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Abstract

This thesis covers a comprehensive analysis of long-range, deep-ocean, low-frequency, sound
propagation experimental results obtained from the North Pacific Ocean. The statistics of
acoustic fields after propagation through internal-wave-induced sound-speed fluctuations
are explored experimentally and theoretically.

The thesis starts with the investigation of the North Pacific Acoustic Laboratory 98-99
data by exploring the space-time scales of ocean sound speed variability and the contri-
butions from different frequency bands. The validity of the Garret & Munk internal-wave
model is checked in the upper ocean of the eastern North Pacific. All these results im-
pose hard bounds on the strength and characteristic scales of sound speed fluctuations one
might expect in this region of the North Pacific for both internal-wave band fluctuations
and mesoscale band fluctuations.

The thesis then presents a detailed analysis of the low frequency, broadband sound
arrivals obtained in the North Pacific Ocean. The observed acoustic variability is com-
pared with acoustic predictions based on the weak fluctuation theory of Rytov, and direct
parabolic equation Monte Carlo simulations. The comparisons show that a resonance con-
dition exists between the local acoustic ray and the internal wave field such that only the
internal-waves whose crests are parallel to the local ray path will contribute to acoustic
scattering: This effect leads to an important filtering of the acoustic spectra relative to
the internal-wave spectra. We believe that this is the first observational evidence for the
acoustic ray and internal wave resonance.

Finally, the thesis examined the evolution with distance, of the acoustic arrival pattern
of the off-axis sound source transmissions in the Long-range Ocean Acoustic Propagation
EXperiment. The observations of mean intensity time-fronts are compared to the determin-
istic ray, parabolic equation (with/without internal waves) and (one-way coupled) normal
mode calculations. It is found the diffraction effect is dominant in the shorter-range trans-
mission. In the longer range, the (internal wave) scattering effect smears the energy in both
the spatial and temporal scales and thus has a dominant role in the finale region.
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Chapter 1

Introduction

The science of sound propagation in the ocean has been developed extensively during the

last few decades in response to practical needs. By now acoustic theory and simulation

capabilities are well developed and can provide some general understanding and description

of how sound travels in the ocean. However, there are still difficulties which limit accuracy.

First of all, assuming that we know sound speed or the statistics of sound speed in the

ocean precisely, there are still analytical and computational difficulties of calculating the

sound pressure field and its statistics. The computational and theoretical ocean acoustics

communities are still addressing these problems. A second issue is the lack of the adequate

information about the sound speed field in the ocean as a function of position and time.

The rest of this chapter introduces the research questions addressed by this thesis, which

is mainly about quantitatively understanding the limits that ocean randomness imposes on

the practical uses of wave propagation. As a starting point, the following section introduces

the background of long-range deep ocean acoustics. The second section describes the pre-

vious work and motivation for this thesis research work. Finally, the last section states the

specific research objectives and outlines the remainder of the thesis.

1.1 Background

Acoustic propagation in the ocean is a field of a more general branch of science; namely,

wave propagation through random media (WPRM). This research area is still very active

with many open questions. During the 1960's, work on fluctuations in sound transmission

through the ocean was a largely misguided attempt to graft the concept of wave propaga-
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tion through homogeneous, isotropic turbulence (HIT)[58] onto ocean variability. By the

mid-1970's oceanographers had identified internal waves as the most important source of

variability for the case of sound propagation through the ocean. Internal wave variabil-

ity differ from HIT in several important aspects: first, the ocean environment is highly

anisotropic, having vertical scales from 10 m to 1 km, and horizontal scales of 200 m to 20

km. Second, the connection between its spatial and temporal behavior is governed by the

internal-wave dispersion relation rather than the usual HIT assumption. Third, the power

law of its wavenumber (k) spectrum is approximately k- 2 rather than k- 5/ 3 . Fourth, its

strength is a strong function of ocean depth. Beyond all the aforementioned differences, an

even more unusual aspect is that, even in the absence of fluctuation, a ray from a source to

a receiver is not a straight line; it is a curve controlled by a deterministic, depth-dependent,

background variation in wave speed called the ocean sound channel[58, 40].

This new medium provided a challenge to those interested in WPRM as applied to

ocean acoustics. A significant response to this challenge was developed over the late 1970's

by a group of scientists, whose work as of 1978 is summarized in Flattd et al 1980[58].

But all those results are applied only to relatively high acoustic frequency and short-range

experiments. In the late of 1980's, low-frequency basin-scale experiments were motivated

by the desire to measure ocean climate change, and scientists put a great amount of effort

into extrapolating the established WPRM ideas to low-frequency and long-range sound

transmission. In general, the research on acoustic wave propagation through the random

deep ocean is a twofold problem which includes two interrelated topics: sound propagation

and random media. It is safe to say that absolutely no progress has been made in any field

of wave propagation through random media in which the researchers did not have a very

strong understanding of the dynamics of the random media. Any better understanding of

either topic will be very helpful to better understand the other one.

1.2 Context and Motivation for this Study

1.2.1 Acoustic Fluctuations

The history of low-frequency, long-range propagation experimentation can be traced back to

1944 in the last century[37], when the deep sound channel was discovered. Experiments up

to the mid-1970's covered a wide range of investigation, and were confined to examine the
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measurements of parameters in the sonar equation, such as: transmission loss, reverberation,

and ambient noise[68]. In the 1970s, the main effort to understand ocean acoustic WPRM

focused on relatively high acoustic frequency and short-range experiments using broadband

explosive sources and narrowband transducers. A large amount of data addressing the

spatial and temporal statistics of fluctuations were collected[34, 31, 35, 41, 86, 40, 43, 26].

To explain observed amplitude and phase fluctuations, early efforts applied various

techniques borrowed from electromagnetic scattering theory to calculate acoustic scattering

from sound-speed fluctuations associated with homogeneous, isotropic turbulence. As ex-

plained, these theories of wave propagation in random media are inadequate when applied

to propagation in the ocean. With the realization in the early 1970s that the fluctuations in

ocean sound speed were dominated by internal waves which were neither homogeneous nor

isotropic, a significant step forward was made in predicting acoustic fluctuations. The first

success in this area was achieved for weak fluctuations by Munk and Zachariasen[71], whose

absolute calculations of variances in phase and log intensity from internal-wave effects were

within a factor of two of the available experimental results. In addition to the improvement

in understanding the ocean sound-speed fluctuation field, a key theoretical breakthrough

was the application of path integral techniques pioneered by Dashen, Flattd, and colleagues

which lead to the formulation of analytical expressions for quantities like pulse spread,

travel-time bias, and coherence as a function of vertical, temporal, and horizontal sepa-

rations. Comparisons of measurements with the theory of Flattd, Dashen, and colleagues

have been made mostly for short-range (20 to 300km) and high acoustic frequency (400 -

5000Hz)[31, 78, 75, 24].

Beginning in 1989 a series of experiments, mostly in the North Pacific, were undertaken

to study low-frequency (order 30 - 300 Hz) acoustic fluctuation (SLICE89, AET, ATOC,

Heard Island, etc)[64, 65, 66, 3, 25, 2, 84, 70].

In 1989, a 50-element, 3-km long vertical line array (VLA) was deployed in the eastern

North Pacific to receive 250-Hz broadband signals from a moored source 1000-km away

(SLICE89). In the SLICE89 experiment it was discovered that acoustic fluctuations were

much stronger than previously predicted, especially for acoustic energy which traveled

within a few hundred meters vertically from the sound-channel axis[25]. The Acoustic

Thermometry of Ocean Climate (ATOC) Acoustic Engineering Test (AET) [22, 23, 83],

conducted in November 1994 and also in the eastern Pacific, used 75-Hz broadband signals
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and transmitted to a 700-m long, 20-element VLA at a range of 3250-km. The results

were qualitatively similar to SLICE89 and the AET signals also showed surprising vertical

and temporal coherence for the early ray-like arrivals which were far in excess of the then

currently predicted values of [44]. Furthermore, the AET showed pulse time spreading to

be lower than predictions[22], and intensity fluctuations were slightly larger than predicted

by weak fluctuation theory[71, 23, 22].

It has been shown that the strongest acoustic scattering occurs near a ray upper turning

point (UTP)[581, so acoustic propagation of order 1000-km involves order 10 to 20 scattering

events. Thus, it is important to study about the physics of one or perhaps a few scattering

events, so as to better understand the aforementioned results from long-range experiments.

Previous work on single UTP propagation has been entirely at frequencies of 1000-Hz or

more (MATE Experiment[35], AFAR Experiment[40)), and is not directly related to the

low frequency cases[20].

In the AET experiment, during a six-day period, acoustic signals were transmitted to two

autonomous vertical line arrays (AVLA) with different locations; one located approximately

87 km from the source and one located 3250 km. The long-range (3250km) transmission

data has been analyzed and results are described in a series of papers[22, 23, 83]. For the 87

km transmission data (addressed in this thesis), the arrival pattern of these transmissions

consists of two time resolved and identifiable wavefronts, one with an initially downwards

ray angle and two lower turning points (LTP) and one UTP, to be referred to as ID -3,

and the other arrival with an initially upwards ray angle and two LTP's and two UTP's,

to be referred to as ID +4. Since acoustic scattering is most pronounced near the UTP

these two arrivals provide a view into the fundamental scattering physics at the first two

UTP's, which form the basis for a long range propagation theory. These two arrivals show

quite weak acoustic fluctuations and thus they allow an investigation of weak fluctuation

theory at this low frequency of 75 Hz. The analysis of this short range transmission data,

together with comparison with weak fluctuation theory and numerical simulation, will be

one objective of this thesis.

The AET signals which were recorded at bottom mounted Navy SOSUS arrays showed

surprising phenomena as well. Ray-like arrival patterns were observed at several arrays

and these arrivals could be identified with ray paths predicted using any of several oceano-

graphic databases. However, several of the identified arrivals were associated with caustics
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whose predicted deepest extension was several hundred meters above the SOSUS receiver.

In general, it has been shown that the edges of the shadow zones of the wavefront are signif-

icantly extended in depth, and in time[19, 22, 28]. This extension of the shadow zone shows

that the effect of scattering in long-range low-frequency ocean acoustic propagation is to

introduce a significant bias into the wavefront intensity pattern; that is to say the acous-

tic fluctuations cannot be considered a zero mean effect superimposed upon an otherwise

deterministic wavefront pattern.

Parabolic equation simulations using GM internal-wave sound-speed perturbations can-

not explain the depth extension of these caustics[19, 81]. This phenomenon is apparently

different than the depth extension at the pulse crescendo, and may be associated with

acoustic bottom interactions near the receiver or ocean surface interactions. Another pos-

sible explanation is that since this acoustic energy preferentially samples the upper-ocean

internal-wave field where the GM model is known to be inadequate, the effect may be caused

by non-GM internal waves, or micro-frontal activity measured by Rudnick [39]in the North

Pacific.

These zeroth order changes in the wavefront lead to ensonification of shadow zones, and

are thus of critical important for ocean acoustic remote sensing. One of the primary scien-

tific objectives of Long-range Ocean Acoustic Propagation Experiment (LOAPEX), which

was conducted between 10 September and 10 October 2004, was to study the evolution,

with distance, of the mean wavefront intensity patterns to better understand the roles of

scattering and diffraction in general. LOAPEX provided low-frequency broadband acoustic

transmissions to vertical hydrophone arrays covering most of the deep ocean water column,

and to bottom mounted horizontal hydrophone arrays surrounding the Eastern North Pa-

cific Ocean. Transmission paths to the vertical hydrophone arrays varied from 50 to 3200

km among seven stations on the main LOAPEX path. These distances provide the con-

trolled range dependency. At each of these seven stations the LOAPEX acoustic source was

suspended from the ship for typically one to two days. Two source depths were used at each

of the seven stations, 350m and either 500, or 800 m. One part of this thesis is a study of

the range evolution of the mean intensity of the wave front for the LOAPEX off-axis source

transmissions. The extension of the wavefront mean intensity pattern toward the on-axis

finale region will give information about modal energy transfer from high to low modes.

In general, a few decades of experimental work have provided a great amount of ob-
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servation data, and some of them provided a good match to theory[58, 40, 44, 78] (These

observations were made using either single hydrophone receivers or very limited vertical

aperture arrays); some do not, especially in the long-range low-frequency sound transmis-

sion data. All these results indicate the need for more theoretical and observational work.

1.2.2 Ocean Modeling

On the other hand, as mentioned previously, the improvement of acoustic prediction models

requires a correct ocean sound speed fluctuations model. In the 1970's the introduction of

the Garrett-Munk (GM)[45, 46, 71, 47] internal wave spectrum to the problem of ocean

acoustic wave propagation was a significant breakthrough. As matter of fact, almost all

work to date in predicting low-frequency acoustic fluctuations in the ocean has utilized

the GM internal-wave model and a number of acoustic propagation experiments have been

successfully compared with fluctuation theory based on internal wave dominance[58].

However, in basin scale acoustic transmissions, several considerations demand that we

examine other processes than GM internal waves. This will be one focus of this thesis,

where we will analyze observation of sound speed variabilities from the North Pacific Acous-

tic Laboratory (NPAL) 98-99 experiment. From the acoustical point of view the ocean is

extremely variable: meso-scale eddies, currents, internal waves, and small-scale turbulence

perturb the horizontally stratified character of the sound velocity and cause spatial and

temporal fluctuations of the propagating sound. Large eddies in the ocean are most fre-

quently observed near intensive frontal currents, such as the Gulf Stream and the Kuroshio.

Meso-scale eddies are also found in the open ocean. Basin scale transmission ranges involve

many correlation lengths of the ocean meso-scale field, whose characteristic scale is of order

50 km in the temperate latitude open ocean. A typical temperature anomaly for an eddy

is 1 C (or roughly 4.6 m/s sound speed). Therefore the horizontal gradients of eddies are

roughly the same as internal waves, which have characteristic horizontal scale of 10 km and

temperature anomalies of roughly 0.2*C.

The other feature of basin scale transmission that leads us to examine other models than

the GM is that the sound can have significant upper ocean interaction. The GM model was

based largely on measurements within or below the main thermocline (roughly 1500 to

400m depth at temperate latitudes). In the upper ocean, several different mechanisms can

contribute to sound speed variability. Examples are: internal tides, ocean finestructure or
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spice[56, 29], and inertial wave oscillations[52, 53, 57].

The internal tides band is interesting because it can be quite energetic and it is quasi-

deterministic, having contributions from coherent source regions (like the Hawaiian Ridge)

and from the incoherent ambient background. The tidal contribution to the acoustic fluc-

tuations has been mentioned in the literature, perhaps because of a superficial resemblance

of the phase fluctuations to tidal records[67]. Thus internal tides might play a significant

but not dominant role.

Ocean "spice", the phenomena that the temperature and salinity of patches of hot salty

water and cold fresher water compensate to yield equal density but not equal sound speed,

have been proposed as one scattering mechanisms. Recently calculations by Dzieciuch and

Munk [29] suggest that spice scattering in the upper ocean can be at-least as strong as

upper ocean internal wave scattering. The preliminary analysis of underway conductivity-

temperature-depth (UCTD) observation during NPAL 2004 SPICE and LOAPEX cruise

also shows the spice might induce a amount of scattering of the same order as internal

waves in the upper ocean[61].

The near-inertial frequency wave oscillations are usually neglected, from an acoustics

standpoint, because in the limit in which the frequency approaches the local Coriolis fre-

quency the vertical displacement goes to zero. Nonetheless, if the isotherms are tilted (for

example by an eddy) the near-inertial horizontal current will produce a sound speed effect.

Furthermore, inertial waves are known for their large shear (du/dz) and, in fact, at the

mixed layer and several hundreds of meters below, inertial frequency upper ocean shear

may play a comparable role to internal wave induced sound speed fluctuations as a source

of upper ocean acoustic scattering[15].

The oceanographic literature on deep ocean internal waves is vast, but generally of

the consensus that in the lower and main thermocline the Garrett-Munk universal internal

wave spectrum[45, 77] provides a zeroth order description of internal waves. Nevertheless,

within several hundreds of meters of the ocean surface, it is equally clear that there is a

failure of the GM model[73, 74]. Furthermore, in the upper ocean, non-GM effects could

be important in describing the depth extension of caustics at the Navy SOSUS arrays and

the axial energy infilling from an off-axis sound source, which can not be explained by the

existing GM internal wave model. An upper-ocean internal-wave model is needed so that

acoustic fluctuation predictions can be made. Currently, in the oceanographic literature
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there is no model like the GM model for the upper oceanf54j, thus direct measurements are

needed for the purpose of our acoustic propagation studies. Through observation, we hope

to quantify the sound speed variance and spectra for each aforementioned process, and also

the seasonality of spectra in the internal wave band.

1.3 Approaches and Objectives

This thesis work uses data collected in the North Pacific Ocean during the last 15 years

under the program names of Acoustic Thermometry of Ocean Climate (ATOC) and NPAL).

Although serious investigations of long-range ocean acoustic propagation began after World

War II, a hallmark experiment was the Heard Island Feasibility Test[84, 1, 63]. In that

test electronically generated acoustic signals were sent and coherently received at very long

ranges. This successful result led to the ATOC demonstration[2]. The purpose of ATOC

was to show that a small number of acoustic transmitters and receivers could adequately

characterize variations in the heat content of an entire ocean basin. The intent is to demon-

strate that travel-time tomography can be used to measure ocean temperature over ranges

of 3,000 to 10,000 km. When the formal ATOC program came to an end, the Office of

Naval Research (ONR) began sponsorship of the NPAL. This program uses the acoustic

source and receiver network established during ATOC to focus on basic research related to

long-range acoustic propagation while at the same time allowing the continuation of the

time series of climate related data.

This research consists of three parts:

The first objective is quantification of ocean sound speed variance and space-time scales

in the NPAL 98-99 environmental data due to the internal wave continuum, the near inertial

waves, the internal tides and the sub-inertial motions. In this effort, the validity of Garrett

& Munk (GM) internal wave model in the upper ocean of North Pacific, will be examined.

This is needed to assume that propagation theories based on this model are valid, or to

determine whether adjustment need to be made.

The second objective is to test the application of Rytov weak fluctuation theory as

modified by Munk and Zachariasen (MZ) [71] in this case of low-frequency sound propagating

through internal waves in the deep ocean. As we know, an important WPRM issue is to

delineate the general regimes of acoustic wave propagation in the ocean as described by
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fully saturated, partially saturated, and unsaturated propagation. Data has been analyzed

at long ranges and shows well developed fluctuations. At short ranges where fluctuations

should be weak, we have no experimental results. In this thesis, statistics of low-frequency,

short-range acoustic transmission in the North Pacific Ocean are presented for the first

time. It has been shown that the strongest acoustic scattering occurs near a ray UTP, so

long range acoustic propagation involves multiple scattering events. So our general goal is

to understand the physics of one or two scattering events, so as to better understand the

long-range experiments. The basic physics of the MZ model that is to be tested is that

there is weak, single forward scattering, and that there is a resonance condition between

the sloping ray path and the internal waves whose crests are aligned with the sloping ray.

Third, data from the recent LOAPEX are presented, analyzed and compared to simula-

tions. For the off-axis source, ocean sound speed fluctuations cause an in-filling of acoustic

energy into the finale region. The simplest acoustic observable associated with these effects

is the mean intensity, a second moment. In this thesis we aim to understand the following

questions quantitatively: Does high angle acoustic energy from an off-axis source transfer

energy to low angles in the axial region of the waveguide? What are the relative contribu-

tions from diffraction and scattering for finale region arrivals? How does this energy transfer

scale with range?

The organization of this thesis is as follows. In chapter 2, we first start to quantify

the ocean sound speed space-time scales due to internal waves continuum, near inertial

waves, internal tides and sub-inertial motions from the NPAL 98 -99 environmental data. In

Chapter 3, we analyze the space-time scales of acoustic fluctuations in the weak fluctuations

regime, i.e. from observation of 75-Hz, broadband transmissions to 87-km range in the AET

experiment. In chapter 4, we study the evolution of the mean intensity wavefront patterns

for off-axis source propagation at different range of LOAPEX data. Finally, Chapter 5

summarizes the thesis contribution and indicates directions for future research.
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Chapter 2

Observations of Deep Water,

Upper Ocean Sound Speed

Structure in the Eastern North

Pacific Ocean

2.1 Introduction

From September 1998 through July 1999 the NPAL group performed an integrated acoustics

and oceanographic experiment in which sound transmitted from the ATOC bottom mounted

source off the island of Kauai was received on a series of five closely spaced vertical arrays

(billboard array) on Sur Ridge off Monterey, California[85]. To aid in the interpretation

of the observed acoustic variability, a significant oceanographic component was involved in

the NPAL 98-99 field year, in which moored and shipboard observations of temperature

and salinity structure in the upper 800-m of the ocean were obtained. The central scientific

goal is defining the space time scales of the main thermocline and upper ocean sound speed

structure caused by mesoscale eddies, internal tides, internal waves, and other fine scale

processes. In the deep ocean, sound speed fluctuations are generally associated with the

vertical advection of local mean sound speed structure and can thus be represented by

Sdc\
Jcc = ( (2.1)
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where ( is the mesoscale or internal wave vertical displacement of a density surface (assumed

adiabatic) and (dc/dz), is the mean gradient of potential sound speed. In addition to sound

speed structure caused by vertical displacements there can also be sound speed structure

along surfaces of constant density due to differing water mass co-mingling (temperature

and salinity). This sound speed effect is often termed ocean finestructure or spice[55,

39, 29]. Oceanographic data from the NPAL 98-99 field year cannot address the relative

contributions of displacement and spice because of the stringent requirements of salinity

resolution needed for such a separation.

The oceanographic literature on deep ocean internal waves is vast (GM, Cairns and

Williams, IWEX, Munk8l, Pinkel, etc) [45, 8, 6, 77, 73] but generally of the consensus that

in the very deep, and in the main thermocline, the Garrett-Munk (GM) universal internal

wave spectrum[46, 77] provides a zeroth order description of internal waves. Recent work

by Levine (2002) [54] has also improved upon the GM model for low-frequency internal

waves in the semi-diurnal to inertial frequency band. In the upper ocean, within several

hundreds of meters of the ocean surface, it is equally clear that there is a failure of the

GM model[73, 74]. At issue here is 1) the factorization of the GM spectrum in terms of

frequency and mode number, 2) the vertical asymmetry of internal wave energy propagation

near inertial frequencies, and 3) the random phase approximation of the various wavenumber

components. The degree at which these issues with the GM model arise appears to be rather

geographically dependent (non-universal), and thus direct measurements are needed for the

purpose of our acoustic propagation studies.

The basic outline of this chapter is as follows. Section two gives a description of the sound

speed observations taken during the NPAL 98-99 field year. Section three uses the moored

observations to address the question of the partitioning of sound speed variance between

mesoscale and internal wave frequency bands. Within the internal wave band the seasonal

changes of sound speed variance as a function of depth are given, and estimates of the relative

contributions between random and deterministic internal tides is addressed. The sound

speed variance derived from XBT measurement is also presented in this section. Section

four examines frequency, vertical, and horizontal spectra of sound speed and temperature

and compares the results to the GM internal wave model. Section five has summary and

conclusions.
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2.2 The Experiment

The observations of ocean sound speed structure and current presented in this paper were

obtained in the Eastern North Pacific Ocean along an acoustic transmission path between

the Island of Kauai and Sur Ridge off Monterey California, USA (See Figure 2-1). The

acoustic path was part of the NPAL 1998-1999 field year in which 75 Hz broadband sig-

nals were transmitted from a bottom mounted source off of Kauai to a billboard receiving

array 3500 km distant on Sur Ridge. During early transmission to the billboard array,

a hydrographic cruise along the path was conducted August 15-30, 1989. During this

cruise Conductivity, Temperature, and Depth(CTD), and eXpendable BathyThermograph

(XBT) measurements were made at various horizontal and vertical resolutions. In addition

to hydrographic measurements, two well separated moorings were installed to measure tem-

perature, salinity, and pressure in the upper 800-m of the ocean for a year duration (Figure

2-1,2-2). The moorings were also equipped with 300 kHz Acoustic Doppler Current Profilers

(ADCP). Roughly a year later, an identical hydrographic cruise was carried out June 19 to

July 3, 1999, and the moorings were recovered. The moored data, and the shipboard CTD

and XBT observations form the basic data sets to be presented in this chapter, and their

detailed description is given next.

2.2.1 Moored Observations

Figure 2-2 shows a diagram of the eastern mooring configuration of sensors. The instru-

mentation consisted of upward and downward looking 300 kHz ADCP, 6 CTD units, and

10 temperature only units. The western mooring had the identical suite of instrumentation

except there was only one ADCP in the upward looking configuration. The western mooring

was located at 280 14.14' N, 1480 14.57' W with a water depth of 5335 m, and east mooring

was located at 330 30.09' N, 1330 58.65' W with a water depth of 5003 m.

All instruments were configured to measure water properties over an entire year, so the

ADCP's ensemble averaged over 20 minute intervals, and utilized range bins of 4-m. The

CTD instruments recorded every 300 s, and the temperature only instruments recorded at

a slightly higher rate of one sample every 210 s. The nominal sensor spacing was 30-m. For

subsequent analysis the temperature only records were interpolated onto the CTD recording

interval (5 minutes), and salinity values were interpolated in depth to give values where only
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Figure 2-1: NPAL 98 - 99 acoustic transmission path between the Kausi Source and Sur

Ridge receiver with North Pacific ocean bathymetry map superimposed. West and East

environmental moorings are denoted by two dark round dots. The five pieces of broad dark

line along the transmission path indicate the region with the high resolution XBT survey.

The colorbar indicates the depth range.
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Figure 2-2: The diagram of eastern mooring configuration of sensors. The East Mooring
is located at 33 30.0936N, 133 58.6451W with a water depth of 5003m. The buoy depth
is about 125 m. The dash line denotes the fans of the upward/downward looking ADCPs.
The western mooring is located at 28 14.140N, 148 14.566W with a water depth 5335m,
which had the identical suite of instrumentation except there was only one upward looking
ADCP installed.
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a temperature measurement was made. Because of mooring motion, and resultant shifts

in depth the records were further interpolated onto a uniform set of depths for Eulerian

analysis: The reference depths were uniformly spaced at 30 m steps starting at 160 m and

ending at 640 m. Sound speeds were computed from temperture, salinity and depth using

the Chen and Millero's formula. Figure 2-3 shows a several day timeseries of a few of the

temperature and salinity records from the eastern mooring to demonstrate the quality of

the data.

2.2.2 XBT Surveys

During the deployment and recovery cruises two types of XBT surveys were carried out.

For the purpose of mesoscale mapping, 750-m depth XBTs were dropped every 30-km along

the entire sound transmission path. Figure 2-4 shows the two mesoscale resolution maps

from the 750-m XBTs, and a relatively weak mesoscale field is evident, except for a few

eddies near the island of Kauai. For the purpose of small scale temperature mapping each

cruise had 5 "high resolution" XBT surveys in which calibrated 450-m depth XBTs were

dropped every 1.5 km for roughly a 120-km range. Figure 2-5 shows a few of these high

resolution surveys, and the significant small scale structure that exists.

2.2.3 CTD Data

Both cruises obtained CTD data along the transmission path at roughly 150-km resolution.

Every third CTD cast was a full water depth cast, while the other two were taken to 1500m

depth (Dickinson, Howe, and Colosi 2003). The CTD data provide important estimates

of sound speed and buoyancy frequency profiles, for the subsequent analysis of this paper.

Figure 2-6 shows the variation of the buoyancy frequency profiles along the transect.

2.3 Strength of Sound Speed Fluctuations

Of fundamental importance to ocean sound propagation is the strength of the sound speed

fluctuations that are superimposed on the background waveguide. The year long moored

records allow a separation of sound speed fluctuations based on the various ocean processes

with different timescales.
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Figure 2-3: A 10-day timeseries of temperature (upper panel) and salinity (lower panel)

records from eastern mooring. The depths displayed in the lower panel are mean depths

calculated from the pressure measurement. The temperature measurement are collected at

the depth from about 128 m to 580 m, with warm water near surface and cold water in the

deep.
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Cruise 1998: Temperture Fluctuation (C)
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Cruise 1999: Temperture Fluctuation (C)

0

-200

00400
-5

-600

10 20 155 150 145 140 135 130 125

OC) 04

0
-400 -

-600 -4

-6
155 150 145 140 135 130 125

Longitude (OW)

Figure 2-4: A 750-m depth XBT survey for the purpose of mesoscale mapping during the
IW98 and IW99 cruises. The upper three panels correspond to the IW98 cruise measure-
ment, the lower three panels correspond to the IW99 cruise measurement. For each cruise,
the left panel shows the mean temperature profile, the right upper panel shows temperature
fluctuation with mean profiles removed, and the right lower panel shows the temperature
with the climatological values removed. A few warm eddies near the island of Kauai emerges
in the left region of the right panel.
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Survey 1: Temperture Fluctuation (C)
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Figure 2-5: The first three "high resolution" XBT surveys during the IW98 cruise. The

left panels denotes the mean temperature profiles, the right panels are the temperature

fluctuations with mean profiles removed. The cruise started from the Kauai island with

heading to the north-eastern. The mean profile shows the temperature decreasing as the

ship went to north. Note that the striking contrast in the Survey 1 with cold water in the

north east and warm water in the south west.

39



Buoyancy Frequency (Cycle Per Hour)
) 5 10

- J

500 1000 1500 2000
Range ( ki)

2500 3000 3500

Figure 2-6: The buoyancy frequency profiles as a function of range between the source and
receiver, derived from the CTD casts along the transect during the IW99 cruise. The CTD
was deployed along the transmission path at roughly 150-km. The profiles are plotted with
a buoyancy frequency offset of 2 cycle per hour. The lower X-axis roughly denotes the range
from the source to the receiver.
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2.3.1 Internal Wave and Mesoscale Frequency Bands

The first separation is based on the local Coriolis parameter f and we denote sound speed

fluctuations in the bands greater-than/less-than f as the internal wave and mesoscale bands,

respectively. Figure 2-7 shows an example of a frequency spectrum of sound speed fluctua-

tions from the East mooring, where the internal wave and mesoscale bands are shown: There

is a clear spectral gap at frequencies just below the inertial frequency (the kinematical in-

ternal wave cutoff frequency), followed by a rise in low-frequency energy in the mesoscale

band. For a given depth the sound speed variances in the internal wave and mesoscale

bands are computed as follows: for the internal wave band, the year long timeseries is high

pass filtered using a cutoff frequency of f/3 and the variance is computed from the resulting

timeseries; for the mesoscale band the timeseries is low-pass filtered with a cutoff frequency

of f and the variance is computed from the resulting de-meaned timeseries. An example of

this processing procedure is displayed in Figure 2-8 with original time series data, internal

wave band data and mesoscale frequency band data in the upper,central and lower panels,

respectively. Figure 2-9 shows the resulting internal wave and mesoscale sound speed vari-

ances as a function of depth for the East and West moorings. The mesoscale fluctuation is

clearly more energetic than the internal wave band fluctuation. The maximum mesoscale

fluctuation is of order 4 m/s rms or roughly 1* C rms in temperature. This represents a

rather weak mesoscale field as is known to be the case in the Eastern North Pacific Ocean.

The internal wave band has a maximum fluctuation of 1-1.5 m/s rms with significantly

smaller values at depth.

2.3.2 Seasonal Variation in the Internal Waves Band

Seasonal variations of internal wave band fluctuations are of great interest since winter storm

forcing can have some effect on internal wave levels, especially near the inertial frequency.

Figure 2-10 shows the break down of internal wave variance by season for the east and

west moorings: Summer is September 1, 1998 - September 30, 1998, Fall is October 1,

1998 to December 31, 1998, etc.... For the East mooring a slight seasonal dependence is

evident with summer showing the smaller variation. For the West mooring, however, the

seasonal dependence is much more pronounced with summer and fall showing much reduced

variation over winter and spring.
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Frequency Spectrum of the Sound Speed in the East Mooring: Depth: 490M
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Figure 2-7: An example of frequency spectrum of the sound speed in the East Mooring at
the depth 490 m. This figure explains the separation of the mesoscale frequency and the
internal wave bands, which is based on less-than the local Coriolis frequency f (the solid
vertical straight line)or greater-than 1/3 f (i.e. the Cutoff frequency showing in the dash
vertical straight line). The significant peak denotes the semidiurnal tide. The separation of
coherent (deterministic tide) and incoherent(statistical tide)part of semidiurnal tide is shown
in this figure, which is based on extension of the power law continuum from high frequency.
The deterministic tide component is the energy above the background continuum[21].
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Time Series of Sound Speed in the East Mooring: Depth 490 m
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Figure 2-8: An example of separating the internal wave and mesoscale frequency bands from
the original time series (upper panel). A fourth order Butterworth digital high pass filter
is applied to the time series with cutoff frequency at 1/3 of the local Coriolis frequency, the
output is the internal wave band sound speed fluctuation, which is shown in the lower panel.
The mesoscale frequency bands data (central panel)is obtained by applying the low-pass
filter to the original data at the cutoff frequency of local Coriolis Frequency f.
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Figure 2-9: The internal wave and mesoscale sounds speed variance as a function of depth
over the whole mooring deployment. The left two panels shows the mesoscale frequency
band, the right two panels shows the internal wave band for both west and east moorings.
The mesoscale fluctuation is clearly more energitic than the internal wave band fluctuation.
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Figure 2-10: The seasonal variation of the sound speed variance as function of depth in
the super-inertial band: left panel - the eastern mooring; right panel - the western moor-
ing. Summer is September 1,1998- September 30,1998, Fall is October 1,1998 to December
31,1998, Winter is January 1,1999 to March 31,1999, and Spring is April 1,1999 to June
22,1999. The seasonal variation is much more pronounced in the west mooring than in the
east mooring.
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2.3.3 Internal Wave Band Model Comparisons

A comparison with a canonical model is in order here and such a model has been described

by Munk (1976)[71], which gives,

(6c2)(z) = (C,) NoN 3 (z)( 2 = (6cO2) N3 (z) (2.2)

where ts(z) represents the nominal temperature and salinity gradients, and is a function of T,

S, dT/dz, and dS/dz[58]. Here, it is set to 24.5. g = 9.8 m/s 2 is the acceleration of gravity,

CO = 1500 m/s is the nominal speed of sound in sea water, N(z) is the buoyancy frequency

profile, No = 3 cph is a reference buoyancy frequency, and (o = 7.3 m is a reference rms

internal wave displacement at N(z) = No. Using the aforementioned parameters we find

(bcO) = 0.55 (M/s) 2 . Using CTD data from the deployment and recovery cruises we can

compute N(z) and thus (6c2 )(z) profiles for Fall 1998 and Spring 1999 to compare with

the seasonally derived moored sound speed fluctuations. Figure 2-11 shows the comparison

with the canonical model. The shaded region represents a range of (ti2C,) from 0.5 to 1.0

time the standard value of 24.5, and for the eastern mooring in particular the lower value

of 0.5 appears to be the most appropriate.

2.3.4 Internal Tide Variability

In Figure 2-7 a clear semidiurnal peak (~ 2 cpd) is seen in the spectrum, and this energy

is primarily due to internal tides though it is conceivable that some of the variability may

be due to barotropic tidal currents advecting horizontal gradients of temperature and/or

salinity. For the spectrum calculation in Figure 2-7 the data were interpolated onto nearly

5.822 minute samples to yield an integer number of samples in an M 2 tidal period (12.42

hours) and thus the semidiurnal spectral peak is essentially one bin wide. The total sound

speed variance from the tide is then taken to be the variance in the one M 2 peak; this

is shown in Figure 2-12. This variance is further divided into a coherent and incoherent

part[21] based on the extension of the nearly w- 2 high frequency range of the spectrum (See

Figure 2-7 ). The variability is dominated by the coherent part of the M 2 peak energy, but

compared to the total internal wave band energy the M 2 energy is quite small.
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Figure 2-11: A comparison between the sound speed variance and canonical model, see

Equation 3.26. The variance of sound speed in the season of summer and spring from the

east and west mooring, are compared with the Munk N 3 scaling. The buoyancy frequency

profiles are derived from CTD data collected during the IW98 and IW99 cruises which were

selected near the mooring position. The shaded region represents a range of (p 22) ! from

0.5 to 1.0 time the standard value of 24.5.
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Figure 2-12: Sound speed variance due to the internal tide is subtracted from the total sound
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extension of the power law continuum from high frequency. The variability is dominated
by the deterministic tide.
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2.3.5 Vertical structure of sound speed variance derived from XBT data

Two types of XBT surveys were carried out to supply the measurement of the spatial

variation of sound speed. The XBT profile includes not only the mean structure, but also

the distortion of the mean profile by internal waves. In this sub-section, the spatial variation

of temperature and sound speed will be presented. Sound speed fluctuation here is estimated

approximately based on Chen and Millero's formula[10, 9], but with the constant salinity

of 35 (PSU). Pressure is obtained using the depth of the XBT.

High Resolution XBT Temperature Variability

In addition to the moored observations, the high resolution calibrated XBT data can provide

estimates of sound speed variability in the vertical direction. Figure 2-13 shows the observed

sound speed variance for ten high resolution surveys. Fluctuations were computed by first

averaging all casts in a given survey to get a mean sound speed profile and then this mean

profile was subtracted to yield fluctuations. The separation of internal waves and other

phenomena requires information in the time domain as well as in space. Note that in this

case we cannot separate internal wave and mesoscale band contributions because we do not

have a timeseries.

Thus these estimates must be interpreted in this light. That being said we clearly see

more sound speed variance in these XBT observations than in the internal wave band of the

moored observations. The depth structure of the sound speed variance is characterized by a

mixed layer which is clearly seen in the upper 40-50 m, followed by a two-peaked structure

and smaller fluctuations at depths below 250 m. The peak in sound speed variance at

roughly 150-250 m depth is consistent with the rise seen in the moored observations up

to the minimum moored instrument depth of 150 m. In the mixed layer the sound speed

variance is relatively small but non-zero presumably due to intrusive microstructure or spice

effects[29]. The peak in sound speed variance directly under the mixed layer is due to the

large gradient of temperature under the mixed layer and the undulations of the mixed layer

lower interface (See Figure 2-5).
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Sound Speed Variance of the Five surveys - IW98
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Figure 2-13: The spatial sound speed variance as function of depth based on the 5 high
resolution XBT surveys in IW98 and IW99 cruise. The sound speed is derived from tem-
perature, assumed constant salinity (35 PSU) and pressure (estimated from the falling time
of XBT) by using the Chen and Millero's formula.
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Figure 2-14: The spatial sound speed variance as function of depth based on the mesoscale
XBT surveys in IW98 and IW99 cruise. The sound speed is derived from temperature,
assumed constant salinity (35 PSU) and pressure (estimated from the falling time of XBT)
by using the Chen and Millero's formula.

Mesoscale XBT Surveys

The two mesoscale XBT surveys conducted during the two deployment and recovery cruises

provide "snap shot" views of the mesoscale field along the NPAL transmission path. Figure

2-4 shows these two sections, and subtracting out climatological values of temperature yields

the lower panels for Figure 2-4. The mesoscale activity is clearly isolated near the island

of Kauai and close to the California coast (California Current). Computing sound speed

variance from these two sections shows the deep (750-m) variation in Figure 2-14.
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2.4 Spectral Analysis of Sound Speed and Temperature

The Fourier analysis method is used to calculate the frequency and the vertical wavenumber

spectrum of sound speed of the mooring data, and the horizontal and vertical wavenumber

spectrum of temperature from the XBT data. Spectrum analysis shows the sound speed

and temperature fluctuation structure in the different frequency or wavenumber bands.

2.4.1 Frequency Spectra of Sound Speed

As in the last section, for the mooring data, the investigation of sound speed fluctuation

is still focused on two different bands: sub-inertial and super-inertial bands, -as shown in

Figure 2-7.

Frequency Spectra of Sound Speed in Sub-inertial Band

After removing the mooring motion effect, the frequency spectrum of sound speed is com-

puted by using moored time-series data at the 17 different depths from 160 m to 640 m

at every 30 m. A few examples of the frequency spectra of sound speed fluctuation in

this sub-inertial band are shown in the two panels of Figure 2-15 for west and east moor-

ing observation. The frequency spectra of sound speed in this sub-inertial band have very

similar shape for all the frequencies: below f the spectra drop sharply and then increase

rapidly down to the lowest resolvable frequency, which is also clearly shown in Figure 2-7.

In addition, sound speed spectra in the shallow depth have much larger variance than those

in deeper depth. This is also shown in Figure 2-9 of sound speed variance. The vertical

straight dash line shows the local inertial frequency, which is also the cutoff frequency of

the digital low pass filter. The cutoff of the spectra in the high frequency is due to low pass

filtering.

Frequency Spectra of Sound Speed in Super-inertial Band

The same spectrum estimation method is used to calculate the frequency spectra of sound

speed in the super-inertial band at different depths. A few examples of such frequency

spectra are shown in Figure 2-16 for the east mooring and west mooring, respectively.

The vertical straight dot dash lines denote the local Coriolis frequency. The cutoff of the

spectrum at low frequency is due to the high pass filtering. These measurements showed
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Figure 2-15: Frequency spectrum of the sound speed fluctuation in the sub-inertial band at

the different depths for west and east mooring. The shallow depth has larger variance than

the deeper depth. The vertical straight lines denotes the local Coriolis frequency, which is

also the cutoff frequency of digital low pass filter. 95% confidence interval is drawed in the

figures. The spectra cutoff in the high frequency is due to low pass filtering.
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that although they are different in detail, the frequency spectra of sound speed in the

internal wave band have common basic feature. First, except the internal tide frequency

and its harmonic frequency, they are almost continuous within the whole frequency range

without pronounced maxima. Second, the spectra density level decreases with increasing

frequency with an - w 2 dependence to about 20 CPD (1 CPH) where the spectral slope

begins to flatten, forming a "shoulder". At about 80- 100 CPD, there is a sharp break

followed by a rapid roll-off. Third, at the highest frequencies in the spectrum, a "shoulder"

or buoyancy bump occurs as theoretically expected at the local buoyancy frequency.In

addition, this buoyancy bump tends to move to the lower frequency region as the water

depth goes deeper, because the buoyancy frequency gets smaller. And also the buoyancy

bump tends to be more evident with increasing water depth, which may be caused by surface

mixing or contamination in the shallow depth.

Next, the spectral estimation of observation is compared with the GM model (black dash

lines). There is a sharp peak at the M2 tidal frequency which shows the most energetic

region in this super-inertial band. The obvious difference between the data and the GM

model is this coherent part of the semidiurnal tide and the bump at high frequency which

is due to the internal wave cutoff at N(z). As we know, the internal wave can only exist

in the frequency band between the local Coriolis frequency and buoyancy frequency. The

GM model describes the internal wave very well in this band, especially in the deep water

depth, while in the shallow water depth such as 160 m, the deviation from the GM model is

observable in the high frequency region. But in the east mooring data, the spring spectrum

shows deviation from other seasons at the depth of 640 meter.

Seasonal Variability of the Sound Speed Frequency Spectra in Super-inertial

Band

To investigate the seasonal variation of the frequency spectrum of sound speed, the frequency

spectrum is calculated in different seasons at different depths. The depths at 160m, 400m

and 640m are selected to show the seasonal variation at different depths in Figure 2-17.

The four-season frequency spectra at different depths of the west mooring data are shown

in upper panels. The lower panels display the eastern mooring data. The vertical straight

black dash line shows the local inertial frequency. In general, the season effects are much

more visible in the shallow water than in deep water. But at some great depths, the winter
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Figure 2-16: Comparison between GM model and the frequency spectrum of the sound speed
fluctuation in super-inertial band at different depths. The semidiurnal tide and buoyancy
bump are evident in the spectrum display. The GM model with parameter No = 3 cph of a
reference buoyancy frequency, and (o = 7.3 m of a reference rms internal wave displacement
are plotted with dash lines. GM model is normalized with the variance of sound speed to
be shown with data together. The vertical straight dot dash lines denote the local Coriolis
frequency. The cutoff of the spectrum at low frequency is due to the high pass filtering.
95% confidence intervals are narrower to compare with the ones of sub-inertial frequency
spectrum, which is due to more degrees of freedom are obtained to use shorter FFT length
to compute the super-inertial data.
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effect is still visible, such as the 640 m depth of the east mooring.

2.4.2 Vertical Wavenumber Spectra of Potential Temperature

Since the salinity data is only collected at six layers, to avoid errors introduced by too

much interpolation, only the potential temperature data is used to investigate the vertical

structure of sound speed fluctuation in the upper ocean. As we know, the spectra analysis

in the vertical direction presents a unique problem in that the random processes which

describe the fluctuations are not statistically stationary due to the nonhomogeneity in the

vertical direction. To reduce this effect due to depth variations in buoyancy frequency, one

standard technique of WKB-stretching is employed, which will render the fluctuation pro-

cess statistically stationary to the first order approximation [Bell, 1974;Pinkel,1984][4, 74].

The potential temperature is derived from the moored temperature, salinity and pressure

data. By and large, a set of 16-layer data over the whole mooring deployment period was

obtained. First, the time domain frequency Fourier analysis was applied to the potential

temperature data. Then, for each frequency band between the local inertial frequency and

local buoyancy frequency, the depth series were WKB-weighted and their first order differ-

ences in depth were taken. A Fourier transform with hanning window was employed to get

the vertical spectrum of potential temperature. Seasonal variations of vertical spectrum of

potential temperature are displayed in Figure 2-18.

In Figure 2-18 , the black line with the dot markers is GM vertical wavenumber spectrum.

Basically, the vertical spectrum of potential temperature (0) shows GM-like shape in data

from both moorings. A very sharp cutoff is shown in the scale of 150m in both two mooring

panels which show the internal wave limited band in the vertical direction.

To observe the frequency dependence of the vertical spectrum of potential temperature,

the autumn season was chosen to show the vertical spectrum in the frequency band from 1

CPD up to 53 CPD in Figure 2-19

Although the vertical spectrum is GM-like shape in different seasons, the different struc-

ture of vertical spectrum in different frequency bands is significant, which indicates the

limitation of GM model's factorization in terms of frequency and wavenumber.
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Figure 2-17:: The seasonal variation of sound speed spectrum at depths of 160m, 400m,
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Coriolis frequency. 95% confidence intervals are plotted for the summer and other seasons.
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ature for western and eastern moorings. The vertical spectrum is only estimated in the
frequency band between the local Coriolis frequency and local buoyancy frequency. The
potential temperature is derived from the moored temperature, salinity and pressure data.
WKB-stretching method is applied to reduce the non-stationary fluctuation due to the non-
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2.4.3 Horizontal and Vertical Wavenumber Spectra of Temperature

High resolution deployment of XBT during the cruises provides us a chance to observe the

horizontal and vertical wavenumber spectra of temperature. The sound speed is mainly a

function of the temperature. Accordingly the figure of the temperature shows the sound

speed structure approximatively. As shown in Figures 2-5 and 2-13, the mixing layer is

apparently shown in the upper layer with about 50 meter depth of the ocean. All the

horizontal and vertical wavenumber spectra are only estimated by using the data below the

mixing layer. All the linear trends are removed from the data before the Fourier analysis

is applied. Figure 2-20 shows the vertical spectrum of temperature which is the average

of the all five high resolution surveys' vertical spectra. The buoyancy frequency, which is

used in the WKB stretch approach, is derived from the CTD measurement as shown in the

Figure 2-6. The dash line is the GM vertical spectrum for comparison. The temperature

vertical wavenumber spectrum shows a cutoff at vertical scale of 1 to 10 meters. The vertical

spectrum of temperature gradient in Figure 2-21 shows this cutoff very clearly. This cutoff

indicates the temperature fluctuation is associated with a minimum scale just as the internal

wave fluctuation[491.

In Figure 2-22, the comparison between the XBT data and the GM model is also made.

The horizontal wavenumber spectrum of XBT is the average of the five surveys. Both the

horizontal and vertical wavenumber spectra show GM-like shape.

2.5 Summary

In order to interpret the observed acoustic variability of sound transmission in the North

Pacific ocean, a significant oceanographic measurement was conducted in the field year

August 1998 to June 1999 of NPAL experiment. We have shown some results from a study

of the in situ environmental data. Of particular interest are the space time scales of the

upper ocean sound speed fluctuation caused by mesoscale eddies, internal tides, and internal

waves and other fine scale processes. We have separated sound speed variability into two

frequency bands: greater than, or less than the Coriolis frequency. But we cannot easily

separate internal wave effects from spice due to intrusive effects. The time and space sound

speed variance, frequency and wavenumber spectrum of sound speed in different frequency

bands and seasonal variation from extensive collected data are presented, and also with the
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wavenumber spectrum of temperature to compensate for understanding spacial variation.

The result shows the mesoscale fluctuations contains more sound-speed variance than the

internal wave band fluctuation. The maximum mesoscale fluctuation is of order 4m/s rms.

The internal wave band has a maximum fluctuations of 1-1.5 m/s rms with significantly

smaller values at depth. The frequency spectra in the sub-inertial band increase as w-2

as frequency decreases; Frequency spectra in the IW band are very GM-like. The spectral

levels do vary with season, with higher energy in the winter and spring seasons. Seasonal

sensitivity diminishes with depth. In general, the comparison with the theory result shows

the GM internal wave model is a well set-up model under certain conditions (such as in this

region of North Pacific).

Internal tides provide a small contribution to the overall variance in the IW band. The

variability in the internal tides band is dominated by the deterministic tide of the M2 peak

energy, but compared to the total internal wave band energy the M 2 is quite small, which

is less than 15% contribution of total internal wave field. Therefore, the GM model may

underestimate the sound speed variance, but only by this small amount(Fig. 2-12).

The comparison of the sound speed variance from the mooring stations and the canonical

model indicates that the ratio of sound speed variance and the internal wave variance is

not universal. For example, in the east mooring, the observed sound speed variance is only

one-half that of GM spectrum (See Fig.2-11).

For XBT data, sound speed variance in the upper ocean shows two-peaked structure.

Vertical wavenumber spectrum of temperature is GM-like and k-2 .5 dependence. Vertical

wavenumber spectrum of the temperature gradient show a cut-off at 1-5m. Horizontal

wavenumber spectrum scales like k,-'- 5 .

In general, we have shown some results from the study of in situ environmental data.

These observations provide significant quantification of space-time scales of ocean sound

speed variability in both the internal wave and mesoscale frequency bands. All those results

impose hard bounds on the strength of sound speed fluctuations one might expect in the

region of the North Pacific for both internal-wave band fluctuations and mesoscale band

fluctuations.
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Chapter 3

Observations and Modeling of

Low-frequency Sound Wave

Propagation in the Random Deep

Ocean

3.1 Introduction

Due to the emphasis on ocean acoustic remote sensing and tomography in the last two

decades, observational efforts to study acoustic scattering of low frequency sound (of order

30-300 Hz) in the ocean have focused on effects at very long ranges, between 1000 and

15,000 km (SLICE89, AET, ATOC, Heard Island, etc). Several important discoveries have

been made, of which three are mentioned here. First, it has been shown that low frequency,

broadband wavefronts are partitioned into two regimes: the part of the wavefront that

is composed of high grazing angle rays or higher order modes(often termed the ray-like

region of the wavefront) showing well separated(in time and space) quasi-planar fronts

with small fluctuations in intensity and travel time, while the part of the wavefront that

is composed of low grazing angle rays or low order modes(often termed the wavefront

finale) shows a complicated multipath interference pattern with large fluctuations similar

to Gaussian random noise[22, 23]. Second, for both regimes it has been shown that the

edges of the shadow zones of the wavefront are significantly extended in depth, and in
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time[19, 20] [26]This extension of the shadow zone shows that the effect of scattering in long

range low frequency ocean acoustic propagation is to introduce a significant bias into the

wavefront intensity pattern; that is to say, the acoustic fluctuations cannot be considered a

zero mean effect superimposed upon an otherwise deterministic wavefront pattern. Finally,

in spite of the large fluctuations in the wavefront finale the time stability of the phase is

surprisingly large and close to that of the wavefront region[22, 79, 30. Observed coherence

times are between 5 and 15 minutes.

It has been shown that the strongest acoustic scattering occurs near a ray upper turning

point (UTP)[58] so long range acoustic propagation of order 1000-km, involves of order 10

to 20 scattering events. Previous work on single UTP propagation has been entirely at

frequencies of 1000 Hz or more (Worcester (SD),Ewart (MATE), Flattd (AFAR))[86, 35, 42],

and it is not directly related to the low frequency cases. So, we present an analysis of

acoustic transmission data obtained in the Northeast Pacific Ocean as part of the ATOC

project's Acoustic Engineering Test (AET)[22, 83]. Here 75-Hz signals with an bandwidth

of 30 Hz (3 dB) were transmitted to a range of 87 km, and were received on a 700-m long

20 element hydrophone array. The arrival pattern of these transmissions consists of two

time-resolved and identifiable wavefronts; one with an initially downwards ray angle and

two lower turning points (LTP) and one UTP, to be referred to as ID -3, and the other

arrival with an initially upwards ray angle and two LTP's and two UTP's, to be referred to

as ID +4. Because acoustic scattering is most pronounced near the UTP these two arrivals

provide a view into the fundamental scattering physics at the first two UTP's.

The scattering physics model we consider is due to Munk and Zachariasen (MZ) (1976)[71]

who modified Rytov's weak fluctuation theory of optical propagation through a turbulent at-

mosphere, to the considerably more complex problem of ocean acoustic propagation through

internal waves. The basic physics of the MZ model that is to be tested is that there is weak,

single forward scattering, and that there is a resonance condition between the sloping ray

path and the internal waves whose crests are aligned with the sloping ray. The resonance

condition causes an important selectivity in acoustic/internal wave interactions such that

rays with steep grazing angles can be too steep to interact with the low frequency part of

the internal wave field. To test some of the assumptions of the MZ theory, and to help

interpret the observational results we also perform parabolic equation (PE) Monte Carlo

simulations for both broadband and narrow band cases.
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Briefly, our results show that observed intensity fluctuations are very weak, and thus

consistent with the application of a perturbative theory like the MZ theory. Scintillation

index (SI), and variance of log-intensity (g2) over the 6 days of the observations give SI =

0.04 and aoj, = 0.8dB for ID -3 (one UTP), and SI = 0.4 and aLnI = 3dB for ID +4 (two

UTP's). Most importantly however are the timescales of the observed intensity variability;

that is the observed frequency spectra of intensity for ID's -3 and +4. The spectra show

that the steeper grazing angle arrival -3 shows much less low frequency variability than the

lesser grazing angle arrival +4, which is order of magnitude consistent with the MZ physics

of the ray/internal wave resonance. We believe that this the first observational evidence of

this resonance. The space scales of intensity variability are also of interest and we find that

the vertical wavenumber spectra of intensity also show order of magnitude agreement with

the MZ theory.

Regarding results for phase we are only able to examine phase over very short timescales

between 1 minute and 40 minutes, because of gaps in the transmission schedule where phase

could not be tracked. This problem clearly does not exist for the intensity observations.

Thus phase variances are very small of order 0.6 rad rms, and roughly the same for the

two ID's. Comparisons with the MZ theory for the frequency spectrum of phase are poor

because the observation timescales were marginally in the band where internal waves exist.

Regarding vertical wavenumber spectra of phase, however, the agreement between the MZ

theory and the observations is very good.

The outline of this chapter is as follows. In section 2 we describe the observations

and the processing needed to obtain the phase and intensity data used in our analysis. In

section 3 we present the various moments of phase and intensity, as well as the frequency and

wavenumber spectra. The MZ theory and its comparisons to direct numerical simulation are

presented in section 4 and section 5 compares observations and theory. Section 6 summarizes

the results.

3.2 AET Experiment and Reduction of the data to Phase

and Amplitude

The Acoustic Engineering Test (AET) for the ATOC program was conducted in the Eastern

North Pacific Ocean from November 17,1994 through November 23, 1994[831. The acoustic
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source was suspended from the research platform FLIP which was moored roughly 400

miles south-southwest of San Diego with coordinates 3102.050' N, 123035.420'W, in water

more than 4000m depth (Fig 3-1). From the sound channel axis(650-m depth) the source

transmitted phase modulated signals' with a center frequency of 75 Hz to two 700-m long

20-element autonomous vertical line array(AVLA) receivers; one located 3250-km distant

off the island of Hawaii and the other (the topic of this chapter) located 87-km distant and

to the South of FLIP (Fig 3-1). The receiving array at 87km range was located at 30014.798

'N latitude, 123*36.4906'W longitude and spanned the depth range 900 to 1600-m.

During the AET experiment, a typical transmission sequence consisted of 40 consecutive

broadcasts of a 27.28 second long phase coded signal2 , which after pulse compression pro-

cessing yielded a 40-point time series of the evolution of the time front. Figure 3-2 shows two

examples of the timefront obtained by pulse compression of two different 27.28 second trans-

missions. Thus, every 27.28 seconds we obtain a record of pressure as a function of depth z,

and as a function of travel time T, so we write the observed acoustic pressure as p(z, T, t)

where geophysical time coordinate t has its smallest increment in units of 27.28 seconds.

After the 40 consecutive transmissions, there would be a 2 or 4 hour quiet period after which

another set of 40 transmissions would be made. Over the 6 days of transmissions, the only

exception to this pattern was that on alternate days, two 80 transmission sequences were

done, followed by a 4 hour quiet period[83]. Thus in total there were 3 x 12 + 3 x 8 = 60

short sequences with 40 transmissions each, and 6 long sequences with 80 transmissions

each. Because of various technical problems, however, we found that only 24 of the 60 short

sequences were usable, and only 3 of the 6 long sequences were usable. Data were deemed

unusable if there were any hydrophone channels that were corrupted or missing over the

entire 40 or 80 transmission sequence.

3.2.1 Ray Identification

Examination of Fig.3-2 shows two high intensity wavefronts sweeping by the vertical receiver

array. At later travel times weaker bottom interacting arrivals are seen, but these will not

be considered in the present analysis. Using the sound speed profile obtained from CTD

casts during the deployment and recovery of the receiving arrays, a ray trace calculation was

'The source level was 260 W(195 dB re 1psPa at 1 m).
2The phase modulation was encoded using a linear maximal-length shift register sequence containing

1023 digits. Each digit was then 26.667 ms in duration, and each sequence period was 27.2800 s long.
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Figure 3-1: Map showing the location of the AET experiment in the North Pacific. The

research platform FLIP occupied the source location and two 700-m long vertical receiving

arrays were located at the NVLA and FVLA positions. Also shown are sound speed and

buoyancy frequency profiles derived from CTD casts at the deployment and recovery of

NVLA. A canonical fit (red) to the measured N(z) profile (blue) is also shown. The mixed

layer depth is between 25 and 35 meters.
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Figure 3-2: Two samples of sound pressure field recorded in the Near VLA. A 40 dB dynamic
range is displayed in the figure. The travel time is relative time to the time when recording
is started. The unit of plot is dB re max.
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Figure 3-4: This plot is showing the eigen ray trace and time front for the 87 km range
transmission and near VLA receiver configuration. The first two arrivals are corresponding
the ray index -3 and ray index 4.

carried out (Fig. 3-3). The ray calculation (Fig. 3-4) identifies the first arrival in Fig.3-3

with ray paths having initial downward angles and passing through 3 turning points; one

UTP and two LTP's. This early arrival is then given the label ID -3; the minus sign to

denote the initial downward ray angle, and the 3 to denote the total number of turning

points. Similarly the ray calculation (Fig.3-4) identifies the second arrival with a group

of rays with initial upwards angles and passing through 4 turning points; 2 UTP's and 2

LTP's. This arrival is then given the label ID +4.

Table 3.2.1 gives information about the depths and ranges of the UTP's for the two

arrivals. Wavefront ID -3 has all of its rays turning in a very small depth region between

90 m and 130 m, and very close in range to the second UTP of ID =4. The mixed layer
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Table 3.1: Upper turning points depths and horizontal positions for ID's -3 and +4.

Index -3 Index 4
UTP First UTP Second UTP

Depth Range(m) 90-140 225-350 225-350
Horizontal Position (km) 44 - 46 5 - 6 52 - 55

during this experiment was very shallow of order 20-30-m depth, so ID -3 is not impacted

by the mixed layer, other than perhaps by diffractive, Fresnel zone effects. Wavefront ID

-4 has a much more broad distribution of UTP's, spanning the depth range of 225-350-m.

3.2.2 Arrival Selection and Processing

Given the clear ray identification just described, we now seek to isolate the acoustic fluc-

tuation associated with each ID. We do this by extracting the amplitude and travel time

at the peak of the arrival at each depth. This is a fairly straight-forward procedure since

the two wavefronts are well separated in time over most of the depth region. However,

near the shallow end of the receiving array the arrivals do interface with one another and

thus we implement a Maximum-likelihood estimator (See Appendix A) to extract the peak

amplitude and travel time information of the two arrivals. The mathematical model for the

received pressure signal at each hydrophone is

2

r(T) = 1 A 3E(T - T 3)cos(w(T - T) + 63) + n(T) (3.1)
j=1

where Aj, T, and 6, are the amplitude, travel time, and phase of the two arrivals that

are to be estimated. The pulse center frequency w is 75 Hz. The function E(T) is the pulse

envelope, which is assumed known, and n(T) is noise. The envelope of the pulse for a single

path is estimated as follows. In regions where the two arrivals do not overlap, a travel time

Ti (z, t) is established from the peak of the envelope, and then the observed pulse envelopes

are stacked and average so that

1/2

E(T, ID) =< I(T, ID) >1/2= N:N I(T - T(zk, ti)) (3.2)

where I(T - T(zk, ti)) is the square of the absolute value of the complex envelope and Nk
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Figure 3-5: The estimated pulse shape for two arrivals.

and Ni are the number of hydrophone depths used and number of transmissions used. In

Eq. 3.1 ID = -3 when j = 1 and ID = +4 when j = 2. Figure 3-5 shows the estimate

of < I(T, ID) > for the two arrivals. Note that the pulse envelope E(T, ID) is given a

unit maximum value. Figure 3-6 shows the selected arrivals for the two wavefronts for

one transmission, and one can see that where the two branches of the time front start to

interfere the selected arrivals are no longer strictly at the maximum value of the timefront

intensity.

The maximum-likelihood estimator was applied to all the pulses yielding a set of complex

demodulates of the form

aP(z, t, ID) = A(z, t, ID)eiO(z,tID) (3.3)

where A(z, t, ID) are the arrival amplitudes from Eq. 3.2, and the phase is derived

from the travel time and phase estimate in Eq. 3.1 giving #(z, t, ID) = 9, - wTj(z, t).

The acoustic intensity variability is studied through the data A(z, t, ID). However the data

need to be re-normalized to remove any effects of hydrophone calibration variation and

non-stationarity. Each hydrophone series is normalized to have unit mean intensity, that is

1N, N1
< A 2 > (z,ID) =< I > (z) = 1- N A2(Zrkl;ID) 1 (3.4)

N k=1 1=1

Figure 3-7 shows the RMS intensity as a function of depth for the two arrivals before

normalization. There are some clear changes in the RMS intensity along these fronts before
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Figure 3-6: One example of resolving two arrivals by using maximum likelihood estimation
method; This is transmission of year day 326, 10:00 of UTC time. The unit of plot is dB re
max.

normalization. Because of mooring and source motion issues which will be discussed in the

upcoming sections the phase # will also need to be corrected.

Phase Unwrapping

Over the consecutive 40 and 80 transmission intervals a smooth unwrapped phase as a

function of depth and time can be formed. However, because of the 2 or 4 hour time

gaps between the continuous transmission intervals phase cannot be tracked between these

periods. Thus for notational simplicity we define the time coordinate t as t = r+r where the

values of r are only defined over the continuous transmission intervals(i. e. 0 K r < 39 x 27.28

s, or 0 K r K 79 x 27.28 s; 0 K 1 < 39, or 0 K 1 K 79). The variable rl then denotes the

beginning time of each continuous set of transmissions. The notation for the complex

demodulates then becomes

V)(z, r, 1, ID) = A(z, -r, 1, ID)e(zT~lID) (3.5)

While the phase 4 is defined in terms of the travel time we choose to remove this continuous

variability and express # only on the interval 0 < q5 K 27r. A smooth unwrapped phase func-

tion 0., is determined from # for each transmission sequence ri. The unwrapping is carried

out such that the mean square difference between gradients calculated from the wrapped
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Figure 3-7: The RMS of intensity as function of depth for two arrivals.

and unwrapped phases are minimized[481. Using this smoothness criterion, however, means

that the unwrapped phase function is not necessarily different from the wrapped phase by

an integer multiple of 27r, but we find that in practice the result are extremely good since

the acoustic variability is rather weak. A discussion of the accuracy of the technique is

given in Colosi et al 2005[17].

Figure 3-8 shows the wrapped and unwrapped phases (second and third rows) for the

two arrivals for one transmission sequence. Wavefront ID -3 is shown on the left and the

wrapped phases reveal a rather large vertical gradient of phase due to the tilting of the

wavefront as it encounters the vertical receiving array. The other wavefront ID +4 on the

other hand has very little vertical gradient and is clearly sweeping past the array at nearly

normal incidence (see Fig. 3-2).

Source and Mooring Motion

Now the phase variability that we observe, for example in Fig. 3-8, is not all due to

acoustic scattering. The source, while moored from FLIP, experienced some large horizontal

deflection of order 100-m with a timescale of hours to days. This motion was tracked

every hour using a long baseline navigation system[83]. Similarly, the moored receiver

array experienced horizontal deflections, as well as variable tilt and perhaps some bending.
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While the receiver array was designed with a long baseline navigation system to measure

array deformation this system failed leaving only a single point on the mooring that was

navigated[83}. Thus, because the source was only tracked every hour, and because the

mooring only had one point of navigation twice an hour, we are unable to correct the

unwrapped phases using this information; so we taken an empirical approach. To correct

for mooring/source motion and mooring tilt, a least-square fit to the phase function is done

to eliminate linear trends in both depth and time r[17]. Thus, for each transmission interval

Tr the linear trends are removed leading to a corrected phase function #c(z, r, 1, ID) =

# T(z, 1, ID) - #,,(z, r, 1, ID). In the bottom row of Fig. 3-8 the effects of removing the

trends are shown, revealing much smaller phase variability. In the subsequent analysis, the

corrected phase #, will be used to quantify acoustic variability.

3.3 Observed Phase and Intensity Fluctuations

In this section the corrected observed phase 0,(z, r, I; ID) and amplitude A(z, r, 1; ID) are

analyzed. First we present calculations of various moments of these fields, and then in the

subsequent sections the frequency and vertical wavenumber spectra of these observations

are examined.

3.3.1 Moments

The calculation of various moments of the phase and amplitude is somewhat complicated

by the irregular sampling in the AET. As was previously mentioned, phase could only be

quantified over the continuous transmission periods of roughly 20 and 40 minutes duration;

that is to say we had no way of establishing the relative phase between two transmission

intervals separated by 2 or 4 hours. Amplitude variations, however, do not have this prob-

lem. Thus, the moments we compute for phase will be for the two observation times of

20 and 4 minutes, while the moments we compute for amplitude will be for the 20 and 40

minute observation times as well as the whole 6 day observation time.

76



I'I (dB re max) JWJi (dBre max)
0

1000

-1200 -

) 1400

00
1400 -

1600 (rad) $ (rd)
10002

E.

1200

.. 0
1400

160 O (rad) $c (rad)

10005

E

- 1200 - ea me a - e . .

0C

1400 -

1600

0 5 10 15 0 5 10 15
T (min)- Index 3 ,(min) - Index 4

Figure 3-8: This figure displays the intensity and phase fluctuation as function of time (x

axis) and depth (y axis) of two wave fronts in 20-minute transmission. The first column

corresponds to ID -3 arrival, the second column corresponds to ID 4 arrival. The first row is

the intensity fluctuation in unit of dB re max. From the second to fourth row are wrapped

phase, unwrapped phase and unwrapped phase with correction of mooring/source motion,

respectively.
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Table 3.2: RMS phase,
transmission.

intensity, log-amplitude, and scintillation index of 20 and 40 minute

< 02 > 126 <2 > 2 <X2 S
(rad) (dB)

20-Min ID -3 0.4397±o.oo4 0.2558± 0.05 0.0044±o.002 0.0012± 0.00013
ID 4 0.4406±0.002 0.2581±0.07 0.00540.0007 0.0014±o.ooois

40-Min ID -3 0.6101±o.ol 0.3820±o.lo 0.0089±o.ool 0.0023±.0003
ID 4 0.6841±0.005 0.4024+0.054 0.0134±o.oo4 0.0038±o.ool

6 day ID -3 0.7972±0.07 0.0439±0.013 0.0095±0.002
ID 4 _ 3.0585±0.2 0.427±0.05 0.1338±0.016

Phase

The variance of phase is computed in the time direction and is averaged over all hydrophone

depths z and all transmission sequences 1. To be specific we compute

SNz N1 Nr

uj(ID) = NZNL [±E(#c(zkrllID) - N(zklID))2]
k=1 1=1 j=1

1Ntau
(zk, l, ID) = c Ntau

j=1

(3.6)

(3.7)

where N_ = 20, and N = 30 and N, = 40 for the 20 minute observation time, and

N, = 3 and N, = 80 for the 40 minute observation time. Table 3.2 shows the rms phase

for the two arrivals for the two observation times.3 As would be expected, the variance

increases for the longer observation time, since the phase has been able to change over more

of the ocean's broadband of variability. Interestingly there is very little difference in the

phase variability for the two arrivals. Apparently, the one shallow UTP for ID -3 has the

same effect as two deeper UTP's for ID +4. This is consistent with the results of Flatte

and Stoughton (1988)[44] who find that phase variability for a timefront at fixed range is

almost independent of wavefront ID.

3 The error-bars are estimated by using the variations of estimates at each depth.
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Amplitude

Two different measures of amplitude variability were examined, which are scintillation in-

dex(SI), and variance of the log of intensity (t = lnA2). These measures are defined as

SI = (12) (1)2 _ 1, U2 = (t2) _ (L)2. (3.8)

As before these moments are computed over specific observation times, but for amplitude

we can now add the 6 day observation time. Specifically for the 6 day observation time we

compute

1 Nr N

(12 )(z; ID) = N N N A 4 (z,rk, 1; ID) (3.9)
k=1 1=1

1Nz
SI(ID) = g E(I 2 )()/(I) 2 (z) - 1 (3.10)

j=i

1 ' Nz N N T(.1

1 N N

(zk, ID) N Z t(zk, rj, 1, ID) (3.12)
1=1 j=1

For the shorter observation times the calculation proceeds along the lines as was described

for phase. Specially we compute,

1 Nr

(12)(z, 1; ID) = r A4(z, Tk, 1; ID) (3.13)
k=1

1Nr
(I)(z, 1; ID) = A2(z, rk, L; ID) (3.14)

Nk=1

1 NI NZ (12 )(zj, l) - (1)2 (zj l)SI(ID) = NN (I)2 (z, ) (3.15)

NI N. [ N]r
011 (ID) N1N(b(zk, rj, 1, ID) - T(Zk, 1, ID)) (3.16)

1=1 k=1 j=1
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1 Nr
i(zk,l, ID) = 1 z*,ri, 1, ID) (3.17)

T j=1

Table 3.2 displays the estimates of SI and a, for the two arrivals. Again, we see that as

observation time is increased the variance increases, with the largest increase occurring from

the 40 minute observation time to the 6 day observation time. Comparing the two arrivals

ID -3 and ID +4, we see that the intensity fluctuations for the short observation times are

very similar, but at the 6 day observation time ID +4 is significantly larger than ID -3;

0.8 dB rms compared to 3 dB rms! This important result suggests that the timescales of

variability of the two arrivals are different, with the ID -3 showing much less low frequency

variability than the ID +4. This result will be examined in more detail when the frequency

spectra are presented. In Fig.3-9, the time series of the two arrivals' intensity show that

the second arrival (ID 4) has much more low frequency variability than the first arrival (ID

-3) of these three hydrophones at different depths.

Finally calculation of the variance of log-amplitude(x = InA) reveal that SI ce 4(X2 ) a

result that is valid if the amplitudes A obey a log-normal distribution.

3.3.2 Frequency Spectra

Now we seek to decompose the temporal fluctuations of phase and amplitude in terms

of the contributions at various frequencies. Regarding the observable of amplitude, we

compute spectra for the log-amplitude x = mnA, since this is the quantity predicted by

the MZ theory. The calculation is carried out by computing the frequency spectra at each

hydrophone depth and for each transmission sequence 1, yielding $O,x (w; z, 1, ; ID). These

spectra are computed by Fast Fourier Transform (FFT) of either 40 or 80 time points with

27.28 s separation. Before FFT the data are de-trended, and windowed with a Hanning

function. To obtain the final spectra estimate we average over all hydrophone depths and

transmission sequence giving,

N1 Nz

S,x(w; ID) N N1  ' Sx(w; zk, 1; ID) (3.18)
1 =1 k=1

This procedure is carried out separately for the 20 minute and 40 minute observation

times.

For the log-amplitude data we have information at longer timescales and thus lower
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Figure 3-9: Figure shows the time series of intensity of hydrophone 1, 10 and 20 during 6
days observation period with the depths of around 900 m, 1250m and 1600m, respectively.
Note these are irregular sampled data of transmissions followed by different temporal gaps
. The dot marks denote the sampling points.
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frequency. However, the data are irregularly sampled and thus this feature presents some

difficulty in carrying out spectral analysis. After experimenting with several methods, we

found that the best approach was to cubic spline interpolate the data onto a uniform grid

with 4 hour time separation. Thus the 30-20 minute transmission periods over the 6 day

experiment were interpolated onto 36 points to carry out the spectral analysis. Here the

spectra were computed over the 36 sample, 6 day period for each hydrophone depth, and

as before the data was de-trended and Hanning windowed before FFT. The final spectral

estimates were obtained by averaging over depth.

Figure 3-10 shows the frequency spectra of phase and log-amplitude for the two wave-

front arrivals. A maximum local buoyancy frequency of 6 cph and the local Coriolis param-

eter f are shown with vertical green lines; this is the internal wave frequency band. The

phase spectra show nearly an w- 3 slope over the entire observed frequency range with a

slight flattening of the slope at the buoyancy frequency. The observed spectral slope shows

why the longer observation time of 40 minutes resulted in more phase variance relative to

the 20 minute observation time. In addition the spectra for ID's -3 and +4 are very similar.

Clearly the time sampling of the data does not allow us to separate the internal wave effect

from other ocean process.

Regarding the spectra of log-amplitude, the high frequency end of the spectra show a

flattening of the spectra at the highest frequencies which is likely due to noise. At about

10 cph the spectral energy increases rapidly. Again, the increase in spectral energy with

decreasing frequency explains why the 40 minute observation times had more variance than

the 20 minute observation time. As with phase the high frequency end of the spectra are

very similar for the two wavefronts, and the time sampling is really marginally sampling

the internal wave band. The low frequency end of the spectra show very different behavior.

Here wavefront ID -3 shows much less low frequency energy than ID +4, thus confirming

the result from the analysis of intensity variance. Some of the additional intensity variance

comes from the internal wave band(i.e. w > f), but some also comes from the so-called

sub-inertial band (i.e. w < f).

3.3.3 Vertical Wavenumber Spectra

Finally, we examine the spatial structure of the phase and log-amplitude fluctuations using

the vertical wavenumber spectrum. The wavenumber spectra are computed for each time -r
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Figure 3-10: Frequency spectra of log-amplitude (left panel) and phase (right panel) of
Index -3 (red) and Index 4 (black) arrivals. The green straight vertical line denotes the local
buoyancy frequency around depth 160m, which is 6 CPH, and the local Coriolis parameter
f. The gap in the observed log-amplitude spectra is due to irregular sampling.

and 1, yielding an estimate S4,,(kz; r, 1; ID). As before the vertical data are first de-trended

and then Hanning windowed before FFT. To obtain the final spectrum an average is done

over all times r, 1 such that

1 N N,

Srx(kz;ID) = N N E Eqx(kz; 7j, l; ID) (3.19)
1=1 j=1

Here both the 20 and 40 minute data are combined in the ensemble average. The

resulting vertical wavenumber spectra are shown in Fig. 3-11. Regarding phase spectra,

both arrivals show a roughly k.-3 shape, with the wavefront ID +4 revealing somewhat of

a roll off at low wavenumber. The spectra of log-amplitude for the two arrivals, however,

are markedly different. Wavefront ID -3 shows a rather flat wavenumber spectrum, while

ID +4 shows a steeper spectrum with a roll off around k. = 3 cpm.
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Figure 3-11: Vertical wavenumber spectra of phase (right panel) and log-amplitude (left
panel) of Index -3 (red dot lines) and Index 4 (black solid lines) arrivals.

3.4 Modeling

Here we examine a hierarchy of three models to describe the acoustic variability seen in

the AET. Here we assume that the fluctuating ocean sound speed field is dominated by

internal waves obeying the Garrett-Munk internal wave spectrum which is validated in part

in chapter 2. The simplest model is based on the Rytov theory of Munk and Zachariasen.

The next model is a narrowband parabolic equation(PE) Monte Carlo model, and the most

complex model is a fully broadband PE Monte Carlo Model.

3.4.1 MZ Theory and Predictions

The Rytov approximation, which is a smooth perturbation solution to the stochastic Helmholtz

wave equation, is valid only in the weak scattering region for the wave propagating through

random medium. It has been successfully applied to a case of electromagnetic wave propa-

gation in the atmosphere when the scintillation index is less than 0.5(Flattd 1990)[59, 60].

AET experiment result shows scintillation index of the first arrival is 0.044 and second ar-

rival is 0.4, which means the scattering in the AET 87km range transmission is very weak.

Though, the criteria for Rytov theory being applied in the case of acoustic wave propagation
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in the ocean is still unknown, the AET experiment result suggests that the Rytov might be

proper method in this special case. The detailed description of Rytov theory is presented

in the Appendix B.

We find that the spectrum of phase and log-amplitude is written as an integral along a

ray path z,(x) of the form,

S4,X (R, w, k,) = 7rk2 dsb(0, k,(w, k,); z) 1 ± Cos k Rf(x)) H[W-WL(zr(x))]H[N(zr(x))-w]

(3.20)

where the plus sign refers to the spectrum of phase and the minus sign refers to the

spectrum of log-amplitude x, ko is a reference acoustical wavenumber. The integral involves

two terms, the first of which is the spectrum of sound speed fluctuations evaluated for

internal wave wavenumbers that are perpendicular to the sloping ray, O(0, K±(w, kz); z)

and the second term in square brackets which is a diffraction term involving the vertical

Fresnel zone R1f. We discuss the spectral term first.

A unit vector in the direction of the ray with slope Or is (cosO, 0, sinG,) and thus the com-

ponent of the internal wave wave-vector perpendicular to the ray is k1 = (-katan,, ky, k,).

The internal wave dispersion relationship in the WKB limit is,

kh = (k2+ k2)1/ 2 = (k2tan28, + k2)1/ 2 = (w2 _ f2) 1 2  (3.21)

where f is the Coriolis parameter, w is the internal wave frequency, and N(z) is the

buoyancy frequency profile. Thus solving for k. we obtain,

k = t (w2 2)1/2 (3.22)

= f 2 + N 2(z)tan2 , (3.23)

Thus, it is seen that for internal wave frequencies less than WL the dispersion relation

cannot be satisfied to yield a real value for ky; Hence, in this approximation, internal waves

with frequencies less than WL do not locally interact with the acoustic field. To make this

effect explicit and to impose the internal wave cut off for frequencies greater than N(z),

Heavyside functions are placed in Eq. 3.20. In terms of the Garrett-Munk internal wave

spectrum, the evaluation of l using the perpendicular wavenumbers can be written in terms
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of the frequency-vertical wavenumber spectrum which has the form (See Appendix B),

D(0, k±(w, kz); z) = P(0, k±(kA, k); z)dk

jN 3 8 kz. N(z)f >1/2 (3.24)

No 7 rkz(k + k.) w3 2_ -

kZ.(z) = rj.N(z), NoB = D N(z)dz (3.25)
NoB fo

Here po = 6.26 x 10-8 is a reference fractional sound speed variance, and for the buoyancy

frequency profile used here (Fig. 3-1) we have NoB = 10.3 (rad-m/s). D is the water depth.

The first factor in Eq. 3.26 is in fact the fractional sound speed variance as a function of

depth, which scales as N 3 [71], and for the GM spectrum j. = 3. Note that the spectrum

without the perpendicular wavenumber constraint is

Ap2N3 4f kz. (Uj2 _ f 2)1/2
4(w, kz; z) = N 3 2 k + k 2  3 (3.26)

Equation 3.26 shows that at large frequency and mode number the spectrum scales as

w-2 and k; 2 . The spectrum under the perpendicular wavenumber constraint (Eq. 3.24),

however, scales as w- 3 and k- 3 thus adding an additional kic1 and w- 1 dependence to the

spectrum.

The second term in Eq. 3.20 within the square brackets is often termed the Fresnel

filter and it can be considered a weighting function on the spectrum controlling the spectral

contributions to the variances (X2) and (42) at each wavenumber k. The computation

of the Fresnel zone Rfp(z,(x)) is well known (See Flatti 1983)[40] and is summarized in

Appendix C. The physical significance of the Fresnel zone, is that it is the scale at which

scattering can cause interference[40]. The product k.R 1 ., a ratio of medium sound speed

scales to acoustic scales, measures the relative effects of diffraction (see Flatte et al 1979

and the discussion of the diffraction parameter A); small/large kzRfz means small/large

diffraction. Note also that the Fresnel filter as a function of kz has its first maximum at

k, = 0 for phase and k, = v'-7r/Rfz(x) for log-amplitude. Since the internal wave spectrum

evaluated at the perpendicular wave-number goes approximately like ki, then the largest

contributions to the variance of phase will come from the large scales (i.e. small k. ~ 0)

while the largest contributions to the log-amplitude variance will come from the scales near
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Fresnel zone. The interpretation just given is for the case where there is no wave-guide,

and thus only applies locally along the ray in our approximation. In the wave-guide case

the total effect is the integral over the entire ray path and thus represents the contribution

from not only the Fresnel factors, but also the strength of the sound speed fluctuations as

a function of depth, and also the low frequency cutoff factor wL.

Figure 3-12 shows numerical evaluations of z,(x), Rf1 (x), and wL(X), and for two eigen-

rays with ID's -3 and +4 from the AET environment (Fig.3-1). Here NoB has a value

of 10.3 rad m/s, and launch angles for the eigenrays are -9.8' and 5.3* for ID's -3 and

+4 respectively. Regarding the Fresnel zones for the two arrivals, it is seen that both

functions roughly follow the envelope for the constant background sound speed case (i.e.

R1Z = Ax(R - x)/R), but the +4 ID has more structure than the -3 ID. This is because

caustics are zeros of Rf1 and having gone through more turning points ID +4 has gone

through more caustics than ID -3. With respect to the relative size's of the Fresnel zones

ID +4 shows a larger maximum Fresnel zone (600-m) compared to ID -3's value of 400-m.

Thus ID +4 may have contribution to the log-amplitude variance from slightly larger scales

than ID -3. However, of critical importance is the behavior of WL along the ray path. For

ID -3 wL rises to significantly larger values than ID +4, and these large values extend over a

significant region around the upper turning point. Thus ID -3 is expected to have significant

depletion of low frequency variability compared to +4, which is exactly the result from the

AET observations.

Figure 3-13 shows the model log-amplitude and phase frequency spectra computed from

numerical integration of Eq. 3.20, using Eq.3.24, and the vertical wavenumber contribution

in the model are integrated out according to

SO,X(Rw) = j S,,x(R w, kz)dkz. (3.27)

Several points are noteworthy. As expected, the spectra cut off at the critical frequencies

of f and No,z ~ 6cph. Second, the model log-amplitude spectra, like the observations (see

Fig 3-9), show that ID +4 has significantly more low frequency variability compared to ID

-3. Interestingly the phase spectra also show the low frequency enhancement for ID +4.

Comparing variances for log-intensity the model gives alR = 2.0 dB and 0.8 dB for ID's

+4 and -3, while the observations have 3.1 dB and 0.80 dB; a rather favorable comparison.
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Figure 3-13: Rytov prediction of frequency spectrum of wave fronts' phase (left panel) and
log-amplitude (right panel) for a 75Hz cw signal propagation through a 87 km range. The
two arrivals correspond to ID -3 (red dash) and ID +4 (blue solid ) arrivals. No = 6.12
(cph), is denoted by vertical straight green line. The variance of phase and log amplitude
are respectively < X 2 >ID3= 0.017,< X2 >ID4= 0.102,< #2 >ID3= 0.996 and < 2 > D4=
4.21.

Third, the shape of the spectra reveal distinct high and low frequency regions; in the high

frequency region the spectra have very nearly an w- 3 form, and in the low frequency region

the spectra are rather flat. Separating these regions is a cusp-like feature which occurs

at frequencies of roughly 0.72 cph and 0.28 for ID's -3 and +4 respectively. Refering to

Fig 3-12 this transition frequency corresponds to the peak value of WL near the ray upper

turning point.

Figure 3-14 shows the modeled vertical wavenumber spectra for phase and log-amplitude,

and here these spectra are obtained by integrating the two-dimentional spectra over fre-

quency,

So,x(R, kz(j)) = SX(R, w, kz(j))dw (3.28)

For this calculation we have Nm = 6cph. At large vertical wavenumber both spectra

of log-amplitude and phase show the distinct kz 3 shape, and at low wavenumber the log-

amplitude spectrum rolls off at roughly kz. while the phase spectrum shows only a subtle

change in slope.

3.4.2 Narrowband Model

In comparing acoustic fluctuation theories, like the MZ theory, to observations, the (ex-

pected) short-comings of the theory can be broken down into two categories; those that in-
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Figure 3-14: Rytov prediction of vertical wavenumber spectrum of wave fronts' phase(left
panel) and log-amplitude (right panel) for a 75Hz cw signal propagation through a 87 Km
range. The two arrivals correspond to ID -3 (red dash) and ID +4 (blue solid ) arrivals.

volve issues of acoustic wave propagation, and those that involve the modeling of the ocean

environment, like the internal wave field. For the former topic, there are three main acoustic

issues with the MZ theory that we will consider here. First, the MZ theory is a perturbation

approach and thus higher order terms may be important. Second, there is the assumption

that the ray path has very little curvature, and thus the straight ray result is applied locally;

and assumption that is clearly violated exactly at the upper turning point, where the slope

is zero and the curvature is maximum. Flattd (1988)[44] and Colosi(1999)[20 have shown

that this approximation places too much of the scattering strength near the ray upper-

turning point. Thirdly, the MZ theory is inherently narrowband, and thus issues of signal

bandwidth in the observations needs to be addressed. To address these three issues, we

have carried out parabolic equation numerical simulations of acoustic propagation through

random fields of internal wave induced sound speed fluctuations. In the following sections,

narrowband simulations are discussed.

Simulation of Internal Waves

The validity of Rytov solution with the random sound speed background, is checked by

running numerical simulation using time-consuming Monte Carlo methods. The simula-

tions are arranged to assure weak scattering so that the Rytov approximation may be used

to predict both acoustic log-amplitude and phase fluctuation statistics. In this work, only

internal waves are taken into consideration as the main random source induce the sound
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fluctuation in the ocean. Two-dimensional realizations of internal wave displacement fields

are obtained using direct numerical simulation. These fields are evolved in time and are con-

verted to sound-speed fluctuations using standard methods. Time series of acoustic signals

at different depths are obtained using the parabolic equation (PE) method to propagate

acoustic waves through the internal wave fields.

We represent the ocean sound-speed field as the sum of a deterministic mean profile plus

a stochastic perturbation induced by internal waves, and the form of this ocean model is

c(x, y, z, t) = cO [1 + U(z) + u(x, Y, z, t)], (3.29)

where U(z) is a deterministic function representing a range-independent background sound

channel and u(x, y, z, t) is a zero-mean stochastic perturbation representing the sound-speed

fluctuations caused by internal waves. U(z) is on the order of 10-2 whereas u(x, y, z, t) is

on the order of 10-4[58]. For small internal-wave displacements the form of u(x, y, z, t) is

u(x, y, z, t)= gG p((x, z, t), (3.30)
PO OZ

where G is of order unity and relates the relative potential sound-speed gradient to the

buoyancy profile

(tc) ( ) -GN 2(z). (3.31)

where (8U(z)/8z), is the fractional potential gradient of sound speed and ((x, y, z, t) is the

vertical displacement caused by internal waves. Figure 3-15 shows the average sound-speed

profile and the average smoothed buoyancy profile calculated from CTD casts obtained

during the AET experiment. The internal wave simulation in the following sections utilizes

these profiles.

The numerical technique used to simulate the ocean internal wave displacement has

been widely discussed in several papers[18]. In general, the internal-wave displacement is

modeled as a superposition of linear modes with random phases and amplitude. The wave

amplitudes are chosen to match the energy distribution in wavenumber-frequency space of

the GM internal-wave spectrum.
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Figure 3-15: Estimates of the sound-speed profile and the buoyancy profile during the AET
experiment. The buoyancy profile was smoothed

Acoustic Simulation: Parabolic Equation

The standard parabolic equation (SPE) and split-step Fourier algorithm are used to calcu-

late the solution and simulate acoustic propagation. In the Appendix D, the detail of this

method is presented. The split-step marching solution used in this chapter is:

(ro + Ar, z) = e" (n2(ro,z)-1]ArF-1 { e-k 2 (3.32)

where F is Fourier transform, ko = w/co, and w is frequency. This method is very efficient

and accurate for the deep ocean and horizontal propagation as long as the validity of the

approximations made are satisfied.

The total broad-band wave field in the time domain is obtained by Fourier synthesis. A

generalized Gaussian source with both variable beamwidth and beam tilt is used as initial

condition:

'0(0, z) = Vkotan61exp (- (z - z,)2tan261 exp (iko(z - z8 )sin82), (3.33)

where 01 is the halfwidth of the source aperture4 , and 02 is the beam tilt with respect to

the horizontal, measured positive downward.

4As is customary for Gaussian beams, the beamwidth is defined as the 1/e-decay point perpendicular
to the axis, and angle associated with this particular beamwidth is denoted by 01.
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The boundary conditions on the acoustic propagation are a reflecting ocean surface and

an absorbing ocean bottom. The reflecting ocean surface is modeled numerically using an

image ocean.

In order to model an absorbing bottom a gradual loss of amplitude is imposed on O(r, t)

as z approaches the ocean bottom. The functional form of the imposed loss at each step is

L(z) = exp [3dx x exp (- (Zb) (3.34)

with f = 0.04 and a = 0.05. This form effectively stops any acoustic energy from penetrat-

ing about a x zb = 250 m above the ocean bottom zb(zb = 5500 m in our study.)[58].

Narrow-Band Numerical Simulation Results with Waveguide

The random ocean sound-field is simulated by adding a deterministic mean profile with

stochastic perturbation induced by internal wave. The sound speed profile has been already

shown in Fig.3-15.

First, a slice of the internal wave field is generated at time ti. Then the parabolic

equation method is used to propagate the sound wave energy through this internal wave

field. The sound pressure field at the receiver range for time tj is recorded. In the next step,

the internal wave field will evolve in time following the internal wave dispersion relationship.

Then the sound wave energy propagates through this evolved internal wave field again. By

doing this step by step, the sound wave fluctuation field will be obtained by propagating

the sound through this simulated "real" random fluctuated ocean. This is the basic idea of

Monte Carlo simulation, i.e. "frozen field approximation".

In Fig. 3-16, a realization of internal wave displacement is shown for a slice with range

of 100km and depth of 5 km. As we can see, the internal wave field is inhomogeneous

in the vertical direction and anisotropic with the fluctuations elongated in the horizontal

direction. This internal wave field evolves in time with time step of 120 seconds. A fixed

position sampling of the evolving internal wave field is shown in Fig. 3-17, which is about

2.8 days period of evolution with 120 seconds interval for each time step. The corresponding

spatial and temporal spectra of the internal wave fields are shown in the following figures:

Fig. 3-18 and Fig. 3-19.

A generalized Gaussian source with small launch angle is sent out at certain depth (650
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Figure 3-16: A realization of the internal-wave displacement for (o = 7.3m and jm = 100.
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Figure 3-17: A realization of evolved internal-wave displacement field with time step of 120
seconds.
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Figure 3-18: Internal wave horizontal wave number spectra (left) as modeled in this
study(blue solid), and the theoretical Garrett-Munk (GM) spectrum (red dash). Inter-
nal wave vertical wave number spectra (right) as modeled in this study (blue solid), and
the theoretical Garrett-Munk (GM) spectrum (red dash).
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Figure 3-19: Internal wave frequency spectra as modeled in this study(blue solid), and
the theoretical Garrett-Munk (GM) spectrum (red dash). Note that in this simulation, we
choose No = 6.12cph.
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Table 3.3: The source aperture and beam tilt angles(correspond to 26 and 62 in Eq. 3.33)
of narrow-band beams for ID -3 and ID +4.

ID -3 ID +4
Source Aperture (degree) 3.0 6.0

Beam Tilt (degree) -10.0 6.5

m) through this random internal wave field. In order to simulate the multipath effect of the

AET experiment, two narrow beam with different beam tilt are sent out in this simulate in

each time step (evolving internal wave field). So in each time step, two arrivals are obtained,

which correspond to first arrival (ID -3) and second arrival (ID +4). The parameters used

to specify those two narrow beam, which is addressed by Eq. 3.33, are listed in Table 3.3.

Those parameters are designated based on the ray predication and configuration of vertical

line array described in the previous sections.

To be consistent with the Rytov prediction, reflection from the bottom has been mini-

mized, because we are only interested in how the sound is scattered by the water column.One

example of this narrow-band beam simulation snapshot is shown in Fig. 3-20.

To compare to the Rytov prediction, the fluctuation of log-amplitude (x) and phase

(#) must be computed. A time series of log-amplitude and phase as function of depth are

obtained at each time step by normalizing the received fields with the deterministic field

obtained from a non-internal wave field run. Specifically,

X(z, t) = in (a'(z, t)/a' (z)), (3.35)

#(z, t) = (#'(z, t) - #'e(Z)) (3.36)

a'(z, t) and 0'(z, t) are the amplitude and phase output with sound-speed fluctuations;

a't(z) and 0' are the solutions using a constant sound speed. Lastly, any 27r-discontinuities

in O(z, t) are removed.

The RMS of intensity and phase as function of depth are calculated for 2.8 days period

and displayed in Fig.3-21. The average value of variance of phase and intensity for different

time scale are calculated and listed in Tab. 3.4.

The Fourier spectrum analysis of these data will give the spatial vertical wave number
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Figure 3-20: Simulation of narrow-band beam propagation. ID -3 is shown in the upper
panel, ID +4 is shown in the lower panel. The colorbar is in unit of dB re max.
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Figure 3-21: RMS of phase (right panel) and intensity (left panel) as function of depth for
ID -3 (blue solid) and ID +4 (red dash) arrivals.
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Figure 3-22: Frequency spectra of log amplitude(left panel) and phase (right panel) for ID
-3 (red solid)and ID +4 (green dash) arrivals.

spectrum and temporal frequency spectrum of the wave front fluctuation to compare to the

Rytov prediction from previous section.

The spectra of log-amplitude and phase of 75 Hz case are shown in figures Fig. 3-22

and Fig. 3-23.

In Fig. 3-22, the temporal frequency spectra are shown with log amplitude spectra

in the left panel and phase spectra in the right panel. All the spectra show the cutoff

at frequency of NO = 6.12 cph, which is determined by the internal wave as shown in

Fig. 3-19. The frequency spectra of log amplitude in the left panel shows the feature

of the depletion of low frequency variability of ID -3 relative to ID +4, i.e. resonance

condition which has been predicted in the Rytov theory. But the phase spectra do not

show this feature as apparent as predicted in Fig. 3-13, which might be due to either the

limitation of simulated maximum scale of internal wave, or the broadband effect on the

phase fluctuation(see following broadband case).

The vertical wave number spectra are shown in Fig.3-23. All the vertical wavenumber

spectra of phase and log-amplitude of ID -3 and ID +4 show the cutoff around k, =

10- 2cpm.
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Figure 3-23: Vertical wavenumber spectra of log amplitude(red solid)
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Figure 3-24: Broad-band simulation with right panel) and without (left panel) internal
wave perturbation: Wave front at 87 km range.

3.4.3 Broadband Model

The broad-band sound propagation simulation is implemented by Fourier synthesis of CW

(continuous wave) results. Sixty different frequencies results, from 45 to 105 Hz, are used.

The total wave field in the time domain is achieved by Fourier synthesis for this broad-band

simulation, as shown in Eq. 3.32.

The wave front at 87 km range are displayed without and with internal wave perturbation

in Fig.3-24.

The similar procedure to Monte Carlo simulation for the narrow-band case is carried out

for the broad-band case. First, a slice of internal wave field is generated at time, ti. Then

the parabolic method is used to propagate the sound wave energy through this internal
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Figure 3-25: RMS of intensity (left panel) and phase (right panel) of two arrivals ID -3
(blue line with dot mark) and ID +4 (red line with star mark) as function of depth.

wave field. The sound pressure field at the received range (87 km away from source) for

time ti is recorded. In the next step with a time interval (300 second in this case), the

internal wave field will evolve in time following the internal wave dispersion relationship.

Then the sound wave energy propagates through this evolved internal wave field.

The fluctuation of the sound field is obtained by normalizing received fields by the

deterministic field (Fig. 3-24). To complete this broadband simulation, the two arrivals

must be separated (ID -3 and ID +4), with a method explained in the AET data processing

section. In general, the numerical simulation results are analyzed in a manner almost

identical to the analysis of the AET experiment data.

The RMS of intensity and phase of two arrivals (ID -3 and ID +4)as a function of depth

are displayed in Fig.3-25. The variance of phase and intensity as functions of depth also

show the different fluctuation along the depth of two close sound wave front arrivals.

The frequency and wavenumber spectra of ID -3 wave front fluctuation (log-amplitude

and phase)are shown in Fig. 3-26 and Fig. 3-27. As shown in those figures, the frequency

spectra of those two arrivals have very similar structure in the spectra of high frequency

(larger than 1 cph) region of both phase and log amplitude, which means the evolving

internal wave field induces same temporal fluctuation on those arrivals in the high frequency

region. In the low frequency region, both the log-amplitude and phase spectra of ID +4

have much more energy than those first arrival ID -3, which again is showing the resonance

effect of internal wave and acoustic rays. Furthermore, in the phase spectra, the resonance

condition is much more apparent than in the narrow-band simulation, which means the
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Figure 3-26: Frequency spectra of log amplitude(left panel) and phase (right panel) for ID
-3 (blue solid)and ID +4(red dash) arrivals' wavefront fluctuation.

bandwidth might be critical factor for the phase behavior. All the spectra show a Rytov-

like result with minus 3 slope, though two arrivals have some different behavior in the

vertical wavenumber spectra.

3.5 Data-Model Comparisons

3.5.1 Moments

In Tab. 3.4, the moments of phase and intensity, which are predicted by Rytov theory,

numerical simulations (narrow-band and broad-band), and observed (AET) are listed along

with observation result. We found that it is a little overestimated for ID -3, while a little

underestimated for ID +4 arrival. But in general, the observation and Rytov prediction

are in good agreement. In the short period observations, we found the observations and

numerical simulations are in general agreement. The numerical simulations display less

fluctuation in the phase, but stronger fluctuation in the intensity. The longer period sim-

ulation also shows the weak phase and intensity fluctuations, and larger value than those

of short period simulations. Two continuous arrivals (ID -3 and ID +4) show very similar

value in the short period of both experimental observations and numerical simulations. In

the longer period, the second arrival (ID +4) shows stronger fluctuation in both phase and

intensity than those of first arrival (ID -3), though the analysis shows that both arrival are
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Figure 3-27: Vertical wavenumber spectra of log amplitude (red dash) and phase (blue solid)
for ID -3 (left panel)and ID +4 (right panel) arrivals' wave front fluctuation.

all in the weak fluctuation region. The broad-band simulation shows much better resonance

effect of internal wave and acoustic ray in the phase than the narrow-band simulation. Fur-

thermore, the phase result of the broad-band simulation is closer to the observation result

than the narrow-band simulation, which implies that the broad band is important for the

phase behavior of the acoustic wave.

3.5.2 Frequency Spectra

In Fig. 3-28, we compare the frequency spectra of phase and log-amplitude between AET

data and Rytov prediction. This figure shows the frequency spectra of log-amplitude and

phase overlap with the Rytov prediction result. The lower frequency spectra are obtained

by using Fourier spectral analysis of 4-hour interpolation of original AET intensity data. So

the comparison is limited to only relatively high and low frequencies because of the sparse

time sampling of the AET. However Figure 3-28 shows that the agreement between model

and observations is satisfactory. This comparison explains the rather curious observational

result that the wavefront ID -3, which traverses the sound channel at a higher angle has

much less low frequency variability than the ID +4 which has smaller angles but does not

get as close to the surface. This attenuation of low frequency variability for steep rays is

a consequence of the resonance condition between the local ray tilt and the internal waves

with wave numbers perpendicular to this tilting ray. We believe that this result is the first
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Table 3.4: Comparison Between AET Experiment and Numerical Simulation

ID-3 ID+4
RMS ofq# RMS of I SI RMS ofq# RMS of I SI

(rad) (dB) (rad) (dB)
AET 20-Min 0.44±0.004 0.26±0.013 0.0045±o.ooos 0.44±0.002 0.26±o.oia 0.0053±0.0007

Bbsim 0.18±o.ooi 0.34±o.ooi 0.00470.00002 0.25±0.003 0.44±o.oi 0.008±o.oo4
NbSim 0.11±0.0004 0.29±o.ooi 0.004±o.oooo4 0.13±0.002 0.34±o.oi 0.006±o.0004
AET 40-Min 0.61±o.oi 0.38±0.02 0.0089±o.ooi 0.68±0.002 0.40±0.054 0.013±0.004

BbSim 0.30±o.ooi 0.51±0.004 0.012±0.0002 0.40±o.oos 0.67±o.o2 0.021±o.oo1
NbSim 0. 18±o.ooo 0.42±0.002 0.009o.ooOW 0.23±0.003 0.57±0.02 0.017±o.oi
AET 6 day 0.797±0.07 0.044±0.013 3.06±0.2 0.44±o.os

BbSim 1.8 day 1.05±o.oo9 0.97±0.007 0.051±o.ooos 1.48±o.02 2.19±0.07 0.23±0.013
NbSim 2.8 day 0.66±0.005 0.75±o.ooe 0.03±o.ooo4 0.77±o.ooj 1.79±0.0w 0.15±0.01

Rytov 0.73 0.79 0.034 1.49 1.99 0.21

observational evidence for this resonance condition.

For the phase spectra, because the longest observation period is 40 minutes, there is

very short overlapped frequency band to internal wave band be used to make comparison.

But the AET observation and theory are still in good agreement in general.

Figure 3-29 shows the comparison between Monte Carlo parabolic equation simulations

through random fields of Garrett-Munk internal waves, and the theory for parameters close

to that of the AET. The model is seen to closely predict the spectra even when a broadband

signal is used(The Munk and Zacharisen Rytov theory only assumes a narrowband case).

3.5.3 Vertical Wavenumber Spectra

The vertical wavenumber spectra of log-amplitude and phase are compared between the

observation and theory in Fig.3-30. The observation result are denoted with the marker

lines, the theory result are denoted with solid lines. In general, the observation and theory

are in good agreement. In the left panel, in the vertical wavenumber spectra of the log-

amplitude, there is roll off around 10-2.8 cpm. In the right panel, the phase spectra doesn't

have this feature. And in the high wavenumber region of 10-1.9 cpm, there are roll off in all

those spectra. In similar ways as the previous comparison of spectra in frequency domain,

we compare the Monte Carlo parabolic equation simulations with Rytov predictions for

parameters close to that of the AET experiment in the Figure 3-31. It shows that the

agreement between model and observations is satisfactory in general.
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Figure 3-28: Frequency spectra of log-amplitude(left panel) and phase (right panel). The
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solid lines are theory prediction result with black for ID +4 and blue for ID -3. The green
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3.5.4 Summary

In this section, the procedure and method of implementing the Monte Carlo simulation of

sound wave propagating through one or two upper turning points in the ocean are presented.

Two different simulations: narrow-band point source with waveguide case and broad-

band with waveguide, are carried out. The comparison among the numerical simulation,

Rytov prediction and observation shows good agreement in moments of phase and intensity.

We found the narrowband numerical simulations to underestimate the phase moment of the

AET observations, and they are below the Rytov prediction. The broadband simulation

has better results to compare with the narrow-band simulation in the phase variance. Both

the narrow-band and broad-band simulations show the Rytov ray-internal wave resonance

condition in log-amplitude as theory predicted, but the broad-band simulation shows better

result of this resonance effect in the phase than the narrow-band simulation. It suggests

that the bandwidth might be a key fact for the phase behavior in the sound propagation.

The comparison between the AET observation and Rytov theory prediction are in very

good agreement in both moments and spectra of phase and log-amplitude, which indicates
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the successful application of Rytov method in sound wave propagate in this weak fluctuation

case.

3.6 Summary

In this chapter, an analysis of low frequency, short range acoustic transmission in the

North Pacific Ocean are presented. Over a six day period, broadband signals with a center

frequency of 75-Hz were transmitted at the sound channel axis(650-m depth) to a 20-

element, 700-km long vertical receiving array located 87-km distant, and spanning the

depth region 900-1600-m. The observations reveal two time resolved acoustic paths: An

early arriving path with one upper turning point and two lower turning points, and a late

arriving path with two upper and two lower turning points. The space time scales of acoustic

variability of phase and intensity are studied on these paths using frequency and vertical

wavenumber spectra. Because data sampling occurred at 20 or 40 minute intervals followed

by 2-4 hour gaps, the acoustic variability is analyzed in terms of rapid sampling rate, and

multiday sampling rate. The observed variability is compared with acoustic predictions

based on the weak fluctuation theory of Rytov, and direct parabolic equation, Monte Carlo

simulations: In both models the source of acoustic variability is the random ocean internal-

wave field. The data/model comparisons suggest weak fluctuation theory may in fact be

appropriate to describe the frequency and wavenumber spectra of phase and intensity for

the two observed paths. Importantly the comparisons suggest that a resonance condition

can exist between the local acoustic ray and internal wave field such that internal waves

whose crests are parallel to the local ray path will contribute most strongly to acoustic

scattering. This effect leads to an important filtering of the acoustic spectra relative to

the internal wave spectra, such that rays of high incident angles do not acquire scattering

contributions due to low frequency internal waves.
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Chapter 4

The Range Evolution of the Mean

Intensity of the LOAPEX Off-axis

Source Transmissions

The main objective of LOAPEX was to obtain observations of the range evolution of acous-

tic scattering, and simultaneously obtaining detailed sound speed environmental data. For

LOAPEX the main focus was on acoustic observables associated with the broadband wave-

front arrival pattern. For the off-axis source, ocean sound speed fluctuations can cause an

in-filling of acoustic energy into the finale region. The simplest acoustic observable asso-

ciated with these effects is the mean intensity, a second moment. The main efforts of this

chapter are to answer the following questions: 1. How does high angle acoustic energy

from an off-axis source transfer energy to low angles in the axial region of the waveguide?

2. What are the relative contributions from diffraction and scattering? 3. How does this

energy transfer scale with range?

4.1 Introduction

The LOAPEX cruise was coordinated with two other experiments, BASSEX, and SPICEX.

The SPICE04 deployment cruise was conducted between 26 May and 18 June 2004 aboard

the R/V Revelle. During this cruise two autonomous vertical line array receivers (VLAS),

and two 250-Hz acoustic transceiver moorings (500 km and 1000 km from VLAs) were
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deployed (Worcester, 2004). These four moorings were in place until the summer of 2005.

The primary purpose of the transmissions between the 250-Hz sources, transceivers, and

the VLAs was an attempt to measure the "spiciness" of the ocean by acoustic methods. In

addition to receiving the transmissions from the 250-Hz sources, the VLAs were programmed

to receive transmissions from the NPAL fixed bottom-mounted acoustic source near Kauai,

HI, and a similar acoustic source suspended from the R/V Melville during the LOAPEX

cruise. The hydrophone arrays on the two combined VLAs covered most of the 5-km water

column. We refer to one the VLAs as the deep VLA (DVLA), located at 33.418920'N

latitude and 137.6824700 W longitude. The DVLA combines a 40-element, 1400-m long

array (2150-3550 m nominal ) with a 20-element, 700-m long array (3570 - 4270 m nominal)

to span the lower caustics in the acoustic arrival pattern with a nominal spacing of 35 m.

The DVLA was considered the primary receiving array for LOAPEX. The other moored

array, the shallow VLA (SVLA), was moored 3 n mi due west of the DVLA. The SVLA

has a 40-element, 1400-m long array (350-1750 m) centered approximately on the sound

channel axis. Both hydrophone arrays were navigated using a network of surveyed bottom

transponders.

The LOAPEX cruise was conducted aboard the R/V Melville from 10 September to 10

October 2004. The scientific objectives of LOAPEX are outlined in the following subsection.

4.1.1 Science Objectives of LOAPEX experiment

An acoustic signal arriving at a hydrophone array from a large distance is spread out in

space and time. In mid-latitudes, the early part of the arrival is associated with steeper

arrival angles and is often considered "ray-like" in that the arrivals are well characterized by

frequency-independent numerical ray-tracing codes. The middle part of the acoustic arrival

pattern is better characterized by acoustic modes ("mode-like"), where the final part of the

arrival has highly scattered energy and is not well modeled by deterministic methods. In

general, the objective is to study the evolution, with range, of the acoustic arrival pattern.

The ultimate objective is to understand the range and frequency dependence of the spatial

and temporal coherence, and reveal ways of improving the coherence.
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4.1.2 Approach

The approach to meeting the scientific objectives of LOAPEX is illustrated in Figure 4-1.

The figure and its legend describe and locate the primary assets of the experiment and

show the eight stations occupied by the Melville during the cruise. The eight stations are

shown as red dots and seven of them are on the main LOAPEX path indicated by the solid

black line. These seven stations were nominally 50, 250, 500, 1000, 1600, 2300, and 3200

km from the VLAs (yellow dot). These distances provided the controlled range dependency

sought in this experiment. At each of these seven stations the LOAPEX acoustic source was

suspended from the ship for several hours, typically one to two days. Two source depths

were used at each of the seven stations, 350 and 500, or 800 m. An eighth station near Kauai

was also taken. This final station provides a comparison of transmissions from 300, 500, and

800 m depth, while the source is far from the bottom, with transmissions from the bottom-

mounted Kauai source. Figure 4-1 also illustrates the paths from the LOAPEX stations,

and from the Kauai bottom-mounted source location, to the permanently fixed acoustic

receivers. These paths, along with the paths from 250-Hz SPICE04 acoustic sources, allow

us to produce a "snapshot" of the Northeast Pacific Ocean's heat content.

This thesis will focus on the analysis of the transmissions for the off-axis source location

(nominally 350-m depth), and the acoustic receptions as recorded on the 1400-m long axial

receiving array. This configuration is displayed in Figure 4-2. As we can observe, the sound

channel depths are different at each station, and it tended to be deeper for further stations.

The sound source depth has a great impact on the the sound energy propagation, which is

illustrated in Figure 4-3, in the language of local modes functions.

Some mode functions estimated for the average sound speed profile of LOAPEX exper-

iment are displayed in Figure 4-3. The 350-m source depth gives a maximum 75-Hz mode

excitation energy at mode number 20, and there is a 40 dB difference between the energies

in mode number 1 and 20. Equivalently, in ray language, the source excites a minimum

grazing angle ray of roughly 5 (deg.), and thus the last arrival of the wavefront should be

significantly advanced from the arrival time of a zero grazing angle ray or a mode 1. As

indicated in this figure (lower panels), the eigen-mode functions have an evanescent tail

function at sound source depth (350 m), and it is apparent that if the sound channel depth

is deeper (i.e. the sound source is further away from sound channel), the lower energy will
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Figure 4-1: Experimental geometry. Acoustic paths from the sources[75-Hz ship-suspended

LOAPEX source (red points), moored SPICE04 S1 and S2 250-Hz sources (black) 500 and

1000 km west of VLA, and Kauai 75-Hz source] to the receivers (S1 and S2, Navy receivers,

the vertical line array, and the BASSEX towed receivers).
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Figure 4-2: The sound speed profiles at different stations in LOAPEX experiment. The

sound speed profiles are derived from the CTD measurement. The red dots on each profiles

indicate the sound source depth at each station. The black triangles indicate the sound

channel depth at each station. The round-dot-marks on the left indicate the shallow and

deep VLA. The sound channel depth is range dependent as being shown here.
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Figure 4-3: Modes functions estimated for the LOAPEX experiment. The average sound
speed profile is used here. The selected number of modes are displayed in the upper panel.
The lower panel shows modes 1 to 6, with a zoom in display in the lower right panel for the
depth range from 300 m to 400 m.

be excited at that sound source depth for the lower order modes, which correspond to lower

angle arrivals at sound channel region.

As primary acoustic observable, the mean intensity of the wavefront and its time exten-

sion relative to the arrival time of the minimum grazing angle ray will be quantified. Two

processes contribute to the extension of the mean wavefront 1) diffraction from the source

depth being in the evanescent region of the low order modes, and 2) acoustic scattering

which can transfer energy from higher modes into the low order modes or equivalently high

grazing angles into low grazing angles. In general, the diffraction and scattering could be

results of two types of inhomogeneities in the ocean, regular and random. For the regu-

lar inhomogeneity such as deterministic , depth-dependent, background variation in sound

speed - the ocean sound channel, the diffraction effect is well known and easy to model
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Figure 4-4: The wavefront at a range of 484 km broadband transmission simulations. The
left two panels display the sound speed profiles with red dots indicating the sound source
depth and horizontal line indicating the sound channel depth. The right upper panel shows
the simulation with sound source depth of 800 m. The right lower panel shows the simulation
with sound source depth of 350 meter. In each simulation plot, there are CSNAP simulation
result in color overlapped with eigenray simulations indicated by black dots.

(using deterministic mode or PE models) and leads to a wavefront time extension which

scales like range. One example of different diffraction effect with different sound source

depth is displayed in Figure 4-4, which show quite much acoustic intensity after last ray

arrival for the case of source depth of 350 m.

The scattering is caused by turbulence, internal waves, mesoscale eddies, etc. These

random inhomogeneities cause the scattering of sound and fluctuations of its intensity,

reduce coherence of sound waves and change their frequency spectrum. In general, the

scattering effect is not well known, though ray and mode calculations[19, 7] suggest that

the time extension scales like range to the 3/2 power (See appendix F). Thus, at short

range, the observable will be dominated by diffraction while at long range scattering should

dominate.
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4.2 LOAPEX Experiment Data Collection

4.2.1 Acoustic Transmission

Ship-suspended Source and Signal

The HX-554 ship-suspended source was used during LOAPEX to transmit acoustic signals.

There were seven signals used for the primary LOAPEX long-range transmissions, and two

additional signals for local engineering measurements. The so called M-sequence, which is

periodic repetition of a phase-coded linear maximal shift register sequence, is the signal

mainly being used and analyzed in this thesis.

The signal denoted M68.2 was the full power M-sequence used at 500 m and 350 m,

and M75 (195) was the full power M-sequence used at 800 m. It appeared in simulations

that the best transfer of electrical power into radiated acoustic power occurred when the M-

sequence carry frequency was about 6-8 Hz above the resonance frequency of the transducer.

Because the transducer resonance frequency varies with depth, a carrier frequency of 75 Hz

for 800-m transmissions and 68.2 Hz for 350-m transmissions were chosen. These depths

were considered close enough that it seemed adequate to use the 68.2 Hz carrier signal at

500 m, too. Simulations before the experiment suggested that it might not be possible to

radiate 195.0 dB re: 1pPa @ 1 m broadband from the transducer at shallow depths without

exceeding the stack stress safety limit. There appeared to be no problem for the source at

800 m nor at 500 m, but possibly at 350 m. Hence, the signal designed for 350 m depth

was scaled down so as to achieve only 194.0 dB re: 1pPa (0 1 m. The modulation angle

is defined to be tan290 = L, giving a smooth sinc2 envelope to the power spectrum. The

other parameters are listed as in Table 4.1:

The VLA(AVATOC) receivers were programmed to sample the ship-suspended source

receptions at either 300 Hz or 1200 Hz, in accord with the schedule[821. For standard

transmission (44 periods): when sampling the standard transmissions at 300 Hz(4fo), the

VLAs receive and store 40 periods (1091.2000 s, 36 periods for M68.2) of the signal, requiring

13,094,400 bytes of buffer space in RAM, beginning at 0 s relative to the start of the hour.

When sampling the standard transmissions at 1200 Hz, the VLAs receive and store the

signal in three groups of 11 periods each (300.080 s or 360,096 samples, 10 periods for

M68.2), requiring 14,043,840 bytes of buffer space in RAM. The recording windows start at

0 s, 400 s and 800 s relative to the start of the hour. For long transmissions (176 periods),
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Table 4.1: M-Sequence signal parameters

M68.2(194) M75(195)
source depth 350(500) 800 m
source level 234 263 W

194 195 dB re 1pPa 0 1m
center frequency fo 68.2 75 Hz

cycles per digit 2 2
digit length 29.325 26.6667 Ins

sequence length L 1023 1023 digits
sequence period 30.00 27.28 s

sequence law 20338 20338
sequence initialization 10008 10008 s

phase modulation angle 88.209215 88.209215 deg
sequence repetitions transmitted 40 44 in 20 minute

sequence recorded at VLA 30 33 for stations up to T1600
sequence recorded at VLA 36 / for stations of T2300, T3200

Table 4.2: LOAPEX Station coordinates, with range to the deep and shallow VLA and
source depths

Latitude N Latitude E DVLA SVLA Depth
Station (decimal deg.) (decimal deg.) (km) (km) (i)

T50 33.513590 138.208350 50 44.7 350/800
T250 33.869780 140.322990 250 244.8 350/800
T500 34.248840 142.882500 490 484.7 350/800

T1000 34.864170 148.280130 990 984.7 350/800
T1600 35.285610 154.949970 1600 1594.7 350
T2300 35.312730 162.647970 2300 2294.7 350/500
T3200 34.631820 172.472870 3200 3195 350/500
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when sampling the long transmissions at 300 Hz (4fo), the VLAs receive and store the

first hour of the signal in three groups of 40 periods each, with the recording windows

starting at 0 s, 1200 s, and 2400 s relative to the start of the hour. When sampling the long

transmissions at 1200 Hz, the VLAs will receive and store the first hour of the signal in

nine groups of 11 periods (10 periods for M68.2)each, with the recording windows starting

at 0 s, 400 s, 800 s, 1200 s, 1600 s, 2000 s, 2400 s, 2800 s, and 3200 s relative to the start

of the hour. In both cases the next normal recording window for standard transmissions

occurring hourly will complete the recording of the long transmissions.

Ambient Noise, SNR, and Receiver Gain

At 75 Hz, distant ship traffic is the dominant source of ambient noise. The SPICE moorings

are in intensity zone IV, but close to the boundary between intensity zones IV and V, for

ship-generated ambient noise. Zones IV and V have predicted spectral levels of 75.2 dB

and 80.0 dB re 1pLPa/v/Hi , respectively (Sadowski, Katz, and McFadden, Ambient Noise

Standards for acoustic Modeling and Analysis, Naval Underwater System Center, 1984).

The predicted signal-to-noise ratios (SNR) for the LOAPEX source, which has a source

level of 195 dB (for 800/500 m) and 194 dB (for 350 m) re 1pLPa @ 1m (260 watts), are

given in Table 4.3 for station T500 ,T1000 as examples.

Source Motion

Knowledge of the absolute source position is required for the tomographic application.

Knowledge of the relative source motion, on time scales of 10 s to 80 min and spatial scales

of 2m to 5m (1/10 to 1/4 of the wavelength at 75 Hz) is required for the acoustic propagation

aspects of the experiment, especially the temporal and spatial coherence estimates. Several

measurement systems were used to provide data for estimating source position as a function

of time:

1. C-Nav GPS measuring A-frame position where the source cable enters the water

2. Acoustic Doppler Current profiler (ADCP) measuring low-frequency currents to 800

m

3. Acoustic tracking of the source relative to a bottom transponder
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Table 4.3: Signal-to-noise ratios for the 75 Hz HX-554 transmissions at ranges of 500 and
1000km with source depth of 350 m. The SNR at a single hydrophone for a resolved ray
arrival are given. The spreading loss calculations for a single ray conservatively assume
pure spherical spreading in first 10 km then cylindrical spreading afterward. Attenuation
is calculated for the North Pacific Ocean using Lovett(A = 0.055).

T500 T1000
Source Level (rms) 194 194 dB re 1pPa 0 1 m

Spreading loss -106.9 -113.0 dB
Volume attentuation(0.0043 dB/km) -0.21 -0.42 dB

Received signal level 86.9 80.6 dB

Noise (1 Hz band) 75.2 75.2 dB re 1 jpPa/vHz
Bandwidth, Q=2 (37.5 Hz) 15.7 15.7 dB re 1 Hz

Total noise level 90.9 90.9 dB re 1piPa
Broadband SNR (before processing) -4.0 -TO3 dB
Period averaging gain (10 periods) 10.0 10.0 dB

Pulse compression gain(1023 digits) 30.1 30.1 dB
Total signal processing gain 40.1 40.1 dB

Single hydrophone SNR 36.1 29.8 dB

4. MicrocCat pressure and temperature at the source (1.5 meter suspending below), to

provide source depth

5. S4 current meter to provide relative current between the source and the water

The first two, GPS and ADCP, are used as the forcing for a cable dynamics model (J.

Gobat, APL-UW) to estimate source position on a second-by-second basis. The balance of

the measurements are used to partly to tune the model (primarily horizontal drag coefficient

for the cable) and partly to verify the model. The details of the approach taken to remove

relative source motion are described in the following section.

4.2.2 Environmental Measurements

Observation of ocean sound speed structure were carried out using the SIO Underway CTD

(UCTD) system, expendable bathyermographs (XBT)s, and the shipboard Seabird CTD.

Other environmental observations included the deployment of two APL-UW Seagliders,

ocean currents from the ship by 75-kHz ADCP (providing profiles from 750 m to 1000 m

depth under idea conditions), and ocean bathymetry from the ship's multibeam system.
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Figure 4-5: LOAPEX salinity section with potential density contours.

The Underway CTD (UCTD)

The UCTD operates under the same principle as an XBT. By spooling tether line both from

the probe(with temperature, conductivity and depth sensors) and a winch aboard ship, the

velocity of the line through the water is zero, line drag is negligible, and the probe can

get arbitrarily deep. Measurements were made almost continually while in transit, starting

at the VLA position. A total of 177 UCTD casts were carried out. The main 2000-km

transect lasted 10 days and consisted of 156 casts. UCTD data were collected during the

east-west transect between source locations T50, T250, T500, T1000, T1600, and T2300.

Casts ranged in depth from a minimum of roughly 200 m to a maximum of 410 m, and were

separated in time by 30-45 min giving a nominal 10-15-km range resolution.

Figure 4-5 shows the UCTD salinity measurements with isopycnal contours. Regions

where isopyncals cross lines of constant salinity are regions of intrusive fine structure (spice).

The mixed layer depth varied between 20 m and 40 m, with a strong gradient of density

between 40 m and 50 m. The salinity minimum near the base of the mixed layer, which

weakens to the west. The salinity minimum near the base of the mixed layer, which weakens

to the west, is a well known feature of this region. A strong frontal feature is evident around

153*W. Weaker fronts are evident around 147*W and 141 oW.
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Figure 4-6: LOAPEX sound speed section with potential density contours.

Figure 4-6 shows the UCTD sound speed section, which is of fundamental interest to

the LOAPEX acoustic propagation studies. As in previous figure, isopycnal contours are

plotted over the section. Regions where the isopycnals cross contours of constant sound

speed are where intrusive fine structure(spice) exists. At fixed depth sound speed is seen to

increase from the east to the west, evidence of some range dependence in the background

sound speed profile.

Ocean Depth CTDs

Full water depth CTD casts were done at stations T250, T500, T1000, T1500, T2300, T3200.

Figures 4-8 and 4-7 show sound speed and buoyancy frequency derived from the seven CTD

casts along the T50-T3200 section. Deep sound speeds and buoyancy frequencies are very

consistent across the section. The sound channel axis is seen to deepen after passage through

the front at 153*W

XBTs

During the LOAPEX sections between T50 and T3200, 102 XBT casts were made to resolve

temperature variability at horizontal resolution of 25-50 km and larger. During the UCTD
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Figure 4-9: Temperature fluctuations from the LOAPEX XBT section. Black ticks in the

top of the panel mark where casts were made. Probe depths varied between 760 m, 1000 m,

and 1830 m. Much of the deep section below 760 m is filled in by horizontal interpolation.

operations XBTs were deployed every 50 kin, and after the suspension of UCTD at roughly

160'W, the XBTs were dropped every 25 km. Overall 72 T-6 (760-m depth), 12 Deep Fast

(1000-m depth), and 15 T-5 (1830-m depth) XBTs were deployed. Figure 4-9 shows the

observed temperature fluctuations from the XBT data. To the east there are a few strong,

near-surface features (0 - 200 m), while to the west, some moderate strength, but large,

vertical scale features are evident (perhaps internal tides).

Environmental Mooring Data on SVLA

A combination of Seabird SBE 37-SM MicroCAT and SBE 39-SM Temperature Recorders

(MicroTemp) sensors provided point measurements of the temperature, salinity, and pres-

sure on the VLAs for the entire year from June 2004 to June 2005 . Ten of the MicroCATs

have pressure sensors rated to 1000 m; one of the MicroCATs has a pressure sensor rated

to 3500 m. The MicroCATs measure temperature, conductivity, and pressure. The Mi-

croTemps measure temperature only. The sampling intervals were set up as follows: 7

minutes for the MicroCAT instruments and 5 minutes for the MicroTemp instruments. The

majority of the instruments, 18 MicroTemps and 10 MicroCATs, were mounted on the
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SVLA, which cover the depth range from 150 m to 1600 m with average interval of 60

meter.

4.3 LOAPEX Data Processing

4.3.1 Doppler

The most general definition of the Doppler effect is as a rate of change in travel time. It is

caused by relative motion of the source and receiver, and by variability in the ocean sound-

speed and current fields sufficiently rapid to change the travel time during a transmission.

For the case of constant relative velocity of the source and receiver, the effect is to uniformly

compress or expand the time axis of the received signal. For narrowband signals, the

principal result is the familiar frequency shift

Af V-f = - (4.1)f C'

where v is the velocity at which the source and receiver are approaching. For broadband

signals of the type used in ocean acoustic tomography, the envelope is also significantly

compressed by a factor (1 + (v/C))-1. As we know, Doppler limits the time over which a

signal can be coherently processed. For constant Doppler (e.g., constant relative velocity of

the source and receiver), the solution is to process for a range of possible Dopplers and to

select the output with the maximum value. One proceeds by selecting a mesh of uniformly

spaced Doppler compression ratios (i.e., relative speeds). For each hypothesized speed, the

data are interpolated and resamples to obtain samples at the times that would have been

sampled in the absence of Doppler. This can be done directly on the complex demodulates.

For periodic signals of the type that we used in the LOAPEX experiment, the resampling

must be done prior to forming the period average. Finally, resampled signal for each Doppler

compression ratio is processed, and the one with the largest peak is selected.

4.3.2 Estimation of the Transmission Loss at Receiver Distance

Sonar Equation

The sonar equation is simply a systematic way of estimating the expected SNR at a distant

receiver, taking into account the source characteristics, geometric spreading with range,
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attenuation, boundary effect, ambient noise, and the receiver characteristics. The sonar

(sound navigation and ranging) equation models the expected SNR for transmission from

a source to receiver:

SNR = SL - TL - (NL - AG) dB, (4.2)

where TL is transmission loss, NL is noise level at the receiver, and AG is (receiving) array

gain, all expressed in decibels.

Transmission loss

Transmission loss includes attenuation and geometric spreading, TL = TLa + TL9 , in deci-

bels. Attenuation is linearly proportional to range, TL, = ar. Francois and Garrison

(1982a,b) and Garrison et al. (1983) provide comprehensive summaries of what is known

about sound absorption in the ocean. An approximate expression for the attenuation coeffi-

cient a, valid for low frequencies(below about 8 kHz) and at the depth of the sound-channel

axis is

a(f) = 0.79A f2 + 36f 2  dB/km, (4.3)
(0.8)2 + f2 5000 + f 2

where f is in kilohertz (Fisher and Simmons, 1977; Lovett, 1980). The first term is due to

boric acid relaxation, which depends on ocean pH through the coefficient A, and the second

term is due to magnesium sulfate relaxation, which is independent of pH. At frequencies

below 1 kHz, the first term is dominant. Lovett (1980) provides charts of the coefficient

A for the Atlantic, Indian, and Pacific oceans. It varies by a factor 2 between the North

Pacific (A = 0.055) and the North Atlantic (A = 0.11).

The geometric spreading loss is more problematic. The correct approach is to use a

propagation model to compute the expected arrival pattern for the geometry and sound-

speed field of interest. More often , simple rules of thumb are used. A conservative approach

is to assume that each ray spreads spherically, as would be the case in a homogeneous,

unbounded, lossless medium. The total power crossing any spherical surface surrounding

the source must then be constant,

P = 47rr2I(ro) = 47rr2 I(r), (4.4)
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and the geometric spreading loss is

TL9 = 1Olog[I(ro)/I(r)] = 20log(r/ro) dB, (4.5)

where ro = 1m with the source level SL defined 1 m from the source. An alternate

approach is to assume that (i) the total power summed over all ray paths spreads spher-

ically out to a distance r1 of the order of the water depth (10 km, say) and then spreads

cylindrically (since the signal is confined between the top and bottom of the ocean), and

(ii) the signal is apportioned among n ray arrivals (reducing the intensity per ray arrival).

For ranges in excess of several convergence zones, the result is

TLg = 201og(ri/ro) + 10log(r/ri) + 10log(n) dB. (4.6)

It was shown that the number of ray arrivals increases linearly with range. The rate of

increase is not necessarily sufficiently rapid to give spherical spreading. For the temperate

sound-speed profile, n = 0.02r (r in km). At 1 Mm range, spherical spreading gives TLg =

120 dB, and with n = 0.02r gives TL, = 113 dB.

An estimation of transmission loss in the LOAPEX experiment is implemented with

consideration only the water column attenuation and spreading loss, which is shown in

Figure 4-10.

4.3.3 Estimation of Acoustic Wave Intensity Recorded from VLA

The power spectra density of the sound pressure at different stations are estimated after

the hydrophone's calibration, which are shown in Figure 4-11. The detail of the VLA

calibration is in Appendix E. The Hanning window is applied here to compute the spectrum

of six minute long time period signal. The power spectra density verify the previous rough

estimation of the acoustic wave intensity for different distances. The sound pressure level

at each station is roughly in the same order of level of estimations from Figure 4-10.
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Estimated Sound Intensity (dB re 1 g pa 0 1 m) with Sound Source Level of 194 dB
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Figure 4-10: The estimated intensity recorded at VLA for LOAPEX transmissions. The
spreading loss calculations for a single ray conservatively assume pure spherical spreading
in first 10 km then cylindrical spreading afterward. Attenuation is calculated for the North
Pacific Ocean using Lovett (A = 0.055).

4.3.4 Mean Wave Front Intensity

The mean wave front intensity at each station is estimated with doppler correction. We first

did coherent averaging of each group transmission which includes 10 M-sequence periods'.

Then the incoherent average is implemented for all the groups. The mean wave front

intensity with absolute acoustic wave intensity are shown in Figure 4-12 in unit of dB re

1pPa © 1m with using the calibration data of both hydrophones and AVTOC instruments.

All the estimations from previous three figures 4-10, 4-11, and 4-12 are in general well

agreement, which verify our calibration results.

4.4 Numerical Simulations

To compare with observational results, there are three different kinds of simulations in-

troduced and applied here, which are ray method, parabolic equation (PE) method, and

(one-way) coupled normal mode.

'Because of the different sampling rates from the first stations (T50 - T1600) to the last two stations,
the coherent averaging of last two stations are actually implemented for 36 M-sequence periods.
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The Power Spectra from Upper Part of SVLA at each stations
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Figure 4-11: The power spectra density of the sound pressure at different stations. The
upper panel indicate the data from upper SVLA, the lower panel indicates the data from
lower SVLA. The vertical line in the lower panel indicates the carrier frequency of 68.2 Hz .
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4.4.1 Ray method- Eigenray Code

The ray code we implemented here is called eigenray code, which is a Fortran code originally

developed by Bowlin et al. (1992)[51, and streamlined by Dushaw (1998)[27]. Although nu-

merous ray tracing codes axe available, this code has its advantage to achieve fast, accurate

wavefront and eigenray travel time predictions at basin scale ranges (3 -5 M m). Two

techniques are used to speed up the eigenray calculations: (i) To use an initial prediction

with a small number of rays in order to define the range of ray angles that arrive near the

depth of the receiver. (ii) To omit the calculation of travel time in the initial fan of rays.

It is clear that a fast code will necessarily rely on look-up tables for sound speed, sound

speed gradient, and other parameters. The methods using cubic spline interpolation and

a lookup table allow sound speed and sound speed gradient to be calculated rapidly and

accurately at arbitrary range and depth. The choice of the step size used in integrating the

differential equations is critical, affecting the both the computation time and accuracy of

the ray predications. For the range dependent case, the sound speed profile is interpolated

linearly in the horizontal direction.

4.4.2 Normal Modes Method - C-SNAP

The normal modes code here we used is called the Coupled SACLANTCEN normal mode

propagation loss model (C-SNAP)[38]. It is built as a range-dependent propagation loss

model by Ferla, et al. on the base of a widely used and efficient range-independent normal

mode code, SNAP, and a numerical solution technique for one-wave mode coupling obtained

from KRAKEN. Despite the great achievements obtained with fast field and parabolic

equation models, normal mode programs still remain a very efficient, simple, and practical

tool for describing ocean acoustics in range-independent environments. C-SNAP generalize

the range-independent problem to a range-dependent one by dividing the propagation path

in a sequence of range-independent segments and using normal modes to represent the

acoustic field in each segment. It takes advantage of a widely used finite-difference algorithm

for solving the range-independent problem and make the assumption that the acoustic field

is dominated by the outgoing component. The code incorporated a reliable algorithm for

the automatic selection of the vertical grid spacing to be used for accurately marching

the solution out in range. It also bypassed the calculation of mode coupling matrices
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and computed the mode coefficients in a new segment by projecting the pressure field

onto the new mode set. To preserve accuracy, an energy-conserving matching condition

is implemented at the coupling interfaces. One of its several prominent features which is

worthy to emphasis here is that execution speed is relatively fast, and the overall time

required to get a stable solution is mainly dependent on the choice of a single parameter:

the number of range subdivisions.

4.4.3 Parabolic Equation method - RAM

The parabolic equation (PE) method is very effective for solving range-dependent ocean

acoustics problems. The Range-dependent Acoustic Model (RAM) is based on the split-

step Padd solution[12, 13], which allows large range steps and is the most efficient PE

algorithm that has been developed. Range dependence is handled accurately by applying

an energy-conservation correction14] as the acoustic parameters vary with range. An initial

condition (or starting field) is constructed using the self-starter[11], which is an accurate

and efficient approach based on the PE method.

The numerical solution of the parabolic wave equation involves repeatedly solving tridi-

agonal systems of equations. This key component of RAM has been optimized by minimiz-

ing the number of operations and by using a special elimination scheme that is efficient for

problems involving variable ocean depth. The split-step Padd algorithm is based on rational

function approximations. This code is originally written by Michael Collins. The specific

package we used here is implemented in matlab as developed by Matt Dzieciuch.

Before running the simulations, the proper parameters for PE replica calculations were

established. Of great importance were the Ar, or marching step interval, and Az, the depth

interval. These two parameters determined the granularity of the acoustic field calculation

using PE. If these parameters were too large, the simulated pressure field would not be

accurate. Too small, and too much time would be spent computing the field for the desired

accuracy.

4.4.4 Comparison between the different numerical simulations

To investigate how the sound wave is scattered in the random medium, i.e. internal wave

field, we used a stochastic internal wave model as described in Chapter 3 and propagated

sound wave through it. In this thesis, all simulations with internal waves are set up with
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half GM energy, unless indicated otherwise.

Here we used the ray code to get accurate travel time estimation. Furthermore, as

the ray code does not account for diffraction effects, comparison between the ray and other

numerical simulations (such as PE and Normal Modes codes) indicates the diffraction effects

is involved. PE simulations (range independent/ dependent) are very efficient and the only

available method to study the sound wave propagation through internal wave fields. The

normal modes method is the most accurate full wave equation method, used here to verify

the PE simulation result. The simulations with these methods are displayed at each station

in Figure from 4-19 to 4-24.

In each figure, we show three panels with PE (RAM) simulation without internal waves

(upper), CSNAP simulation without internal waves (center), and PE (RAM) simulations

with internal waves (bottom). For the simulations without internal waves field, the PE

(RAM) and CSNAP show very similar results in both early arrival wave fronts and finale

region for the first few stations. But for the longer range stations, such as T1600, T2300,

and T3200, there are some discrepancies in the post finale region. The reason for this

discrepancy might be due to the accuracy of the PE (RAM) simulation. It is expected that

reducing step size in both horizontal and vertical direction will have better agreement with

CSNAP's result. For the simulation including internal wave scattering, as we expect, there is

energy extending in both horizontal and vertical direction. But in the post-finale region, the

internal wave scattering seems to smear the energy in both vertical and horizontal direction

instead of pushing energy extending further in the time axis (such as station T1600 and

T2300), which is an interesting finding for this off-axis sound source transmission.

4.5 Comparison between Observations and Numerical Sim-

ulations

4.5.1 Mean Wave Front Intensity in the Finale Region

The acoustic data at different ranges are processed with procedures of demodulation and

pulse compressing for off-axis transmissions. Doppler shift finding and correction are ap-

plied to remove the relative motion effect of the sound source and receiver moorings. The

mean intensity of the wave fronts were estimated first by coherently averaging for continuous

pulses with doppler correction, and then incoherently averaging among different transmis-
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Figure 4-13: The simulations of LOAPEX station T250 transmission. From top to bottom,
the three panels are PE (RAM) simulations without internal wave, CSNAP simulations
without internal wave, and the PE (RAM) simulations with internal wave, respectively. In
each simulation, the eigenray simulations are overlapped on with black dot marks.
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Figure 4-14: The simulations of LOAPEX station T500 transmission. From top to bottom,
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each simulation, the eigenray simulations are overlapped on with black dot marks.
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Figure 4-15: The simulations of LOAPEX station T1000 transmission. Rom top to bottom,
the three panels are PE (RAM) simulations without internal wave, CSNAP simulations
without internal wave, and the PE (RAM) simulations with internal wave, respectively. In
each simulation, the eigenray simulations are overlapped on with black dot marks.
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Figure 4-16: The simulations of LOAPEX station T1600 transmission. From top to bottom,
the three panels are PE (RAM) simulations without internal wave, CSNAP simulations
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each simulation, the eigenray simulations are overlapped on with black dot marks.
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Figure 4-17: The simulations of LOAPEX station T2300 transmission. From top to bottom,
the three panels are PE (RAM) simulations without internal wave, CSNAP simulations
without internal wave, and the PE (RAM) simulations with internal wave, respectively. In
each simulation, the eigenray simulations are overlapped on with black dot marks.
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Figure 4-18: The simulations of LOAPEX station T3200 transmission. From top to bottom,
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each simulation, the eigenray simulations are overlapped on with black dot marks.
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sions. For the off-axis transmissions, signal to noise ratio (SNR) of the wavefronts range

between 40 dB (for less than 2 M m stations) to 25 dB (for further stations:T2300 and

T3200.) The observations of mean intensity time-fronts are compared to the deterministic

ray, Parabolic Equation (PE) (with/without internal waves) and (one-way coupled)normal

mode calculations. From Fig. 4-19 to Fig. 4-24, we show the comparison between the

observations and numerical simulations with/without the internal wave field.

The upper panel of each figure, shows the comparison between the ray prediction and

observation result. The wave fronts seen sweeping across the array in the early part of the

reception have one-to-one correspondence with the predicted wave fronts. However, the

measured and predicted arrival patterns are not identical. The most striking discrepancy

is in the times at which the acoustic receptions end, i.e., the final cutoffs, which have been

already described in terms of the diffraction effect.

Comparison of the observations (upper panel) with the center and lower panel of each

figure, shows that simulations with internal wave are in better agreement with observations

in the post-finale region. However, there are some still discrepancies which need to be

further examined for both simulations and data processing.

4.5.2 LOAPEX Time Extension into the Finale Region

In general, the LOAPEX observations show that there is significant amount of energy

ensonified in the shadow zone region at each station. These shadow zone arrivals are beyond

the geometry of acoustic prediction, and we know it is due to the sound wave diffraction

and scattering. To investigate the roles of these two effects, let us first examine the mean

intensity fluctuation averaged along the hydrophone receiver depths (from 350 m to 1715

m),

1 Nz
I(t, z) = V- 1 I(t, z, R) (4.7)

, j=1

This average intensity at each station (range) is shown in Figure 4-25:

Each panel in Figure 4-25 shows the comparison of observation data and simulations

From top to bottom, the five panels are station T250, T500, T1000, T1600, T2300, and

T3200 respectively. In each panel, there are four line indicating the LOAPEX observation,

CSNAP simulation, PE RAM simulation with internal wave, and last ray arrival. In general,
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Figure 4-19: The comparison of observation data and simulations of LOAPEX station T250.
From top to bottom, the three panels are LOAPEX transmission data, CSNAP simulations
without internal wave, and the PE (RAM) simulations with internal wave, respectively. In
each panel, the eigenray simulations are overlapped on with black dot marks.

140

400

600

1000

1 200

1400

1o

104.0 164.6 160

travel *rn (a)

400-

1200-

1400-

1GO0- 
-

165.6 110.4

v T I

- .-.- .- -.-.-.



LOAPEIX Data Station: T500. Avearage of 18 groups transmission*

....... .. ... ..

325.5 326 326.5 327 327.5 328 328.5 329
travel time (a)

-30 0
Power (08)

Normal Mode(CSNAP) . rg- 454000

f -
... . .. ... I . .... ... . .... .. .. . .. . . .. .. .. .

325.5 326 326.5 327 327.5 328 328.5 329
travel time (a)

0 0
Power (dE)

Split Step Pacle PE Intensity (1W). rg- 484000

-. . --. . - -. .- -.

---.. --.. -- t

- ...-. .- ..- - -- -
328.5 327 327.5

travel time (a)
328 325.5 329

Figure 4-20: The comparison of observation data and simulations of LOAPEX station T500.
From top to bottom, the three panels are LOAPEX transmission data, CSNAP simulations
without internal wave, and the PE (RAM) simulations with internal wave, respectively. In
each panel, the eigenray simulations are overlapped on with black dot marks.
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Figure 4-21: The comparison of observation data and simulations of LOAPEX station

T1000. From top to bottom, the three panels are LOAPEX transmission data, CSNAP
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respectively. In each panel, the eigenray simulations are overlapped on with black dot
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Figure 4-22: The comparison of observation data and simulations of LOAPEX station
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respectively. In each panel, the eigenray simulations are overlapped on with black dot
marks.
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Figure 4-23: The comparison of observation data and simulations of LOAPEX station

T2300. From top to bottom, the three panels are LOAPEX transmission data, CSNAP

simulations without internal wave, and the PE (RAM) simulations with internal wave,

respectively. In each panel, the eigenray simulations are overlapped on with black dot

marks.
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the comparisons show very good agreement in the early arrival region for all the stations (up

to 3200 km). In the finale and even post-finale region (after last ray arrival), the agreement

are still satisfactory in general for the first four stations (almost up to 1600 km). As being

expected, in general, diffraction is dominant effect at short ranges. Even the simulations

with internal waves scattering do not differ that much from the observations and simulations

without internal wave effects. However, for the longer ranges, such as stations T2300 and

T3200, in the finale and post-finale region, there are apparent discrepancy between the

observations and simulations, which indicate that the diffraction effect is no longer dominant

and that the scattering effects are starting to contribute more. However, it is interesting to

observe that the internal wave scattering effect can not fully explain this discrepancy. The

alternative explanations include:

1. The average along the vertical direction might smooth out the internal wave scattering

effect, since we know the scattering usually cause more energy extended in the vertical

direction than in horizontal direction.

2. Internal wave scattering effect should be simulated with more realizations (Monte

Carlo) to get more accurate statistical result, here we only have one realization.

3. Internal wave energy level might be another issue here. All the simulations with

internal wave scattering are implemented with half GM energy. The preliminary

result of LOAPEX deep arrivals (Wolfson 2007)[80] indicates 1.3 GM energy is closer

to the observations.

4. The lower angle arrivals (lower acoustic modes) at sound channel depth might be

greatly impacted by the large or mesoscale random medium effect other internal waves

in these basin scale range transmissions.

Another measure of the scattering effect is time spreading after last ray arrival. Time

spreading is defined as the following and its result is shown in Figure 4-26:

f0(t - to) 2 [I(t, z, R) - N(z, R)Idt 1/2
At(z, R) = ( R) (4.8)

fZD[I(t, z, R) - N(z, R)]dt

where to is the time of the last ray arrival in the finale region. to is indicated with

vertical straight line in Figure 4-25. N(z, R) is the noise level at different depth (z) for each

station (R). The time spreading represents the spreading of the energy after the last ray
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arrival in the finale region. Figure 4-26 shows the time spreading of LOAPEX observations

and simulations with/without internal waves, which is calculated based on this formula.

As shown in the figure, time spreading is a function of depth and range, whichincreases

as the transmission distance gets further and depth gets shallower. It is closely related to

scattering effect induced by both the internal wave and other random medium fluctuations

in the ocean.

The scale to the range of the time-spreading can actually quantify the relative contri-

butions of diffraction and scattering to the time extension of the finale. In figure 4-27, the

average of time spreading function along the depth (defined by Eq. 4.8 ) is computed for

the LOAPEX observation, simulation with/without internal waves. At short ranges, the

time spreading function scales linearly with range and at longer ranges it should scale like

3/2 to the range with the scattering effect playing a dominant role.

In order to compare to the 3/2 and linear scale, two reference scale curves are shown

as dash lines in Figure 4-27. For the loapex data (the red line), it seems much closer to

3/2 scale only if there were more spreading in station T3200. But as we know, for the

case of station T3200, SNR is relatively low, which could be the reason not to get accurate

estimation.

For the simulations with (cyan)/without (black) internal waves, they are apparently

off from both scales at stations T1000, T1600, and T2300. If both stations T1000 and

T1600 had less time spreading, and T2300 had more time spreading, then the simulation

with IW would be 3/2 scale, and simulation without IW would be much closer to linear

scale. Actually the sound channel depths are actually changing along the transmission path.

In Figure 4-2, it shows the shallowest sound channel depth at station T1000 and station

T1600, which means the sound source were closer to the sound channel depth than other

stations. However, for station T2300, the sound channel depth is the deepest one. For the

case of off-axis sound source, the closer the sound source is to the sound channel, the more

lower-angle energy will be excited, which accounts for the more time-spreading for station

T1000 and T1600 of the simulation results here. The time-spreading scale of the simulation

without internal wave is actually linear, taking account of the changing sound channel

depth, which is the case with diffraction effect only. Because the sound channel depth was

varied along the transmission path during the LOAPEX experiment, it makes this problem

more complicated than the constant sound channel depth. Thus it makes harder to observe
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the transition at some distance between R scaling and R 3/ 2 , which indicate the increasing

effect of scattering relative to diffraction.
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4.6 Summary

The analysis result of the loapex off-axis sound source transmissions data shows the good

quantitative measurement of this shadow zone arrival, which is the high angle sound en-

ergy is attracted into low angle region (sound channel depth) due to both diffraction and

scattering effect. In this case, off-axis sound source transmission introduce some additional

complicating effect, not provided from the on-axis source case. This shadow zone arrivals

are mostly concentrated in the horizontal direction (in the temporal scale) after the last ray

arrival. For the on-axis sound source transmission, the sound energy is spread out in the

vertical direction.

Through the comparison between the numerical simulations (with/without internal wave

field) and observation result, surprisingly, we find the they are in good agreement up to range

of 1600 km in the both early arrival region and finale region. But for the longer range (from

2300km to 3200 km), though the early arrival comparisons are still in satisfactory , there

are apparent discrepancy in the finale and post-finale region. It looks like the numerical

simulations(with/without 1/2 GM internal wave) under-predict the shadow zone arrivals.

Two possibilities could make explanations:

1. The signal processing in the LOAPEX data: The signal noise ratio in the loapex

data for the stations T2300 and T3200 is quite low in the finale region. There are

some further advance techniques: Doppler correction, adaptive beamforming or mode

analysis could lead more insight in this analysis.

2. For longer range transmissions, the internal wave scattering is definitely not the only

dominant effect for the finale region arrivals. As we know, other meso- or large scale

ocean fluctuations might contribute a lot in this case too. But right now, since we only

have statistical GM internal wave model, by simply tuning up the GM energy(from

1/2 to one or two) does not explain those discrepancy in the finale region arrival.
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Chapter 5

Conclusions and Future Directions

5.1 Thesis Contributions

This dissertation has developed some methods for estimating statistical properties of acous-

tic arrivals transmitted in the random deep ocean scenario. This chapter will summarize

the key contributions of the work and indicate directions for future research.

Propagation of sound in a random inhomogeneous medium is described by a wave equa-

tion in which the sound velocity is a random function of coordinates and sometimes of time.

The solution of this complicated statistical problem can only be obtained by means of

approximate methods. At present the most developed of them are the method of small per-

turbations, the smooth perturbations method (Rytov's method), and the parabolic equation

method. The statistics of acoustic fields after propagation through internal-wave-induced

sound-speed fluctuations is explored experimentally and theoretically. This thesis is closely

related to the series of long-range deep-ocean low-frequency sound propagation experiments

in the North Pacific Ocean in the last decade. Away from ocean boundaries, it is gener-

ally accepted that internal waves are the dominant source of high frequency fluctuations in

ocean acoustic transmissions. Sound waves from a point source are perturbed from simple

spherical waves into complicated wave fronts, with random variability of signal phase and

amplitude in both time and space. Understanding the principle of sound wave propagating

through random medium in the ocean is the key to use acoustic method to monitor deep

ocean, measure ocean climate change and global underwater communication. While much

theoretical research has been done on long-range propagation in deep ocean, none of the

various theories developed over the last two decades successfully predicts received signal
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characteristics as a function of range, frequency, depth, or internal wave intensity.

The first contribution of this thesis is a quantification of space-time scales of ocean sound

speed variability contributed from different bands of internal waves continuum, near inertial

waves, internal tides and sub-inertial motions(mesoscale) from the North Pacific Acoustic

Laboratory(NPAL) 98-99 environmental data. The validity of Garret&Munk(GM) internal

wave model was checked in the upper ocean of eastern North Pacific. All those results

impose hard bounds on the strength and characteristic scales of sound speed fluctuations

one might expect in the region of the North Pacific for both internal-wave band fluctuations

and mesoscale band fluctuations.

The second contribution of this research is a detailed analysis of the low frequency

sound arrivals using 6 days of data from a 20-element, 700 m long vertical receiving array

located 87-km distant, and spanning depth region 900-1600-m in the North Pacific Ocean.

The observed acoustic variability is compared with acoustic predictions based on the weak

fluctuation theory of Rytov, and direct parabolic equation, Monte Carlo simulations. The

comparisons show that a resonance condition exists between the local acoustic ray and the

internal wave field such that only the internal waves whose crests are parallel to the local

ray path will contribute to acoustic scattering: This effect leads to an important filtering of

the acoustic spectra relative to the internal wave spectra, such that rays with high grazing

angles do not acquire scattering contribution due to low frequency internal waves. We

believe that this is the first observational evidence for the acoustic ray and internal wave

resonance.

The third contribution of this work is a detailed examination of the evolution, with dis-

tance, of the acoustic arrival pattern of the off-axis sound source transmissions in LOAPEX

experiment. The observations of mean intensity time-fronts are compared to the determinis-

tic ray, parabolic equation(PE)(with/without internal waves) and (one-way coupled)normal

mode calculations. We found that the observed well-resolved wave front pattern in the early

arrival region is reproduced by the the numerical simulation. The diffraction effect is dom-

inant in the shorter range transmission; the high angle energy excited from off-axis sound

source are re-distributed into lower angle region. In the longer range, the (internal wave

and other random medium effect) scattering effect starts to kick in and smear the energy in

both spatial and temporal scales, and eventually has a dominant role in the finale region.
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5.2 Future Work

5.2.1 Data Processing

In the LOAPEX data processing, a constant Doppler (e.g. constant relative velocity of the

source and receiver) was assumed for the entire signal duration. The method of solution

was to process for a range of possible Dopplers and to select the output with the maximum

value. Apparently, this is not optimum for the LOAPEX acoustic data because of the non-

constant source motion during the lengthy transmissions (up to 80 minutes). Although the

method addresses the slow moving receiver array, the method does not separate Doppler

caused by the random motion of the medium. One of future work will be incorporate the

Doppler Toolbox, developed by Rex Andrew at APL-UW, and the receiving array solutions

determined by Frank Henyey and Brad Bell at APL-UW. This new approach should allow

us to determine if the differences between the, under-predicted finale-region arrival and the

observation are caused by the method of treating the Doppler correction.

The LOAPEX acoustic transmission path had a relatively strong range-dependent sound

channel depth, so the very sparse CTD prole casts(only seven) in this wide range of 3200

km need to be filled in with additional LOAPEX observational data (XBT and UCTD) to

provide a more detailed range resolution of the background sound speed field. The lack of

resolution may have limited the performance of previous simulations.

5.2.2 Numerical Modeling: Ocean Modeling and Acoustic Propagation

Modeling

Ocean Modeling

Internal Wave Simulation In the beginning of this thesis, we started with the assump-

tion that the internal wave field is the dominant source of the sound speed fluctuation in the

deep ocean. Through out this work, the GM internal wave ocean model is assumed for both

numerical simulation and analytic derivation. We successfully predict the variability of both

the intensity and phase of acoustic signals in the range of 87 km with a low-frequency and

broad band sound source. In effect, the assumption of the dominant effect of the internal

wave in the deep ocean scenario is verified.

Right now, there are two kinds of statistical internal wave models for numerical simu-
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lations of GM internal waves which are widely used in the deep ocean acoustic community.

One is the Colosi & Brown (1998) IW model, and the other is the Henyey-Wolfson model,

developed by Frank Henyey and Michael Wolfson at APL-UW. The basic difference between

these two models is the method of finding the internal-wave eigenvalues and modes. Appar-

ently, the UW model performs better and uses an adaption of the techniques used in the

acoustic normal mode program Kraken. These techniques are based upon a finite-difference

approximation of the applicable differential equation, the application of the Sturm sequence,

a bisection to determine the eigenvalues, and an inverse iteration to find the eigenvectors

or modes. In the Colosi & Brown model, a WKB scaling of both the modal amplitudes and

the depth coordinate is invoked. So there will be errors for small "j" and high frequencies

due to the WKB approximation. So the long-range acoustic propagation simulations con-

ducted with an internal wave model and the parabolic equation method, of the LOAPEX

experiment, show that the wavefront pattern in the finale region is very sensitive to the

large-scale internal waves, i.e. the small wave number "j". That means that the error for

small "j" internal wave simulations might be very important for the simulations of arrivals

in the finale region. So the comparison of these two internal wave models should be checked

with observation data in the future work.

Non-IW Ocean Process Modeling On the debate of the size of the effect of fine

structure in the upper ocean on acoustic fluctuation, the conclusions from my thesis are

(for the fine structure only):

1. The internal wave is a dominant source for low frequency acoustic fluctuation in the

deep ocean. It is a broadband fluctuation source in both the temporal and spacial

scales.

2. The fine structure excists in the upper ocean too, but so far we only have the obser-

vation evidence in the spacial scale. The fine structure is not any kind form of wave.

It is hard to discover its temporal variability until it is actually measured carefully.

Furthermore, it is very possible that the empirical GM spectrum actually contains the

fine structure effect.

However, oceanographic observations show that there are several differences between the

real ocean sound speed fluctuations and those modeled using the GM spectrum, especially in
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the upper ocean where actually strongest scattering is induced by the upper turning points.

Recent SeaSoar measurements and PE simulations using that data ocean "spiceness" -

temperature and salinity fluctuations that result in no density perturbation may also play a

significant role in long-range propagation[29. The statistical modeling of those non-internal

wave effect will also be of interest in future work.

Acoustic Propagation Modeling

Up to now, the only feasible numerical simulation method with a statistical internal wave

field, has been the parabolic equation method. The two most popular parabolic equation

codes are RAM and UMPE. So it would be very interesting to compare those two codes to

the more accurate one-way coupled normal modes code, like CSNAP with the exact same

small-scale perturbed sound-speed field.

5.2.3 Theory Prediction

Short Range, Unsaturated Scattering: Weak Fluctuation Theory

The statistical characteristic of the sound wave field in 20-minute and 40-minute period are

presented in this thesis, but it will be very interesting to investigate the phase fluctuation

of sound wave field in longer periods. In addition, it would be interesting to explore how

the sound wave scattering is evolving along the transmission path, the sound transmission

at different ranges will be the key observation for this problem. Actually those observation

are made in the NPALO4 experiment, so the data analysis of those acoustic data will be

very important work in the future. A further study will be to test this theory for LOAPEX

station T50 receptions and then extend this prediction to the LOAPEX T250 stations early

arrival, or even station T500s early arrivals. The ultimate goal is examine the limits of

validity of Rytov theory at increasing range, higher frequency, and different ray paths.

Long Range, Saturated Scattering: Couple Normal Modes Theory

The solution of the sound propagating through the real ocean will be different from the

simplified case, which is solved by using Rytov method based on the Ray theory. There

is validity limitation for the low frequency and long range. For a better understanding

acoustic statistics, the developing a statistical couple mode theory will be the one of main
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objectives for future work.

Andrey Morozov (of Woods Hole Oceanographic Institution) and John Colosi (of Naval

Postgraduate School) have worked to develop a coupled mode theory based on the work of

Dozier and Tappert(1978), and Van Kampen (1992). They modified original approach and

adapt the techniques enabling the computation of the important cross mode coherences.

This method is able to predict the multi-megameter range evolution of the mean intensity

to within a few dB. In future work, one should follow up this approach of computing the

cross mode coherence across frequency to predict the broadband arrivals, and then to use

it to compare to the observational result at longer-range stations.
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Appendix A

Maximum-Likelihood Estimate

The maximum-likelihood estimate of a parameter vector a is usually obtained by maximiz-

ing the joint probability density function of a set of observed random variables with respect

to a. When the observation is a random process rather than a set of random variables, the

estimate is obtained by maximizing a function called the likelihood ratio with respect to the

unknown parameters. If n(t) in Eq.3.1 is white Gaussian noise with a two-sided spectral

density !No then the likelihood ratio for r(t) is

2 T N Ti)]N

A[r(t), {A2 , r}] = exp j r(t) Ais(t - ri)dt - - [ Ais(t -ri) dt}, (A.1)

where[O, T] is the observation-time interval. The exponetial function is monotonic and

MaX(A1 ,T}A [r(t), {A, ri}] = Max{Ai,T1 lnA [r(t), {A, i}] (A.2)

The logarithm of the likelihood ratio can be written in matrix notation as

InA [r(t), {Ai, ri}] = (2/No)ATp - (1/NO)ATAA (A.3)

where

T = (foT r(t)s(t - r1 )dt,..., fOT r(t)s(t - rN dt) ,
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All A12  ''' AM1
A = ..................... ,

AN1 AN2 ... ANN
where

Ai = f s(t - ri)s(t - r)dt

The maximum-likelihood estimates are the values of A and r that maximize Eq.A.3.

Maximizing with respect to A yields

VA(2ATp - ATAA) = 0, (A.4)

where VA = a .A.. AN

Carrying out the differentiation in Eq.A.4 produces the following vector equation which

the amplitude vector estimate must satisfy:

A = A-N (A.5)

Substituting Eq.A.5 into Eq.A.3 and maximizing with respect to the set of ij yields

Max(,,) [2 4TA-lT - 4TA~1] (A.6)

However, because A and A-' are symmetric, Eq.A.6 can be written as

Max(,j) 4T A-14) (A.7)

Therefore, to determine the maximum-likehood estimate, Eq.A.7 must first be maximized

with to the set of arrival times. The resulting set of time estimates are then used in Eq.A.5

to obtain amplitude estimates. It should be noted that the maximum-lielihood estimation

of the 2N parameters only requires finding the maximum of a function in N-dimensional

space. A "brute force" minimum mean-square error estimate would require finding the

extremum of a function in 2N dimensional space.
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Appendix B

Rytov Method

B.1 Rytov General Solution to Stochastic Wave Equation

We start from the stochastic Helmholtz Equation:

V2,o+ 2) = 0, with &(z, t) = «c(1, t) <<
CO 2(1 + p(, t))2 co

(B.1)

then

V 2o + q20 - 2q2p(, t)o ~ 0, qo = which is free space wave number
CO

(B.2)

Note that Eq.B.2 has multiplicative noise because of the pi term. For Rytov method, 0

can be expanded in the exponential.

V = exp(oo + Wi + ...) = exp( p) (B.3)

Substituting Eq.B.3 into Eq.B.2 we get the Riccati Equation which is nonlinear:

V2 p + (VW) 2 + qO(1 - 2A) = 0 (B.4)

To zeroth and first order we get:

v 2sO + (VWo) 2 + q2 = 0 (B.5)
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V2
1p + (VW1) - (Vpo) = 2q0i

The first equation is satisfied by the unperturbed solution V50 = exp(po).

second equation we make the substitution

W1 = exp(-po)u

To solve the

(B.7)

(B.8)V2U + q2u = 2q2pexp(Wo)

Now notice that we have additive noise term in the right side of equation. This equation

can be easily solved using the Green's Function.

u = -2qJ G(z - X)p( )exp(Wo(?))d9 = -2qO J G(z - X_)z(9)o()da

G(X - X) = exp(iqo P-)I
47rIx-*'I

(B.9)

(B.10)

which is free space Green's function. Using the fact that Wo = exp(Oo) and inserting the

Green's function, then the final result is

W1(i) = exp(-po)u = -_
27r IVexp(iqoI'-~~ -ID 3_

I x X/1 j-'X) d~X

This is the basic equation for propagation in a random medium using the Rytov Approxi-

mation.

B.2 Rytov Theory for Incident Plane Wave and Small Angle

Propagation

For the plane wave propagation in the x-direction,i.e. assume oo(X) = exp(iqox), the Rytov

theory (Eq.B.11) gives

pj(Y) = exp(-po)u = 0
27r

(B.12)
I exp(o[ - ) ()exp(iqo(x' - X))d

v - (x')I

Now lets assume that the observation plane is located at range R or

X = (R, y, z)
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Consider the maximum scattering angle (by diffraction theory) which is given by

A
6max ~ - A = wavelength, 10 = smallest scale of fluctuations of/ t (B.14)

If small angle scattering is assumed(6m < 1, essentially the parabolic approximation)

then

|z - X1= [(R - x') 2 + (y - y) 2 + (z - z')2] (R - x') 1 + 1( - yR)2 +(z - z')2

(B.15)

Substituting back into Equation of Rytov function:Eq.B.12, and get

(B.16)2 R 0 1 z) (y - y')2 + (Z - Z')291($) -dz' dy' dz' ,ep -,
27r o o .o R-x2(R - x')

Note that -_1 , ~ , is used. The volume integral has been contracted to the region

0 < x' < R. This is justified because we are looking at small angle forward scattering. This

is the Rytov Result for an incident plane wave and small angle scattering.

0 in Eq.B.3 is complex function, so it can be written as:

V) = 4o exp( 1 ) = A exp(io), (B.17)

So,from Eq.B.17

#I (1-) =In Aexp(i!) A0 /=n ==ln (-)+(-#)#0 Aoexp(i~o)) A0
(B.18)

So the log-amplitude x and phase # are defined as:

X = (W1 + ) = In ( A) log-amplitude fluctuation

1
= (W1 - AoD = (0 - 0) = 01 = phase fluctuation

(B.19)

(B.20)
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B.3 Spectra of Phase and log-amplitude: No waveguide

The well known result for the spectrum of phase # and log-amplitude X for a point source

in the Rytov approximation (Ishimaru,1977,and Munk and Zachariasen 1976) is

FOX(R, k, , kz) = 7rk2R (D(O, ky/s, kz/s) 1 ± cos ( s(k 2 +kz)R(x) ds (B.21)

where s = x/R is the normalized range, Rj (x) = Ax(R - x)/R = ARs(1 - s) is the Fresnel

zone, and ko = w/co = 27r/A is the acoustic wavenumber. The Garrett-Munk(GM) 3-D

spectrum of relative sound speed fluctuations is:

kz.~~~ 2 k~|k + k2~(k) ~kZ' 1 2 IQkzI V~k

,(kx, ky, kz) = pIO (B.22)
7r (k2 + k2.) 7r2 (k2 + k2 + k2)2

where k,* = 7rj./D, D is the water depth, and k,, = k,(f/No). Here kz is a continu-

ous variable defined on the interval -oo to oo, and the normalization condition is p.1 -

ff, dK4(K). An alternative representation in terms of the mode number j, (1 < j !S oo),

is

~2 12 22kI ~7r2 1 2 |k k + ky
((kx , ky, kzj) = X Y (B.23)

IOD2M (k2+k27 Z. (k2+k + k )2 (B23

where M =E*(J 2 + J) 1 kz = 7rj/D, and k. = kz(f/No), and the normalization

condition is /.t = E,*=1 ff*, dkxdky4(kx, kv, kz(j)). The WKB dispersion relation typically

used with the GM spectrum is:

k2 +=NJ
k2 = N2k+ k + f2 (B.24)

First we change variables from k. to w utilizing the fact that k. = 0,

F4,x(R, w, kz/s) = FO, (R, ky/s, kz/s) (B.25)
8 dw

Using

k- = - , k = (w2 _ N2)(1/2) (B.26)
&.a N No
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(0, w, kz) = L 2kz.f 2  - _ , W > f (B.27)s 0 z(k +k 2.)

(0, w, kz(j)) = ,20 f2  W(3
s D2M Z(k+k) f (B.28)

the frequency-wavenumber spectrum becomes,

F4,x(R, w, kz) = rqoR 'I(0,w, kz/s) 1i ±cos (s)(1+ -a(s) ds (B.29)

where y(s) = kzRf(s)/(2s) and a(s) = k 2 R2(s)/(2rs2).

The variances of log-amplitude and phase are obtained by integrating (or summing) over

frequency and wavenumber,

(02), (X2) = j dkz j dwFo,x (R, w, kz) or i J dWF4O,x(R, w, kz(j)) (B.30)
-=1 f

B.4 Spectra of Phase and log-amplitude: Waveguide

The waveguide case has been treated by Munk and Zachariasen(1976) with the result that

the homogeneous condition is simply applied locally along the unperturbed ray path z,(x),

and the stretching effect of s is ignored (i.e. the wave acts locally like a plane wave and

s ce 1). Thus the point source spectra for propagation along a ray path become,

kk k2 (k 2 (x) k2R (x)

Fk,x (R,k7kz)= kf dxseC2) 0(0,k±(ky/s,k z ;x);z(x)) 1kcos k 2 + 2kz ;

(B.31)

where it is understood that the integrand is not changing rapidly with range. Here we

have,

Rj(x) = Ax(R - x)(B.32)

ki(z,(x)) = (-kztan(z,(x)), kv, kz) (B.33)

kh = (kitan28 + ky2) 1/2 (.2 _ f2) (B.34)
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k, = 13(w2 - W2)1/2 _WL 2 + N 2tan2O (B.35)

kz , 7rjN z) NoB = jD N(z)dz (B.36)

R2 is the vertical Fresnel zone computed from Green's function.

The 3-D spectrum of relative sound speed fluctuations is:

2r 22kz- 1 2 |k~z|}kx + kV
I(ke, ky, kz) =6 - 2X (B.37)7r (k2 + k .) 7r2 (k.2 + kV + k^)

where kz. = 7rj./D, D is the water depth, and kz = kz(f/No). As before we change

variables from k., to w using,

F, w, kz) = F4, (R, kv, kz) (B.38)

This transformation is accomplished using Eqs.B.33-B.34 with

k dky  = kz (B.39)

we obtain

dk, p N 3 2f 2N 2  W- 3  /2_f2 1/2
(,k(w,kz(j));z) = (ky, k); z) > Wdw N (NoB)2 M kz(k +k2.) W2 _W W

(B.40)

and the frequency-wavenumber spectrum becomes,

k2 Wu> _W2 2z+k (X)FO,x(R, w, kz(j)) = rk2 dx sec2  (Ow, k(j); z) ± cos (z N R yrz

(B.41)

For short ranges like those considered in this paper the vertical Fresnel zone is much larger

than the transverse Fresnel zone, thus we make the approximation

FOx(R,w,kz(j)) - 7rk jdx sec2ft(Ow, kz(j);z) 1i ±cos (k x (B.42)

Eq.B.42 should be compared with Eq.121 from Munk and Zachariasen. Eq.B.42 says that

for each frequency w and each vertical wavenumber kz we integrate the spectrum along the

ray. However, there are forbidden regions in this integral, specially where Eq.B.35 cannot
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be satisfied at low frequency, and where w > N(z). Thus to specially indicate the forbidden

regions we add the Heavyside step functions to the spectrum giving,

F,x (R, w, kz(j)) = irks dx sec2 6<D(0, w, kz(j); z) 1i ± cos kzR z() H[W-WL(zr(x))]H[N(zr(x))-w]

(B.43)
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Appendix C

Computation of the Fresnel Zone

In the parabolic approximation the ray equation is

x.zr + 8zU(z,) = 0 (C.1)

where the sound speed profile has the form c(z) = co(1+U(z)). Examining small vertical

deviations from a ray such that z(x) = z,(x) + ((x), we plug this expression into Eq. C.1

and linearize to obtain the "ray-tube" equation

8xXz + 0zzU(zr) = 0 (C.2)

Importantly the physical interpretation of the ray-tube function ( is

1. that the acoustic ray amplitude is proportional to -1/2 and

2. where C = 0 there is a caustic.

Since Eq. C.2 is second order there are two solutions (i(x) and ( 2 (x), so using the initial

conditions

(0) = 0, ( = 1, (2(0) = 1, :(() = 0 (C.3)

the Fresnel zone along the ray path z,(x) can be written (Flatte 1983)

Rf (X) = A [( 2 (x)(I(R) - (1(x)(2(R)] (C.4)

where A is the acoustic wavelength, and R is the range of the receiver. Clearly these
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expressions break down if the receiver is near a caustic(i.e. ((R) = 0).
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Appendix D

Parabolic Equation Method

D.1 Derivation of Standard Parabolic Equation

The starting point is the Helmholtz equation for a constant-density medium in cylindrical

coordinates (r, W, z) and for a harmonic point source of time depdence exp(-iwt),

2P+ + + kn2P = 0 (D.1)

where we have assumed azimuthal symmetry and hence no dependence on the p-coordinate.

Here p(r, z) is the acoustic pressure,ko = w/co is a reference wavenumber, and n(r, z) =

co/c(r, z) is the index of refraction.

Assuming the solution of Eq.D.1 to take the form

p(r, z) = V)(r, z)HO'l (kor) (D.2)

which is an outgoing cylindrical wave solution. The envelope function 0(r, z) is assumed to

be slowly varying in range.

The Hankel function, which satisfied the Bessel differential equation

02H() (kor) __1_ (kor)
0r2 + or + k0H20(kor) = 0, (D.3)
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is generally replaced by its asymptotic form for kor > 1,

H(r) ier M)
irkr

Substituting the trial solution, Eq.(D.2), into the Helmholtz equation(D.1), and making use

of the Hankel-function property given by Eq.(D.3), we obtain

02 + 2 OH' (kor) 1 22+) ( H+(kor) +a0 2 _1or))0 = 0. (D.5)

Then we make the farfield assumption,kor >> 1, and use Eq.(D.4) to obtain the simplified

elliptic wave equation

+ 2iko + + k2(n2 - 1)0 = 0 (D.6)

Finally the crucial paraxial approximation is introduced in order to get the standard

parabolic wave equation. This small-angle approximation is expressed by

< 2iko1 (D.7)

This paraxial approximation is justified by noting that: the main radial dependence of the

field is contained in the Hankel function through the term exp(ikor), while the envelope 40

will vary slowly with range over a wavelength A, i.e 090/r < /A - ikoo. By making use

of the paraxial approximation in Eq.(D.6), the standard parabolic equation introduced by

Hardin and Tappert is

2iko-" + 2 + k2(n' - 1)0 = 0. (D.8)
Or Oz2

D.2 The Split-Step Fourier Algorithm

The standard parabolic equation can be solved by Fourier transform techniques proposed

by Hardin ann Tappert.

First, under assumption that the refraction index n is constant, we start by transform-

ing the entire parabolic equation Eq.(D.8) into k, wave number domain by using Fourier
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transform and its property as:

,O(r, z) = J0 O(r, kz)eikzzdkz (D.9)

7(r, kO) = f (r, z)e-kzdz (D.10)

/00 O2(,z zdz = -k P(r,kz) (D.11)

where kz is the vertical wavenumber. Then the transformed wave equation in ?(r, kz) takes

the form

2iko~o - k4', + k2(n2 - 1)0 = 0, (D.12)

by arranging the terms
O4g ko(n 2 -1) -k 2

-r + 2ik (D.13)r 2iko

This is a linear, first-order differential equation with the solution

,O(r, kz) = 0(ro, kz)e~ k21)k (r-ro)(D14

Then transform back to the z-domain and get the field solution

ika 0c) - i(r-ro) k2 D-5iP(r, z) = e 2 (n2 - 1)(r - ro) j 0'(ro, k.)e 2k0  zeikzzdk (D.15)

Denote the range increment r - ro by Ar and denote the Fourier transform from the

z-domain to the kz-domain with the symbol F and inverse transform with F-1. The

field solution can then be written in the compact form

?p(r, z) = e "2(ro,z)J -1 e-kF{IO(ro, z)} (D.16)

which is the split-step marching algorithm proposed by Hardin and Tappert for solving the

standard parabolic equation. The solution was derived for the trivial case of a uniform

medium, but the error incurred for n = n(r, z) is of order (Ar)2 and hence can be made

arbitrarily small by choosing a small computational range step. The algorithm was shown

by Tapper to be unconditionally stable.
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Appendix E

Vertical Line Array (VLA)

Calibration

Based on the information from NPALO4 SPICE cruise plan and report by Worcester, the

calibration of VLA is summarized as following. Basically, to get the absolute pressure unit

from VLA, the system sensitivity and the signal processing gain are needed.

E.1 System Sensitivity

The whole system sensitivity is a function of hydrophone sensitivity, system gain in the

passband, and Analog to Digital Converter (ADC) least count.

For NPALO4 VLA system, the parameters are list as following:

1. High Tech Inc. ATOC hydrophone sensitivity: -168 dB re 1 V/pPa.

2. AVATOC system gain in the passband:

(a) Input differntial amplifier: + 20 dB (Hardware selectable to 0, +20, +40 dB).

(b) Low pass filter gain (unity): 0 dB.

(c) Programmable gain amplifier (12 or 24 dB): +12 dB (NPAL 04).

So the system sensitivity at ADC input is: -136 dBV/pPa (158.5 nV/pZPa).

3. ADC Least Count: -76.3 dBV/count (152.6 MV/count). The ADC full scale is actually

+/- 4.5 V, but the buffer amps driving the ADC's are scaled to make the effective
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range +/- 5 V, and it is 16-bit ADC. So the ADC least count is:

20 * loglO(10/(216)) = -76.33 dBV/count. (E.1)

The whole system sensitivity is :

ADC Least Count - Hydrophone sensitivity - AVATOC system gain, i.e.

-76.33 + 168 - 32 = 59.67 dB re 1 pPa/count or (962.72 pPa/count). (E.2)

E.2 Signal Processing Gain

Depends on the different signal transmitted, and the signal length recorded and processed,

the different signal processing gain need to be removed to get absolute pressure unit .

Generally, there axe two steps involved in signal processing to obtain the extra gain on

signal to noise ratio:

1. Pulse compression gain: The signal being used is M-sequence with 1023 digits, which

introduces 10 * loglO(1023) = 30.1 dB gain.

2. Period averaging gain: It depends on how many periods being used when the pulse

compression is carried out. In this thesis, in order to implement the doppler correction

for each period, so the signal is processed for only one period, which means there is

no period averaging gain in this process.
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Appendix F

Ray Dynamics: Travel Time

Statistics and Time Spreading

Scale

F.1 Travel Time Statistics

In ray dynamics, the acoustic travel time can be expressed as a line integral over a La-

grangian density function L, which depends on both the ray position z(x), the ray slope

i = dz/dx, and the location along the path x and thus,

T(path) = qo L(i,z;x)dx, (F.1)

where

L (, z; x) = -- U(z' X), (F.2)
2

U(z,x) = c(z,x) - 1, U << 1 (F.3)
Co

So travel time fluctuations are associated with the Lagrangian function. Assuming in

one dimensional case, the Lagrangian system can be changed to the Hamiltonian system

with a change of coordinates (z, z;x) to (z, p; x) with

OL(z,.i; x)
Pz = -& , and H(z, pz;x) = #~z - L(z,i; x) (F.4)
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i.e.
dz dO

L = Pz- - H, -- I-- H(I) = Iw(I) - H(I) (F.5)
dx dx

1 fZ+
I= - dzp(H, z) = - z+dz(c-2 - H 2)1/ 2  (F.6)

7r Z- 7r z-

For the Helmholtz Equation,

H = -(c 2 - p2)1/ 2, Pz = sin ora/c. (F.7)

For c = c(z),

H - COS Oray = const = 1 1 1 (F.8)
C c(z-) c(z+) c

Thus there is important result.

I = I dz(c 2 -- / - = -R(I) (F.9)

From the Lagrangian, an expression for the travel time is

dT dT dO dT
d Td-= dTw(I) = L = Iw(I) - H(I) (F.10)

dx = dO dx d

Integrating over one cycle:

T(I) = 27r I -HI)

T(I) = 27rI - H(I)R(I) (F.11)

F.1.1 Upper Turning Point Model

Now lets imagine a scattering event that instantaneously changes the ray trajectory into

another trajectory at the upper turning point. Thus the ray changes from one "range-

independent" tracjectory to another. Lets expand about some reference trajectory Ho(Io),

and using Eq. F.9

R(Ho+6H) = R(Ho)+6HO H 2 2H

6R I H.+I H2 i2r - I Ho (F...)
6R = -27rJH a2 HO-* 6.2 0H31H (F.12)

180



and also for the travel time and using Eqs. F.9 and F.11 we obtain

OT+ 6H 2 0 2T
T(H)+HOHo H 2 OH2 Ho

T [r I E 0 OR 12H- HR(Ho)-H H16H-

HR
27r

3 3i5 02I 6H 2
OH3H HO±H2 Ho 2

(F.13)

For N loops we get

N 6R

-Ho -
j=1 OH2 Ho 2

(6,r)

021 N 6H 2

OH2 Ho 2

- 2I (6H2)

because Jr = E',N 6R1 = 0 (eigenray condition). But,

021

OH 2

(5-)

1 OR

W Io

1 OR 091

2-7r 01 -
(6H 2 )

2

where w(I) is the ray lope frequency and w' = dw/dI.

So the bias depends on o' and scales like R2 because (6H 2 ) scales like R.

Similar for the time spread

(6r2) _ (6)(2 6H 4
( Lo 4

which grows like R3.
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T(Ho + JH)

021 6H 2

OH 2 Ho 2

N

j=1

(F.14)

W'

(F.15)

(F.16)
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