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Abstract

This thesis investigates technical issues concerning the automated gen-

eration of highly regular VLSI circuit layouts (e.g. RAMs, PLAs, systolic

arrays) that are crucial to the designability and realizability of large VLSI

systems. The key is to determine the most profitable level of abstraction,

which is accomplished by the introduction of true macro abstraction, inter-

face inheritance, delayed binding, and the complete decoupling of procedural

and graphical design information. These abstraction mechanisms are imple-

mented in the Regular Structure Generator, an operational layout generator
with significant advantages over first generation layout tools. Its advantages

are demonstrated by a pipelined array multiplier layout example. A leaf cell

compactor that can make the RSG technology transportable is also investi-

gated.
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Chapter 1

Introduction

1.1 Motivation

Circuit designs with highly regular and repetitive layouts are an effec-

tive solution to the VLSI design bottleneck, and therefore occur quite often

in large VLSI systems. Familiar examples of regular circuit structures are

RAMs, ROMs, PLAs, and array multipliers. In addition, recognition of the

importance of regularity in VLSI systems has given rise to a large and con-

tinually growing collection of new regular structures for applications in signal

processing, image processing, data structures, and CAD, to name a few. Since

these designs are computationally powerful and widely applicable, there is a

great demand for circuit design tools that make these structures generally ac-

cessible. This thesis describes a CAD tool, the Regular Structure Generator

(RSG), that helps meet this demand by performing automatic generation of

regular structure layouts and providing the means to efficiently capture, in

all their richness and variety, most practical regular circuit designs.

Despite the uniform and repetitive appearance of their layouts, effective
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regular structure circuits are not simply bland arrays of identical, abutting

cells. In practice, there is always some degree of complexity along the edges of

a regular array, and each design instance must be parametrically personalized

with respect to problem size and functionality. This requires the placement of

a variety of cell maskings that implement such options as transistor and bus

sizing, cell interfacing, clock assignment, and functional encoding - a task

which cannot be accomplished by the simple array generating commands

found in graphics editors. Although regularity does permit most regular

structures to be personalized in an algorithmic manner, a high degree of

flexibility is still required in the placement and orientation of the cells and

cell maskings. Insofar as first generation VLSI layout tools lack this high

degree of flexibility, there is an opportunity for developing more advanced

module generators that fulfill this need.

The RSG was developed with this approach to regular circuit layout in

mind. The input language used for the procedural specification of circuit

architecture is a subset of Lisp. Consequently, abstraction mechanisms are

available to support a highly functional set of primitives for defining regular

structures and evaluating the complex conditionals required by personaliza-

tion and edge effects. Personalization is further supported by the ability to

arbitrarily place and orient cells according to interfaces defined-by-ezample

in the graphical domain. All design information is efficiently partitioned into

procedural and graphical form.

A circuit layout is generated from the following inputs (Figure 1.1): a

design file, which is a parameterized, procedural description of the archi-

tecture; a layout file, which is a graphical specification of cell layouts and

interfaces; and a parameter file, which provides the size and functional speci-

9
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Figure 1.1: RSG Layout Generation

fications for the particular case. By completely decoupling the graphical and

procedural domains, a level of modularity is obtained which achieves local

eficiency in layout generation, and global efficiency in the management of

new architectures, layouts, and interfaces to other CAD tools.

The RSG also supports macro abstraction, i.e. the specification of macro-

cells as interconnections of smaller cells whose binding to actual layouts can

be delayed to any desired time. In addition, interface inheritance relations

provide a procedural means for defining interfaces between any two macro-

cells: a new interface between two macrocells can he computed from any legal

interface between a subcell in the first macrocell and a subcell in the second.

As a result, macrocells can be used to specify even more complex cells in an

entirely procedural manner with no need for additional layout.

At this stage of the discussion, all of the RSG's functionality appears to

exist in other layout generators. For instance, procedural specification of

circuit layouts is as old as silicon compilation itself, and essentially defines it.

The novelty of the RSG is not its use of procedural specification, but rather

10
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the level of abstraction at which it is used. Failure to choose an optimal

level of abstraction complicates the user interface, and forces the designer

to concentrate as much on the internal constraints of the generator as on

the functionality of the circuit being designed. Examples of this are layout

generators that require placement of cells by strict abutment, or that do not

support true hierarchical macro abstraction.

The significant contribution of the RSG is efficiency, not computability,

of design. That is, the RSG does not produce any circuit layouts which,

given unlimited effort, could not be produced by other layout generators.

The result of this efficiency, however, is a tool that performs well in practice,

not just in principle, in a realistic VLSI design setting.

1.2 Comparison with other layout generators

1.2.1 Module generators and Silicon Compilers

Specialized VLSI module generators produce layouts of a particular ar-

chitecture to implement a specific logic function such as PLAs, ROMs, or

Weinberger arrays. These module generators produce layouts of a specific

style of implementation in a specific technology. For example a PLA gener-

ator might generate PLA's with a standard NOR/NOR architecture, imple-

mented with CMOS precharged gates. Such specialized module generators

are capable of generating highly optimized layouts within the restricted class

they are designed for. This is because these generators can incorporate spe-

cific knowledge about the details of their particular implementation. For

instance a PLA generator which incorporates knowledge about the particu-
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lar process technology and type of circuitry used can be made to size power

busses and transistors according to some speed and power criteria. The dis-

advantage of these specialized module generators is that their scope is limited

to the applicability of the specific function they implement and to the specific

process technology they use. Other module generators such as HPLA also

generate a single architecture but allow freedom in the implementation and

choice of technology. All of these module generators take as their input a

configuration specification (in the case of a PLA this would be the number

of inputs, outputs, product terms and the truth table) and not a high level

functional specification, or an architecture specification because functionality

of the output layout is implicit in the single architecture they implement.

Silicon compilers start with a functional specification as their input. How-

ever current silicon compilers are not capable of determining and implement-

ing the optimal architecture for a given functional specification and tech-

nology. These programs use a single canonical architecture into which most

functional specifications can be compiled to implement all functional specifi-

cations. Their success depends on how well the canonical architecture they

use is suited to the functional specification at hand. Macpitts[291 uses a data

path implemented with registers, adders, and shifters, and a control path

implemented with a Weinberger array as the canonical architecture. While

such an architecture may be suited for some applications it clearly is not

suited for applications in signal processing which require an efficient imple-

mentation for multiplications. Hence even if the program succeeds in keeping

the transistor density high by packing a lot of circuitry in a small area, the

functional density measured by how much silicon it takes to implement a

given functionality is low. This is due to the inappropriate implementation

12
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Generality Efficiency

1 Canonical Multiple 4 1 Architecture

Architecture Architectures per Function

1 Framework

* Macpitts · RSG * HPLA[6]

* Bristle blocks[14] * Multiplier Gen.[5]

· F.P. ALU Gen.[4]

Figure 1.2: Comparison with other layout generators.

architecture where many more transistors are required than would be the

case with a suitable architecture. Early versions of Macpitts required about

5 times the area than would be the case for layouts generated by hand.

Unlike specialized module generators and today's silicon compilers the

RSG can generate many different architectures with just one framework. By

matching the architecture to the functionality a level of generality greater

than that of specialized generators can be achieved without the loss of effi-

ciency incurred in current silicon compilers by a mismatched target architec-

ture. Another big difference between silicon compilers and the RSG is that

silicon compilers start with a function description of the problem whereas the

RSG starts with user-defined primitive cells and cell connectivity information

(as shown in Figure 1.1). Figure 1.2 shows how the RSG is moving toward

greater generality than specialized compilers without the loss of efficiency

incurred in todays silicon compilers.

1.2.2 RSG as a superset of HPLA

The RSG expands the scope of HPLA by allowing many different archi-

13
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tectures to be generated with the same benefits as in the case of HPLA, but

with just one framework. Though many of the features of the RSG can be

explained and justified independently of HPLA, HPLA ideas have inspired

and motivated the design of the RSG. HPLA does not support many of the

key features of the RSG such as macro abstraction, inheritance and macro

cell abstraction. Also the algorithms and software techniques used in the

RSG are totally different from those used in HPLA. HPLA uses a cell reloca-

tion scheme whereas the RSG uses interfaces and an interface table. However

both the RSG and HPLA use the idea that adjacent (primitive) cells in the

final layout interface in the same way as they do in the sample layout. Hence

in both programs the (primitive) cell definitions and spacing parameters are

extracted from a sample layout.

In HPLA the sample layout was an actual assembled PLA and hence had

the same architecture as the final layout. This constraint that the sample

layout be a fully assembled PLA is actually superfluous. Using the same

methods as those used in HPLA (i.e. relocation) it is possible to achieve the

same results from a sample layout consisting of the PLA cells with the only

other constraint being that all possible interfaces that might occur in the

final layout be present in the sample layout. The fact that the sample layout

was a two input, two output, two product term PLA was simply a way to

ensure that all the required cells and interfaces between them be present in

the sample layout because the architectural specification for PLAs is already

hard coded in the HPLA program itself and is not extracted from the sample

layout.

In the RSG this constraint is relaxed. This not only reduces the size and

complexity of the sample layout, but it also allows the same sample layout

14
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to be used in output layouts of various different architectures because the

implicit architecture always present in the sample layout does not constrain

the architecture of the final layout. The sample layout in HPLA was actually

larger than necessary and contained redundant information. For example

the sample layout for HPLA contained 2 (identical) instances of the and-sq

connect-ao interface when only one was required. In so doing it increased

the number of instances of and-sq and connect-ao making the sample layout

larger than necessary. The cells in many PLA sample layouts can also be used

to generate other layouts besides PLAs such as decoders and multiplexors

(decoders can be built from an AND plane with appropriate output buffers).

Hence requiring that the sample layout look like the finished product is not

only an unnecessary restriction it also reduces the scope within which any

given sample layout may be used.

The method (relocation) HPLA uses to generate new cells does not eas-

ily lend itself to cell hierarchy. This did not matter in HPLA because the

architecture that HPLA generates (i.e. the architecture for standard PLAs)

does not make use of cell hierarchy. Making use of cell hierarchy entails gen-

erating a macro cell from the primitive cells in the sample layout replicated

according to some parameter, and then calling the new macro cell in an even

higher order cell several times according to some other parameter. In the

relocation scheme the cell definitions for subcells of a higher order cell are

actually modified to suit the needs of the calling cell. This worked fine in

HPLA because there was only one calling cell, i.e. the complete layout of the

PLA. In a scheme which uses hierarchy there may be many higher order cells

(which can possibly be called in even higher order cells), that call the same

subcell. Each of these cells may request that the called subcell be modified in

15
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some particular fashion to suit its specific needs. These modification requests

can be conflicting. One way to solve the problem would be to create a copy of

the subcell for each of the calling cells. Hence each calling cell can modify its

copy of the subcell without conflicting with the modifications requested by

the other calling cells. The RSG however uses a simpler and more powerful

technique where this problem does not occur.

1.2.3 The description file verses the interface table.

Before HPLA can make a PLA from a sample layout it must first compile

the sample into a special file called the description file. This description file

contains the definition of all the. key cells where the cell definitions have been

modified as prescribed by the relocation scheme. It also contains the spacing

parameters (pitches) for the various cells. In HPLA, for the users convenience,

the process of making a PLA is divided into three parts each of which occur

at different times in the design cycle. This division of the generation process

allows delayed binding of the specifics of the PLA encoding until after the

PLA is fully installed into the rest of a layout. The description file is accessed

at each of these three phases, hence it makes sense to create the description

file just once and refer to it in each of the three phases of the PLA design.

In the case of the RSG the data structure corresponding to the description

file would be the interface table. However since the RSG produces the whole

layout all at once, it does not make sense to store the data structure into a

file and load it back immediately into the workspace and use it during just

one session. Therefore no temporary file is created.

The RSG can generate any PLA that HPLA can. It can also generate
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more complex PLAs such as PLAs with folded rows or columns. However

in HPLA the division of the generation process into three parts facilitates

recoding the PLA (or postponing its encoding) and speeds up the plotting of

the chip by leaving out the PLA's crosspoints until required, making HPLA

a little more convenient to use.

1.3 Thesis organization

* Chapter 2 lays down the mathematical foundations of interfaces, the

method the RSG uses for local placement constraints.

* Chapter 3 gives the overall RSG algorithm .

* Chapter 4 Describes the Language for specifying design files and de-

scribes in more detail the specifics of the underlying data structures.

* Chapter 5 Describes the design of a class of pipelined multipliers using

the RSG.

* Chapter 6 Is concerned with issues relating to building a special type

of compactor for use with the RSG.

Each chapter is organized so that the first Sections lay down the concept and

the foundations of the method and the last sections go into the details of

some important facet of the problem.

17
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Chapter 2

Interfaces

2.1 Cells and Instances

The RSG requires user-defined cells to hierarchically build larger cells. A

cell A consists of objects whose locations in the cell axe defined in terms of

a local coordinate system Ca with origin S,. The objects in A can be boxes

of various layers, points, and instances of other cells. An instance of a cell

B is the triplet (L, O, (cell definition)) where L is the point of call of

the cell B, 0b is the orientation in the call of B and (cell definition) is a

pointer to the cell definition of B (the superscript ' means that the location

or orientation is relative to a calling coordinate system). The effect of having

an instance of B in A with point of call L and orientation O' is that of

performing the isometry' O' on B ( is an isometry that leaves Sb, the

origin of the coordinate system within B unchanged), placing the origin Sb

of B at location L within the coordinate system of A, and finally adding to

'An isometry is either a rotation or a reflection.

18
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Lb

Figure 2.1: Instance of cell B in cell A.

A the collection of objects in B (see Figure 2.1).

2.2 Interface Definition

A key notion in the RSG is the interface. If instances of cells A and B

(the cells A and B do not necessarily have to be distinct) are to be called

within the same coordinate system, then cells A and B have an interface

between them. The interface between two cells A and B is the ordered pair

Ia = (Va, oab) (Ib 0 Iba) where Vb is the interface vector and Ojb is the

interface orientation. Vab is the vector whose starting point is the point of

call of A and whose endpoint is the point of call of B, if the instance of A is

held at orientation north (identity transform). Oab is the orientation that B

would have if the instance of A were held at orientation north.

Treating the orientations as operators with uo" being the operator com-

19
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position rule we have2:

o,,b = (O:)-' o (2.1)

Vb = (a)-' (L- L) (2.2)

The interface vector Va and interface orientation Oa are obtained by

deskewing the relative orientation of B i.e. and the vector (Lb - La) by

the inverse orientation of A (O)'- .

Figure 2.2(a) shows an instance of A and an instance of B called together

in a same higher order cell (characterized in the Figure 2.2(a) by it's coordi-

nate system (O, i, j)). The point of call La (respectively L) of A (respectively

B) is the location where the origin of A (respectively B) is placed in the call-

ing coordinate system (O, i, j). In order to obtain the interface Iab between A

and B we must first perform an isometry on the calling cell (the one with the

(O,i, j) coordinate system in Figure 2.2(b)) such that the new orientation

for the instance of A will be North. Since A is initially oriented South the

calling cell must be reoriented by South- ' = South (because 180 ° = -180 °)

so that A will ultimately be oriented North. Figure 2.2(b) shows the result

of the transformation of the calling cell. The interface vector is now the vec-

tor whose starting point is at the new point of call A and whose endpoint

is at the new point of call of B. The coordinates of the interface vector are

computed in terms of the new basis (i', j') which is the same as the old basis

(i,j) of the calling cell before the transformation was performed. The inter-

face orientation is now the the new orientation of B after the transformation

was performed.

The existence of an Iab interface between A and B automatically gives

20 - l is defined by O-l o O = o 0-1 = Identity.
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O- = South

i 0

Vl-tnterface vector

westrinterface orientation

o i'

Figure 2.2: Interface between two cells.
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rise to an interface In between B and A. The expression for the Ib, interface

can be obtained from equations 2.1 and 2.2.

Oba = O, o Ob

= ( 1 o 00b)-1

= 0b

(2.3)

(2.4)

ba = O (La-L)

= (O' o (O o O'))-(L - Lb)

= ((b o O,) o ;0,1)(La - Lb)

= (Oa o o')(La - Lb)

- (0 ' o 0,')(L, - Lb)

= -062(0; (L6 - L,))

- aVob

Therefore Ia = (Vb, Ob) =(-O va, o).

2.3 Advantages of using interfaces

Interfaces are a natural way of defining the relative placement and orien-

tation between instances of cells. Hence knowing the calling information of

a cell A in a cell C and knowing the interface between A and B it is pos-

sible to determine the calling information of B in C. The RSG allows the

user to specify the primitive cells and interfaces between them graphically,

by providing a layout file which will henceforth be referred to as the sample

layout. The sample layout contains the definitions of all primitive cells as

well as interfaces between them. An interface between cells A and B can be

defined by calling A and B together in a higher order cell C with the appro-

22

1PY-a(y·yC�-ry-ii·Yrl-I·-·P-IU·II�II�CI- .-L--I_�L-_L_-_-II_·^II1_-·�_IIIIYIIIU· _-_-l--�--�_Y..^I ·- ·IV--^�X·r.--�IIC----t·�C·T *.---··- -l-·-1L··_ll _



priate relative placement and orientation between them. In practice when

new cells are created by the layout designer they are assembled together in

order to verify that the different new cells that have been designed, do in

fact interface properly to each other. The simple fact of assembling the cells

together requires calling them both in one cell (same coordinate system) and

therefore automatically defines an interface between them. Hence interfaces

can be designed at almost no extra cost to the designer.

By virtue of the design-by-example feature of the RSG, the relative place-

ment of neighboring cells in the final layout is such that each interface in the

final layout is an instance of an interface in the sample layout.

Since the relative placement of cells in the final layout is performed using

interfaces between cells and not by using the sizes and shapes of the bounding

boxes of those cells, the cells can be designecd according to their functional

boundary constraints and without regard to abutment constraints. Not only

does this make cells easier to design and design rule check (because instances

of cells can overlap, each cell can be made design rule correct3 ), the fact that

cells are not cut at artificial boundaries helps reduce the proliferation of cells

of essentially the same functionality but different abutment constraints. Us-

ing interfaces also allows cells to be easily encoded by superimposing several

cells in order to modify the functionality of a basic cell. This too helps in

reducing the proliferation of different cell types since the number of different

encoding configurations is roughly exponential in the number of independent

encoding decisions.

Cell encoding can also simplify the personalization process since instead

of combining all the encoding decisions together to select a single cell of the

3 Some hierarchical design rule checkers require that instances do not overlap.
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appropriate type we can use each independent encoding decision to perform

a simple encoding masking of one basic cell. An encoding cell may lie well

within the bounding box of the cell it encodes and hence placement by abut-

ment would be cumbersome since it would cause a proliferation of (spacing)

cells that have nothing to do with functionality. By simply specifying an

interface the relative orientation of the cells as well as whether the cells are

side by side, one on top of the other, or one inside the other, is handled

automatically.

2.4 The Interface Table

The RSG program maintains an interface table of all legal (user specified)

interfaces between cells. This table is first initialized with interfaces from the

sample layout and can be augmented as new cells are created by the system.

Since there can be several different legal interfaces between two cells there

can be a family of legal interfaces between two cells A and B. Figure 2.3

shows two different possible interfaces for a pair of cells A, B.

If the set of legal interfaces between any two cells is indexed over the

integers then the interface table can be described as a mapping from triplets:

((cellnamel), (cellname2), (interface index number)) (2.5)

to interfaces:

((interface vector), (interface orientation)) (2.6)

If Ib is an interface in the interface table, then Ib, the corresponding interface

between B and A, is also loaded in the interface table. Hence knowing the
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V2zinterface vector

south-interface orientation

Interface#2

Figure 2.3: Different Interfaces between two cells.

placement of A one can determine the placement of B and vice versa. This

bilaterality of the interface table is very important. We will see in section 3.4

that it may not be possible to determine in advance which of the two instances

A or B has a known placement and which one will have its placement derived

from the other.

2.5 Interface Inheritance Relations

In order for any cell to be used in the RSG it must have an interface with

some other cell, otherwise there is no way to place it. When new cells are

built up hierarchically by the system, in order to take full advantage of cell

hierarchy, interfaces for new cells can be specified in terms of existing ones.

In this way cells built up by the system can be used to build even larger cells
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Icd

new

Iab
existing

Figure 2.4: Interface Inheritance

in exactly the same fashion as were the primitive cells of the sample layout.

If A (respectively B) is a subcell of a new cell C (respectively D), it is

then possible to define a new interface Id between C and D in terms of

an existing interface Iab between A and B. Id is the interface that C and

D would inherit if the subcells A and B within C and D were placed and

oriented with interface Ib (see Figure 2.4). The RSG allows the user to

define a new interface (and load it into the interface table) by specifying

the two cells C and D, the instances of A and B in C and D, the interface

number of the interface between A and B and an interface number for the

newly defined interface between C and D.

The rest of this section is concerned with finding an algebraic expression

for the interface vector and interface orientation of the new interface Id

between C and D in terms of the existing interface In between A and B and

the calling parameters of the instances of A and B in C and D. Let' (L, Ore),

(respectively (Lrd, Od)) the calling information of A (respectively B) in C

(respectively D) and (Vb,-Oab) (respectively (Vcd, Ocd)) be the interface vector

4The superscripts "c (respectively ?d) mean that the locations and orientations are relative

to the coordinate system of C (respectively D).
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and interface orientation of Iab (respectively Icd). Also let L; (respectively

LL,LL) be the location of the origin of A (respectively B,C,D) in the

implicit calling coordinate system (i.e. as they appear in Figure 2.4) and

let O (respectively O, O, 0 ) be the orientation of A (respectively B, C, D)

in the implicit calling coordinate system (which can be for argument sake

considered to be the absolute coordinate system) then:

o = o o (2.7)

L = L; + O;Le (2.8)

and

= f o 0od (2.9)

L; = Ld + O;Ld (2.10)

Replacing 2.7 and 2.9 in 2.1 we get:

0o = (O') - oO°

= (o 0 o 0 C)1 o o o Ord

= (O) - I o (;) - o = o o d

d ) ^ = (Or)10(Or)-1o0r

O°c 0 o ab o (Ord) - 1 = (or) - 1 oo

= Ocd

So

Ocd = o oab o (O 1 (2.11)

Replacing equations 2.8 and 2.10 in equation 2.2 we get:
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Vob = (O )-1(L- L)

= (Or)-'(L' + OLb - OrLr)

L - L = OrV - OLrb + OLCr

(O )-1(L - L- ) = ((O-)- l O)Vab ((O)-l O)L;b + (O)-' o (OL C)
Using equations 2.2 and 2.1 with different subscripts, equation 2.7 and

the previous result we get:

vcd = (O)-'(L-Ld)

= ((c) ° Oa-)Vb - ((°o)- °o,; )Lb + ((o)- o O)Lc (2.12)

OcVab - (Or)-'L b + Lre

2.6 An efficient representation for orientations

Whereas interface vectors can be straightforwardly represented by a pair

of real numbers, orientations require a slightly more complex data structure.

The purpose of this section is to find an efficient representation for orien-

tations in terms of memory, computation and ease of manipulation. Recall

from Section 2.1 that calling an instance of B in A consists of performing an

affine isometry to the objects in B and then adding the collection of objects

in B to A. A layout editor needs to be able to perform affine isometries on

the various cells. If A is called in a cell B which is in turn called in a higher

order cell C then two affine isometries get applied to the objects in A. The

first isometry I corresponds to the calling parameters of A in B and the

second isometry I2 corresponds to the calling parameters of B in C. For an

object Ob in A the corresponding component in C would be I 2(I,(Ob)). I is

first performed on Ob and then I2 is performed on the resulting object.

Another way to perform isometry composition is to first compose the

two operators and then apply the resulting operator to the object. Since
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I 2(,(Ob)) = (I2 o I)(Ob) it is possible to first compute (I2 o I) and then

apply this new transformation to Ob. This method of first computing the

resulting isometry and then applying it to the object can be computationally

more efficient as the resulting isometry is computed only once and hence

effort is not duplicated over the various objects on which this transformation

is to be performed.

In layout editors the preferred way of composing operators could be

I 2(1 1(Ob)) because this method is easier to implement 5. If there is already a

method for performing isometry on objects then, since the result of applying

an isometry to an object is an object of the same type no extra mechanism

is needed to successively perform several isometries on the object. In the

case where only a finite set of legal isometries are implemented this method

can lead to more efficient methods for applying single isometries to objects.

For example one could index the set of available isometries over the integers.

In that case, in order to apply a isometry known by its index number to a

given object, one could use the index number to lookup a table of procedures

(there is one procedure per isometry) to get the procedure that implements

that particular isometry and then apply it to the objects. This method elim-

inates the interpretive overhead associated with the decoding of the isometry

representation. For example isometries can be represented as matrices, and

a program that can apply any matrix transform to an object would be slower

than one that performs an unique fixed linear operation. However this in-

dexed representation does not lend itself to symbolic composition. If the

number of implemented indexes is n then (assuming that the set of imple-

SHowever HPEDIT uses the 12 o I method.

'HPEDIT uses this method.
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mented isometries is closed under isometry composition rules) knowing the

index of I2 and the index of I in order to compute the index of (I2 o I,) a

mapping table from n * n to n integers is required. Another table from n to

n integers is also required to invert the isometries (assuming the set is closed

under inversion). Hence this method becomes cumbersome in the case where

there is a large number of implemented isometries. It also requires a large

number of procedures; one for each implemented isometry.

In the RSG at times it is necessary to obtain expressions for new trans-

formations and therefore operations for symbolic composition and inversion

of transformations are required. Recall equations 2.11 and 2.12 from Sec-

tion 2.5. In order to compute the new inherited interface vector and interface

orientation, we need to obtain expressions for the composition and inversion

of orientations. It is therefore necessary to have a representation for orienta-

tions that allows them to be easily applied as operators and also allows them

to be easily composed and inverted.

One possible way to implement all orientations is to use 2 * 2 matrices of

real numbers. 2 * 2 matrices of real numbers can however represent all the

different linear transformations in the vectorial plane out of which isometries

(which are orientations) are only a very small subset. As a result they require

storage and manipulation of much more information than is needed. Matrix

composition and inversions are also relatively costly computationally.

There are more compact representations for orientations. We can rep-

resent all the vectorial rotations in the plane with a real number between

[0, 27r[. The rotation can be expressed by the complex number e'i where j

belongs to 0, 27r[ and i 2 = -1. Orientations are either rotations about the

origin or reflections about an axis passing through the. origin. All the reflec-
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tions about an axis passing though the origin can, however, be generated by

composing the reflection about the y axis (or any other axis passing though

the origin) with a rotation about the origin. If M is the interval [0, 27r[ and

B is the set of Booleans, it is then possible to represent an orientationby the

pair (j, k) E M * B where j represents the rotation, and k indicates whether

or not a rotation about the y axis is to be performed before the rotation (the

composition of rotations and reflections is not commutative). If + (respec-

tively -) is the induced addition (respectively subtraction) modulo 2r from

M to M and if R is the rotation about the y axis. Than any orientation can

be written as: ei o R where (j, k) i M * B and i2 = -1.

2.6.1 Inverting two orientations.

Let 0 = ei o Rk

and 0 - 1 = e'i o R k'

* If k = 1, then 0 is a reflection. Therefore 0 o 0 = I where I is the

Identity transform and hence

0-1 =0

= ii o M (2.13)

i ' o M

so j = j' and k = k

* If k = 0, then O is a rotation and hence

0 - 1 = eij'

- 1 (2.14)

so j' = -j and k = k'
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Hence If k = 1 then j = j', k' = k otherwise j = -j', k' = k

2.6.2 Composing two orientations

Let
0 = i j oRi '

02 = 42 OR k (2.15)

0 = 02001

= eisoRk

Then
O = (ei0i o R*k ) o e i Rk) (2.16)

= eiJ2 o (R o ei jl ) o Rk

because of the associativity of linear operators.

* If k 2 = 1 then

R"2 o e'iJ is a reflection and hence (R" o ci' j' ) o (R" o eijl) = I therefore

Rk o eiil = (R" o eiul)-L

= (eiil)" o (R,)-1 (2.17)
(2.17)

= ei(-l) o R

(i(-il)) o (Rk,)

because Rk2 is a reflection (or identity) and ei'l is a rotation.

therefore

O = eij' o (Rk2 o eil)oR kl

= C , o (i(-) o (R,)) o Rk,

= (ei2 o0 e(-il)) o (R2 o R"') (2.18)

= (~ei( ,1) ) o (R*k2l)

= ei(-J,) o (R k)

32

I(l·----�W1I11)·l(111-�111�1 �____-ml�-u^-1�c-illCi-·llll�-Xrr�^- -�-lr-.---�--*_-_.---.-U_�__ ·- -.�l-l�s�-r--�L�-�-.�-r�·-·-·- -·-----�· -- Ir --



where iE is the XOR operator.

hence j = j2 - Jl and k =k

*If k2 = 0 then

0 = eii2 o (Rk2 o eiil) o Rk

= eit3 o (Cit7) o Rk (2.19)

= (eij2 o e i ) o Rkt

- ei(j l + ) o R

hence j = j2 + Al and k = k

So Hence If k 2 = 1 then j = 2 - il., k = kl otherwise j = ji + .2, k = kl

We have seen that we can represent an arbitrary orientation (isometry) by

the pair (j, k) E M * B and.using the associativity of linear operators we can

compute any expression involving composition and inversion of orientations.

It is computationally expensive however to apply an operator represented in

this form to actual objects, because a sin an a cos must be computed. Due

to numerical inaccuracies an object (say a box) with vertical and horizontal

edges can be transformed by a quarter turn rotation into a object whose edges

are not precisely aligned with the axis. Adding and subtracting elements of

M can also lead to numerical inaccuracy as elements of M are represented in

the computer by real numbers and a modulo 27r operation has to be performed

on the result of every real addition (or subtraction) to ensure that the result

is an element of M.

In the RSG the choice therefore was made not to support arbitrary ro-

tations and reflections. Most VLSI circuit layouts are built using boxes of

various layers where the boundaries of the boxes are vertical or horizontal

lines i.e. parallel to one of the coordinate axis. Hence in most cases it is
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sufficient to support all orientations that transform vertical and horizontal

lines into vertical and horizontal lines.

The four multiples of the quarter turn rotation are the only rotations that

have this property. The only reflections that can have this property are those

that transform vertical edges into vertical edges and horizontal edges into

horizontal edges which are the two reflections about the axis. And reflections

that transform vertical edges into horizontal edges and vice versa which are

the reflections about 45 degree lines passing through the origin. These 4

reflections can be generated by first reflecting about the y axis and then

applying one of the four quarter turn rotations.7

Just as arbitrary orientations can be represented by an element of M * B,

these eight basic orientations can be represented by z, an element of 

(4 = { 1, 2,3}), and a boolean k, hence by an element of * B. This

would correspond to the orientation e i' o R in the previous notation. Using

the induced addition and subtraction on the rules for composing and

inverting orientations are the same as previously described using the M * B

representation. Orientations can now easily be applied to vectors and boxes

since performing a reflection about the y axis corresponds to changing the 

coordinate of an object to -. The four quarter turn rotations require only

permutations and negations of the two coordinates. For instance the one

quarter turn rotation maps the x coordinate into the y coordinate and the

y coordinate into the -z coordinate. The Figure 2.5 shows the mapping of

coordinates for each of the four basic rotations.

?these are the 8 orientations also supported by HPEDIT.
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Orientation Ix coordinate y coordinate

North z

South -z -y ,

East Y -z

West -z y

Figure 2.5: Coordinate mapping for the 4 basic rotations
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Chapter 3

The Algorithm

3.1 Algorithm Overview

The RSG algorithm (see Figure 3.1) consists of first reading in the sample

layout in order to define the primitive cells and build up the initial interface

table.

New cells are then created in a two step sub-algorithm. The first step in

the sub-algorithm consists of building a connectivity graph for the new cell.

The connectivity graph for the new cell is a graph whose vertices represent

partial instances whose cell type is known but whose location and orientation

are as yet unspecified.

The edges between vertices represent interfaces between instances and the

weights assigned to them are the interface index numbers. The connectivity

graph need only be a spanning tree since cycles in the graph contain redundant

information. For a given sample layout, each connectivity graph gives rise

to a unique layout (see Figure 3.2). Interfaces provide the local placement

constraints between (two) cells. The connectivity graph provides information
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Initialize Interface Table

Create Connectivity Graph

Expand Graph to Layout

Define new Interfaces
uired)

Figure 3.1: RSG algorithm

about the global placement of all the subcells in a macrocell. The graph sets

up an implicit system of linear equations whose unknowns are the placements

and orientations of the (pseudo) instances in the graph and where the given

parameters are the interfaces between the various cells.

Interfacel#

1

(if req

Figure 3.2: Graph and Layout Equivalents

37

r
I

. ii 

[i, i i~~~~~~~~~~ !

.[ iii ii

-

l

ii i ]

·� ,_ __�

I



The second step consists of converting the connectivity graph into a layout.

This is done by first selecting a root node in the graph and arbitrarily placing

and orienting the corresponding instance. The graph is then traversed, and

each of the nodes in the graph (which initially are all partial instances) gets

expanded into a complete instance with a location and an orientation. The

location and orientation Lb and Ob of a partial instance B can be computed

from the location and orientation La and 0. of one of its already traversed

neighboring nodes A using the formula,

Ob = Oa 0 ab (3.1)

Lb = OVhV + La (3.2)

where (Va, Oa0) is the interface between A and B. Finally once a new cell

is created, if it is to be used in a larger cell, it is necessary to define new

interfaces between it and the already existing cells.

Since the connectivity graph need only be a spanning tree many of the

interfaces that occur in the final layout need not be present in the sample

layout. Figure 3.3 shows a cluster of instances of A, B, C and D assembled

together. The corresponding connectivity graph is also shown. The labels

inside the nodes of the connectivity graph correspond to the nodes a well

as the instances they are contained in. Since the connectivity graph need

only be a spanning tree, it does not have to contain edges between A and

D, A and C, or B and D. This is because with or without those edges the

graph remains a single connected component (i.e. one can reach any node

starting from any node by walking along edges in the graph). Since the

three described edges are not present in the graph the I (or Id4), I, (or

I,.), and I (or Idb) are never accessed by the RSG, and therefore need not
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Figure 3.3: Graph Connectivity Requirements

be present in the sample layout. Hence the creation of both design file and

sample file is simplified by requiring that the graph be only a spanning tree.

3.2 Advantages of the method

This (augmented) two step process of first determining connectivity and

then using the connectivity information along with cell definition and cell

interface information to build a layout, provides a clean separation between

the graphical and procedural information. The procedural information in

the design file is used to build the connectivity graph and remains constant

over different implementations of the design as given by the sample layout.

The graphical information from the sample layout is used to transform the

connectivity graph into a physical layout of a particular implementation of the

design. Cell spacing parameters which relate to the graphical information are

never accessed or manipulated in the design file. This delayed binding on the
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location and orientation of instances allows for clean macro abstraction in the

design file. Since in the design file, partial instances are connected together

without assigning actual locations and orientations to them, it is possible to

build subgraphs without prior knowledge of where and with which orientation

the instances in the subgraph will be used. It is easier and cleaner to write

and compose macros for sub-graphs, because the state of a calling macro does

not side-effect the called macro by imposing a starting location and a starting

orientation at which to start assembling the subcells (i.e. the called macro

returns the same subgraph regardless of how the calling macro will choose

to connect the subgraph and regardless of the final calling parameters of the

instances of the subgraph). Macro abstraction suppresses details of how and

where a macro for generating a subgraph gets called and allows the designer

to concentrate only on the connectivity of the subgraph.

3.3 Limitations

The two step process as described in the previous section provides a high

level of separation between the graphical and procedural part of the layout

process. Since geometrical parameters are not accessed in the design file,

however, decisions based on the size and shape of the final layout such as

placement and routing are difficult to make. For example the choice between

the two routing configurations in Figure 3.4 requires knowledge of the sizes

and shapes of the two cells A and B as well as the size of the routing channels.
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Figure 3.4: Different routing configurations

3.4 Connectivity Graphs in Greater Detail

The purpose of this section is to investigate some of the properties of

connectivity graphs both in terms of data structures as well as in terms of

their mathematical properties. The previous section described an equivalence

between connectivity graphs and physical layouts. Actually (for a given sam-

ple layout) to each connectivity graph there corresponds a whole equivalence

class of layouts. All the layouts in an equivalence class are such that any ele-

ment in the class can be transformed into any other element in the class by an

affine isometry i.e. all elements in an equivalence class are identical modulo

an affine isometry. By selecting a root node in the graph and by placing and

orienting the corresponding instance a particular element in the equivalence

class is identified, namely the one where the instance corresponding to the

root node has the chosen placement and orientation.

Connectivity graph data structures must have bilateral edges. If there is

an edge between nodes A and B then in the data structure of A there must be

a pointer to the data structure of B and in the data structure of B there must

be a pointer to the data structure of A. This is because when a connectivity

41

;I



graph is being created, the root node of the graph (which is arbitrarily chosen,

placed and oriented) which is the starting point for traversing the graph (in

order to convert the graph into a layout) may not be known. Macros for

generating subgraphs of a layout have no knowledge of how the subgraphs

they generate will be connected together by their calling macros in order to

make larger graphs. For example if a macro M for creating graphs were to

return the subgraph of Figure 3.2, either node B or node A could be a leaf

node in the graph (i.e. a node with only one connection to it) depending on

whether node A or node B was connected to the rest of the connectivity graph

by the macro that called M. Hence even if the graph is a spanning tree the

parent-son relationship between directly connected nodes in the graph is not

known until the graph is traversed. This is why during the graph traversal

one must be able to get to node B from node A and also get to node A from

node B because we do not know which of the two nodes will be visited first.

The bidirectionality of the graph is essentially a data structure problem

that is constrained only by the graph traversal requirements and not by the

abstract mathematical properties of the graph. This requirement does not

constrain whether or not the graph is directed or not. A graph G = (N,E)

where N is a nonempty set of nodes and E is the set of edges is said to be

directed if the edges are ordered pairs (v, to) where (v, to) E N * N. That is

to say there is a privileged direction for the edges of the graph. A graph

G = ({A,B},(A,B)) (a graph with nodes A and B and an edge from A to

B) can have a bilateral data structure which means that from node A we can

go to node B and vice versa, and can at the same time be directed which

means that the (A, B) edge has a privileged direction (i.e. the (B,A) edge

may not exist).
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Interface#1

/7

-Interface#1

Figure 3.5: Interface ambiguity in undirected graphs.

We now need to decide whether or not connectivity graphs for the RSG

should be directed graphs or non-directed graphs. What is needed is a graph

that for a given sample layout uniquely defines an output layout (modulo an

affine isometry). If the celltypes of nodes A and B are distinct then knowing

the locations and orientations of node A it is always possible to determine the

placement and orientation of node B because the right hand side of equations

2.1 and 2.2 are well defined. Hence at first it would seem that an undirected

graph would suffice. However, in the case of Figure 3.5, if we know the

location and orientation of the left node, there are two possibilities for the

placement and orientation of the right node.

If In = (Vob, Oab) is an interface between A and B then using equations

2.1 and 2.2

43

dl -

/ 10�_

777



Ib. = (V.,Ob.)

= (I ,)- l (3.3)

= (-(Oa)-V, (o)-l)

is an interface between B and A.

Therefore if Io, = (V,, O,.) is an interface between A and A then

r. = (V.,O)

= (I)-1 (3.4)

=(-(O ) V,. (0)-1)
is also an interface between A and A. In equation 2.1 and 2.2 it is not clear

whether V, and 0, or V' and O' should appear on the right hand side

of those equations. The problem here is not that of determining the right

interface index (interface number) so as to choose the right interface from

the interface table. The real problem is determining which instance the left

node in Figure 3.5 refers to. Another problem which we will deal with later

is that we do not know which of the two interfaces I, or r' gets loaded into

the interface table. The two interpretations of Figure 3.5 can lead to non

equivalent layouts as shown in Figure 3.6. If the edges are undirected then

there is no way to discriminate between these two cases. In the first versions

of the RSG this problem caused the final layout to depend on how the graph

was actually traversed. What is needed is a way of discriminating between

the two nodes of Figure 3.5 which are directly connected together and have

the same celltype. This can be done by giving privileged directions to the

edges in the graph (making the graph a directed graph).

If we are able to characterize interfaces according to some criteria so as

to discriminate between the two possible interfaces I, and I' and select one
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Interface#l

Figure 3.6: Layout ambiguity for undirected Graphs.
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Figure 3.7: Resolving layout ambiguity with a directed graph.

of them (which I will refer to as IO,) then with the convention that if there

is a directed edge in Figure 3.7 from Al to A 2 (Al and A 2 have the same

celltype: the indices are just to distinguish between the two of them) then

it is A1 that serves as the reference instance i.e. Al refers to the instance in

the interface (see Figure 3.7) that is deskewed to orientation North and at

whose point of call the interface vector begins. Knowing the placement and

orientation of A 1 we can determine the placement and orientation of A 2 using

equations 2.1 and 2.2 where the interface I, and knowing the placement

and orientation of A 2 we can determine the placement and orientation of Al

using the interface (Io)-'. The main problem has been to determine when

to use (I°.) and when to use (I.,) - ' and this problem has been solved by

making the edges of the graph directed.

The problem that now remains to be solved is that of selecting I1, from

I, and I. One possible way to perform the selection process is to math-

ematically characterize a property that is possessed by only one of the two

interfaces I or I'. This property cannot depend on the interface vec-
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tors alone because it is possible to have I,a I with Va, = V' making

the selection between I, and I'a using V, and V' impossible. Foe exam-

ple if I,, = (O,East) then I = (I,)'1 = (, West) hence V, = V' and

I,, # I. Similarly the property cannot depend on the interface orientation

alone because it is possible to have I,. : i, with O,, = O' . As an example

Let I = (V,, North). Then I = (-V,,,North). Hence O,, = O' and

Iaa I,, 

Since any reasonable mathematical criterion for selecting between I a and

I depends on both the interface vector and the interface orientation, chances

for finding a simple user understandable selection criteria are seriously jeop-

ardized. The user does in fact need to know which of the two interfaces gets

loaded into the interface table , because the effect of loading (I0,)-' in the

table instead of I°a is that of inverting the direction of all the edges (with the

appropriate interface number) between nodes of celltype A.

The RSG solves this problem by allowing the user to specify (in the sam-

ple file) the right interface by graphically discriminating between the two

instances of Figure 3.7 (which might occur in the sample file). If it is pos-

sible to graphically identify Al in the sample file then it is possible to force

I0 = (V o , O0) (see Figure 3.7) to be the interface that gets loaded into the

interface table by forcing Al to be the reference instance at whose point of

call the interface vector begins and whose orientation is deskewed to North.

We have seen that the connectivity graph data structure must have bilat-

eral edges but that the graph itself must be directed. Only the edges between

nodes of the same celltype need to be directed as direction information on

edges between nodes of different celltype is not used.
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Chapter 4

The Language

In order to make efficient use of the framework of the RSG we must be

able to build large and complex connectivity graphs easily and efficiently. It

is therefore imperative that the language for specifying design files supports

good abstraction and powerful decision making. The design file interpreter

has been embedded inside a Lisp interpreter so that the full power of a struc-

tured programming language is available to the designer. The interpreter

provides a variant of the Lisp Programming Language (a subset of it) with

a few special primitives for building and manipulating connectivity graphs

as well as for converting connectivity graphs into layouts (a BNF grammar

for the language can be found in Appendix A). Primitives for manipulating

encoding tables (such as PLA truth tables) have also been added.

The design of the language was instrumental in defining the underlying

mechanisms in the RSG. It allowed me to get a users perspective on what

should be the right abstraction mechanisms even before I had an understand-

ing of how these mechanisms could be implemented. Besides the fact that

the language contains special features specific to the RSG, the language dif-
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fers from standard LISP (for example MACLISP [27]) in two ways. First the

Language does not support LIST structures. Instead it provides primitive

facilities for arrays because arrays are more suited to array-like regular struc-

tures. Lists are not used (see Section 3.4) to implement connectivity graphs

since these graphs are more than simple linked lists. The second difference

is that procedures are not first class objects. I.e. it is not possible to pass a

procedure as a parameter to another procedure. This decision was made to

simplify the design of an efficient parser and interpreter.

4.1 Interfacing the parameter file to the de-

sign file

The parameter file to design file interfacing is done through variable scop-

ing rules. The parameter file sets up parameters values in the global envi-

ronment of the design file interpreter. Theses parameters can be accessed

through variable scoping rules. A form of lexical scoping proves to be the

simplest and most efficient way to do the scoping. A variable lookup during

execution of the design file first causes that variable to be searched for in the

environment of the procedure being executed. If the search fails a new search

is then performed in the global environment of the interpreter. Should this

search fail too it is assumed that the variable is a cell name and a search is

performed on the table of available cells.

For example if the variable corecell in Figure 5.4(a) is meant to refer to a

cell, since corecell is not assigned in the environment (it is not a formal or a

local variable of the macro). The interpreter knows that it is either a variable
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defined in the global environment or a cell name and initiates a search in the

global environment and then in the cell table. This scoping methodology

allows variables to be handled uniformly whether they are calling parameters

of the macro, parameters set up in the parameter file, or just cells. Hence a

powerful coupling between the parameter file and the design file is achieved

by immersing the design file evaluation in a (global) environment set up by

the parameter file.

Personalization of the variable names in the design file according to the

cell names used in a sample file can also be achieved using the parameter

file and scoping rules. A statement of the form corecell = basiccell in the

parameter file would cause the variable named corecell in Figure 5.4 to now

refer to the cell named basicell in the sample layout (or to be more general

the cell nmned basicell in the current cell definition table which contains new

cells as well as the primitive cells in the sample layout).

The sequence of steps taken by the interpreter to evaluate the variable

corecell during execution of the design file is summarized in table 4.1. Dynamic

scoping was considered and rejected because many of the variables in a macro

refer to cell names defined in the cell table or variables defined in the global

environment and often the whole current chain of environments would have

to be searched needlessly.

4.2 Macros and Functions

In Lisp and other languages that support procedural abstraction a pro-

cedure can return a single object (or a pointer to it). Connectivity graphs

used in the RSG have several nodes in them and what can be returned by a
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Action Taken

Lookup corecell in the environment of mccll

Lookup corecell in the global environment

Lookup basiccell in the environment of mcell

Lookup basiccell in the global environment

Lookup corecell in the cell table.

Result

Failed

A variable named basiccell

Failed

Failed

(celldefinition of basiccell).

Figure 4.1: Environment lookup.

procedure is a pointer to one of them. A pointer to a single node in a sub-

graph, however, may not be sufficient to efficiently manipulate the subgraph.

In the process of building graphs from subgraphs a calling macro may need

to identify several key nodes in the subgraph returned by the called macro

in order to connect these key nodes to nodes in other subgraphs. Since all

nodes look alike except for their celltype (a subgraph may even contain only

one celltype) it is extremely difficult to determine the nodes of interest (the

ones which are to be connected to other nodes) by performing a tree walk

through the graph (starting from the node for which we have a pointer to). In

the case where the calling macro was in fact sufficiently smart to identify the

nodes of interest in a subgraph that macro probably contains a large part of

the information needed to build the subgraph, defeating the spirit of macro

abstraction and information hiding.

A mechanism is needed whereby a macro can return several objects at a

time. To further enhance information hiding and at the same time enhance

generality the calling macro should not know how many objects and how the
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objects (in what order) are returned by a called macro. The calling macro

should be able to pick from a menu of available objects the nodes of interest

to it. The way this is achieved in the RSG is by making macros return the

whole environment frame that was used during their execution. This method

provides great flexibility since any variable bound during the execution of

the called macro can be accessed using the subcell command. The subcell

command provided by the interpreter allows the selection of a particular

variable in a user-specified environment. If E.is an environment (returned

by a macro) and V is a variable bound in that environment then (subcell E

V) returns the value to which V is bound in the environment E.

As an example, in Figure 5.4(b) the 4th statement of macro mall assigns

the variable tregs to the object returned by the macro call to mtopregs.

Macro mtopregs is assumed to create a cell named topregistername and

returns an environment in which one of the instances of topregistername

(one for which it useful to get a handle on) is bound to the variable ref.

Statement 5 of mall which defines a new interface between cells topregis-

tername and arrayname requires the instance (of topregistername) bound

to the variable ref in the environment tregs. The (subcell tregs ref)

expression in statement 5 returns the appropriate instance.

The RSG has two classes of procedure types. The first type are functions

which operate just as in LISP and return a single value which is the value

of the last statement executed in the body of the function. Their syntax is

almost identical to that of MACLISP (a variant of LISP).

The second class of procedure macros, are identical to functions in every

respect except that they return their evaluation environment instead of the

value of the last statement executed. Their syntax is the same as for fnc-
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, name>
(celldefinition> 

_<name>

r(

. <objl>

. <obj2>

. <objn>

Figure 4.2: Celldefinition Data Structure.

tions except that the LISP function header defun is replaced by macro. The

interpreter also requires to know ahead of time whether a statement of the

form (( function or macro name) (argl) .. (argn)) is a function call or a macro

call and hence the interpreter requires that the macro name begin with an

m.

4.3 Data Structures

This sections describes in detail the data structures used in the RSG by

spelling out each of them. Its purpose is to give the reader a concrete feel

for implementation issues of the abstract data types described in the previ-

ous chapters and serves as an introduction to the next section. Three data

structures; the cell definition, the instance and the node will be examined.

Figure 4.2 shows the cell definition data structure which consists of a name

(the name of the cell) and list of objects in the cell.

Figure 4.3 shows how the instance data structure builds on the cell defi

nition data structure by adding calling parameters (a location and an orien-

tation ) to it.

Figure 4.4 shows how the node data structure is in turn built from the

instance and a list of edges to other nodes. The location and orientation
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(instance>
. location>

. <orientation>

.. > (celldefinition>

Figure 4.3:

<edge list> 2

Instance Data Structure.
(edge> a n of edge>

if edge>
<node>

·...................

, . ...........

(node> a

> instance>

Figure 4.4: Node Data Structure.

fields of the corresponding instance data structure may or may not be blank

depending on whether or not the graph (which contains the node) has been

traversed. Each edge in the edge list of the node has a bit to indicate whether

the edge is emanating or terminating at the current node, an integer for the

weight of the edge, and a pointer to the other node attached to the edge'.

'Recall from Section 3.4 that the graph must be directed and that the data structure must

be bilateral.
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4.4 Primitive operators for connectivity graphs

This section describes mk.instance, connect and mkcell the three primi-

tive operators provided in the RSG for building and manipulating connectiv-

ity graphs. Mutation of the data structures described in the previous section

under these operators is also shown.

4.4.1 mk-instance operator

The basic create operator for creating connectivity graphs is the mk.instance

operator. The purpose of this operator is to create a pseudo instance connec-

tivity graph node (the node data structure of the previous section). Figure 4.5

shows in large font (the top line) a call to the mk.instance operator as it would

appear in the design file. The data structures before the operator is executed

appear in unbroken line and in normal font. The data structures created or

modified after the operator is executed appear in broken line and in italics.

The edge list of the created node is the empty set and the fields for the call-

ing parameters of the corresponding instance are blank. (return value) is the

value for the calling expression (the top line in Figure 4.5) that is returned

by the design file interpreter.

4.4.2 connect operator

The primitive operator for connecting two nodes together by an edge is

the connect operator. Figure 4.6 shows the effect of the connect statement

with the same conventions as in Figure 4.5. Notice that the edge of the node

corresponding to (argl) (pointing to (arg2)) has a 1 as its direction bit which

means that the edge emanates from (argl). Similarly the corresponding edge
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(mk_instance <argl> <arg2>)

I

<return value> ,' <celldefinition>

(node) r ,
I I

I * I.. I

I /

(instance) = 
I /

L..

Figure 4.5: mknstance operator.

in (arg2) has 0 as its direction bit which means that the edge terminates at

(arg2)

4.4.3 mkcell operator

The primitive operator for traversing and transforming a connectivity

graph into a layout is mkocell. Figure 4.7 shows the effect of calling the

mkcell operator in a design file. For simplicity sake nodes have been rep-

resented by circles instead of expanding their internal data structures. Each

of the nodes has a pointer to the instance to which they correspond to. The

calling parameters of the instances are initially blank and are filled in as

the graph is traversed. The root of the graph is the node < arg2 > and

its instance is called at ((O,O),North). As each new node is visited and

its instance's calling parameters are filled in, a pointer to the completed in-

stance is pushed on the list of objects of the new cell being built. When the

graph traversal is complete the object list of the cell definition of the new
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(connect <arg2> <arg3>)

<interface#>

(node> 1z L ---71 '~~--\4

<instance> <instance>

I

,m ,m

<return value) ------- <nfl)>

Figure 4.6: connect operator.

cell contains a pointer to all the instances. Not shown in the figure is the

update of the cell definition table which after execution contains the binding

((new cell name), (new cell definition)).

4.5 Implementation

Implementation of the RSG was rather straightforward. Roughly two

thirds of the code was overhead. Building and maintaining the layout database

represents a sizable portion of the code. The single largest part of the code

however is the design file interpreter which parses the design file (and pa-

rameter file) and then executes the commands in it. Writing a reasonable

design file parser and interpreter was also the most time consuming task as
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<new cell name I>

(agf i ril'1 a3-
IX

I I

<celldefinition>

F.

<celldefinition>

r r7°lcat lo

/i L:

<celidefinition>

r--

a . <name> '-
I. I ·

II II \ 

I /-
. _.

Figure 4.7: mk-cell operator.
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the language supports full recursion, reasonable error handling and high ex-

ecution speed. Embedding the RSG in a VLSI database type system such

as Magic [26] or Schema [32] would have drastically reduced this overhead.

Furthermore the availability of a suitable parser and interpreter which could

support macros and functions (as they are described in Section 4.2) would

have reduced the code by perhaps one half. In order to embed the RSG in a

VLSI database type scheme, such as the two systems described above, facili-

ties must be provided to create the design file language by performing minor

alterations to a standard programming language such as LISP from where

the whole layout database could be accessible.

The RSG program is written in CLU [21] and consists of approximately

6000 lines of source code. The program is highly modularized and consists of

roughly a dozen major parts (CLU clusters), one for each major data type.

The code trades memory for greater execution speed. The interpreter makes

extensive use of CLU variants2 and hence reduces the design file instruction

decode overhead. The interface table, the cell definition table and even the

interpreter environment frames are all implemented with hash tables [1]

which makes lookup extremely fast. While walking though a connectivity

graph the system accesses the interface table once for each node hence it is

imperative that interface lookup be fast. While building large array struc-

tures the graph may be built by a tight loop in one of the design file macros.

At each loop all the variables have to be resolved by the interpreter. Also due

to the scoping rules described in Section 4.1 several environments (and the

cell definition table) may have to be looked up to resolve a variable binding

2A variant is an object which has a special tag. Program flow can be dispatched according

to this tag.
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(especially since variables often refer to cells like in Table 4.1). It is there-

fore imperative that variable lookup also be extremely fast. Hash tables have

the unfortunate property of consuming a lot of memory (memory concerns

will become clearer in the next paragraph) and becoming inefficient as the

number of bindings grows beyond their individual capacity which is fixed at

the time their are created. Care must be taken while creating these tables to

make them large enough to handle the required number of bindings but not

too large in order not to waste too much memory.

The design file interpreter which uses hash tables to implement environ-

ments pays particular attention to this by first computing the number of

formal and local parameters in a called procedure and then accordingly allo-

cating a hash table of the right size for the environment. Unlike a classical

LISP interpreter which disposes of the environment frame when a procedure is

exited, environments in design files may have a much greater lifetime. Macros

return their calling environment. This environment may in turn be held on to

by the calling macro in its own environment. This environment may in turn

be retained by an even higher order macro. It is possible to write a design

file which holds on to too many environments (several thousand) at a time

and exhausts the memory of a DEC-20. On the VAX this problem shows up

in the form of a substantial decrease in speed due to excessive page faults.

However it is almost always possible to decrease the memory requirements

(by orders of magnitude) to within manageable limits by writing the design

file in such a way so as not to hold on to many nneeded environments.

The RSG maintains it's own database and as such it is layout file format

independent. The RSG can be made to accept any file format by providing

an appropriate parser for the file format (this procedure requires that the
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code be recompiled). The user can in the parameter file select the layout file

format from a list of available file formats. Two layout file formats (CIF [25]

and DEF [2j) are supported. Plans for supporting HPDRAW [3] files are

also under way. Primitive functions can easily be added to the design file

interpreter provided they fulfill some input output requirements.

The execution time is divided into roughly three equal parts: reading in

the source file and building up the initial interface table, parsing and executing

the design and parameter file, and writing the output file. A 32 x 32 Baugh-

Wooley multiplier as discussed in Chapter5 is generated in 5 seconds on a

DEC-2060.

The basic RSG mechanisms can be easily implemented in any language

that supports good primitives for manipulating pointers and heaps (Pascal, C

and Lisp would be suitable candidates). Memory management for the design

file interpreter (a variant of Lisp) which supports heap storage and garbage

collection is automatically handled by the underlying CLU3 runtime system.

Implementing the interpreter in a language which does not support automatic

garbage collection might require restricting the power of the design file inter-

preter or implementing some form of automatic garbage collection. Lexically

scoped Lisp with some primitive mechanisms for manipulating arrays would

be very suitable as many of the primitive operators provided by the design

file interpreter are also Lisp primitives. The Lisp closure mechanism could

perhaps be used to implement the macro4 mechanism in the RSG.

3CLU supports heap storage and garbage collection.

'Recall from Section 4.2 that macros return their environment.
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Chapter 5

Example: Pipelined Array

Multipliers

A pipelined array multiplier provides a good illustration of the RSG's

ability to generate layouts for the kind of nontrivial regular structures that

typically arise in practice. Figure 5.1 shows a purely combinational 6x6

signed two's complement multiplier based on the Baugh-Wooley algorithm

[13!. The multiplier consists of an array of two types of carry-save adders

that reduce the product to the sum of two words, which are then added in

a final row of cells connected as a carry-propagate adder. (The two diagonal

connections have been condensed to one for clarity). Each cell type contains

an AND gate and a full adder: cell type I adds the bit-product aibi to its sm

and carry inputs; and cell type II adds T;h to its sum and carry inputs. The

carry-propagate adder consists of type I cells which are drawn as polygons to

distinguish them from the carry-save cells.

Using retiming transformations [181, the multiplier can be pipelined to

any degree in a manner that preserves the regularity of the inner array, but
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ut

Figure 5.1: Combinational Baugh-Wooley Multiplier

adds irregularity to the periphery of the array in the form of input and output

register stacks. Figure 5.2 illustrates two pipelined versions of the multiplier.

(An integer near a dot represents the number of registers on the corresponding

connection). The first version (2a) is a bit-systolic multiplier that has at most

one full adder combinational delay between any two registers, and represents

the highest possible degree of pipelining given the choice of the full adder

as the largest indivisible cell. The second version (2b) implements a lower

degree of pipelining, allowing at most two combinational delays between any

pair of registers. From a circuit perspective, the optimal degree of pipelining

is application and technology dependent, so it is necessary to be able to

automatically generate any degree of pipelining.

A pipelined multiplier of given size and level of pipelining can be con-

structed by personalizing an array of basic cells which has been sized accord-
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b

Figure 5.2: (a) Bit-Systolic Multiplier; (b) Pipelined Multiplier

ing to the number of bits in the multiplier and multiplicand. Each cell in

the array must be personalized with respect to each of the following options

depicted in Figures 5.1 and 5.2:

'1. Cell type: Each cell must be programmed as either type I or type II to

correctly implement the signed two's complement algorithm. Type II

cells occur on the left and bottom edges of the carry-save array, except

for the cell at the lower left corner. All remaining locations require cell

type I.

2. Cell interface: To obtain nearly identical circuit topologies, cell types

I and II use different active input levels. Furthermore, active output

levels are affected by the amount of pipelining. Therefore, each cell

interface is determined by the type of cells being connected and the

number of registers on the connection.
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3. Register assignment: The placement of registers on connections be-

tween cells depends on the degree of pipelining and the locations of the

cells being connected.

4. Clock assignment: Pipelined systems generally require several clocks

which must be assigned to registers according to their location in the

array. Clock assignment is further complicated by the need to em-

ploy such circuit techniques as precharging to reduce area and power

requirements.

In addition to the internal array configuration, there are "edge effects to

consider as well:

1. Peripheral registers: In order to properly skew the inputs and deskew

the outputs, registers must be placed along the periphery as determined

by the retiming transformations.

2. Input assignment: Ones and zeros must be assigned to the unused

inputs along the top and left edges as prescribed by the Baugh-Wooley

algorithm.

Cell masking is used extensively to convert an array personalization to

actual layout. A basic cell is created which contains the layout features

common to all cell personalities and which can accommodate the variations in

layout necessary to implement all design options. Mask cells are instantiated

on the basic cell to activate particular options by adding objects to the various

layers. Figure 5.3 illustrates this with a basic cell designed to specifically

optimize the electrical performance of the bit-systolic multiplier of Figure

5.2a. This cell contains input inverters, full adder circuitry, and six output
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Figure 5.3: Multiplier Cell Maskings

registers. In this example, the basic-cell is programmed to type I by the

mask-cell typeI, its carry input inverter is programmed by mask-cell carl

to interface with a type II cell, and it is assigned the clock 01 by mask-cells

phil-1, phil-2, phii-3, and phil-4. The inner array of the multiplier is

built up one cell at a time by first personalizing a copy of basic-cell, and

then adding it to the array. Then the multiplier is completed by adding

registers to the periphery of the array.

Figure 5.4 shows two sections of the design file written to generate a bit-

systolic multiplier for any m-by-n case, and demonstrates the use of macro

abstraction, delayed binding, and interface inheritance. The mcell macro

of Figure 5.4a executes the personalization of basic-cell as a function of

array size and cell index, and is used to hierarchically build the macrocell

innerarray (the inner array of the multiplier). Delayed binding on the abso-

lute location of each personalized cell greatly simplifies the definition and use

of mcell in the creation of larger macrocells like innerarray. The code in

Figure 5.4b constructs the complete multiplier from innerarray and three

boundary macrocells, tregs, rregs, and bregs, which are constructed from
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a single register cell. The three boundary cells are connected to innerarray

using interfaces that are inherited from an interface between the basic cell

and register cell. This example is cited to emphasize that macrocells can be

manipulated with absolutely no need to enter the graphics domain and man-

ually define interfaces or add spacing cells, as required by layout generators

with restricted powers of abstraction.

The input layout file in Figure 5.5 demonstrates the ease and generality

with which cell interfaces are specified in the RSG. One merely provides an ex-

ample of the interface, and places a numerical label in the overlapping region,

as for example, interface number 1 (the only interface) between basic-cell

and typeI. The RSG then creates an interface vector and orientation from

this graphical specification, and uses it to implement all instances of this

interface that occur in the final circuit layout. The layout file provides a nat-

ural means for the user specification of cell layouts and interfaces and greatly

reduces the amount of redundant information needed to characterize regular

circuit layouts. This can be appreciated by comparing Figure 5.5 with the

6x6 systolic multiplier layout shown in Figure 5.6. This layout also illus-

trates the amount of complexity that exists in practical regular structures,

even though this design has been simplified by omitting the register mask-

ing option. Register placement can be easily achieved by requiring that the

user provide a register configuration table in the parameter file. Ultimately

a subprogram to perform the retiming can be embedded in the multiplier de-

sign file. The program would take as input the parameter 3 which specifies

the degree of pipelining and produce as output a register configuration table

consistent with the multiplier size.

The optimum 3 for circuit performance within this class of pipelined mul-
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(a) Cell personalization

(b) Multiplier Construction

Figure .4: Design File for a Systolic Multiplier

68

(macro mcell (xsize ysize xoc yloc)
(locals c temp)
(mk_instance c basiccell)
(cond ((= (+ ysize 1) yloc) (connect c (mk_tnstance temp typel) tilnum))

((, xsize xloc) (cond ((- ysize yloc) (connect c (mkinstance temp typel) tilnum))
(true (connect c (mkinstance temp type2) t2inum))))

(true (cond ((= ysize yloc) (connect c (mkinstance temp type2) t2inum))
(true (connect c (mk_instance tmp typel) tiinum)))))

(cond ((- (mod xloc 2) 0)
(prog (connect c (mk_instance tmp phill) clklinum)

(connect c (mk_instance tamp phil_2) clklinum)
(connect c (mk_instance tamp phil_3) clklinum)
(connect c (mk_instance temp phil_4) clklinum)))

(true
(prog (connect c (mk_instance temp phi2_1) clk21num)

(connect c (mkinstance temp phi22) clkZinum)
(connect c (mkinstance temp phi2_3) clk2inum)
(connect c (mkinstance temp phi2_4) clk2inum))))

(cond ((- yloc ysize) (connect c (mk..instance temp car2) car2lnum))
((= yloc (+ ysize 1))
(cond ((- xloc xsize) (connect c (mkinstance temp carl) carLtnum))

(true (connect c (mk_instance temp car2) car2inum)))
(true (connect c (mk_instance tmp carl) carlinum)))))

(macro mall (xs1ze ystze)
(locals innerarray tregs bregs rregs trl arrayt bri rri)
(setq rregs (mrightregs ysize))
(setq bregs (mbottomregs xze))
(setq innerarray (marray xsize ysize))
(setq tregs (mtopregs xsize))
(declare_interface topregistername arrayname 1

(subcell tregs ref) (subcell Innerarray topright)
celltotopreginum)

(connect (mk_instance tri topregistername) (mkinstance array1 arrayname) 1)
(declare_interface arrayname bottomregistername 1

(subcell innerarray bottomright) (subcell bregs ref)
celltobottomreginum)

(connect (mkinstance bri bottomregistername) arrayi 1)
(declareinterface arrayname rightregistername 1

(subcell innerarray topright) (subcell rregs ref)
celltortghtreginum)

(connect (mktinstance rri rightregistername) arrayi 1)
(mkcell "thewholething" array1))
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Figure 5.5: Layout File for a Systolic Multiplier

tipliers must be determined empirically through repeated iterations of mul-

tiplier layout generation, circuit extraction, and electrical simulation. The

structure of these pipelined multipliers facilitates such an empirical investi-

gation by admitting very regular layouts that can be generated quickly and

interactively by the RSG. A study of the circuit issues determining pipelined

array multiplier performance[12] is now underway using the RSG for layout

generation, EXCL [23] for circuit extraction, and SPICE [30] for circuit simu-

lation. Preliminary simulations suggest that clock drive, clock skew, and I/O

pad drive - all of which vary with the level of pipelining and multiplier size

- will be the primary limitations to throughput. For large multiplier sizes,

macromodeling of critical paths can be used to alleviate the computational

requirements of SPICE.
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Figure 5.6: Bit-Systolic Multiplier Layout
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Chapter 6

Compaction

6.1 Motivation

Despite the fact that the RSG is technology, implementation and archi-

tecture independent, the RSG by itself is not technology transportable (The

RSG cannot be made to produce designs in a new technology simply by pro-

viding a new design rule file). A library of cells for the RSG designed in

an older technology can quickly become obsolete as new process technologies

with smaller geometries become available. Another problem with the RSG

is that highly electrically optimized layouts require fine tuned optimization

of the bus and device sizes. These optimizations depend on the particular

configuration (size) of the final layout. Therefore cells designed for small con-

figurations may not be suited for larger ones which might require larger buses

and larger transistors to drive them. Since the RSG cannot modify the prim-

itive cells specified in the sample file one solution to the layout optimization

problem would be to design several cells for each functionality where each

cell is designed for a different configuration range. For example one might
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design three different input buffers for a PLA. One type of buffer would be

designed for use in PLAs with a large number of product terms, another for

use in PLAs with an average number of product terms and one for use in

PLAs with a small number of product terms. This method of choosing the

right set of primitive cells according to the replication factors , requires the

substantial layout investment of having to design a large number of cells.

Also the method lends itself to only a coarse grained optimization due to the

approximation of the electrical optimization requirements by one of the cells

already defined in the library. The appropriate device sizes given some speed

and power constraints could be derived from Macromodeling Optimization

techniques [22].

The problem of making the RSG technology transportable and allowing

generatiou of electrically optimized layouts could be achieved by using a spe-

cial kind of compactor which I will refer to as a leaf cell compactor. I believe

that this kind of compactor has not yet been seriously investigated because

of the significant difficulties encountered in straightforward compaction, and

also because the usefulness of this kind of compactor is closely related to

an RSG type design methodology whose benefits have only recently been

established.

A leaf cell compactor is a compactor capable of compacting cells from a

library while taking into account how the cells in the library may potentially

interface together. For example if cells A and B can potentially interface

as in Figure 2.3 then while compacting cell A we have to take into account

the constraints generated by its connection to B. If cell B cannot be com-

pacted further then it is possible that due to the constraints between A and

B, A cannot be compacted further although A if compacted by itself on a
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classical compactor could stand to be further compacted. Context sensitive

compaction is different (probably simpler) than hierarchical compaction [8]

which starts with a complete final layout but does the compaction hierarchi-

cally.

The advantages of a leaf cell compactor are that by compacting only the

primitive cells in a library instead of fully assembled structures the com-

paction effort is not duplicated over the various replication factors in the

layout. For example if a cell A appears a hundreds time in a layout, a com-

pactor operating on the final layout (where A appears one hundred times)

would be more computationally expensive than one which cleverly compacts

the cell A only once. Also the compaction may only be performed once for

a given set of design rules (and other constraints such as bus and device siz-

ing) instcad of running the compactor on each new structure created (by the

RSG). These two factors (i.e. the compaction effort not being duplicated over

the various replication factors and also the compaction being performed only

once and not on each structure generated) can lead to orders of magnitude

improvements in computation costs, perhaps allowing implementations previ-

ously thought of as too computationally costly (such as for instance simulated

annealing[16]).

The costs associated with a leaf cell compactor are:

1) Perhaps a more complex compactor.

2) After compaction all instances of a cell A in the final layout have exactly

the same geometry. In the case of a classical compactor which first flattens

the layout (gets rid of the cell hierarchy) before compacting it, circuitry

which used to belong to instances of A may end up having different layout

geometries.
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The relaxation of the constraint that all instances of A have the same

geometry can potentially lead to more optimal layouts. However in the case

of highly regular structures with large replication factors, what goes on along

the boundary of arrays of cells has a negligeable impact on the total size

of the layout. Most of the cells in a large structure are far away from the

boundaries of the array (assumed for simplicity sake to be an array of identical

cells) anyway and hence geometrical constraints on each of them can be nearly

identical since the constraints caused by the boundary of the array can be

attenuated. Hence the constraint that the layout of all the instances of A be

identical after compaction may not be too restrictive. Furthermore assuming

that compactors are not perfect and do from time to time produce legal but

electrically poor layout, quality control of the compactor output can more

easily be performed on a library of a few cell than on each of the large

layouts generated by an RSG type generator.

At this point let us take a step back and examine the real motivation be-

hind a leaf cell compactor and the motivation behind a classical compactor,

since they differ in essence. A good classical compactor should be able to

start with a stick diagram or a very poorly designed starting layout. From

this poor starting point the compactor should be able to investigate differ-

ent compaction options in order to find an optimal (or satisfactory) layout.

Unfortunately for a given electrical functionality, the space of legal layouts is

not convex. This means that if we use a model where we continuously deform

the starting layout in search of a more optimal one (while keeping the layout

legal at all times) we might have to shrink as well as expand the layout as

we move along a path leading to an optimal solution. Therefore a greedy

algorithm which looks only for a local minima can fail to find very profitable
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optimizations which require hill climbing (moving temporarily in a direction

leading to to a less optimal layout). One dimensional compactors which com-

pact in one dimension at a time are an example of greedy optimizations which

do not lead to the optimal solution. A one dimensional compaction algorithm

tries to greedily optimize one dimension at a time and misses out on the op-

timizations that require a more careful analysis of the interaction between

the two dimensions. Besides the fact that the space of legal layout may not

be convex it may also not be connected. In order to reach an optimum by a

continuous deformation from the initial layout one might have to deform the

layout along a path parts of which do not correspond to legal layouts.

The motivation behind a leaf cell compactor is to be able to transform

cells from one technology to another and also to be able to size busses and

devices. The cells already existing in the library can be assumed to be highly

optimized for the technology in which they are designed and there is a good

chance that the topology of the initial layout can be used as a good starting

point for the target technology into which we are going to compact the cells.

Under these assumptions the minima (of the objective function) has a better

chance to be reached by a greedy type algorithm that searches for a local

minima. Hence some of the inherent difficulties in leaf cell compaction can

be offset by the previous simplifying assumptions on the initial starting layout

(namely that the cells in the library can be assumed to be designed carefully

and the easier quality control of the output) making the task of designing

such a compactor a more manageable one.
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6.2 Defining a cost function

The purpose of this section is to show the importance and raise some of

the issues related to defining a layout cost function for a leaf cell compactor.

The cost function is an evaluation of the goodness of the layout and the

compactor's goal is to produce the layout with the lowest cost subject to a

set of constraints. Defining a cost function for a leaf cell compaction scheme

is not as straightforward as it is in the case of a simple compactor. Also the

impact of the chosen cost function on the final layout (variations in the final

layouts produced using different cost functions) may be greater than would

be the case in simple compaction.

Figure 6.1 shows a structure consisting of a linear array of cells. The m

nghtmost cells are of type A and have pitch A,, the n leftmost cells are of

type B and have pitch Ab. It can be shown that in the general case (if there

are constraints between A and B other than those shown in Figure 6.1) there

are tradeoffs between minimizing A, and Ab. A can be minimized to a greater

extent at the cost of increasing Ab and vice versa. Let us consider an extremely

simple cost function for simple compaction and try to find a corresponding

cost function in the case of leaf cell compaction. Let the cost function be

X, the z dimension size of the layout (for simplicity sake assume that the y

coordinates are fixed). Finding an optimal A and Ab (given the geometric

constraints) so as to minimize X, depends on the replication parameters n and

m. However in a leaf cell compactor n and m are not known at compaction

time. Hence the user has to explicitly provide a cost function in terms of A,

and Ab (as well as other parameters) based on empirical estimates of what

n and m are expected to be. In the case where n and m are large numbers
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Figure 6.1: Defining a cost function.

X : nA.+mAb, therefore minimizing A. and Ab is much more important than

minimizing the sizes of the cells themselves. For a given A, and Ab (assume

for simplicity sake that the Ib interface is fixed) reducing the size of A and

B has only a marginal impact on X because it effects only the extremities

of the array, since its impact is independent of the replication factors n and

m. Hence the cost function should depend essentially on A, and Ab and to a

much lesser extent on the physical sizes of the cells themselves.

The remainder of this section describes a layout example where the pitches

Ai between the cells do in fact have to be traded off. Figure 6.2(a) shows three

instances of a same cell A. The cell A consists of two horizontal bars. Since

the three instances are all of the same celltype the pitch between them is the

z distance between the left edges of their bounding boxes. This is because the

z distance between their respective points of call and the left edges of their

bounding boxes is the same and hence cancels out in the pitch calculation.

One can reduce the Al pitch by moving the top bar of the top instance toward

the left. This causes the layout to deform to the configuration of Figure 6.2
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(b). Moving the top bar of the topmost instance to the left causes the bottom

bar of the middle instance to move to the right increasing the pitch A2 in so

doing.

Choosing an appropriate cost function can be facilitated by the knowledge

of the replication parameters in the structure to be built from the leaf cells.

An optimal cost function for a given set of replication parameters may not

be optimal for another set of parameters. In practice, however, tradeoffs

between the pitches may not be as extreme as in Figure 6.2. Experimental

results are needed to determine just how much interaction there is between

the pitches of leaf cells that occur in practice. Making the cost function linear

in the Ai and the box edge locations can substantially simplify the problem

of solving the constraint system i.e. finding a minimum for the cost function

subject to the constraints.

6.3 Constraint Representation

The purpose of this section is to propose a representation of the constraint

system in leaf cell compaction. It is assumed that the reader is somewhat

familiar with graph based constraint systems. We will restrict ourselves to one

dimensional compaction in the dimension. Compacting in the z dimension

entails determining the abscissas of all the vertical edges of the boxes in a

layout. Horizontal edges play no role in the constraint representation and are

assumed to shrink or expand in response to the displacement of the vertical

edges. In the case of leaf cell compaction the unknowns of the problem are

the abscissa of the vertical edges of boxes in the leaf cells, as well as the

Ai which are the z dimension pitches between the various cells. The known
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parameters are the design rules of the process, the sizing constraints that arise

from electrical considerations and the electrical network implicit in the initial

layout. The constraints that arise from the interaction of the parameters can

be represented by a constraint graph whose vertices correspond to vertical

edges of boxes in the layout. The edges between the vertices in the graph

correspond to minimum spacing constraints between the objects represented

by the vertices. The weights on the edges of the graph are the actual values

of the minimum permissible distances between the vertices.

A possible strategy for leaf cell compaction is to build a constraint graph

for each of the leaf cells and then include the constraints arising from the

interaction of the cells by adding new edges between the graphs. The resulting

graph (formed by the union of the leaf cell constraint graphs and the new

edges) has 2 kinds of constraints: intra cell constraints (constraints within

a cell) and inter cell constraints (constraints from the interaction between

cells). Both intra cell and inter cell constraints can be extracted from an

RSG sample layout. The intra cell constraints can be extracted from the cell

definitions of the leaf cells in the sample layout. Inter cell constraints can be

determined from the various cell interfaces present in the sample layout. After

the compaction is completed, it is possible to build a new sample layout for

the new technology and electrical constraints, from the new cell definitions of

the leaf cells and the new pitch parameters (both of which were the unknowns

of the initial compaction problem). Recall from Section 3.1 that the sample

layout does not necessarily have to contain all the possible interfaces that

might occur in a final layout (because the RSG connectivity graph need only

be a spanning tree). However if a sample layout is to be used for leaf cell

compaction, then in order for the compactor to generate all the required
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inter cell constraints it is imperative that all possible interfaces that might

arise in the final layout be present in the sample layout. The next paragraph

describes how these constraints can be generated in the very simple case

where the sample layout contains 1 cell and 1 interface.

Figure 6.3 shows two instances of A interfaced together. A is a cell con-

taining four vertical (box) edges. The left (respectively right) instance of A as

well as the corresponding 1, 2, 3, 4 (respectively 1', 2', 3', 4') constraint graph

and the edges in the graph are shown in solid (respectively dotted) line. In-

ter cell constraints between the two instances arising from the existence of

the I interface are shown in broken line. If compaction was performed on

the 1,2,3, 4,1', 2', 3',4' graph, the compacted layouts of the two instances of

A may not be identical. The unknowns of the problem are the abscissa of

the four vertical edges in the cell (and not the instances of) A and the pitch

A, after compaction. We must express the constraint system in terms of a

graph where the vertices are the vertical box edges of A and the weights are

functions of A.. This will ensure that both instances of A in the compacted

layout have the same geometries. Since the pitch between the two instances

is A, the distance between the 1 and the 1' node is necessarily A. Hence

since node 4 must be z 4 to the left of node 1' it must be z4 - A. to the left

of 1. Therefore we can replace the dashed edge weighted by z4 by an edge

from node 4 to node 1 weighted by z4 - A,. Similarly we can replace the

edge between node 4 and node 3' weighted by z 5 by an edge between node

4 and node 3 weighted by z5 - A,. Once this edge replacement is complete

we can discard the 1', 2',3', 4' graph and all edges terminating on vertices of

that graph. We are then left with the 1, 2, 3, 4 graph where the edges drawn

with straight lines are intra cell constraints and edges drawn with arcs are the
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Figure 6.3: Constraint representation.

inter cell constraints. The new constraint system ensures that both instances

of A will have the same geometries and at the same time reduces the number

of unknowns from 8 (the abscissas of 1, 2, 3, 4, 1', 2', 3', 4') to 5 (the abscissas

of 1, 2, 3, 4 and A,). In the case of larger cells and multiple interfaces, the

reduction in the number of unknowns can be be much more substantial since

only one new unknown (a Ai pitch parameter) is added for each new interface.

This graph constraint system cannot be solved by shortest path algo-

rithms such as Bellman Ford[171 because the weights on the edges are not

all constants. Some of the weights depend on the Ai which must also be de-

termined. Algorithms such as the Bellman Ford algorithm are used to solve

a system of linear equations where there are only (at most) two unknowns

per equation. Such systems can be represented by a constraint graph with

constant weight edges. However (if the abscissas of the vertices 1, 2, 3, 4 are

X 1,X 2,X 3 ,X 4 ) in the resulting graph of Figure 6.3 the edge between node 4
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and node 1 represents the equation X 1 - X 4 < z - A. where X 1, X4 and A,

are unknowns. A simple minded way to solve the system would be to convert

the graph to a system of linear equations and solve the system of equations

using a linear programming algorithm like Simplex [101. Since we know that

there are tradeoffs between the Ai we will have to define a cost function that

is to be minimized subject to the above set of constraints.

6.4 Experiments in compaction

Over one hundred and thirty kilobytes of code have been written in order

to build an experimental compactor with the intent of modifying it to ulti-

mately do leaf cell compaction. One third of the compactor code deals with

maintaining and manipulating the data structures (such as scan lines sorted

lists etc..) required by the constraint generation process. This is where most

of the CPU time is spent. One fourth of the code embeds the decision mak-

ing process of determining what type of constraint is appropriate between

a pair of box edges. This part of the code proved to be the most convo-

luted, the hardest to write and debug and also the most error prone. The

actual constraint solving routine (a modified Bellman Ford Algorithm: see

Subsection 6.4.2) is only slightly over a page in length. The rest of the code

is overhead and consists of layout manipulating routines, design rule tables

etc.. The speed of the compactor compares favorably with other compactors

and the output quality can, depending on the input layout, be reasonably

good. However for a large complex layout the compactor will often produce

a legal layout where small regions of the layout are electrically poor, making

hand checking (and minor modifications) of the result a necessity.
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While the general methods and mathematical foundations of the com-

paction problem are well understood they seem inadequate to deal with the

myriad of special cases encountered in practice. Whether commercial com-

pactors function properly in a realistic VLSI setting is still an open question

for me as I did not have a compactor with which to compare results readily

available to me. However I believe that my compactor would compare fa-

vorably on many of the examples found in compaction papers. Rather than

laboriously go through the quagmire of designing and implementing a rea-

sonable compactor, I will skim through some of the salient difficulties and

in some cases propose solutions to the problems I encountered. Many of the

classical difficulties of compaction are explained in [31).

The rest of this section is for the benefit of whomever continues the com-

pactor project. it describes three major difficulties (encountered during the

compactor project) which can be corrected by a more appropriate choice of

strategy. Its intent is not to give an overview of the compaction problem. The

compactor used a one dimensional graph-based constraint method where the

vertices in the graph represent layout box edges'. Other one dimensional

techniques include shear line compaction [9].

6.4.1 Constraint generation

One of the purposes of the compactor is to perform device and bus sizing.

Device and bus sizing requires the ability to tag (identify) the particular

devices (or buses) to be sized in the layout. This can be accomplished by

making the bus (or the gate and channel of the device) to be sized, a cell.

'the edges are vertical since it is assumed throughout this section that compaction is being

performed in the z dimension.
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The compactor can then size all instances of that cell according to some

user defined specification. In some processes transistor gates must be wider

than the minimum poly width. This can be achieved by making the gates of

transistors instances of a particular cell. The compactor must then make all

instances of that cell a certain minimum size. Finally there may be critical

parts of the layout (such as sense amplifiers) which must be left unchanged

by the compactor. This also can be achieved by making those portions of the

layout (to be kept frozen), out of cells which the compactor will know how

to handle.

Many compactors first perform a preprocessing phase on the layout. Dur-

ing this preprocessing phase boxes of the same layer are merged together. For

example EXCL uses a merging technique (although not for compaction) which

gcts rid of redundant vertical edges of boxes. After the merging process is

complete each layer of the layout consists of nonoverlapping boxes such that

each box has the largest possible z dimension size (as a result of this there

are no hidden2 or partially hidden vertical edges).

Merging boxes considerably reduces the constraint generation problem.

Figure 6.4 shows two boxes of a same layer (in solid line). The existence of a

minimum spacing constraint between the right edge of the left box and the

left edge of the right box depends on the presence of the middle box (shown in

broken line) whose presence masks the two previous edges. Always generating

the constraint between those two edges (regardless of the presence of the

middle box) can substantially overconstrain the system. Consider a piece of

diffusion fragmented into n abbuting boxes as in Figure 6.5. Indiscriminately

2A hidden box edge is an edge that does not actually correspond to an actual boundary of

a layer since material from the layer is present on both sides of the edge.
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Figure 6.4: Constraint for hidden edges

1 1 0 ~ 11I
Figure 6.5: Fragmented Layout

generating constraints between left edges end right edges would force the x

size of the final layout be at least nA where A is the minimum spacing for

diffusion. Merging the boxes into one box would get rid of the fragmentation

and allow the layout to shrink to the minimum width for diffusion.

Unfortunately, due to the device and bus sizing mechanism in the com-

pactor, it is not possible to perform merging on the boxes. Merging boxes

causes loss of information relating to which cells the boxes came from. A

long bus might require to be wider in certain regions. These regions can be

identified by the compactor as being part of certain cells. Merging the boxes

in the bus of Figure 6.5. would cause the loss of that information since after

the merging process there is only one box for the whole bus. This constraint

(i.e. merging being unacceptable) combined with the wrong constraint gener-

ation technique made constraint generation an extremely hard problem. The

main problem is to generate enough constraints so that the result is a legal

layout without overconstraining the system, which degrades the quality of
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the result.

The minimal constraint set is not unique (A minimal constraint set is

such that removing any constraint from it may cause the resulting layout to

become illegal) and therefore it is not possible to reach the optimal constraint

set simply by removing overconstraining constraints. Generating a good con-

straint set is a particularly hard problem. Substantial gain in output quality

can be made by simply making the constraint generator smarter without

having to go to a more complex compaction strategy as in two dimensional

compaction (15].

Most graph based compactors use a scan line technique for the generation

of constraints. Other reasonable ways of generating constraints include walk-

ing through a layout database as in MAGIC where each box (tile) has pointers

to its neighbors (corner stitching). There are essentially two possible ways

to perform scanning. The way it was performed in the compactor was using

a scan line which represents a slice through the layout3 . Constraints in the

z dimension are generated with a horizontal scan line that moves vertically.

At any given time the scan line holds the part of the layout that intersects

its current y position'. Only objects that were in the scan line at the same

time can have a constraint between them. If the current scan line location

intersects the piece of diffusion in Figure 6.5 then all the boxes in the Figure

are simultaneously present in the scan line. The constraint generator must

then examine each pair of vertical edges and determine what constraint to

put between them. In order to determine the appropriate constraint between

SEXCL uses this method.

'In practice the scan line is actually a band. It contains objects that intersect a band centered

at it's current y location.
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Figure 6.6: Constraint between partially hidden edge

a pair of edges, the constraint generator has to shuffle through the objects in

the scan line to examine the relevant neighboring objects. This turns out to

be one of the most difficult and critical parts of the compactor. A smart com-

pactor must at least notice that some of the edges might be hidden and that

it may not be appropriate to put a constraint between them. Deciding on an

appropriate constraint is not a straightforward task. In Figure 6.6 the right

edge of the leftmost box and the left edge of the rightmost box are hidden

when the scan line is at location yl. However when the scan line reaches Y2

the edges are no longer hidden and therefore the constraint generator must

place a constraint between the two edges.

By selecting a more appropriate scanning technique it is possible to elim-

inate part of the hidden edge problems. The scan line can be a vertical line

that sweeps from -oo to +oo (we are still generating constraints for the z

dimension). The scan line contains information of what a viewer on the scan

line looking toward the left would see. In Figure 6.7 the viewer on the scan

line would see the Z2, z3 segment of the left box and will see the 21, X2 segment

as belonging to the insides of the right box. Constraints are placed between

what the viewer can see in the scan line and the objects that currently inter-

sect the scan line. More details on this scan line technique and relevant data
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Figure 6.7: Correct scan line method

structures can be found in {11j and [241 5. The advantage of this method is

that hidden edges are automatically taken care of because they do not show

up in the scan line. Hence merging of boxes is implicitly taken care of.

6.4.2 Solving the Constraint System

The Bellman Ford algorithm [17] was used to solve the graph based con-

straint system. The Bellman Ford assigns to each vertex the lowest possible

abscissa subject to the constraints. The algorithm proved to be extremely

fast, especially if the edges are traversed in sorted (according to their ab-

scissa) order, i.e. a preliminary sort on the edges according to their abscissa

in the initial layout is performed. This is because the initial ordering of the

edges is a good estimate for the final ordering. Going through the edges in

a suitable order considerably reduces the number of Bellman Ford relaxation

5[28] uses this method.
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Figure 6.8: Worsening of a layout Jog

steps. In the case where the initial ordering is preserved in the final layout

exactly one relaxation step is required instead of the I E I (where E I is the

number-of vertices in the constraint graph) required in the worst case. Un-

fortunately while Bellman Ford does a good job of minimizing the total size

(bounding box) of the layout it can generate electrically poor layouts. This

is because although the algorithm minimizes the longest path it can actually

increase the length of other paths (up to the length of the longest path).

The Bellman Ford algorithm consists of pushing all the objects in a layout

as much to the left as they can go subject to the constants. When applied

to the layout of Figure 6.8(a) the resulting layout of Figure 6.8(b) develops a

jog in it. A more appropriate algorithm would be one that tries to bring all

objects close together as if they were all connected by rubber bands instead

of trying to move them all to one side as if they are being attracted by a

large magnet on the left.
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6.4.3 Dealing with layer Interaction

Some design rules such as those for contacts or gates are hard if not

impossible to express in terms of minimum spacing constraints between the

mask layers of a layout. These kind of constraints often occur due to the

interaction of several layers at a time. For example the width of poly may

be 3A except over diffusion (gate of a transistor) where it might have to be

5A. Not knowing beforehand where in the compacted layout poly will end up

over diffusion it is hard to determine which regions of poly should have a 5A

width constant on them. This is because constraints are generated based on

the initial layout whose topology will change during compaction.

One way of solving this class of problems is to create new layers that do not

correspond to actual mask layers in the lithographic process. This method is

already used in editors such as Magic [26]. For example Magic has a special

layer called contact which has design rules similar to those of any other layer.

This special layer is comprised of metal, poly and the actual contact cut (or

cuts) between them. At mask creation time the contact layer is converted

into actual lithographic mask layers which may contain one or several contact

cuts depending on the size of the contact layer. The appropriate metal and

poly overlaps as well as the size and spacing of the contact cuts can be looked

up in a table. Figure 6.9 shows an example of what this translation process

when applied to a large contact layer might look like. The same type of

strategy can be used for transistors, buried contacts, etc.. The benefit of this

strategy is that often the new layers that result from the interaction of several

primitive layers can be characterized by simple design rule constraints while

as the interaction of the different layers often can not.
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Figure 6.9: Contact layer Expanded

6.5 Summary and new directions

In this chapter some of the benefits and difficulties of leaf cell compaction

have been explored. A constraint representation for leaf cell compaction has

also been proposed. Difficulties encountered during the design and imple-

mentation of an experimental compactor (a fiat layout compactor) have been

described and improvements have been suggested. The rest of this section

describes a plausible sequence of steps leading to the implementation and

evaluation of an efficient leaf cell compactor.

Section 6.4.3 relates the problems of dealing with layer interaction. This

problem occurs because design rules arising from layer interaction cannot be

described in terms of minimum spacing constraints. A successful compactor

must be built on top of underlying mechanisms for transforming a set of

physical mask layers into special layers as prescribed by Section 6.4.3, and

transforming these special layers back into physical layers. A fexible con-

straint generator (for fiat layout compaction) implementing the right kind of

scanning technique and a carefully constructed set of constraint generation

rules must be built. The ultimate goal is to modify the constraint generator
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to do leaf cell constraint generation. Provisions for interfacing the constraint

generator to a device sizing tool such as [221 must be considered. Care must

be taken not to underestimate the difficulty inherent in constraint generation,

and a carefully charted course must be generated before any actual code is

written. Testing the constraint generator for larger than simple test cases

cannot be accomplished without building a throw-away test constraint solver

(for fiat compaction). The constraint solver's purpose will be to facilitate

testing of the constraint generator by outputting actual compacted layouts

instead of constraint graphs. Once testing is completed the constraint genera-

tor must be modified to do leaf cell compaction and an appropriate constraint

solving algorithm for leaf cell compaction must be selected or developed. The

effects of different cost functions on the new leaf cell compactor must be eval-

uated and catalogued. Finally an exploration of how the compactor and the

RSG can together constitute an efficient layout module in a larger silicon

compilation system must be investigated.
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Chapter 7

Conclusion

The push to design larger and more complex VLSI chips has spurred the

creation of more sophisticated design tools. By restricting the target ar-

chitecture to designs that are regular and can be algorithmically described,

efficient and flexible layout generators that function well in a realistic VLSI

setting can be built. Regularity, however, does not exclude complexity in

the personalization of these structures. This thesis has demonstrated the

importance of the appropriate abstraction mechanisms - macrocells, inter-

faces, and interface inheritance - in generating layouts for realistic regular

structures. The RSG is an operational tool that supports true macro ab-

straction and inheritance. Due to the flexible target architecture, greater

generality than specialized module compilers can be achieved without the

loss of efficiency incurred in silicon compilers with a fixed target architec-

ture. The RSG presents a convenient interface to the user by separating the

graphical and procedural description of a circuit along a natural boundary,

making it an extremely easy tool to utilize, extend, and upgrade. Information

is efficiently partitioned into a design file which describes the global layout
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connectivity and a sample file which specifies the local placement constraints

and the specifics of the primitive cells. Tangible proof of the efficiency and

applicability of the RSG method to intricate regular structures that arise

in meaningful applications was demonstrated by the design of a (class of)

pipelined multiplier. The RSG's power can be further enhanced by a special

kind of compactor which will make the RSG technology transportable and

allow it to perform device and bus sizing. The simple mechanisms used in

the RSG can be easily embedded in a complete VLSI design system. Such

a design system would include placement and routing and also compilation

from a functional specification. The RSG could then be an efficient link in

the design chain from functional specification to silicon.
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Appendix A

BNF Grammar

(procedure definition)

(function definition)

(macro definition)

(formals)

(locals)

(variable list)

(variable)

(body)

(statements)

(statement)

(function definition)

(macro definition)

(defun (function name) (formals) (locals) (body))

(macro (macro name) (formals) (locals) (body))

((variable list))

:= (local (variable list))

(variable) (variable list)

(empty)

(simple variable)

(indexed variable)

(2indexed variable)

(statements)

(statement) (statements)

(empty)

(conditional)

(do loop)
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(assignment)

(function call)

(macrocall)

:= (primitive function call)

(print statement)

(read statement)

(prog statement)

(variable)

:= (connect statement)

:= (make instance)

(subcell)

(make cell)

(declare interface)

(conditional) := (cond ((cond exprs)))

(cond exprs) := (cond expr) (cond exprs)

(empty)

(cond expr) := (if part) (then part)

(if part) := (statement)

(then part) := (statement)

(do ((simple variable) (initial value)

(do loop) := (next value)(exit conditional))

( body ))
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(initial value)

(next value)

(exit statement)

(assignment)

(function call)

(macro call)

(primitive function call)

(print statement)

(read statement)

(prog statement)

(connect statement)

(make instance)

(subcell)

(make cell)

(2indexed variable)

(statement)

(statement)

(statement)

(assign (variable) (statement))

((function name) (variable list))

:= ((macro name) (variable list))

((primitive function name) (variable) (variable))

(print (statement))

(read)

(prog (statements))

:= (connect (variable) (variable) (statement))

:- (mkinstance (variable) (statement))

(subcell (variable) (statement))

(mk.cell (simple variable) (statement))

(declare Interface (statement) ( statement )

(statement) (statement)

(statement) (statement))

(simple variable). (statement). (statement)
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(indexed variable)

(simple variable)

(function name)

(macro name)

(string of chars)

(empty)

:= (simple variable). (statement)

:= (string of chars)

:= m(string of chars)

:= em(string of chars)

:= a string of charecters
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Appendix B

Multiplier Design File

(macro mcell (xsize ysize xloc yloc)
(locals c foo)
(mkinstance c corecell)
(cond ((= xsize xloc)
(cond (( ysize yloc)(connect c (mkinstance foo typel) .tiinum))

(true (connect c (mkinstance foo type2) t2inum))))
(true (cond ((= ysize yloc)

(connect c (mkinstance foo type2) t2inum))
(true (connect c (mkinstance foo typel) tiinum)))))

(cond ((= (mod xloc 2) 0)
(connect c (mkinstance foo clockl) clklinum))

(true (connect c (mkinlstance foo clock2) ck2inum)))
(cond ((= yloc ysize) (connect c (mkinstance foo top2) top2inum))

(true (connect c (mkinstance foo topl) toplinum))))

(macro mline (xsize ysize currentline)
(locals . ref)
(assign 1.1 (mcell xsize ysize 1 currentline))
(setq ref (subcell 1.1 c))
(do (i 2 (+ i) (> i xsize))

(assign 1.i (mcell xsize ysize i currentline))
(connect (subcell 1.(- i 1) c) (subcell l.i c) hinum)))

(macro m2darray (xsize ysize)
(locals cl. topright bottomright)
(assign cl.1 (mline xsize ysize 1))
(setq topright (subcell cl.l ret))
(do (i 2 (+ 1 i) (> i ysize))

(assign c.i (mline xsize ysize i))
(connect (subcell c.(- i 1) ref) (subcell c.i ref) vinum))

(setq bottomright (subcell cl.ysize ret))
(mkcell mularrayname bottomright))

(macro mtopregs (size)
(locals 1. ret)
(assign 1.1 .(array topreg 1 topregvinum))
(setq ref (subcell 1.1 c.1))
(do (i 2 (+ 1 i) (> i size))

(assign l.i (array topreg i topregvinum))
(connect (subcell 1.(- i 1) c.l1) (subcell l.i c.1) topreghinum))
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(mkcell topregisters ref))

(macro mbottomregs (size)
(locals 1. ref)
(assign 1.1 (array bottomreg size bottomregvinum))
(setq ref (subcell 1.1 c.size ))
(do (i 2 (+ 1 i) (> i size ))

(assign 1.i (array bottomreg (- (+ size) i) bottomregvinum))
(connect (subcell 1.(- i 1) c.(- (+ size 1) (- i 1)))
(subcell 1.i c.(- (+ 1 size) i)) bottomreghinum))

(mkcell bottomregisters ref))

(macro mrightregs (size)
(locals 1. ref length regnum)
(setq regnum (+ 1 (* 3 size)))
(setq length (// regnum 2))
(cond ((= (mod regnum 2) 1) (setq length (+ 1 length))))
(assign 1.1 (array rightreg length rightreghinum))
(assdirection 1.1 length regnum)
(setq ref (subcell 1.1 c.1 ))
(do (i 2 (+ i) (> i size ))

(assign l.i (array rightreg length rightreghinum))
(assdirection l.i i length regnum)
(connect (subcell 1.(- i 1) c.1)
(subcell 1.i c.1) rightregvinum))

(mkcell rightregisters ref))

(defun assdirection (rarray index length regnum)
(locals ins outs bi foo doublereg)
(setq ins (* index 2))
(setq outs (- regnum ins))
(setq bi (fmin ins outs))
(cond ((> ins outs) (prog (setq doublereg inward)

(setq singlereg sinward)))
(true (prog (setq doublereg outward)

(setq singlereg soutward))))
(do (i 1 (+ 1 i) (> i bi))

(connect (mkinstance foo bidirectional)
(subcell rarray c.i) rtoregsinum))

(connect (mkinstance foo singlereg)
(subcell rarray c.(+ bi 1)) rtoregsinum)

(do (i (+ bi 2) (+ i 1) (> i length))
(connect (mkinstance foo doublereg) (subcell rarray c.i) rtoregsinum)))
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(macro mall (xsize ysize)
(locals arrayfoo tregs bregs rregs tri arrayi bri rri)
(setq rregs (mrightregs yize))
(setq bregs (mbottomregs xize))
(setq arrayfoo (m2darray xsize ysize))
(setq tregs (mtopregs xsize))
(declareinterface topregistername arrayname (subcell tregs re)

(subcell arrayfoo topright) celltotopreginum)
(connect (mkinstance tri topregistername)

(mk.instance arrayi arrayname) 1)
(declareinterface arrayname bottomregistername 1

(subcell arrayfoo bottomright)
(subcell bregs ref) celltobottomreginum)

(connect (mkinstance bri bottomregistername) arrayi 1)
(declareinterface arrayname rightregistername 1

(subcell arrayfoo topright)
(subcell rregs ref) celltorightreginum)

(connect (mkinstance rri rightregistername) arrayi 1)
(mkcell "all" arrayi))

(defun fmin (x y)
(locals)
(cond ((> x y) y)

(true x) ) )

(mall xsize ysize)
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Appendix C

Multiplier Parameter File

.example_file:/u/bamji/demo/mult.def

.concept_file:/u/bamji/demo/mult.con

.output_file:/u/bamji/demo/multout. de

vinum=2
hinuml =
tlinumsl
t2inumtl

mularrayname" array"
arraynamearray
corecellucell
typelst1
type2--t2
clk2inum=i
clklinumul
clockl=clkl
clock2=cil2
topl toplcel
top2-top2cel
toplinumrl
top2inumnl

topregvinum 2
topreghinum = 
topreg tr
topregisters = "topregs"
topregistername topregs

bottomregvinum t 2
bottomreghinum I 1
bottomreg br
bottomregisters = nbottomregs
bottomregistername bottomregs

rightregvinum 2
rightreghinum = i
rightreg = rr
rightregisters = "rightregs"
rightregistername = rightregs
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bidirectional= goboth
inward=goleft
outward=goright
sinwardagoslet
soutward=gosright

rtoregsinum=i

xsize=asize
ysize=asize

celltotopreginum=l
celltobottomreginum=l
celltorightreginum=l

asize=1G
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Appendix D

Adder Cell Schematic
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Appendix E

Adder Cell Layout
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