
A Systems Analysis of Complex Software
Product Development Dynamics and Methods

by

Gregory B. Russell

Bachelor of Science, Computer Science and Bachelor of Arts, English
University of Tulsa, 1990

Submitted to the System Design and Management Program
In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Engineering and Management

at the

Massachusetts Institute of Technology
September 2007

2007 Gregory B. Russell. All Rights Reserved.

The author hereby grants to the Massachusetts Institute of Technology permission to reproduce
and to distribute publicly paper and electronic copies of this thesis document in whole or in part.

A - ~ii~

Signature of Author

Gregory B. Russell
System Design and Management Program

September 2007

Certified By

('I Professor Michael A. Cusumano
Thesis Supervisor

Sloan Distinguished Professor of Management

Accepted By
Patrick Hale

Director

System Design and Management Fellows Program

BARKER

MASSAcOUSMrr W4SmJ
OF TEGHNOLOGY

FEB 0 5 2008

LIBRARIES

!!' I - - - - -I - - -, -- - - - 11 -1 .-- - -1 -111, 11 =04

2

Acknowledgements

I first wish to thank my parents, Robert and Sharon Russell, for their support and for teaching me
the love of learning.

I wish to thank Professor Alan MacCormack of the Harvard Business School, Chris Kemerer of
the Katz Graduate School of Business, Michael Cusumano of the Sloan School of Business, and
Bill Crandall whose paper on the trade-offs between productivity and quality in selecting
software development practices has served as the key reference for this thesis due to its
combination of keen insight and objectivity that is so rare in software development.

At the Massachusetts Institute of Technology, Professor Michael Cusumano who advised this
thesis, and whose books, teaching, and research have been a rare beacon of reason and insightful
analysis throughout my career in software development and my time at MIT.

I am grateful to my fellow graduate students from whom I have learned much and who have
made my time at MIT well worth taking an 18 month vacation from work.

Thanks to Pat Hale, Helen Trimble, Ted Hoppe, and William Foley for all of their help and
patience along the way.

Most of all, thank to Erin without whose help, support, and editing skills, none of this would
have been possible.

3

4

A Systems Analysis of Complex Software

Product Development Dynamics and Methods

by

Gregory B. Russell

Submitted to the System Design and Management Program on
August 10, 2007 in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Engineering and Management
at the

Massachusetts Institute of Technology

Abstract

Software development projects and products have long shouldered a reputation for missed
deadlines, blown budgets, and low quality. Unfortunately, this negative reputation appears to be
supported by more than just anecdotal evidence; quoting an industry study', respected software
development expert and author Steve McConnell reports in his book Professional Software
Development" that "Roughly 25 percent of all projects fail outright, and the typical project is
100 percent over budget at the point it's cancelled." What's more, notes McConnell, "Fifty
percent of projects are delivered late, over-budget, or with less functionality than desired."

Exactly why software development projects and products have historically performed so poorly
and with arguably little if any improvement over the past 40 years, however, is a subject on
which there is less agreement. While blame often aligns along functional (product marketing
and sales) versus technical (software development) lines, the increasing popularity of different
and often contradictory software development methodologies seems to suggest that no real
consensus exists within the software development community itself.

The goal of this thesis is twofold:
1. To describe a set of key factors to consider when analyzing software processes
2. To outline an organizational framework that is optimized for implementing and

managing software development practices

5

6

Table of Contents

Acknowledgements 2

Abstract 3

Chapter 1: Introduction 6
1.1 The Slow March Forward 6
1.2 Comparing and Contrasting Processes 8
1.3 Factoring the Human Factor 9
1.4 Process Gone Personal 10

Chapter 2: Key Software Product Development Factors 16
2.1 Key Factors Overview 16
2.2 Factor One: Differentiating Between Different Types of Software Development 17

2.2.1 Impact on Performance Measures 19
2.3 Factor Two: Maturity of the Software Product 22

2.3.1 Impact on Performance Measures 24

Chapter 3: A Value-Based Organizational Framework 29
3.1 Reframing an Old Picture 29
3.2 Basing "Value-based" on Values 31
3.3 Analysis of Existing Organizational Structures 31

3.3.1 The Hierarchical Organization 31
3.3.2 The Matrix Organization 36

3.4 A Value-based Organizational Framework 38
3.4.1 Essential Principles and Dynamics 39
Principle #1 - Strategic and tactical decoupling 39
Principle #2- Creation of a coordination layer 39
Principle #3 - Focus on value creation 43
Principle #4 - Continuous planning and execution 44
Principle #5- Meta-teams and Meta-roles 46
Principle #6 - Manage forward 49
Principle #7- Manage risk early and often 50
Principle #8- Value must be valued 51

Conclusion 52

Appendix 54

References 64

7

List of Figures

Figure 1. A typical hierarchical organizational structure for a Software Product Development
C om pany ... 32

Figure 2. Manufacturing v. Software Task Comparison... 1

Figure 3. A matrix-like view of a value driven organizational implementation....................... 37

Figure 4. The three meta-layers of a Software Product Development Company..................... 41

Figure 5. The three meta-layers overlaid on a standard hierarchical organizational structure..... 41

Figure 6. Advanced implementation of a value-based organizational structure....................... 42

Figure 7. Decoupled and Iterative Model Effects on Team Capacity and Efficiency 46

Figure 8. Meta-Roles" and Assignments within Requirement Teams....................................... 48

Figure 9. High- level view of a complete meta-team structure.. 49

8

Chapter 1: Introduction

"Businesses in the US spend about $250 billion annually on software

development with the average cost ranging from $430,000 to $2,300,000"'Error! Bookmark

not defined.."

"Roughly 25% percent of all projects fail outright"."

"Another 31% are cancelled, primarily because of quality

problems, creating losses of about $81 billion annually"."

"Only 16% of these projects are completed on schedule and within budget. i"

1.1 The Slow March Forward

Countless software industry watchers can and frequently do quote such now-ubiquitous statistics,

even though the connection of such insight to any real understanding of how these numbers were

generated is debatable at best. The more salient point may be that few people, least of all those

in the software industry, thought to even question these clearly damning numbers, much less

research their origins. In light of the greater industry's seismic shifts (as represented by the

advent of the World Wide Web, Agile Methodologies, and Java to name a few) since initial

publication of these oft-referenced studies some 15 years ago, it's reasonable to wonder if the

field of software development has experienced improvement proportionate to that of the overall

technology sector.

9

Dr. Winston W. Royce""'s groundbreaking 1970 article "Managing the Development of Large

Software Systems" is often cited as the first salvo in the age of formal software processes, a

subject about which more books seem to have been published in the past 10 years than in the

previous 30 combined. Interestingly, Royce never used the term "waterfall" although he did

make use of the famous "descending step" flowchart, in reference to which the process is

commonly believed to have been named. In fact, Royce's article offered an early hint at the

potential for something resembling iterations in the case of complex projects.

With or without a name, the waterfall process proved to be very easy sell, especially given how

nicely it fit into the popular "assembly-line" model of product manufacturing where everything

could be broken down into a set of ordered, discreet and homogeneous steps. In view of what

had been in place prior to its introduction, the waterfall model did likely represent a big

improvement. In his book on the history of the software industry, Martin Campbell-Kelly

describes managing software projects in the pre-waterfall era as "...something of a back art.

There were no formal methodologies until the late 1960s, and then they tended to little more than

prescriptive checklistsviii.",

In the 37 years since Royce's article was first presented at the Western Electronic Show and

Convention, software development and its supporting processes and practices have undergone

numerous radical changes. And today, with the arrival of the Agile models and the competing

CMMI for Development V1.2, both camps seem to ready to lay claim as Brooks' "Silver

Bullet"."

10

1.2 Comparing and Contrasting Processes

As the methodology debates began to heat up in the mid-to-late 1990's, I found myself drawn

repeatedly to two core questions:

1. How could the leading contenders be so at odds with each other?

2. Why was the software community unable to reach an agreement as to best development

methodology?

As my career led to direct interaction with a variety of different software projects and different

people, however, I began to respect the distinctively complex and diverse nature of the software

development discipline and to appreciate the challenge of creating any kind of a controlled test.

Not only is each software development project unique, but in my experience, the talent and

motivation of the developers and other key stakeholders has more impact on success than

process.

1.3 Factoring the Human Factor

Having said that, however, I've also found that process can do much to help or hurt a

development effort. Given the stated importance of the people on the project to its success, it

follows that the quality of the collaboration and communication between those individuals is

also critically important. Other than the culture at a company, processes and practices probably

have the biggest impact on the how well development and cross-functional teams collaborate

11

with each other and on the quality of the communication throughout the larger product

organization.

In other words, while a truly controlled study or comparison of different software

methodologies would be impossible largely impossible due to the inability to control all

variables, the benefits of such a study would be significant enough to render an attempt at such

an effort worthwhile. Unfortunately, the quality of the most of the readily available

development methodology research is disappointing and rarely even worth the effort required to

glean any usable kernels of information.

Indeed, many existing software development process studies are done by the advocates of a

particular methodology and may include only a few small projects as sample data. Other

studies are published by companies or individuals with a direct financial stake in the success of

a particular set of practices such as Rational/IBM and the Agile community led by Kent Beck.

1.4 Process Gone Personal

So far in my software career, I have enjoyed the opportunity to experiment with many of the

different practices from the leading methodologies, and have been able to do so at a range of

different software organizations both large and small. This has allowed me to benefit from old-

fashioned trial and error. Over time I've collected a number of what I categorize as best

practices that essentially draw from all of the major methodologies and applies sets of them

based on the specific characteristics of the software project or product itself, and I had initially

planned for this thesis to focus on these practices.

12

I realized, however, as I continued to stay current in my reading and to do research for this

thesis that there was no shortage of similar publications. In fact, it seems that the idea of

making informed choices and creating a selective "best of' set of software practices is

becoming evermore widespread, to the point some might say of commoditizing the very

concept.

Ivar Jacobson, widely considered the "father" of the Rational Unified Process, is one industry

thought leader who has publicly commented on the growing overabundance of process material.

Recently Dr. Dobbs' Journal published a series of three articles co-authored by Jacobson in

which his sentiments were none too subtly conveyed by the series' title, "Enough of Processes:

Let's Do Practices'." Too, several books have also been published within the last couple of

years that also suggest this proliferation of methodologies be regarded as toolsets rather than

gospels.

In the end I decided that simply adding my own opinions and experiences- however valid- to the

rising din of promising but still largely unstudied and under-researched publications and blogs

was unlikely to be of much value to anyone. As I contemplated how to most effectively

package and contribute my personal experience, I encountered the 2003 study focused on

productivity and quality around eight development practices. Authored by a team of leading

academic and corporate researchers, "Trade-offs between Productivity and Quality in Selecting

Software Development ProcessesI" accomplished several critical objectives that I believe no

previous study has achieved, including:

13

- Authored by evaluators with no ties to a specific methodology or set of practices

- Conducted in as controlled a setting as possible by:

- Selecting out marginal or outlying projects

- Limiting cultural and/or other variations by containing the study to a single

organization

- Choosing an environment large enough to "average out" many miscellaneous

factors

- Correlated practices from different methodologies both individually and in multivariate

arrangements against a set of the two most critical performance variables

Providing objective data comparing a number of multiple cross-methodology practices should

be seen as a watershed accomplishment and should also be required reading for anyone

involved in software project or product development. Due in large part to the import and

impact of the HP study to the area of software development in which I have spent the majority

of my career, I restructured my thesis to position my original contribution as a complement to

the "Trade-offs between Productivity and Quality in Selecting Software Development

Processes" work.

To that end, this thesis aims to accomplish two primary goals:

1. Provide descriptions and analyses of two additional critical factors that I believe can add

relevant and applicable insight to the study's correlations in terms of how different sets

of practices would perform given these factors

14

2. To describe an organization structure or framework that I believe can be helpful in

enabling software development managers and leaders to more effectively choose and

more easily integrate new sets of software development "best practices" into their

organizations

15

Chapter 2: Key Software Product Development Factors

2.1 Key Factors Overview

This section describes two key factors involved in software development that are important in

understanding what practices will be most effective in on a particular software development

project. In selecting and analyzing these factors I have chosen to focus on a recent study done

with data collected from 29 software projects at HP over approximately nine months '.

As discussed briefly in the introduction, there are many reasons why this study is virtually unique

in its contribution to the practice of software development today and the many competing and

seemingly incompatible methodologies. These include, but are not limited to the following:

- Inclusion of the key representative practices that are most important to the most

popular software development methodologies (Agile, CMM, RUP, etc.)

- Limiting of extraneous influences and factors allowing for a relatively controlled

environment, especially given the high level of complexity and variability presented

by the study of software development projects

- Inclusion of a relatively high number of software development projects allowing for

statistically meaningful analysis

- An empirical and objective approach that is extremely rare for the subject

As a veteran of the software development industry and as someone who has been directly

involved in multiple process improvement efforts, it is my sincere hope that others will build

upon these results in the future. In an effort to provide some potential help to such future studies,

16

I have attempted in this section to provide additional input into the interpretation and analysis of

a few of the key results. Where applicable, I also make specific suggestions as to how future

studies could potentially add to the value of this study by including additional factors in the data

collection and the subsequent correlations.

The discussion of each factor includes a description of the factor in terms of its individual

characteristics in relation to software development as well as an analysis of the effects of the

single factor on both product quality and productivity. I have also provided wherever possible

suggestions or recommendations regarding potential "best practices". In cases where interactions

between multiple factors can result in a collective dynamic that is different from that presented

by any of the single factors, a further discussion of the appropriate practices may also be

included.

2.2 Factor One: Differentiating Between Different Types of Software

Development

In the HP study, three different types of software products or projects were included in the

testing results. The correlations, however, were not presented separately for each type of

software project. In my experience, the dynamics can vary significantly based on the type of

software or project or product, and while limiting the number of different correlations helped to

simplify the results and to focus the discussion on the different practices which were

understandably the focus of the study, I suspect that some additional patterns would have

emerged or existing ones would have been made more discernable if the single variable and

multivariate correlations had been run against the two performance measure separately for each

17

of the three different types of software development projects. In other words, could there be

valuable additional information to be gleaned by having looked at the application, systems, and

embedded software systems separately to determine if any additional subtleties may have

emerged that are specific to each discipline? Based on my experience and analysis of the results,

I suspect this may have been the case in at least a couple of instances.

The first example is based on the fact that, on average, it can often be more difficult to have

customers review prototypes earlier on systems software projects as compared to applications

software projects (since I'm not familiar enough with embedded software to make an intelligent

observation, I'm limiting my discussion to application and systems software). Application

software typically has a higher degree of direct user interaction usually in the form of a graphical

interface. Systems software, on the other hand, would typically consist of more complex

algorithms and a greater number of interactions with different systems, both of which are often

hidden from the user as opposed to application software's simpler and more discrete business

processes. Given these same attributes, systems software may also be difficult to test early on as

incomplete modules may not be testable separately prior to the "code completion" of additional

software modules or components due to the higher likelihood of technical and functional

dependencies.

If either of these characterizations of the differences between application and systems software

development is accurate, then a scenario could result in which the composite data and the

resulting analyses may actually be skewed, at least in part, based on specific characteristics

18

unique to different types of software development rather than only on how effective or

ineffective a particular practice or combination of practices is in general.

This could be the case if either of the performance measurements varies due to the nature of the

type of software rather than something essential to the practice itself, or if certain practices are

not compatible with one or more types of software development. In both cases, one of the

performance measures may be correlated positively or negatively in the composite in a way that

isn't true for one of more of the different types of software development.

2.2.1 Impact on Performance Measures (Software Quality and Productivity)

To better illustrate this scenario, I'll include an example from my own experience. In order to

test software that has dependencies on other software that isn't ready for integration testing,

developers will often take the time to build what are commonly called stub functions. In the case

of a systems software project, building stub functions can be time consuming due to their

complexity or just the number of them required to do an accurate test.

On average, however, building stub functions in order to test earlier, whether using a prototype

or not, will almost always have a positive effect on quality. Whether or not the costs or hit to

productivity is worth the improvement in quality is a difficult call to make in advance as this

would depend on a number of other factors including how much productivity would be gained by

having fewer bugs later that need to be fixed, which brings me back to my point. Assuming that

19

early testing/prototyping was also beneficial to software quality for the other types of software

development and there was a consistent net benefit to productivity. When included in the overall

results are calculated, they may reflect accurately that, on average, early testing or prototyping

was both a benefit to software quality and a positive for productivity. For the systems software

manager, however, these results could be misleading.

In addition to the above example, the same effect could happen in reverse. In this case, practices

that are uniquely beneficial on balance to a specific type of software development may be buried

in the data and overshadowed by the lack of measured performance benefit to other types of

software development. This same logic also applies to multivariate correlations to the

performance measures and could occur when either one set of practices is not practical or

possible on a given development effort or in the case where different sets of practices are

mutually exclusive or counterproductive in combination. In essence, when certain "best

practices" are either impractical, or costly in other ways for a particular type of software

development, then more subtle improvements may be helpful if they can be discerned.

This dynamic may help to explain a couple of the variances seen in the HP study where

individual practices demonstrated different correlations to the target performance measures based

on whether they were observed alone or as part of a set of specific practices. I'm specifically

thinking of the following example from the study:

"Some practices that are correlated with performance when considered in

isolation do not appear as significant in multivariate models. For example, we

20

initially found that having a less complete functional specification when coding

begins is associated with lower productivity, lending support to the waterfall

model of development. When we accounted for the variance explained by

releasing early prototypes and using daily builds however, however, this

relationship disappeared. (A similar pattern exists for the relationship between a

more complete detailed design specification and a lower defect rate.) In a sense,

these other practices appear to 'make up' for the potential trade-offs arising

from an incomplete specification."

Again, it would be interesting to see how these results compared across the different types of

software development as incomplete documentation may not, on average, be compensated for by

daily builds and early prototyping on systems software projects where the effectiveness or

"costs" of these methods may differ from other types of development. The importance of this

distinction is similar to the previous example in that without this additional analysis, a systems

development manager may choose to reduce the amount of time spent creating documentation in

order to invest more time on practices that might not be favorable for that specific project.

Making a similar point, the authors summarize these observations by stating that:

"This suggests that development models should be considered as coherent systems of

practices, some of which are required to overcome the potential trade-offs arising from

the use (or absence) of others."

21

I agree strongly that understanding how different practices interact in either favorable or

unfavorable ways is extremely important. I would add, however, that these multivariate

interactions may vary based on the type of software of software being developed or on other

factors that may not have been part of the research. Further, the lines of coherent interaction

may not always be drawn based on a specific model. For many software companies or project

managers, there may be organizational constraints or other factors that make one or more of a

particular model's practices impractical or otherwise detrimental to overall performance. In

these cases, it may be important to the project's success, to be able to combine practices from

different models in ways that result in better performance that could be had by adhering to a

single model

2.3 Factor Two: Maturity of the Software Product

For software projects or products of the same type, the maturity of the product is probably the

single most important factor in determining what practices are most likely to be effective. Books

on software methodology, however, rarely focus much time on how the constraints and dynamics

differ between new development and maintenance. This is especially true of the Agile

methodologies which tend to focus almost exclusively on new development in one form or

another One could draw the conclusion from this that many of the Agile authors are more likely

to have a background in software consulting rather than in the commercial software.

22

For the purposes of this discussion, I am using maturity as an average measure of the amount of

development on a software project or product that would typically be considered maintenance

versus new development. While there has been some very impressive and in-depth analysis of

what qualifies as new development versus maintenance developmentiixiii (e.g., [Boehm, 1981],

page 54, [Lientz and Swanson, 1980], and [Fowler et al., 1999]), for the purposes of this

discussion, the simple metric that I've used for quantifying this factor is the percentage of new

lines of code (LOC) written as part of the new effort versus the number of existing LOC.

Using this approach, software is "immature" when the percentage of new lines of code being

developed is 50% or more of the total lines of code at the end of the project (e.g., more than

10,000 lines of new code on a product that previously consisted of 10,000 lines or less). If the

percentage of new LOC is between 25% and 50%, this product is considered to be "moderately

mature" with some additional legacy-related constraints as compared to development efforts

where the percentage is below 50%.

Contrastingly, when the percentage of new LOC in development is below 25% this could be

classified as a mature product. Taking the data from the HP study for example, the average

maturity of each project was 41%, meaning that the maturity level for each of the software

project's would be moderate. Extrapolating out the number of previous development cycles

based on the data, I would estimate that average project was on its third major release cycle.

For many existing or well-established software companies, most of its developments efforts

likely fall into the "moderately" or "fully" mature classifications. Software companies like this

23

are likely focused on either maintaining or extending an existing software product or set of

products and are therefore bound by the often unique constraints and dynamics that relates to this

type of development.

Ironically, despite the high percentage of software product development taking place at any given

time that falls into the category of "fully mature" with all of the related constraints, many of the

existing methodologies give little if any consideration as to how the dynamics and practices of

maintaining and enhancing an existing product may differ from creating a new software product

from scratch. As mentioned earlier, this is especially true of the newer Agile group of practices

and may partially explain why many larger and established software product companies have

been slow to adopt Agile practices either in part or in whole. The differences, however, are

considerable as are the implications on how each part of the development cycle, from

requirements through release, should be approached.

2.3.1 Impact on performance measures (software quality and productivity)

In many ways, the maturity of software differs from other factors in that it's not necessarily clear

what specific definition of "software quality" and "productivity" is most appropriate. This

makes direct comparisons across the different types of development problematic. For example,

in terms of software quality, development efforts on fully mature products focus partly if not

wholly on fixing or resolving existing bugs, missed requirements, and design flaws. While this

doesn't completely immunize this type of software from of new bugs as part of a bug fixing

24

cycle, my experience had been that fewer new bugs and design flaws are introduced per lines of

code than with new development.

This is likely due in part to the more "targeted" nature of fixing known bugs as well as the

benefit provided by developing against existing software whose nature and behavioral flaws have

had a chance to show themselves over time and in a number of different working environments

rather than in the more theoretical and often limited environment that is used during pre-release

unit and system testing. In fact, the specific code that needs to be fixed is often known and

documented long before the fix actually applied. This dynamic can positively affect the

measurement of software quality by serving to decrease the average number of bugs introduced

per LOC. One way to adjust for this difference when comparing software quality measures of

new versus mature development is to apply a calculated constant based on historical data (ie

software equivalent of Planck's constant). Another option is to simply avoid making an "apples

to oranges" comparison and to rate the measurement of "software quality" for bug fixing efforts

only against other bug fixing efforts. This would require each software project to be classified

based on its level of maturity or similar characteristic. While this factor, unlike the type of

software development, was not included in the correlation data, it does appear to have been

captured for each project.

As opposed to the higher measure of software quality associated with an increase in project size

or maturity, one might conclude that productivity would follow a different curve in which

productivity would most likely be lower as compared to new software development. Based

25

solely on the emphasis placed on new development by the Agile methodologies, for example, it

would seem logical to conclude that in the same way software quality benefits from working

within the constraints imposed by the existing body of code that the productivity would be

likewise constrained or reduced. This might seem especially true when also considering the

amount of time that might be spent searching and parsing through the existing code's logical

structure before making any changes or extending the software by writing new lines of code.

And while both of the previously assumed dynamics likely have a legitimate and negative impact

on productivity, the reality is that the benefits to productivity provided by the additional stability,

familiar functionality, and amount re-useable code afforded by mature software products far

outweigh the concerns on average.

Newer development efforts, for example, are more likely to have to deal with significant design

issues that may require a large amount of rework. And attempts to avoid the need for future

rework will likely mean multiple prototypes or the creation of entirely new test scenarios all of

which, while helpful in improving product quality, take time away from the number of lines of

code that can be written during the same time period.

Additionally, if the same developers are still working on the project, they will likely be very

comfortable with both the technology and the functionality of the software, requiring a much

smaller learning curve and greatly reducing the likelihood that requirements will be

misinterpreted or improperly implemented. Pre-existing test scripts can also speed development

as it is much easier to simply add to or modify a test script than it is to create one from scratch.

26

There are, however, some additional exceptions to the general rule which warrant attention and

would also be candidates for consideration as variables or factors in later studies. For example,

depending on the length of the release cycle, mature products may require extra time to be spent

regression testing the entire code-base even if only a small segment of the code has changed in

order to ensure that newer and unanticipated bugs have not been introduced. Probably the largest

exception to the rule is when the subsequent development or maintenance of a mature software

product is done by a different person or team than originally developed the software, as this

would cause many of the benefits mentioned above to either be reduced or to disappear

altogether.

I would like to have been able to find the data needed to calculate what percentage of all

software development would classify as new versus maintenance. Even without this data,

however, it's clear that the majority of software products are older than the two years or two

cycles it would take qualify as a mature product. Given this and the degree to which the

dynamics between the two types of development can differ, having solid and objective data as to

which practices work well for both types of development and which practices are only effective

in a particular situation would extremely valuable to software industry. Even companies like

Microsoft that to large degree built their success on having some of the most original and

effective practices in the industry are struggling with the massive constraints placed on them by

the sheer volume of legacy code along with other issues. While Microsoft may be an extreme

example, the value of knowing how different practices perform based on the maturity of a

27

software product and how even the performance measures themselves might differ would be

helpful to a significant percentage of the software industry.

28

Chapter 3: A Value-Based Organizational Framework

3.1 Reframing an Old Picture

The idea for creating a new type of organizational framework originated during my experience at

a software startup company where I was tasked with leading a software development

organization while also building out a new product management group within the organization.

This came at a time when I had just spent several years finding an organization template that

worked for the software development group which went through several iterations before finally

finding one that worked well for our company. I quickly realized that creating a structure for the

product management organization required thinking about the structures and processes of the

company as a whole since this new group was to be responsible for translating the company's

strategic objectives into an executable software development plan.

Unfortunately, since none of the off-the-shelf models worked well, the development group had

already headed in a more agile process direction, whereas the sales and marketing groups were a

steadfast hierarchical bunch that didn't like the idea of spending any more time talking to

developers than was absolutely necessary. Through some careful picking and choosing of

different practices from various schools of thought and a lot of hand-holding, the company

moved forward more or less successfully.

29

Soon thereafter, I found myself in charge of creating new development processes at a very large

enterprise software company, where I also quickly discovered that there was much less room to

officially redefine roles and structures than there had been in the previous startup environment.

Working very closely with other core stakeholders, I was again able to achieve some degree of

success but these two experiences together provided the impetus for creation a new type of

software product development organizational template for that had the following two primary

goals:

1. To provide a structure which would enable software organizations to create a

collaborative environment at all levels of the company, tackle software development's

unique complexities and rapidly changing requirements by focusing decision making in

the areas where the appropriate skill and knowledge resided regardless of seniority or

status, and provide the conduits for the needed two-way flow of information between

strategic and tactical groups

2. To make the structure flexible enough that companies of different types and sizes could

adopt it quickly without a major re-organization or a large scale change in role definition

and hierarchy.

Most of the ideas described in this section are based on real world experience and have been

implemented to one degree or another at various types of software companies both large and

small and whose focus ranged from enterprise software to web application development. In fact,

I was recently able to put my thesis subject to good use when I implemented a more specific

30

version of the framework at a software company with approximately 60 employees. The

overview that was used during this implementation can be seen in Appendix A.

3.2 Basing "Value-based" on Values

The selection of the term "value-based" as a way to describe the collective ideas in this chapter

was designed to focus the idea of structure on what it should be doing: helping an organization

achieve its objectives rather than simply providing a way to put all of the jobs and reporting

relationships on a single chart. In my experience, organizational structures tend to create an

undesirable resistance to change, as employees become comfortable and even protective of the

status quo where the organizational structure becomes something you have to "work around" in

order to get anything done. In contrast, I wanted it to be clear that the goal of the "value-based"

structure was, to put it simply, to add or enable the creation value as defined by the company.

3.3 Analysis of Existing Organizational Structures

3.3.1 The Hierarchical Organization

Hierarchical organizational structures are still the norm in the software industry as in most

manufacturing industries. As companies like Google and Amazon continue to grow, making

their development models likely to be copied elsewhere, organizational structures at other

software companies are generally on track to get flatter and consist of smaller and more

independent teams. In all likelihood, however, most organizational structures will continue to be

31

some variation on the hierarchy theme with variations in levels and role definitions. A typical

hierarchical structure for a software company can be seen below in Figure 1.

Division Head/CEO

Sales Marketing Engineering
DirectorNP DirectorNP DirectorNP

| utound anbound

Sales Sales Marketing Marketing Engineering QA Manager
Manager.1 Manager.n Mana er Manager Manager

PM1 PM2 SE1 SE2 QA1 QA2

PM3 .. PM4 SE3 - SE4 QA3 QA4

PM5 - PM6 SES -- SE5 QA5 QA6

Figure 1. A typical hierarchical organizational structure for a Software Product Development Company

In my experience, there have been two primary weaknesses in software companies that adhere to

strict hierarchical organizational structures:

- Decision-making tends to be concentrated at the highest possible level rather than at

the most appropriate level where the decision-maker would have the most experience

and information

- There is no structural path for cross-functional coordination and communication

which is critical in software development where the work is especially complex and

tasks can rarely be broken down into discrete responsibilities

32

This is especially true of any decisions that have high visibility or may impact the "bottom line"

to one degree or another. While this may work in certain types of organizations, the complexity

of issues within a software development organization are such that decisions need to be made at

whatever level and by whatever group or person has the best knowledge or experience relating to

that issue.

Others have argued that this dynamic requires that upper management step in more frequently in

order to decisions that better adhere to a company's bottom line. In software development,

issues are often technical or architectural in nature and arguably best answered by the responsible

senior developer or software architect. I refer to these types of issues as "tactical" issues which

deal specifically with "how" a strategic objective can best be accomplished or executed, whereas

"strategic" issues focus on "what" needs to be accomplished and may be best suited for upper

management.

In a hierarchical organization, when tactical decisions of consequence are made by the highest

level manager or executive with awareness of the issue despite potentially being many levels

removed from those that have a detailed knowledge of the issue, decisions tend to be made based

on factors that may have nothing to do with the actual merits of the issue, but are rather based on

out-of-date past experience or the advice of the most influential person or group. This creates a

pattern whereby tactical decisions are made based solely on the higher-level strategic objectives.

33

In turn, this dynamic often has the unintended consequence of lowering morale among

developers and others who may be painfully aware of how much or how little understanding the

decision maker had of the issue. Over time, this can also build a strong mutual distrust among

the different hierarchical levels as each feels unappreciated and undervalued by the other.

This is not to say that hierarchical structures are bad per se, or that there aren't software

companies which have been successful with this model. On the contrary, it's reasonable to

assume that most software companies of the past few decades have been hierarchical in nature,

but I also suspect that the more successful companies have developed the ability to act outside of

the hierarchy when necessary to optimize the quality of decision-making.

One way to enable this dynamic is to create a conduit or steady flow of critical strategic and

tactical information through hierarchical boundaries and across levels which often increases trust

and provides for better alignment of strategic and tactical decisions. One of the most notable and

successful examples is the role of the "program manager" as defined and practiced by Microsoft

and described in Microsoft Secrets -How the World's Most Powerful Software Company

Creates Technology, Shapes Markets, and Manages People."

In essence, the purpose of this role was to align strategic and tactical objectives where strategic

objectives are represented by product requirements and tactical objectives are represented by the

34

actual software development designs and project plans. The role and the practice of program

management is notable for both the degree of success that Microsoft achieved with it and that it

was largely the first time this type of role was defined and formalized within a software product

development company of Microsoft's stature. In essence, the purpose of this role was to align

strategic and tactical objectives where strategic objectives are represented by product

requirements and tactical objectives are represented by the actual software development designs

and project plans.

In regard to deficient structural support and communication, most software companies find ways

around this limitation out of necessity. A more discrete or "assembly-line" approach to product

development may be appropriate for certain product manufacturing, but for software developers,

this would be analogous to assembling a complicated puzzle blindfolded (see Figure 2.)

There is simply too much functional and contextual information embedded in software

requirements to develop software that meets those requirements. In fact, software is one of the

few "product" industries where the product is actually "manufactured" virtually and entirely by

people. Fred Brooks wrote very eloquently on this topic in his "No Silver Bullet" article when

he stated:

35

TYPICAL ASSEMBLY LINE MANUFACTURING TASK

A. B. C

ASSEMBLY: Add A. to B. to get C. Repeat ad infinitum.
Simple task requiring little knowledge allows function to be
performed repeatedly by (conceivably) any team member.

TYPICAL SOFTWARE DEVELOPMENT TASK

ASSEMBLY: Akin to asking a blindfolded person to complete a puzzle
sight unseen.
Highly complex task requires large amounts of highly
contextual knowledge to be transferred. Unlike traditional
assembly, roles are very specific and rarely transferable
among team members.

Figure 2. Manufacturing v. Software Task Comparison

3.3.2 The Matrix Organization

It's probably not accurate to say that very few companies have been able to successfully

implement a "pure" matrix based organizational structure organization as there's ample

evidence to suggest many companies have some degree of cross-function team participation

and/or consider themselves matrix organizations. One could even argue that the "value-based"

36

structure described in this thesis is just another way of viewing a matrix organization given the

strong emphasis on cross-function teams and communication.

Some facet of the matrix based approach, however, must have presented difficulties for many

companies during a period of backlash and abandonment against "matrix" structures amid much

early hope. A search of scholarly articles on matrix-based organizational structures turns up

articles almost entirely in the 1970's and 1980's. And having been responsible at one point for

introducing a matrix-based organizational structure into a software development group, I can

identify firsthand with the challenges and weaknesses commonly associated with such an

approach. For an example of what a matrix organization might look like as applied to a software

company, see Figure 3.

Software CYA Product Documentatior
Engineerng Engineering Management Help Support/Maint

Configuration'
Release

Management

Accounts Rec.

Accounts Pay.

General Ledger

Taxes

Reporting

Reconciliation

_ I

Figure 3. A matrix-like view of a value driven organizational implementation

37

E

0

E

Cr

0
i.

_________ _________ I _________

Like many other people, I thought at the time I introduced it that a matrix structure seemed to be

a logical if not obvious solution to combining different existing functions and organizations into

a single cross-functional or cross-team structure. In the end, I think the failure of the "pure"

matrix-based approach is not its "cross-functional" nature per se, but rather the combining of

two essentially flawed structures.

Strictly matrix-based failures must, however, be differentiated from failures connected to cross-

functional approaches in general because the matrix based-approach simply overlaid two

existing and ultimately incompatible structures without re-thinking or fundamentally re-

examining the nature of the structural relationships. Without stepping back and actually

rethinking the larger question of what was needed to best deliver a product to the market within

a specific organization, one can clearly discern a "two wrongs don't make a right" scenario.

The "value-based" framework was designed to avoid this scenario by emphasizing the creation

of a cross-functional approach or set of key principles related to software product development

that both recognizes the underlying dynamics of the work and seeks to best enable the cross-

functional relationships necessary to create the value and meet the company's strategic goals.

3.4 A Value-based Organizational Framework

When designing this framework I actually started by defining the principles before thinking

about the actual structure. In this same spirit the discussion is organized in the same way.

38

3.4.1 Essential Principles and Dynamics

Principle #1 - Strategic and tactical decoupling

The structural and procedural decoupling of the strategic and tactical functions within an

organization

This allows the tactical groups or functions within an organization to follow a "bottom up"

approach to optimizing processes and decision-making as opposed to the hierarchical or top-

down approach favored by the strategic (executive) layer. A "bottom up" approach means that

the focus of the tactical organizational is the work of the individuals or teams at the "bottom" of

a standard organizational chart. This should also enable the strategic layer to maintain focus on

the issues of strategic direction and the development of higher-level objectives.

Principle #2- Creation of a coordination layer

Creation of a cross-functional coordination layer within the larger organizational structure that

ensures and enables ongoing alignment between the strategic and tactical layers of the

organization

This approach allows strategic and tactical groups to optimize their own processes without

interfering with each other as the needed information flow among those two layers is managed

by the middle coordination layer (i.e."value-added" middle management.) Examples of this

might include the following:

39

- Managing the flow of requirements and priorities from the strategic to the tactical

layer of the organization

- Managing the reporting of "real time" status updates and changes from the tactical to

the strategic layer

Sharing a coordination layer within the organization also means that this layer can focus on

more proactive risk management and "push" issues in need of resolution to the strategic or

tactical layers on an "as needed" or real-time basis rather than at the end or beginning of the

week during a two-hour status meeting and after the issue has already festered and incurred

costs for two-to-five additional days.

This layer also provides a clarified role for the "technical management" position which was lost

or virtually moot within the standard matrix approach, but now emerges as a technology

advocate while staying geared to tactical execution. The example below shows the three

separate layers at their most basic form:

40

Strategic Planning Layer

Strategic and Tactical Coordination Layer

Tactical Execution layer

Figure 4. The three meta-layers of a Software Product Development Company.

Figure 5 illustrates the simplest way to map the value-based framework to a typical hierarchical

software organization.

Division Head/CEO

Sales Marketing Engineering
DirectorNP DirectorNP DirectorNP

PM3 = PM4 SE3 - SE4 QA3 QA4

-- PMS 5 PM6 SE5 - SE5 QA5 QA6

Figure 5. The three meta-layers overlaid on a standard hierarchical organizational structure

41

In reality, the effectiveness of the value-based approach is dependant on the effectiveness of the

cross-functional team. Figure 6 shows a more advanced implementation in terms of how a

software organization could most effectively utilize the framework.

Strategy Layer Executive Steering Committee

Product Planning Committee
ordinl on ayerRelease Planning Cmmittee

Tacical Layer Product Development and Services Teams

Figure 6. Advanced implementation of a value-based organizational structure

This particular implementation utilizes functioning or working committees to represent the

coordinating layer's middle, which is made up of managers or director-level employees who are

just above the detailed tactical work, but not in the higher level executive circles. Smaller

startup companies will essentially organize this way implicitly and may have only one or two

people in the middle layer. It is only when companies have to begin creating explicit structures

42

that they lose this flow because they adopt a more standard hierarchical structure which serves

to limit rather than facilitate the flow of information across multiple levels. By focusing an

entire layer of the organization on ensuring proper alignment between the strategic objectives on

one hand and the tactical plans on the other, a company is more likely to achieve them and

much less likely to focus on just the near term objectives or to let political issues get in the way.

It's worth noting that if mistrust already exists within the organization or between key

individuals, just putting them on the same "team" doesn't automatically mean that they will be

more effective or suddenly get along. These types of issues still have to dealt with, ideally

directly and separate from the team meetings as they can otherwise fester and impact others on

the cross-functional team. I have, however, witnessed this type of coordinating team help create

trust and build healthy relationship by doing a couple of things well:

- Issues and concerns related to the work are discussed openly creating a greater

understanding of team members' various perspectives and why they may be fighting so

hard for a specific feature or target date. This helps to build empathy for co-workers'

motives rather than suspicion

- Shared success is a very effective way for people from different groups within the

company to build trust and to share in more of the company's successes

Principle #3 - Focus on value creation

All individuals, teams, divisions, roles, structures, processes, requirements, tasks, etc. should be

judged based on its ability to add value to the company's strategic objectives, its customers, or

its employees

43

While this principle does not provide any specific guidance in terms of creating new structures

or processes, it should be the final measure by which any employee, requirement, decision,

process or structure should be judged. If something does not provide value, then it should be

modified to do so, or replaced by something that does.

This may seem like an obvious point, but in my experience companies frequently create or

maintain structures, processes, policies, etc., that do not add value to the company, its

customers, or its employees or, more often, they conflict with higher priorities or value-adding

structures, processes and policies. A common example of this would be a compensation policy

that rewards employees solely on individual performance and essentially punishes employees if

they fall behind on their own tasks because they helped a different team complete a higher

priority (higher value) task. The primary definition of value within an organization should be

derived from or at least be consistent with its Vision or Mission Statement as well as its

product's primary value proposition

Principle #4 - Continuous planning and execution

Decoupling the Planning (strategic) and Execution (tactical) functions within the separate

organizational layers can also increase the benefits of an iterative approach to software

development by allowing each function to be continuous and therefore minimize the negative

impacts of certain dependencies.

44

There are two primary practices that a value-based framework can help a software company

stay productive rather than suffering through the usual up-and-down cycles as each group

hurries between releases to complete work in order to hand it off the next.

The most important practice is continual product planning, designing, and reprioritizing based

on real-time market demands rather than what the plan might have directed six months or a year

ago (which was likely based on even older market conditions.) Product planning will

sometimes shut down for months after a feature list is agreed to for an upcoming release. But,

since the coordination team in the middle layers is persistent over multiple releases rather than

temporarily partnered only be to separated again, each function can operate at full capacity all

the time and can simply draw from the other the necessary or required information (status and

priorities) on an as-needed basis rather than having to wait for each other to complete before

beginning the next cycle.

The other benefit is that resources can be more easily shifted from lower priority tasks or tasks

where there is less risk of a dependent logjam. Having a cross-functional coordination team

with members from each major group within the company, everyone needs to agree on the

company's priorities rather than focusing on the priorities for just their team. See Figure 7

below for an illustration of this effect.

45

Coupled
&
Non-Iterative

Coupled
&
Iterative

Decoupled

Iterative

Product Manager Software
Requirements Design & QA

Capture Development Testing Typical Peak
................ Capacity

DOWNTIME DOWNTIME
Value Added No Value Added

Iteration #1 Iteration #2

. Typical Peak
..... Capacity

Less Total
Downtime

.............................. P..............Typical Peak
Capacity

Virtually no
Downtime and
more iterations

Figure 7. Decoupled and Iterative Model Effects on Team Capacity and Efficiency

Principle #5- Meta-teams and Meta-roles

Utilize the concept of meta-teams and meta-roles as a way to maintain staffing flexibility and to

more easily move back and forth across group boundaries if needed in order to staff certain

shared efforts.

46

This is an important method of applying new teams or structures over an existing organizational

structure without necessarily having to officially change the existing structure and fight the

political battles and other common difficulties associated with changing employees' roles or

creating new ones.

The most common example in my experience involved requirements teams. In a "value driven"

approach, requirements are the main currency of value for a product company, and rather than

organizing around temporary projects or releases, cross-functional requirement teams are

formed to own the successful specification, design, testing, delivery, and maintenance or

requirements for the life of that requirement. And while most requirements are functional in

nature, there are also technical or non-functional requirements that may be just as important for

the success of the product, but often get ignored by product management because they lack the

expertise or understanding necessary to drive that requirement through.

By specifying the roles within a requirements team as meta-roles rather than specific positions

or titles within the company, the role of subject matter expert (SME) can be filled either by

someone from product management (in the case of functional requirements) or by someone

from the development group in the case of non-functional or technical requirements. Please see

Figure 8 for an example of how meta-roles and meta-teams can be used to help create and

validate requirements.

47

/

Subjec
Matte
Exper

Product
Manager

Functional
Requirement

Team

- -~

N4

N

/
/eNon

Re(

t r/
ru ltQuality -

Owner I.Technical
I- Owner

Technical
Owner

Software QA
Engineer Engineer

-functio
uireme
Team

nal

Subject
Matter
Expert

-

Quality
Owner

Software
Engineering

Manager

Figure 8. Meta-Roles" and Assignments within Requirement Teams

Figure 9 illustrates a higher level view of a complete meta-team structure on all three levels.

This example was actually implemented as-is at a previous company in late 2006.

48

I
I

* Product Vision
* Strategic Directi
* High Level Priori
* ProductVision

Organizational S
*6+ Month Produc

* Release Manage
4 Detailed Estina
* Detailed Release
- Detailed Depenc

- Functional and
I rnpact Analyses
2<Month Produ

on
ties xecutive Steering Committee
upport
t Roadmap

Detai
HighI Relea

Product Planning Committee - TactiCharn
S2 to 6

ment
tes
Plans
encies Release Planning Committee
Technical

ctRoadmap

Figure 9. High- level view of a complete meta-team structure

Principle #6- Manage forward

Project management should focus more on adjusting and optimizing the plan forward rather

than on maintaining the original project plan as new knowledge is gained and understanding of

the effort is increased

The original plan is usually out of date by the second day of an average software development

project. Refusing to recognize or record this fact as the original plan continues to become less

relevant does nothing to help the project or the company to meet its original objectives when

49

-'N
led Priorities
Level Dependencies
se Scoping
:at Priorities

Month Product Roadmap

circumstances have changed. However, this is a situation where separating the tactical and the

strategic can be very useful.

In my experience if a plan is referred to as a tactical rather than a strategic plan (and the strategic

plan remains static), management tends to be more likely to allow the tactical plans to be updated

and optimized as needed in order to adjust to everything that is constantly changing during a

software development project. Ironically, this leeway actually increases the odds that the

original plan's objectives will be met since the team is able to make important adjustments that

can help keep them or get them back on track including:

Principle #7- Manage risk early and often

Managing and minimizing risk on software development projects requires daily, hands-on

attention rather than a standard approach which relies on weekly status meetings.

If this principle sounds similar to XP's daily stand-up meetings or Scrum's daily scrum

meetings, that's probably because it is. It's also the single most effective practice I've come

across for managing risk during the development phase on a software project I've been able to

implement daily development meetings at four separate software companies and each time I did

so, there was a noticeable improvement in software performance measurements across the board.

It's also easy to understand why as managing risk earlier means that less time is wasted either by

heading down the wrong path or by struggling with an issue that additional input could have

resolved immediately. It also means that the meetings can average fifteen minutes rather than

the two hours that weekly status meetings typically take.

50

Principle #8- Value must be valued

Ensure that the compensation system and the performance review process recognize and

equitably reward value creation across the organization

While the larger external market for jobs primarily determines standard compensation levels for

different roles, companies can still be creative. For example, rather than simply rewarding the

sales group based on commissions from sales of product that may result as much from a good

product design as a good sales strategy, also compensate those in responsible in the development

group with "ownership" of the product via revenue sharing or actual stock (not just futures).

While this may seem relatively extreme, it is also fair given the other collective principles,

because without good products there would be nothing to sell and ownership in the

product/company itself is a natural incentive to build better and "value-added" products for

developers in the same way that commissions are a natural incentive for sales to sell the product.

51

Conclusion

Having benefited so much from the writings of others throughout my career including Steve

McConnell, Gerald Weinberg, and Michael Cusumano just to name a few, my hope in writing

this thesis was to contribute something original that would make use of my experience and my

time at MIT and that could be of some help to others in the future. Having spent much of the last

two years culling through research and papers on software development going back to the

1950's, it quickly became clear that there is truly very little related to software process and

practices that has not been suggested or tried in one form or another.

This realization only reinforced what I had already been coming to understand after fifteen years

of experience in software development, much of it working with process, which is that the real

key to success for those who are responsible for choosing, implementing, and managing software

development processes is to have a direct understanding of why specific practices are or are not

helpful and to be able to predict in what situations those same practices might cease to be

helpful. This is not something that can be learned by simply picking up a book and

implementing a process through rote adherence or by reading someone else's blog entries.

In discussing the additional factors related to the HP study my hope was to add some additional

insight that would complement the existing analysis and to suggest additional factors for

consideration in future studies. In creating the value-based framework, my goal was to provide a

working framework based on organizational principles that could enhance an average software

organization's ability to implement and manage a wide range of different processes based on

52

what works best for that organization. It is my sincere hope that others will be able to bring

these two ideas together in a way that will benefit his or her company's software development

efforts.

53

Appendix

Value-based structure exhibits. These documents were used to help implement a value-based
organizational framework at Navio, Inc. in late 2006.

54

V An Overview of NAVIO's Value Driven Team Structure
" Purpose and Key Points
" Structure and Application
- Core Responsibilities and Deliverables

D The Coordination Layer
* The Product Planning Team

- Mission

" Team Charter
" Keys to success

* The Release Planning Team
0 Mission
* Team Charter
- Keys to success

V Primary goal is to enable the larger organization to
execute on its shared vision and create innovative
products and services that deliver unequalled value to its
customers, stakeholders, and employees

b Optimizes individual and cross-functional effectiveness

I Division into 3 layers ensures that core work, decision
making, and accountabilities (strategic and tactical)
resides with the most qualified people for the task

D' Provides both the necessary oversight of a hierarchical
structure and the cross-functional focus of a matrixed
organization, but without the associated disadvantages

D Can be applied to an existing structure through the use of
cross-functional coordination teams

V Requires trust and participation from Executive Team

55

LAy Lay rordu -DvEtpnie n Structu es

NAVIO___ _

The value-driven structure cptimizes NAVIO's ability to execute on its
shared vision and create innovative products and services that deliver
unequalled value to its customers, stakeholders, and employees

Strategy Layer ExmieSerVrmte

rdinat nr Laye Product Planning Comrrttes
Relese Planning Commrittee

Page 4

NAVIO Apyn h au-de tutr

The Value Driven Structure can be applied or to a typical
hierarchical software product development structure

PageS

56

.ki

00,

E7P
Wors"s; coo Cto

.I I 1 3,35355" 1 1 FE J-ffl t
Na M 1'3 a e5 r-_-fVIF

Maqjk' r M " -
"WC

NAVIO A Lavered or Value-Driven Structure

The value-driven structure optimizes NAVIO's ability to execute on its
shared vision and create innovative products and services that deliver
unequalled value to its customers, stakeholders, and employees

Strategy Layer Executive Steering Commte

Product Planning Committee
oordm,!tion ayerRelease Planning Committee

Tactical Layer Product Development and Services Teams

Page 4

NAYIO "".ApynthVau-deStuur

The Value Driven Structure can be applied or to a typical
hierarchical software product development structure

Division HeadICEO

VP of Sales coo CTO

- - maet 1aMaer r gj

-

--

PM1 PM2 SE1

PM5 -_E F TS E A A

Page 5

57

KeyI Res blte adDlvrbe

V

K

s &eaivo Stearin Comfitbme

pport

- DetritL

*Releas

Prduct Paming CommIrlee Tactia

- 2to 6

SRelease PlarIng Committee

Raadnrp

Priaritiz

Mmth Produwt Roadmap

Page6
I A% IN AVW

The NAVIO Product Planning Team

Page7

58

* Releuse Maagm
. etaied Eftemt
- Detmked ReleA2e I
*Dbgd Depndw

- function ad T
Srnt Ant Pzd-t

Product v s iM
strstegic Dkeation

Hu L4 rkrMt
Prodsct Vi-ion
Organi::atbQnl S
6+ Marth Pradmct

NAVIO %Mission of the Product Planning Tear

To ensure that NAVIO's future product
roadmap and current product/service
development plans across the entire
organization (PM, Ops, PS, and Eng) are
defined, scoped, and scheduled in line
with NAVIO's overall vision and in keeping
with the direction of NAVIO's Executive
Steering Committee.

59

page 5

You are Here

Strdat o Layer

oordnaton Lyer Prodct lannng eamRelease Planning Team

Tactical Layer PrudiM* Devaopnwnt anid Setvicas Tewrns

NAVIO NAVIO Product Planning Team Charter

D Current core members of the team include each Product Manager
and one representative from Engineering, PS, Ops, and Sales

V The NAVIO Product Planning Team is a "working" group and not
simplya "meeting" or review group.

The core work ofthe group should happen in realtime as needed and not
in weekly status or review meetings

- Only the people who are actually needed should be included in the
"working" of a solution

- The Larger NPPT participates in the planning and review of each issue as
needed rather than by necessity

r; The NPPT is accountable for actively managing and prioritizing
NAVIO's 12 month product roadmap and development cycle

v The NPPT engages in continuous product planning including the
documentation and prioritization of requirements

- Ideally, PRD signoffs, detailed designs and estimates, etc are completed
3 to 6 months in advance of the start of actual development activities

Pase 10

g \NAVI O i * ut 0 a111 C'srK# tt511C#1rt11 C31 t.

L Manages the Change Control process and the creation of the
necessary impact analyses on an as needed basis

V Makes adjustments to priorities and schedules when needed in
order to ensure that NAVIO is able to respond to changing market
needs and new opportunities (subject to review by the Exec Team)

D Interacts proactively with the Release Planning Team to

a Supply the necessary guidance in terms of priorities and timing needs

a Quickly address any related questions or concerns that blocks progress

Interacts proactively with the Executive Steering Team to
a Supply product status information at the appropriate level of detail
I Quickly gain clarification on conflicting priorities and guidance on other

related issues

P Owns the prioritization and ordering of bugs and other
maintenance issues for each development/maintenance cycle

page 11

60

NAYIO

o Strong public support and cooperation from NAVI's Executive
Management Team in terms of ownership, trust, and participation

s Time for NPPT work should be planned for each team member and
recognized as core to NAVIO's success, not left to each member's
"spare time"

9 The use of effective cross-functional tools and processes

i> Development time and resources for creating impact analyses and
reviewing PRDs for future requirements (3 to 6 months) should be
planned in advance and reserved

a This applies primarily to the technical leads in the different development
and QA groups (roughly 20% of their time)

- Set aside means that this is time that is explicitly not planned for
development or other management activities

s Last but not least, focusing on the future with a new mindset and
letting go of past baggage and other interference

_The Rees T

The NAVIO Release Planning Team

Page 13

61

AVIO M n e NAVIO Release Planning Team

Page 14

NAVIO
You are Here

Product Planning Teamoordina on Layer Release Planng Tea

Tactical Laer Produc Development and Services Teams

Page 15

62

To ensure that the development cycle
and the subsequent product/service
releases, storefronts, customized
applications, hardware configurations
and the combined interdependencies are
effectively coordinated and optimized
across all of the separate product and
services groups within NAVIO (think
"whole company" and "whole product")

NAVIO
P Core members of the NAVIO Release Planning Team include Ops,

Documentation, Engineering, Operations, QA, and PS
P The NAVIO Release Planning Team is a "working" group and not

simply a "meeting" or review group.
- The core work ofthe group should happen in reaLtime and not in weekly

status or review meetings

s The NRPT is accountable for the cross-functional management,
proactive release planning, and the issue resolution efforts for
each major and minor release including emergency patches

> Proactive release planning includes:
a Creating and managing cross-functional iteration and release timelines

and shared milestones

a Documenting and managing Lower level interdependencies

i Issue resolution work includes "unplanned" cross-functional risk
management and change control
- Specific owners and participants are assigned to each issue or impact

analysis and tracked against expected completion dates

Page 16

P Strong public support and cooperation from NAVIO's Executive
Management Team in terms of ownership, trust, and participation

' Recognition throughout the company that this work is critical to
NAVIO's success and not optional or "nice to have"

i Time for the team's work should be planned and allocated during
the week and not left to weekly meetings or "spare time"

> The use of effective cross-functional tools and processes

P Ops, PS, QA, and Engineering time and resources for analyzing
cross-functional impacts at a detailed level (files and objects) for
future "in work" or near term development and requirements (0
to 2 months) should be planned in advance and reserved

- Set aside means that this is time that is explicitly not planned for
development, storefront, QA, Ops, or other management activities

P Last but not least, focusing on the future with a new mindset and
letting go of past baggage and other interference

page 18a

63

References

The Standish Group, "Charting the Seas of Information Technology," Dennis, MA: The
Standish Group, 1994. Jones, Capers, Patterns of Software Systems Failure and Success, Boston,
MA: International Thomson Computer Press, 1996.

McConnell, Steve, Professional Software Development: Shorter Schedules, Higher Quality
Products, More Successful Projects, Enhanced Careers, Reading, MA: Addison-Wesley, 2006

ii The Standish Group, "Charting the Seas of Information Technology," Dennis, MA: The
Standish Group, 1994. Jones, Capers, Patterns of Software Systems Failure and Success, Boston,
MA: International Thomson Computer Press, 1996.

iv McConnell, Steve, Professional Software Development: Shorter Schedules, Higher Quality
Products, More Successful Projects, Enhanced Careers, Reading, MA: Addison-Wesley, 200

ibid

Vi ibid

[Royce, 1970]. W.W. Royce, "Managing the Development of Large Software Systems:
Concepts and Techniques," 1970 WESCON Technical Papers, Vol.14, Western Electronic Show
and Convention, Los Angeles, August 25-28, 1970, pp. 1 - 9, Reprinted in the Proceedings of

the 9th International Conference On Software Engineering, March 30 - April 2, 1987, Monterey,
California, IEEE Computer Society Press, Washington, D.C., 1987, pp. 328 - 338.

Viii M.Campbell-Kelly, From Airline Reservations to Sonic the Hed -A History of the
Software industry, The MIT Press, Cambridge, Massachusetts, 2003

[Brooks, 1987]. F. P. Brooks, Jr., "No Silver Bullet: Essence and Accidents of Software

Engineering," IEEE Computer, Vol. 20, No. 4, April 1987, pp. 10 - 19.

[Bach, 1994]. I. Jacobson, P. Ng, and I. Spence, "Enough of Processes: Let's Do Practices," Dr.

Dobbs' Journal, No. 395, April 2007, pp. 3 8 - 46.

[MacCormack et al., 2003]. A. MacCormack, C. Kermerer, M. Cusumano and Crandall,
"Trade-offs between Productivity and Quality in Selecting Software Development Processes,"

IEEE Software, Vol. 16, No. 4, September/October 2003, pp. 78-85.

Xi B.W. Boehm, Software Engineering Economics, Prentice-Hall,

64

Englewood Cliffs, New Jersey, 1981.

Xiii [Lientz and Swanson, 1980]. B.P. Lientz and E.B. Swanson, Software Maintenance
Management: A Study of the Maintenance of Computer Application Software in
487 Data Processing Organizations, Addison-Wesley, Reading, Massachusetts,
1980.

XIV M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,
Refactoring: Improving the Design of Existing Code, Addison-Wesley, Reading,
Massachusetts, 1999.

" [Cusumano and Selby, 1995]. M.A. Cusumano and R.W. Selby, Microsoft Secrets -How the
World's Most Powerful Software Company Creates Technology, Shapes Markets, and Manages
People, The Free Press, New York, New York, 1995.

65

