+0.00e+00
-2.33e-01
-4.67e-01
-7.00e-01
-9.33e-01
-1.17e+00
-1.40e+00
-2.62e+00

230 162 95 28 -4

0 M

I

I

I

0I
0 45 90 135 180

Figure 4-13: Plane-strain extension - RVE3: Strain contours at macroscopic stretch F 22 = 1.2.
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Figure 4-14: Plane-strain extension - RVE3: Stress contours at macroscopic stretch F 22 = 1.1.
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Figure 4-15: Plane-strain extension - RVE3: Stress contours at macroscopic stretch F2 2 = 1.2.
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Figure 4-16: Plane-strain Extension - All RVEs: Summary of deformation micromechan-
ics at macroscopic stretch F22 =1.2.

The gradual tilting and close alignment of grains with the loading direction is mani-

fested dramatically in histograms of current grain orientations, which are taken at differ-

ent deformation instances. The histograms in Fig.4-17 illustrate the evolving distribution

of grain orientations, O's, within RVE-3 for the same instances of macroscopic stretch as

those for the presented contours. The initially uniform distribution of grain orientations

in the undeformed RVE-3 were given in Fig. 4-9. With increasing deformation the dis-

tribution of grain orientations tends to coalesce towards 900. For macroscopic stretches

higher that F 22 = 1.1 very distinct peaks have formed over the orientation spectrum: at

900, at 900 ± 250, and at 2500 and -650 with respect to direction-2. The orientation of 900

corresponds to the loading direction (axis-2). Grains initially aligned with direction-2 expe-

rience minimal rotations and only as a result of maintaining compatibility with neighboring
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grains. Between histograms, the 90' frequency is increasing, augmented by grains that ro-

tated in order to attain a higher alignment with the direction of stretching. Peaks observed

at 250'/70', and -650/1150, correspond to symmetric orientations of ±250 about the load-

ing axis (900). This trend, as described in this chapter's introduction, has been observed by

Seguela and Prud'homme [19] during tensile experiments on 3D lamellar BCP polycrys-

tals, and is also consistent with the single-crystal behavior of gradual tilting towards the

stretching direction and deformation by the shearing of rubber layers.
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The histograms in Figs. 4-18 and 4-19 present grain orientation results from all RVEs

during plane-strain extension. The results for extension along direction-i are shown in

Fig. 4-19. The exact same trend of gradual grain restructuring and tilting toward the loading

axis is being observed in 9-histograms from all RVEs, independent of the loading direction.
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Care should be taken however to reference orientations with respect to the correct loading

direction, which for extension along direction-I corresponds to the 0*/180*-orientation.

Apart from the slow shifting of oriention peaks towards the appearing preferred orientation

of ±200 to the stretching direction, there is no other variation observed in the shape of 9-

distributions for stretches higher than F22 m 1.1. This verifies that all the "restructuring" in

the granular arrangement takes place at a stretch less than F 22 = 1.1, and is manifested in

the RVE's stress-stretch response as a macroscopic "yield" point at F22 ~ 1.03 (Figs. 4-17

and 4-20). Before "yielding", much of the imposed deformation is accommodated by the

rubber layers through their dilation. Beyond this microstructural reconfiguring, deforma-

tion is accommodated mostly by interlamellar shear within rubbery layers. The reduction

observed in the tangent modulus at the "yield" point is attributed to this shift in the under-

lying micromechanical deformation mechanisms. As grains get locked in their new spatial

configurations by neigboring grains, their tilting becomes increasingly harder. Deforma-

tion is thus increasingly accommodated by rubber layer dilation and less by rubber shear,

a transition which results in the steady increase in the stress response. The polygranular

RVE calculation predictions of the underlying micromechanical processes are in stunning

agreement with the experimental observations of Fujimura and Hashimoto et al. [17, 18]

and of Seguela and Prud'homme [19] summarized in Figs. 4-1c and 4-2, despite the fact

that the experiments refer to 3D polycrystals.

The stress-stretch response of all RVEs for plane-strain extension are given in Fig.4-

20. RVE-1 and RVE-5 exhibit the most anisotropic response between the two loading

directions. Histograms for the initial grain orientations within all five RVEs are shown in

Fig.4-21. In the histograms describing the initial distributions of grain orientations within

the five different RVEs, it is apparent that RVE-I and RVE-5 have a relatively higher density

of grains with close initial alignment to the 1-axis. Their response is bound to be biased

when compared to RVEs 2, 3, and 4 -the stiffest for extension in direction-1, and the most

compliant when extended in direction-2. Grains in RVEs 2,3 and 4 are unifomly oriented,

and their stress response to deformation is isotropic.

Considering the relatively small number of grains used to discretize the RVEs, all RVEs

behave in a reasonably isotropic manner. All ten responses are similarly nonlinear, and all
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Plane-Strain Uniaxial Extension (direction-2)
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Figure 4-18: Plane-strain Extension - All RVEs: Histogram of current grain orientations,
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Plane-Strain Uniaxial Extension (direction-1)
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exhibit a "yield" point at a macroscopic stretch of ~ 1.02. The derived analytical con-

stitutive model, which described the behavior of grains does not account for plasticity ef-

fects. The "yield"-like nonlinearity stems from internal grain tilting and buckling, such

that the oveall imposed deformation can be collectively accommodated by interlamellar

rubber shear, a deformation mode of reduced stiffness for the overall response of the poly-

granural assembly. An overall grain-shape induced anisotropy is present in the stress

Plane Strain Extension:
All P olyGranular RVEs (56 G rains)

5

4

CU
0.

-1dir
'Sachs -2dir

S1.05 1.1 1.15 1.2

Figure 4-20: Plane-strain Extension - All RVEs: Stress-Stretch response of all multigran-
ular RVEs.

response of RVEs between stretching in direction-i and stretching in direction-2. With

the given arrangement of hexagonal grains in the RVEs (Fig.4-6), stretching in direction-I

corresponds to loading along grain boundaries (the bases of the hexagon), while extension

along direction-2 results in grain stretching normal to grain boundaries. Thus, the RVE is

expected to have a slightly stiffer response when loaded along direction-1. Such a trend

is observed in all ten stress-strain curves presented here. However, the current RVEs are

not discretised with a sufficiently large number of grains and the observed anisotropy is

mostly an influence of the inherent anisotropy of the single-crystal and the distribution bias

in initial grain orientations. The RVEs' stress-stretch curves are bounded in Fig.4-20 by the

Taylor (upper-bound) and Sachs (lower-bound) approximations for the polycrystal's small
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strain response. As described above for RVE-3, for highly anisostropic materials such as

the lamellar BCP studied here, these bounds are very wide and neither one can represent

the response of the polycrystal with reasonable accuracy. The Taylor prediction is very

stiff as seen in Fig.4-20, because it overweights the contribution of aligned grains, which

are found to experience little axial strain, and underweights off-axis grains which are found

to accommodate most of the imposed deformation through shear and rotation. The con-

tours of axial strain show the large distribution of axial strain in the structure, and identify

the axial strain experienced in each grain, which can be compared to that of the macro-

scopic strain to reveal the non-Taylor response. In fact, the axial strain within grains varies

considerably throughout the RVE even at very small macroscopic strains, due to the high,

orientation-dependent anisotropy of the single-crystal behavior. Assuming a uniform stress

field throughout the polycrystalline aggregate in accord with the Sachs approximation, is

equally unrealistic. The Sachs model largely underpredicts the effective stress response in

Fig.4-20, because it assumes the same stress in each grain, and therefore overweights the

deformation (compliance) contribution of off-axis grains and underweights the effect of

the aligned grains. The contours of axial stress show the stress distribution and identify the

stress within each grain, which can be compared to the macroscopic stress, further showing

the non-Sachs response.

For completeness in this discussion, the distributions of the effective grain deformation

components F11, F 2 2 , F 12 , and F21 at the previously used macroscopic stretches are pre-

sented in histograms given in Figs. 4-22 through 4-25. Similar to the large variation which

was observed throughout the RVE for the calculated effective grain stress and strain values

-E22 and E22,respectively-, all histograms demonstrate a large, and increasing with macro-

scopic stretch, variance for these kinematic quantities. The distributions of the calculated

values are, however, physically meaningful; despite the variance, the quantities are always

centered at the value of the corresponding macroscopic quantity. For the case of extension,

the shear and rotation deformation components, F 12 and F21 are normally distributed about

the corresponding macroscopic values F1 2 = F2 1 = 0. Components F11 and F2 2 on the

other hand follow a IF-type distribution (Erlang) skewed in the direction of macroscopic

stretch. The variance in all cases is increasing with increasing deformation. It is evident
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Histograms: All RVEs
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that the assumption for a homogeneous deformation or stress field throughout the RVE

cannot be a physically correct approximation for the response of this polycrystal. For this

reason, neither the Taylor nor the Sachs model can capture the polycrystalline response.

The observed distributions can be used to develop micromechanically-based "statistical"

Taylor/Sachs models, to map a statistically and micromechanically correct varying kine-

matic/stress field to grains in the polycrystalline configuration and/or hybrid Taylor/Sachs

models such as the model developed by VanDommelen et al [56] for semi-crystalline poly-

mers.

Plane-Strain Simple Shear: The results for simple shear deformation under plane-

strain conditions are given in Figs. 4-26 through 4-36. The shear stress-strain response of

RVE 3 as well as the responses of all RVEs are shown in Fig. 4-28. Also shown are the

Taylor and Sachs predictions for the initial stress-strain response to simple-shear deforma-

tion under plane-strain conditions for the given BCP polycrystal. Contour plots of strain

and stress measures from RVE-3 are shown in Figs. 4-26 and 4-27 at 30% macroscopic

shear deformation.

The stress-strain response of all RVEs to plane-strain simple-shear deformation ex-

hibits similar trends to their response during plane-strain extension. The behavior is overall

non-linear with an almost linear initial region, followed by a "yield" point beyond which

the stress response continues to increase monotonically with a reduced, tangent modulus,

which gradually increases with deformation. As captured by the contour plots, deforma-

tion micromechanics similar to those observed during plane-strain extension determine the

effective deformation and stress response of the polygranular configuration in the case of

simple-shear deformation. The initial linear response at small macroscopic shear strains

stems predominantly from rubber layer shearing combined with small rotations of indi-

vidual grains, which are mostly affine with the macroscopically applied rotation due to

the inposed shear angle. With increasing deformation, grains tend to configurations which

are favorable for interlammelar shear. This is facilitated either by the rotation of grains

whose tilting is not limited by the surrounding material, or by micromechanical deforma-

tion mechanisms such us layer buckling for those grains with otherwise limited rotational

freedom. By definition, buckling entails large rotations and enables grain shearing. This
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reconfiguration which takes place at the microstructural level is manifested macroscopi-

cally as a clear departure from linearity (interestingly occuring at the same macroscopic

shear strain for all RVEs). The two prominent shear bands which are visible through the

RVE contour plots coincide with the locations of grains that have internally buckled (ini-

tially at 1350 and thus experience compression), and grains oriented at 900, 1800, or 00,

which exhibit the least resistance to shear. Similar to the single-crystal behavior at higher

shear strains, the gradual increase in the post-yield tangent stiffness results from the grad-

ual alignment of grains with the stretching component of the macroscopic deformation

gradient (orientations approacing 450). For most RVEs the post-yield stress response is

anisotropic and depends on the direction of the imposed shear. Here, the hexagonal grain

shape is not the determining factor, but the anisotropty arises from the distribution of initial

grain orientations and the anistropy of the single-crystal behavior. Even though initial grain

orientations were uniformly distributed within most RVEs, larger grain populations should

be used for future multigranural RVEs to achieve "uniform" interactions between grains as

well, as grain interactions seem to be more influential for shear-type deformations.

As seen in the contour plots, the macroscopically applied shear deformation is accom-

modated by the collective shearing of grains whose orientations are less resistant to shear

deformation, as for example those with 900 initial orientation. Grains with 00 and 1800 ini-

tial orientations rotate in an affine manner with the bottom/top faces of the RVE (to which

they are parallel), and shear along their rubbery layers without considerable resistance.

Grains initially at 900 to axis-1 (aligned with the shearing direction) deform entirely by

shearing of their rubber layers (highest rF., component), and similarly to single-crystal

analysis results, appear as the most compliant grains. Their locations within the RVE coin-

cide with the highest E12 and the lowest E12 values in the contour plots. Grains with initial

orientations between 01 and 900 rotate in an affine manner with the faces of the RVE as

well, and their glassy layers gradually align with the stretching component of the macro-

scopic deformation gradient. Consistent with the single-crystal shear results, ga, takes

the highest tensile values for grains initially oriented at 00. This gradual alignment with

the tensile axis results in the gradually increasing post-yield tangent modulus in the RVE

response. On the other hand, grains initially oriented between 900 and 1800 experience
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compression for the given shear direction as seen from the corresponding 9u. contour. As

seen in contours from 30% macroscopic shear, these grains appear to have attained buck-

led configurations in order to achieve less compliant orientations and accommodate further

deformation by shear deformation of their rubber layers.
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Figure 4-26: Plane-strain Extension: Strain contours.
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Figure 4-27: Plane-strain Simple Shear: Stress contours.



Plane Strain Simple Shear: Plane Strain Simple Shear:

All P olyGranular RVEs (56 G rains) All P olyGranular RVEs (56 G rains)
3 3

-- dir
2.5 _2dir 2.5

'1.5 - Taylor 1.5

0.5 Sachs 0.5- Sachs -- 1dir
--72dir|

0
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

tan(y) tan(y)

Figure 4-28: Plane-strain Simple Shear: RVE Stress-strain responses; on left for RVE-3,

and for all RVEs on the right.

The contour observations are quantitatively supported by the histograms in Figs. 4-29

and 4-30, which monitor the evolution of grain orientations (O's) with increasing macro-

scopic shear. Grain orientation distributions are shown for RVE-3 in Fig. 4-29, and for all

five RVEs in Fig. 4-30. The histograms indicate a gradual shift of the distribution to the

right, due to the overall RVE rotation, and three orientation peaks: at 450, 200', and 90'

w.r.t. the horizontal. The frequency of the 90' peak is steadily augmented and remains

constant located at 900. As described before, grains aligned with the shear direction are

the easiest to shear, hence the 90' orientation seems to be an asymptotic limit (a preferable

final orientation). The peak at 2000 (or 201 w.r.t. direction-1) is due to nearly horizontal

grains ( 180'), which have rotated affinely with the imposed shear angle (and thus have

gradually shifted to higher angles). The 450 orientation is the stiffest for shear deforma-

tion. Grains that attain this orientation experience minimal additional deformation, hence

the corresponding peak at 451. It is interesting to note that the 135' orientation is be-

ing eliminated from early on, since grains with this orientation undergo compression and

buckle to attain more compliant configurations.

The corresponding histograms for shear along direction-I are given in Fig. 4-33 for

RVE-3, and in Fig. 4-34 for all five RVEs. The distribution trends are identical to those
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observed for shear along direction-2 (when grain orientations are appropriately referenced

to direction-1 (00)). Two distinct peaks appear equally spaced about 450, which is the

stiffest orientation for this type of deformation and and thus, acts again as a boundary. The

650 peak corresponds to grains with almost vertical orientations, which rotate affinely with

the entire RVE. The most compliant grain orientation to shear deformation is that of 1800

(or 00). Grains initially aligned with the shear direction (1800) do not rotate, while others

gradually tend to this favorable orientation; hence the prominent correposnding peak. The

stiffest orientation is again at 1350. Since grains with this orientation experience compres-

sion and buckle, the frequency of 1350 is strongly reduced.

As for the predicted material behavior in the case of plane-strain extension, the Taylor

and Sachs models fail to predict adequatly narrow bounds for the stress-strain response of

the polycrystalline BCP structure. Histograms in Figs. 4-31 through 4-36 quantify the mis-

match between an approximately uniform stress/strain distribution through the RVEs, and

the actual (calculated) field. The histograms present the distribution of the calculated (ho-

mogenized) deformation gradient components at four different levels of macroscopic shear

strain for RVE-3, as well as for all the five studied RVEs. As for plane-strain extension, all

the components appear distributed in a physically meaningful manner; normally centered

at the corresponding macroscopic value, however with large variances which increase even

more with increasing macroscopic deformation. It is evident that the occuring distribu-

tions cannot be treated as uniform, and therefore simplistic assumptions such as the Taylor

and Sachs models will be inefficient for materials of such highly anisotropic single-crystal

behavior.

4.3 Conclusions

The analytical continuum constitutive model was utilized in 2D finite element based calcu-

lations to study the mechanical behavior of polycrystalline lamellar BCP microstructures

under conditions of plane-strain deformation. 2D multigranular RVEs were developed,

each containing 56 identically shaped hexagonal grains -an aggregate size sufficiently large

to represent the material microstructure without being computationally expensive-, and the
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Figure 4-29: Plane-strain Simple-Shear Deformation - RVE-3: Histogram of current grain
orientations, 6, for RVE-3 at different levels of macroscopic shear deformation F21.
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Histograms: All RVEs
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Histograms: All RVEs
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constitutive model was used to describe the behavior of the individual grains according to

their specific microstructural orientation. Five different assignments were randomly cho-

sen for the inital grain orientations within RVEs, and two different types of macroscopic

deformation were applied: plane-strain uniaxial extension, and plane-strain simple-shear.

The constitutive model is micromechanically/physically based, and thus it provides

information both about the effective (homogenized) response at every material point, and

about microstructural kinematic/stress quantities within each of the BCP's constituent phases,

rubber (PB) and glass (PS). Therefore, a thorough investigation of both the macro- and

microscopic stress and deformation field within a polycrystal RVE was possible, which

motivates the development of a physically-based continuum constitutive description for

the polycrystalline BCP material, and indicates the level of micromechanical detail needed

for polycrystalline continuum modeling (whether, for example, kinking and grain size are

necessary modeling quantities). The micromechanical deformation evolution in each grain

was continuously monitored during the polycrytalline FE calculations. Deformation events

occurring at the grain level, such as layer dilatation, shear, buckling, and rotation, were

related to numerical and experimental macroscopic stress-strain characteristics such as the

"yield" point and the gradual reduction in tangent stiffness, and compared to experimental

SAXS data for the internal evolution of grain orientations. The physical validity of numer-

ical predictions was verified by counter-examining contour plots of microdeformation and

microstress fields at the length scale of individual grains. The contour snapshots show that

the constitutive model is inherently able to capture complex intergranular interactions and

characteristic local modes of micromechanical deformation -such as the synergy between

lamellar buckling and interlayer shear within a grain- in a physicaly consistent manner,

even though the analytical constitutive model is not informed about critical microstruc-

tural instabilities that drive such phenomena. Contour plots and histograms of the evolving

grain orientations agree both qualitatively and quantitatively with the corresponding trend

of gradual grain tilting towards the loading axis up to a "'locking" tilt angle that has been

observed in past x-ray studies. In addition, histograms of deformation gradient compo-

nents, as these are calculated within the inividual grains, depict distributions which were

both micromechanically realistic and in accord with the imposed macroscopic deformation
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gradient. The large, and increasing with deformation, variances observed for these distri-

butions show that the simple Taylor/Sachs models, even though successful when describ-

ing polycrystal aggregates of metals, are innaccurate for materials with highly anisotropic

single-crystal behavior.

The performance of the developed constitutive model in the presented analysis proves

its utility as a powerful and very promising tool for finite element calculations on generic

boundary value problems. However, the current model is developed for 2D plane-strain ap-

plications and should be extended to describe the mechanical behavior of a full 3D lamellar

single-crystal and polycrystal morphology. The constitutive model can be used to predict

the material behavior under different deformation histories, with RVEs containing larger

grain populations, and also up to macroscopic strains higher than in the present analy-

sis with the help of remeshing techniques. Additional experimentation on polycrystalline

BCP samples up to moderate strains is still needed to complete the study of lamellar BCP

polycrystals, as the existing literature concentrates on the large strain behavior, when the

microstructural order is completely destroyed due to layer fragmentation. In addition, and

as described in Chapter 5, length-scale issues such as the effect of layer thickness (relative

to the grain size) can now be revisited with multigranular RVEs containing both "homog-

enized" grains (grains described by the constitutive model), and grains with a discretely

modeled lamellar microstructure. Finally, apart from being used to analyze existing mi-

crostructural configurations, the constitutive model can aid in designing/suggesting mate-

rials with application-specific optimal microstructures.
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Chapter 5

Research Contributions and Future

Directions

5.1 Research Contributions

5.1.1 Constitutive Model for Single-Crystal Lamellar Structures

This thesis presents a micromechanical framework for the derivation of large-strain con-

tinuum constitutive models for hyperelastic materials with layered microstructures. The

lamellar morphology is represented by a planar bi-layer RVE, which is used to derive

the appropriate continuity and equilibrium arguments that must be satisfied at every ma-

terial point. A generic description for the strain energy function of the composite and the

resulting system of equilibrium and continuity equations, complete the micromechanical

framework.

The strain energy function was presented here as an (initial-)volume weighted average

of the constituents' strain energies. The framework of micromechanical constraints was

applied for the case of contituents with hyperelastic Neo-Hookean behavior. A analytical

closed-form solution was elaborated for the distribution of macroscopic deformation within

the individual layers. The solution for each phase's microdeformation gradient was a func-

tion of the applied macroscopic deformation gradient. The composite strain energy density

can then be fully described in terms of the macroscopic deformation gradient, and the ma-
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terial stress-strain response is simply obtained by deriving the strain energy function with

respect to the macroscopic deformation gradient. The effective composite stress response

follows as a (current-)volume weighted average of each constituent's stress contribution.

The model was implemented as a subroutine (vumat) for use within the commercial

FE-code ABAQUS Explicit. Stress and microdeformation numerical predictions from sin-

gle element calculations using the constitutive model were in excellent agreement with

micromechanical finite element calculations on a discrete 2D bilayer model of the layered

microsctructure. The constitutive model describes the stress and deformation response of

the oriented microsctructure accurately, and can also be used in multigrain calculations to

study the mechanical behavior of polycrystalline lamellar aggregates. The model predicts

the rotation and large deformations of the underlying lamellae, however, it does not account

for critical microstructural instabilitites such as lamellar microbuckling and micronecking.

To describe such microstructural transformations the constitutive model needs to be aug-

mented with appropriate criteria for the initiation of instabilities, and should account for

plasticity-related localization phenomena. Even though these are decisive mechanisms for

the large strain response of an oriented structure (single-crystal), we expect the model to be

accurate enough for numerical studies on polycrystals.

The presented framework is general and the solution precedure can be followed for any

choice of hyperelastic phase behavior. It is very possible that a numerical scheme will be

needed to reach a solution for other material descriptions. Nevertheless, the neo-hookean

behavior is an excellent approximation, pending on ajudicious choise of material properties

for the constituents.

5.1.2 Simulation of Plane-Strain Extension of Single-Crystals and Bicrys-

tals

The effect of isolated deformation constraints on the deformation behavior of lamellar

block copolymers was examined with plane-strain numerical calculations of the tensile

behavior of oriented and bicrystal strip specimens, when grip constraints are imposed at

the specimen ends.
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The simulations have shown that the imposed extension on oriented material strips is

accommodated by both shear and axial stretching, with relative contributions of shear and

extension depending on the initial orientation as well as the imposed strain level. The grip

boundary constraint and the specimen length have a very strong influence on the homo-

geneity of the deformation field. The spatial extent of the boundary influence depends

strongly on the initial lamellae orientation and the specimen length.

For the case of bicrystal specimens, three bicrystal grain arrangements were examined.

The resulting deformation patterns across the boundary and throughout the entire speci-

men are in excellent agreement with the experimental findings by Wanakamol and Thomas

[51]. The nature and spatial extent of the grain boundary influence on the deformations

of such bicrystal configurations strongly depends on the relative orientations of the neigh-

boring grains and on the nature of the imposed loading. Micromechanical observations

from the plane-strain extension tests on tensile strip specimens closely correlate to micro-

and macrodeformation modes present during the extension of bicrystal strip speciens. The

constitutive model was able to capture buckling instabilities which occur due to deforma-

tion incompatibilities at the grain boundary. A buckling criterion has not been rigorously

implemented in the model, and due to the models inherent tendency to capture lower en-

ergy deformation modes, the finite element models used to calculate the deformation field

within the asymmetric bicrystals exhibited hourglassing instabilities during the analysis.

5.1.3 Simulation of Plane-Strain Extension and Simple-Shear of Lamel-

lar Polycrystal Aggregates

The analytical continuum constitutive model was utilized in 2D finite element based calcu-

lations to study the mechanical behavior of polycrystalline lamellar BCP microstructures

under conditions of plane-strain deformation. 2D multigranular RVEs were developed,

each containing 56 identically shaped hexagonal grains -an aggregate size sufficiently large

to represent the material microstructure without being computationally expensive-, and the

constitutive model was used to describe the behavior of the individual grains according to

their specific microstructural orientation. Five different assignments were randomly cho-
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sen for the inital grain orientations within RVEs, and two different types of macroscopic

deformation were applied: plane-strain uniaxial extension, and plane-strain simple-shear.

The constitutive model is micromechanically/physically based, and thus it provides

information both about the effective (homogenized) response at every material point, and

about microstructural kinematic/stress quantities within each of the BCP's constituent phases,

rubber (PB) and glass (PS). Therefore, a thorough investigation of both the macro- and

microscopic stress and deformation field within a polycrystal RVE was possible, which

motivates the development of a physically-based continuum constitutive description for

the polycrystalline BCP material, and indicates the level of micromechanical detail needed

for polycrystalline continuum modeling (whether, for example, kinking and grain size are

necessary modeling quantities). The micromechanical deformation evolution in each grain

was continuously monitored during the polycrytalline FE calculations. Deformation events

occurring at the grain level, such as layer dilatation, shear, buckling, and rotation, were

related to numerical and experimental macroscopic stress-strain characteristics such as the

"yield" point and the gradual reduction in tangent stiffness, and compared to experimental

SAXS data for the internal evolution of grain orientations. The physical validity of numer-

ical predictions was verified by counter-examining contour plots of microdeformation and

microstress fields at the length scale of individual grains. The contour snapshots show that

the constitutive model is inherently able to capture complex intergranular interactions and

characteristic local modes of micromechanical deformation -such as the synergy between

lamellar buckling and interlayer shear within a grain- in a physicaly consistent manner,

even though the analytical constitutive model is not informed about critical microstructural

instabilities that drive such phaenomena. Contour plots and histograms of the evolving

grain orientations agree both qualitatively and quantitatively with the corresponding trend

of gradual grain tilting towards the loading axis up to a "'locking" tilt angle that has been

observed in past x-ray studies. In adition, histograms of deformation gradient compo-

nents, as these are calculated within the inividual grains, depict distributions which were

both micromechanically realistic and in accord with the imposed macroscopic deformation

gradient. The large, and increasing with deformation, variances observed for these distri-

butions show that the simple Taylor/Sachs models, even though successful when describ-
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ing polycrystal aggregates of metals, are innaccurate for materials with highly anisotropic

single-crystal behavior.

The performance of the developed constitutive model in the presented analysis proves

its utility as a powerful and very promising tool for finite element calculations on generic

boundary value problems. However, the current model is developed for 2D plane-strain ap-

plications and should be extended to describe the mechanical behavior of a full 3D lamellar

single-crystal and polycrystal morphology. The constitutive model can be used to predict

the material behavior under different deformation histories, with RVEs containing larger

grain polulations, and also up to macroscopic strains higher than in the present analy-

sis with the help of remeshing techniques. Additional experimentation on polycrystalline

BCP samples up to moderate strains is still needed to complete the study of lamellar BCP

polycrystals, as the existing literature concentrates on the large strain behavior, when the

microstructural order is completely destroyed due to layer fragmentation. In addition, and

as described later, length-scale issues such as the effect of layer thickness (relative to the

grain size) can now be revisited with multigranular RVEs containing both "homogenized"

grains (grains described by the constitutive model), and grains with a discretely modeled

lamellar microstructure. Finally, apart from being used to analyze existing microstruc-

tural configurations, the constitutive model can aid in designing/suggesting materials with

application-specific optimal microstructures.

5.2 Future Directions

5.2.1 Constitutive Model for Single-Crystal Lamellar Structures

Extension to 3D lamellar structures The analytical model was developed for 2D plane-

strain conditions and should be extended for 3D lamellar structures to study both oriented

and polycrystalline 3D configurations. Also, plasticity-related aspects of the glassy layer

deformation which lead to yielding, micronecking and eventual fragmentation of glassy

layers for large extensions were not accounted for. A material model other than the hyper-

elastic Neo-Hookean, such as the Arruda-Boyce constitutive model for glassy polymers,
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should be used to describe the elastic-plastic behavior of the glassy phase and the numer-

ical RVEs should be augmentated with fracture criteria (namely with the element deletion

capability) in order to capture plasticity related effects in the large-strain behavior of the

BCP.

Microstructural Instabilities Plasticity related instabilities become important when

loading is directed parallel to the BCP microstructure and the resulting deformation of

glassy layers is maximized. In most cases however, the macroscopically observed non-

linearities are due to layer buckling. The current model does not account for this critical

instability and should be improved with a layer buckling criterion. This can be accom-

plished either: (i) by comparing the calculated axial stress within the glassy layer, 9u.,

to a wave-length-dependent, critical axial stress value to trigger a buckling microstructural

transition, or (ii) by assuming an initally buckled microstructure. The latter approach is de-

scribed schematically in Fig. 5-1. The notional RVE is an assembly of two unequal limbs,

each one being a fraction of the total bilayer RVE's length, L. The buckling wavelength

is determined by the ratio of the chosen RVE length L, versus the RVE thickness to. Each

limb's initial orientation differs from that of the microstucture by a few degrees. With the

approximation that the total RVE length L, remains constant during deformation and the

additional constraint for compatible layer deformation across the hinge section, the RVE

geometry is fully defined. The analytical expression for the strain energy of the bilayer

RVE as a function of the macroscopic deformation gradient and the initial RVE orientation

has already been derived in this thesis. Then, the total strain energy of the buckled RVE is

the sum of the strain energies stored in each limb, weighed by the relative limb ratios. The

only unspecified quantity is the relative limb ratio of the buckled configuration, which also

depends on the initial orientation of loading with respect to the microstructure. The opti-

mal limb ratio minimizes the strain energy of the RVE. This last condition completes the

set of equations that remain to be solved for a fully analytical description of the proposed

configuration.

Parametric studies The continuum model can be used in parametric studies to investi-

gate the influence the properties and the volume fraction of constituents have on the effec-

tive mechanical response and the deformation micromechanics of layered materials, both
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Figure 5-1: Bilayer RVE for the analytical derivation of a constituve model with a layer
buckling capability.

for oriented and polycrystalline configurations. The continuum model treats the compos-

ite material as a homogeneous medium. Therefore, parametric studies can be performed

with computationally simple, time efficient, single element calculations, and do not re-

quire discrete modeling and subsequent variations in the considered layered morphology.

This is particularly convenient for materials where deformation-related nonlinearities such

the glassy layer's micronecking and buckling instabilities are either physically absent or

ignored in the analysis. Even though the analytical constitutive model does not account

for such microstructural transformations its modeling capabilities are not limited to rigid

microstructures. As observed in polycrystalline and bilayer calculations (as well as in ori-

ented material calculations not reported here), the model was inherently capable to capture

lower energy deformation modes. Thus, parametric studies for morphologies which ex-

perience the aforementioned microstructural transitions can still be carried out using the

analytical constitutive model to charectirize the material's response, in a time- and compu-

tationally efficient manner without sacrificing any stuctural information, simply by intro-

ducing appropriate mesh imperfections in the corresponding micromechanical RVE. Such

parametric studies can be used to identify, both qualitatitevely and quantitatively, how the

interlayer property-contrast and the relative layer thickness (namely the volume fraction)
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influence the deformation micromechanics or eliminate critical deformation instabilities at

the microstructural level. Parametric studies are also cardinal for the design of novel ma-

terials and microstructures. Several nano-scale motion amplifies or auxetic materials are

man-made structural arrangements that operate by exploiting certain deformation patterns.

Parametric studies using the analytical model can be used to analyze and optimize the these

mechanisms at the conseptual level before prototyping is finalized.

Structural Design Several new nano-devices, storage media, and coating layers are

essentially oriented and polygranular BCP thin films, or structures that originate from BCP

morphologies and still behave in a hyperelastic manner. The derived constitutive model can

be used in numerical simulations to predict their structural behavior under the anticipated

loading or deformation conditions during operation. Prior structural analysis using accurate

an material description in FE modeling can lead to structural improvements and reduced

production costs.

Cylindrical BCP morphologies The same framework can be applied to derive micro-

mechanically based continuum constitutive models for hyperelastic materials with cylin-

drical morphologies. The set of equibirium and compatibility constraints imposed on the

cylindrical interfaces between domains should in this case be expressed in cylindrical co-

ordinates. The resulting system of equations can yield an analytical, closed-form solution

for the non-affine mapping of the macroscopically applied deformations to the local defor-

mations within the different constituent domains. Such physically-based continuum consti-

tutive descriptions for materials with cylindrical microstructures, despite being derived for

hyperelastic behaviors, can also model the mechanical response of fiber composites by ap-

proximating the rigidity of the reinforcemnt with an appropriately chosen stiffness contrast

between the fibers and the matrix.

5.2.2 Simulation of Multigrain Configurations

Multigranular RVE Size Polygranular RVEs consisting of 56 hexagonal grains were

developed to study the response of polycrystalline lamellar BCP configurations. The re-

sults were physically consistent, however, a slight anisotropy was induced by the chosen

176



honeycomb-topology of grain boundaries. RVEs consisting of a random grain tesselata-

tions and perhaps of lager grain populations are expected to yield improved results for

the anticipated isotropic response of the polycrystalline material. Furthermore, the poly-

granular RVE was developed for 2D plane-strain calculations. A full 3D analysis of poly-

crystalline lamellar BCP materials should be performed next, using 3D RVEs with grains

randomly oriented and tesselated in space.

Continuum Constitutive Modelling of the Lamellar Polyrystal Response The poly-

granular RVE simulations have shown a large variation in the deformation and stress fields

of individual grains throughout the RVE during the deformation. Therefore, the macro-

scopic deformation and stress fields cannot be mapped affinely to the corresponding fields

in each individual grain. Conventional schemes such as the Taylor and Sachs models that

average individual grain behavior exactly in this manner are physically incorrect and there-

fore very inaccurate in their predictions for the mechanical response of the polycrystalline

aggregate. Polygranular RVE calculations describe in detail the preferred deformation

mechanisms of individual grains and how these relate to grain orientation, anisotropy and

neighboring grains, and provide insight on how these relate to grain orientation, anisotropy

and continuum neighborhood, which can be used to develop physically-correct averaging

models to map an external, macroscopically applied loading or deformation to the corre-

sponding internal field of individual grains. Hybrid Taylor-Sachs models which affinely

map macro- stress and deformation components to micro- stress and deformation fields

can be a development in this direction, or averaging schemes that predict the effective tan-

gent modulus at different levels of deformation based on the knowledge for the dominant

micro-deformation mechanicsms by which grains respond at the given strains.

Grain Size Efects The effect of the grain size relative to the layer-thickness can be

investigated with selective discrete modeling of layers within specific grains. The con-

cept is illustrated in the polygranular RVE of Fig. 5-2. The oriented lamellar morphology

of isolated grains within the RVEs is modelled discretely, while the remaining grains are

assigned the mechanical behavior of lamellar BCP single-crystals, as this is described by

the developed length-scale-independent analytical model. The aspect ratio of the lamellae

within discretized grains can be varied in a consistent manner, for instance by reducing
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layer thickness by half. The polygranular calculations will be repeated with identical trac-

tion or displacement boundary conditions imposed on the RVE in order to examine how

the grain size influences the deformation mechanisms by which the selected grains and

their neighbors will accommodate the imposed deformation/loading. In addition, by grad-

ually increasing the number of discretely modeled grains we can investigate whether the

grain size influences the effective mechanical response of polycrystalline lamellar BCPs

by comparing results with polygranular RVE calculations where the grain behavior is fully

assigned through the presented length-scale-independent constitutive model. It should be

noted that the discretely modeled grains of Fig. 5-2 had initial orientations normal to the

loading direction and responded by layer buckling and subsequent interlamellar rubber

shear, similar to their homegenized grain counterparts, whose behavior was described by

the derived analytical model. In the case however of discretely modeled grains, the buck-

ling wavelength is determined by the layer thickness, while for the homogenized grains, the

element size determines the size of opposite shearing domains within the particular grain.

Finally, augmentation with variables that describe PS-layer fracture or element deletion

are necessary to predict the onset of the "plastic-to-rubber" transition observed at the large

strain behavior of polycrystals.
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Figure 5-2: Logarithmic strain E22 contour from a multigranular RVE containing grains
with discretely modeled lamellar microstructures (circled in the Figure). The RVE is de-

formed under plane-strain uniaxial extension along direction-2.
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