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Abstract

This thesis describes progress in several areas related to three dimensional vortex
methods and their application to multiphysics problems. The first is the solution of a
generic scalar transport equation by advecting and diffusing the scalar gradient along a
particle trajectory and onto a mesh, respectively, and recovering the scalar values using a
Biot-Savart-like summation. The second is the accurate, high-resolution calculation of
the velocity gradient using a fast treecode, which avoids using kinematic relations
between the evolution of the gradients and the distortion of the flow map. The same tree
structure is used to compute all the variables of interest and those required during the
integration of the governing equations. Next, we apply our modified interpolation kernel
algorithm for treating diffusion and remeshing to maintain long time accuracy. The
coupling between the vorticity transport and that of a dynamic scalar, in this case the
temperature or density in a gravitational field, is manifested by the generation of
vorticity. We demonstrate the performance of the multiphysics algorithm by solving a
number of buoyant and reacting flow problems.
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Introduction

Lagrangian vortex methods [1, 2] are tools for computing complex unsteady fluid flows
at high Reynolds numbers. While they have other advantages, such as the relaxation of
the CFL condition and the suppression of numerical diffusion, one of their most
interesting features is the fact that they are based on the discretization of vorticity.
Especially in unconfined and semi-confined flows, a typical computational domain must
extend to a size that incorporates regions where the primary variables, i.e., velocity and
pressure, may deviate very slightly from their uniform distribution. This can result in an
unmanageable computational effort in 3D or would require complex non-uniform grids
that cluster around zones of high gradients and transition to coarser meshes closer to
uniform zones. Vorticity, on the other hand, is derived from the curl of the velocity field,
and can be described by computational elements contained in a smaller fraction of the
total volume of the flow field. As the result, the computational elements are utilized more
efficiently. Lagrangian transport of vorticity guarantees that its evolution in space and
time is well resolved.

The extension of this idea to general transport problems has been suggested and
implemented in several contexts. In this methodology, when solving for the transport of a
scalar variable, one discretizes the gradients of the scalar field, instead of the scalar field
itself. The evolution of the scalar field is hence determined by solving the corresponding
transport equation for its gradients. The advantage of this approach is identical to that
described in the previous paragraph for vortex methods. Since the gradients can be
described by computational elements confined to a small fraction of the total volume of
the domain, one can utilize the discrete elements more efficiently.

These ideas were first described for 1D problem in Ghoniem and Oppeneim for
modelling diffusion processes [3]. Further developments were suggested and
implemented more generically in Ghoniem and Sherman [4]. Anderson [5] extended the
concept of gradient transport to convection in 2D, and to buoyant flows. A conservative
formulation of that construction was suggested by Ghoniem et al. [6], called the transport
element method, and used it for the simulation of mixing in shear flows. Krishnan and
Ghoniem [7] extended the transport element method to nearly inviscid buoyant flows in
2D. They studied a two-dimensional Rayleigh-Taylor flow evolving under the action of
gravity across a large temperature gradient, i.e., without the Boussinesq approximation. A
reacting flow version of transport element methods was also proposed by Soteriou and
Ghoniem [8, 9] to investigate the dynamics of two-dimensional reacting shear layers.
Soteriou et al. [10] applied transport element methods to planar buoyant plumes
simulations.

Three-dimensional transport element method was proposed by Knio and Ghoniem, and
was used to simulate the evolution of a periodic shear layer [11, 12]. The construction of
this method was, however, based on rather a complicated internal coordinate system
inside each computational element, which made the implementation difficult. Essentially,
the construction was based on a kinematic relation between the evolution of the local
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gradients and that of the distortion of the material elements. To implement this kinematic
relation, one needs to evolve the underlying flow map, that is, both the location of the
field particles and their connectivity. Dahm and Tryggvason [36,37] rely on assigning
scalar-valued gradients to segment elements, but these segments that define a direction
are still connected.

In this thesis, we resurrect the basic concepts of the transport element methods (TEM) in
the context of three-dimensional multi-physics problems, where the vorticity field and the
scalar field are coupled by baroclinicity, but simplify its implementation using a number
of new ideas. This is achieved by assigning vector-valued gradients to particles with no
connectivity. The scheme is equipped with a multi-purpose adaptive tree-code, which
enables fast and accurate evaluation of various quantities required for the simulation, i.e.,
velocity, velocity gradients, and scalar distribution. Accurate and fast evaluation of
velocity gradients enables us to solve the scalar gradient evolution without complex
internal coordinate systems, with negligible loss of conservation properties. The
capability of the scheme is demonstrated in various three-dimensional buoyant and
reacting flows, especially the buoyant jet-in-crossflow case.

The thesis is organized as follows. Buoyancy-driven and reacting flows are studied in
Section 2 and 3 respectively. Section 4 is dedicated to the simulation of the buoyant jet
and our multi-purpose adaptive tree-code is presented in detail in Section 4. Conclusions
are given in Section 6.
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1. Lagrangian Simulation of Buoyant Flows

In this chapter, we consider the evolution of thermals. Single thermal spheres have been
intensively studied and their behavior is now well known. An important theoretical and
experimental work has been done by Scorer [17, 18], Wang [19], Lin [20], Turner [21,
22], and Escudier and Maxworthy [23]. Numerical simulations on thermals have been
initially performed by Andersdon [5], and Marcus and Bell [24] in 2D. More generally,
two-dimensional studies of the Rayleigh-Taylor instability were conducted by Baker et
al. [25], Kerr [26], Tryggvason [27] and Zufiria [28, 29], using vortex methods. Three-
dimensional simulations of buoyant bubbles were realized by Brecht and Ferrante [31] in
the inviscid limit using a vortex-in-cell code. Walther and Koumoutsakos [32] extended
the particle methods in 3D to the viscous case. We first present the evolution of a single
thermal sphere, and then nonlinear interactions between two thermal spheres will be
shown.

The governing equations are given in part 1 and the numerical algorithm is presented in
part 2. Part 3 is dedicated to the simulation of a vortex ring. Buoyancy-driven flows are
studied in part 4.

1.1. Governing equations

To demonstrate the capability of our transport element method, we study buoyancy-
driven flows in R3 . Using the Boussinesq approximation, the Navier-Stokes equation is
given as follows:

au
-+u -Vu= vAu- VP -g,.pT - T,) (1)

at p
V.u=0 (2)

where u is velocity, p is pressure, /J is the volumetric thermal expansion coefficient of

the fluid, and g,. is the gravitational acceleration. T. is the temperature of the

environment, V and A are the gradient and Laplacian operators. The temperature field,
T , is governed by the following advection-diffusion equation:

-+u-VT=aAT (3)
at

Here, v is the kinematic viscosity, and a is the thermal diffusivity.
We normalize Eq.(1), (2) and (3) by choosing a reference length L, which can be

defined by a characteristic geometric length scale of the problem. The corresponding
reference flow speed is given by U = _giEZ, where gr' = g,. -g,. We also choose a
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reference temperature, To , which is different from T.. Then, with the following

normalization: i= x / L , ii=u /U, t /(L /U), 9=(T - T)/(ITo - T), ji = p /(pU 2 )

and j, = g, /g, we obtain

i +at
I ~i ~5 =--Ai-Vp-

Re
S-ii= 0,

+ at ##

Gr

Re2 (4)

(5)

(6)1--
Pr Re

1
Naturally, V =- V

L

1
and Ai=- A .The system is governed by three dimensionless

parameters, i.e., the Reynolds number, Re = UL /v, the Prandtl number, Pr = v /a, and
the Grashof number, Gr =g,(T - TO )L3 / v 2 . In the following, all the variables are

understood as being normalized in this form, and the tilde over each dimensionless
variable is omitted.

Taking the curl of Eq.(4), we obtain the vorticity-velocity formulation for buoyant
flows:

+ u- V = -Vu + - A0
at Re

Gr
+ 2 g xV9,Re (7)

where o = V x u, and R2 g, x V 0 is the baroclinic source term for vorticity generation.
Re

Using the Helmholtz decomposition, the velocity field can be separated as follows:

U=U ,+u, (8)

where u0, is the vortical velocity field, and up is the potential velocity field. The

potential velocity is added to satisfy the normal velocity boundary conditions. In R3 ,
where no apparent boundary exists, up is set to 0, and u = u.. On the other hand, given a

distribution of vorticity within a domain D, the vortical velocity in R3 is determined
using the Biot-Savart law:

S
u(x, t) = u(x, t) - ,

(x-x')x(x', t)
D |x-X I'

The set of equations, Eq.(6), (7) and (9), provides a complete description of the flow.
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1.2. Numerical algorithm

Our approach uses Lagrangian particles as computational elements. The vorticity field is
discretized into Lagrangian computational elements, or particles, with weights W(t),

and locations X, (t) such that:
N.

o(x, t) - W (t)f8 (X - y, (t)) (10)

N, is the number of vortex elements. The core function f, (r) is obtained from a

reference function f(r) by f ,(r) = 5-3f(I r S). In this work, the reference functionfis

the low-order algebraic core function [16]:

_ 3 1f(r) =- .1(11)
4r (I+r 2)"

To simulate buoyant flows, we need to additionally solve the transport equation of energy
or temperature, Eq.(6). Since the baroclinic source term in Eq.(7) depends on the gradient
of 9, instead of using the scalar values as weights and computing their gradients locally,
we use the scalar gradients as the weights of the corresponding computational elements.
The advantage of using the gradients as weights is that the support of the gradient is
smaller than that of the scalar itself, and hence the computational elements can be
distributed over a smaller fraction of the domain. For instance, a hot sphere can be
represented by discretizing the spherical shell between the hot interior and the cold
exterior, while no elements are used in the temperature domains inside or out.

Such a method is generally referred as a transport element scheme. In the context of
the current problem, we discretize the gradient of 9 as follows:

Ng

g(x) = V9(x) G,(t)f,(x -,(t)). (12)

Ng is the number of transport elements. By taking gradient of Eq.(6), we get the

governing equation for g.

Ig 1-- +u.Vg=-(Vu)'.g+ Ag (13)
at PrRe

The solution of the equations of motion is expressed in terms of the instantaneous
locations, i.e., X, and ,, and weights, i.e., W and G,, of these elements.

The numerical solution of Eq.(7) and Eq.(13) is obtained through an operator
splitting. The computational time step is split in three substeps, i.e., convection substep,
generation substep, and diffusion substep. During each substep, we solve the following
equations:
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Convection substep: -- =-+u -V = Dt -Vu, (14)
Dt at

D +u-Vg = -(Vu)' -g, (15)
Dt at

Generation substep: a Gr (16)
at = Re2 g' x VO,

Diffusion substep: - Aw, (17)
at Re

ag 1
at I Ag. (18)
at Pr Re

During the convection substep, the solution of Eq.(14) and Eq.(15) is obtained by
integrating the following equations:

dX' = U(X,,t), 3 (19)
dt

(20'; = U((,,9t) , (20)
dt

dW
dt =W 1(t)-Vu(X,,t), (21)

dG
d = -(Vu(*,,t))-G,(t). (22)
dt

The integration of these equations is performed using a second-order predictor-corrector
scheme.

During the generation substep, Eq.(16) for the baroclinic generation of vorticity is
integrated using a first-order scheme. We need to introduce additional vorticity, where
nontrivial baroclinicity exists. This is achieved by generating one new vortex element at
the location of each transport element, using the following expression for each ith
transport element:

W =Gr xG,(t) At for 1 i Ng. (23)wg Re2g

The vorticity field is updated by adding these new vortex elements to the existing vortex
elements.

N. Ng

(x)= Wif(X - X) + Wf, (x-,). (24)

After the update is finished, N, is augmented by Ng.

During the diffusion substep, Eq.(17) and Eq.(18) are solved by using a modified
interpolation kernel [13]. The existing field is interpolated over a new set of elements,
whose location is selected to satisfy certain requirements. Through the interpolation
process, the vorticity field is updated such that the strength of the new elements are:

14



W (t+At)= J7W,(t), (25)

where f is the redistribution fraction from the ith vortex element to the jth grid point,
which in the current implementation is described by a uniform Cartesian grid with the

grid size Ax as shown in Figure 1. /7 is obtained by using the interpolation kernel A3 :

S=A3K ' ;cJA(j Y, ;c. A 3 z-' J, (26)
ii 3(Ax CO) 3 Ax ) Ax )W

where

1-2C2+| (3c2 -I/ 2) - 2+ I |2I / 2 11< I

A3(;C)= (2- 14I)( (3- II)(1-1 1)+c2) 1 141<2 (27)
0 24 1 I

Here c. = vRe- At / Ax, which represents the ratio between the diffusion length scale

and Ax. As shown in [11], in this modified interpolation kernel, during each
interpolation step the second-order moments are increased by the amount required to
simulate diffusion. In classical interpolation, the kernel preserves these second-order
moments.

In a similar way, we update the gradient field,

G1 (t+At) fG,(t), (28)

where ff is the redistribution fraction from the ith transport element to the jth grid point.

fg is obtained by using Eq.(26), but with cg = Pr' R-' At / Ax in place of c ,.

At the end the interpolation, time is advanced to t + At , and that completes the entire
step. By the end of the time step, the fields are again expressed with Eq.(10) and Eq.(12),
where i runs over all the grid points with nontrivial values of W, and/or G,. Note that
the problem of Lagrangian distortion is resolved within the diffusion substep, since the
new particles are uniformly distributed at the end of the substep.

During the convection substep, we need to evaluate u and Vu at the location of each
computational element. A naYve implementation of this process leads to an expensive
operation, whose cost scales as O(N 2 ). The recovery of 0 from g, which is necessary
during post-processing, also requires similar set of operations. To reduce the
computational cost of these tasks, we use a multi-purpose adaptive tree-code, which is
described in Appendix A.
Also we note that, for isothermal flows, Eq.(6) is redundant, and the source term for
vorticity generation in Eq.(7) drops out. In this hydrodynamic limit, the computational
algorithm reduces to the standard vortex element scheme, where only convection and
diffusion, i.e., Eq.(14) and Eq.(17), of vorticity is implemented. In the following sections,
we first describe some results at this hydrodynamic limit, and then present the results of
buoyant flow simulations.
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1.3. Evolution of a vortex ring

In the following, we examine the accuracy and convergence of our algorithm. We first
apply the algorithm at the hydrodynamic limit to perform the simulation of a vortex ring.
The evolution of a viscous vortex ring was studied with an axisymmetric spectral
calculation by Stanaway et al. [14], and the result was later reproduced in a vortex
calculation by Wee and Ghoniem [13]. The initial vorticity distribution of the ring core is
given by

KIT [ R2 r2  2Rr .'
I- F 2exp -K 2 + 2 2 sin0 (29)

CO a [ aa a a )

4x y 2 2 482
with r = Jx 2 +y+ Z2 , tan9= X +Y and K = ( . The core radius is

y 4
chosen to be aIR = 0.35. The initial ring radius, R(0), and its initial circulation, IF(0), are

unity. Its evolution is computed for a Reynolds number Re I /v = 500.

The numerical parameters are chosen as follows: the time step for the highest
resolution simulation is At =0.15 and the grid size for the diffusion substep is
Ax = 0.025. Because of diffusion, the vorticity support expands and the number of
particles grows in time. To control the number of particles, particles with its strength
below a cutoff value are deleted after each diffusion substep. The cutoff value for

deletion is chosen to be lodVl,, = 10 ".

The simulation is initialized by computing by the vorticity distribution on a Cartesian
grid with a grid size Ax = 0.025 and a cutoff value lodVdeI = 10~1. The number of

vortex elements at the beginning of the simulation is around 1,900,000.

The results are reported in terms of the following dimensionless variables. The
dimensionless time is given by

= 12 , P(30)

where 1 represents the linear impulse of the vortex ring. The dimensionless speed of the

vortex ring centroid is defined by

S= U . (31)
V2

where Uc is the ring centroid velocity measured in the computational units.
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We present the vorticity contours at t = 6.75 x 1 0~, 7.48 x 10-', 8.21 x 10~', 9.06 x 10-',
10.03 x 10~' and 11.85 x 10-. The vorticity contours shown in Figure 2 match well those
previously reported [13, 14]. Even the subtle tail structures at t = 10.03 x 10-' are well
captured.

The predicted location of the vortex ring centroid velocity shown in Figure 3 also
compares well with the results of previous calculations. We note that the current
calculation which was performed using the full three dimensional representation of the
ring structure matches more closely the two-dimensional spectral calculation results
obtained by Stanaway et al. [14] than those reported in [13]. The ring maintains its two-
dimensionality during the simulation and hence it is possible to compare our three-
dimensional results with the two-dimensional results. The results of Wee and Ghoniem
were obtained using a 20 degrees section to reduce the number of computational
elements. The current results were obtained for the full 360 degrees ring representation.
The number of vortex elements at the end of the simulation is around 3,500,000.
The use of our more efficient vortex-particle algorithm, instead of the vortex filament
algorithm in [13], allows us to perform simulations with a smaller grid size. As a
consequence, we have better accuracy and can accommodate up to 5 millions particles
even with a serial implementation.
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Figure 2: Vorticity contours of the evolution of a single vortex ring for the times
t =6.75 x 10-5 , 7.48 x 10-5, 8.21 x 10-5 , 9.06 x 10-5, 10.03 x 10- 5 and 11.85x 10-5. The
vorticity difference between two solid lines is ten times higher as the vorticity difference
between two dashed lines.
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Figure 3: The vortex ring velocity for the highest resolution fully 3-D simulation (solid
curve) using the current vortex particle algorithm. The results obtained in 2-D by
Stanaway et al. [14] are plotted in dashed lines, and those obtained by Wee and Ghoniem
[13] for a 20 degrees section simulation performed in parallel are plotted in solid lines.
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1.4. Buoyancy-driven flows

As mentioned earlier, the development of a fast tree-code to compute the velocity and its
gradient enable us to resurrect the idea of the transport element methods (TEM), in which
the gradients of primitive variables are used as weights for computational particles,
instead of the primitive variables themselves. In the following, we demonstrate the
capability of our combined strategy, i.e., vortex element/transport element scheme, by
computing buoyancy-driven flows. We first present the evolution of a single thermal
sphere, and then nonlinear interactions between two thermal spheres will be shown.

1.4.1. Evolution of a thermal sphere

A sphere of hot air is placed in relatively cold ambient atmosphere, such that its center is
initially at the origin. The radius of the sphere is used as the reference length scale for
normalization, i.e., R=l. Dynamically, the difference in temperature between the hot and
cold air drives the sphere against gravity through buoyancy. This phenomenon can be
kinematically described by the baroclinic generation of vorticity around the surface of the
sphere.

The initial temperature profile is defined by the error function, i.e.,

1 (ixJ-R "
9(x)=-erfc , where 8T is the thickness of the temperature transition layer.

2 ( 9T

The gradient profile is given by a Gaussian distribution,

1 1 xI-R
VO=-P[-exp - e,, where e, represents the radial unit vector. The

profiles are shown in Figure 4. As described above, using gradients as weights for the
particles, we only need to cover the support of the gradient. Gravity is pointed in the
negative y-direction.

The parameters are chosen as follows:

Pr = v/a =1, (32)

Re = = 1000, (33)
V V

Gr = PgrR 3Ap g,.R3 3 AT = 0 , (34)
2 2 =5xl,

Gr/ Re2 =-I. (35)
2
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Figure 4: View on a radial cut, of the value of the temperature distribution on the left
(erfc), and the value of the temperature gradient distribution on the right (Gaussian), at
t=Os.

The thickness of the temperature transition region is given by 3 T =1/30,i.e., the
temperature difference is allowed to spread over 1/30 of the initial radius of the sphere
before we start the simulations. The grid size for diffusion is Ax = 0.05 and the time step
size is At = 0.125. Figure 5 shows the evolution of both the temperature and the vorticity
on the left hand side and the right hand side respectively. The temperature is recovered
from the gradient elements, using the method described in the appendix for fast
summation over gradient elements:

9(x)= -KK,(x,( )-Gj (36)

As expected, the sphere is driven against gravity through buoyancy. The vorticity
generated on both sides of the sphere rolls up forming a complex ring structure.

A convergence study is performed by repeating the same simulations for different grid
sizes, Ax =0.025, 0.035, 0.05 and 0.1. The corresponding time step size is determined by
c, = c, =2-', which represents the ratio between the diffusion length scale and the grid

size. The temperature is computed on a two-dimensional Cartesian grid, Ax = 0.025, by
performing our fast summation over all the computational elements. The temperature
centroid is defined as

J 9y dV
YT = . (37)

fo dv
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The position of the buoyant sphere temperature centroid is plotted in Figure 6 for
different resolutions. The error is defined as

NAt

IErrorK| = ' (yT(t, Ax)- yT(t, Ax = 0.025))2 (38)

where N is the number of time steps. The highest resolution simulation, Ax = 0.025, was
compared with the three other simulations obtained using coarser grids. The order of
convergence is 1.45. Note that we use a second order scheme for the convection step,
while the diffusion and the baroclinic generation of vorticity are first order. In all cases
the flows remains essentially two-dimensional.
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on the top and vorticity contours on the bottom, for the times T =0.125, 2.4, 4.8 and 7.2.
The two first contour values are 0.1 and 0.33, then their values vary linearly with an
increment of 0.33.
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1.4.2. Interactions of two thermal spheres
1.4.2.1. Side-by-side interaction

Figure 7 shows another sample calculation used to demonstrate the three-dimensional
capabilities of the code: two hot-air spheres are evolving under a gravity field in the z-
direction. In this case the two spheres are initially placed side-by-side. We again use the
same parameters that we used in the single buoyant sphere simulation but allow Ax to
grow in time such that Ax =0.035 for t e [0,3.75], Ax =0.05 for t e [3.75,12.37] and

Ax =0.07 for t > 12.37. The corresponding time step size is determined by
cO =cg = 2-12. Figure 7 and Figure 8 show 3D plots of the temperature contour, 9= 0.3,

and the vorticity isosurface, col =1.2. These figures show that, due to diffusion, the

distinction between the two spheres is lost and a continuous complex structure is formed
a short distance into their vertical rise. The distortion of the temperature isosurfaces
because of the mutual interactions between the two sphere leads to the formation of a
complex tangle of vorticity structures. The results are plotted in two dimensional cuts
across the vertical plane of the initial centers of the two spheres in Figure 9 and Figure 10
respectively, to show the strong distortion of the temperature contours, followed by the
inter-diffusion between the neighbors spheres and the corresponding vorticity field in that
plane.

The vortical structures formed due to the interaction between generation, convection and
diffusion are well illustrated in Figure 8. Here, we observed two distinct rings whose
individual structures resemble those observed in the single sphere simulations only at the
very early stages. As these rings evolve, a mutual distortion of the overall structure is
observed starting at t=1.3 in Figure 8. This distortion is most pronounced in the
contortion of the initial two rings upwards, where they intersect close to the anti-
symmetry plane, and the formation of two new crescent shaped structures between these
rings. Although each hot sphere leads to the formation of a single vortex ring, as seen
before, and the two spheres initially form two side-by-side vortex rings, the similarity
ends here, as explained next.

It is interesting to notice that the underlying physics is here much different from what is
observed in the case of the interaction of two vortex rings. The general behavior of two
colliding side-by-side vortex rings is well known and can be seen in [13]. In the case of
the side-by-side ring propagation, the following features are observed. At the early
stages, before the inner vorticity cores inter-diffuse and values with opposite signs
annihilate each other, or before the inner cores connect, the downward motion near the
anti-symmetry plane pushes the inner cores downward with respect to the outer cores. At
the later stages, however, after the two inner cores connect and their vorticity dissipates
by inter-diffusion, the strength of the inner cores becomes weaker that those associated
with the outer cores. The motion is now reversed and the inner cores move upwards with
respect to those of the outer cores.
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In the case of the side-by-side hot spheres, the two rings that form early in the evolution
are contorted upwards near the anti-symmetry plane from the very early stages, as seen at
t=3.3. In this case, the reconnection between the two hot spheres reduces the vorticity
generation rate in the inner cores below that at the outer cores. This is shown by the
empty zone at t=1.3. Moreover, the diffusion of the opposite signs vorticity generated
within the inner cores further weakens their impact with respect to that of outer cores.
The formation of relatively uniform temperature zones near the anti-symmetry plane is
shown in Figure 9 as the two spheres connect/diffuse. Meanwhile, higher temperature
zones persist at the outer cores even at the later stages. The impact of this distortion on
the vorticity field is seen in Figure 10, where from the early stages of the simulation, the
outer vorticity cores are larger and the inner cores are driven upwards from t 0.

Parallel to the formation and distortion of the two side-by-side rings as the two hot
spheres rise, we observe the formation of two crescent shaped vortical structures that
"hang" below the two rings as they propagate upwards. These two crescents form as the
two sphere interconnect from below, as seen in Figure 9 at t=3.3. The baroclinic
generation associated with the bridge between the two initial spheres is consistent with
the temperature distribution within this bridge, as shown in Figure 11. Note that the
vorticity forms at the interface between the hot fluid originally in the spheres and the cold
fluid outside.

To quantify the vorticity within these crescent shaped structures and show their impact on
the velocity field, we plot their vorticity distribution and the total velocity on a y-z plane
located half way between the original two spheres in Figure 12. The plot shows that these
two structures contribute significantly to the upward motion at the anti-symmetry
plane. It is interesting to observe that, at the late times, the vorticity associated with the
original two rings decay, while that contained in these two crescents persist. This is
confirmed by Figure 8, at t=17.1.
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1.4.2.2. Two spheres with different sizes

Another calculation that demonstrates the three-dimensional capability of our method is
that shown in Figure 13 and Figure 14, where initially the upper sphere has a radius of
1.5 and the lower one has a radius of 1. To manifest the three-dimensionality, the centers
of the two spheres are shifted in the lateral direction with respect to the vertical (gravity)
direction. Hence, the upper is centered at (0,0,3), and the lower one at (0.5,0,0). We use
the same numerical parameters that we used in the single buoyant sphere simulation. The
temperature isosurface, 0=0.3, and vorticity isosurface, w| =1.4, are plotted in 3D in

Figure 13 and 14 respectively. The temperature and vorticity contours are plotted in
Figure 15 and 16. The two spheres are initially at the same temperature. Initially, the
vorticity generated on the sides of both spheres roll up forming a vortex ring, as it was the
case for the buoyant sphere case. However, soon after the formation of the initial
vorticity, the two newly formed rings exhibit the traditional vortex ring leap frogging
mechanism. The initial eccentricity augments this motion.

The results show that the asymmetry introduced by the eccentricity persists, as
manifested by the motion of the smaller sphere towards the left while it passes through
the larger sphere. The material in the smaller sphere is drawn into a long thin structure by
the stronger vortical structure formed by the larger sphere. Meanwhile, as that structure
"punches" through the larger sphere, it forces more of its fluid to move towards the left
side.

A convergence study is performed by repeating the same simulations for different grid
sizes, Ax =0.035, 0.05, 0.07 and 0.1. The corresponding time step sizes are determined by
cO = Cg = 2- 2. The temperature centroid is defined in (37) . The position of the buoyant

spheres temperature center is plotted in Figure 17. The error in the temperature centroid
is defined in (38) . The order of convergence is found to be 1.45. It is similar to what was
found previously.
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Figure 16: Evolution of two thermal spheres; vorticity contours for =0, 3.5, 7 and 10.5.
The two first contour values are 0.1 and 0.5, then their values vary linearly with an
increment of 0.5.
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2. Lagrangian Simulation of Combustion

Accurate and efficient computational algorithms for the simulation of high Reynolds
number turbulent reacting flows with fast chemical reactions are valuable for the study of
turbulence-combustion interactions in engineering systems utilized in automotive,
aerospace and utility industries, as well as in problems related to safety and
environmental concerns. In this section, a simulation of a diffusion-controlled
combustion problem for Lewis number, L, =1, is developed using a Schwab-Zeldovich

formulation [35]. This is an extension of our previous work that utilized the TEM with
the Schwab-Zeldovich variable as transported scalar. The vorticity and energy equation
are coupled through the density and its gradients. Buoyancy will play a major role since it
is the only source of vorticity generation and the density change in time will be a source
of volumetric expansion.

2.1. Formulation

The governing equations of the reacting flow problem are the conservation of mass,
momentum, chemical species, energy, and the equation of state [35]. We apply the
'infinite chemistry rate' approximation, i.e., the fuel and the oxidizer never coexist and
the burning rate is determined by the rate at which the fuel and the oxidizer mix by
diffusion. In this case, a single conserved scalar can be defined,

i -111," (39)
7qi,f - in,0

where ,f and 7i are the value of q, in the streams carrying the fuel and the oxidizer,

and i=1, 2, with,

77 = Y - Y (40)

and

+ Y (41)

where Ykis the mass fraction of a chemical species. The indicesf o and p are respectively

for fuel, oxidizer and product. The variable 0 represents the normalized temperature, p
the mass stoichiometry and Qf the normalized enthalpy of reaction. Finally, if we assume

that the Lewis number L =1, the normalized conserved scalar is governed by the

following sourceless convection-diffusion equation,

as= As (42)
at Pe
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where s->l correspond to the fuel side and s-+O correspond to the oxidizer side. The
distribution of all the reacting species, the reaction front location and the temperature
field can be recovered from this conserved scalar value.

The conserved scalar gradient is needed to compute the baroclinic generation of
vorticity, therefore we follow the evolution of the gradient, Vs, instead of the evolution of
the scalar, s. Differentiating Eq.(42), this yields,

D(Vs) = -(Vu) T (Vs) + Vs(V.u) + aA(Vs) (43)
Dt

The Prandtl number is unity, i.e., the viscous diffusion rate v equal the thermal

diffusion rate a and P, =RP, = R, = - .=/ . With R=l and the normalized
V V

1
gravity, g = 1, we obtain P .a

Propagating the gradient, we do not loose accuracy or CPU time in differentiation, and
the code remains fully Lagrangian. The value of s is recovered using our multi-purpose
treecode

s(x,t) = Y (Vs(t), dJ,) -VG5 (x - x, (t)) (44)

using the Green's function,

VG, (x)= (x, y, z) 3 (45)

4,r(r 2 + d 2 )2

Once the scalar field is recovered, we compute the distribution of all the reacting species
(fuel, product, oxidizer and diluents), the temperature and the density field. For a
computational point located on the oxidizer side, we have 7, >0, and the following
equations apply:

dY ~ dY
Y = q, ; Y = 0; "Y =71, - 71,; d! = 0

ds ds
Else, if it is located on the fuel side, we have q1 <0, and the following equations apply:

0; dY q _=-q;0
0 (p ds s (

Then we compute the mass fraction of diluent,

Yd =Y,,o+(Ydf -Yo)* s

the mass fraction of product,

Y, =1-Y -Yf -Y
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the temperature,

YT = 772 + f YP
(1+) 

the derivatives of the mass fractions,

dY

ds

dY), dy0  dYf dY,
=Y -Y -

ds ds ds ds

the derivative of the temperature by respect to the scalar value

dT Qf dYd
ds (I+<p) ds

the average molar mass of the mixture M

Y Y Y Y
M,= + f+ + P

W Wf Wd Wp

the density,
1

ldp=

P T *MI

and the quantity I necessary to the computation of the baroclinic generation of
p ds

vorticity

Idp ldt 1 I dYO IdYf + dY i dY,
= -(--+-( + + + P)).

pds Tds MWjds Wfds Wdds WP ds

2.2. Algorithmic Description

As in the buoyant case, the present solutions are obtained through an operator splitting.
The computational time step is split in three substeps, i.e., convection substep, generation
substep, and diffusion substep. However, the combustion problem requires the additional
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Dpknowledge of the Lagrangian derivatives of the density and the velocity field, and
Dt

Du
Du respectively. Since diffusion is done on a regular grid, the path of the particles is

Dt
broken and the computation of these derivatives becomes tricky. The algorithm used to
compute these three substeps, as well as these Lagrangian derivatives, is explained in
details in the following sections.

2.2.1. Convection

The following equations are solved using a second order Predictor/Corrector scheme,

Do-+ co(V.u) = CO.Vu (46)
Dt

D(Vs) - (Vu)T (Vs) + Vs(V.u) (47)
Dt

The velocity field u has two components: vortical velocity from the vorticity field and
expansion velocity from the non-trivial divergence or expansion source. Each of them
can be recovered from the data provided by the previous diffusion/generation substep by
using our multi-purpose adaptive tree-code. The vortical velocity in R3 is determined
using the Biot-Savart law, Eq.(9), and the expansion velocity and its gradient are obtained

-1 Dpfrom the mass conservation V.u=s, with ! D They are computed using the
p Dt

treecode algorithm as follow,

U, (x) = JK, (x,x')e(x) (48)

and

Vu,,(x) = JVK,5(x,x')e(x). (49)

The variable = -IDp is computed using the fact that the Lagrangian derivative of
p Dt

the density, Dp , is zero during convection and, consequently, non-zero only during the
Dt

diffusion/generation substep. Thus, the density p is evaluated before and after the
diffusion/generation substep at the scalar elements location after the diffusion substep;

the numerical differentiation in time of these two values give us Dp
Dt
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2.2.2. Diffusion/Generation

In this substep, the following equations are solved

aO Vp Du=vACO+ x(g ) (50)
at p Dt

a(VS) = aA(Vs) (51)
at

We start by diffusing both vortex and scalar elements

a=vA 
(52)

at
a(VS) = aA(Vs) (53)

c8t

Then, we need to compute the Lagrangian derivative of the velocity before the generation
step. Since the vorticity is diffused on a Cartesian grid during the diffusion substep, we
first need to calculate the elements velocity at their initial positions, before the convection
substep, then we advect and diffuse the particles, and we compute the new velocity at the
particle location that was saved before the diffusion. That way we follow the particle path
and the differentiation in time of the two values give us the Lagrangian derivative of the

Du
velocity .

Dt

Finally, we generate new vortex elements through baroclinic generation of vorticity

d(odV), I aP)(VdV) x(g Du
() (54)

dt p as Dt

ap
where the variables p and are functions of s. The value of s is recovered from Vs at

as
scalar particle locations using our treecode algorithm. Subsequently, baroclinic vorticity
is evaluated at the scalar particles locations and the vorticity field is updated by adding
these new vortex elements to the existing vortex elements.

The diffusion scheme is the same as the one used previously for the simulation of
buoyant flows.

2.2.3. Prediction/Correction Type Approach

We could have stopped here and simply apply the next convection substep, but we are
left with vortices at both the location of the vortex particles (existing vortex elements)
and the location of the scalar particles (new vortex elements obtained through baroclinic
generation). To reduce the number of vortex elements, we diffuse the vorticity that has
just been generated from the scalar field during the baroclinic generation substep, and the
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vorticity coming from the vortex elements field before the diffusion step. This gives us a
new vorticity field on the grid. This field will be used in the next convection substep.
In the buoyant jet-in-crossflow calculation, this problem is solved by having only one
kind of element, carrying both the vorticity and the scalar gradient information. This way,
the generation step does not augment the number of computational elements.

2.3. Results
2.3.1. Methane Ring

This numerical experiment is initialized with a axisymmetric methane ring (CH4), with
R=1. The stoichiometric chemical reaction corresponding to the complete combustion of
hydrogen H 2 and carbon C, is

CH4 +2(0 2 + 3.76N2) -> CO2 +2H 20+7.52N 2  (55)

The mass stoichiometry for this simulation is <=4, the normalized enthalpy of reaction
is Qf = 80, and the Reynolds number is R, =100. The initial distribution of fuel, oxidizer,
product and diluents concentrations is given in Figure 18. The mixture fraction varies
from zero on the air side to one on the fuel side. The boundary conditions are:

On the fuel side: Y =1, Y, =0, Y =0 and Yd =0.

On the air side: Y, =0, Y=0.2, Y =0 and Yd=0.8.

The molar masses are Mf =16, M =32, Md= 2 8 and M, =26.62. The initial

vorticity is zero and the initial non-dimensional temperature is 0=1 on both the fuel side
and the air side and the initial thickness of the Gaussian for s is 8, = 0.2. The core radius
for the vorticity distribution is S=0.1, the grid size for diffusion is Ax = 0.05 and the
time step is At = 0.125.

Temperature and vorticity contours are plotted in Figure 19. The temperature, as well as
the vorticity produced through baroclinic generation, is first symmetric around the r/R=1
axis. At this point, the flow is dominated by diffusion, not convection. Due to diffusion,
the vorticity spreads across the z-axis and dissipates by inter-diffusion. The negative
vorticity (r / R 0) becomes less important in absolute value than the positive vorticity
and the structure rises and rotates clockwise. This behavior is similar to the one observed
in 1.4.2.1 in the two side-by-side buoyant spheres problem when the two inner cores
connect, their vorticity dissipates by inter-diffusion and the strength of the inner cores
becomes weaker that those associated with the outer core.

The contours of the conserved scalar s value and the distribution of fuel, oxidizer, product
and diluents concentrations are plotted in Figure 20. The distribution of the
concentrations is plotted for an arbitrary line going through the centroid of the scalar
field. The burning rate is determined by the rate at which the fuel and the oxidizer mix by
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diffusion. Most of the fuel is consumed at the early stage; thus, no chemical reaction
occurs afterwards and the temperature distribution is only governed by diffusion and
convection. The convection is due to the vorticity and volumetric expansion. The impact
of volumetric expansion can be seen through the fact that the mean center of temperature
is moving away from the axisymmetry axis during the simulation (Figure 19). Finally,
Figure 19 and Figure 20 show that the regions of large vorticity correspond to the one
with high scalar gradients, as expected.

The results of this simulation for R,=50 were compared to those obtained by Lakkis [35]

for the same simulation to qualitatively validate the code. The following results are

obtained at a Reynolds number Re =100.
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Figure 18: Initial distribution of fuel, oxidizer, product and diluents concentrations for
the reacting flow problem.
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Figure 19: Evolution of a methane ring with a Gaussian distribution of fuel for the times

t=0 and 3.75; temperature contours are plotted on the left and vorticity contours are
plotted on the right.
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fuel, oxidizer, product and diluents concentrations is plotted on the right.
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2.3.2. Methane Ring with a Gaussian Distribution of
Fuel

In this section, the evolution of a methane sphere (CH4) with a Gaussian distribution of

fuel is presented. The stoichiometric chemical reaction is shown Eq.(55). Again, the mass
stoichiometry for this simulation is <p=4 and the normalized enthalpy of reaction
is Qf = 80. The initial distribution of fuel, oxidizer, product and diluents concentrations is

given in [35]. The mixture fraction varies from zero on the air side to one on the fuel side.
The boundary conditions are:

Onthefuel side: Y =1, Y, =0, Y =0 and Yd=0.

On the air side: Y =0, Y =0.2, Y =0 and Yd=0.8.

The molar masses are Mf =16, M, =32, Md =28 and M, =26.62. The initial

vorticity is zero and the initial non-dimensional temperature is 0=1 on both the fuel side
1

and the air side and the initial thickness of the Gaussian for s is 8 ,=-. The core radius
S3

for the vorticity distribution is 6=0.1, the grid size for diffusion is Ax = 0.05 and the
time step is At = 0.125. The following results are obtained at a Reynolds
number R, = 100.

The behavior of the sphere is similar to the one observed in 1.4.1 for the evolution of the
buoyant sphere. In addition to buoyancy major role, the effects of volumetric expansion
coming from the density change in time can also be observed in this problem.
Temperature and vorticity contours are plotted in Figure 21. The temperature and the
vorticity produced through baroclinic generation are axisymmetric around the z-axis. The
flow is first dominated by diffusion. Most of the fuel is consumed at the early stage; thus
the temperature distribution is then mostly governed by diffusion and convection. The
contours of the conserved scalar s value and the distribution of fuel, oxidizer, product and
diluents concentrations are plotted in Figure 22. Again, the distribution of the
concentrations is plotted for an arbitrary line going through the centroid of the scalar
field. The impact of volumetric expansion can be seen through the fact that the center of
temperature is moving away from the axisymmetry axis.
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2.4. Conclusion

Our algorithm is efficient enough to reach the convergence in the case of the methane
sphere with a Gaussian distribution of fuel, but it needs to be parallelized and modified
for the sharp interface case to be able to perform more accurate simulations. In fact,
simulations of the evolution of a methane sphere with a sharp interface between the fuel
side and the oxidizer have been performed for R, =100, but we were not able to reach the

convergence for this case. This issue can be addressed using the same strategy as the one
described for the jet problem. In fact, the buoyant jet-in-crossflow algorithm is
implemented on a parallel distributed memory computer using MPI and it contains only
one kind of element, carrying both the vorticity and the scalar gradient information. This
way, the CPU time decreases with the number of processors used for the simulation, the
generation step does not augment the number of computational elements and more
importantly, the number of particles that is advected at every time step is divided by two.
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3. Application to the Buoyant Jet Problem

Transverse jets do not only represent a canonical example of a flow composed of multiple
coherent vortical structures, their mixing properties are also very important to a variety of
industrial applications, e.g., fuel sources in industrial furnaces or as primary or dilution
air jets in gas turbine (Figure 23). They have also been studied for environmental
problems such as pollutant dispersion from chimneys or the discharge of effluents into
the ocean.

Secondary
Combustion
Zone .

Primary
Combustion
Zone

Fuel Nozzle

Primary
Air Jets

Turbine Inlet
Guide Vanes

r
Dilution
Air Jets

Figure 23: Mixing in gas turbines.

Previous numerical investigation [15] has focused on elucidating the mechanisms
underlying the formation of organized vortical structures in the near field and the
subsequent breakdown of these structures into small scales. Here, we will extend our
previous work on thermals to the buoyant transverse jet. Our aim is now to understand
how buoyancy will affect the vortical structure.

In this chapter, two major modifications made to the previous TEM code will also be
explained. First, an efficient strategy for its parallelization has been implemented; also,
the new algorithm contains only one kind of element, carrying both the vorticity and the
scalar gradient information.
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3.1. Numerical Formulation
3.1.1. Parallel Implementation

All the previous simulations on thermals were performed in serial on a single processor
since we were able to get results in a reasonable amount of time, generally one or two
days. The present computations however are implemented on a parallel shared or
distributed memory computer using MPI, the standard message passing libraries. In fact,
a typical simulation contains around 5 millions vortex elements. The domain
decomposition is achieved through clustering algorithms, as well as heuristic methods for
dynamic load balancing, as described in [34], in which an efficiency of 98% on 1024
processors was observed on a realistic distribution of 1.2 millions of vortex particles. The
clustering provides us a partition of the source particles and then a local oct-tree is
constructed in each cluster, the number of clusters corresponding to the number of
processors. The output produced by each processor, the vortical velocity for instance, is
summed at each target.

3.1.1.1. Computational Approach

To parallelize the algorithm efficiently, we have to provide an equal workload for each
processor and also avoid the duplication of work among processors. Thus, the domain
decomposition will be achieved through k-means clustering algorithms. K-means takes a
set of N observations {x,} in d-dimensional space as input and partitions the set into k

clusters with centroids { y1, ... , y, }, where k is prescribed.

The partition is chosen to minimize the cost function
N k Ni

= x,-y,. 12 o)= x, -Yk 12
i=1 j=1 i

where c, represent the vorticity magnitude. This way, each particle is assigned to the

nearest centroid and the centroid positions are chosen to minimize the weighted within-
cluster sum of the squared Euclidean distances. A complete description of the algorithm
can be found in [34].

Although each processor has a copy of all the particles in memory, this is not
necessary when using TEM. In fact, contrary to Vortex Filament Methods, there is no
need to preserve an ordering or connectivity between neighboring elements.

3.1.1.2. Dynamic load balancing

The time required to compute target velocities depends on many parameters, like the
distance between the cluster centroid and the target particle. The closer they are, the
longest it will take to evaluate the velocities (the ratio between direct summation and
Taylor approximation in the multi-purpose treecode will be bigger). Thus, equipartition
of particles in each domain does not ensure load balance. To ensure a good load balance,
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we use three heuristic methods found in [34]. The first one entails the introduction of a
scaling factor sk into the weighted k-means cost function

N

J=Xmin(s,|x-yI|2 '4
i=1

where the scale factor sk, is updated based on each cluster deviation from the mean

source evaluation time t" = kt?" 1k,
k -"

s"n+1 = s" (1+a tanh(fl ,
k' k'

In other words, each particle is assigned to the centroid from which the scaled distance is
the smallest.

The second heuristic method consists in splitting the highest-cost cluster in two at the
end of each time step. The two resulting converged centroids are used as initial guesses
for the next clustering iteration. To keep the same number of clusters, the lowest-cost
cluster is deleted at each time step.

Finally, a last heuristic method consists in reseeding the cluster centroid if the load
imbalance, defined as (maxk tk) I , is bigger than a user-defined parameter, typically 1.5.

3.1.2. Algorithm Optimization

Our new algorithm using the TEM contains only one set of element, carrying both the
vorticity and the scalar gradient information. In fact, during the convection substep, the
solution of Eq.(14) and Eq.(15) is obtained by integrating Eq.(19), Eq.(20), Eq.(21) and
Eq.(22). Using only one kind of particle, Eq.(20) becomes redundant and the velocity
gradient do not need to be computed at two different particle locations to solve Eq.(21)
and Eq.(22). Velocity gradients are now computed once at a single location and both
equations are solved. Thus, the number of particles that are advected at every time step is
divided by two approximately, for Prandtl number P, ~1.

Moreover, additional vorticity is introduced where nontrivial baroclinicity exists during
the generation step. This was previously achieved by generating one new vortex element
at the location of each transport element. Once the update was finished, the number of
vortex elements N0 was augmented by the number of transport elements Ng . In our new

algorithm, scalar information is simply converted into vorticity information for each
particle. Thus, the number of computational elements does not augment during the
generation step.

3.1.3. Boundary Conditions

In the present computations, the jet is aligned with the y axis and the crossflow,

U., (y) =1 for y >0, is directed in the positive x direction; the z axis is the spanwise
direction. The x-z plane is taken to be a solid wall through which we enforce a no
normal-flow boundary condition, i.e., the wall is impermeable, d (x,y,,,t).ii=O , except for
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the disc of the jet orifice. We call d the jet diameter and r the velocity ratio between the
jet and the crossflow.

3.1.3.1. Wall

The effect of the wall is taken care of by the image method, with

x.,,, = x .,,,=- .I image X''~mg
y,,, -y and .,,,= .

YimageY an cI.Ymae OU:

, =image Z m,,=

Each vortex has an image vortex placed on the other side of the wall, which participates
in the velocity and velocity gradient integration. The effect of these image vortices is that
of an inviscid wall.

The fact that the velocity normal to the wall is zero implies that no elements should
cross it. However, this can happen during the diffusion, or even during the convection,
due to the discrete nature of the simulation. To avoid this problem, vortex elements that
cross the walls are reflected in the domain. This yields y,,w = -yro,, and

@.fne = -@.er,, . In the jet calculation, the same elements are used for all the transported

properties. Thus, the crossing of a transport element is taken care of in a similar fashion
to that of the vortex elements, they are simply reflected. This yields y,,. = -yr,, and

V T.fw = VT.'ross -

When post-processing the data in order to recover the temperature field from the

gradients, the image method is used, with

Ximage = x VT.,image = VT.5

ymage = - y and VT.pijmage =-VT.

Zimage = Z VT.1image = VT.i

Each gradient has an image placed on the other side of the wall, which participates in the
temperature integration. The image method prescribes the temperature at the jet exit to
unity.
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3.1.3.2. Symmetry Plane

Due to the symmetric nature of the problem, the simulation is performed in the z-negative
domain. The algorithm starts by computing the influence of the particles in this domain
on themselves, then it computes the influence of the particles across the z=O symmetry
plane on the previous one, with:

ximage = X Co'image =- C.2

yi,,,a,, = Y , sYimage = - .y

Zi,,ge = - Z Zimag = Z

The contributions of the computational
across the symmetry plane, their images
Eq.(21) and Eq.(22).

3.1.3.3. Jet Outflow
3.1.3.3.1. Vortic

VTi5,-mage = VT.

and VT.i,mage = VT.J

VT.image = -VT.I

elements on themselves, the virtual particles
and the jet are added before solving Eq.(19),

ity

The jet outflow is represented by a semi-infinite cylindrical vortex sheet of radius
R = 0.5 extending from y = 0 to y = -oo, with the strength 2re, [15]. The vorticity in

this cylinder is mollified by the same core function as the one used for vortex elements.
rAt

Numerically, vortex elements are placed on the cylinder every -- in the negative y-
2

rAt
direction, starting at y = - and ending at ym' a user-defined parameter, typically

YMAX = -5. These elements have weight [15]

(odV) =-r At A9694

where e8, is the tangential unit vector in the x-z plane and AO = -, n, being the
no

number of vortex distributed along the circumference of the cylinder, i.e., the azimuthal
discretization.
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Figure 24: Discretization of the cylindrical vortex sheet representing the jet ouflow [15].

Also, to compensate for the vorticity produced in the jet boundary layer at the nozzle exit,

a single vortex sheet is introduced in the flow at every time step at
r At

y = - with the
4

strength
r2r

(codV)= r -rcos() AtAOiO
4 4

r(sno)-r2At. A'O+ -sin(O) -r2At sin(O) AtA6i4 8

A complete description of this vortex sheet can be found in [15].

Scalar Field

As for the boundary generation of vorticity, a single sheet
introduced in the flow at every time step. We first tried a "first

of scalar gradients is
order" implementation

a single sheet
rAt

of gradients introduced at y = - with
4

the strength

(VTdV) = -RhAi,r, where h represents the time step multiplied by the vertical velocity

at the location of the particle. This implementation of the boundary conditions is not
accurate enough. In fact, even with a small time step, the gradients will not be aligned in
the negative e^, -direction, especially not at the early stage, when the jet is forming.
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Figure 25: Insertion of gradient elements near the nozzle.

A much better implementation of these conditions is done by letting evolve a ring of
Lagrangian points with R=0.5 placed in the xz-plane at y= 0 during the previous time step.
Thus, this ring is advected using the 2 "d order Runge-Kutta scheme. As shown in Figure
25, the surface between the two rings is then discretized by 2 no triangular elements. An

element is placed at the barycenter of each triangle; its strength is given by the area SA
of the triangle and its direction by the normal,

(VTdV) = -(Tj,,, - T.)gA

with Tet =1 and T. =0, this yields

(VTdV) = -8Ah

where ii is the normal pointing outwards of the triangle surface.

3.2. Results
3.2.1. Numerical Parameters

Numerical parameters were chosen as follow: the core radius 8 is chosen to be 0.1 and
the number of elements discretizing vorticity and temperature gradients introduced along
the nozzle, i.e. the azimuthal resolution, is n, = 128. The axial resolution depends on the

time step At. The product between the time step At and the jet velocity r is chosen to be
less or equal to the grid size. For r =5 we have At = 0.01 and Ax = 0.035. Thus, the grid
size is 29 times smaller than the jet diameter. All the following simulations were
performed at a Reynolds number Rec = 300 based on the crossflow, a Reynolds number

Rej,, =1500 based on the jet velocity, and a Grashof number such that Gr / Rec =5, and,

consequently, Gr / Re2,, =1. Because of diffusion, the vorticity support expands and the

number of particles grows in time. To control the number of particles, particles with its
strength below a cutoff value are deleted after each diffusion substep. The cutoff value
for deletion is chosen to be IcodVId,, = 10-8 and IVTdVIdI, = 108 . The number of elements

at the end of the simulation is around 500,000 for the non-buoyant case and 750,000 for
the buoyant case.
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3.2.2. Passive Scalar Transport

Figure 26, 27 and 28 show the vorticity isosurfaces, jcoj =15, of the non-buoyant

transverse jet of initial radius R=0.5 and velocity ratio r=5, at T=3. The jet is contoured
by spanwise vorticity w4. These figures clearly show the development of ring-like

vortical structures, the Kelvin-Helmholtz's instability, and the formation of two counter
rotating vortex pairs (CVP, figure 26). Figure 30 presents the vorticity contours and
streamlines in the xy-plane at z=0. A complete description of the flow physics can be
found in [15]. Vorticity contours and streamlines are plotted in a 2D cut in the xy-plane at
z=0 to show the jet trajectory at T=3. The distortion of the temperature field because of
diffusion, ring-like vortical structures and the CVP can be observed in Figure 30 and 31,
in which the temperature contours and temperature isosurface, 9=0.2, of the evolution in
time of the jet are plotted at T=0.75, 1.5, 2.25 and 3.

These results have been compared with those obtained by Wee and Ghoniem in [39] for
the validation of the vorticity field. Further discretization refinements left the trajectories
and vortical structures unchanged, suggesting that this problem is well resolved. The
temperature field evolution is well resolved for i F 3, but a better discretization, i.e., a
smaller grid size, is required during the diffusion step to push the simulation further. In
fact, smaller scale vortical structures appear after T =3. A convergence study is
performed by repeating the same simulations for different grid sizes, Ax =0.025, 0.035
and 0.05. The number of elements at T =3 of the finest simulation is around 1,350,000.
The temperature field is computed on a three-dimensional Cartesian grid, -1.55 x 4.5,
0 5 y 5 and -2 s z s 0, by performing our fast summation over all the computational
elements. The temperature integral, plotted in Figure 32, is then obtained by performing a
summation over all the grid points. This plot shows the convergence of the method. In
fact, the temperature integral slope should be constant, as it is the case for the two finest
simulations. We note a slow decrease in their temperature integral for T > 2.5, but this is
mainly due to the fact that the domain of integration of the temperature field is finite.
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Figure 26: Vorticity isosurface, w =15 , of the non-buoyant transverse jet of initial
radius R=0.5, r=5, at T=3. Jet contoured by spanwise vorticity o,.
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Figure 27: Vorticity isosurface, co =15, of the non-buoyant transverse jet of initial

radius R=0.5, r=5, at T=3. Jet contoured by spanwise vorticity cog.
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Figure 28: Vorticity isosurface, |co| =15, of the non-buoyant transverse jet of initial
radius R=0.5, r-5, at t=3. Jet contoured by spanwise vorticity co .
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Figure 29: Vorticity contours and streamlines of the non-buoyant transverse jet of initial
radius R=0.5, r=5, at t=3, 2D cut in the xy-plane at z-O (3D Simulation).
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Figure 30: Temperature contours of the evolution in time of the non-buoyant transverse
jet of initial radius R=0.5, r=5, at T=0.75, 1.5, 2.25 and 3, 2D cuts in the xy-plane at z-0
(3D Simulation).
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Figure 31: Temperature isosurfaces, 0 = 0.2, of the evolution in time of the non-buoyant
transverse jet of initial radius R=0.5, r-5, at t=0.75, 1.5, 2.25 and 3.
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Figure 32: Temperature integral of the non-buoyant transverse jet
r=5, for different resolutions.

of initial radius R=0.5,

67

4.5

4
------- dt=0.02, dx=0.05

- - dt=0.01, dx=0.035
dt=0.005, dx=0.025

3.5-

3
a,
C

a,

a,

E
a,

I-

2

1.5

1

0.5 I-

0
0 0.5 2.5 3



3.2.3. Buoyant Transverse Jet

Figure 33, 34 and 35 show a comparison between the non-buoyant and buoyant jet-in-

crossflow isosurfaces, aIo =15, at T=3. The jet is contoured by spanwise vorticity Co.

Again, the development of ring-like vortical structures and the CVP can be observed. The
plot shows that buoyancy significantly contributes to the upward motion of hot fluid. In
fact, due to the density difference between the jet and the crossflow fluids, the trajectory
of the buoyant jet is not as tilted as the one of the non-buoyant jet. Vorticity is added at
the temperature gradient locations due to baroclinic generation and it allows the buoyant
jet to penetrate deeper in the crossflow. It is even more interesting to observe vorticity

isosurfaces, col =20, of both cases in Figure 35 in 3D, in which only two KH rings and

the CVP can be seen at T =3 for the non-buoyant case.

Temperature isosurfaces, 9=0.2, 0.3 and 0.4, of the transverse non-buoyant and buoyant
jet are plotted in Figure 37, 38 and 39 under different views at T=3. These figures show
first that, due to the baroclinic generation of vorticity, the hot fluid rises faster to the top,
but also that, the hot liquid mixes faster with the crossflow fluid due to the presence of
more vortical structures on the back side of the jet.

To quantify the vorticity difference between the non-buoyant and the buoyant case and
show the impact of buoyancy on the temperature field and the jet trajectory, we plot the
2D cuts in the xy-plane at z=0 of the temperature and vorticity contours in Figure 40. We
note that the trajectories are similar for y 2D, before the jet vorticity diffuses and

before vorticity generated through baroclinicity has a significant effect on the flow field.
But buoyancy plays an important roles and, consequently, the buoyant jet has much
stronger vortical structures (core of the jet y 5 2D, KH rings and CVPs (Figure 35)). Its

behavior is, however, still close to the behavior of the non-buoyant jet for y 5 4D.

Qualitatively speaking, for y 4D, the vortical structures of the buoyant case with a

velocity ratio r=5 correspond to the ones of the non-buoyant case for a velocity ratio r=7
or 8.
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Figure 33: Vorticity isosurface, Icol = 15, of the buoyant transverse jet of initial radius

R=0.5, r--5, at t=3. Jet contoured by spanwise vorticity co,.
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Figure 34: Vorticity isosurface, col = 15, of the transverse non-buoyant (left) and
buoyant (right) jet of initial radius R=0.5, r=5, at T=3.
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Figure 35: Vorticity isosurface, col = 20, of the transverse non-buoyant (left) and

buoyant (right) jet of initial radius R=0.5, r=5, at T=3.
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Figure 36: Vorticity contours and streamlines of the non-buoyant transverse jet of initial
radius R=0.5, r=5, at T=3, 2D cut in the xy-plane at z=O (3D Simulations).
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Figure 37: Temperature isosurfaces, 0 = 0.2 (top), 0.3 (middle) and 0.4 (bottom), of the
transverse non-buoyant (left) and buoyant (right) jet of initial radius R=0.5, r=5, at T=3.
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Figure 38: Temperature isosurfaces, 9 = 0.3 (top) and 0.4 (bottom), of the transverse non-
buoyant (left) and buoyant (right) jet of initial radius R=0.5, r-5, at t=3.
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Figure 39: Temperature isosurfaces, - 0.3 (top) and 0.4 (bottom), of the transverse non-
buoyant (left) and buoyant (right) jet of initial radius R=0.5, r=5, at T=3.
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Figure 40: Temperature (top) and Vorticity (bottom) contours of the transverse non-

buoyant (left) and buoyant (right) jet of initial radius R=0.5, r=5, at t =3, 2D cut in the
xy-plane at z=0 (3D Simulations).
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4. Multi-Purpose Adaptive Treecode

4.1. Problem Definition

Lagrangian simulations using vorticity or gradients as particle weights require the
solution of several differential equations that model the convection and source terms in
the original conservation equations, to update the field. One after needs to compute the
vortical velocity, u,, from the vorticity field, w. One also needs to obtain the expansion

velocity, u,, from the divergence field, e, generated by the volumetric expansion of

material elements due to, e.g., a chemical reaction. In the case of using gradients for the
primitive variable, e.g. in the transport element methods, there is also a need to recover
the conserved scalar field, s (or 0 in the main texts), from the information on its gradient,
g. Additionally, the evolutions of the weights of vortex elements and/or transport
elements rely on the information regarding the gradient of the velocity field. Thus, it is
necessary to compute Vu. and Vu, simultaneously from o and e directly.

In summary, the problem can be restated as follows. During each time step of the
simulation, it is necessary to invert one or many of the following equations:

0= V x u, (56)

6 =V. -, (57)
g = Vs. (58)

That is, knowing o, e, and g, we need to calculate u, u,, and their gradients, as well

as s. o, ., and g are all discretized into Lagrangian computational elements or particles:
N

O(x, t) W, (t)f (X - X (t)), (vortex elements; 59)
j=1
N

E(x, t) & Ej(t)f,(x - X(t)), (divergence elements; 60)
j=1
N

g(x,t) ~ LGj(t)f8 (x - Xj (t)), (transport elements; 61)
j=1

The weights W,, E,, and Gj correspond to the vorticity, divergence, and gradient

assigned to each computational element, i.e., W, = [odV]3 , Ej = [edV] 1 , and

G =[gdV]j. Xj is the location of the jth particle. f8 is a desingularized radially

symmetric core function of radius 8, given by f,(x)=8 3f(Ix / 8). The function f
must be smooth and rapidly decaying at infinity. In this work, we use the low-order
algebraic core function [16,33].

3 1
4r (1+ p 2)5 2

In R3 , the solution of (56) is given by the Biot-Savart law.
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u.(x)= - IJXY 1 x O(y)dy. (63)
4yr ix - y|

With (59), (63) can be rewritten as follows:
N

U.)(x)=L K,(x, )x W, (64)
j=1

where K. is the Rosenhead-Moore kernel

K6 (x, y)= 32 (65
4n= (Ix -y1 2 +g2)3/2 (65)

In a similar way, one can invert (60) and (61) as follows:
N

U, (x)= -LK,(x, ) Ej ,(66)
j=1

N

s(x)= -LK,(x, ) -Gj . (67)
j=1

The velocity gradients are obtained by taking the gradients of (64) and (66).
N

Vu,(x)= VK,(x,xj)x W,, (68)
j=1

N

Vu,(x)= -LV.K,(x,xj)E1 . (69)
j=1

The summations in Eq.(64), (66), (67), (68), and (69) necessitate the evaluation of
particle-particle interactions, whose cost scales as O(N 2 ), where N is the number of
computational elements. The corresponding computational load grows up quickly as we
increase the problem size, we must perform these operations using an adaptive tree-code
that limits the computational load roughly within O(N log N). In the following section,
we describe the adaptive

4.2. Overview of the tree-code

Our multi-purpose tree-code is based on the work in [33]. Particles are divided into a
nested set of clusters by constructing a tree, and particle-particle interactions are replaced
by a smaller number of particle-cluster interactions. The tree construction starts with the
root cell containing all the particles. The cell on the next level is obtained by bisecting
one of the cells at the current level in one of the three coordinate directions. When every
terminal cell in the tree contains a number of particles smaller than the smallest leaf size,
No, which is predefined by the user, the process terminates and returns the tree structure.
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Figure 4 1: Particle-cluster interactions, where y, denotes the cell center of the cluster

C, and x, is the point where the quantities are computed.

Once the tree is constructed, (64), (66), (67), (68), and (69) are rewritten in the following
form:

N,

U, (x)=YYK.(x, X)x Wj, (70)
C j=1

N,

VU. (x)= E V.K, (x,Xj) x Wj (71)
C j=1

N

U, (x)=- E K,(x, Xj) Ej (72)
C j=1

Nc

VU, (x)=- E V.K,(x, Xj) Ej (73)
C j=1

N,

s(x)=-1 K,(x, X) -Gj (74)
C j=1

where c denotes a cluster containing Nc particles. The particle-cluster interactions are

evaluated either by using Taylor approximation or by direct summation, following the
same strategy described in [33].

The procedure uses a complex combination of theoretical error estimates and
empirical computational time estimates to determine the best order of the approximation
and the best size of the cluster. In fact, the algorithm starts with the root cell containing
all the particles. On each level the cells are uniform cubes; the cells on one level are
obtained by bisecting the cells on the previous level in the three coordinate directions.
Finally, the tree is adapted to the particles distribution by leaving undivided any cell
containing fewer than a user-specified number of particles No . The procedure determines

then the minimum order p satisfying the accuracy criterion, and a run time choice is

made between Taylor expansion and direct summation. If approximation is faster, and the
required order smaller than a user-specified parameter, the Taylor approximation is
performed. If direct summation is faster or high-order approximation is required, then
direct summation is performed if the cluster c is a leaf (Nc s; NO). Otherwise, the code

descends to the next level of the tree and recursively calls itself for each child C^ of
cluster c.
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The accuracy parameter is taken to be,

MO(8)

M0 (c)

where
N

Mo(c)=Zko aI,
j= 1

is the total weight of the particles in cluster c. Thus, the accuracy parameter is distributed
to children in proportion to their weight. A parallel implementation of the same algorithm
that uses k-means clustering to distribute the load among a number of processors is
documented in [34].

4.3. Taylor Approximation

To derive a Taylor approximation for a particle-cluster interaction, K,8 (x,y) in (70) is

expanded in a Taylor series with respect to y, around the cluster center y, such that
Nc N

EK,(x,Xj) x Wj =E K,(x, yc + (Xj -y)) x Wj
j= 1  j= 1

D K(x, y) (xy)xW (75)
j=1 k k!

= ak (x, y) x mk (c).
k

Here, ak (x,yc) is the kth Taylor coefficient of K,(x,y) at y = y:

ak (x,y ) =-1D 1 K,(x,y), (76)

and m (c) is the kth moment of the vortex elements in cluster c about its center yc:
N,

mC (c)l ~ k -y)Wj. (77)
j=

1

k =(k,k 2,k3) is an integer multi-index with k, >0, and k!= k!k 2 !k3 !. For xreR 3, Xk

is interpreted in a standard way, i.e., xk, X2k2 x3, e R. The infinite series in (75) is

approximated by a finite sum,
N

K,(x, Xj) x W ~ a(x,yC)x mE(c), (78)
j=1 lkls p

where lk l=k +k2+ k3 . The order of the approximation, p, must be chosen so that the

error due to the truncation remains small.
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For the particle-cluster interactions in (71), a similar series with different set of Taylor
coefficients is developed.

N.: N,

Z VK,(x, Xj)x W =E VK,(x,y, +(xj -y,))x Wj
j=1 j= 1

DkVK,(x,yc) (xy)xW (79)
j=1 k k!

Y ck (X,yc)xm (C),
k

where ck (X, y) is the kth Taylor coefficient of VK,6 (x, y) at y = y:

Ck,(XY)= Dk V K(x,yC), (80)

which yields a three-by-three matrix for each set of (x,yc). Again, the infinite sum is
truncated into a finite one up to an appropriate order p:

N,

EVK,(x,X )xW ~ W ck(x,yc)x mk(c). (81)
j=1 lkisp

To evaluate either (78) or (81), we need the Taylor coefficients, i.e., ak or ck. A

efficient method to obtain ak was proposed in [33]. The Rosenhead-Moore kernel (65) is
given by the gradient of the Plummer potential:

K,(x,y) = -V,#O's(x,y), (82)
where

1 1
#8 (x,y)=-- (I X 2 + .2)1/2 (83)

We set the kth Taylor coefficient of , (x, y) at y = yc as

bk (X,yc) = Dk,(x,y'). (84)

Then, ak is related to bk as follows [33]:

1
a(xyc) =-DK (x,y )

= D (-V,#(X, y)

k' 3
=-D jeD,',(x, yC) ,(85)

=- e Dy **#ixo ,

3

-e, (k, + 1) bk+e (x,Yc)
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where e, is the ith Cartesian-basis vector. Therefore, to compute ak, it is sufficient to

obtain bk . The calculation of bk is performed recursively to reduce the computational
load, using the following formula [33]:

IkI R2 bk -(2Ik1-1) (x-y) eibk-e, +(I k-1)L b 2e, = 0 , (86)
i=1 i=1

for Ik I>..1, where b(x,y)=0,(x,y) , bk (x,y)=0 if any k, <0, and R2 =IX_ 2  2

To utilize the same machinery, we develop a similar relation for ck here:

Ck(XY) ID 1 (V K'5 (x,y))

= D e,D,'L ej D,',(x, y) (87)

(e 1 +eD, )! bk#,(,e x~
i=1 j=13 3 (k+e+ey)

e~e' k' b ,yc)

i=1 j=1 -!

with
(k+e, +e)! (k, +1)(k, +2) for i=j

k! (k + 1)(kj +1) otherwise (88)

Therefore, just as ak, Ck can be obtained from bk. The only difference is that we need to

evaluate bk up to one order higher than that required for ak. The additional cost of one

more order does not matter much in most calculations, since most of particle-cluster
interactions are dealt with at relatively low orders, namely, p 6. As clearly seen in

(87), Ck is symmetric in its indices, i and j, and we thus evaluate only six components

instead of all the nine components separately.
A similar construction has been developed for the particle-cluster interactions in (72),

(73), and (74), that is,
N,

K,(x, Xa) E k ~ (x,y)m (c), (89)
j= Iklsp

N

EV.K,(x, Xj) Ej ~t ECk (x"yc)M'(C), (90)
j=1 IkIsp

where
N,

m "(c) =k (x -y )kEj, (91)
j=I

and
N,

K )k(X,yc)-m(c), (92)
= kIkI!p
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where
N,

k (C)= (Xi -yc)kG . (93)
j=1

Since all of these relations only require the evaluation of the same coefficients, namely,
ak and ck, the process can be efficiently integrated in a single tree-code.

4.4. Results for the velocity gradient case

In this section, we examine the accuracy and CPU time of the tree code fast summation
(Taylor approximation) in comparison with the direct summation using one data file
coming from the interaction of two vortex ring.
Two separate ring are placed in the unbounded three-dimensional space (Figure 42),
where s denotes the initial distance between the two centers. Each ring consists of a
single closed filament, which is subdivided in 64 elements with a = 0.1, where a is the
radius of the cutoff function. The ring has a unit circulation and a unit radius, i.e. F =1
and r =1. The Reynolds number is defined as Re= F/v .
The data file is taken at t=4.8s. At this time the number of elements was 163,521 (Figure
42). The velocity gradient is computed on a regular grid with
x/d e {-2.5; 2.5}, y/d E {-2.5; 0.5} and z/d E {-2;2}. This grid contains 20580 points.
The order of approximation depends on the accuracy parameter, the exact solution was
computed using direct summation and an approximation was computed using the tree
code for three values of the accuracy parameter, e =1-',10-2,1 0-.

The norm of the gradient matrix A is defined as A aj. The recorded

relative error is the maximum value over all grid points of the relative error. We also
computed the maximum value over all points of the gradient trace. Indeed, due to
incompressibility, a velocity gradient matrix should have zero trace.
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Accuracy DS 10~1  10-2  10-3

Computing time (s) 755.89 20.17 25.96 41.87

Max relative error 3.65E-01 3.04E-02 2.50E-03

Max trace value 7.21E-16 6.66E-16 5.55E-16



For three values of the accuracy parameter, 6 = 10', 102, 10-, the trace of the velocity

gradient matrix is about 10-' (the code was implemented in double precision). As
observed in the tabular, with the accuracy parameter e = 102 for instance, the relative
error is about 3 % and the CPU time is only 3.4 % of the direct summation time. Figure
43 shows the number of interactions for each case. The number of interactions is the
number of cells multiply by average of particles per cell at each order. For e =102 , most
of the Taylor approximation are performed with an order p = {4,5,6}.

Hence, the velocity gradient of each particle is evaluated by an adaptive treecode
algorithm based on Taylor approximation in Cartesian coordinates. The necessary Taylor
coefficients are computed by a recurrence relation. The algorithm uses a divide-and-
conquer strategy to evaluate the particle velocity gradient: the tree consists of non-
uniform rectangular clusters adapted to the particle distribution. For each particle-cluster
interaction, the order of approximation is chosen adaptively and a run-time choice is
made between Taylor approximation and direct summation. Tests were performed to
check the algorithm's accuracy and efficiency. The exact solution was computed using
direct summation and checked using the existing tree code which computes the velocities
and finite differences.

Figure 42: View of vortex element distribution at t=4.8s. Only element with jodV j 10-4

are plotted left, and all the elements are plotted right.
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Figure 43: Number of interactions with targets points in the tree code as a function of the
order of expansions in Taylor approximation. If direct summation is faster or high-order
approximation is required, then direct summation is performed if the cluster c is a leaf
(N, NO). Here No =128.
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5. Conclusion

5.1. Transport Element Method

Vortex methods have been used in the simulation of high Reynolds number complex
flows, especially when fast transitions and strong distortion of the underlying vortical
structure of the flow are expected. The Lagrangian, self-adaptive nature of the
calculations makes it possible to resolve strong gradients wherever and whenever they
arise, while maintaining a coarse resolution when uniform zones continue to exist. For
this reason, vortex methods have been particularly successful in resolving the evolution
of shear layers. In cases when the flow is driven by body forces, that is, when the
vorticity is continuously generated by the interaction between the density gradients and
the pressure gradients, it is important that the vorticity source term is also evaluated
accurately. Since flow gradients are involved in computing the source terms, it is
important to apply compatible schemes in simulating the flow dynamics and the
evolution of scalar gradients. The method presented here achieves this compatibility.

Solution of a number of buoyancy driven generic flows in three dimensions demonstrates
the success of the method in resolving the temperature gradients and the corresponding
vorticity structures, and in particular show its convergence. Complex vortical structures
that arise in the early and late stages were reproduced.

The method shows sub quadratic convergence for the buoyant spheres because the source
terms integration is first order. However, this is not an inherent limitation and one can
improve the convergence order by applying second order integration for the source terms,
as in the jet-in-crossflow case, in which the vortex and gradients elements have been
reduced to a single kind of particle, carrying both the vorticity and temperature
information. Second order interpolation kernels are also available for diffusion, and high
order splitting can be used.

5.1.1. Future Work

The present algorithm can be optimized by computing the maximum time step allowed

for every time step. We can either use Olax , determine the maximum element strain as

in Bradly et al [38] or compute the acceleration term as done by Brecht and Ferrante
[30] when using a leapfrog method. In our case, a 2nd order Runge-Kutta scheme is
used, so the best way to solve this issue might be to base the time step on a maximum
element strain criterion.
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5.2. Jet-in-Crossflow

The Transport Element Method has been used to investigate the buoyancy effects on the
transverse jet problem. The non-buoyant and buoyant cases were compared by giving a
complete description of the flow fields. The combination of vortex methods, the TEM
and our multipurpose adaptive treecode allow us to perform accurate and time efficient
simulations of the jet, the major difficulty in this problem being the accurate description
and implementation of the boundary conditions at the nozzle exit for both the vorticity
and the scalar gradient introduction.

5.2.1. Future Work

The present paper suggests a number of avenues for future work, the first being the
development of the transverse reacting jet. Its implementation should be pretty
straightforward now that both the buoyant transverse jet and the reacting algorithm have
been developed. In fact, as it is done for the reacting algorithm, the scalar gradient in the
transverse jet code will simply be replaced by the gradient of the Schwab-Zeldovich
variable. The scalar field will be computed every time step using the treecode and the
distribution of all the reacting species, the reaction front location and the temperature
field will be recovered from this conserved scalar value. The density change in time will
be a source of volumetric expansion.

The resulting code will be two or three times slower than the current jet-in-crossflow
algorithm, but it is still acceptable since the current algorithm only required 10 hours on 3
CPUs to compute the evolution of the buoyant jet presented in 1.1.1 until t = 4s . The
new algorithm will require a bigger amount of memory though.

Secondly, it seems really important to formulate a better model for vorticity introduction
and the in-pipe flow structure. In fact, with the current implementation, we are not able to
capture the hovering vortex structures in the pipe and a single vortex sheet is introduced
in the flow at every time step to compensate for the vorticity produced in the jet boundary
layer at the nozzle exit, the slip of the crossflow velocity over the jet orifice and the fact
that the crossflow velocity does not penetrate into the jet at y=0. Wee and Ghoniem
provide a complete description of the vorticity introduction mechanisms and shows that
the wall boundary layer separation is critical in understanding jet behaviors in [39];
however, in-pipe vortical structures are still not captured.

A better analysis of the flow physics should also be realized, for both the buoyant and the
future reacting jet. When studying the vorticity field, the stretching rate

D 11_)12) c.(.Vu)
Dt 2 gel az

is generally analyzed.
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The same way, the "squeezing rate"

D( 1 12) - .(k.Vu)
Dt 2 Ik|g2

should also be outputted and analyzed; k represents the transported scalar gradient here.
Many efforts have been made on elucidating the mechanisms underlying the formation

of organized vortical structures in the near field and the subsequent breakdown of these
structures into small scales for the non-buoyant case. We have now to understand how
buoyancy will affect this vortical structure, how it will affect the mixing rate between the
fluid coming from the jet and the ambient fluid. Finally, we have to understand how
buoyancy will change the entrainment of the ambient fluid.
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