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ABSTRACT

While contempary total knee arthroplasty has been successful in improving the quality of
life for those suffering from severe osteoarthritis, the function of these patients has not
reached normal levels for their age group. Thus, there is an increasing need to improve
total knee arthroplasty techniques to allow patients to function normally. We currently
have limited knowledge about how current knee arthroplasties behave in-vivo, but this
information could be pivotal in designing new implants and surgical techniques.
Therefore, the objective of this work was to develop the Dual Fluoroscopic Imaging
System, a non-invasive imaging system capable of measuring in-vivo knee kinematics in
all degrees of freedom. This system was used to investigate factors that may affect
patient function after total knee arthroplasty. The feasibility of using kinematic data
obtained using this system to analyze wear of the polyethylene insert was also explored

The system was shown to be repeatable and accurate in determining the pose of the
TKA components in all degrees of freedom. Six degree-of-freedom kinematics and
articular contact motion were measured in-vivo. Data was obtained for patients with two
typical classes of TKA, cruciate-retaining and cruciate-substituting, and the function of
conventional implants was compared to that of more recent high flexion designs. In
general, no differences were detected between these groups. Further, no factors such
as age, weight, PCL management, or kinematics, were found to correlate with flexion
capability. Future studies should investigate changes in knee structures from the
preoperative state to the postoperative state. Preliminary estimates of polyethylene
stresses suggested great potential in using the Dual Fluoroscopic Imaging System in
developing a model of in-vivo polyethylene wear.
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Chapter 1. Introduction

1.1 Motivation and Objectives
Millions of Americans suffer from osteoarthritis (OA) of the knee, which is

degeneration of the articular cartilage. In cases of severe OA, patients can

experience a great amount of pain and lose much of the range of motion (ROM)

in the affected knee, which in turn limits their ability to function. Approximately

381,000 primary and 35,000 revision total knee arthroplasties (TKA) were

performed in the United States in 2002 to relieve pain and restore knee function

in patients suffering from OA (Kurtz, Mowat et al. 2005). Due to the aging and

increasing size of the population, the number of primary knee arthroplasties

performed annually is expected to increase to at least 474,000 in the year 2030

(Praemer, Furner et al. 1999; Frankowski and Watkins-Castillo 2002; Kurtz,

Mowat et al. 2005). In addition, younger patients are having TKA surgeries at an

increasing rate (Ranawat, Padgett et al. 1989; Diduch, Insall et al. 1997; Jain,

Higgins et al. 2005; Kurtz, Mowat et al. 2005). While contempary TKA has been

successful in improving the quality of life for those suffering from OA (March,

Cross et al. 1999; Bachmeier, March et al. 2001; Mahomed, Liang et al. 2002),

the function of these patients has not reached normal levels for their age group,

unlike patients who undergo total hip arthroplasty (Finch, Walsh et al. 1998;

March, Cross et al. 1999; Mizner, Petterson et al. 2005; Noble, Gordon et al.



2005). Thus, there is an increasing need to improve TKA techniques to allow

patients to function normally.

The healthy human knee can flex up to approximately 1500 (Boone and

Azen 1979; Dennis, Komistek et al. 1998; Nakagawa, Kadoya et al. 2000;

Mulholland and Wyss 2001; Nagura, Dyrby et al. 2002; Steinberg, Hershkovitz et

al. 2005), and many activities of daily living require a significant amount of flexion

(Laubenthal, Smidt et al. 1972). For example, stair climbing and descent, as well

as sitting on chairs, require 90-1200 of flexion, and the use of a bathtub requires

1350 of flexion (Rowe, Myles et al. 2000). High flexion of the knee is also

essential for individuals who are employed in such professions as construction

and agriculture, as well as for individuals who participate in recreational activities

such as gardening and golfing. In order to kneel, squat, or sit cross-legged for

certain religious activities, 1650 of flexion is needed (Hefzy, Kelly et al. 1997;

Mulholland and Wyss 2001).

Numerous studies have demonstrated that, on average, patients can only

flex the knee up to 1150, regardless of the type of TKA design, the patient's age,

gender, or pre-operative condition (Insall, Hood et al. 1983; Aglietti, Buzzi et al.

1988; Goldberg, Figgie et al. 1988; Lee, Keating et al. 1990; Rosenberg, Barden

et al. 1990; Malkani, Rand et al. 1995; Anouchi, McShane et al. 1996;

Emmerson, Moran et al. 1996; Ranawat, Luessenhop et al. 1997; Dennis,

Komistek et al. 1998; Kawamura and Bourne 2001; Bellemans, Banks et al.

2002; Banks, Bellemans et al. 2003; Kotani, Yonekura et al. 2005; Matsumoto,

Tsumura et al. 2005; Victor, Banks et al. 2005) (Table 1). These data indicate



that there may be a common biomechanical mechanism that limits knee flexion

after TKA, which has not been clearly described in the orthopaedic literature. The

factors that limit higher knee flexion remain unclear (Li, Most et al. 2004). The

reduced range of flexion after TKA limits the patients' knee joint function. As a

result, enhancing knee flexion has been a goal of TKA surgery (Anouchi,

McShane et al. 1996; Pope, Corcoran et al. 1997; Kawamura and Bourne 2001;

Argenson, Komistek et al. 2004; Argenson, Scuderi et al. 2005).

Implant failure is another major focus in TKA research, and polyethylene

wear is a leading cause for revision (Hood, Wright et al. 1983; Bohl, Bohl et al.

1999; NIH 2000; Harman, Banks et al. 2001; Banks, Harman et al. 2002; Berzins,

Jacobs et al. 2002; Sharkey, Hozack et al. 2002; NIH 2003; Vince 2003; Berend,

Ritter et al. 2004; Clarke, Math et al. 2004; Huddleston, Wiley et al. 2005;

Morgan, Battista et al. 2005; Wright 2005). Studies of wear in TKA have focused

on the tibial plateau, the primary articulation in the joint. However, wear of the

polyethylene contacting the metal tibial plate, or "backside wear", and wear on

the anterior face of the tibial post have also received attention (Banks, Harman et

al. 2002; Callaghan, O'Rourke et al. 2002; Harman, Banks et al. 2007).

Many have felt that patient function after TKA, including ROM and

polyethylene wear, is related to the kinematics of the knee, but acquiring full and

accurate kinematics has been a challenge. This work discusses past study of

TKA and presents the development, validation, and implementation of the Dual

Fluoroscopic Imaging System, a markerless and non-invasive technique capable

of measuring joint kinematics in all 6 degrees of freedom. The technique is used



to explore possible differences in kinematics between patients with excellent

function and patients with limited ROM. The feasibility of using the 6 DOF

kinematics to estimate the in-vivo polyethylene stresses through finite element

analysis is also investigated.

1.2 Organization
This thesis has four main sections. The first is chapter 3, which presents

the development and validation of the imaging system. Chapters 4 and 5 discuss

results from patients with cruciate-retaining implants, while chapter 6 discusses

posterior-stabilized implants. Chapter 7 investigates the distribution of maximum

flexion across both types of implants. Chapter 8 begins to look at the stresses

experienced by the articular polyethylene insert by combining data obtained

through dual fluoroscopic imaging with finite element analysis. The work is

based on the following papers:

Li G, Suggs J, Hanson G, Durbhakula S, Johnson T, Freiberg A. Three-

dimensional tibiofemoral articular contact kinematics of a cruciate-retaining total

knee arthroplasty. J Bone Joint Surg Am. 2006 Feb;88(2):395-402.

Hanson GR, Suggs JF, Freiberg AA, Durbhakula S, Li G. Investigation of in vivo

6DOF total knee arthoplasty kinematics using a dual orthogonal fluoroscopic

system. J Orthop Res. 2006 May;24(5):974-81.



Hanson GR, Suggs JF, Kwon YM, Freiberg AA, Li G. In vivo anterior tibial post

contact after posterior stabilizing total knee arthroplasty. J Orthop Res. 2007 Jun

7; [Epub ahead of print]

Suggs JF, Kwon YM, Durbhakula SM, Hanson GR, Li G, Freiberg AA. In-vivo

Flexion and Kinematics of the Knee after TKA - Comparison of a Conventional

and a High Flexion Cruciate-Retaining Total Knee Arthroplasty Design.

Submitted to Journal of Bone and Joint Surgery - Br

Suggs JF, Hanson GR, Park SE, Moynihan AL, Freiberg AA, Li G. Patient

Function after a Posterior Stabilizing Total Knee Arthroplasty - Cam-post

Engagement and Knee Kinematics. Submitted to Knee Surgery, Sports

Traumatology, Arthroscopy.

Suggs JF, Hanson GR, Freiberg AA, Rubash HE, Li G. Determination of In-vivo

TKA Contact Area Using Dual Fluoroscopic Imaging. Proceedings of Summer

Bioengineering Conference, Amelia Island, Florida, 2006

Suggs JF, Hanson GR, Li G. In-vivo Tibiofemoral Contact Stress in the Knee

after TKA. Proceedings of Summer Bioengineering Conference, Keystone

Colorado, 2007





Chapter 2. Review of the Study
of Flexion after TKA

2.1 Factors Affecting Flexion
The main goal of total knee arthroplasty is to restore the function of the

knee in patients suffering from severe cartilage degeneration, and the amount of

the flexion the patient achieves postoperatively has been a primary measure of

the level of restoration. Investigators have reported various factors that may

affect knee flexion after TKA. These factors can be broken into 3 categories:

Preoperative, Intraoperative, and Postoperative.

2.1.1 Preoperative Factors

Previous investigators have studied the effects of preoperative factors that

might limit flexion after total knee arthroplasty (Ritter and Stringer 1979;

Schurman, Parker et al. 1985; Tew, Forster et al. 1989; Maloney and Schurman

1992; Parsley, Engh et al. 1992; Harvey, Barry et al. 1993; Anouchi, McShane et

al. 1996; Lizaur, Marco et al. 1997; Schurman, Matityahu et al. 1998; Kawamura

and Bourne 2001; Ritter, Harty et al. 2003; Kotani, Yonekura et al. 2005; Rowe,

Myles et al. 2005; Evans, Parsons et al. 2006). One of the first proposed

correlates to range of motion after TKA was preoperative flexion (Ritter and



Stringer 1979). In a study of 145 total knee arthroplasties, Ritter and Stringer

found that postoperative flexion may be determined by preoperative flexion,

particularly in cases where the preoperative flexion was less than 75". They did

not see any correlation between postoperative flexion and prosthesis design,

gender, age, or diagnosis of rheumatoid or osteoarthritis. In a later study of 4727

knees, Ritter et al. again found preoperative flexion to be the strongest predictor

of postoperative flexion (Ritter, Harty et al. 2003). They also found weaker

correlations between postoperative flexion and gender, age, and preoperative

tibiofemoral alignment.

In a multi-center, prospective study of 282 knees, Anouchi et al. reported

that patients with pre-operative flexion of less than 90° gained the most flexion,

while patients with flexion greater than 1050 prior to surgery tended to retain or

lose some motion after surgery (Anouchi, McShane et al. 1996). Age, gender,

weight, and previous surgery were not significantly correlated with the post-

operative range of motion. Kotani et al. did not find any correlation between

postoperative ROM and age or body mass index (Kotani, Yonekura et al. 2005).

Similarly, other studies have noted that patients with the least pre-operative

motion increased their flexion range the most, whereas those with the most pre-

operative motion tended to lose motion after surgery (Schurman, Parker et al.

1985; Parsley, Engh et al. 1992; Harvey, Barry et al. 1993; Lizaur, Marco et al.

1997; Kawamura and Bourne 2001; Rowe, Myles et al. 2005). Despite the

relationship between preoperative and postoperative knee flexion, postoperative

knee flexion has been limited to approximately 1150 (Insall, Hood et al. 1983;



Insall, Binazzi et al. 1985; Aglietti, Buzzi et al. 1988; Goldberg, Figgie et al. 1988;

Lee, Keating et al. 1990; Rosenberg, Barden et al. 1990; Dennis, Clayton et al.

1992; Ranawat, Flynn et al. 1993; Rand 1993; Malkani, Rand et al. 1995;

Emmerson, Moran et al. 1996; Ranawat, Luessenhop et al. 1997; Kotani,

Yonekura et al. 2005).

2.1.2 Intraoperative Factors

Several studies have looked at the effect of the surgical approach on the

outcome of TKA (Parsley, Engh et al. 1992; Keating, Faris et al. 1999; Parentis,

Rumi et al. 1999; Matsueda and Gustilo 2000; Tanavalee, Thiengwittayaporn et

al. 2004; Berger, Sanders et al. 2005; Laskin 2005). The concept behind these

studies is that minimized disruption to certain soft tissues in the knee will result in

improved function after surgery. In prospective, randomized studies comparing

the midvastus and median parapatellar approaches, no significant differences

were shown in range of motion, strength, knee scores, tourniquet time, or

proprioception (Keating, Faris et al. 1999; Parentis, Rumi et al. 1999). In a

retrospective study of the subvastus and median parapatellar techniques

(Parsley, Engh et al. 1992; Matsueda and Gustilo 2000), the type of approach

once again was not found to improve range of motion. The choice of surgical

approach, including minimally invasive surgeries (MIS) (Tanavalee,

Thiengwittayaporn et al. 2004; Berger, Sanders et al. 2005; Laskin 2005), does

not seem to increase the ultimate flexion of the knee but, theoretically, may allow

for faster rehabilitation.



Another surgical consideration is the release of various soft tissues around

the knee (Harvey, Barry et al. 1993; Arima, Whiteside et al. 1998; Mihalko,

Whiteside et al. 2003; Ritter, Harty et al. 2003; Laskin and Beksac 2004;

Argenson, Scuderi et al. 2005; Victor, Banks et al. 2005; Mizu-Uchi, Matsuda et

al. 2006). It has been suggested that release of the posterior capsule (Argenson,

Scuderi et al. 2005), partial release of the PCL (Arima, Whiteside et al. 1998;

Laskin and Beksac 2004), or release of the medial or lateral tissues (Victor,

Banks et al. 2005; Mizu-Uchi, Matsuda et al. 2006) may be necessary to afford

the patient normal function. Ritter et al. found that patients with a medial release

had 30 less ROM, but they attribute this difference to the preoperative varus

deformity that necessitated the medial release as opposed to the release itself

(Ritter, Harty et al. 2003). Harvery et at. reported that soft tissue release did not

affect ROM (Harvey, Barry et al. 1993). While there has been substantial

discussion concerning soft-tissue release, there has been relatively little objective

investigation into the mechanical effect releasing various tissues in the context of

total knee arthroplasty. Mihalko et al measured the effect releasing medial

structures and lateral structures on the joint gap in an in-vitro study (Mihalko,

Whiteside et al. 2003). They found that the superficial MCL and LCL had a

significant restraining effect throughout flexion but mostly at flexion greater than

900.

Removal of posterior femoral and tibial osteophytes has also been

recognized as a factor that affects knee flexion and is sometimes part of

releasing the posterior capsule (Li, Schule et al. 2003; Ritter, Harty et al. 2003;



Laskin and Beksac 2004; Argenson, Scuderi et al. 2005; Sugama, Kadoya et al.

2005; Yau, Chiu et al. 2005). Failure to remove the posterior osteophytes may

result in early tibial impingement and, thus, reduce flexion. Removal of all the

posterior osteophytes may also help in achieving full extension of the knee as

they cause tenting of the posterior capsule.

Whether or not to retain the PCL has been a controversial topic in the

research on TKA techniques (Andriacchi and Galante 1988; Becker, Insall et al.

1991; Walker and Garg 1991; Banks, Markovich et al. 1997; Bolanos, Colizza et

al. 1998; Dennis, Komistek et al. 1998; Stiehl, Dennis et al. 2000; Li, Zayontz et

al. 2001; Li, Gill et al. 2002; Most, Zayontz et al. 2003; Jacobs, Clement et al.

2005; Kotani, Yonekura et al. 2005; Victor, Banks et al. 2005; Fantozzi, Catani et

al. 2006). PCL retention has been thought to have the potential advantage of a

better passive range of knee flexion, improved rollback of the femur, and

enhanced joint stability (Andriacchi and Galante 1988; Walker and Garg 1991; Li,

Gill et al. 2002). An alternative to PCL retention is the PCL-substituting TKA,

which replaces the PCL with a spine on the tibial polyethylene insert that

engages with a cam built into the femoral component. The advantages of PCL-

substituting is more consistent results compared to PCL-retention (Argenson,

Scuderi et al. 2005; Fantozzi, Catani et al. 2006). In general, PCL-retaining and

PCL-substituting designs have had similar kinematics (Stiehl, Dennis et al. 2000;

Li, Zayontz et al. 2001; Victor, Banks et al. 2005). Given these kinematic

similarities, it is not surprising that no definite clinical differences have been



reported (Becker, Insall et al. 1991; Bolanos, Colizza et al. 1998). (Check for a

paper by Tanzer on this subject)

Component geometry has also been suggested as a factor in patient

function after TKA (Maloney and Schurman 1992; Akagi, Nakamura et al. 2000;

D'Lima, Poole et al. 2001; Argenson, Komistek et al. 2004; Argenson, Scuderi et

al. 2005). Contemporary femoral components have a smaller radius of curvature

in the posterior portion of the condyles compared to the distal portion, similar to

the native knee (Walker 2000). This difference is intended to allow femoral

rollback and flexion. Some have warned that the reduced radius of curvature in

the posterior condyles decreases the flexion moment generated by the

quadriceps and, thus, may limit the functional flexion range utilized by the patient

(D'Lima, Poole et al. 2001; Kurosaka, Yoshiya et al. 2002; Laskin and Beksac

2004). In addition, the increased quadriceps force needed to maintain the

desired flexion moment may lead to an increased rate of patellofemoral

complications. Wilson et al reported that TKA patients used significantly less

ROM during level walking and stair descent compared to an age-matched control

group, but found no difference in quadriceps strength (Wilson, McCann et al.

1996). Despite various modifications to component geometries (Maloney and

Schurman 1992; Akagi, Nakamura et al. 2000; Argenson, Komistek et al. 2004;

Argenson, Scuderi et al. 2005), the ultimate range of flexion still remains limited.

Closely related to soft-tissue release is the size of the components, since

it affects the tension in the tissues around the knee (Laskin and Beksac 2004). A

component that is too small may result in a reduced posterior condyle offset and



cause impingement in flexion (Bellemans, Banks et al. 2002), although this may

be more of a concern for PCL-retaining designs than for PCL-substituting (Kim,

Sohn et al. 2005). On the other hand, a femoral component that is too large may

result in a tight flexion gap. It may also cause "overstuffing" of the knee joint (Li,

Papannagari et al. 2005). This, too, may result in unsatisfactory clinical outcome

due to reduced flexion. Thus, accurate sizing of the components is important in

obtaining satisfactory range of motion after TKA.

The positioning of the components relative to the bones is another part of

the surgical technique that can affect the function of the implant (Piazza, Delp et

al. 1998; Callaghan, O'Rourke et al. 2002; Laskin and Beksac 2004; Argenson,

Scuderi et al. 2005; Catani, Fantozzi et al. 2006). The relative anterior-posterior

position of the tibial component on the cut tibial surface may affect rollback. The

more posterior the tibial component is placed, the greater the capacity for

posterior femoral translation, which would have a beneficial effect on flexion (Li,

Most et al. 2004). Position (Walker and Garg 1991) and rotation (Berger,

Crossett et al. 1998) of the femoral component have also been shown to

influence flexion. Callaghan et al. warned against placing the femoral component

in flexion or the tibia in excessive posterior slope as this may cause anterior

impingement in PCL-substituting designs (Callaghan, O'Rourke et al. 2002).

The normal tibia has a natural posterior slope of approximately 100

(Kuwano, Urabe et al. 2005). Many TKAs are designed so that the tibia is cut

with a posterior slope (usually between 30 and 100). Failure to appreciate the

posterior tibial slope may result in a tight flexion gap, which will limit flexion.



Conversely, an excessive posterior slope may also result in flexion gap laxity,

which may lead to flexion instability and failure of the TKA (Walker and Garg

1991; Singerman, Dean et al. 1996). Catani et al. reported a mild to moderate

correlation between maximum knee flexion and tibial slope during chair

rising/sitting and step up/down activities (Catani, Fantozzi et al. 2006). However,

many studies have failed to find a correlation between tibial slope and ROM

(Kotani, Yonekura et al. 2005)

The flexion angle of the knee during closure has been considered to be

another factor that can affect the ultimate range of motion of a knee. Emerson et

al. (Emerson, Ayers et al. 1996; Emerson, Ayers et al. 1999) have reported that

knees closed in 90-1100 degrees of flexion have significantly more flexion (1180)

compared to knees closed in extension (1130) at one-year follow-up. However,

another study (Masri, Laskin et al. 1996) failed to show any benefit of capsular

closure in flexion in relation to early post-operative rehabilitation at three months.

2.1.3 Postoperative Factors

Post-operative factors have been examined closely to determine the effect

on the ultimate range of motion after TKA. Numerous articles have looked at

post-operative rehabilitation as a means of optimizing flexion. Two factors that

have been investigated are the use of a continuous passive motion device

(Leach, Reid et al. 2006) and quadriceps strengthening regimes (Silva, Shepherd

et al. 2003; Moffet, Collet et al. 2004; Mizner, Petterson et al. 2005). Several

prospective, clinical trials have failed to show the effect of rehabilitation in



optimizing the ultimate range of motion (Fox and Poss 1981; Romness and Rand

1988; Kumar, McPherson et al. 1996; Pope, Corcoran et al. 1997; Chen,

Zimmerman et al. 2000; MacDonald, Bourne et al. 2000; Teeny, York et al. 2005;

Leach, Reid et al. 2006).

2.2 Methods of Investigation
Numerous researchers have investigated the function of the knee after

total knee arthroplasty, and they have done so using several different techniques.

These techniques are reviewed here in four categories: Clinical, In-vitro,

Computational, and In-vivo.

2.2.1 Clinical Methods

Several methods have been used to explore knee function following total

knee arthroplasty. These methods can be broken down into four categories.

The first is Clinical, referring to methods based on tools commonly available in a

clinical setting, such as goniometers or surveys. Most studies of TKA function

fall into this category because the methodology is typically easy to implement

and can be performed on large numbers of subjects relatively quickly. Clinical

studies often record outcomes, such as range of motion, knee scores, or

survivorship (Anouchi, McShane et al. 1996; Lizaur, Marco et al. 1997; Finch,

Walsh et al. 1998; March, Cross et al. 1999; Robertsson, Dunbar et al. 2000;

Bachmeier, March et al. 2001; Kawamura and Bourne 2001; Weale, Halabi et al.

2001; Mahomed, Liang et al. 2002; Yamazaki, Ishigami et al. 2002; Ritter, Harty



et al. 2003; Aglietti, Baldini et al. 2005; Bertin 2005; Huang, Su et al. 2005; Kim,

Sohn et al. 2005; Kotani, Yonekura et al. 2005; Seon, Song et al. 2005; Evans,

Parsons et al. 2006; Gupta, Ranawat et al. 2006; Jones 2006; Sathappan,

Wasserman et al. 2006; Bin and Nam 2007). Examples of the power of clinical

studies are papers by Miner et al. and Ritter et al., which include data from

almost 700 knees and over 4700 knees, respectively (Miner, Lingard et al. 2003;

Ritter, Harty et al. 2003). While these methods can be used to collect a vast

amount of data, they often lack valuable information about the mechanics of the

knee joint, making it difficult to draw ways of improving patient function from the

results.

2.2.2 In-vitro Methods

The second category of methods is In-vitro. Cadaveric studies of total

knee arthroplasty have been performed with various mechanical systems

(Whiteside, Kasselt et al. 1987; Anouchi, Whiteside et al. 1993; Luger,

Sathasivam et al. 1997; Singerman, Pagan et al. 1997; Zavatsky 1997; Miller,

Goodfellow et al. 1998; Weale, Feikes et al. 2002; Browne, Hermida et al. 2005;

Patil, Colwell et al. 2005; Werner, Ayers et al. 2005). Add Greenwald to list One

system that has been used extensively is the Oxford Rig (Zavatsky 1997; Miller,

Goodfellow et al. 1998; Weale, Feikes et al. 2002; Walker and Haider 2003;

Browne, Hermida et al. 2005; Patil, Colwell et al. 2005). The rig was designed to

simulate a chair rise or step up activity. A vertical load is applied at the simulated

hip joint, which is free to rotate as well as translate vertically. The quadriceps



tendon is attached to a force transducer, and the force applied to the tendon can

be manipulated to flex, extend, or stabilize the knee. The simulated ankle joint is

free to rotate but is fixed in translation. An optical tracking system is sometimes

used in conjunction with the rig to obtain knee kinematics with flexion. This

system is particularly useful for investigating patellofemoral kinematics (Miller,

Murray et al. 1997; Browne, Hermida et al. 2005).

The Bioengineering Laboratory has been conducting in-vitro studies for

quite some time using a robotic testing system (Most 2000; Li, Zayontz et al.

2001; Li, Most et al. 2002; Li, Schule et al. 2003; Most, Li et al. 2003; Most,

Zayontz et al. 2003; Li, Most et al. 2004; Li, Zayontz et al. 2004; Suggs, Li et al.

2004; Suggs, Li et al. 2006). This system can be operated in force control or

displacement control mode, and various loading conditions can be applied to the

knee, including quadriceps and hamstrings loads. A testing protocol can be

applied repeatedly to the same knee specimen in multiple states (e.g. intact,

injured, reconstructed). This system has been used to explore the affect of

various factors, such as retaining or substituting the posterior cruciate ligament

and or using a mobile bearing instead of a fixed bearing implant, on TKA

kinematics.

The advantages in-vitro investigations include the potential for tight control

of the experimental environment and an increased range of protocols that can be

performed on cadaveric specimens compared to what can be done to living

subjects. While these techniques allow researchers to observe the mechanics of



TKA implants, the major disadvantage is the difficulty in relating the experimental

conditions to physiological conditions.

2.2.3 Computational Methods

Computational models can be a relatively quick and inexpensive way to

explore the effects of design and loading modifications on TKA function. Delp et

al. used a two-dimensional model to analyze design parameters that affect the

possibility of dislocation in PCL-substituting TKA (Delp, Kocmond et al. 1995;

Kocmond, Delp et al. 1995; Piazza, Delp et al. 1998). Two-dimensional models

have also been used to investigate wear of the polyethylene in TKA (Wimmer

and Andriacchi 1997; Godest, de Cloke et al. 2000). Several groups have

developed more sophisticated three-dimensional models (Bartel, Bicknell et al.

1986; Sathasivam and Walker 1997; D'Lima, Chen et al. 2001; Piazza and Delp

2001; D'Lima, Chen et al. 2003; Fregly, Bei et al. 2003; Fregly, Sawyer et al.

2005; Guess and Maletsky 2005; Guess and Maletsky 2005; Halloran, Petrella et

al. 2005; Laz, Pal et al. 2006; Laz, Pal et al. 2006; Rawlinson, Furman et al.

2006; Huang, Liau et al. 2007; Knight, Pal et al. 2007). Most of these studies are

also focused on polyethylene wear. The weakness of the computational

approach has been the appropriateness of the boundary conditions applied to the

model. Either the model inputs have been based on data from knee simulators

or inputs for some degrees of freedom have been derived from in-vivo data while

the other degrees of freedom were left unconstrained. Thus, there is a question

as to how well the modeled environment represents truly in-vivo conditions,



which in turn creates some uncertainty in the conclusions drawn from these

studies.

2.2.4 In-vivo Methods

The final category, acquiring in-vivo data on the mechanics of the knee

after TKA, is the ideal mode of investigating TKA function. However, acquiring

in-vivo data in an ethical manner can be a challenge. A few research groups

have developed instrumented, telemetric TKA components that measure in-vivo

forces once implanted in a patient (Foster, Werner et al. 1980; Kaufman,

Kovacevic et al. 1996; Taylor, Walker et al. 1998; Morris, D'Lima et al. 2001;

Taylor and Walker 2001; D'Lima, Patil et al. 2005; Kirking, Krevolin et al. 2006).

The use of telemetry to measure forces across the knee joint was first introduced

by Foster et al. (Foster, Werner et al. 1980), but two other groups have been

more prolific in their used of the method. Taylor and Walker have used an

instrumented femoral component to measure axial forces, torque, and bending

moments in the distal femur (Taylor, Walker et al. 1998; Taylor and Walker

2001). The group led by Colwell has used an instrumented tibia instead of a

femur (Kaufman, Kovacevic et al. 1996; Morris, D'Lima et al. 2001; D'Lima, Patil

et al. 2005; D'Lima, Townsend et al. 2005; D'Lima, Patil et al. 2006; Kirking,

Krevolin et al. 2006). Both groups report forces during activities, such as walking

and stair ascent, with peak forces reaching over 3 times body-weight. While this

information is invaluable in efforts to improve TKA designs, this method has been



used on very few patients (published data has come from only 3 patients),

limiting its application to the general patient population.

Knowing the in-vivo kinematics of the knee after TKA is also very

important in assessing TKA function, and gait analysis was one of the first

techniques used to measure TKA kinematics (Rittman, Kettelkamp et al. 1981;

Andriacchi, Galante et al. 1982; Jevsevar, Riley et al. 1993; Wilson, McCann et

al. 1996; Kramers-de Quervain, Stussi et al. 1997; Andriacchi, Dyrby et al.

2003Bolanos, 1998 #271; Nagura, Otani et al. 2005). Gait analysis uses skin

markers to estimate the motion of the underlying bones. While this method can

be used to measure kinematics for a wide variety of activities over a large spatial

region, there is intrinsic error in the results due to relative motion between the

skin and bones of interest. Another method of obtaining in-vivo kinematics is

Roentgen Stereophotogrammetric Analysis (RSA) (Nilsson, Karrholm et al. 1990;

Nilsson, Karrholm et al. 1991; Karrholm, Jonsson et al. 1994; Uvehammer,

Karrholm et al. 2000). RSA alleviates the problem of relative motion between the

markers and the bones by placing the markers inside the bones and tracking

them radiographically. Despite its increased accuracy, this method is quite

invasive, especially for control subjects, due to the need to implant markers.

Single-plane fluoroscopy has been used for over a decade to investigate

in-vivo TKA kinematics (Yamazaki, Watanabe et al. 2005; Catani, Fantozzi et al.

2006; Fantozzi, Catani et al. 2006). Banks has been one of the pioneers in

matching three-dimensional CAD models of implants to two-dimensional

fluoroscopic images to calculate in-vivo kinematics (Banks and Hodge 1996;



Banks, Markovich et al. 1997; Harman, Markovich et al. 1998; Bellemans, Banks

et al. 2002; Banks, Bellemans et al. 2003; Banks, Harman et al. 2003; Incavo,

Mullins et al. 2004; Banks, Fregly et al. 2005; Fregly, Sawyer et al. 2005; Victor,

Banks et al. 2005; Moro-Oka, Muenchinger et al. 2006; Coughlin, Incavo et al.

2007; Zhao, Banks et al. 2007). He developed an algorithm that used a library of

pre-calculated implant profiles to increase the efficiency of the matching process.

Initial tests reported in-plane accuracies of 0.5 mm and 0.3* for translation and

rotation, respectively. However out-of-plane accuracies were up to 8.3 mm and

1.90, respectively.

Dennis and Komistek have also based much of their research on the use

of single-plane fluoroscopy (Stiehl, Komistek et al. 1995; Dennis, Komistek et al.

1996; Dennis, Komistek et al. 1998; Dennis, Komistek et al. 1998; Hoff, Komistek

et al. 1998; Stiehl, Komistek et al. 2000; Dennis, Komistek et al. 2001; Argenson,

Komistek et al. 2002; Bertin, Komistek et al. 2002; Komistek, Allain et al. 2002;

Dennis, Komistek et al. 2003; Mahfouz, Hoff et al. 2003; Argenson, Komistek et

al. 2004; Dennis, Komistek et al. 2004; Komistek, Dennis et al. 2004; Argenson,

Scuderi et al. 2005; Komistek, Kane et al. 2005; Lee, Matsui et al. 2005;

Mahfouz, Hoff et al. 2005; Sugita, Sato et al. 2005; Yoshiya, Matsui et al. 2005).

Initially, their groups methodology also used a library of pre-calculated implant

silhouettes to match to the fluoroscopic images, but they later began generating

simulated images of the implant models to compare to the actual fluoroscopic

images (Mahfouz, Hoff et al. 2003). The technique eliminated the need for image

segmentation, which they believed introduced error into the analysis. However,



they reported in-plane translation accuracy of 0.65 mm, out-of-plane translation

accuracy of 3.2 mm, and rotational accuracy of 1.5%, which are very similar to the

accuracy values reported by Banks.

These single-plane fluoroscopic techniques have been used extensively to

evaluate differences in TKA designs, such as PCL-retaining versus PCL-

substituting or fixed-bearing versus mobile bearing. They are relatively accurate

compared to gait analysis and less invasive than RSA. However, useful data

from these studies is limited to in-plane kinematics. Certainly, sagittal plane

kinematics are very important, but in order to investigate topics such as the

relationship between contact patterns and wear or the ability of total knee

arthroplasty to truly restore healthy knee function all six degrees of freedom need

to be assessed.

A wealth of information concerning the function of the knee after total knee

arthroplasty has been accrued using all of these Clinical, In-vitro, Computational,

and In-vivo methods. This information has resulted in some improvement in TKA

function, including ROM and survorship, over the earliest knee arthroplasty

implants. However, knee function after TKA is still limited compared to otherwise

healthy knees, and there has been no improvement in TKA function over the past

couple of decades, suggesting that there are still some underlying biomechanical

factors that are limiting patients after total knee arthroplasty. We believe that in

order to decipher these factors, we need a robust, relatively non-invasive tool

that is accurate in all degrees of freedom.



Chapter 3. Investigation of Six
Degree of Freedom Kinematics
Using Dual Fluoroscopic
Imaging System

3.1 Introduction
Recent studies have used fluoroscopy to investigate in vivo total knee

arthroplasty (TKA) kinematics due to its accessibility and low radiation dosage

(Banks and Hodge 1996; Zuffi, Leardini et al. 1999; Dennis, Komistek et al. 2003;

Mahfouz, Hoff et al. 2003; Watanabe, Yamazaki et al. 2004). In these studies, a

single sagittal image of the knee was taken with a fluoroscope. Kinematics were

then derived by matching a 3D model of the TKA to the 2D fluoroscopic image.

While 3D model matching can theoretically be achieved using a single image,

studies have found that the use of just a single image may not result in the same

accuracy in the out-of-plane degrees-of-freedom (DOF) compared to the in-plane

motion (Li, Wuerz et al. 2004; Fregly, Rahman et al. 2005). These studies usually

reported anteroposterior motion of the tibiofemoral contact in the medial and

lateral compartments. Currently, determination of TKA kinematics in 6DOF still

presents a challenge in the field of biomechanics.



Recently, Li et al. acquired orthogonal fluoroscopic images using a single

3D fluoroscope to quantify in vivo kinematics of a normal knee during a quasi-

static single leg lunge (Li, Wuerz et al. 2004). Using sphere and cylinder models,

the study showed that translation and rotation errors were within 0.1 mm and

0.10, respectively, for all DOF. The study of Li et al. suggests that a biplane

fluoroscopic technique has an advantage over a single plane technique due to

the ability to detect out-of-plane translation and rotation. Thus far, no study has

reported the application of fluoroscopic biplanar matching to the kinematic

analysis of TKA.

In this chapter, the repeatability and accuracy of measuring TKA position

and orientation using the fluoroscopic system were evaluated. A parametric study

was also performed to quantify the differences between using the dual

fluoroscopic system and a single image fluoroscopic technique to image complex

geometry such as TKA components.

3.2 Methodology

3.2.1 Dual orthogonal fluoroscopic system setup

Two fluoroscopes were positioned in such a way that the two image

intensifiers were perpendicular to each other (Fig. 3.1). The knee joint was

positioned in front of the two image intensifiers and imaged simultaneously by the

fluoroscopes in order to acquire orthogonal images of the knee from the

posteromedial and posterolateral directions.



A 3D modeling program (Rhinoceros@, Robert McNeel & Associates,

Seattle, WA) was used in order to replicate the dual orthogonal fluoroscopic

system in a computer (Fig. 3.2A). The source of each fluoroscope was

represented in the modeling program by a perspective projection camera, and

each intensifier was represented by a drawing plane. The virtual fluoroscopes

were placed in the same relative position as the actual fluoroscopes during

image acquisition. The image from each fluoroscope was then placed at the

calculated intensifier location. Three dimensional computer aided design (CAD)

models of the TKA components (supplied by the manufacturer) were then

imported into the modeling program and matched to the fluoroscopic images.
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During the matching process, the component models of the TKA were

translated and rotated independently in the software. The 3D modeling software

allowed the observer to view all translational and rotational manipulations of the

model components instantaneously and simultaneously from both perspectives

(from the two fluoroscope sources). The software also allowed the model to be

translated and rotated in increments of less than 0.01 mm and 0.01*,

respectively. The tibial and polyethylene components were treated as one

assembled piece, but the polyethylene could be hidden for an unobstructed view

of the tibial silhouette during the matching process. The geometry of the

polyethylene insert was not used in the matching process, since it was not

discernibly visible under fluoroscopy. The 3D models were considered "matched"

when the model, as viewed from both respective virtual sources, overlapped its

silhouette on the fluoroscopic images.

3.2.2 Repeatability of 3D matching using the dual
orthogonal fluoroscopic system

The dual orthogonal fluoroscopic system was tested in order to assess the

ability of the observer to repeatedly reproduce the same position and orientation

of the in vivo TKA components over the course of multiple trials. Two patients

(under IRB approval), one with cruciate retaining and the other with posterior

substituting TKA (NexGen@ CR and NexGen@ LPS, Zimmer, Warsaw IN), were

asked to flex their knee to a random position within view of both fluoroscopes

during image acquisition (Fig. 3.1). Three-dimensional CAD models of the



components were then matched 15 times to the corresponding orthogonal

images using the 3D modeling program. For each trial, the components were

introduced in a random manner that in no way resembled the correct position and

orientation. Each component was manually manipulated in 6DOF and matched to

the silhouettes on both intensifiers simultaneously.

The position and orientation of the components were determined by the

position and orientation of their local coordinate systems (defined by geometric

landmarks on the 3D component models) in a global coordinate system (X, Y, Z

in Fig 3.2A). The y-axis (flexion/extension axis) of the femoral component was

defined as a line connecting the tips of the pegs (Fig. 3.2B). The x-axis

(internal/extemal axis) was defined as a line parallel to the pegs and

perpendicular to the y-axis placed at the midpoint of the y-axis. The z-axis

(varus/valgus axis) was defined as the cross product of the x- and y-axes. The z-

axis of the tibial component was defined as the line of symmetry on the base of

the polyethylene. The y-axis of the tibial component was defined as a line

connecting two landmarks on the polyethylene base and was perpendicular to

the z-axis (Fig. 3.2B). The x-axis was defined as the cross product of the y- and

z-axes. The positions of the femoral and tibial components were reported as the

location of the component origins in a global coordinate system. Component

rotations were reported as the rotation of the local coordinate system referenced

to the global coordinate system using Eulerian angles assuming a y-z-x rotation

sequence. The repeatability of the matching procedure was determined by the



variation (measured using standard deviation) of the component positions

determined from the 15 independent trials.

3.2.3 Accuracy of 3D matching using the dual
orthogonal fluoroscopic system

To assess the accuracy of the matching process of the TKA components

using the orthogonal images, the true position of the TKA components had to be

known. Since the true position of in-vivo TKA is unknown, an idealized testing

condition was used. To do this, the component models were placed in known

positions within the virtual imaging system (Fig. 3.2A). These known positions

were defined as the Gold Standard. The Gold Standard was synthetically imaged

at full extension using the two virtual fluoroscopes, and the components were

then matched to the synthetic images 15 times in the same fashion as in the

repeatability test. The accuracy of the matching method was determined by

comparing the position and orientation of the matched TKA to the Gold Standard.

3.2.4 Out-of-plane parametric study of the single
plane imaging technique

The sensitivity to out-of-plane motion when using a single plane image to

determine joint position was evaluated with the dual orthogonal fluoroscopic

system, since single image techniques have been widely used for joint

kinematics measurement (Banks and Hodge 1996; Zuffi, Leardini et al. 1999;

Dennis, Komistek et al. 2003; Mahfouz, Hoff et al. 2003; Watanabe, Yamazaki et



al. 2004; Fregly, Rahman et al. 2005). A parametric test was performed to

determine the effect of out-of-plane translation on in-plane projection using the

3D model of the femoral TKA component. Four points on the component surface

(top, bottom, left and right) were chosen in order to quantitatively track the

changes in the component projection on the intensifier (Fig. 3.3A). The bottom

and left points were close to the image center, while the top and right points were

close to the edge of the image. The femoral component was translated 10 mm in

the normal direction away from the intensifier plate in 1 mm increments. After

each incremental out-of-plane translation, the points were projected onto the

in-plane intensifier, and the projected positions were measured as the sensitivity

of component projection to out-of-plane motion.
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3.3 Results

3.3.1 Repeatability Test

The matching process of the dual orthogonal fluoroscopic system was

highly repeatable in determining the 6DOF positions and orientations for both the

CR and PS TKA components (Table 3.1). All positions and orientations for the

repeatability test are reported with respect to the X-, Y- and Z-axes of the global

coordinate system. For the CR TKA, the mean femoral position was 111.18 ±

0.09 mm, 182.67 ± 0.07 mm and 137.34 ± 0.07 mm along the X-, Y- and Z-axes,

respectively. The mean tibial position was 102.62 ± 0.05 mm, 186.27 ± 0.16 mm

and 102.21 ± 0.10 mm, respectively. The mean femoral orientation (assuming a

y-z-x rotation sequence) was -51.0820 ± 0.450, 2.050 + 0.350 and 179.84* +

0.150, respectively. The mean tibial orientation was -94.740 + 0.130, -8.040 ±

0.500, -177.87D ± 0.120, respectively.

For the PS TKA, the mean femoral position was 147.52 ± 0.12 mm,

209.00 + 0.13 mm and 215.95 ± 0.07 mm along the X-, Y- and Z-axes,

respectively. The mean tibial position was 140.14 ± 0.11 mm, 191.04 ± 0.12 mm

and 185.55 ± 0.14 mm, respectively. The mean femoral orientation was -95.420 ±

0.500, -61.68" ± 0.56* and -166.12* ± 0.330, respectively. The mean tibial

orientation was -97.03" + 0.260, -56.97" ± 0.440 and -167.730 ± 0.21",

respectively.



Repeatability and Accuracy of Femoral and Tibial Component Placement
Trial X Y Z Rot X Rot Y Rot Z

SD, CR 111.178 1 0.094 182.673 + 0.067 137.340 1 0.070 179.8440 + 0.146" -51.082" + 0.446" 2.0480 : 0.3540
,. RMS, CR 0.091 0.065 0.068 0.141" 0.431' 0.3420

SD, PS 147.521 k 0.117 208.999 0.126 215.948t 0.074 -166.121 0.325° -95.417" 0.504* -61.681* 0.5610
RMS, PS 0.113 0.122 0.071 0.3140 0.4870 0.542"

SError + SD 0.044 ± 0.094 0.041 + 0.068 0.015 + 0.109 0.230* + 0.146* 0.146" + 0.135" 0.076" ± 0.339
RMS Error 0.101 0.078 0.107 0.270" 0.196" 0.336*

SD, CR 102.616 + 0.050 186.273 1 0.164 102.212 + 0.100 -177.8700 + 0.1200 -94.7440 ± 0.1330 -8.038* 0.501"
RMS, CR 0.048 0.159 0.096 0.116" 0.1290 0.4840
SD, PS 140.135 ± 0.111 191.041 ± 0.124 185.548 0.141 -167.732" 0.214" -97.0340 ± 0.2590 -56.971" 0.4430

- RMS, PS 0.108 0.120 0.136 0.206" 0.250" 0.4280
Error ± SD -0.014 ± 0.050 -0.113 ± 0.103 0.006 1 0.065 0.086" ± 0.081" 0.1080 * 0.077" 0.184*" 0.475"
RMS Error 0.050 0.150 0.064 0.116" 0.131" 0.4940

Table 3.1: Position and orientation results from the repeatability study are reported as
the mean ± SD and Root Mean Square (RMS) for each of the imaged positions. Two
TKA components were used (indicated as "CR" and "PS" in the table). Error mean ± SD
and RMS of the error are reported for the accuracy study.

3.3.2 Accuracy Test

The matching process showed a high accuracy in the determination of the

femoral and tibial component position and orientation in 3D space over 15 trials

(Table 3.1). For the accuracy test, all positions are reported with respect to the

global coordinate system and orientations are reported with respect to the Gold

Standard coordinate system. The mean errors in femoral position when

compared to the Gold Standard were 0.04 ± 0.09 mm (mean error ± SD), 0.04 ±

0.07 mm, and 0.02 ± 0.11 mm along the global X-, Y- and Z-axes, respectively.

The mean errors of the tibial position were -0.01 ± 0.05 mm, -0.11 ± 0.10 mm

and 0.01 ± 0.07 mm, respectively. The mean errors in femoral orientation were

0.15 ± 0.140, 0.08 ± 0.34' and 0.23 ± 0.150, assuming a y-z-x rotation sequence.

The tibial orientation error was 0.11 ± 0.080, 0.18 ± 0.480 and 0.09 ± 0.080,

respectively.



3.3.3 Parametric Test

When a single image was used to determine the TKA position, component

projection was not sensitive to the component position in the out-of-plane

direction of the intensifier (Fig. 3.3A & B). For out-of-plane motion of 1 mm, the

top and bottom points translated only 0.066 mm and 0.004 mm, respectively in

the plane. For out-of-plane motion of 5 mm, the in-plane motion was only 0.324

mm and 0.021 mm for the top and bottom points, respectively. When the femoral

component was translated 10 mm in the out-of-plane direction, the top point

moved 0.649 mm, while the bottom point moved only 0.042 mm.

3.4 Discussion
This study investigated the ability to repeatably and accurately match a

TKA component model to biplanar fluoroscopic images in 6DOF using the dual

orthogonal fluoroscopic system and then used this system to investigate 6DOF

kinematics of TKA patients during a weight-bearing single leg lunge. In this

methodology, 3D models of the TKA components were matched to two

orthogonal images simultaneously to determine the positions and orientations of

the TKA components. In the repeatability test, femoral and tibial translations had

a standard deviation (SD) less than 0.17 mm in all directions for both the CR and

PS components. Femoral and tibial rotations had SD less than 0.57" about all

three axes. The low SD indicates that the observer can reliably reproduce the

same position with orthogonal fluoroscopic images using a manual matching

process.



The accuracy test reported the error of the matching process with respect

to the known position of a synthetically imaged TKA component set (Gold

Standard). With the exception of the tibial y-axis, all mean position errors and SD

for both components were less than 0.05 mm and 0.11 mm, respectively. The

positional error of the tibial component in the y-direction was -0.11 ± 0.10 mm.

Mean rotation errors and SD were all less than 0.240 and 0.48*, respectively. In

general, the accuracy and repeatability studies showed similar variations in the

data with SD variation within the repeatability study being slightly higher than that

found in the accuracy study. This may be due, in part, to the fact that the

repeatability test used actual fluoroscopic images of TKA components and

included system noise, while the accuracy test used synthetic images of 3D

models created in an ideal environment. Another source of error in the

repeatability test may be geometric differences between the 3D models and the

actual machined TKA components (Kaptein, Valstar et al. 2003).

Previous studies have employed a single plane system in order to

determine in vivo TKA kinematics. These methodologies have reported

acceptable accuracy in the anteroposterior (in-plane) direction. Investigators

have performed computer simulations similar to the accuracy test presented in

this study and have reported in-plane errors ranging from -0.073 ± 0.136 mm to

-0.37 ± 0.22 mm (Banks and Hodge 1996; Zuffi, Leardini et al. 1999; Mahfouz,

Hoff et al. 2003). However, due to the limitations of the single plane system,

mediolateral (out-of-plane) accuracy was compromised. The aforementioned

studies reported mean out-of-plane errors of 0.021 ± 1.395, 1.054 ± 3.031 mm



and 1.91 ± 0.27 mm. In a more recent study, computed tomography (CT) 3D

knee models were matched to synthetic fluoroscopic images (Fregly, Rahman et

al. 2005). That study reported femoral root-mean-square errors of 0.35 mm and

0.25 mm for in-plane position and 8.4 mm for out-of-plane position.

The parametric test of this study indicates that an out-of-plane translation

error of 5 mm can occur with in-plane accuracy ranging between 0.021 mm to

0.324 mm depending on the location of the object on the fluoroscopic images

(Fig. 1.3B). Using the four tracking points, the in-plane projection of the femoral

component showed a linear relation with respect to the out-of-plane motion of the

femoral component. The closer the edge of the matched component is to the

image center, the less sensitive the matching will be at that edge with respect to

out-of-plane motion. Since fluoroscopic resolution is typically between 0.3 and

0.5 mm, it would be difficult to detect out-of-plane translations on the order of 5

mm using only a single image (Li, Wuerz et al. 2004). However, motion of the

projected points that would not be discernable in the in-plane projection would be

easily detected using an orthogonal image as demonstrated by the dual

orthogonal imaging system (Fig. 3.3B).

Previous investigators have utilized biplanar radiographic matching

techniques (Lavallee and Szeliski 1995; Penney, Weese et al. 1998; Asano,

Akagi et al. 2001; You, Siy et al. 2001; Kaptein, Valstar et al. 2003). Kaptein et al.

implemented the use of 3D models of TKA implants with roentgen

stereophotogrammetric analysis (RSA) in order to measure three-dimensional

motion. However, this technique involves the application of high dose x-rays.



Both Asano et al. and You et al. developed methods of matching models of

healthy knees constructed from CT data to biplanar x-ray images, and also

require a high dosage x-ray scanner. Compared with previous techniques, the

dual orthogonal fluoroscopic technique presents a non-invasive, low dose

radiation methodology that eliminates the increased out-of-plane error

encountered in single plane imaging and has the potential for investigating

dynamic joint motion.

As previously noted, a possible limitation observed with the image

matching method was that there might be geometrical differences between the

3D model provided by the component manufacturer and the imaged component

due to the machining tolerances. It is suspected that some of the error in

matching may be a result of these differences (Zuffi, Leardini et al. 1999;

Kaptein, Valstar et al. 2003). The manual matching of each component is rather

labor-intensive (approximately 10 to 15 minutes per component), and, as a result,

efforts are underway to create an automated matching procedure. Another

limitation common to all in vivo kinematic studies is the difficulty in evaluating the

system accuracy, since accurate in-vivo TKA position is not known a priori.

Therefore, an idealized testing was used in this study to determine the accuracy

of the matching process in measuring the 6DOF TKA position in 3D space. This

accuracy evaluation did not include the effect of all the sources of error in the

entire system. However, the fact that the repeatability of the matching using in-

vivo fluoroscopic images is similar to the repeatability of the matching process in

the idealized environment suggests that the accuracy is also similar.



In summary, the dual orthogonal fluoroscopic system provides an easy

and powerful tool for accurately determining 6DOF positions of TKA components

in 3D space. This method has been shown to be highly repeatable and able to

determine 6DOF kinematics of TKA patients. The advantages of the dual

orthogonal fluoroscopic system are that it is sensitive to position and orientation

in all DOF, has low radiation dosage, and can be constructed using any pair of

readily available fluoroscopes.





Chapter 4. Kinematics of a
Cruciate-Retaining Total Knee
Arthroplasty

4.1 Introduction
Many studies have reported in-vivo knee kinematics after total knee

arthroplasty and have reported inconsistent data on in-vivo motion (Stiehl,

Komistek et al. 1995; Dennis, Komistek et al. 1996; Banks, Markovich et al.

1997; Kim, Pelker et al. 1997; Dennis, Komistek et al. 1998; Matsuda, Miura et

al. 1999; Stiehl, Komistek et al. 2000; Bertin, Komistek et al. 2002). Matsuda et

al. (Matsuda, Miura et al. 1999) measured the anteroposterior laxity of a posterior

cruciate ligament-retaining total knee arthroplasty (Miller-Galante 1, Zimmer) in

19 knees using a KT-2000 arthrometer and found inconsistent anteroposterior

stability in flexion. Stiehl et al. (Stiehl, Komistek et al. 1995; Stiehl, Komistek et al.

2000) studied a variety of posterior cruciate ligament-retaining knee designs

(Porous Coated Anatomic, Howmedica; Ortholoc, Wright Medical Technology;

Genesis, Richards; Anatomic Modular Knee, DePuy; Miller-Galante II, Zimmer)

using a single plane fluoroscopic technique and found that physiological rollback

of the femur was not demonstrated in patients after posterior cruciate ligament-



retaining arthroplasty. Similar results were also observed by Kim et al. (Kim,

Pelker et al. 1997) with posterior cruciate ligament-retaining designs (Genesis,

Richards). One study by Dennis et al. (Dennis, Komistek et al. 1996) found

abnormal femoral translation during deep knee-bends in patients after posterior

cruciate ligament-retaining arthroplasty (Press-Fit Condylar Designs, Johnson &

Johnson) while patients exhibited more normal femoral translation after posterior

stabilized arthroplasty. Furthermore, Dennis et al. (Dennis, Komistek et al. 1998)

demonstrated that posterior cruciate ligament-retaining design has a range of

motion similar to posterior cruciate ligament-substituting design during passive

flexion but a decreased range of motion during squatting. Using a similar

fluoroscopic technique, however, Banks et al. (Banks, Markovich et al. 1997)

found that the range of axial tibial rotation and condylar translation for posterior

cruciate ligament-retaining total knee arthroplasty (AMK, DePuy) was similar to

the range reported for normal and anterior cruciate ligament deficient knees

during a step-up maneuver. Bertin et al. (Bertin, Komistek et al. 2002) found that

posterior femoral rollback was reproduced in the posterior cruciate ligament-

retaining design (NexGen, Zimmer) and that, on average, patients exhibited

internal tibial rotation but with lower magnitude compared to that of the normal

knee (Li, Wuerz et al. 2004).

The capability of a posterior cruciate ligament-retaining arthroplasty to

restore normal knee kinematics and function remains controversial. All previous

investigations have reported tibiofemoral contact kinematics along the

anteroposterior direction. No data has been reported on the actual articular



contact locations on the three-dimensional tibial plateau surfaces. This

information is critical for understanding the biomechanical function of the implant

in-vivo and for an explanation of wear pattern and failure mechanisms of the

polyethylene insert. Recently, a dual-orthogonal fluoroscopic imaging technique

has been introduced as a research tool for the study of in-vivo musculoskeletal

joint biomechanics (Li, Wuerz et al. 2004). This technique can accurately

determine the 6 degrees-of-freedom kinematics of in-vivo knee joint motion

(DeFrate, Sun et al. 2004; Li, DeFrate et al. 2005; Hanson, Suggs et al. 2006).

Given the 6 degrees-of-freedom position of the femoral and tibial implant

components, the articular contact on the polyethylene insert can be examined.

In this study, we applied this imaging technique to determine the in-vivo

6DOF kinematics and contact locations on the tibial articulating surface of a

posterior cruciate ligament-retaining total knee arthroplasty design during weight-

bearing flexion activity of the knee. The objective of this study was to determine

the contact points on the three-dimensional tibial component articulating surface

in both the anteroposterior and mediolateral directions and to compare the

contact data of the component design to that of normal knees under the same

weight-bearing motion (Li, DeFrate et al. 2005).

4.2 Materials and Methods

4.2.1 Experimental Setup



Twelve patients (1 female, 11 male, at least 6 months post surgery) were

randomly recruited among patients after cruciate-retaining total knee arthroplasty

using a single design (NexGen CR, Zimmer, Table 4.1). All patients were

operated on by the same surgeon and evaluated as clinically successful after

surgery with no pain during normal function. A consent form approved by the

authors' Institution Review Board was signed by each subject before testing. The

subject performed a single leg lunge from 0O to maximal flexion while two

orthogonally positioned 12 inch fluoroscopes (GE Medical, Milwaukee, WI) were

used to simultaneously image the knee under weight-bearing conditions in 150

intervals from the posteromedial and posterolateral directions (Fig. 4.1).



Fig. 4.1 Representation of single leg weight-bearing flexion of the knee while the dual-
orthogonal fluoroscopic system captures the knee images.
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Table 4.1: Data on the Patients
Average Patient Characteristics

Age Weight Height Passive Preop ROM Passive Postop ROM Postop Time
(years) (Ibs) (inches) (degrees) (degrees) (months)

68.9 203 71 109 125 32.6
Min Range 46 159 67 90 110 18.9
Max Range 80 247 73 125 138 60.8

A virtual dual orthogonal fluoroscopic system was constructed within a

solid modeling software (Rhinoceros@, Robert McNeel & Associates, Seattle,

WA) to reproduce the patient's kinematics by manually matching three-

dimensional computer models of the components (obtained from the

manufacturer) to the acquired fluoroscopic images (Li, Wuerz et al. 2004;

Hanson, Suggs et al. 2006). Two cameras were placed within the virtual system

to provide the correct orthogonal perspectives with respect to the images (Fig.

4.2). When positioning the component models in three-dimensional space, they

were viewed from both camera perspectives simultaneously and were adjusted in

6 degrees-of-freedom until the model overlapped the fluoroscopic profiles on the

acquired images. The overlapped, or matched, three-dimensional models

replicated the in-vivo position of the femoral and tibial component within the

patient's knee joint at the moment of image acquisition (Fig. 4.2).





Fig. 4.2 Representation of virtual dual-orthogonal fluoroscopic system used to reproduce
in-vivo total knee arthroplasty positions using fluoroscopic images and three-dimensional
CAD models of the prosthetic components.
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After matching the component model (both the metal femoral component

and metal tibial tray) to the orthogonal images, the in-vivo knee position was

reproduced by the three-dimensional model. The ultra-high molecular weight

polyethylene tibial insert was not visible under fluoroscopy, but its position can be

determined based on the tibial component. In 9 subjects (one female, eight

males), contact was determined by locating the intersection of the articulating

surfaces of the femoral component and polyethylene tibial insert. The centroid of

the surface intersection was used to report the point of contact location. In the

case that surface overlap was not encountered, contact was determined based

on the closest points between the femoral component and polyethylene tibial

insert articulating surfaces. Previous validations have tested the average system

resolution to be within 0.16 mm for the femoral component and 0.13 mm for the

tibial tray component (Li, Wuerz et al. 2004; Hanson, Suggs et al. 2006).

Therefore, a closest distance between the two articulating surfaces measuring

greater than 0.29 mm was defined as condylar lift-off.

4.2.2 Component geometry and surgical
technique

The posterior cruciate ligament-retaining arthroplasty design investigated

in this study has an asymmetric femoral component (Zimmer, 2004). The radii of

the lateral condyle are larger than those of the medial condyle in the sagittal

plane to facilitate axial rotation of the knee during flexion. The radii of the

tibiofemoral articulating surfaces are matched in the coronal plane to provide



conforming surfaces and thus increase the contact area. The tibial articular

surface is also curved in the sagittal plane.

The surgical implantation was conducted using a medial arthrotomy, and

intramedullary alignment was used on the femoral side. The femur was cut in 50

of valgus and 30 of external rotation. The epicondylar axis was used to assess

the rotational alignment, with the posterior femoral condyles and Whiteside's line

as additional references. Tibial alignment was performed using an extramedullary

guide. The reference points used were the center of the tibial plateau, the

junction of the medial and middle thirds of the tibial tuberosity and the visible part

of the tibial crest. The tibial cut was performed with a 70 posterior slope. Prior to

placement of the definitive components, a trial reduction was performed with

careful attention to the assessment of the flexion and extension gaps, stability,

range of motion and patellar tracking. Posterior cruciate ligament tension was

assessed by flexing the knee and examining for tibial tray anterior lift-off. The

posterior cruciate ligament was also manually palpated to assess for tension, and

the flexion gap was examined. The femoral, tibial and patellar prostheses were

cemented. The patella was resurfaced in all patients. The extensor mechanism

and skin were closed with sutures in a standard fashion.

4.2.3 Data analysis

The anteroposterior and mediolateral contact locations of the medial and

lateral compartments were determined for quasi-static single leg lunge motion.

The findings were then averaged at each flexion angle. To quantify the location



of the contact point on the tibial surfaces, coordinate systems were created on

the surfaces of the medial and lateral tibial compartments. The geometric centers

of the medial and lateral compartments of the tibial component surface were

used as the origins of the coordinate systems for the two compartments (Fig.

4.3A). Anterior and medial coordinates were denoted as positive; posterior and

lateral coordinates were denoted as negative. Within each tibial compartment,

the half closer to the tibial spine was denoted as the inner portion, and the half

farther from the tibial spine was denoted as the outer portion.
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All patients achieved more than 900 of flexion after the cruciate

retaining total knee arthroplasty, but maximum flexion varied for each patient.

The average maximal weight-bearing flexion angle was 113.3 ± 13.10. To

analyze the component contact behavior at maximal flexion, the contact data for

all patients at their maximal flexion angles were averaged, analyzed and reported

at the mean maximal flexion angle of 113.3". Therefore, we presented the data in

two flexion ranges: from full extension to 900 and from 900 to maximal flexion

(Fig. 4.3).

A repeated-measures analysis of variance followed by the Student-

Newman-Kuels test was used to study the effect of flexion angle on contact point

location in the medial and lateral compartments. Statistical significance was

defined as p < 0.05.

4.3 Results

4.3.1 6DOF Kinematics

The 6DOF in vivo TKA kinematics of CR TKA patients under weight

bearing flexion is shown in Figs. 4.4A and 4.4B. The femur translated anteriorly

by 5.29 mm through 450 of flexion and then consistently translated in the

posterior direction through maximum flexion by 11.58 mm (Fig. 4.4A). The femur

translated proximally by 6.17 mm through 900 of flexion and moved slightly in the

distal direction between 900 and maximum flexion. Through 450 of flexion, the



femur moved laterally by 1.31 mm, remained relatively constant through 750 and

then moved medially by 1.39 mm at maximum flexion (Fig. 4.4A).
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Fig. 4.4 A, B) Virtual representation of two patients after total knee arthroplasty at their
maximal flexion angles; C) Schematic of tibiofemoral contact at high flexion of the
cruciate-retaining total knee arthroplasty being constrained by the increasing height of
the posterior lip of the polyethylene and the stretching extensor mechanism; and D)
Sagittal view of the lateral femoral condyle of a normal knee rolling off the tibial plateau
at high flexion.
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The tibia rotated internally by 4.790 through 600 of flexion and remained

relatively constant through 900 (Fig. 4.4B). An increase in mean internal rotation

of only 0.660 occurred between 90" and maximum flexion. Varus rotation

increased by 0.860 through 30* of flexion. A valgus rotation of 1.520 was

observed between 300 and 900, and a varus rotation of 0.340 occurred between

90 ° and maximum flexion.

4.3.2 Tibiofemoral contact location change from
full extension to 900

Medial compartment There was no statistically significant motion of

the average medial tibiofemoral contact point from full extension to 900 of flexion

in the anteroposterior direction (Figs. 4.3A and C). At full extension, the contact

point was -3.9 ± 5.2 mm (mean ± SD) posterior to the midline of the tibial plateau.

At 600 of flexion, the contact point was at -2.4 ± 4.6 mm, and at 900, the contact

point was at -3.4 ± 5.6 mm. The total range of the average contact in the

anteroposterior direction was 1.5 mm from full extension to 900 of flexion.

In the mediolateral direction, the average tibiofemoral contact points were

positioned in the inner half of the medial compartment (Figs. 4.3A and D). At full

extension, the contact point was at -2.7 ± 3.8 mm on the inner half of the tibial

plateau. The outermost position was -0.3 + 3.3 mm, which was measured at 150

of flexion. The innermost position was -4.0 ± 4.4 mm, which was measured at 750



of flexion. The range of the average contact in the mediolateral direction was

about 3.7 mm from full extension to 900 of flexion, but this motion was not

statistically significant.

Lateral compartment There was no statistically significant motion in

the anteroposterior direction from full extension through 450 of flexion (Figs. 4.3A

and C). The contact location from 60* through 90* of flexion was significantly

posterior to the location at full extension (p<0.048). At full extension, the

tibiofemoral contact point was positioned at -2.6 ± 7.1 mm. At 60* of flexion, the

contact location was at -5.7 ± 4.8 mm (p=0.048). At 90*, the contact point was

located at -8.2 ± 3.6 mm (p=0.013). The total range of the average contact in the

anteroposterior direction was 5.6 mm from full extension to 90* of flexion.

In the mediolateral direction, the tibiofemoral contact points were

positioned on the inner portion near full extension and shifted to the outer portion

750 and 900 of flexion (p<0.024, Figs. 4.3A and D). At full extension, the contact

point was at 2.1 ± 3.1 mm. At 75" of flexion, the contact was at -2.2 ± 2.1 mm,

and at 900 of flexion the contact was at -2.3 ± 3.9 mm. The total range of the

average contact in the mediolateral direction was 4.8 mm from full extension to

900 of flexion.

4.3.3 Tibiofemoral contact location change from
900 to maximal flexion

Medial compartment The average medial tibiofemoral contact point

translated posteriorly from 900 to maximal flexion (p=0.038, Figs. 4.3B and 4.3C).



It changed from -3.4 ± 5.6 mm at 900 to -5.8 ± 5.1 mm at maximal flexion. The

range of motion in the anteroposterior direction was about 3.4 mm from full

extension to maximal flexion.

However, the change in the contact location in the mediolateral direction

after 900 was statistically insignificant, translating laterally from -2.8 ± 4.7 mm at

90* to -3.3 ± 6.1 mm at maximal flexion. The total range of the average contact in

the mediolateral direction remained at 3.7 mm from full extension to maximal

flexion.

Lateral compartment The average lateral tibiofemoral contact point

showed significant posterior translation from 90* to maximal flexion (p=0.008,

Figs. 4.3B and 4.3C). It changed from -8.2 ± 3.6 mm at 900 to -11.9 ± 3.9 mm at

maximal flexion. The total range of the average contact in the anteroposterior

direction was 9.3 mm from full extension to maximal flexion.

However, the motion of the average contact in the mediolateral direction

after 900 was again insignificant. Contact was observed at -2.3 ± 3.9 mm at 900

and -1.9 ± 7.2 mm at maximal flexion. The total range of the average contact in

the mediolateral direction was still 4.8 mm from full extension to maximal flexion.

4.3.4 Observation of tibiofemoral contact at
maximal flexion

At maximal flexion, 7 patients had their lateral femoral condyle positioned

posteriorly to the medial compartment on the tibial polyethylene component

surface, indicating internal tibial rotation. In all patients, at least one of the



femoral condyles showed posterior translation when reaching maximal flexion.

The tibiofemoral articular contact locations were at the posterior portion of the

tibial polyethylene component, but the femoral condyles did not reach the

posterior edge of the polyethylene surface. One patient showed lateral condyle

lift-off at 450of flexion (with a gap of 0.32 mm detected between the femoral

condyle and the tibial polyethylene surface). Another patient showed lateral

femoral condyle lift-off at both full extension and maximal flexion (with a gap of

0.65 and 0.64 mm detected between the femoral condyle and the tibial

polyethylene surface, respectively). Component positions at maximum flexion are

shown for two patients in which one patient has a low maximal flexion angle of

96*while the other has a high maximal flexion angle of 1380 (Fig. 4.4A and 4.4B).

4.4 Discussion
The data of this paper demonstrated that the dual orthogonal fluoroscopic

system has sufficient reproducibility when measuring 6DOF positions of the TKA

components in space. The in vivo kinematics of the CR patients investigated in

this study showed that femoral translation in the anterior direction was observed

through 45" of flexion before moving posteriorly through maximum flexion, which

is consistent with the observation of in vitro robotic measurement (Li, Zayontz et

al. 2001). Consistent proximal translation was also observed throughout flexion.

Translation was detected in the medial/lateral direction, though approximately a

magnitude lower than the translation in the anterior/posterior direction. While

internal tibial rotation consistently increased with flexion (a trend similar to normal



tibial rotation), a lower magnitude was observed than that reported for the normal

knee (Asano, Akagi et al. 2001; Andriacchi, Dyrby et al. 2003; Komistek, Dennis

et al. 2003; Li, Zayontz et al. 2004). However, the magnitude is similar to the CR

TKA rotation simulated in in vitro robotic experiments (Li, Zayontz et al. 2001;

Most, Zayontz et al. 2003). The varus rotation was also detected to be small

throughout flexion, with mean values between -0.030 and 1.480.

Accurate knowledge of three-dimensional tibiofemoral articular contact

kinematics is important for understanding the mechanism of polyethylene

component failure and biomechanical factors, such as articular tibiofemoral

maltracking, that prevent high flexion of the knee. Even though several studies

have reported one-dimensional tibiofemoral contact positions in the

anteroposterior direction during knee flexion (Banks, Markovich et al. 1997;

Bertin, Komistek et al. 2002; Watanabe, Yamazaki et al. 2004), the actual

tibiofemoral contact locations on the three-dimensional tibial articular surface

during knee flexion are still not known. This study investigated the three-

dimensional contact kinematics of the knee after a posterior cruciate ligament-

retaining total knee arthroplasty using a dual-orthogonal fluoroscopic imaging

technique (Li, Wuerz et al. 2004). The change in tibiofemoral contact locations

with respect to flexion on the tibial polyethylene surface was determined in

patients after cruciate-retaining total knee arthroplasty when performing weight-

bearing flexion from full extension to maximal flexion.

Previous studies have used image matching techniques to investigate in-

vivo knee kinematics by taking single plane fluoroscopic images of the knee in



the sagittal plane (Dennis, Komistek et al. 1996; Banks, Markovich et al. 1997;

Nozaki, Banks et al. 2002). These fluoroscopic studies only reported tibiofemoral

contact locations in the anteroposterior direction in the medial and lateral

compartments. Banks et al. (Banks, Markovich et al. 1997) showed a reduced,

but notable, posterior femoral translation in a posterior cruciate ligament-retaining

knee prosthetic (AMK, DePuy). Dennis et al. (Dennis, Komistek et al. 1996)

showed that the femur in another posterior cruciate ligament-retaining design

(Press-Fit Condylar Designs, J&J) tended to translate anteriorly in midflexion

during deep knee bends. Nozaki et al. (Nozaki, Banks et al. 2002) showed that

the anteroposterior translation contact pattern during stair climbing could change

substantially due to varying surgical techniques between two subject groups with

the same posterior cruciate ligament-retaining total knee arthropalsty (Advantim,

Wright Medical Technology).

It is always difficult to make a direct comparison between studies due to

various factors, including the different geometrics of the components, surgical

technique and loading conditions. Therefore, comparisons were made only to a

study by Bertin et al. that involved the anteroposterior contact analysis of the

same cruciate-retaining total knee arthroplasty design (Bertin, Komistek et al.

2002). For both the medial and lateral compartments, both studies reported

similar contact starting positions, anterior translations in mid-flexion and had

similar overall posterior translation. Bertin et al. reported that the tibiofemoral

contact motion in the medial compartment started at 4.0 mm posterior to the

midline, moved posteriorly through 600, then had an anterior motion occurring



from 60-80* of flexion and had an overall posterior translation of 3.0 mm (Bertin,

Komistek et al. 2002). Bertin et al. also reported that tibiofemoral contact in the

lateral compartment started at 3.4 mm posterior to the midline, showed an

anterior translation of 0.1 mm from 20-400 of flexion, then showed posterior

translation through 100* of flexion and had an overall translation of 4.4 mm

(Bertin, Komistek et al. 2002). Similar trends were observed in this current study

for both compartments in the anteroposterior direction (Fig 4.3C).

However, our data indicated that the tibiofemoral contact points also

shifted along the mediolateral direction. As a result, the design of the articular

surface geometry in the coronal direction may have a direct effect on contact,

since the concave geometry of the polyethylene insert will force the femoral

condyles to move in the proximodistal direction as they translate in the

mediolateral direction. When either the mediolateral motion or the articular

geometry is neglected in contact analysis, proximodistal motion may be mistaken

for lift-off or values of lift-off may be artificially inflated. For example, in one

instance of patient lift-off, a gap of 0.64 mm was measured using the femoral

condyle and polyethylene tibial insert surface. However, if the difference in

distances between the medial and lateral femoral condyles to the tibial plate was

used to determine the presence of lift-off (Dennis, Komistek et al. 2003), a 2.4

mm difference would be detected for this same patient. By neglecting the curved

geometry of the polyethylene surfaces, this method of lift-off determination may

not accurately detect femoral condylar lift-off. Similar observations have also

been noted by Taylor and Barrett (Taylor and Barrett 2003). It should be noted



that the femoral condylar lift-off discussed in this paper was for patients

performing a single-leg lunge activity. For other activities, such as a double-leg

deep knee bend, the tibiofemoral contact might show different contact patterns

due to the different physiological loads.

In a recent in-vivo investigation of 5 normal living subjects from a different

patient polulation (DeFrate, Sun et al. 2004; Li, DeFrate et al. 2005), we found

that the medial tibiofemoral articular contact points were located in the central

part of the tibial plateau in the anteroposterior direction, while showing movement

in the mediolateral direction as the knee flexed from full extension to 900 of

flexion (Fig. 4.5B). The change in posterior location in the lateral compartment

was larger at low flexion angles than at high flexion angles. The posterior

cruciate ligament-retaining total knee arthroplasty design in this study also

showed contact on the inner half of the tibial compartments, but the contact

shifted posteriorly relative to the normal knee from full extension to 900 of flexion

(Fig. 4.5A). However, it must be noted that the normal subjects (Li, DeFrate et al.

2005) were young and healthy, while the arthroplasty patients in this study were,

on average, 67.5 years old. Thus, comparison of the findings between the two

studies is made with caution. In the future, the kinematics of the knee before and

after total knee arthroplasty should be compared.
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the cruciate-retaining total knee arthroplasty and normal subjects.
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In the present study, patients achieved different amounts of maximal

flexion. Therefore, the tibiofemoral articular kinematics at maximal flexion was

averaged and presented separately from the data before 90* of flexion. Beyond

900, both medial and lateral contact points were found to move posteriorly in our

experimental data. Although maximal flexion angles varied among patients, a

consistent pattern of the tibiofemoral articulation was observed. In 7 of the 9

patients, the contact at maximum flexion was at least 6 mm away from the

posterior edge of the polyethylene insert (Fig. 4.4B). On average, the contact in

the lateral compartment was more posterior than in the medial compartment.

This is consistent with the internal tibial rotation of the knee with flexion, as

previously observed (Li, Wuerz et al. 2004). Only two knees showed more

posterior contact points in the medial compartment (Fig. 4.4A).

At maximal weight-bearing flexion, patients of this study felt that the knee

was too tight to flex further. One possible explanation is based on the concave

nature of the tibial articular surfaces (Fig. 4.4C). At high flexion, the femur must

translate posteriorly to avoid impingement between the posterior surfaces of the

femur and tibia with increasing flexion. The concave curvature of the tibial

articular surfaces requires the femoral condyles to move proximally to further

translate posteriorly for additional flexion, causing additional stretching of the

extensor mechanism. The extensor mechanism could become highly stretched

before the knee reaches what would otherwise be maximal flexion (Fig. 4.4C). In

addition, any further posterior femoral translation might cause the femoral

condyle to roll onto the posterior edge of the tibial polyethylene component,



resulting in unstable edge-loading. As noted in our previous investigations of the

normal knee, the femoral condyle was shown to roll off the tibial plateau in high

flexion and remained stable due to the posterior motion of the menisci, especially

on the lateral side of the femoral condyles (Fig. 4.4D) (Li, Wuerz et al. 2004; Li,

Zayontz et al. 2004). The contact mechanism of the total knee implant is

constricted to the tibial articulating surface, and as a result, the femoral condyles

are unable to roll off the tibial plateau at high flexion.

In conclusion, this in-vivo study suggests that the tibiofemoral articular

contact kinematics of the NexGen posterior cruciate ligament-retaining total knee

arthroplasty moves in the mediolateral direction as also observed in the normal

knee from full extension to 900. At maximal flexion, the tibiofemoral contact,

especially on the lateral side, approached the posterior edge of the polyethylene

component but did not reach the edge. This three-dimensional tibiofemoral

contact data may provide new insight for determining wear patterns in-vivo and

designing the articulating surfaces by accounting for contact location in both the

anterioposterior and mediolateral directions. Finally, it should be noted that this

study only tested a single posterior cruciate ligament-retaining total knee

arthroplasty design. The testing protocol established in this paper, however, is

applicable to all other knee arthroplasty designs including unicondylar knee

arthroplasty designs. In future research, information obtained with this

methodology will be used to establish boundary conditions for three-dimensional

finite element analysis of the polyethylene stress-strain distribution under in-vivo



loading conditions, potentially providing quantitative insights into the polyethylene

wear and failure in patients.





Chapter 5. In-vivo Flexoin and
Kinematics of the Knee after TKA-
Comparison of a Conventional and
a High Flexion Cruciate-Retaining
Total Knee Arthroplasty Design

5.1 Introduction
Restoration of the full range of knee flexion for patients after total knee

arthroplasty (TKA) is important for maintaining various life style activities, such as

sports, gardening, stair ascent/descent, and taking a bath (Laubenthal, Smidt et al.

1972; Rowe, Myles et al. 2000; Hemmerich, Brown et al. 2006). It is believed that

contemporary TKA patients are more active than patients in the past and have a greater

desire to participate in activities that require high flexion. Consequently, many new TKA

components have been designed to better accommodate high knee flexion after

surgery. It has been suggested that the mechanical environment experienced by the

polyethylene insert at high flexion may be highly unfavorable and that participation in

high flexion activities could accelerate wear of the polyethylene component (Nagura,

Otani et al. 2005; Ritter 2006).

Several studies have evaluated high flexion TKA designs using either clinical

examination or single-plane fluoroscopic techniques (Argenson, Komistek et al. 2004;



Huang, Su et al. 2005; Kim, Sohn et al. 2005; Seon, Song et al. 2005; Gupta, Ranawat

et al. 2006; Bin and Nam 2007). These in-vivo studies have only dealt with posterior-

substituting designs. No study has reported on the biomechanics of high flexion

posterior cruciate-retaining TKA designs. Further, no study has compared the in-vivo

contact biomechanics of high flexion TKAs with those of conventional TKA designs.

The objective of this study was to compare the in-vivo kinematics of two cruciate

retaining total knee arthroplasty designs, one conventional (NexGen CR, Zimmer,

Warsaw, IN) and one high flexion design (NexGen CR-Flex, Zimmer, Warsaw, IN). We

hypothesized that the CR-Flex design would enhance knee flexion compared to the

conventional CR design. Six degree-of-freedom kinematics were obtained from patients

implanted with either the conventional component or the high flexion component using a

dual fluoroscopic imaging system. Information on maximum knee flexion and the

contact location between the femoral component and the polyethylene insert were also

compared between the two designs.

5.2 Materials and Methods

5.2.1 Experimental Setup

Twenty-nine knees (15 NexGen CR, 14 NexGen CR-Flex, Zimmer, Warsaw, IN)

were analyzed in this study under IRB approval. Patients were recruited from the

practice of a senior surgeon (AAF), and each patient gave informed consent. There

was no difference in age, body weight, height, gender, or knee scores between the

group with conventional TKA components and the group with high flexion components



(Table 5.1). All patients had their knees replaced at least six months prior to

participation in this study, demonstrated passive range of motion greater than 900, and

were evaluated to be clinically successful.

Table 5.1: Demographics for CR and CR-Flex groups
CR CR-Flex

Age (yrs)

Weight (Ibs)

Height (in)

Gender (F/M)

Side (L/R)

Max Passive Extension (deg)

Max Passive Flexion (deg)

Max Weightbearing Flexion (deg)

Knee Society Knee Score

Knee Society Functional Score

69.1 ± 10.9 64.1 + 10.3

195.1 ± 31.0 189.8 ± 40.5

69.6 ± 3.0 68.5 ± 3.4

3/12 3/11

5/10 5/9

1.5 ± 3.5 0.7 ± 3.0

122.1 ± 8.9 118.0 ± 9.7

110.1 ± 13.4 109.1 ± 12.5

91.9 ± 13.4 90.8 ± 10.5
86.0 ± 15.1 86.4 ± 13.8

The maximum passive flexion of each patient was assessed using a goniometer

(Table 5.1). During the experiment, the patient was asked to perform a weightbearing

single leg lunge from full extension to maximum flexion while the knee was imaged

using a dual fluoroscopic imaging system (Hanson, Suggs et al. 2006; Li, Suggs et al.

2006). Pairs of fluoroscopic images were captured simultaneously at intervals of

approximately 150 of flexion.

The positions of the total knee components during the weightbearing flexion were

deduced with the use of a virtual dual fluoroscopic imaging system created in solid

modeling software (Rhinoceros, Robert McNeel and Associates, Seattle, WA), where

the image intensifiers were represented by the acquired fluoroscopic images, and the x-

ray sources were represented by two virtual cameras (Li, Suggs et al. 2006). Solid



models of the TKA components were imported into the virtual fluoroscopic system. The

component models were manipulated in 6 DOF until they overlapped their silhouettes

on both fluoroscopic images, as seen from their respective cameras. When the models

overlapped their silhouettes, the in-vivo pose at the time of image acquisition was

recreated. Therefore, the in-vivo positions of the total knee components along the

flexion path were represented by a series of 3D total knee models.

After the in-vivo positions were determined, the 6 DOF kinematics were

calculated relative to a reference pose (Fig 5.1). This reference position was defined by

orienting the pegs of the femoral component perpendicular to the tibial plate and placing

the most distal points of the femoral condyles at the lowest points on the polyethylene

articular surface. A fixed coordinate system was created for both the tibial and femoral

components at the reference position. Using this coordinate system, we determined

anterior-posterior, medial-lateral, and proximal-distal femoral translations as well as

internal-external and varus-valgus tibial rotations (Li, Most et al. 2004; Li, Zayontz et al.

2004; Hanson, Suggs et al. 2006).



Fig. 5.1 TKA components in their reference position. Femoral translations were measured from
the point midway between the peg tips.
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The tibiofemoral contact location was determined by calculating the centroid of

the overlap between the femoral component and the polyethylene surfaces in the

medial and lateral compartments (Li, Suggs et al. 2006). If no overlap was present, the

point on the polyethylene surface nearest to the femoral condyle was used as the

contact location. A previous study has shown that the imaging system has an accuracy

of 0.16mm for the femoral component and 0.13mm for the tibial component, so lift-off

was defined as the closest distance between the polyethylene and the femoral condyle

being greater than 0.29mm (Hanson, Suggs et al. 2006).

To quantitatively describe the contact locations, two coordinate systems were

created for the articular contact in the medial and lateral compartments. The origins

were midway between the anterior-posterior extremes of the polyethylene and 25% of

the insert's medial-lateral dimension from the medial-lateral extremes.

5.2.2 Component geometry and surgical technique

The geometry and surgical technique used for the conventional CR component

have been discussed previously (Li, Suggs et al. 2006; Most, Sultan et al. 2006). The

CR-Flex femoral component has a thicker posterior condyle than the conventional CR

component (Fig 5.2). An additional 2mm of bone is removed from the posterior

condyles to allow this increase in thickness without overstuffing the joint. This

modification was made in order to increase the contact area between the femoral

component and polyethylene articular surface at high flexion (Li, Most et al. 2004; Most,

Sultan et al. 2006). Both designs were implanted through a medial arthrotomy. The



femoral component was placed in 50 of valgus and 30 of external rotation using

intramedullary alignment and the epicondylar axis. The posterior condyles and

Whiteside's line were used as secondary references. The tibial component was placed

in 70 of posterior slope using an extramedullary guide. The tibial component was also

externally rotated with the center of the tibial plateau, the junction of the medial and

middle thirds of the tibial turberosity, and the tibial crest as references. Tension in the

posterior cruciate ligament was assessed by manual palpation and by flexing the knee

while checking for anterior lift-off of the tibial tray. The patella was surfaced in all the

patients, and all the components were cemented. Interrupted absorbable sutures were

used to close the extensor mechanism and skin.
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Fig. 5.2 Sagittal profile of NexGen's conventional (solid) and high flexion (dashed) designs. By
removing an additional 2mm of bone from the posterior cut, the high flexion design maintains a
smooth curvature through higher flexion.
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5.2.3 Data analysis

Patients in each group were averaged at hyperextension, in 150 intervals from 0O

to 90* of flexion, and at maximum flexion of the implant (Li, Suggs et al. 2006). The

reported data at hyperextension and maximum flexion only included patients who

achieved greater than 30 of hyperextension or 1000 of flexion, respectively. A student's

t-test with Bonferroni correction was used to compare the maximum flexion, 6 DOF

kinematics data, and the contact locations in the medial and lateral compartments

between the patient groups with the conventional component or high flexion component.

Differences were considered significant when p < 0.05.

5.3 Results

5.3.1 Flexion Range

Maximum passive flexion averaged 122.1±8.90 for all the CR patients and

118.0±9.70 for all the CR-Flex patients (Table 5.1). There was no significant difference

between the two patient groups in maximum passive flexion. During weightbearing

flexion, the average maximum flexion for all the CR patients was 110.1±13.40, and the

average maximum flexion for all the CR-Flex patients was 109.1±12.50. There was no

difference in maximum flexion between the two patient groups during the weightbearing

flexion. However, the maximum passive flexion was significantly higher than that under

weightbearing flexion for both the conventional or the high flexion component patients (p

< 0.02).
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5.3.2 Six DOF kinematics of CR and CR Flex TKA
patients

Patients demonstrated similar posterior femoral translation throughout the flexion

range (Fig 5.3). The femoral component of the CR patients translated anteriorly from

1.1±1.7mm at hyperextension to -4.9±2.5mm at 45" of flexion, and then translated

posteriorly to 8.5±5.3mm at maximum flexion. In the CR-Flex group, the femoral

component translated anteriorly from 1.8±2.0mm at hyperextension to -4.0±2.4mm at

450 of flexion, and then translated posteriorly to 9.1±4.5mm at maximum flexion. No

statistical difference was detected between the two patient groups in posterior femoral

translation.
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The two patient groups exhibited similar patterns of medial-lateral femoral

translation. In the CR patients, the femoral component moved laterally from 0.5±0.7mm

at hyperextension to -0.8±0.9mm at 45" of flexion and then medially to 0.1±1.7mm at

maximum flexion. In the CR-Flex group, the femoral component moved laterally from

0.1±0.7mm at full extension to -1.4±0.9mm at 45* of flexion and then medially to

0.4±1.5mm at maximum flexion. Statistically, the CR-Flex femurs were more lateral

than the CR femurs at 150 of flexion (p < 0.0054), but the difference was less than 1.0

mm.

The two groups showed similar varus-valgus patterns, starting from around

0.1±0.60 at hyperextension, rotating varus to about 1.6±0.50 at 300 of flexion, and then

rotating valgus to 0.0±1.50 at maximum flexion. The two groups also demonstrated

similar patterns of internal tibial rotation (Fig 5.4). In the CR patients, the tibia rotated

internally from -0.2±4.00 at hyperextension to 8.6±5.80 at maximum flexion, and in the

CR-Flex patients, the tibia rotated internally from 4.4±4.1" at hyperextension to

10.6±6.00 at maximum flexion. The CR-Flex patients generally demonstrated more

internal tibial rotation compared to the CR patients. However, no difference was

detected in varus-valgus or internal tibial rotation between the groups.
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5.3.3 Tibiofemoral contact kinematics of CR and CR
Flex patients

In the lateral compartment of the CR patients, the contact location moved

posterior from -2.1±5.4mm to -8.1±4.4mm at early flexion and remained constant until

maximum flexion, where it moved farther posterior to -15.2±4.0mm (Fig 5.5). In the CR-

Flex patients, the contact also moved posteriorly in early flexion, but moved anteriorly

through mid flexion, and then posteriorly again to -13.6±3.9mm at maximum flexion. No

statistical difference was detected between the two patient groups.

In the medial-lateral direction, the lateral compartment contact of the CR group

gradually moved laterally from -3.5±3.6mm at hyperextension to -7.9±6.3mm at

maximum flexion. For the CR-Flex patients, the contact also moved laterally from -

3.7±6.9mm at hyperextension to -7.7±8.1mm at maximum flexion. There was no

difference in lateral compartment contact location between the two patient groups.

In the medial compartment, the contact location in the anterior-posterior direction

remained relatively constant with flexion until maximum flexion for both groups. In the

CR group, the medial compartment contact occurred at -2.0±4.0mm throughout the

flexion range until maximum flexion, where the contact moved to -5.4±9.1mm. The

medial compartment contact in the CR-Flex group remained at 0.0±4.0mm through

early and mid flexion and reached -3.8±7.3mm at maximum flexion. There was no

difference between the groups in the AP location of the medial compartment contact.
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Fig. 5.5 Tibiofemoral contact on the polyethylene for the CR (diamonds) and CR-Flex (crosses)
components.
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The medial compartment contact location was also relatively constant in the

medial-lateral direction throughout the entire flexion range for both groups. In the CR

group, the contact remained around 4.5±4.5mm throughout the range of flexion. In the

CR-Flex group, the contact was around 2.3±5.0mm. Again, no difference was found

between the CR and CR-Flex knees.

5.3.4 Observation of tibiofemoral contact patterns of
CR and CR Flex patients

Lift-off occurred at maximum flexion in 5 patients of each group. In the CR group,

there were 3 patients with lift-off only in the lateral compartment, 1 patient with lift-off

only in the medial compartment, and one patient with lift-off in both compartments. In

the CR-Flex group, there were also 3 patients with lift-off only in the lateral

compartment, 1 patient with lift-off in the medial compartment, and 1 patient with lift-off

in both compartments. The average maximum flexion for these 10 patients with lift-off

was 113.7 ± 12.8, which was 60 greater but not statistically different from that of patients

with no lift-off (107.5 ± 12.6).

At low flexion angles, the tibiofemoral articulation was similar for both the

CR and CR-Flex patients. For example, at 750 of flexion, the articulating surfaces

around the contact location were very conforming for both the CR and CR-Flex

components. However, at maximum flexion angles, the CR components had a different

articulation compared to that of the CR-Flex components. This observation is illustrated

in Figure 5.6, which shows the articulation of a CR patient and a CR-Flex patient at

131.40 and 131.10, respectively. In the CR TKA, the femoral condyle tip came into
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contact with the polyethylene surface. In the CR-Flex TKA, the femoral surface in

contact with polyethylene surface is much more conforming than in the conventional

design.
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Fig. 5.6 Cross-sections of the tibiofemoral articulation at 1300 of flexion in a A) CR and B) CR-
Flex patient. With the CR design, the tip of the femoral component is contacting the
polyethylene. With the CR-Flex design, the smooth articular surface of the femoral component
remains in contact with the polyethylene.
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5.4 Discussion
Despite the debate over the need and efficacy of high flexion components

(Ranawat 2003; Nagura, Otani et al. 2005; Ranawat, Gupta et al. 2006; Ritter 2006),

many new components have been used clinically with the aim of enhancing the flexion

capability of the knee after TKA (Sultan, Most et al. 2003). However, previous studies

have only compared high flexion TKA designs to conventional designs in a posterior

substituting knee (Argenson, Komistek et al. 2004; Huang, Su et al. 2005; Kim, Sohn et

al. 2005; Seon, Song et al. 2005; Gupta, Ranawat et al. 2006; Bin and Nam 2007). This

study investigated the 6DOF knee kinematics of patients after total knee arthroplasty

using either a conventional cruciate retaining component (NexGen, CR) or a high flexion

cruciate retaining component (NexGen, CR Flex).

In this study, patients with specially designed high flexion components behaved

similarly to those with conventional implants kinematically. There was no difference in

posterior femoral translation throughout the entire flexion range. For the CR patients,

the tibiofemoral contact moved 4.5 mm posteriorly in the medial compartment and 13.0

mm in the lateral compartment during the weightbearing lunge. For the CR-Flex

patients, the tibiofemoral contact moved 6.2 mm posteriorly in the medial compartment

and 8.3 mm in the lateral compartment. There were no dramatic differences in the

contact positions during knee flexion between the two patient groups. The CR-Flex

knees showed approximately 3* greater internal tibial rotation than the CR knees

throughout the flexion range, although this difference was not statistically significant.
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Besides the similarity in kinematics, the two patient groups had similar maximum

flexion under both passive and weightbearing conditions. However, the tibiofemoral

contact behavior was different between the components at high flexion angles (>120").

Figure 10 showed the tibiofemoral contact patterns of a CR patient and a CR Flex

patient at 1300 of flexion. At this flexion angle, the condylar tip of the conventional CR

TKA was in contact with the polyethylene surface. This could cause a stress

concentration on the polyethylene surface and lead to increased wear in patients who

attain high flexion. However, at the same flexion angle, the articulating surface of the

CR Flex component was much more conforming compared to the conventional CR

design. The increased conformity would help reduce any potential high stresses

experienced by the polyethylene at high flexion. This improvement in contact can be

explained by the thicker posterior femoral condyle of the CR-Flex design (Figure 2).

The increased thickness of the femoral condyle allows for a larger radius of curvature at

higher flexion angles, which translates into more conforming surfaces between femoral

and polyethylene components at high flexion. Therefore, this high flexion total knee

design seems to have improved the articular contact mechanics when the knee is able

to achieve high flexion. This observation confirmed a previous prediction based on

radiographs at full flexion which suggested that the high flex designs had better contact

area (Kim, Sohn et al. 2005).

It should be noted that the data obtained in the present study for the conventional

implant is similar to published data for other cruciate-retaining components. Previous

studies have reported passive maximum flexion values between 1000 and 1200

(Bellemans, Banks et al. 2002; Banks, Bellemans et al. 2003; Aglietti, Baldini et al.
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2005; Bertin 2005; Victor, Banks et al. 2005). The current study found an average

weightbearing maximum flexion of 110*, and a mean passive maximum flexion around

120".

In the literature, most studies on high flexion TKA patients consist of Asian

cohorts and focus on the passive range of motion of PS TKA designs (Huang, Su et al.

2005; Kim, Sohn et al. 2005; Seon, Song et al. 2005; Gupta, Ranawat et al. 2006; Bin

and Nam 2007). There are inconsistent conclusions when comparing the flexion

capability of patients with conventional implants and high flexion implants. For example,

Bin et al compared 90 conventional LPS knees to 90 matched LPS-Flex (Zimmer)

knees at one year postoperatively (Bin and Nam 2007). They found the LPS-Flex

knees to have more ROM (129.8±5.20) than the conventional knees (124.3±9.2*).

Huang et al also found LPS-Flex knees to have about 100 more flexion than LPS knees

at 2 years follow-up (Huang, Su et al. 2005). Gupta et al compared a conventional

rotating platform posterior stabilized design (P.F.C. Sigma RP, Depuy) to high flexion

version of the same component (P.F.C. Sigma RP-F) (Gupta, Ranawat et al. 2006).

They reported that the patients with a high flexion design gained significantly more ROM

from preop to postop (1100 to 1250) than the patients with the conventional design (1100

to 1160). Kim et al compared LPS-Flex to LPS in 50 bilateral patients and did not find a

difference in ROM between the components (1390 vs. 1360) (Kim, Sohn et al. 2005).

Seon et al compared LPS-Flex to a mobile bearing CR design (e-motion, B. Braun-

Aesculap) and found no difference in maximum flexion (1310 vs 129") (Seon, Song et al.

2005).
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Even though our data did not reveal a difference in maximum flexion between the

two cruciate retaining implants, we did notice that the passive maximum flexion was

significantly higher than that measured during weightbearing flexion. This indicates that

when evaluating knee flexion, it is important to clearly define the loading conditions

used during the experiment. Comparisons between studies reported in literature should

only be made when the data was collected under similar conditions.

One limitation of the current study is that the condition of the polyethylene

surface could not be directly analyzed due to the in-vivo nature of the experiment. As

contact behavior was revealed to be different between the two implant designs at high

flexion, it would be clinically interesting to examine the wear modes and patterns of their

polyethylene components. In the future, this can be studied using retrieved polyethylene

components from revision patients who used one of the two implants.

In conclusion, the kinematics of the CR-Flex patients analyzed in this study were

similar to those of the patients with a conventional CR component. No difference was

seen in the maximum flexion achieved by the patients, and the kinematics

demonstrated by the groups were quite comparable. Use of this high flexion component

did appear to improve tibiofemoral conformity at high flexion in patients that could

achieve high flexion. Further analysis is necessary to determine if the longevity of the

polyethylene is indeed improved through the use of a high flexion component.
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Chapter 6. Patient Function after
a Posterior Stabilizing Total
Knee Arthroplasty - Knee
Kinematics and Cam-Post
Engagement

6.1 Introduction
The ability to participate in activities requiring deep flexion is of increasing

importance to patients receiving total knee arthroplasties (TKA), especially in

Asian cultures. In posterior substituting total knee arthroplasty, a cam-post

mechanism was implemented to substitute for the function of the posterior

cruciate ligament. The cam-post mechanism was designed to induce posterior

femoral translation during knee flexion in hopes of increasing maximum knee

flexion. Biomechanical studies have reported kinematics of posterior substituting

total knee arthroplasties for several activities (Banks, Markovich et al. 1997;

Dennis, Komistek et al. 1998; Dennis, Komistek et al. 2003; Lee, Matsui et al.

2005; Victor, Banks et al. 2005; Catani, Fantozzi et al. 2006; Fantozzi, Catani et

al. 2006). Clinical outcome studies have reported similar maximal knee flexion

values for various posterior substituting designs (Anouchi, McShane et al. 1996;

Emmerson, Moran et al. 1996; Ranawat, Luessenhop et al. 1997; Ritter, Harty et
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al. 2003; Aglietti, Baldini et al. 2005; Capeci, Brown et al. 2006) with studies of

Asian cohorts typically reporting higher maximum flexion than Western cohorts

(Kim, Sohn et al. 2005; Seon, Song et al. 2005).

Despite the number of studies of posterior-substituting TKA, few

quantitative data, however, have been reported on the effect of the cam-post

mechanism on knee kinematics and on knee flexion capability (Delp, Kocmond et

al. 1995; Piazza, Delp et al. 1998; Li, Most et al. 2002).In the literature, two

dimensional computerized models have been used to investigate the effect of

position and height of the tibial post on the tibiofemoral translation of the knee

(Delp, Kocmond et al. 1995; Piazza, Delp et al. 1998). Recently, cam-post

contact forces were measured using cadaveric knee specimens and compared to

the forces of the posterior cruciate ligament (Li, Most et al. 2002). However, cam-

post interaction in patients after posterior substituting total knee arthroplasties

and its effect on knee joint kinematics are still not clearly described, especially

under physiological weight-bearing conditions. Information on how cam-post

engagement affects knee kinematics and flexion in-vivo would be instrumental in

improving component designs as well as surgical implantation of the components

in order to restore full range of motion after total knee arthroplasty.

We therefore hypothesized that cam-post engagement improved

maximum flexion of the knee after total knee arthroplasty and that earlier

engagement may result in larger posterior femoral translation and higher knee

flexion. The objective of this study was to determine the tibiofemoral kinematics

and timing of the cam-post engagement in patients after posterior substituting
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total knee replacement (NexGen, Zimmer, Warsaw, IN) during a single leg,

weightbearing flexion using a dual-orthogonal fluoroscopic system (Hanson,

Suggs et al. 2006; Li, Suggs et al. 2006). Because Asian patient populations

seem to perform better than Western populations, data was collected from a U.

S. population and a South Korean population. Posterior femoral translation,

internal tibial rotation, and tibiofemoral articular contact locations in the medial

and lateral compartments were determined. The flexion angle where cam-post

engagement occurred during knee flexion was also estimated for each patient.

6.2 Materials and Methods
Forty-two knees were included in this study. Sixteen patients (14

unilateral, 2 bilateral) were from an U. S. population, and 17 patients (10

unilateral, 7 bilateral) were from a South Korean population. Each patient was

randomly recruited with IRB approval and gave informed consent before testing.

All patients were found to have clinically acceptable function. Each knee

included in the study was tested no less than 6 months after surgery and

demonstrated at least 90* passive range of motion (ROM). For the U. S.

patients, the average age, weight, and height was 66.7 ± 7.5 yrs, 94.5 ± 16.1 kg,

and 1.76 ± 0.12 m, respectively (Table 6.1). There were 10 males and 7 females

with an average postoperative time of 20.8 months. Twelve knees received a

NexGen LPS implant (Zimmer, Inc, Warsaw, IN), and 6 knees received a

NexGen LPS-Flex implant. All of the South Korean patients were female, and all

of them received a NexGen LPS-Flex implant. Their average age, weight, and
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height was 70.4 ± 5.2 yrs, 60.5 ± 8.0 kg, and 1.52 ± 0.06 m, respectively. The U.

S. patients were significantly heavier and taller than the South Korean patients (p

< 0.0001), but no difference in age was detected ( p = 0.055, power = 64%). The

surgical technique and component geometry have been described in our

previous publications (Li, Most et al. 2002)

Table 6.1: Patient Demographics
U. S. S. K.

Age (yrs) 66.7 ± 7.5 70.4 + 5.2
Weight (kg) 94.5 ± 16.1 60.5 ± 8.0
Height (m) 1.76 ± 0.12 1.52 ± 0.06
Gender (F/M) 8/12 24/0
Side (L/R) 9/9 10/14
Passive ROM (deg) 118.6 ± 14.0 142.5 ± 9.2
Minimum Active Flexion (deg) -4.1 ± 7.5 -5.0 ± 6.7
Maximum Active Flexion (deg) 113.3 ± 19.4 112.5 ± 13.1
Active ROM (deg) 117.4 ± 23.9 117.5 ± 15.3

Before imaging, the patient's maximum passive flexion and extension

were measured using a goniometer. During the experiment, each subject

performed a single leg, weightbearing lunge with the contralateral leg helping to

balance the body (Li, Suggs et al. 2006). The target knee joint was positioned

inside the common imaging zone of two fluoroscopes (BV Pulsera, Philips,

Netherlands). As the patient flexed the knee, the fluoroscopes simultaneously

imaged the knee from two orthogonal directions from full extension to maximal

flexion in approximately 150 increments. The maximum active flexion angle was

achieved when the patients felt that they could not flex their knee any farther.
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Therefore, the in-vivo knee kinematics along the flexion path was recorded using

a series of dual fluoroscopic images.

The pair of fluoroscopic images taken at each flexion angle and three-

dimensional CAD models of the TKA components were input into a virtual dual

fluoroscopic system constructed in a solid modeling software (Rhinoceros,

Robert McNeel, Seattle, WA) using our previously published methodology

(Hanson, Suggs et al. 2006; Li, Suggs et al. 2006). The virtual fluoroscopic

system recreated the geometric positions of the two fluoroscopes. The two

fluoroscopic images were placed in the same relative positions as the image

intensifiers of the two fluoroscopes, and two virtual cameras were positioned at

the same locations as the X-ray sources using the manufacturer's specifications.

The three-dimensional models of the femoral and tibial tray components were

then manipulated in the virtual fluoroscopic system in 6 degrees-of-freedom, and

the two virtual cameras projected the components onto the virtual image

intensifires. The polyethylene tibial insert was fixed to the tibial tray and hidden

from view during the matching procedure. Once the projections of the

components were matched to the images of the actual component positions, the

in-vivo position of the total knee arthroplasty at the target flexion angle was

reproduced using the three-dimensional models. Figure 6.1 shows 3D knee

models representing two in-vivo positions of the knee along the flexion path.
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Cam-pos
contact

B)

Fig. 6.1 A) Initial cam-post engagement of a patient with cam-post engagement medial
post corner; B) cam-post engagement at 1200 of the same patient.
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Since bony geometry was not available, a flexion axis was defined by a

line connecting the two femoral component peg tips (Fig 6.2). Anterior-posterior

femoral translation was measured at the center of the flexion axis. Internal-

external rotation was defined as the rotation of the flexion axis when projected

onto the tibial plateau. Tibiofemoral contact was defined as the overlapping of the

femoral component surface with the polyethylene articular surface (Li, Suggs et

al. 2006). The center of the overlapping area was defined as the contact point.

The locations of the contact point at the medial and lateral compartments along

the flexion path defined the tibiofemoral articular contact kinematics.

The in-vivo three-dimensional cam-post contact was then determined by

directly analyzing the overlap of the surface models of the cam and post (Li,

Suggs et al. 2006). Figure 6.1 shows the cam-post contact for two in-vivo

positions of a patient. The flexion angle where the cam-post contact was first

detected did not represent the true cam-post engagement angle since the knee

was imaged at discrete flexion positions. Therefore, in this paper, the cam-post

engagement angle was defined as the flexion angle midway between two

positions, one at the first detected cam-post contact and the one immediately

before the initial cam-post contact.

Standing X-rays of the operated knee in the sagittal plane were

obtained from the patient's clinical records. These X-rays were used to determine

the tibial component slope and femoral component flexion relative to the

corresponding tibial and femoral shafts (Hanson, Suggs et al. 2007). Femoral
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components placed in flexion and posterior tibial slope were defined as positive

(Figure 6.3).
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Flexion

Fig. 6.2 Definition of the flexion axis of the femoral component.
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Fig. 6.3 Sagittal plane image of a patient was used to define femoral component flexion
angle and tibial slope.
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Statistical Methods

For this study, we reported posterior femoral translation, internal tibial

rotation, tibiofemoral articular contact kinematics, and the flexion angle where

cam-post engagement was observed. The maximum passive and active flexion

angles were also reported. Kinematic data under weight-bearing was reported at

hyperextension, 00 through 90* in 15* intervals, and at maximum flexion. Only

patients having more than 30 of hyperextension were included in the values

reported at hyperextension. Similarly, only patients who achieved flexion beyond

1000 were included in the values reported at maximum flexion. Anterior-posterior

(AP) and medial-lateral (ML) translations were normalized to the AP and ML

dimensions of the polyethylene tibial insert. The Pearson product-moment was

used to examine possible correlations between the cam-post engagement angle

and maximal flexion angle and to evaluate what kinematic factors may affect the

timing of cam-post engagement. Differences between groups were examined

using the Independent T-test. Differences between values within a group were

evaluated using the Dependent T-test. Statistically significant differences were

indicated when p < 0.05.
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6.3 Results

6.3.1 Flexion Range

The minimum and maximum passive flexion for all the U. S. patients was

0.6 ± 1.70 and 118.1 ± 14.20, respectively. The minimum and maximum

component flexion under weight-bearing averaged -3.6 ± 7.50 and 111.0 ± 19.2*

(Table 6.1). These patients did not demonstrate a statistical difference between

passive ROM (118.6 ± 14.00) and active ROM (113.3 ± 19.40, p = 0.7, power =

14%). Twelve knees demonstrated more than 30 of hyperextension under

weight-bearing. The South Korean patients demonstrated a minimum and

maximum passive flexion of 0.0 ± 4.20 and 142.5 ± 6.40, respectively. The

average minimum weight-bearing flexion angle for these patients was -5.0 ± 6.70,

and the average maximum weight-bearing flexion angle was 112.5 ± 13.10. The

passive ROM was significantly greater than the weight-bearing ROM (p <

0.0001). The South Korean patients demonstrated a significantly greater passive

ROM than the U. S. patients (p < 0.0001), but no difference was detected in

active ROM (p = 0.64, power = 12%).

6.3.2 Six Degree-of-Freedom Kinematics

At hyperextension in the U. S. patients, the femoral component center was

2.1 ± 1.7 mm anterior to its reference position (Fig 6.4A). As the knee flexed, the

femur moved anteriorly and reached a peak anterior position of -6.9 ± 1.5 mm at
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30* of flexion. Beyond 30* of flexion the femoral component consistently

translated posteriorly. From 300 to 90* of flexion, the femoral component

translated posteriorly by about 7 mm to a position of -0.2 ± 1.6 mm. From 900 to

maximal flexion, the femoral component translated posteriorly to 13.0 ± 4.3 mm.

At hyperextension, the tibia was externally rotated by 3.0 ± 4.30 (Fig 6.4B). As

the knee flexed, the tibia consistently rotated internally and reached peak internal

tibial rotation of 5.3 ± 5.10 at 900 of flexion. Beyond 900 of flexion, the internal

tibial rotation was slightly reduced to 3.3 ± 4.20 at maximal flexion.
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Fig. 6.4 A) Posterior femoral translation and B) internal tibial rotation of the knee during
active flexion.
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In the South Korean patients, the femur moved anteriorly from -5.1 ± 0.7

mm at hyperextension to -8.5 ± 2.3 mm at 30* of flexion. The femur then steadily

moved posteriorly throughout the rest of flexion, reaching -0.1 ± 2.1 mm at 900 of

flexion and 8.2 ± 3.2 mm at maximum flexion. The tibia of the South Korean

patients internally rotated approximately 1.50 at early flexion. The tibia rotated

internally with flexion to 7.0 ± 3.30 of internal rotation at 90* of flexion. The

internal rotation was 5.4 ± 3.20 at maximum flexion.

The femur in the South Korean patients was more anterior than in the U.

S. patients from hyperextension to 300 of flexion (p < 0.02). No difference was

detected in anterior-posterior position of the femur throughout the rest of flexion.

The South Korean patients tended to exhibit greater internal tibial rotation than

the U. S. patients throughout the flexion range, but this difference was not

statistically significant.

6.3.3 Tibiofemoral contact kinematics

In the medial compartment of the U. S. patients, the contact location was

near the center of the medial tibial surface at hyperextension of the knee (Fig 6.5,

Table 6.2). Along the anterior-posterior direction, the contact location was slightly

posterior to the midline at -0.4 ± 6.2 mm. The contact location moved posteriorly

with flexion until 30* (-4.4 ± 3.3 mm) and then anteriorly until 750 of flexion (-1.0 ±

3.4 mm). The contact point then moved posteriorly again to -2.8 ± 3.5 mm at 900

of flexion. At maximal flexion, the contact location sharply moved posteriorly to
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-15.0 ± 2.4 mm. In the medial-lateral direction, the contact location moved from

an initial position on the half closer to tibial spine (-2.2 ± 4.5 mm) towards the

center of the medial tibial surface and reached 1.0 ± 3.9 mm at 150 of flexion. It

stayed close to the center of the medial tibial surface through 90* of flexion (1.1 ±

4.6 mm). It then moved towards the outer half and reached 2.6 ± 5.1 mm at

maximal flexion.
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Table 6.2: Tibiofemoral Contact Location in U. S. patients

Flexion
Hyperextension

0
15
30
45
60
75
90

Max Flexion

Lateral Compartment
Medial Anterior

0.4 ± 4.5
0.2 ± 4.4
0.3 ± 5.3

-0.8 ± -4.4
-1.2 ± -4.9
0.6 ± 5.0

-0.2 ± -5.1
1.6 ± 4.3
3.0 ± 5.1

9.0 ± 8.0
-5.3 ± -11.6
-14.3 ± -9.2
-14.7 ± -8.8
-16.0 ± -7.9
-12.6 ± -8.9

-11.4 ± -10.0
-16.1 ±-8.3
-34.7 ± -5.0

Medial Compartment
Medial Anterior

-0.2 ± -12.9
-5.5 ± -11.2
-8.7 ± -8.8
-9.4 ± -7.0
-7.1 ± -7.4
-3.2 ± -9.4
-2.1 ±-7.5
-5.8 ± -7.1

-31.6 ± -4.5

-2.8 ± -5.7
-0.6 ± -5.4
1.3 ± 5.1
0.5 ± 3.1
0.0 -3.9
0.4 ±4.1
0.2 ± 4.9
1.4 ± 5.7
3.4 ± 7.4

Table 6.3: Tibiofemoral Contact Location in S. K. patients

Flexion
Hyperextension

0
15
30
45
60
75
90

Max Flexion

Lateral Compartment
Medial Anterior

-8.4 ± -6.1
-8.0 ± -3.7
-8.8 ± -4.8

-10.6 ± -5.8
-11.0 ± -4.8
-11.2 ± -7.8
-12.2 ± -7.5
-12.3 ± -8.0
-7.5 ± -9.6

12.2 ± 6.5
1.3 ± 11.7

-7.0 ± -15.1
-14.5 ± -11.7
-15.8 ± -10.8
-17.0 ± -8.2
-15.4 ± -8.0
-17.0 ± -7.0
-29.0 ± -6.7

Medial Compartment
Medial Anterior

18.4 ± 6.2
8.3 ± 6.8

0.7 ±11.2
-5.5 ± -8.0
-4.7 -6.1
-1.4 ±-5.2
2.0 ± 5.0
1.4 4.8

-15.0 ± -9.0

1.9 ± 5.0
5.7 ± 5.0
5.8 ± 3.8
5.3 ± 3.7
4.9 ± 4.8
4.5 ± 4.2
3.7 ± 4.1
4.4 ± 4.3
7.3 ± 9.3

In the lateral compartment, the contact point was anterior to the center of

the lateral tibial surface at hyperextension of the knee (Fig 6.5). Along the

anterior-posterior direction, the contact location was at 4.2 ± 3.6 mm. The contact

location moved posteriorly with flexion until 45" (-7.4 ± 3.7 mm) and then

anteriorly until 750 of flexion (-5.2 ± 4.7 mm). The contact point then moved

posteriorly again to -7.5 ± 3.9 mm at 90* of flexion. At maximal flexion, the

contact location sharply moved posteriorly to -16.5 ± 1.9 mm. In the medial-

lateral direction, the contact location stayed close to the center of the lateral tibial
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surface from hyperextension (0.2 ± 3.0) through 90* of flexion (1.2 ± 3.3 mm). It

then moved towards the inner half to 2.3 ± 4.0 mm at maximal flexion.

The contact in the medial compartment of the South Korean patients

started 8.9 ± 2.5 mm anterior to the midline at hyperextension (Table 6.3). The

contact moved posteriorly with flexion until 30* of flexion where it reached -1.0 ±

3.3 mm. The contact point then stayed close the center of poly through 900

where the contact was at 1.8 ± 2.1 mm. After 900, the contact moved posteriorly

to -5.0 ± 3.8 mm at maximum flexion. The contact position in the medial

compartment was relatively constant in the medial-lateral direction. At

hyperextension, the contact was 1.1 ±3.1 medial to the centerline and remained

approximately 3.0 mm medial to the center line from 0O to 90" of flexion. At

maximum flexion, the contact was 4.6 ± 5.9 mm medial to the center line.

The contact in the lateral compartment moved posteriorly from 6.3 ± 2.6

mm at hyperextension to -5.8 ± 3.4 mm at 60" of flexion. The contact remained

there until 90* of flexion and then moved farther posterior to -10.7 ± 2.8 mm.

Similar to the contact in the medial compartment, the contact in the lateral

compartment was relatively constant in the medial-lateral direction, starting

approximately 5 mm lateral to the center line at early flexion, moving slightly

more lateral to -7.6 ± 4.8 mm at 900 of flexion, and then moving slightly medial to

-4.6 ± 6.3 mm at maximum flexion.

The contact point in the medial compartment was more anterior in the

South Korean patients throughout the entire flexion range. It was also more

medial in the South Korean patients from 0O to 90* of flexion. In the lateral
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compartment, the South Korean patients exhibited more anterior contact only at

early flexion (p < 0.023). The contact in the lateral compartment was more lateral

in South Korean patients throughout flexion (p < 0.0001).

6.3.4 Cam-Post Engagement

Seventeen of the eighteen U. S. knees demonstrated cam-post

engagement. The one patient who did not have cam-post engagement had a

maximum flexion angle of 90". For the 17 knees with engagement, initial cam-

post contact occurred between 690 and 98*. The mean flexion angle where the

cam-post engagement was observed was 86.2 ± 8.6*. For the South Korean

patients, 21 of the 24 patients demonstrated cam-post engagement. The 3

patients that did not have cam-post engagement achieved maximum flexion

angles of 780, 850 and 1160. In the other 21 patients, cam-post engagement

occurred between 690 and 114". Post-cam engagement was observed at an

average of 91.1 ± 10.9in these patients. For all patients, the cam-post contact

was first observed at the posterior-medial corner of the tibial post (Fig 6.2A). At

higher flexion after cam-post engagement, the contact began to cover more of

the posterior aspect of the post (Fig 6.2B). The subject with the greatest maximal

flexion, which was 135*, showed cam-post disengagement at the maximal flexion

position.

The data suggested a possible correlation between the initial cam-post

contact angle and the maximum flexion angle (Figure 6.6). When including all the

U. S. patients, the correlation between maximum flexion and cam-post
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engagement is r = 0.362 (p = 0.153). After removing one outlier, the correlation

coefficient increases to r = 0.512 (p = 0.043). When looking at just the South

Korean patients, the correlation was r = 0.505 (p = 0.019). When combining the

two groups, the correlation was r = 0.378 (p = 0.019). The correlation curve

indicated that patients might have lower maximal flexion if the cam-post engaged

at a lower flexion angle.

On average, the femoral component was placed in 0.9 ± 3.10 of flexion.

The slope of tibial component was 3.4 ± 2.5*. Flexion of the femoral component

was not shown to correlate to the initial cam-post contact angle (R = 0.35, p =

0.32). The tibial slope was also not found to affect the cam-post contact (R =

0.39, p = 0.27).
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6.4 Discussion
This study investigated the in-vivo kinematics of posterior substituting total

knee arthroplasty during a weightbearing flexion. Posterior femoral translation,

internal tibial rotation, and tibiofemoral articular contact kinematics as well as the

timing of cam-post engagement were determined. A mean maximum active

flexion angle of 113.30 and 112.50 was measured for these groups of U. S. and

South Korean patients, which is similar to those reported in the literature

(Anouchi, McShane et al. 1996; Emmerson, Moran et al. 1996; Ranawat,

Luessenhop et al. 1997; Ritter, Harty et al. 2003; Aglietti, Baldini et al. 2005;

Capeci, Brown et al. 2006). However, our data on cam-post engagement did not

prove our hypothesis that earlier engagement of cam-post would enhance flexion

of the posterior substituting total knee arthroplasty. Rather, the data suggested

that later cam-post engagement might be beneficial to flexion.

Most biomechanical investigations of posterior substituting total knee

arthroplasties have focused on anterior-posterior translation of the medial and

lateral femoral condyles (Banks, Markovich et al. 1997; Dennis, Komistek et al.

1998; Dennis, Komistek et al. 2003; Lee, Matsui et al. 2005; Victor, Banks et al.

2005; Catani, Fantozzi et al. 2006; Fantozzi, Catani et al. 2006). These studies

involved different activities, such as sitting and rising from a chair (Fantozzi,

Catani et al. 2006), knee bends (Dennis, Komistek et al. 1998), and step-up

maneuvers (Banks, Markovich et al. 1997). Our data indicated that up to 900 of

flexion, the contact point in the lateral compartment had a larger excursion than
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that in the medial compartment (Fig 6.5). This may be indicative of a "medial

pivot" during knee flexion and is consistent with previous studies. However, both

compartments showed large posterior translation beyond 90* of flexion. In

addition, our data showed that the contact points also moved in the medial-lateral

direction during flexion.

Even though the kinematics of posterior substituting total knee

arthroplasty has been studied extensively, no data has been reported on the

timing of in-vivo cam-post engagement. Previous in-vitro robotic tests using

cadaveric knees measured cam-post contact forces during knee flexion under

simulated muscle loads (Li, Most et al. 2002). The in-vitro data showed that cam-

post engagement occurred between 60" and 90* . On average, our in-vivo data

showed that cam-post engagement occurred at 850 and 91* in these groups of

patients. Despite the fact that the in-vivo loading conditions of this study were

different from those simulated in the robotic experiment, the ranges of knee

flexion at which cam-post engagement was observed were similar between the

in-vitro study and the U. S. patients in the current study. The South Korean

patients tended to have cam-post engagement later in flexion than the U. S.

patients, although a statistical difference could not be detected (p = 0.12, power

= 30%)

Cam-post engagement has been widely thought to be a factor in

increasing posterior femoral translation and thus enhancing knee flexion

(Argenson, Scuderi et al. 2005). Our data showed a sharp increase in posterior

translation of the femur and tibiofemoral contact locations beyond 900 of flexion,
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right after the cam-post engagement. The data also indicated that cam-post

engagement corresponded to a reduction in internal tibial rotation at high flexion.

Initial cam-post contact was always observed at the medial corner of the post in

this study (Fig 6.2). The cam-post contact at the medial corner of the post might

cause an external rotational moment on the tibia. After the initial cam-post

engagement, the cam-post contact tended to cover more of the posterior aspect

of the post with further flexion of the knee, which corresponds to the reduced

internal tibial rotation at flexion angles after 90o. This phenomenon was similar to

our previous observation in normal knees where internal tibial rotation was noted

to be slightly reduced at high flexion angles (Li, Papannagari et al. Accepted).

These data showed that cam-post engagement did alter joint kinematics at high

flexion of the knee. However, no articular contact reached the posterior edge of

the tibial component at maximal flexion angles in this group of patients.

Even though the timing of cam-post engagement did provide posterior

femoral translation, it is interesting to note that the timing of the cam-post

engagement did not have a strong effect on maximal flexion. As demonstrated in

Fig 6.6, the data suggested a mild, positive correlation between the cam-post

engagement flexion angle and the maximal flexion angle of the knee. This

implied that later cam-post engagement might indicate a more conducive

environment for greater flexion of the knee. A power analysis showed that the

current subject number only had 40% power to detect a correlation with R = .50

between cam-post engagement and maximal flexion angles. To enhance the

statistical power to 80%, 28 subjects will be needed.
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The data on cam-post engagement and knee kinematics implied the

importance of controlling the timing of cam-post engagement in the posterior

substituting total knee arthroplasty. In general, component positioning during

implantation, as well as the geometry of the component, has been thought to

affect cam-post engagement. The flexion of the femoral component and the tibial

slope were not found to affect the cam-post engagement timing in this study. A

power analysis demonstrated that the subject number of this study only has 27%

power to analyze the effect of femoral component flexion and tibial slope on the

timing of cam-post engagement. More subjects need to be recruited to reach a

conclusion on the effect of component orientations on initial cam-post

engagement flexion angle. Other parameters that might also influence cam-post

engagement timing include the components' anteroposterior translation and

internal/external rotation relative to the bone during surgical implantation. These

parameters, however, are difficult to obtain in post-operative total knee

arthroplasty patients. A CT scan to determine the relative component positions

inside the knee joint is necessary to define the relevant parameters that may

affect the timing of the cam-post engagement.

Cam-post disengagement was observed in two knees in the U. S

population and 3 knees in the South Korean population. Generally, the

disengagement occurred between 1200 and 1350 of flexion. This phenomenon

was consistent with a previous in-vitro cadaveric study (Li, Most et al. 2004),

where consistent disengagement of the cam-post mechanism was observed

when the knee flexed beyond 1350 on a robotic testing system. An explanation
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for this phenomenon was that the compression of posterior soft tissue pushed

the tibia anteriorly and separated the femoral component from the tibial

component, thus causing disengagement of the cam-post mechanism. The

compression of posterior soft tissues may play an important role in knee joint

stability at high flexion angles.

There are some limitations to the current study. Only a single total knee

arthroplasty design was investigated. Also, the knee flexion was imaged in

discrete flexion angles. Therefore, the determined angles of cam-post

engagement did not represent the exact beginning of the cam-post contact.

Employing continuous imaging with the dual-orthogonal fluoroscopic imaging

system would allow more accurate determination of the cam-post engagement

angle. However, this would also increase the radiation dosage to the patients.

Another limitation is that the component positions and rotations were not known

relative to the tibial and femoral bones in 3 dimensions, so an accurate

explanation of the mechanism of cam-post contact timing is difficult to obtain.

Despite these potential limitations, our study provided the first quantitative data

on the in-vivo cam-post engagement timing during weightbearing flexion.

In conclusion, this study investigated the in-vivo kinematics and

cam-post engagement of a posterior substituting total knee arthroplasty in a U. S.

cohort and a South Korean cohort of patients. The South Korean patients had

significantly greater passive ROM, but no difference was detected in active ROM

between the populations. This suggests that muscle activity, especially in the

extensor mechanism, may play a significant role in limiting knee flexion. The
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kinematic data indicated that the cam-post did engage during in-vivo knee flexion

and that cam-post engagement affected the kinematics of the knee during

flexion. The timing of the cam-post engagement was suggested to have a mild

correlation with the maximal flexion angle of the knee. In the future, the factors

that affect cam-post engagement timing should be established in hopes of

improving the flexion capability of the knee after posterior substituting total knee

arthroplasty.
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Chapter 7. Distribution of
Maximum Flexion Following Total
Knee Arthroplasty

7.1 Introduction
Total knee arthroplasty has been a successful treatment for alleviating pain and

dysfunction resulting from severe cartilage degeneration (March, Cross et al. 1999;

Bachmeier, March et al. 2001; Mahomed, Liang et al. 2002). However, TKA patients

have not reached the same level of function as their peers (Finch, Walsh et al. 1998;

March, Cross et al. 1999; Mizner, Petterson et al. 2005; Noble, Gordon et al. 2005).

Achieving full range of flexion has been one of the major goals in total knee

arthroplasty. It has been reported that 50% or more of TKA patients participate in

activities such as kneeling and gardening or feel such activities are important but have

difficulty performing them (Weiss, Noble et al. 2002). Even though there are several

activities that require higher flexion (Laubenthal, Smidt et al. 1972; Szabo, Lovasz et al.

2000), it has been suggested that 1100 of flexion is an appropriate goal for

rehabilitation following TKA (Rowe, Myles et al. 2000).

Over the years, many studies have reported on the average maximum flexion

for various patient cohorts (Table 7.1) (Insall, Hood et al. 1983; Aglietti, Buzzi et al.

1988; Goldberg, Figgie et al. 1988; Lee, Keating et al. 1990; Rosenberg, Barden et al.

1990; Malkani, Rand et al. 1995; Anouchi, McShane et al. 1996; Emmerson, Moran et
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al. 1996; Ranawat, Luessenhop et al. 1997; Dennis, Komistek et al. 1998; Kawamura

and Bourne 2001; Bellemans, Banks et al. 2002; Banks, Bellemans et al. 2003; Kotani,

Yonekura et al. 2005; Matsumoto, Tsumura et al. 2005; Victor, Banks et al. 2005). The

average maximum flexion angle for TKA patients remains between 1000 and 115",

regardless of the type of components used. While the average maximal flexion is

getting close to meet the requirement of most daily activities, all these data have

showed either a large standard deviation or a wide range of the maximal flexion angles

existing among the patients. This indicated that half of the patients could flex beyond

the averaged maximal flexion angle, and the other half could not reach the averaged

maximal flexion angle and might not achieve the goal of rehabilitation. The distribution

of the maximal flexion angles of the patient population has not been investigated in

literature, even though numerous studies examining high flexion of the knee after TKA

have sought to correlate various surgical and kinematic factors with flexion (Parsley,

Engh et al. 1992; Harvey, Barry et al. 1993; Anouchi, McShane et al. 1996; Lizaur,

Marco et al. 1997; Schurman, Matityahu et al. 1998; Bellemans, Banks et al. 2002;

Kurosaka, Yoshiya et al. 2002; Matsumoto, Tsumura et al. 2005; Evans, Parsons et al.

2006). Information about the distribution of maximum flexion may be invaluable for

improving surgical technique for the purpose of enhancing knee flexion after TKA.

In this study we hypothesized that the maximal flexion angles of TKA

patients follow a normal distribution. Further, the averaged maximal flexion angle

cannot be used to represent the flexion capability of a patient cohort. The objective of

this study was to investigate the distribution of maximum flexion after TKA using

various cruciate retaining (CR) and posterior substituting (PS) designs. Knee scores
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were also analyzed to help assess the degree of functional limitation experienced by

patients with lower flexion.

Table 7.1: Reported Range of Motion for Various Types of Total Knee Designs
Authors Follow-Up Design No. of Knees Flexion

Crucitate-Sacrificing
Bhan, Malhotra et al. 2006 6 years LCS (Depuy) 32 105.6±7.70
Goldberg, Figgie et al. 1988 9 years Total Condylar 109 101' (15" - 115")
Insall, Hood et al. 1983 6.5 years Total Condylar 100 89* (no range)
Myles, Rowe et al. 2002 1.7 years LCS (Depuy) 42 96.9±13.20
Ranawat, Flynn et al. 1993 13.2 years Total Condylar 62 990 (65" - 120")

Cruciate-Substituting
Aglietti, Baldini et al. 2005 3 yrs LPS 107 1120(93" - 130")
Aglietti, Buzzi et al. 1988 5.5 years Insall-Burstein 73 960 (700 - 120")
Anouchi, McShane et al. 1996 2 years Advantim 86 107±100
Banks, Bellemans et al. 2003 1 year Duracon, Genesis 2, 29 121±80

Scorpio
Bhan, Malhotra et al. 2006 6 years IB-11 32 106.9±7.80
Capeci, Brown et al. 2006 2.8 yrs IB-II, LPS, LPS-Flex 506 (253 bilaterals) 115* (no SD or range)
Dennis, Komistek et al. 1998 Press-fitCondylar 20 1270

113* Active
Emmerson, Moran et al. 1996 12.7 years Kinematic Stabilizer 109 98±18' (25" - 130")
Gupta, Ranawat et al. 2006 1 yr PFC Sigma RP 50 1160 (90-130)

1 yr PFC Sigma RP-F 50 125" (105-150)
Early PFC Sigma RP 24 118°(95-140)
Early PFC Sigma RP-F 24 1280 (115-145)

Lee, Matsui et al. 2005 2.5 years P.F.C Sigma 18
Ranawat, Luessenhop et al. 1997 4.8 years Press-fitCondylar 125 1110 (75" - 135")
Ritter, Harty et al. 2003 7 years AGC 4727 113±12"
Teeny, York et al. 2005 1 yr PFC Sigma (mostly) 110 1180

*All flexion values are for passive flexion unless otherwise noted
Continued on next page
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Table 7.1 cont'd: Reported Range of Motion for Various Types of Total Knee Designs
Authors Follow-Up Design No. of Knees Flexion

Cruciate-Retaining
Aglietti, Baldini et al. 2005 3 yrs MBK 103 108"(75" - 130")
Banks, Bellemans et al. 2003 1 year Duracon, Foundation, 63 109±110

Genesis 2, Profix, Scorpio

Bellemans, Banks et al. 2002 2-5 years Profix 150 106±17"
Bertin, Komistek et al. 2002 CR, NexGen 20 1280
Bertin, 2005 5-7 years CR, NexGen 251 1230
Dennis, Clayton et al. 1992 11 years CruciateCondylar 42 104" (760 - 120")
Dennis, Komistek et al. 1998 Press-fitCondylar 20 123"

103" Active
Evans, Parsons et al. 2006 2 years PFC Sigma RP 97 116±15"(50-135)

2 years PFC Sigma FB 100 113±11'(85-140)
Leach, Reid et al. 2006 1 year PFC CRRP 55 1140
Lee, Keating et al. 1990 9 years CruciateCondylar 144 106* (no range)
Lee, Matsui et al. 2005 2.5 years P.F.C Sigma 18

Malkani, Rand et al. 1995 10 years KinematicCondylar 119 105±110
Moro-Oka, Muenchinger et al. 2006 6 yrs Natural-Knee, Zimmer 5 128 ° (120-140)

GmbH
107±9" lunge

109±130 kneeling
Rosenberg, Barden et al. 1990 3.5 years Miller-Galante 116 105 ° (45" - 1400)

Bi Cruciate-Retaining
Cloutier, Sabouret et al. 1999 10 years 107 107±12.60(65 - 135)
Moro-Oka, Muenchinger et al. 2006 6 yrs N2C, Zimmer GmbH 9 129' (120-135)

104±170 lunge
104±160 kneeling

Unspecified
Miner 1 yr 684 110.4±14.60

*All flexion values are for passive flexion unless otherwise noted

7.2 Methods

7.2.1 Patient recruitment

Fourty-six knees were randomly recruited among patients who underwent total

knee arthroplasty with various components. (15 NexGen CR, 14 NexGen CR-Flex, 12

NexGen LPS, 5 NexGen LPS-Flex, Zimmer Warsaw, IN). The study was IRB

approved from our institution, and informed consent was obtained from each patient

before testing. The cohort consisted of 13 females and 33 males and included 19 left
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knees and 27 right knees. The average age at the time of testing was 66.6±9.5 years,

the average weight was 201.2±37.8 Ibs, and the average height was 69.2±3.9 inches.

These patients were studied at a mean 15.1±10.3 months postoperatively.

7.2.2 TKA component and surgery

The NexGen CR implant is a posterior cruciate retaining design, and the

NexGen LPS is a posterior-substituting design. The LPS design has a more

conforming tibiofemoral articulation than the CR design. The Flex models of both the

CR and LPS designs have femoral components very similar to their conventional

models, but more bone is removed from the posterior condyle in order to improve the

articular contact in deep flexion (Li, Most et al. 2004; Most, Sultan et al. 2006). The

Flex models also have an anterior cutout in the polyethylene insert to reduce tension in

the patellar tendon during deep flexion. The intent of these design modifications was

not to induce greater flexion but rather to better accommodate greater flexion when the

patient is able to achieve it.

All surgeries were performed by two senior orthopaedic surgeons. A medial

arthrotomy was used in all knees. The femur was cut in 50 of valgus and 30 of external

rotation using intramedullary alignment and the epicondylar axis as a reference. The

posterior femoral condyles and Whiteside's line were used as secondary references.

The tibia was cut with a 70 posterior slope using extramedullary alignment. The tibial

plateau, the junction of the medial and middle thirds of the tibial tuberosity and visible

part of the tibial crest were used as references. Flexion and extension gaps, stability,

range of motion, and patellar tracking were assessed during trial reduction. In cruciate-
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retaining knees, PCL tension was assessed by manual palpation and by checking for

anterior lift-off of the tibial tray while flexing the knee. All knees received a metal-

backed tibial component and a resurfaced patella. The femoral, tibial, and patellar

components were cemented, and the extensor mechanism and skin were closed with

sutures in a standard fashion.

7.2.3 Measurement of ROM

Each patient performed a single leg lunge from full extension to maximum

flexion while being imaged by a dual fluoroscopic imaging system. The imaging

system consisted of two fluoroscopes placed in an orthogonal manner (Fig 7.1). Each

fluoroscope had a 12-inch diameter image intensifier and source-to-image distance of

Im (9800 series, GE Medical, Milwaukee, WI). Patients placed the knee of interest

within view of both fluoroscopes such that images were acquired from the

posteromedial and posterolateral directions. Beginning at full extension, patients

performed the lunge to 15, 30, 45, and so forth until they could not flex their knee any

further. Passive range of motion and Knee society scores were also recorded at the

same visit.

A virtual fluoroscopic imaging system was created in a 3D modeling software

(Rhinoceros). The fluoroscopic images were imported into the software and arranged

to mimic the relative orientation of the intensifiers during image acquisition. Virtual

cameras were placed to replicate the x-ray sources of the fluoroscopes. Both

fluoroscopic images could be viewed from its respective camera simultaneously. CAD

models of the implant components were obtained from the manufacturer and imported
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into the virtual imaging system. For each flexion angle, the femoral component and

tibial plate were manipulated independently in 6 degrees-of-freedom until their

silhouettes matched their contours on both fluoroscopic images. When the

components matched their image contours, the in-vivo position was reproduced. The

series of matched poses represented the in-vivo kinematics.

7.2.4 Data Analysis

Shapiro-Wilk's W test, the Jarque-Bera test, and Q-Q plots were used to assess

the normality of the distribution of maximum flexion angles. Differences between

groups was analyzed using ANOVA. Differences were considered significant when

p<0.05.
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Fig. 7.1 Dual Orthogonal Fluoroscopic System
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7.3 Results

7.3.1 Maximum Flexion

The CR patients reached an average maximum flexion angle of 110.1±13.40.

The maximum flexion for these patients ranged from 84.8* to 131.70. The CR-Flex

patients averaged a maximum flexion of 109.1±12.50 and ranged from 85.30 to 131.10.

The PS patients reached an average maximum flexion of 108.6±19.6" and ranged from

79.90 to 135.30, while the PS-Flex patients had a mean maximum flexion of

113.0±19.50, ranging from 90.20 to 129.10. There was no difference in maximum

flexion between component types.

When grouping all the knees together, the mean maximum flexion angle was

109.7±15.20 (Fig 7.2). Twenty-eight percent of all the knees reached maximum flexion

below 1000 with 11% not flexing past 900. Twenty-two percent of the knees reached

maximum flexion between 1000 and 1100, and 24% reached their maximum between

1100 and 1200. The remaining 26% were able to flex past 1200 with 9% flexing past

1300. The Shapiro-Wilk's test yielded a W value of 0.95, and the Jarque-Bera test

resulted in a JB statistic of 2.83, p=0.24. The QQ plot for the distribution of maximum

flexion is shown in Fig 7.3. None of these tests suggest that the distribution of

maximum flexion is not normally distributed.
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The average Knee score and functional score for all the knees was 89.5±12.6

and 85.4±13.6, respectively. The average knee score for the CR and CR-Flex knees

was 91.4±13.2 and 91.2±10.8, respectively. The average Functional score was

84.9±14.4 and 86.9±14.2, respectively. The average knee score for the PS and PS-

Flex knees was 86.2±15.9 and 87.3±7.3, while the average Functional score was

82.1±14.5 and 90.3±7.1, respectively. Knee score and Functional score did not vary

between component types, but there was a correlation between Knee score and

maximum flexion (r = 0.51, p = 0.001). No correlation was detected between

Functional score and maximum flexion.

7.3.2 Lift-Off at Maximum Flexion

Out of the 46 knees, 18 demonstrated lift-off in either compartment with a

maximum flexion of 117.5±13.0* and ROM of 124.9±15.90 (Table 7.2, Fig. 7.4). The

remaining 28 knees demonstrated a significantly lower flexion and ROM of 104.8±14.30

and 109.8±18.50, respectively. Knees that experienced lift-off in both the medial and

lateral compartments or in the medial compartment alone demonstrated greater

maximum flexion (122.5±8.30 and 120.4±13.9*, respectively) than knees with no lift-off

(p < 0.025). Knees with lift-off only in the lateral compartment did not achieve any

more flexion (112.7±15.20) than knees with no lift-off (p = 0.18). No difference was

detected in passive ROM between patients with lift-off and those without.
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Table 7.2: Lift-Off and Maximum Flexion
Lift-Off

Compartment Either Both Medial Lateral No Lift-Off

N 18 4 6 8 28
Max Flexion 117.5 ± 13.60 a 122.5 + 8.30 a 120.4 ± 13.90 a 112.7 ± 15.20 104.8 ± 14.30
Active ROM 124.9 ± 15.90 a 126.9 ± 8.20 126.5.1 ± 20.30 122.7 ± 16.70 109.8 ± 18.50
Passive ROM 120.0 ± 13.70 129.0 5.30 115.8.0 ± 20.20 119.8 ± 8.90 116.2 ± 12.40
a Significantly different from all patients without lift-off

Fig. 7.4. In-vivo position of a patient exhibiting lift-off





7.4 Discussion
The range of motion after TKA has been an important index for clinical success

of the surgery (Anouchi, McShane et al. 1996; Kawamura and Bourne 2001; Kim, Sohn

et al. 2005; Rowe, Myles et al. 2005). Numerous studies have investaged the flexion

capability of patients following TKA (Table 7.1). For example, Aglietti reported a mean

range of motion of 960 in 73 patients after 5 and half years of follow-up (Aglietti, Buzzi

et al. 1988). Lee et al reported that 144 knees had an average ROM of 1060 at a mean

of 9 years postoperatively (Lee, Keating et al. 1990). Malkani et al found a mean ROM

of 105±110 in 119 knees at 10 years postop (Malkani, Rand et al. 1995). Emmerson

reported that 109 knees had 98±180 at 12.7 years postop (Emmerson, Moran et al.

1996), and Anouchi et al reported that 86 knees had 107±100 of flexion at 2 years after

surgery (Anouchi, McShane et al. 1996). Ritter et al reviewed 4727 patients and found

a mean ROM of 113±120 at an average of 7 years postop (Ritter, Harty et al. 2003).

Rowe et al. reported on a group of TKA patients with mean ROM of 96.1±13.7* (Rowe,

Myles et al. 2005). Our data reported an averaged maximal flexion of 109.2±15.20,

which is similar to those reported in literature as shown in Table 7.1.

In general, the average maximum flexion of patients following TKA has

remained between 1000 and 1150 degrees independent of the types of the TKA

components used in these studies. This range of maximal flexion angles has been

accepted to be a satisfactory outcome of the TKA operations, even though a wide

range of knee flexion is required to perform several activities of daily living (Laubenthal,

Smidt et al. 1972; Rowe, Myles et al. 2000; Myles, Rowe et al. 2002). Rowe et al
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reported a mean ROM of 1380 in a group of healthy subjects with similar age to a

typical TKA population (Rowe, Myles et al. 2000). They also measured the amount of

knee flexion needed to perform several activities in the same group of subjects. They

found that it takes 800 to 1000 of flexion to navigate stairs, 90* to 100* of flexion to sit

and rise out of a chair, and 1200 to 1400 to get in and out of the bath tub.

This study evaluated a randomly recruited patient cohort, including patients

using both PS and CR TKA designs and found an average maximum flexion of 110 +

150. Both and mean and standard deviation of our data are very consistent with what

has been reported in the literature (Table 7.1). The mean maximum flexion reached

what has been deemed satisfactory, but almost a third of the patients could not flex

their knee passed 1000, and a little over 10% could not flex passed 900. Only about

25% of the patients could flex passed 1200. Some have questioned the use of ROM as

an indicator of patient function (Miner, Lingard et al. 2003; Mizner, Petterson et al.

2005). In the current study, the functional score was not found to be correlated with

maximum flexion, which also calls into question the importance of ROM. However,

when comparing the distribution of maximum flexion with the values reported by Rowe

et al, 10% to 20% of TKA patients would have difficulty managing stairs or getting up

from a chair, and 75% of patients would not be able to take a bath. This observation is

supported by reports of limited function in TKA patients compared to age-matched

healthy subjects (Finch, Walsh et al. 1998; March, Cross et al. 1999; Mizner, Petterson

et al. 2005; Noble, Gordon et al. 2005; Rossi, Hasson et al. 2006). On the other hand,

our analysis showed that a quarter of the patients could flex beyond 120* using current

TKA components. This implies that contemporary TKA design concepts might not be
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an obstacle for achieving high flexion in TKA patients. Instead, further investigation is

necessary to examine the specific features of the patients who could not flex beyond

the averaged maximal flexion. These data highlight the need to focus on giving

satisfactory maximum flexion to those with limited flexion as opposed to giving even

higher flexion to those with already high or satisfactory flexion.

A statistical analysis of the data indicates that maximum flexion values are

normally distributed. This suggests two possibilities. The first possibility is that the

factors that affect maximum flexion after TKA are being handled consistently, but the

precision necessary to allow all patients to reach high flexion is beyond the means of

the current techniques. This notion is similar to statements by Maloney and Schurman,

who concluded that it is difficult to correlate postoperative ROM to any factor because

so many factors may affect ROM (Maloney and Schurman 1992). The second

possibility is that there is an unrecognized or simply uncontrolled factor that

significantly affects maximum flexion, and the normal distribution of this factor leads to

a normal distribution in maximum flexion. The fact that various modifications to

contemporary TKA implants and techniques have not substantially increased maximum

flexion makes this second possibility seem more likely.

The answer to alleviating limited flexion probably lies in the soft tissue structures

remaining after TKA. This hypothesis is not new, but is motivated by several results

from the literature, the most apparent being the very fact that all the component

geometries and surgical techniques yield very similar results. The notion that

preoperative flexion predicts postoperative flexion implies that the structures that limit

flexion preoperatively are what limit flexion postoperatively. Several groups have
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reported a correlation between quadriceps length or strength and ROM (Matsumoto,

Tsumura et al. 2005; Mizner, Petterson et al. 2005). Studies have also warned that

overstuffing the knee can limit ROM (Laskin and Beksac 2004; Argenson, Scuderi et al.

2005; Mihalko, Fishkin et al. 2006).

In the current study, patients with lift-off had greater flexion than those without

lift-off. One explanation involves the extensor mechanism. A tight extensor

mechanism may prevent lift-off and may also limit flexion. Accordingly, the presence of

lift-off would indicate a more lax extensor mechanism, which would allow more flexion.

This is very convenient and reasonable interpretation for the active flexion data, but it

does not work as well when considering the passive ROM. Presuming the extensor

mechanism is more lax in the passive state than when it is active, we would expect to

see passive ROM that is greater than active ROM. However, there was no difference

between passive and active ROM in these patients. Besides the extensor mechanism,

other soft tissues, such as the posterior cruciate ligament (PCL) or the medial collateral

ligament (MCL) may also affect lift-off and flexion. A tight PCL or MCL could result in a

stiff knee and limit the possibility of lift-off. Tibial slope could also have an impact on

lift-off, greater posterior slope increasing the likelihood of lift-off. It is important to note

that the observation of lift-off in patients with greater flexion does not necessarily

indicate a casual relationship. The occurrence of lift-off could be a consequence of

high flexion rather than an indicator or requirement for high flexion.

All of these factors point to soft tissues determining flexion after TKA, but there

has been very little investigation into how the soft tissue around the knee affects

maximum flexion, especially in the native knee. In an in-vitro study, Li et al found that
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the knee was very constrained at high flexion, but the contribution of the various

structures around the knee was not discussed (Li, Zayontz et al. 2004). There is also a

lack of information regarding the change in the structure of the knee from pre- to post-

surgery and how this change affects maximum flexion. Kawamura et al found a 3mm

elevation of the joint line and no change in the length of the patellar tendon before and

after TKA based on standing radiographs (Kawamura and Bourne 2001). They did not

discuss, however, any relationship between the joint line elevation and the function of

the knee. At least part of the reason for this lack of information on these topics is a

lack of tools that would enable researchers to explore them.

In conclusion, this study found that even when the averaged data seems

satisfactory, a significant number of patients may still be limited in their function. This

suggests that it may be more appropriate to report the data in separate groups,

perhaps those with flexion above the mean and those with flexion below the mean.

Further investigation is necessary to analyze the biomechanical factors that may be

different between the patients having flexion capability below or above the mean

flexion angle. The key to alleviating limited flexion may rest in the structures around the

knee as opposed to the implant itself. Such an investigation may lead to future

improvements in TKA that help patients with the most limited flexion achieve greater

flexion.
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Chapter 8. Initial Investigation
of In-vivo Stress Distribution
within the Polyethylene Tibial
Insert

8.1 Introduction
Wear of the polyethylene tibial insert has been reported as one of the

leading causes for revision of total knee arthroplasty (Hood, Wright et al. 1983;

Bohl, Bohl et al. 1999; NIH 2000; Harman, Banks et al. 2001; Banks, Harman et

al. 2002; Berzins, Jacobs et al. 2002; Sharkey, Hozack et al. 2002; NIH 2003;

Vince 2003; Clarke, Math et al. 2004; Huddleston, Wiley et al. 2005; Morgan,

Battista et al. 2005; Wright 2005). Currently, in-vivo wear data can only be

obtained from retrieved components (Engh, Dwyer et al. 1992; Lewis, Rorabeck

et al. 1994; Wasielewski, Galante et al. 1994; Blunn, Joshi et al. 1997; Wimmer,

Andriacchi et al. 1998; Harman, Banks et al. 2001; Currier, Bill et al. 2005;

Harman, Banks et al. 2007). Wear test machines have been used to analyze

tibiofemoral wear patterns, but these methods have relied on estimates of in-vivo

conditions (Blunn, Walker et al. 1991; Burgess, Kolar et al. 1997; Walker, Blunn

et al. 1997; Ash, Burgess et al. 2000; DesJardins, Walker et al. 2000; Benson,
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DesJardins et al. 2002; Andriacchi, Dyrby et al. 2003; Laz, Pal et al. 2006;

Rawlinson, Furman et al. 2006).

Several models of wear have been developed that use in-vivo data

acquired by various means as input (Fregly, Sawyer et al. 2005; Laz, Pal et al.

2006; Rawlinson, Furman et al. 2006). The analyses that have used in-vivo data

have typically obtained used that data to constrain some of the DOF in the

model, while other DOF were left free or constrained by data from a different

source. Retrieval studies have noted a large amount of variability in the

observed wear patterns, suggesting that a patient specific approach may be

more suitable for assessing in-vivo wear (Blunn, Joshi et al. 1997; Currier, Bill et

al. 2005). Previous authors have suggested using a bi-plane, model matching

technique to estimate in-vivo wear by measuring the penetration of the femoral

component into the polyethylene surface (Kellett, Short et al. 2004; Gill, Waite et

al. 2006Short, 2005 #266). The methodology presented in those studies,

however, only allowed for the analysis of the knee in a standing position rather

than during functional activities.

The ability to measure contact mechanics in-vivo would be very useful in

improving TKA designs with regards to diminishing polyethylene wear. This work

investigates the feasibility of using in-vivo kinematics obtained using Dual

Fluoroscopy to drive finite element analysis of polyethylene insert with the goal of

using this methodology to calculate the stress in the insert. First, a validation of

the contact area calculation is performed followed by some preliminary estimates

of the polyethylene stresses in 10 cruciate-retaining TKA patients.
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8.2 Methods

8.2.1 Validation of Contact Area Measurement

One fresh frozen cadaver knee specimen was used in the validation. The

specimen consisted of all the bone and soft tissue 25 cm above and below the

joint line. The specimen was allowed to thaw overnight at room temperature.

The bone ends were stripped of soft tissue and potted in bone cement while the

tissue around the joint was left intact. A CR TKA (NexGen, Zimmer, Warsaw, IN)

was implanted into the knee by an orthopaedic surgeon. The specimen was

installed in a robotic system by rigidly fixing one bone to a pedestal and attaching

the other bone to the end effector of a 6 degree-of-freedom (DOF) robot (UZ150,

Kawasaki Heavy Industry, Japan) through a 6 DOF load cell (JR3 Inc., Woodland

CA, Fig. 8.1). The robot was used to apply a 400N compressive load through the

knee and determine the equilibrium of the knee under the compressive load

(Most 2000; Suggs, Li et al. 2006).

After the knee position under the compressive load was recorded, the soft

tissue was dissected in a manner that allowed the tissue to be wrapped around

the knee. The bones were then separated to allow easy access to the

articulating surfaces. A fast setting silicone rubber ("Quick-Set" RTV Silicone

mold-making rubber Base, Alumilite Corp., Kalamazoo, MI; Dow Corning 4

Catalyst, Dow Corning Corp., Midland, MI) was applied to the articular surfaces,

and the bones were returned to their position under the 400N compressive load

(Fig 8.2). Dual fluoroscopic images were acquired simultaneously using two
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fluoroscopes placed orthogonally to each other (Li, Suggs et al. 2006). After the

silicone rubber set, the bones were again displaced to allow access to the

articular surfaces. The area where the silicone had been displaced by contact

between the polyethylene and the femoral component was outlined using a

three-dimensional digitizing stylus (MicroScribe-3DX, Immersion Corporation,

CA) (Fig. 8.3). CAD models were matched to the fluoroscopic images, and the

resulting contact areas were compared to the digitized area.
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Fig. 8.1 A cadaver knee specimen installed on the Robotic testing system
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Fig. 8.2 Knee specimen under load. After the Silicone set, the soft-tissue was
repositioned around the knee and fluoroscopic images were taken.
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Fig. 8.3 The MicroScribe three-dimensional digitizer
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The Dual Fluoroscopic imaging system was recreated in a three-

dimensional modeling program (Rhinoceros@, Robert McNeel & Associates,

Seattle, WA) (Li, Suggs et al. 2006). The image from each fluoroscope was then

placed at the calculated intensifier location. Three dimensional computer aided

design (CAD) models of the TKA components were then imported into the

modeling program and matched to the fluoroscopic images in the manner

discussed in Chapter 3 (Fig. 8.4). The contact area was then estimated by

measuring the area of the intersection between the models of the femoral and

polyethylene components. This matching process and contact area estimation

was performed ten times. These estimates of the contact area were then

compared to the digitized contact area denoted by the silicone rubber.

8.2.2 Estimation of In-vivo Polyethylene Stress

One patient performed a weight-bearing flexion activity with the knee of

interest within the view of two fluoroscopes placed in an orthogonal manner [2].

The fluoroscopes captured images of the knee simultaneously as the patient

flexed their knee to 00, 300, 90", 120*, and maximum flexion. The fluoroscopic

images were then imported into a solid modeling software (Rhinoceros, Robert

McNeel & Associates, Seattle, WA) and oriented to mimic the relative positions of

the fluoroscopes during image acquisition. The x-ray source of each fluoroscope

was represented by a camera within the modeling software. 3D CAD models of

the metal implants were then imported and, while viewing each fluoroscopic

image from its respective camera, the models were positioned so their profiles
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matched their contours on the images. The matching process was performed at

each flexion angle to reproduce the in-vivo knee position (Fig 8.4).

The matched models were then imported into a finite element software

(ABAQUS, ABAQUS, Inc., Providence, RI). The femur was modeled as rigid.

The polyethylene was modeled as elastoplastic based on data used by Huang et

al with a modulus of 880 MPa and Poisson's ratio of 0.46 (Huang, Liau et al.

2007). The coefficient of friction between the femur and polyethylene was 0.04.

For the analysis of each pose, the femur was initially moved normal to the base

of the polyethylene such that the femur was just out of contact with the

polyethylene. The femur was then returned to its matched in-vivo position. The

contact area, contact force, and peak stress were calculated for the medial and

lateral tibial plateaus at each pose.

8.3 Results

8.3.1 Validation of Contact Area Measurement

In the cadaver knee, the contact area obtained from digitizing the silicone

rubber was 34.8 mm2 (Fig 8.5A). The average area obtained using the dual

fluoroscopic technique was 29.6±3.1 mm2 (Fig 8.5B). Validation results are

listed in Table 8.1.
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Fig. 8.4 Virtual replication of the Dual Fluoroscopic System

A R

Fig. 8.5 A) View of silicone rubber and B) comparison of contact area from digitization
(blue) and fluoroscopic analysis (red).
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Table 8.1: Area Measurements using the Image Matching Technique

Area(mm 2) Error(mm 2)
Digitized 34.8 -

Match
1 26.4 -8.5
2 28.3 -6.5
3 27.5 -7.4
4 25.3 -9.5
5 30.1 -4.7
6 31.0 -3.8
7 31.5 -3.4
8 32.3 -2.5
9 28.3 -6.5
10 35.7 0.9
Avg 29.6 -5.2
STD 3.1

8.3.2 Estimation of In-vivo Polyethylene Stress

In the TKA patient, The contact area on the medial side decreased with

flexion, going from 250 mm 2 at full extension to about 20 mm2 at 90" through

maximum flexion (1310) (Fig 8.6). The contact area on the lateral side varied

between 25 and 80mm 2 throughout the flexion range. The maximum penetration

of the medial condyle into the polyethylene decreased from 0.45 mm at 00 to 0.18

mm at 300 and varied between 0.03 and 0.18 mm through the rest of flexion (Fig.

8.7). The penetration on the lateral side ranged from 0.08 to 0.23 mm. The

medial contact force decreased from 12.5 BW at full extension to about 0.4 BW

at 900 and 1200 (Fig 8.8). At maximum flexion, the medial contact force was 0.8

BW. On the lateral side, contact force varied between 0.5 and 2.9 BW from full

extension to 900 of flexion. The lateral contact force was 1.0 BW at maximum
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flexion. The peak medial stress was 27 MPa at full extension, decreased to 5

MPa at 900, and increased to 25 MPa at maximum flexion (Fig 8.9). The lateral

peak stress was between 8 and 16 MPa from full extension to 90Q. The lateral

peak stress was 20 MPa and 30 MPa at 120" and maximum flexion.
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8.4 Discussion
While one study did not find polyethylene wear to be a problem in total

knee arthroplasty, most studies report polyethylene wear to be a major cause of

revision after TKA (Hood, Wright et al. 1983; Feng, Stulberg et al. 1994; Bohl,

Bohl et al. 1999; NIH 2000; Harman, Banks et al. 2001; Banks, Harman et al.

2002; Berzins, Jacobs et al. 2002; NIH 2003; Vince 2003; Clarke, Math et al.

2004; Huddleston, Wiley et al. 2005; Morgan, Battista et al. 2005; Wright 2005).

Feng et al reported that over 10% of knees failed due to polyethylene wear

(Feng, Stulberg et al. 1994). Retrieval studies have provided most of our

information on the modes of polyethylene wear (Engh, Dwyer et al. 1992; Lewis,

Rorabeck et al. 1994; Wasielewski, Galante et al. 1994; Blunn, Joshi et al. 1997;

Wimmer, Andriacchi et al. 1998; Harman, Banks et al. 2001; Currier, Bill et al.

2005; Harman, Banks et al. 2007). Blunn et al examined 280 unicondylar and

total knee arthroplasties and found that delamination was the dominant mode of

wear (Blunn, Joshi et al. 1997). Currier et al. reported that the medial

compartment experienced more wear then the lateral side (Currier, Bill et al.

2005). While retrieval studies offer valuable information on wear, they do not

provide causative factors of wear (Rawlinson, Furman et al. 2006). It has been

reported that sliding produces more wear than rolling (Blunn, Walker et al. 1991).

Researchers have noted varying patterns of wear in retrievals (Blunn, Joshi et al.

1997; Currier, Bill et al. 2005) and have concluded that knee kinematics affect
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wear (Blunn, Walker et al. 1991; D'Lima, Hermida et al. 2001). These facts point

to the need to examine wear on a patient specific basis.

The dual fluoroscopic imaging system was shown to be accurate in

determining contact area and position. Further, the use of TKA kinematics

obtained from dual fluoroscopy as displacement boundary conditions generally

produced reasonable results. The observation that the contact area decreased

with flexion is consistent with the fact that the tibiofemoral articular surfaces are

the most conforming at full extension. It is interesting to note that at maximum

flexion, the stresses were high even though forces were relatively low. This is

due to the small contact area resulting from the posterior tips of the femoral

component articulating with the polyethylene. This analysis did not account for

any wear to the patient's polyethylene insert, which may have resulted in an

overestimation of the stresses.

The dual fluoroscopic imaging system shows promise for analyzing the

polyethylene stresses on a patient specific basis. As further validation, patients

with instrumented implants have been imaged using a dynamic version of the

dual fluoroscopic imaging system. Patients were imaged while performing step

up/down, chair rise/sit, gait, and leg extension activities in addition to the single-

leg lunge motion. The next steps in this methodology will include hyperelastic

behavior, creep, and cyclic loading in the constitutive model and will utilize

probabilistic methods to analyze the effect of kinematic errors on the finite

element results. In future work, the calculated polyethylene stresses will be used
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to predict in-vivo wear with the goal of improving TKA design to better resist

polyethylene wear.
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Chapter 9. Conclusions

9.1 Summary
This writing completes work that has been conducted over the past 3

years and has been focused on measuring in-vivo knee kinematics after total

knee arthroplasty. In Chapter 3, the methodology behind the Dual Fluoroscopic

Imaging System is presented. The system was shown to be repeatable and

accurate in determining the pose of the TKA components in all degrees of

freedom. Having acceptable accuracy in all degrees of freedom is the advantage

of this system over single-plane fluoroscopy. The importance of this advantage

was demonstrated in a study of patients with anterior cruciate ligament (ACL)

deficiency (Defrate, Papannagari et al. 2006; Li, Moses et al. 2006). When

comparing the ACL deficient patients to healthy subjects, the ACL deficient

knees demonstrated an expected increase in anterior tibial translation and

internal tibial rotation. In addition, they also exhibited a small but consistent

medial tibial translation (approximately 1mm), which induced an abnormal

impingement between the media tibial spine and the lateral wall of the medial

femoral condyle. The location of this abnormal contact is where ACL injured

patients often develop osteoarthritis. Had this investigation been performed with

single-plane fluoroscopy, the small medial tibial translation would have been

missed due to the lack of accuracy in the out-of-plane direction.
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In Chapter 4, the tibiofemoral kinematics of conventional cruciate-retaining

TKA patients were measured. In Chapter 5, the kinematics of knees with a high

flexion cruciate-retaining TKA were compared to the kinematics of knees with

conventional cruciate-retaining TKA. No differences were detected between the

high flexion and conventional designs in kinematics or maximum flexion. In the

patients that reached 1300, there seemed to be a more conforming articulation in

the high flexion design.

In Chapter 6, the Dual Fluoroscopic Imaging System was used to

investigate the in-vivo function of posterior-stabilized total knee arthroplasty.

Results from an Asian population were compared to a Western cohort. The

passive range of motion of the Asian patients was significantly greater than that

of the Western patients. However, no differences were detected between the

Asian and Western patients during a weight-bearing single-leg lunge, including

active range of motion and knee kinematics. This suggests that a large passive

range of motion does not guarantee the availability of that range of motion for

functional activities. The reduced active range of motion in the Asian patients

compared to their passive range of motion indicates a significant role of the

extensor mechanism in limiting flexion. More analysis is necessary to determine

the differences between Asian and Western patients and between passive and

active function.

That study also investigated cam-post engagement in posterior-stabilized

TKA. Engagement did induce posterior femoral translation, but it also reduced

internal tibial rotation. The timing of cam-post engagement was mildly correlated
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with maximum flexion. Knees with cam-post engagement later in flexion tended

to achieve greater maximum flexion. If the factors that affect the timing of cam-

post engagement can be established, manipulation of these factors may provide

greater maximum flexion.

Chapter 7 assesses the distribution of the maximum flexion of the all the

patients imaged in the previous chapters. The mean maximum flexion of these

patients was very consistent with what has been published in the literature. No

factors, such as age, weight, height, retention or substitution of the PCL, or use

of high flexion designs, had an affect on maximum flexion. Based on the

distribution of maximum flexion and reported levels of flexion necessary for

various activities of daily living, a substantial portion of TKA patients will have

difficulty performing these activities. This is consistent with studies that have

found that while TKA significantly improves quality of life for patients, it does not

return quality of life to normal levels. Improvements in TKA should be focused on

helping patients with limited flexion.

In Chapter 8, the feasibility of using the kinematics from Dual Fluoroscopy

as boundary conditions for finite element analysis of the polyethylene articular

surface. This methodology produced reasonable results. At maximum flexion,

the forces through the knee were low, but the stresses were high because the

contact area was also low. A very simple constitutive model was used in this

analysis and there was no accounting for any wear to the patient's polyethylene

insert. These issues will be addressed in future work.
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9.2 Future Steps
No factors were indicated as limiting flexion in the current data set.

However, aspects of the data both in this study and in the literature suggest soft

tissue structures, especially the extensor mechanism, may be responsible for

determining maximum flexion. To further understand the interaction between

TKA and the soft tissue around the knee, we have started analyzing patients

before and after surgery. Patients first undergo magnetic resonance (MR)

imaging and then perform functional activities while being dynamically imaged

with the dual fluoroscopic system. The data from the MR scan will be used to

build a three dimensional model of the patients femur and tibia, which will then be

matched to the fluoroscopic images (DeFrate, Sun et al. 2004). Six months after

surgery, patients will be imaged fluoroscopically while performing the same

activities. The MR bone models and CAD models of the TKA components will

then be matched to the fluoroscopic images. This technique can be used to

investigate the change in the structure of the knee from the preoperative to

postoperative state. This information will provide insight into the

interdependence between TKA geometry and surgical technique and the

remaining soft tissues around the knee joint.

One of the goals of the Bioengineer Lab is to develop a computational

model that can be used to predict in-vivo wear of the polyethylene insert. While

the results discussed in Chapter 8 are very promising, more validation is

necessary. In that vain, 3 patients with an instrumented tibia have been imaged

using an improved Dual Fluoroscopic Imaging System (D'Lima, Patil et al. 2005).
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The improved system is capable of imaging patients at 30 frames/second. The

patients were imaged dynamically performing the single-leg lunge along with step

up/down, chair rise/sit, gait, and leg extension activities. The kinematics of the

knee will be determined and used to calculate the forces through the knee

through finite element analysis. The forces calculated from fluoroscopy will be

compared to the forces recorded by the load cell in the instrumented tibia. The

finite element analysis will utilize a hyperelastic constitutive model. While it

would be very difficult to account for polyethylene wear already present at the

time of imaging, the constitutive model should be able to represent plastic

deformation. This method will provide valuable information about the in-vivo

progression of wear in the polyethylene insert.
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Appendix A. Distortion
Correction

All radiographic images can suffer from distortion due to electromagnetic

fields. Fluoroscopes are very useful in that they produce quality images at an

order of magnitude smaller radiation dosage than standard x-ray devices.

However, this benefit comes at the cost of added distortion in the image. While

the distortion produced in contemporary fluoroscopes is often negligible in a

clinical setting, it can be quite deleterious in a research setting. In order to

correct the image distortion, an image of an object with markers in known relative

locations can be acquired (Fig A.1A). Then, after identifying the markers on the

image, a mathematical algorithm can be used to distort the image, moving the

markers into to correct relative geometry and, thus, correcting the distortion that

occurred during imaging process (Fig A.1 B).
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Fig. A.1 A)Original and B)corrected images of the calibration plate
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There are many mathematical techniques available in the literature, but

the global correction technique proposed by Gronenschild is robust and easy to

implement (Gronenschild, 1997;Gronenschild, 1999). In this technique, two

binomials are used to map the distorted points to the correct location. The

following Mathematica code implements Gronenschild's global technique to

correct distortion for one fluoroscope referred to as "XZ". This initial code

actually performs the correction on points segmented in the image as opposed to

the image itself. Executable code is in bold.

A.1 Read distorted XZ calibration data
and sort
Check that calibration file exists.

Clear[fileexist];
fileexist = FileNames[calfileXZ<>centersuff<>calfileextXZ,caldir];
If[Length[fileexist] 0L 1,

Input[caldir<>"\\"<>calfileXZ<>centersuff<>calfileextXZ<>" does not exist.
Enter any character."];

Interrupt[],,
Input[caldir<>"\\"<>calfileXZ<>centersuff<>calfileextXZ<>" does not exist.

Enter any character."];
Interrupt[]

Read distorted center hole and distorted zerotheta hole

opencenterXZ = OpenRead[caldir<>calfileXZ<>centersuff<>calfileextXZ];
distcenterXZ = Read[opencenterXZ,{Number,Number,Number)];
Close[opencenterXZ];
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openzeroXZ = OpenRead[caldir<>calfileXZ<>zerosuff<>calfileextXZ];
distzeroXZ = Read[openzeroXZ,{Number,Number,Number}];

Close[openzeroXZ];

distangleXZ=ArcTan[distzeroXZ[[qXZ]]-
distcenterXZ[[qXZ]],distzeroXZ[[rXZ]]-distcenterXZ[[rXZ]]]

Read distorted points, calculated coordinates when zero theta is rotated to

horizontal, then sort distorted points. I'll start by making an array to hold the

distorted points data. There will be 10 columns as follows:

column 1 to 3 are the raw distorted coordinates,

column 4 is the radius of the point (distance from center point),

column 5 is the level,

column 6 is the angle relative to zero theta in radians,

column 7 is the modified angle based on angle tolerances in radians,

column 8 is the modified angle in degrees

column 9 is the x-coordinate in the plate coordinate system having the center

hole as the origin and the zerotheta hole denoting the positive x-axis. The x-y

plane of this coordinate system is in the plane of the image.

column 10 is the y-coordinate in the plate coordinate system.

Clear[usdistcalptsXZ,usdistcalptselemXZ];
opendistXZ = OpenRead[caldir<>calfileXZ<>allsuff<>calfileextXZ];

For[p=1,p<ncalptsXZ+1 ,p++,

For[t=1 ,t<4,t++,usdistcalptselemXZ[p,t]=Read[opendistXZ,Number]];
usdistcalptselemXZ[p,4]=Sqrt[Sum[(usdistcalptselemXZ[p,t]-

distcenterXZ[[t]])A2,{t,3}]];
usdistcalptselemXZ[p,6]=

If[{usdistcalptselemXZ[p,1],usdistcalptselemXZ[p,2],usdistcalptselemXZ[p,

3])}distcenterXZ,ArcTan[usdistcalptselemXZ[p,qXZ]-
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distcenterXZ[[qXZ]],usdistcalptselemXZ[p,rXZ]-distcenterXZ[[rXZ]]]-

distangleXZ,0.

1;
usdistcalptselemXZ[p,7]=

If[Abs[usdistcalptselemXZ[p,6]]<angletolXZ,0.,

If[usdistcalptselemXZ[p,6]<O.,usdistcalptselemXZ[p,6]+2.*Pi,usdistcalptsele

mXZ[p,6]]

1;
usdistcalptselemXZ[p,8]=usdistcalptselemXZ[p,7]*180/Pi;

usdistcalptselemXZ[p,9]=usdistcalptselemXZ[p,qXZ]*Cos[distangleXZ]+usd
istcalptselemXZ[p,rXZ]*Sin[distangleXZ];

usdistcalptselemXZ[p,10]=-

usdistcalptselemXZ[p,qXZ]*Sin[distangleXZ]+usdistcalptselemXZ[p,rXZ]*C

os[distangleXZ];

usdistcalptsXZ=Array[usdistcalptselemXZ,(ncalptsXZ,10)];

Make an extra attempt to read from the file, close the file, and check if the file

was read properly. Error message is produced if the IF statement is False or

Null.

checkdistreadXZ = Read[opendistXZ,Number];

Close[opendistXZ];
If[usdistcalptselemXZ[ncalptsXZ,3] [ Reals &&
checkdistreadXZ oEndOfFile,,

Input["Error reading XZ calibration file\n\nLast number
read\n"<>ToString[usdistcalptselemXZ[ncalptsXZ,3]]<>"nln Extra attempt
to read\n"<>ToString[checkdistreadXZ]<>"\n\nEnter any character, then
click Abort"];

Interrupt[],

215



Input["Error reading XZ calibration file\n\nLast number

read\n"<>ToStri ng[usdistcalptselemXZ[ncalptsXZ,3]]<>"\n\n Extra attempt
to read\n"<>ToString[checkdistreadXZ]<>"\n\nEnter any character, then
click Abort"];

Interrupt[] ];

If the pattern is rectangular, sort by y-coordinate (column 10) and add level labels

to column 5. Then sort by level and x-coordinate (column 9).

If the pattern is radial, sort by radius (column 4) and add level labels to column 5.

Then sort by level then modified angle (column 7) where appropriate.

If[patterntype==1,sortcoll=10; sortcol2=9;]
If[patterntype==2,sortcoll=4; sortcol2=7;]

srdistcalptsXZ=Sort[usdistcalptsXZ,OrderedQ[{Take[#1 ,(sortcoll }],Take[#2,

(sortcoll}]}]&];
lev=l;

For[p=1,p<ncalptsXZ+1 ,p++,

While[p>Sum[ptspresXZ[[t]],{t,lev}],lev++];
srdistcalptsXZ[[p,5]]=lev;

distcalptsXZ=Sort[srdistcalptsXZ,OrderedQ[{Take[#1 ,{5,sortcol2,sortcol2-

5}],Take[#2,{5,sortcol2,sortcol2-5}]}]&];

A.2 Create true points and adjust them
Clear[angleint,angleintelem,truecalptsXZ,truecalptselemXZ];
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Create an array for the raw true points and place them in their initial position.
Rectangular patterns are assumed to have equal spacing in the x and y
directions.

If[patterntype==l && plate * 1 && plate * 2 && plate * 5,
opentruecalptsXZ = OpenRead[caldir<>calfileXZ<>"truepoints.txt"];

For[p=l,p<ncalptsXZ+l,p++,

truecalptselemXZ[p,I ]=Read[opentruecalptsXZ,Number];

truecalptselemXZ[p,2]=Read[opentruecalptsXZ,Number];

truecalptselemXZ[p,3]=Read[opentruecalptsXZ, Number];

I
Close[opentruecalptsXZ];

I
If[patterntype==2 1i plate == 1 II plate ==2 11 plate ==5,

For[t=1 ,t<nlevels+ ,t++,

angleintelem[t]=If[ptspresXZ[[t]] D0,2. Pi/ptspresXZ[[t]],0]

];
If[plate == 1 && ptspresXZ[[12]]==71,angleintelem[12] = 2. Pi/72];
angleint=Array[angleintelem,nlevels];

For[p=l,p<ncalptsXZ+l,p++,

lev=distcalptsXZ[[p,5]];

truecalptselemXZ[p,qXZ]=Cos[angleint[[lev]]*(p-

Sum[ptspresXZ[[t]],{t,lev}]+ptspresXZ[[lev]]-1)]*levelvalue[[Iev]];

truecalptselemXZ[p,rXZ]=Sin[angleint[[Iev]]*(p-

Sum[ptspresXZ[[t]],{t,lev}]+ptspresXZ[[lev]]-1 )]*levelvalue[[lev]];

truecalptselemXZ[p,sXZ]=distcalptsXZ[[p,sXZ]];

truecalptsXZ=Array[truecalptselemXZ,{ncalptsXZ,3}];
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Adjust true points so true center coincides with distorted center and true zero-
theta lines up with distorted zero-theta.

For[p=l,p<ncalptsXZ+1,p++,

adjcalptselemXZ[p,qXZ]=Cos[distangleXZ]*truecalptsXZ[[p,qXZ]]-
Sin[distangleXZ]*truecalptsXZ[[p,rXZ]]+distcenterXZ[[qXZ]];

adjcalptselemXZ[p,rXZ]=Sin[distangleXZ]*truecalptsXZ[[p,qXZ]]+Cos[distan
gleXZ]*truecalptsXZ[[p,rXZ]]+distcenterXZ[[rXZ]];

adjcalptselemXZ[p,sXZ]=truecalptsXZ[[p,sXZ]];

I
adjcalptsXZ=Array[adjcalptselemXZ,{ncalptsXZ,3}];

A.3 Set up equations, Find Polynomials
and corrected points for XZ
Make lists to be used in solving for the coefficients of the correction polynomials

for X and Y.

Clear[g,h,u,v]
For[p=1 ,p<ncalptsXZ+1 ,p++,

Qfitpts[p,1]=distcalptsXZ[[p,qXZ]];
Qfitpts[p,2]=distcalptsXZ[[p,rXZ]];

Qfitpts[p,3]=adjcalptsXZ[[p,qXZ]];

Rfitpts[p,1]=distcalptsXZ[[p,qXZ]];
Rfitpts[p,2]=distcalptsXZ[[p,rXZ]];
Rfitpts[p,3]=adjcalptsXZ[[p,rXZ]];

Q
Qfitarray=Array[Qfitpts,{ncalptsXZ,3}];

RfitarrayArray[RfitptsolyncalptsXZ,3}];
Set up the terms in the polynomials
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Qt=l;

For[g=0,g<QporderXZ+1 ,g++,
For[h=0O,h<g+l,h++,

Qterm[Qt]=u^A(g-h)*v^h;

Qt=Qt+1;

Qtermarray = Array[Qterm,Sum[k,(k,QporderXZ+1 }]];

Rt=l;

For[g=O,g<RporderXZ+1 ,g++,

For[h=0,h<g+l,h++,
Rterm[Rt]=uA(g-h)*v^h;
Rt=Rt+1;

Rtermarray = Array[Rterm,Sum[k,{k,RporderXZ+1 )]];
Qtermarray

{1, U, V, , U2 , UV, U3, U2 V, U 2, 3

Find Polynomials for correction without and with manual rotation.

QpolyXZ[u_,v_]=Fit[Qfitarray,Qtermarray,{u,v}];

RpolyXZ[u_,v_]=Fit[Rfitarray,Rtermarray,{u,v}];

corrcenthole[qXZ] = QpolyXZ[distcenterXZ[[qXZj]distcenterXZ[[rXZ]]];
corrcenthole[rXZ] = RpolyXZ[distcenterXZ[[qXZ]],distcenterXZ[[rXZ]]];

QpolyrotXZ[u_,v_]=(QpolyXZ[u,v]-
corrcenthole[qXZ])*Cos[manalpharadXZ]+(RpolyXZ[u,v]-
corrcenthole[rXZ])*(-Sin[manalpharadXZ])+corrcenthole[qXZ];

RpolyrotXZ[u_,vJ=(QpolyXZ[u,v]-
corrcenthole[qXZ])*Sin[manalpharadXZ]+(RpolyXZ[u,v]-
corrcenthole[rXZ])*Cos[manalpharadXZ]+corrcenthole[rXZ];
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The first set of corrected points are the obtained using only the correction

polynomials. The second set have a rigid body rotation adjustment.

For[p=l,p<ncalptsXZ+1,p++,
corrcalptsXZ[p,qXZ]=QpolyXZ[distcalptsXZ[[p,qXZ]],distcalptsXZ[[p,rXZ]]];
corrcalptsXZ[p,rXZ]=RpolyXZ[distcalptsXZ[[p,qXZ]],distcalptsXZ[[p,rXZ]]];
corrcalptsXZ[p,sXZ]=distcalptsXZ[[p,sXZ]];

corrrotcalptsXZ[p,qXZ]=QpolyrotXZ[distcalptsXZ[[p,qXZ]],distcalptsXZ[[p,r

XZ]]];

corrrotcalptsXZ[p,rXZ]=RpolyrotXZ[distcalptsXZ[[p,qXZ]],distcalptsXZ[[p,rX

z]]];
corrrotcalptsXZ[p,sXZ]=distcalptsXZ[[p,sXZ]];

A.4 Calculate error for XZ
Calculate the RMS and average error of distorted positions of calibration points.

distrmserror = Sqrt[Sum[(dIstcalptsXZ[[p, cXZJ - a4calptsXZ[p, qXZ]) 2 +

(distcalptsXZ[[p, rXZ]] - acalptsXZ[[p, rXZ]) 2,
(p, ncalptsXZ] / ncalptsXZ]

distavgerror = Sum[Sqrt[(distcalptsXZ[[p, qXZJI - a4calptsXZ[[p, qXZJ) 2 +
(distcalptsXZ[[p, rXZJ] - acalptsXZ[[p, rXZ])2],

(p, ncalptsXZ] / ncalptsXZ

Calculate the RMS and average error of corrected positions of calibration points.
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corrrmserror = Sqrt[Sum[(corrratcalptsXZ[p, qXZ -adjcalptsXZ[[p qXZ]) 2 +
(corrrotcalptsXZ[p, rXZ - ajcalptsXZ[[p, rXZJ) 2,

(R ncalptsXZ] / ncalptsXZ]
corravgerror = Sum[Sqrt[(corrrotcalptsXZ[p, qXZJ - a4calptsXZ[[p, qXZ]) +

(corrrotcalptsXZ[p, rXZ] -a4calptsXZ[[p, rXZ])2,
(p, ncalptsXZ)] / ncalptsXZ

Check if correction was performed properly.

If[corrrmserror>corrtolXZjlcorravgerror>corrtolXZ,

cont=lnput["Correction error is greater than desired!!n\nCorrection
tolerance = "<>ToString[corrtolXZ]<>"'n\nDistorted RMS and average error
= "<>ToString[distrmserror]<>", "<>ToString[distavgerror]<>"\nCorrected

RMS and average error = "<>ToString[corrrmserror]<>",
"<>ToString[corravgerror]<>"\n\nEnter q to quit or p to plot points"];

If[cont==q,lnterrupt[]];

If[cont==p,

distcalptsXZplot=Graphics[{RGBColor[0,0,1],PointSize[.01 1],Point/@Table[(

distcalptsXZ[[p,qXZ]],distcalptsXZ[[p,rXZ]]},{p,l,ncalptsXZ,1)]}];

corrcalptsXZplot=Graphics[{RGBColor[0,1,0],PointSize[.01 0],Pointl/@Table[
(corrcalptsXZ[p,qXZ],corrcalptsXZ[p,rXZ]},{p,1,ncalptsXZ,1)]}];

adjcalptsXZplot=Graphics[{RGBColor[1,0,0],PointSize[.01 2],Point/@Table[{

adjcalptsXZ[[p,qXZ],adjcalptsXZ[[p,rXZ]]},{p,l,ncalptsXZ,1}]}];

corrrotcalptsXZplot=Graphics[Pointl@Table[{corrrotcalptsXZ[p,qXZ],corrro

tcalptsXZ[p,rXZ]},{p,1 ,ncalptsXZ,1}]];

NotebookPut[Notebook[{Cell[BoxData[RowBox[{"Show","[",RowBox[{Row
Box[{"(",RowBox[{"adjcalptsXZplot"",","distcalptsXZplot"},"}"}],"V,",RowB
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ox[{"ImageSize","-","500"}],",", RowBox[("AspectRatio","--"," "]}]J}"]"11}]]"

nput"],Cell[BoxData[RowBox[{"Show","[",RowBox[{RowBox[("(",RowBox[{

"adjcalptsXZplot","",,"corrrotcalptsXZpplot"}) "}],]•",",RowBox[{"lmageSize"

," -+",g"500"}],",",RowBox[{"AspectRatio","","1""}]}],"]}]]J,"nput"],Cell[Box

Data[{RowBox[{RowBox[{"cont","=",RowBox[{"Input","[","\"Examine the

plots. You may enter c to continue evalution or any other character to

S"I")]) ]";"]},RowBox[{"RowBox[{ "I",RowBox[{RowBox[("cont"ox[Rowox[ ,"",RowBox,"==

",RowBox[(RowBox[{"SetSelectedNotebook","[","canb","]"}],";","

",RowBox[{"SelectionMove","[",RowBox[{"canb",","tionMove","[",RowBo"Next",",","CellGroup"

}] "]")] "; ","

",RowBox[{("SelectionEvaluate","[","canb","]"}]}],",","
",RowBox[{"Interrupt","[","]"}]}],"

","]"}],";1"}]}],"lnput"]}, FrontE ndVersion--+"4.1 for Microsoft

Windows",ScreenRectangle-(({0.,1 024.},{0.,695.}},WindowSize-+{600.,600.},

WindowMargins--*{{183.,Automatic),(23.,Automatic)}}]];

adjcorrwin = SelectedNotebook];

SelectionMove[adjcorrwin,AII,Notebook];
SelectionEvaluate[adjcorrwin];
SelectionMove[adjcorrwin,Before,Notebook];

Input["There was an error in performing the correction!!\n\nCorrection

tolerance = "<>ToString[corrtolXZ]<>"n\nDistorted RMS and average error
= "<>ToString[distrmserror]<>", "<>ToString[distavgerror]<>"\nCorrected

RMS and average error = "<>ToString[corrrmserror]<>",

"<>ToString[corravgerror]<>"\n\nThe program will stop. Enter any

character"];
Interrupt[]

1;
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Appendix B. Kinematics
Calculations

After CAD models had been matched to a series of fluoroscopic images,

those matched poses needed to be translated into meaningful kinematic

parameters. This was done by calculating the relative position and orientation of

coordinates systems fixed to the femoral and tibial components based on a

reference position of the components (Fig B.1).

The components were in their reference position when the femoral

surfaces parallel to the distal femoral cut were parallel to the tibial plate and the

most distal point on the femoral condyles were at the most distal (lowest) points

on the polyethylene insert. In this position, the femoral and tibial coordinate

systems had the same orientation. This was chosen as the reference position

because of its ease of construction and physical relevance (we would expect the

femur to sit as low as possible on the tibia).

To be consistent with the past in-vitro work performed in the lab,

the tibiofemoral rotations were calculated using a flexion-extension - varus-

valgus - internal-external Euler rotation sequence (Most, 2000; Suggs, 2006).

The calculations were initially performed using code written in Mathematica

(Version 4.1, Wolfram Research, Inc., Champaign, IL), which read the

coordinates of the points defining each coordinate system and calculated the
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translations and rotations from the reference position. Part of that code is

presented here.
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Fig. B.1 The femoral and tibial coordinate systems
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B.1 Set parameters
This program was initial written to test repeatibility and accuracy, so multiple

observers were used to match the same image set over multiple trials. I think I
will leave these parameters in the code and set them to 1, just in case I need
them later.

SetDirectory["C:\jfslinvivo\patients\\"<>"06-03-04_pat OR\matched"];
infile = "06-03-04_pat10";
infileext = ".CSV";
side = "R";

nfiles =11;
imgseq = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17);

outfile = "femtrantibrotV6";
outfileext = ".txt";
femtype = "CR";

femsize = "F";

femcond = "";

tibsize = "6";

polythick = "12";

outinterpdef = "intdef';
outinterpfirst="intfirst";
outinterpfirstkin = "intfirstkin";
ncol = 18;

icol = 4;

desflex={-20,-1 5,-10,-5,0,15,30,45,60,75,90,105,120,135,150);
zeroindex=5;

minflextol =.33;
maxflextol=.33;
label[1]="fo";
label[2]="fx";
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label[3]="fy";

label[4]="fz";

label[5]="to";

label[6]="tx";

label[7]="ty";

label[8]="tz";

label[9]="go";

dummyraw=({duml ,dum2,dum3};

nobservers = 1;

ntrials = 1;

intorder=l;

B.2 Read data
The raw data points will be read into dummy variables and then stored in vectors

foraw, fxraw, fyraw...

For[f=1 ,f<nfiles+1 ,f++,

matchedi n=OpenRead[infile<>side<>"_"<>ToString[imgseq[[f]]]<>infileext];

For[labindex=l ,labindex<9,Iabindex++,

SetStreamPosition[matchedin,0];

Find[matchedin,"'""'<>Iabel[labindex]<>"'l"",RecordSeparators-{"),{'\'''\n",","'

}];
Skip[matchedin,Character, 10];

dummyraw[[1]]=Read[matchedin,Number];

Skip[matchedin,Character];

dummyraw[[2]]=Read[matchedin,Number];

Skip[matchedin,Character];

dummyraw[[3]]=Read[matchedin,Number];
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ToExpression[label[labindex]<>"raw[f]=dummyraw",InputForm];

1;
Close[matchedin];

]

Read in the reference position of the femoral peg system relative to the tibial
system in the tibial coordinate system. Also, read in vector from FP system to
GC system, vfpgc. This vector is strictly in the FP system. However, the FP
system was aligned with the tibial system when the coordinates were output
from Rhino, so this vector is also in the reference position tibial system.

tibsizegroup = "";

If[femtype =="CR" I1 femtype == "LPS",

If[tibsize=="1"l |tibsize=="2",tibsizegroup="12"];

If[tibsize=="3" Itibsize=="4",tibsizegroup="34"];

If[tibsize=="5" Itibsize=="6",tibsizegroup="56"];

If[tibsize=="7"I tibsize=="8"l Itibsize=="9"I Itibsize=="10",tibsizegroup="710"

1;
refposin=OpenRead["refpos_"<>femtype<>"-"<>femsize<>"-

"<>tibsizegroup<>"-"<>polythick<>"mm.CSV"];

If[femtype == "UKA",

tibsizegroup = tibsize;

refposin=Open Read["refpos_"<>femtype<>"-"<>femsize<>"-

"<>femcond<>"-"<>tibsizegroup<>"-"<>polythick<>"mm.CSV"];

Find[refposin,"\"fol"",RecordSeparators-{"\t","\n",","}];

Skip[refposin,Character, 10];

dummyraw[[1 ]]=Read[refposin,Number];

Skip[refposin,Character];
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dummyraw[[2]]=Read[refposin,Number];
Skip[refposin,Character];
dummyraw[[3]]=Read[refposin,Number];
refpos=dummyraw;
SetStreamPosition[refposin,0];
Find [refposin,"V"gol"",RecordSeparators- "lt","ln",","}];

Skip[refposin,Character, 10];
dummyraw[[1 ]]=Read[refposin,Number];

Skip[refposin,Character];
dummyraw[[2]]=Read[refposin,Number];
Skip[refposin,Character];
dummyraw[[3]]=Read[refposin,Number];
vfpgc=dummyraw-refpos;
Close[refposin];
mllength=Sqrt[(fyraw[1]-foraw[1]).(fyraw[1]-foraw[1])];

B.3 Calculate kinematics and Write
At each flexion angle, calculate unit vectors corresponding to the axes of the

tibial system (utibxraw, utibyraw, utibzraw) and the FP system

(ufpxraw,ufpyraw,ufpzraw), calculate the vector from the tibial system to the

femoral system (vtibfpraw, this vector being in the global system), and transform

the vector, as well as the FP system unit vectors, from global coordinates to the

tibial coordinates (vtibfptib, ufpxtib, ufpytib, ufpztib). The transformation will be

carried out using a rotation matrix based on the tibial system unit vectors. If we

have three orthogonal, right-handed unit vectors, uxl, uyl, and uzl, the rotation

from the xyz-ref system to the xyz-1 system is given by {uxl,uyl,uzl } in

Mathematica format. So, the rotation matrix is given by {utibxraw, utibyraw,

utibzraw} in Mathematica format.
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For[f=1 ,f< nfiles+1 ,f++,
utibxraw[f]=(txraw[f]-toraw[f])/Sqrt[(txraw[f]-toraw[f]).(txraw[f]-toraw[f])];

utibyraw[f]=(tyraw[f]-toraw[f])/Sqrt[(tyraw[f]-toraw[f]).(tyraw[f]-toraw[f])];
utibzraw[f]=(tzraw[f]-toraw[f])ISqrt[(tzraw[f]-toraw[f]).(tzraw[f]-toraw[f])];
ufpxraw[f]=(fxraw[f]-foraw[f])/Sqrt[(fxraw[f]-foraw[f]).(fxraw[f]-foraw[f])];

ufpyraw[f]=(fyraw[f]-foraw[f])/Sqrt[(fyraw[f]-foraw[f]).(fyraw[f]-foraw[f])];
ufpzraw[f]=(fzraw[f]-foraw[f])/Sqrt[(fzraw[f]-foraw[f]).(fzraw[f]-foraw[f])];
vtibfpraw[f]=foraw[f]-toraw[f];
vtibfptib[f]={utibxraw[f],utibyraw[f],utibzraw[f]}.vtibfpraw[f];
ufpxtib[f]={utibxraw[f],utibyraw[f],utibzraw[f]}.ufpxraw[f];
ufpytib[f]=(utibxraw[f],utibyraw[f],utibzraw[f]).ufpyraw[f];
ufpztib[f]={utibxraw[f],utibyraw[f],utibzraw[f]}.ufpzraw[f];

I

Write kinematics to file. Start by calculating a non-Eulerian rotation matrix to be
used in calculating rotation kinematics. This rotation matrix will be calculated
using the FP system unit vectors in tibial coordinates. The matrix that rotates the
tibial system unit vectors to the FP system unit vectors is given by
Transpose[{ufpxtib,ufpytib,ufpztib}] in Mathematica format.
Translations are calculated by combining vtibfptib, refpos, and vfpgc as
appropriate. Now, vtibfptib and refpos are in tibial coordinates, but vfpgc is in FP
coordinates. Remember, the FP system has the same orientation as the tibial
system in the reference position but not at any given flexion angle. When
combining vfpgc with vtibfptib to get the translated position of the GC origin,
vfpgc will have to be transformed from the FP to the tibial system. The
necessary rotation matrix is given by Transpose[{ufpxtib,ufpytib,ufpztib}]. (You
can also think of vfpgc being given in tibial coordinates in the reference position
and having to be rotated from the reference orientation the FP system orientation
at the given flexion angle.)
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The translation of the left femoral peg, leftfptrans = vtibfptib + ufpytib*mllength -

(refpose + {0O,mllength,0}) = fptrans + ufpytib*mllength - {0,mllength,0}. Similarly,

rightfptrans = fptrans - ufpytib*mllength + {0,mllength,0}.

So the femoral kinematics are given by (See derivation of Euler matrix below) the

following. **Note: some negative signs are put in artificially to make sure

Proximal, medial, posterior femoral translation, and flexion, Varus, and internal

tibial rotation are positive

For[f=l ,f<nfiles+1 ,f++,
components=Transpose[{ufpxtib[f],ufpytib[f],ufpztib[f]}];
flexrad[f]=Chop[ArcTan[components[[1,1]],components[[1,3]]],1ÔA-7] ;

flex[f]=-flexrad[f]*1 801Pi;

Wrad[f]=Chop[ArcSin[-components[[1 ,2]]], A10^-7];

IErad[f]=Chop[ArcTan[components[[2,2]],components[[3,2]]],10^-7];

flexproj[f]=Chop[ArcTan[ufpxtib[f][[1]],ufpxtib[f][[3]]],1 OA^-7]*180/Pi;

fptrans = vtibfptib[f]-refpos;

gctrans=(vtibfptib[f]+components.vfpgc)-(refpos+vfpgc);
proximalfp[f]=fptrans[[1]];
proximalgc[f]=gctrans[[1]];
posteriorfp[f]=fptrans[[3]];
posteriorgc[f]=gctrans[[3]];

leftfptrans= fptrans + ufpytib[f]*mllength - {0O,mllength,O};

righffptrans=fptrans- ufpytib[f]*mllength + (O,mllength,O};

If[side=="L",
medialfp[f] = -fptrans[[2]];

medialgc[f] = -gctrans[[2]];
varus[f]=V-Wrad[f]*1801Pi;

internal[f]=lErad[f]*180/Pi;
varusproj[f]=-Chop[ArcTan[ufpxtib[f][[1 ]],ufpxtib[f][[2]]],1 0^-7]*1 801Pi;

internalproj[f]=Chop[ArcTan[ufpytib[f][[2]],ufpxtib[f][[3]]],1 0^-7]*180/Pi;

medialmfp[f]=-rightffptrans[[2]];
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proximalmfp[f]=rightfptrans[[1]];
posteriormfp[f]=rightfptrans[[3]];

mediallfp[f]=-leftfptrans[[2]];

proximallfp[f]=leftfptrans[[1]];

posteriorlfp[f]=Ieftfptrans[[3]];

1;
If[side=="R",

medialfp[f] = fptrans[[2]];
medialgc[f] = gctrans[[2]];

varus[f]=WVVrad[f]*180/Pi;
internal[f]=-IErad[f]*1 80/Pi;

varusproj[f]=-Chop[ArcTan[ufpytib[f][[2]],ufpytib[f][[1]]],1 OA^-7]*1 80/Pi;
internalproj[f]=-Chop[ArcTan[ufpytib[f][[2]],ufpytib[f][[3]],1 OA-7]*1 80Pi;

medialmfp[f]=leftfptrans[[2]];

proximalmfp[f]=leftfptrans[[l 1]];

posteriormfp[fJ=leftfptrans[[3]];

mediallfp[f]=rightfptrans[[2]];

proximallfp[f]=rightfptrans[[1]];
posteriorlfp[f]=rightfptrans[[3]];

];

Put the data into an array to be used for interpolation.

Clear[rawdummy];
For[f=l,f<nfiles+l ,f++,

rawdummy[f,1]=proximalfp[f];
rawdummy[f,2]=medialfp[f];

rawdummy[f,3]=posteriorfp[f];
rawdummy[f,4]=flex[f];
rawdummy[f,5]=varus[f];
rawdummy[f,6]=internal[f];
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rawdummy[f,7]=proximalgc[f];

rawdummy[f,8]=medialgc[f];
rawdummy[f,9]=posteriorgc[f];

rawdummy[f,10]=proximalmfp[f];

rawdummy[f,11]=medialmfp[f];
rawdummy[f,12]=posteriormfp[f];

rawdummy[f,13]=proximallfp[f];

rawdummy[f,14]=mediallfp[f];

rawdummy[f,1 5]=posteriorlfp[f];

rawdummy[f,16]=flexproj[f];
rawdummy[f,17]=varusproj[f];

rawdummy[f,1 8]=internalproj[f];

I
rawarray=Array[rawdummy,{nfiles,ncol)];

Write the data to file.

kinout=

OpenWrite[infile<>side<>outfile<>ouffileext,FormatType-FortranForm];

WriteString[kinout,"FP-Proximal\tFP-MedialItFP-
PosteriorltFlexion\tVarus\tlnternal\tGC-Proximal\tGC-Medial\tGC-

Posterior\tMFP-Proximal\tMFP-Medial\tMFP-Posterior\tLFP-Proximal\tLFP-

Medial\tLFP-Posterior\tProjFlexion\tProjVarus\tProjlinternal\n"];

For[f=l,f<nfiles+l,f++,
For[c= 1,c<ncol,c++,

WriteString[kinout,FortranForm[rawarray[[f,c]]],"\t"]

i;
WriteString[kinout,FortranForm[rawarray[[f,ncol]]],"\n"]

Close[kinout];
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Find the minimum flexion angle to use as a reference. I also find the min and
max flexion angles in the "Interpolate" section.

firstarray = rawarray;

ndat=nfiles;
defminflex=45;
For[p=1,p<ndat+l,p++,

defminflex=lf[rawarray[[p,icol]]<defminflex,rawarray[[p,icol]],defminflex];

];
For[p=1, p<ndat+l ,p++,
firstarray[[p,icol]]=rawarray[[p,icol]]-defminflex

B.4 Interpolate data
Find the max flexion angle and pick the greatest desired flexion angle that is still
less than or within the given tolerance of the max flexion angle. Do the
analogous for the minimum flexion angle. Remember that the minimum flexion
angle when referencing the first pose in the series will always be zero degrees.

Clear[defminindex,defmaxindex,firstmaxindex];
defminflex=45;
defmaxflex=0;

For[p=1,p<ndat+l ,p++,
defminflex=lf[rawarray[[p,icol]]<defminflex,rawarray[[p,icol]],defminflex];

defmaxflex=lf[rawarray[[p,icol]]>defmaxflex,rawarray[[p,icol]],defmaxflex]

1;
firstmaxflex=defmaxflex-defminflex;

defminindex=1;
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defmaxindex=l;

While[desflex[[defminindex]]<defminflex-

minflextol(Abs[desflex[[defminindex]l]-

desflex[[defminindex+l]]]),defminindex=defminindex+l];While[desfiex[[def

maxindex+1]]<defmaxflex+maxflextol(Abs[desflex[[defmaxindex]]-

desflex[[defmaxindex+l]]]),defmaxindex=defmaxindex+1;

If[defmaxindex>14,Breakl[]]];

firstmaxindex=zeroindex;

While[desflex[[firstmaxindex+l]]<firstmaxflex+maxflextol(Abs[desflex[[first
maxindex]]-desflex[[firstmaxindex+l]]]),firstmaxindex=firstmaxindex+1;
If[firstmaxindex>14,BreakD]];

Interpolate the data referenced to the default position.

Off[InterpolatingFunction: :"dmval"];

Clear[intdummy,coltable,inffunct]

For[c=1 ,c<ncol+1 ,c++,
coltable[cTble[rawarawarray[[p,icol]c]]},{p,ndat}];

inffunct[c]=Interpolation[coltable[c],InterpolationOrderl intorder];
For[f=defminindex,f<defmaxindex+1 ,f++,

intdummy[f-defminindex+1 ,c]=inffunct[c][desflex[[f]]]

intdefarray=Array[intdummy,{defmaxindex-defminindex+ ,ncol}];

Interpolate the data referenced to the first pose in the series.

Clear[intdummy,coltable,inffunct]
For[c=l1,c<ncol+1,c++,

coltable[c]=Table[{firstarray[[p,icol]],firstarray[[p,c]]},{p,ndat}];
intfunct[c]=lnterpolation[coltable[c],InterpolationOrder] intorder];

For[f=zeroindex,f<firstmaxindex+1 ,f++,
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intdummy[f-zeroindex+l,c]=intfunct[c][desflex[[f]]]

i
intfirstarray=Array[intdummy,{firstmaxindex-zeroindex+l,ncol}];
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