
Scalable Computational Architecture for
Integrating Biological Pathway Models

by

V.A. Shiva Ayyadurai

S.B., Electrical Engineering and Computer Science, MIT (1987)
S.M., Media Arts and Sciences, MIT (1989)
S.M., Mechanical Engineering, MIT (1990)

SUBMITTED TO THE DEPARTMENT OF BIOLOGICAL ENGINEERING IN
PARITAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY IN BIOLOGICAL ENGINEERING
AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

AUGUST 2007

Signature of Author:

y , 
- - -, , 

,,

,,,Departmne•.•( Biological Engineering
August 29, 2007

(~N /"')
Certified by

C. Fores Dwey, Jr.
Professor of Mechanical and Biologiial eering

.- Thesis pervisor

/ //

Accepted by: S/ % * "

/ (I Al J. Grodzinsky
Professor of Eltrical, Mec ha M ical Engineering

Chairman, Biological Engineering Graduate Program Committee

I hIA~UACHUETm INSffUI
OF TEOHNOLOGY

JAN 2 8 2008

LIBRARIES

ARCH~8

/.'

• J

,,

,

:" VU %V -

I,



Copyright © 2007 by V.A. Shiva Ayyadurai.

All rights reserved. The author hereby grants MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document in whole or in
part in any medium now known or hereafter created.

Thesis Defense Date: August 13, 20071.

1 The thesis was presented on August 13, 2007, which also marks the 89" birthday of Dr. Frederick Sanger (b. August 13, 1918).
Dr. Sanger won two Nobel prizes in Chemistry. In 1958, he was awarded his first Nobel prize in Chemistry for proving that proteins
have definite structure by sequencing insulin. In 1980, he was awarded his second Nobel prize in Chemistry along with Walter
Gilbert for the sequencing the first DNA-based genome. This discovery has been the basis of the Human Genome Project. In 1992,
the Sanger Centre near Cambridge, England was founded in honor of Dr. Sanger. The visit to the Sanger Institute by the author in
October 2003 marked the start of the author's journey into the field of systems biology and biological engineering.



To my loving parents





Scalable Computational Architecture for
Integrating Biological Pathway Models

by

V.A. Shiva Ayyadurai

Submitted to the Department of Biological Engineering
on August 13, 2007, in Partial Fulfillment of the

Requirements for the Degree of
Doctor of Philosophy in Biological Engineering

Abstract
A grand challenge of systems biology is to model the cell. The cell is an integrated
network of cellular functions. Each cellular function, such as immune response, cell
division, metabolism or apoptosis, is defined by an interconnected ensemble of biological
pathways. Modeling the cell or even one cellular function requires a computational
architecture that integrates multiple biological pathway models in a scalable manner
while ensuring minimal effort to maintain the resulting integrated model. Scalable is
defined as the ease in which more and more biological pathway models can be
integrated. Current architectures for integrating biological pathway models are
primarily monolithic and involve combining each biological pathway model's software
source code to build one large monolithic model that executes on a single computer.
Such architectures are not scalable for modeling complex cellular functions or the whole
cell.

We present Cytosolve, a new computational architecture that integrates a distributed
ensemble of biological pathway models and computes solutions in a parallel manner
while offering ease of maintenance of the integrated model. The individual biological
pathway models can be represented in SBML, CellML or in any number of formats. The
EGFR model of Kholodenko with known solutions is used to compare the Cytosolve
solution and computational times with a known monolithic approach. A new
integrative model of the interferon (IFN) response to virus infection is developed using
Cytosolve. Each model within the integrated model, spans different time scales, is
created by different authors from four countries and three continents across different
disciplines, is written in different software codes, and is built on different hardware
platforms. A new quantitative methodology and formalism is then derived for
evaluating different types of monolithic and distributed architectures for integrating
biological pathway models.

As more biological pathway models develop in a disparate and decentralized manner,
the Cytosolve architecture offers a unique platform to build and test complex models of
cellular function, and eventually the whole cell.

Thesis Supervisor: C. Forbes Dewey, Jr.
Title: Professor of Biological Engineering & Mechanical Engineering





Acknowledgments
While a dissertation is meant to represent the work of a single person, every dissertation
is necessarily the result of numerous interactions between the author, the author's
advisors, peers, colleagues, friends, and family. This one is no different.

My advisor
Prof. C. Forbes Dewey, a fellow pioneer, is my primary collaborator. Without him, this
thesis would not have been possible. He provided me the opportunity to enter into the
new field of systems biology and continually offered his wisdom and encouragement to
move forward with conviction. Forbes is one of the kindest and insightful people I have
ever come across and am honored and fortunate have his friendship and mentorship.

My thesis committee members, readers and advisors
My thesis committee members and other advisors including Prof. John M. Essigmann,
Prof. Robert C. Berwick, Prof. Ahmed F. Ghoniem, Prof. Bruce Tidor and Prof. Douglas
A. Lauffenburger. Their wisdom, friendship, feedback and encouragement have been
invaluable.

My friends
My most sincere thanks and love to my long time friends Sonu Mathews Abraham,
Gene Deans, and Hariharan Subramanian, three people who I don't know what I would
do without.

New friends and old ones that I reconnected with who shared their compassion and
insights both professionally and personally including Simon Dao, Saloni Fadia, David
Calvo, Sen Song, Carolyn Dewey, Asawari Desai, Devan Dewey, Sangeetha Modi,
David Calvo, Phil and Alise Rheinstein, Sen Song, Marina del Rohrer, Kim Moore,
Tenzin Priyardarshi, Tricia Harris, Nevan Hanumara, Martin Feuerman and Dick Kitney

MIT
Catherine Howell afforded her time on many occasions to provide the knowledge
needed to understand JSIM and the actin polymerization model, developed by Jim
McGrath and Mike Binschadler. It was this model which first introduced me to the area
of biological pathway modeling.

Over the past four years, at Hatsopolous Microfluidics Laboratory, is where my home
has been at MIT. That home has included a cast of characters: Donna Wilker, Kurt
Stiehl, Yu Yao, Aleksandr Rabodzey, Khanh Dang, and many others.



At the start of my doctoral program, given my background across three departments, it
was Frank E. Perkins initially and then later Ike Colbert who provided me the guidance
to formulate the administration behind my doctoral program, at a time when the
Biological Engineering Division, did not even exist.

This journey was also a great opportunity to reconnect with my Freshman Advisor
Roger Mark, and also Paul E. Gray, Samuel J. Keyser, Bob Randolph and others who
knew me well during my undergraduate years and were kind and gracious to see me
back.

I want to also give a special thanks to Leslie Regan, Joan Kravit, Dalia Fares and
Michelle Carmichael who took care of all the little details and for their dedication to
students and faculty.

During my return to MIT, Joel Moses was very helpful in offering his time to brainstorm
on different thesis topics.

Very special thanks to Dawn Metcalf for her compassion, generosity and wisdom.

My friends Dan Bums and Devin McCombie were great partners to have as a part of the
study team during the doctoral qualifiers.

John Essigmann is a great teacher. I thank him for his wonderful and positive attitude in
my learning his course his BE440. Paul Huang also deserves special thanks for first
being my TA in BE440 and later a good friend.

Ram Sasisekharan, Alan Grodzinsky, Forbes Dewey, Roger Kamm. Bruce Tidor, Jacob
White, Anthony Patera and Jaime Peraire, deserve much appreciation for their great
courses, in which they conveyed new knowledge with grace and elegance, while
expanding my universe of biology and numerical computing.

My utmost appreciation and respect to Paul Matsudaira, Doug Lauffenburger and Subra
Suresh for their vision in being able to bring together new platforms for education and
research including computational systems biology (CSBi), biological engineering (BE)
and new programs such as GEM4 and SMA so many can pursue their dreams.

Architecture Development and Testing
Ceryen Tan, Gene Deans and Prasad Jayakumar for providing me information on Web
Services, and supporting my time to time programming needs of the distributed solver.

Jia-An (Andrew) Koo for his help at the last minute in helping test the IFN pathway
along with Boon Siew Seah's last minute programming efforts on the controller.

viii



Video Production
In August of 2005, I met Philip Pfeifer, my Vipassana teacher. Later Philip and his three
artisans, part of a non-profit collective, Brian Sneed, Arik Thusen, Harry Hunsberger
performed the 3-D animation and video rendering of the IFN response to virus infection
video. That video would not have been possible without them.

Singapore-MIT Alliance (SMA)
The Singapore MIT Alliance for their funding my last three years of research along with
their generous travel grants. My special thanks to Sourav Bhowmick for his friendship
and making me feel at home during my travels to Singapore.

EchoMail
Leaving EchoMail to take on the PhD was a bigger transition than I thought. My friends
and colleagues at EchoMail including Angie Christensen, Roman Zavolly, Evan Siegel
made that transition easier. The Board including Larry Weber, Sonu Abraham, V.
Ayyadurai (my dad), Ed Fredkin and Ted Johnson deserve my thanks for their many
years of support and encouraging of my intellectual desires. Special thanks for
EchoMail's financial support of my first year in the PhD program.

My teachers
There are many through the years stretching back to secondary school who are part of
this thesis including: Mr. Melvin Roth (my sixth grade teacher), Mr. Walker (my
chemistry teacher), Mr. Kramer (my calculus teacher), Mr. Sommer (my algebra teacher),
Mrs. Hall and Ms. Payne (my writing teachers). Special thanks to Paul Pitchford and the
Heartwood Institute (for teaching me TCM), Rick Buckely (for opening my eyes to the
power of observation), Kelly Mara (my Yoga teacher), Philip Pfeifer and S.N. Goenka
(who taught me Vippassana), Alise Newton (who taught me to walk right), Warren
Senders (who taught me to hear so I could sing).

I will never forget Dr. Leslie P. Michelson for bringing me into the world of computers
and giving me my first programming job when I was 13 at the UMDNJ which led to my
work on developing one of the world's first E-Mail system. He is one of the most
brilliant people I've met. He taught me the importance of writing well and thinking
clearly. Without him I would never have gotten such a head start in computer science.

In memory
Two years ago, Swamy Laxminarayan passed away. He was the one who introduced
me to biomedical engineering when I was a high school sophomore and gave the
opportunity to learn signal processing on a sleep apnea project, for which he also made
me a co-author on my first paper in 1985, that took me to Espoo, Finland for the IEEE
International Conference on Medical and Biological Engineering.

My maternal grandparent Annamalai who was always there for me and I will always
remember her great cooking and kindness.



My paternal grandparents would have been happy to see this work. My grandmother
Chinnathai and my grandfather Vellayappa, passed on in 2005. I pay reverence to their
loving spirits.

Satguru Sivaya Subramuniyaswami deserves many thanks for his wonderful writings
and teachings, which are a source of great truth and comfort.

My family
Last but not least, I want to thank my family.

My mother, Meenakshi Ayyadurai, the most amazing person I know in the entire world.
She embodies the independence, resourcefulness and grace of being a powerful woman,
blending East and West, being a living example to others who struggle to reach that
balance. Without her, I would never have entered the world of computing nor would I
have had access to many of the unique doors that she opened that led me to great
opportunities at a very early age.

My father, Vellayappa Ayyadurai, my living hero, who as a child experienced bombs
being dropped in WWII in Burma, educated himself, electrified villages, mentored
thousands, and embodies the wisdom and compassion of a long-lost statesman, the
kind the world sorely needs today.

My loving sister Dr. Uma Dhanabalan and my wonderful nephew Shivaji Dhanabalan
deserve my love and thanks for always being there. Uma is one the kindest human
beings I know who has always been a great source of support and wisdom.

Finally, Romeo, thanks for keeping me company during late night writing sessions.



Biographical Note
V.A. Shiva Ayyadurai is a Fulbright Scholar, MIT-Lemelson Awards Finalist and
Westinghouse Science Award recipient. He was born in Bombay, India and moved to
the United States at the age of seven. He completed his secondary school education in
New Jersey. He is the inventor of one of the world's first E-Mail systems holding the
first US Copyright on E-MAIL. Shiva also holds three US Patents in automatic pattern
recognition. He has published scientific articles in several conference proceedings and
refereed journal articles. In January of 2000, one of Shiva's inventions EchoMail was the
featured story in The MIT Technology Review. He has appeared in columns and articles in
The Wall Street Journal, New York Times, NBC News, USA Today and other major
publications. He was named Top 40 in the Improper Bostonian. He is also the author of
two books: Arts and the Internet and The Internet Guide to Publicity. He is a member of
Sigma-Xi, Eta Kappa Nu and Tau Beta Pi. He is a founder of the Shanthi Foundation
which raises money to provide scholarships for education to orphaned girls. He is also a
supporter of various arts and non-profit organizations. Shiva enjoys yoga, travel, tennis,
animals, art and architecture, and lives Belmont, MA, USA.





Content
Preface .. ............................................................................................................ X vi

Introduction .................................................. 1

1.0 Background and Significance .......................................... ...................................... 1

1.1 The Com plexity of Biology ........................................................ 3

1.2 Biological Pathw ays ................................................................ ............................ 10

1.3 System s Biology......................................................................................................... 14

1.4 Research M otivation ............................................................... ............................ 24

1.5 O riginal Contributions ............................................................................................. 35

1.6 O rganization of Thesis ............................................................................................. 39

Prior W ork ................................................... 42

2.0 Introduction ............................................................................................................... 42

2.1 Movement to Integrate Biological Pathway Models ..................................... 42

2.2 Existing M ethods................................................................................................. 45

2.3 Integrative M odeling Efforts ...................................................... 55

2.4 Generalized Architectures for Integrating Models .................................... . 57

2.5 Approaches to Integrating Biological Pathway Models ................................... 70

2.6 Sum m ary .................................................................................................................... 78

M ethodology .................................................................................................................. 87

3.0 Introduction ............................................................................................................... 87

3.1 A pproach.................................................................................................................... 88

3.2 Sum m ary .................................................................................................................... 90

A rchitecture .................................................................................................................... 92

4.0 Introduction ............................................................................................................... 92

4.1 Architecture Requirements Specification ...................................... .... .. 93

xiii



4.2 Architecture Functional Specification ......................................... .......... 97

4.3 Architecture Design ................................................................................. 104

4.4 Architecture Implementation ..................................... 109

4.5 Pathway Model Representation........................... 118

4.6 Pathway Registration and Ontology ................................................................. 120

4.6 Controller-Pathway Interface Description........................................................ 124

4.7 C ontroller ................................................................................................................. 126

4.8 M ass Balance ............................................................................................................ 133

4.9 Test Exam ple............................................................................................................ 137

4.10 Sum m ary .................................................................................................................. 141

EGFR Model of Kholodenko ..................................... 144

5.0 Introduction ........................................ 144

5.1 Materials and Methods.................................. 145

5.2 R esu lts....................................................................................................................... 150

5.3 Sum m ary .................................................................................................................. 156

Integrative Model of Interferon Response to Virus Infection ........................ 160

6.0 Introduction ........................................ 160

6.1 Background on Interferons ..................................... 161

6.2 Key Molecular Components of IFN Activity .................................... 166

6.3 Elements of the IFN Response ................................ 169

6.4 Individual Model Solutions ........................................................ 189

6.5 Integrated Model of IFN Response .............................. 193

6.6 Re-Integration and Maintenance Test .................................................................. 200

6.7 Analysis of IFN Integrated Model ..................................... 202

6.8 Sum m ary .................................................................................................................. 212

Quantitative Methodology to Evaluate Architectures for Integrating Biological
Pathway Models ........................................ 217

7.0 Introduction ........................................ 217

7.1 Architectural Notation ..................................... 220

7.2 Critical Requirements for Architectural Evaluation .................................... 227

7.3 Stakeholders of an Architecture ..................................... 229

7.4 Description of Architectures............................................................................ 234

xiv



7.5 Architectural Design Elem ents....................................... 239

7.6 Architectural Design Alternatives ..................................... 244

7.7 Architectural Evaluation ..................................... 245

7.8 Quantitative Architectural Selection for Stakeholder ..................................... 250

7.9 Summ ary .................................................................................................................. 252

3-D Animated Video of IFN Response ........................................ 255

8.0 Introduction ........................................ 255

8.1 Scene 1 - Virus Infection ..................................... 257

8.2 Scene 2 - IFN Signaling to IRF-7 Production ..................................... 262

8.3 Scene 3 - Up regulation of IFN-Alpha ..................................... 267

8.4 Scene 4 - Up regulation of IFN-Gam m a ........................................................... 269

8.5 Video Anim ation ......................................................... 274

8.6 Sum m ary .................................................................................................................. 274

Conclusions .................................................................................................................. 276

9.0 Key Findings ........................................ 277

9.1 Future Research ...................................................................................................... 278

Appendices ................................................................................................................... 281

A. WSDL Error Management....................................... 281

B. Implementation of SBML Solver ..................................... 285

C. Equations for IFN Solution Using M onolithic Approach ................................... 288

Bibliography ................................................................................................................ 292

Colophon ...................................................................................................................... 303

xv



Preface
This thesis is motivated by my interest in biology, computing, medicine and integrative
systems research. Growing up in the outskirts of Bombay, India as a young child, my
backyard was a true jungle. Animals of all shapes and sizes lurked including large
poisonous snakes, parrots, land crabs, mongoose and bugs of all kind. The vegetation
was lush with many fruits: mangoes, guava, bananas, cherimoyas, and coconuts.
Nearby, and in contrast to this wilderness, was the bustling city of Bombay, filled with
road side vendors, snake charmers, colors, smells and sounds that never made any day
boring.

My first introduction to medicine came from my grandmother who lived in a village in
the depths of South India. I recall here once saying to my uncle, "Go down to the
stream and you will see a flower which has pointed green leaves and purple flowers,
that are fuzzy, but have thorns at the end of them, go bring those." He had a sinus
infection and had to her for help. A few hours later he came back with a handful of
leaves and flowers. She processed them to make a formulation. She administered it to
him directly through his nose. A few drops of blood appeared, and he immediately felt
great relief.

My paternal grandmother was the Shaman of our village Muhavur in South India. Over
the years, the story goes that traveling Yogis had imparted their secrets and knowledge
to her. Each Saturday, numerous people milled at her doorstep waiting for her medical
wisdom. She had excellent powers of observation and exceptional diagnosis skills.
Using mortar and pestle she would make simple to esoteric formulations. For our
village, she was a boon. As a young child, I was both awed and inspired. I developed a
curiosity to understand the secrets of her formulations and the holistic medicine she
practiced to diagnose and treat without any modern instruments.

My father taught me mathematics and chemistry. I recall him getting me my first
chemistry set and making formulations using common concepts that one studies in their
first high school undergraduate chemistry class. I was amazed by his wizardry. As a
trained chemical engineer, he ironically also went on to become a provider of medicines
for many people. He took a different approach by becoming the head of manufacturing
in Bombay, India for Parke-Davis, a leading pharmaceutical company. Like his mother,
he created formulations; however, these formulations were proprietary and patented,
developed by using reductionist principles of modern Western science and employed
modern instruments, products of high technology.

xvi



My family moved to the United States in the early 1970's and I grew up in two worlds:
Indian at home, American at school and work. The stark difference between these two
modes of life was as different as the ways in which my grandmother and my father
formulated medicines for their customers. I had great regard for both of these different
systems, and felt that one of my life's missions was to find ways to integrate them.
These differences influenced me to seek unity and holism in any activity that I pursued.

My mother, a mathematician and software programmer, introduced me to computer
programming during the mid-70s. As a 13 year old, I attended the New York
University, Courant Institute of Mathematical Sciences on an accelerated summer
program to learn five different computer languages including: FORTRAN, COBOL,
PL/1, SNOBOL and Basic. In 1977, I used that knowledge to build one of the world's
first E-Mail Systems. Because of my mom, I became a decent software programmer and
learned about architecting large-scale enterprise computing systems. In 1994, while in
the midst of my doctoral program at MIT, I took a hiatus to start a company, EchoMail,
Inc. During 1994 to 2003, I found and ran EchoMail, a leading enterprise software
company that provided an intelligent and scalable E-Mail management system for
Global 2000 companies such as American Express, Nike, Citigroup, JC Penney and
Allstate.

In the Fall of 2003, I came back to MIT to visit old friends, administrators and professors.
I ran into Forbes Dewey on the second floor of Building 3. In the mid-80's, I had worked
as a laboratory teaching assistant and student programmer for one of Forbes' courses.
He remembered me and invited me to chat with him and shared the vision of systems
biology. Forbes said that he was on his way the following Monday, October 27 to attend
the 13C Conference in Hinxton, U.K. which was focused on "accelerating drug discovery
using software interoperability," and invited me to come. A few days thereafter I was
on a plane to the UK. After attending that I3C Conference, understanding Forbes'
vision, and touring the Sanger Institute, where critical portions of the human genome
were sequenced, it became clear to me that biology was about to change drastically.
New technologies that enabled biological information to be transacted and integrated
with ease would revolutionize medicine. During this same time, MIT had created the
Biological Engineering Division and a program in Computational Systems Biology.

Forbes encouraged me to return to MIT to pursue a doctorate in the field of systems
biology. I was enthused, particularly because this field seemed committed to integrate
smaller things to find emergent properties of the whole. The field also provided a vision
of Personalized Medicine, where one size does not fit all, encouraging a holistic and
targeted approach to the development of new medicines versus the highly reductionist
approach. More importantly, systems biology offered me the opportunity to integrate
two of my interests: Software Development and Medicine.

In 2004, I returned back to MIT and began my journey in pursuit of my doctorate in - a
journey that ends on August 13, 2007 with the completion of my Thesis Defense. I hope
I have made a contribution to the field through by offering a new paradigm for
integrating biological pathway models - a paradigm that leverages the advent of the

xvii



World Wide Web and the global use of the Internet, where biologists can create
independent models and then collaborate to build new models, with ease, accelerating
the development of new discoveries.

The completion of this thesis also has a new beginning. Starting in October of 2007, I
will return for nine months back to India on a Fulbright to study a 6,000 year-old form of
ancient Indian medicine known as Siddha, the same system my grandmother used
which is still practiced today. My task is to consider the cellular function of
inflammatory response, but this time approach this phenomenon with two eyes: one of
the East and one of the West's. My hope is to integrate two systems of knowledge to
discover an integrative link between them. I am confident that in the not too distant
future, technologies perhaps even the one developed in this thesis, will enable one to
combine knowledge from seemingly disparate medical systems, to discover new
formulations to age-old ailments that neither the Eastern system nor the Western system
could discover alone.

Belmont, Massachusetts

August 2007

xviii



Chapter 1

Introduction

1.0 Background and Significance

A grand challenge of systems biology is to model the whole cell. This thesis offers

Mtochondia

Pam2

centolalaf

Mlcrotubules

mooth -
E--'Ic
Reticucar

a

Plasm
lembrane

Nuclear

omatlnGolg
Appar

Figure 1-1: Diagram of a eukaryotic animal cell illustrating its key components. Examples of cellular
functions by component include: protein synthesis at the Ribosomes, metabolism within the
Mitochondria, cell motility using Cilia and Microfilaments (Davidson, 2007).



a new computational architecture to address that challenge. A model in this

thesis is defined to be a mathematical representation along with its

implementation in software including any input data and documentation.

A cell consists of a set of organelles as the ones shown in Figure 1-1. These

organelles interact through the medium of molecular interactions to provide

cellular functions such as protein synthesis, metabolism, apoptosis, or motility.

Systems biology aims to develop a model of the cell by connecting the

biochemical kinetics of these interactions at the molecular mechanistic level to

derive the quantitative descriptions of higher level cellular functions (Hood, et

al., 2004; Ideker and Lauffenburger, 2003; Kitano, 2002; Palsson, et al., 2003;

Tomita, et al., 1999). Systems biology as a new field is also interdisciplinary

attracting those from a wide range of disciplines. Many who approach this field

come with various biases. Core to many of these biases is a failure to understand

the complexity of biology and a mistaken notion that systems biology is not a

new field. The next two sections serve to clarify basic concepts concerning the

complexity of biology as well as why systems biology is a new field.



1.1 The Complexity of Biology

Biology is a field based on experiments, not first principles (ab initio) such as

physics or engineering. It is fundamentally an experimental science. Biologists

do many experiments to understand genes, proteins, protein-protein interactions.

Genes

One example of perhaps the largest experiments in biology is the Human

Genome Project (HGP) begun in 1990 and completed in 2005. This effort resulted

in the discovery of only 20,000 to 25,000 genes, far less than what was originally

theorized (Pennisi, 2003). More interesting is the discovery that this number of

genes is in the same realm as that of the nematode Caenorhabditis elegans which

has approximately 19,000 genes (Hodgkin, 2001). More recently, the genome of

the starlet sea anemone - Nematostella vectensis, a delicate, few-inch-long animal

in the form of a transparent, multi-tentacled tube - was sequenced and found to

have 18,000 genes (Putnam, 2007).

Human and a nematode (or sea anemone) have a similar number of genes, but a

great difference in complexity of function as whole organisms. This contradiction

has led scientists to conclude that perhaps the number of genes in the genome is

not connected with the complexity of the organism. Much of an organism's



complexity can be ascribed to regulation of existing genes by other substances

(such as proteins) rather than to novel genes (Putnam, 2007). The types and

kinds of molecular interactions across the nucleus, cytoplasm and organelles,

beyond the number of genes in the nucleus, may be the critical element in

determining the difference between human and nematode, for example. This

reasoning has led to an even greater activity to understand the structure of

proteins (e.g. the product of genes) and protein-protein interactions.

Proteins

Approximately 30,000 proteins have been documented across various

publications world wide (Peri, 2003). Thousands of research teams across the

world have contributed to these discoveries.

rte Structmure Engnera Lab
Toxins

Figure 1-2: Diagram demonstrating how a research group at one laboratory facility in the world
focuses on understanding a handful of proteins. In this case, one research team focuses on
understanding the structure of certain types of toxins extracted from certain insects.

e-afracotozinHvla (vesuti) 1owto coordinaten: 1 t t pdb ge (2StK

Dela-afrcotosin is the lethal component in the venom of Australian fianel-web spider It contains four intramolecular diside bonds. The toxin
produces potentill ftl neurotozic symptoms in primates by slowing the inactvation of voltage-gated sodium chanels. The toxin is unusual in that it
binds to both insect and vertebrate voltage-gated sodium channels t picomolar concentrbons.

Refeianre: Fletcher #t al. (1997) Structure 5., 1525-1535.

Ormgp-ataotuiamH Za Download coordinates 1g9p.pdb ) 1g9p(pzd r31C x)

Omega-atracotoxin-Hv2a appears to be the most potent and speciic blocker of ainsectcalcium channels discovered to date It is a 45-residue insecticidal
neurotozin isolated from the venom ofthe Australian inel-web spider The ton contains three intramolecular disulfide bonds (shown in red) that form a
cystine knot moti The C-teainal 13 residues (not shown) are hg llipophiic, stuctury disordered in solution and essential for insecticidal activity. The
toin inhibits insect voltage-gted calcium channels with an CE, of about 130 picomolar, but it is more than 10.000-fold less effective on vertebrate calcium
chnmels.

Reference: VTa at aL (2001) Joumal of Biological Chemistry 276, 40306-40312



Discovering the structure of just one protein is a difficult experimental effort.

Such efforts are highly domain specific and one research team, for example, by

itself may focus on understanding a small set of genes or the structure of a set of

specific proteins or the interactions between certain types of proteins. For

example, consider the Protein and Structure and Engineering Laboratory at the

.. . ............. ... .

Toxins

Del;traeeotx-u-I ..a (ve

iagrkodW2s Hi

Tis Jwwm, e Nsu a Clmomty
0 sollby bM Aas•" isisty fir b•-mbtY -a l Mhmhr ilsO, os.

V.IS. no2 NM4. 4I.W dtOaesr N. pW 4008-4I012 20•1
phRits U.SA

Discovery and Structure of a Potent and Highly Specific Blocker
of Insect Calcium Channels*

Received fir publication, June 6, 2001, and in revised form, August 21, 2001
Published, JBC Papers in Press. August 24, 2001, DOI 10.1074lfdc.M106206200

Xtu-bong Wangt, Mark Connort, David Wilson%, Harry I. Wilsong, Graham M. Nicholsoni,
Ross Smith

*
", Denis Shaw*#, Joel P. Mackayif, Paul F. Alewoodl, Macdonald J. Christiet,

and Glenn F. KIngtll

From the tDtpartment of Biochemistry, University of Connecticut Health Cenfer, Farmingon, Co"necticut 06022,
Deparnentr of Pharmsacoloy and jBiochemistrys Uniersity of ey dny, dney, Ndew South Wales 2006, Australia,
llnstitute for Mdeular Bivciesce and **Department of Bwchmistry, University of Quesnsland, Bisbane,

Queenoland 4072, Australia, lDepartmant of Healtkh Siencee University of Tenhndood Sydney,
New South Wales 2007, Austraioa, and t~John Curtin •md of Medical Reserh, Australian Natioal Unimsrsity.
Canbers., Australias Cpidtal Terriny 0200, Australia

We have isolated a novel family of insect-selective
neurotoxins that appear to be the most potent blockers
of insect voltage-gated calcium channels reported to
date. These toxins display exceptional phylogenetic
specificity, with at least a 10,000-fold preference for in-
sect versus vertebrate cailcium channels. The structure
of one of the toxins reveals a highly structured, disul-
fide-rich coare and a structurally disordered C-terminal
extension that is essential for channel blocking activity.
Weak structuralffuncttiona homology with o-agatoxin-
[VA/B, the prototypic inhibitor of vertebrate P-type eal-
eium channels suggests that these two toxin families
might share a similar mechnnism of naction despite their
vastly different phylogeoeteic specificities.

number of target insects without harming non-target animals
(4. 5).

Unfortunately,. there are few well characterized peptide/pro-
tein toxins that lend themselves to these genomic approaches.
Spider venoms can be viewed as preoptimized combinatorial
libraries of insecticidal peptides, and therefore we decided to
exploit these venoms in the search f&r inject-specific toxins
suitable for engineeringinto plants and insect viruses. Here we
describe a new family of insecticidal neurotcoins isolated by
screening the venom of the lethal Australian funnel-web spider
lHadroeyche eersuto Fig. 1, inset). These toxins are the most
potent blockers of insect voltage-gated calcium channels re-
ported to date, but they are virtuallyinactive on vertebrate ion
channels, making them ideal biopesticide candidates, The
structure of one of the toxin reveals a compact, disulfide-rich

I... .. X •..•._ • .. -...- a .-- a j 1_... _:,:.._,.._ ._: ,L , - .z

Figure 1-3: An example of a publication focused on the structure and discovery of just one
protein. Work on this research was the result of effort by three research groups across two
countries: United States and Australia.

University of Connecticut's Health Center. One research team at this laboratory

focuses on just understanding the protein structure of toxins from certain

animals as shown in Figure 1-2. The protein structures are determined from

experiments using x-ray crystallography (Laue, 1913). While new proteins are

discovered each day, the crystal structure of most proteins is not known. In



many cases, understanding just one protein structure requires the effort of not

just this one laboratory's research team but the effort of multiple research teams

spread across the world. Figure 1-3 presents the title and abstract of a paper

published in the Journal of Biological Chemistry (Wang, 2001). This paper shares

the discovery of a particular protein structure. The paper is the result of a

combined effort of three research groups across two countries: United States and

You are8•: o:::: :

i omoarison of Protein-Protein Interaction Databases. nublished in OW Bioinfo matics

Figure 1-4: The Human Protein Reference Database (HPRD) is an example of one of many web-
based repositories of protein data information(Peri, 2003) .

Australia. New databases such as: HPRD, OMIM, PDB, Entrez Gene, HGNC,

Swiss-Prot, GenProt are becoming repositories for storing protein structure. A

web site for one of them, the Human Protein Reference Database (HPRD), is

shown in Figure 1-4 (Peri, 2003). The HPRD contains protein data aggregated

from the contribution of over 70 laboratories worldwide. Nearly 45,000 papers

were reviewed in developing this database. The database also represents the

results of nearly 3,000 experiments.

~i~i~c~

~se~i~

~s~ia~:

~Ct~ar~a~ils~r



Protein-Protein Interactions

Using this database one can, for example, query to find a particular protein such

as EGFR (or Epidermal Growth Factor Receptor) as shown in Figure 1-5. Once

the EGFR entry is found, one can then search for the proteins that interact with

EGFR, as shown in Figure 1-6. This list shows a small subset of the 60 proteins

..EGFR................

Protein Name EGF receptor • .. .... ........
Gene Symbol ECFR Accession Number NetPath_.. MlgS6
um m ar.. 

.........
Epidermal growth factor receptor isoform d
Epldermal growth factor receptor Isoform b
Epidermal growth factor receptor isoform c
EC 2.7.1.112
Epidermal growth factor receptor isoform a

Alternate Names ERBB1
mENA
p1

7
0

Receptor tyrosine protein kinase ErbB-1
Truncated epidermal growth factor receptor
... ....... p e e s a n tig .. ..... .... .. ...................... ......................e n 7

Figure 1-5: The entry for the EGFR entry in HPRD.

which interact with EGFR. This database also contains references to the

published research articles which detail the experiments documenting the

particular protein-protein interaction. For example, we can find the reference to

the published article documenting the EGFR-STAT1 protein-protein interaction,

as illustrated in Figure 1-7 (Xia, 2002).

L T EME



.........i I hV.lv-p . ... .

ARB

SHIP

ABEll8A081

MAP3K14

HLI

PERKAR1

PLU..... .. ... .... .... ....

.. ........ :.. . .... Athued

...... ....

Pub4ad

Nb ed

: . .........

AlihIai Baa4Inte••in

EGFR
EDEB1

EGERI

IEGEH
EGER

.... . ....i:. .......... .:.i: i.... .

.... .  .. ... ........ ..... . . ...... ... .. ...
EGlIi

... .. ... .. ..... . .... ..... ... .. .

Figure 1-6: Display of a subset of the total of 60 proteins in HPRD which interact with EGFR.

Approximately 40,000 protein-protein interactions are documented today. Each

day, new protein-protein interactions are found. In addition, each day, updates

Identification of Both Positive and Negative Domains within the
Epidermal Growth Factor Receptor COOH-terminal Region for
Signal Transducer and Activator of Transcription (STAT)
Activation*

LU 1Mat, LEmma Wianc, Abd S& Cinm•, M nh•Pr r Ivenov Mlbe Y. LigL Ania M. DruYag
Adam. PMaIu TMa M, G.Otew4hTun PO, amnd Y. Reae Chlint"

VVpeSeeAtefCk1 " 0t.Wde Or .Ni A--A Aw b5155&te* T4.ek Frt Noth enbas l 2

The .ryeh.... .. lie.e h...... qeiJked CPed.
&~ei -- i OMte~ eb~b
bittern. 1S41) flee b5 * slriedde rwCOOH

... &. Tv ..... at. .a&.d MMa sm cCii

kwlb g theCsd6- 16 -dOir6 ShuMites scr 14
- efsek.&i. 91AT .eed-.ai..WI-T10485 llmduie .dbt~i &.-snb iLHL.w*-t. E" "..J &.t BUT2 a& *2nd . y e6-

An*h roaua, hr* MMTSOO& TraitiI aa IM

f-FA SUTed.bW. u..l.Th..gptb.4 hsd. dOia i ted £ e ieely.ad ;= wk. .2 Z 8U~i·LiP Lp~

ha. £CFrI-h .bu.-i pMhlj be1.eh 90iq*-
6Ua HFA .. e-A *2a.by.M.Si.NOT-AL, T .. VV.M td b.& a" I a" SWIM "FfiVA7 .1Wh-!= .Nb win dqp Led- ur- Vc-a~y~k~a& C~l LKC~. 1 M. u ý rdril -MI~~lb OCL ba mt P~bFIPMT&.. 4:!ar

li... £im is .2a. e g d iede... .
.ee."i.pqheo 4) debeWqhyn a n.it .WAN. aTA m: ý ithe qaqiee d..ele imr

-h Eft .be.yk14e. .. t..0 Se... ad
Si$f-.d- hame *-e 2..it~eic ..ap *an .(5-n
I- U1K.. -e.. -alm. t6vt* d A." .1 SP.A .e

.e e 4n· i b' e to b. * a S a 1 U . 1 . a_ e . O Le

II -ei- e-ilniog o-Aw~kre ai bkaiag r-q- fim.ega tbEtbet 6.1 b~a..'.eip.. e Se.. MMq.W.e-l-it

jiS.. Sf9r . "4k Am h- be-e See.... .Ip-leee Tpbe.edeeb. &If dal"W AS.. . (.".eheee potee eom 0b..r&.~ye. hadig S.-.. '...I.bjbmp.. e.4k. .'.itbkar~(A heCLeail..ge retit ~lfl (ey e...... rabe.. S..eCeaee*rb
- - .. ed... thee aPI·be...the...bd.Sp.

ej ~ &.,.a·iu .0~ u5bei ,& .&d,..d endS.

Figure 1-7: Example of a published article in Journal of Biological Chemistry documenting the
identification of a protein-protein interaction between EGFR and STAT (Xia, 2002).

.ii~ .. .......... .. ...... ...........

........ .. .... .... .... ..: .TA

MAP3K14

..... . .. ....... ....., .. ... ..

pID

cam
DEL

italia
...l .l.

Mxin

e..eN....... .... .. ... .. ... .. .....STATSe~~~eee~~

,, 

.
i.



of knowledge are made to existing protein-protein interactions. Experiments are

used to derive such protein-protein interactions since these interactions cannot

be derived from first principles. Moreover, sometimes, different research teams

may get differing results for the same pair of protein interactions.

5u.
LT 50-

*13EeL
S30-

30

20' 20
• 0

46

31

10

0-1 2 3 4

Number of interactors

Figure 1-8: Distribution of the number of interactors within the HPRD (Peri, 2003).

Within the HPRD, as shown in Figure 1-8, is the distribution of interactors, or the

number of protein-protein interactions of a single protein. In this diagram, it is

of interest to note that the majority of proteins either have 0 to 1 interactors or 5

or greater interactors. This means, for example, 10% of the protein-protein

interactions involve one protein interacting with two other proteins (the second

bar in the above bar chart).

46% - proteins with 0 to 1 interactions
10% - proteins with 2 interactions

8% - proteins with 3 interactions
5% - proteins with 4 interactions

31% - proteins with 5 or greater interactions

10

~



1.2 Biological Pathways

Biological pathways are networks of protein-protein interactions. Single protein-

protein interactions can be combined to build biological pathways. Biologists,

in addition to understanding the nature and function of genes, proteins and

protein-protein interactions, also perform experiments to discover biological

pathways. Today, approximately 60,000 biological pathways are recorded across

a variety of databases including KEGG, Science STKE, Nature PID, BioPax,

BioCarta and others. New biological pathways are being discovered each day.

A biological pathway consists of two elements: (1) molecules (also known as

Figure 1-8: Combination of A and B to P. Figure 1-9: Degradation of P to A and B.

molecular species or species) and (2) interactions among those molecules. A

biological pathway is visually represented using a "ball and stick" diagram.

Each "ball" denoted by circles, rectangles or other geometric shapes represent the

individual molecules. Each "stick" denoted by arrows or lines represents the

molecular interaction. There are two main types of molecular interactions: (1)

combination of two or more molecules to create a new molecule as shown in Figure

~
-~cy



1-8 or (2) disassociation of a molecule to create two other molecules as shown in

Figure 1-9.

TGF-Beta Signaling
in Gastrointestinal Stem Cells

Vertebrates

ALPIIAPSrL LNTIW

Pabssi PtrT PaIna.ys ti. I DitI OWA am, displaaed.

- assematm A.igibard*n.4tIp9euPmrhMAtig tmlbrteaineat

01WW~."'vo S W S K NaS(cnstosalapNP ,armBa , N ancea. Uk dlmwkenboaUant,0

a STpaaTai n bai an. Uarpiaffmetes a, . caaaacatarm;CW jl_

leasrni, *HW ge 1W4 ses i O w h Momapes n Tw *a ut, N a s

KAt!(main. TWla ABlaike, Y Tang. Tapas Saha, Nady O088Ietae., NaLarajan. wneas an aalOa MISa
qum• •• VMS SCA STKE (Cone•tons Map Pathwy), hilpisike.sle nernag org.reC.slutkeem;C:MP 17699

Fag SWUp Pabi b ah MANMOCda

e a ............................. S A a haa Nwaggapnaa.ba C S. bMPCom 3p
r Keywo" i N -e•e•tPata•.•....... ................................ ,• c N • a , ,J e • _

* 11 Species
* 18 Molecular Interactions

Figure 1-10: Example of a biological pathway diagram containing 11 molecular species and 18
molecular interactions (Ray, 2003).

Figure 1-10 is an example of a biological pathway with many molecular species

and many molecular interactions as found in the Science STKE repository (Ray,

2003).

Another example is shown in Figure 1-11. Because experiments not first

principles determine the description of a biological pathway (e.g. which

molecules will interact with another), biological pathways are constantly

changing as new experiments reveal either changes in molecular species or

nature of molecular interactions.



Figure 1-11: Example of a biological pathway diagram containing many molecular species
denoted by the geometric shapes of circles, ellipses and diamonds along with the multiple
molecular interactions denoted by lines and arrows (Kimmel, 2003 ).

The biological pathway in Figure 1-10 was the result of aggregating knowledge

from nearly 35 different published articles as shown in Figure 1-12. On average

each biological pathway consists of approximately 5 to 15 molecular species and

approximately 10 to 25 molecular interactions. The development of just this one

biological pathway requires the integrated effort of multiple laboratories, spread

across the world to construct and maintain. Elements of the biological pathway,

the number of molecular species and the types of interactions, are subject to

change based on new experimental results.



Goamans, M.J., and Mummery, C., Funconal ananlysis of the TGFbel receptorSmad peorwaymrough gene aelation In
mite irn.JDevDau44.25)-651 2000) M.bdil..
Itoh, S6. , F• , Goun:ans M.J., and Ten Dijke, P. Signaling of ransfoIrning growth fatforheh a family members Irhnough
Smad pr!oeins. F:NR JicOi em2687,6964-87 (2000). bln.
Derynck, R., Akhurst RJ., and Balmain. A. TOF-beta signaling In tumor suppression and cancer progression. Naerst
290117-29 (2001). Mldina

mad signal tansdructln pathway. Blctem Cea~ ioi80.605-22 12002)

and Alison, M. Hepainc stern cells. J Palho 197,510_8 (2002). Rilih.
als, and lineages in pancreas derelopmenl. Annu RevCeitDevBioll9,71-89

g, C.X. and Mishta. L., Disruption of transforming growth factor-beta slgnallng
199.574-7 (2003). MtftiM..
-betla signaling from cell membrane btol• nucleus r.elf,13,685.700 (201

Vier, D.r., A cellular tameowark or gttlooping morphogenesis in zebraish

-E., Dtumont N., Shappel!, O. Wasnington, M K, Neilson. E f, and Mc,·es,
anes the encogenic polerdal ofadjaceni epoitheia. Science 303.84-1 (2004)

beta signalling pathway by utlqueiairmediated degradation. Oncogene

-acltaled Smad3 represses MEF2-dependent banscnipon in myVoenic

and Mass;ague..j, lgration of Bromad and forkhead palbhwas in the control of
glibn Ce 117,211..23 (2004).gMadgiei
ir. NaPre432,298-3206 (2004). Mesrioe
Mishra. B., and Mishra, L. Orofacial and gasltrontesinal hyperplasia and
ruant mire. JoreiPeiolAed34,29 12050). tyhrea.
ivers, A W, Thea role of TGFbeta and Wi rsignalirng in ganulrointeslinal sern

, •. •--- -·- ------

Figure 1-12: Multiple published articles are aggregated to formulate a single biological
pathway diagram from the Science STKE repository (Ray, 2003).

In summary, the development of each and every biological pathway is a highly

collaborative effort, requiring the aggregation and integration of numerous

experimental results, derived from the fundamental understanding of genes,

proteins, and protein-protein interactions. Moreover, such a development effort,

as will be discussed in forthcoming sections, is not linear, but cyclic, involving

constant updates and refinements to the biological pathway, based on new

experiments.

Lbonitrme

Houssaint, E. DTferentiation ofine mouse hepatic primordium. II. Extrinslc origin of the haemopoiec cell line CelOiDtftt
10,243-52 (1981). Medlin o,
Bporn. M.B.. and Roberts, A.B., Peptide growth factors are muitifinctionai. Nature332,217-9 (1988). ht.iig._.
Spom, M.B, and Roberts, AB., The transforming growth factor-betas: pest, present, and future. AnnA YAcaddS;593,t1-6
01990). Mealinc
Moses, H.L, Yang, E.Y., and P:etenpol, J j, Regulation of epliellat proliferation byTOF-beft Cbae Foand Sywp 157,06-74:
discussloln 75-0 (1991). MedrýiLe
Slack J.M9. Developmental biology of the pancreas. Devecprentrl121,1 589-80 (1995). M•.dilt.
Marowi, S.. Wang J. Myerff, ... Parsons, R, Sun. L., i.ulerbaugh, J, Fan, R. , Zboowska, E.. Kimnier, IK.W, Vogerstein,
B., and et al., Inactivaton of the type II TOF-beta receptor in colon cancer cells with microsatellite instability Science
268,1336-8 (1995). tiedli
Zaret, K.S.. Molecular genetics of ear liver development Anmu Rev PRhy/ol58,231-51 (1996). Medlne .

Hahn, SBA, Schutte, M., Hoque, A.T.. Moskalukl CA, da Costa, L.T. Rozenblum, E., Weinstein, C.L, Fischer. A, Yea, CJ.,
Hruban, R.H., and Kern, S.E., DPC4. a candidate tumor suppressoi gene at human chromosome 18q21.1 Scierce
271,350-3 (1996). Medlin
Takeneshita, S, Tani, M., Nagashima, M, Hagiwara, K, Bennett, W.P., Yokota, J., and Harms, C.C, Mutaton analysis of
coding sequences of the entre transforming growltlfactor beta type 1i receptor gene in sporadic human colon cancer using
genomic DNA and intron pridmers. Oncogene 14.1255-8 (1997). Midhi••..
Mlshra. L.. Cai. T. LevineA., Weang. OL, Mezey, E. Mishra, 9, and Gearhart. , Identifiation of e. a beta-spectrin, in early
mouse liter development Int JDevBiolt2,2211-4 (1998) M ne

Goggins. M., Shekher, M., Turnacloglu, K, Yeo, C.J, Hruban, R.H.. and Kern, S.E., Genetic aferaions of tne transformlog
growth factor beta receptor genes in pancreatic and biliary adenocarclnomas CancerRea58,5329-32 (1998). Iedlirn.a
Orady.W.M., Myeroff.L, , winler, S.E., Rajput, A., Thiaoalingm, S., Luterbeugh, J.D., Neumann. A. Brattain, M.O., Chang.
J. Kim. S.J., Kinder, K.W.. Vogelstein. B., Willon, J.K., and Markowitz, S, Mutational inactivalion of transfonrming growth factor
beta receptor type II in microsatellite stable colon cancels. Cancer Res59,320-4 (1999). M.i.li.p_
Miyai, M.. ijlma, T.. Kontshi, M.. Sakai, K. lsnii. A. Yasuno, M., Hisnima. T., KoiLke, M, Shitara, N., twama, T. Utsunornva, J..
Kuromld. T., and Mori, T., Higher frequency of Smad4 gene mulation in human colorectal cancer with distant metastasis.
Oncc•ene 18,309-t 03 (1999). Mgdii rL.

Roberts, AB., TOF-beta signalng from receptors to the nucleus. JUlkronea Inftl,t 265-73 (1999). Medlinf
M.Cazono, K, ten Dijke, P., and Heldir:. C.H., TGF-beta signaling by Smad proteins. Advirnmauno75,115-57 (2000). -odlire



1.3 Systems Biology

Systems biology is a new field of biology; however, building systems-level

understanding of biology is not a new phenomenon. Over 6,000 years ago,

many traditional systems of medicine including Siddha, Unani, Ayurveda and

Traditional Chinese Medicine (TCM) proposed systems approaches to describing

the whole human physiome (Patwardhan, 2005; Subbarayappa, 1997). During

modern times, starting in 1930's, with the concept of homeostasis (Cannon, 1933)

and biological cybernetics (Wiener, 1948) attempts were made to understand

biology from a systems level using the modern language of physics and control

systems theory.

The discovery of the structure of DNA in 1953 (Watson, 1953) combined with

recent high-throughput measurement techniques for imaging and quantifying

molecular level interactions has enabled a completely new field of biology:

systems biology. Systems biology aims to develop system-level understanding

by connecting knowledge at the molecular level to higher level biological

functions (Kitano, 2000). Such a goal was not possible before. Previous attempts

at system-level approaches to biology, whether ancient or modern, were

primarily focused on the description and analysis of biological systems, limited

to the physiological level. Since these approaches had little to no knowledge of

how molecular interactions were linked to biological functions, a systems biology



of connecting molecular interactions to biological functions was not previously

possible. Systems biology, therefore, is a new field of biology as it offers the

opportunity, as never before in human history, to link the behaviors of molecules

to the characteristics of biological systems. This new field will enable us to

eventually describe cells, tissues, organs and human beings within a consistent

framework governed by the basic principles of physics (Kitano, 2001). Systems

biologists aim to link molecular-level interactions with cellular-level functions

through quantitative modeling.

Biological Pathways -- + Biological Pathway Models

Figure 1-13: Systems biologists work to convert biological pathway diagrams to biological
pathway models.

Over the past decade, new measurement techniques are enabling biologists to

quantify the molecular concentrations and rates of molecular interactions within

t = n 1



biological pathways. Such techniques are being used to transform diagrammatic

representations of biological pathways to build biological pathway models.

Systems biologists convert "ball and stick" diagrams to biological pathway models,

mathematical representations expressed in software program code along with

the inputs and data needed to run the model.

Figure 1-13 illustrates the high-level process by which a biological pathway is

converted to a biological pathway model. There are approximately 300

published biological pathway models today. The software program source code

of these models may be represented in different formats: MATLAB, C++, C,

SBML, CellML, etc. Different mathematical representations including ordinary

differential equations (ODE's), Boolean Networks, Stochastic approaches,

analytical functions, etc. are used to specify these models. The internal

parameters for these models, such as kinetic rate constants, for example, are also

determined through experimentation. Maintaining just one biological pathway

model is a complicated task since the biological pathway models and the internal

parameters are constantly updated based on changes to the biological pathway

diagrams (e.g. based on new experiments). There are different emerging

repositories for hosting biological pathway models including BioModels.Net

(www.Biomodels.net) and CellML.Org (www.cellml.org) (Cuellar, 2003; Le

Novere, et al., 2006). A page from the BioModels.net web site is shown in

Figure 1-14.



- Curated models
* Non-cu.ated Modeis -li The folowing fields are used to describe a model:

SSeaBcn * Bidfrdels fD - A unique string of characters associated with the mode, which will never be re-used even if he model is deleted from the BioModels Database.
* Binua!.e in ~WS * Name - The name of the model, as written in the model self by its creator(s)

* Pubdriaionl - The unique idenifier of the reference publication describing the model. specified either as a ui identifer (inked to the EB1 Medline database). or as a
(Onked to the original publication through a DO resolver) or as an URL Being all published all models must have one publication identifier, and the same identifier can be shared

Sub:itrdlYou Mode amongst several models if they have been described in the same publication.
o Last Moafied - The date when the model was last modified.

n To view a model, simply click on the conrrespondant BioModels ID0 provided within the lemosel column of the row corresponding to the model.
.. . ..i

" ilodei ofrye honth

" Meealns
: Suppor.
SContact

1IONAODELUNCT

.. ..M ..

&La c Iv show

Figure 1-14: BioModels.Net is one repository of biological pathway models
2006).

(Le Novere, et al.,

From BioModels.Net, one can download a biological pathway model and execute

it on a local computer. In Figure 1-15 is a portion of the biological pathway

diagram of the EGFR model of Kholodenko (Kholodenko, et al., 1999) fro

BioModels.Net.

- 1- (EGFEGFR)2

S5 Species
* 5 Molecular Interactions

Figure 1-15: Example of a portion of the Kholodenko EGFR model's biological pathway
diagram from BioModels.Net (Kholodenko, et al., 1999).

f

J



This biological pathway has 5 molecular species and 5 molecular interactions.

Figure 1-16 illustrates the transformation of the biological pathway diagram, on

the left hand side, to a black box biological pathway model, on right hand side.

This black box has inputs, being the species concentrations of the molecular

species at time t=n, and outputs being the species concentrations of the

molecular species at time t=n+l. The internals of the black box contain the

software code and the mathematical representation. In this case, the

mathematical representation is an ODE and the software code is in SBML.

However, the mathematical representation and the software code could be in any

Biological Pathways

* EGFEFfR)2

Biological Pathway Models

t~r~

--

ilr3lil

* 5 Species
* 5 Molecular Interactions

Figure 1-16: Representation of the biological pathway model as a "black box".

format as described earlier. Execution of this biological pathway model will

yield results as shown in Figure 1-17.

II

.G)m
C)

(iE



-- EGFR
EGFEGFR

--- (EGF_EGFR)2
(EGF_EGFR)2-P

"- EGF

2 , -,

Figure 1-17: Results from the execution of the biological pathway model.

The results in Figure 1-17 are the time varying changes in species concentrations.

Along the x-axis is time and along the y-axis is the species concentration in nM

(nano-molar). Such a biological pathway model serves to provide a quantitative

and predictive capability to describe the interactions of 5 molecular species.

Each biological pathway model is treated as a black box, having a defined set of

input species and the same defined set of outputs, the values of which are the

species concentrations. The construction and validation of such biological

pathway models remains a tedious and time-consuming process mainly due to

the experimental effort required to determine the many internal parameter

values. Most biological pathway models are developed, used for a single

application by a single developer, and then forgotten. One can only imagine

how many biological pathway models, for example built in MATLAB, and never

11111111
I"

~I

111111111111



published are located in some file folder, in some unknown computer, developed

by some graduate student. Therefore, considering all the hard work that goes

into developing a model, it is rather surprising that so little attention is paid to

the presentation and conservation of existing models (Snoep, et al., 2006).

Systems biologists are attempting to create reusable components of biological

pathway models by constructing online repositories like BioModels.Net, which

offer an archive and curated repository. In addition to supporting the conversion

of the diagrammatic representation of biological pathways to biological pathway

models, systems biologists also aim to build larger biological pathway models by

Figure 1-18: An example of how biological pathways interact to support a cellular function. Eight
(8) biological pathways including a. glycogen metabolism, b. amino acid degradation and urea
cycle, c. glycolysis, d. gluconeogenesis, e. citric acid cycle, f. pentose phosphate, g. ketogenesis,
h. fatty acids beta-oxidation, and i. fatty acids synthesis involved in the cellular function of
metabolism (Silva, 2002).



integrating smaller biological pathway models. The purpose of such effort is to

gain new insights on cellular functions not possible from experimental research.

For example, Figure 1-18 illustrates the integration of 8 different biological

pathways that are part of the cellular function of metabolism. In this example,

only the integration of the diagrams of the biological pathways is shown, not the

integration of the mathematical models for each biological pathway. Figure 1-19

is another example of an integrated biological pathway, represented also

.. ... - .. .. ... ....... .

4.. ...4.

~... 

.2 .r .......

.... .... ...... .............. " = ..-T .; , : ......... .... .... ... ... ...... . ... ... ::•• • •• ..i
i • • :.....:• !:. .".:-': .:.:• .• .:• :• .. ...... ." .j ..... ;a • ::: "; .... •;• : ........... .......... ....... ............. ..•' ............', ! i ! ... .... '" ""

--- av* - · ·-- ------
,• .- • .• .. :. -...-, ,• • ,• . s • , -.-. g : "............... .. ... ... ....-."... .......... ............... " • ,• -° .. ..

.. . . . . ... . •.. .; : ............... ..... .......... ........ .... .................. .......... ....... ....... • .................... .......................................... ................. ......z - :: - •. .::• •: ..... ;• • .• ;• =y il.i f " i ...... ..... • 4 , .! • ................. ....... ...... .......... . .... ... ................ ... h..'. ..... .

r t:..... 4 ... .............. I. .. ..- --I I: M .

-7,-• -_ -• • .. .. . .- i . ......! .' • • ... ...... ..... ..................... .• . •.. ::. ...... .. ..... .• . ...< " .. m . i, .• • ~ .

.~ ...... .
• . - •. '• : : • -•-- • . .. . . : .:: ............... .... ................ •....... .. .. .. -.......- • • ... J • : .• ......

.i!• .. ,.... .•.•ii: :i'•-• °•••.. 7: i i
•~~~~; t. • . . . . • .- . ,.. ..•......... . ? ............. . .. -.. .. . . ...........

..... ......-ý 

.

.. ...... -5 :

. .... . GTP--: - 4 ý ;wL~-:i~;~-,-:;.•:.• -• '. • ,. ! • iL._....:.... .. .i • i: '?• - 'P 7-"....... .' • " :••W .- , : ..-• -; :. ............ ....... !...
i . .... ..... ..... 

i
....... ... .............. :• ,• ..... . . • • _ • • • ..: :-• .... .€ • • ,=!. :

•  
..

..I• ..... .......... --.--. .... .... . --64: . •..:.... • • • , • . .;• . :• •. .... . • • • : • :, z '. -•..

PIP 3c . ... ....... .~:: :: i~e

Figure 1-19: Example of a integrated biological pathway constructed from aggregating
knowledge from approximately 200 published papers on the TLR signaling network (Oda,
2006).

currently only as a diagram, constructed from the aggregation of multiple
Z -i• ... , • " • ". . •. .. .. ... ... . .. ............ . . .. .. ... ... .. .• .. ..' . • • • . . .•.: ,• : " .;- L

:: • ,• • ...o•,--,w •:•..:',.• -+ -....-....-.... , ....... • .: . •..... • ::., , •.•,• • •....- •

• ...<•.• :• ! ... ...... :• . .!z•,• .; ',•:.• , . • •.•.., • " '-• : .• [i : ' i
•- :  

•. ..'.. ..".: ..- .". .. ." ........... •

• ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ..... V"- ........ I"RE........ ... . : .. ." .. •:-•' ', .•-.;...... I.-." , •;. ...... ............. ;- -'.i•. , ..................... -•: • ::...... .. " ..... ..•• • :# -
...... ........... ....-. .. .. ...... . . . .. . ...... ..... .. .. .. ....... .. ................. .... ......... .... ... ... ..... .. .

•.~~~~~~~~~~ ..... .".-• ... ....... .. .. V i.. ...
.................................~~. ....'.-. ... . ... .. ... ... .. .. :.

i! " ............... • ~ ~~~~~.•.. ..... .• .. ... .• • • - ; .. • ...... •-.•• • i ,• • L?. • :'" •:-.,..
ý .% -..-...r. . .. ........ ... ., ..... ,7 . .• : ..•. .... ..... .. . ...------- .. ,...........• , . . •i - ,4. .

• " --• : o•• i'-•... .• . i • . ;.". .....-......,. - ............ ......-............:.•=.• '• '•... • .. • . .• • • ' ',_

.. .... ...... .. ..... ... ...... .~,- .. ..... ... .. ... ... . .... . ......... ... .... ........... ... ....: ' ' :f "• ,•. .: '• : ::::.::. .....

Figure 1-19: Example of a integrated biological pathway constructed from aggregating
knowledge from approximately 200 published papers on the TLR signaling network (Oda,
2006).

currently only as a diagram, constructed from the aggregation of multiple



biological pathways from across approximately 200 papers (Oda, 2006). These

two examples illustrate the integration of just smaller "ball and stick" biological

pathway diagrams to create larger "ball and stick" biological pathway diagrams.

Recently, systems biologists are moving beyond just integrating the diagrams of

biological pathways to integrating biological pathway models. Such integration

efforts, currently few and less than a handful, are providing higher level system

understanding not possible by experiments alone. One such example is shown

in Figure 1-20.

The integrated biological pathway model, shown in Figure 1-20, serves to

provide an integrated model of the cellular function of osmoregulation. The

model is predictive since it suggests previously unrecognized features as

confirmed with experiments and serves as a valuable tool for future studies on

* 48 Species
I' 78 Interactions

* 9 Species ,FMo• \I n Io

fl*' * 3 ne mod-- - -oi- 10 Interactions ,W " 24 SpeciesS32 Interactions

- -

- I -X

S14 Species I' MP 
• w -- .. n* 6 Speie

*22 Interactions 1 u CiPO 4, L 1

fo r- c p r v i n w un d.es n
-

•10 Interactions

Figure 1-20: Example of an integrated biological pathway model constructed by integrating
four different biological pathway models to provide new understanding of the cellular
function of osmoregulation (Klipp, et al., 2005).

22



osmoregulation (Klipp, et al., 2005). Currently, there are approximately 5 to 10

such integrated biological pathway models. There are three main reasons why

there is such a low number of integrated biological pathway models. First, the

individual biological pathway models are in different formats. Second,

understanding any one model requires a great deal of domain specific

knowledge and expertise. Third, the primary method of integration involves

merging the source codes of each biological pathway model into one large source

code. Because of these reasons, it is very time-consuming and expensive to

integrate biological pathway models. Maintenance of the resulting integrated

model is also very difficult since the integrated model can become invalid as it

has a "half-life." New proteins, protein-protein interactions and new parameters

(e.g. rate constants) in any one of the individual biological pathway models are

being discovered and/or updated constantly. Integrating models can also

become especially difficult, within the current method, if the source code for any

one particular biological pathway model is not publicly available. This would

require one to recode that entire model's source code from scratch.



1.4 Research Motivation

Figure 1-21 illustrates the path to modeling the whole cell and summarizes the

concept from the previous sections.

ells

Genes and Proteins Biochemical Reactions

Figure 1-21: Summary of the development path towards whole cell modeling.

This figure presents four major steps to modeling the cell. First, the

understanding of genes and proteins are used to build an understanding of

protein-protein interactions. Second, these protein-protein interactions are

networked to create biological pathways. Third, the integration of biological

pathways serves to describe cellular functions. Fourth, and finally, the

integration of cellular functions serves to model the whole cell. Currently, as



shown in Figure 1-21, there are only 5 to 10 such integrated models of cellular

function. It is expected that the number of biological pathway models, currently

numbering approximately 300, will grow; however, the step in developing larger

integrated models is severely limited by the time consuming and expensive

effort, for the three reasons highlighted earlier. The discussion below provides

greater insights on the efforts needed to build biological pathway models.

Development of Biological Pathway Models

The process to create and maintain a particular biological pathway model is an

iterative process of manipulating, measuring, mining and modeling as shown in

Figure 1-22. The two major areas are experimentation and modeling.

Figure 1-22: Te ModelMs of ystems b ioog (Lauffenbtgs 20)



Systematic experiments involve manipulation and measurement. Manipulation

involves modifying an existing biological system. Measurement involves

collection of data from that manipulated biological system. Quantitative

modeling involves both mining and modeling. Mining enables the identification

of underlying relationships in large datasets. These relationships can be used to

create predictive mathematical models. Biologists, working in highly domain

specific areas, perform systematic experiments, using a range of advanced

measurement devices quantify the molecular concentrations and dynamics of

molecular interactions. Data mining and modeling efforts are used to refine their

conclusions. Biological pathway models are developed and refined through this

constant and arduous iterative process. The World Wide Web (WWW) offers a

vehicle for scientists to more easily share and publish their biological pathway

models. There are thousands of such biological pathway models being

published and refined each day by teams of biologists world wide. Figure 1-23,

for example, illustrates three different research teams, spread across the globe,

performing the iterative process of systematic experiments and modeling to

produce biological pathways which are made available and published over the

WWW.

Given the decentralized nature of these efforts, the source code of any one

biological pathway model may be written and stored in a variety of software

programming languages, may be publicly accessible or proprietary. A



particular source code is typically built and tested on a particular computer

hardware platform, and multiple teams may be involved in maintaining that one

source code.

IL

Figure 1-23: Scenario of three research teams performing systematic experiments to produce
biological pathway models which are published and made available over the WWW.

Complexity of Integrating Multiple Biological Pathway Models

As the number of biological pathway models and our ability to accurately model

any one biological pathway model increases, the challenge becomes how to

integrate an ensemble of biological pathway models to build more complex

models of cellular function. As an aside, this term complex needs to be discussed

prior to proceeding. Any one biological pathway model within an integrated

model may contain hundreds of species and a set of hundreds of resulting

4b

eoo'ý

r
c

t- i1-(1
'.- --•-•- - -



mathematical equations describing those interactions; however, this does not

mean the model is necessarily complex. For example, on a personal computer,

super computer or even powerful handheld devices, hundreds of simultaneous

differential equations can be solved; however, this does not mean that the model

we solve is complex just because it has many equations. A complex system, on

the other hand, may be complex even if the number of equations is small and

apparently simple if the individual elements of the system have their own

unique dynamic behavior. Such a system is said to be complex if it has multiple

elements which reveal different dynamic properties. This may occur, for

example, when all system elements are continuous with concentrated

parameters, but the model includes very fast and very slow parts (Raczynski,

1996). Another example is a system where discrete parts interact with

continuous sub-models of different speed and different kind such as an

electronic circuit that contains integrated circuits as well as electro-mechanical

parts such as relays and motors (Bulatwicz, 2006). In other words, the model

complexity has little to do with the model size.

Let us now consider a complex biological system: the interferon (IFN) response

to virus infection. This integrated system involves various biological pathways,

each of which is a unique domain of knowledge and effort for modeling. Figure

1-24 illustrates the four key biological pathways involved in this complex

integrated system. Each pathway is developed by different research teams world



wide. At the lower left of this figure is the virus infection pathway. This biological

pathway model simulates the virus infection of a cell and results initially in the

up regulation of IFN-Beta, a critical signaling protein; and later on, results in the

up regulation of IFN-Alpha, another signaling protein.

I N lft.'"l""""' -.: - - .. ::

USA, Hancloglu, et al,
Journal of Theor. Biology, 2006

China, Zi, et al, FEBS, 2005 .

A-3--''

¾
Russia. Bocharov, et al. i s £5 C IW .... ......
Journal of Theor. Biology, 1994 Japan. Yamada, et al,

Genome Informatics, 2001

Figure 1-24: Scenario of scientists performing systematic experiments to produce biological
pathway models which are published and made available over the WWW.

A second biological pathway model is IFN receptor signaling, as shown in the

upper left. This biological pathway model represents the interactions of IFN

proteins, either IFN-Alpha or IFN-Beta, landing on cell receptors to trigger the

activation of other proteins within the cell's cytoplasm to up regulate IRF-7, an

interferon regulatory factor. A third pathway is the IFN amplification cycle, as

29

-L

mp ca on yce

r

7,:
~:
:-i

I -

a

i



shown in the upper right. This biological pathway model simulates the

production of increased amounts of both IFN-Alpha and IFN-Beta, which results

from the by-product of virus infection with IRF-7. A fourth pathway is SOCS1

regulation, shown in the lower right. This pathway serves to regulate the

production of IFNs by inhibiting the IFN receptor signaling pathway.

The ensemble of all of the biological pathways depicted in Figure 1-24, if

integrated, can provide an integrative model of IFN response to virus infection.

Each biological pathway is a contribution of different research teams across three

continents of North America, Asia, Europe, and four countries: China, Russia,

United States and Japan. Any individual biological pathway model within this

ensemble does not have thousands of equations but the activity to integrate these

four models to create one new model is unequivocally a complex problem for a

number of reasons. First, based on the literature, not all of the biological

pathway models depicted in Figure 1-24 have source codes for their models.

Second, the biological pathway models were built using different software

programming languages. Third, each team developed their biological pathway

models on different hardware platforms. Fourth, each of the biological pathway

model exhibits different dynamic properties (e.g. different time scales). To

integrate these four models is a complex problem. Such a problem is

representative of most cellular functions that involve multiple biological

pathways which need to be connected to build a larger model.



Complexity of Maintaining an Integrated Model

The above discussion outlined the complexity of creating an integrative model of

cellular function from combining various biological pathway models. This

complexity is only one part of the problem. Another critical function is: the

maintenance of the resulting integrated model. In the scenario described in

Figure 1-24, each biological pathway model is developed by different teams

worldwide. Each team provides a particular domain of knowledge. As

discussed in a previous section, the development of any one particular biological

pathway model is an iterative process of systematic experimentation combined

with quantitative modeling, both supporting each other.

The reality is this: any one biological pathway model is constantly undergoing refinement.

This means that the maintenance of a combined set of biological pathway models

can be nearly impossible if there is no easy mechanism to receive and incorporate

the updates from each biological pathway model; otherwise, the integrated

model's accuracy is only good as its latest update. Since each model is

developed in different mathematical and software representations, the

integration and maintenance is made even more complicated.



Integration of Biological Pathway Models

Thus far, we have used the term integrated model without formally defining it.

Moving forward in our discussion, an integrated model refers to a group of

biological pathway models executing together that have the ability to affect each

other's computations. Based on the previous discussion, the question arises as to

how does one effectively integrate an ensemble of biological pathway models

and maintain them to ensure reliability.

One way is to avoid the problem entirely and take a completely different

approach: develop from scratch an entirely new biological pathway model that

encompasses the multiple phenomena across each individual biological pathway

model. In essence, create one large biological pathway model. The time and

expense, however, involved in developing such a model is prohibitive. The

design and implementation of a model requires a combination of software

engineering skill and domain expertise. In addition, it involves an extensive

amount of verification and validation, requiring the iterative process of

systematic experimentation and quantitative modeling as previously discussed.

Another way is to acquire and reuse the source codes from each biological

pathway model, and merge them through some mechanism to create one large

biological pathway model. While this process may be appearing easier than the



previous one, it may not be so. The reuse of software is a key principle of

software engineering and is usually achieved by developing a set of simple

components, or modules that can be combined in different ways to create more

complex components. Ideally scientists would connect their biological pathway

models by integrating the existing source codes, treating them as modular pieces

that can be easily and quickly plugged together. This, however, can be a very

difficult task when the legacy source codes themselves may be poorly

understood, and more than likely, were not originally designed to be integrated,

and may be written in different software programming languages for different

hardware computing platforms.

Despite the potential benefit of building new models from existing ones,

integrating pathway models is not a common practice in systems biology

community because of the difficulties inherent in working with source codes.

Reusing source code in general is difficult for many reasons. Not only are

programs difficult to comprehend (a necessary part of any software reuse) but

the task of identifying useful source code fragments and integrating these source

code artifacts that were not designed for reuse is challenging (Bulatwicz, 2006;

Krueger, 1992; Rajlich, 2002). This is especially true for source codes written in

unstructured languages and languages that make extensive use of global data

(e.g. Fortran) (Bulatwicz, 2006). Reusing source code is particularly difficult

because biological pathway models are a unique class of computer programs



whose design and use is intertwined with a great deal of domain-level theory

outside the model code itself (Robinson, 2004).

In short, the amount of time and expense required to understand the legacy

source codes of each individual biological pathway model, prior to merging

them may be more costly than starting from scratch. Moreover, once the

integrated model is created, the next problem becomes the complexity of

maintaining the resulting integrated model, since changes will no doubt take

place in the originating biological pathway model's source codes, as they are

refined and enhanced, through systematic experiments and modeling.

Perhaps a better way is to integrate biological pathway models in a decentralized

manner such that the integrated model functions as one whole, while any of its

component biological pathway models can continue to be owned and

maintained by its original authors. If this approach is taken, effort will be

required to build a new messaging architecture that enables disparately

produced biological pathway models to interface, obviating the need to explicitly

integrate the source codes. Such an infrastructure would allow scientists to

quickly prototype integrated models. This thesis is motivated to create such a

computational infrastructure to integrate biological pathway models.



Research Question

The above discussion should have clarified to the reader that biology is

fundamentally an experimental science. The development and understanding of

genes, proteins, and protein-protein interactions, or just any one element along

the path to modeling the whole cell (as shown in Figure 1-21), is difficult, time-

consuming and complex, requiring the collaborative effort of multiple teams of

scientists world wide. . This thesis, therefore, poses the following research

question:

How can we build larger models from smaller models in a scalable framework to support

whole cell modeling given the reality of biology - an experimental science?

1.5 Original Contributions

This thesis summarizes a body of research performed at MIT over the past four

years. Original contributions were made in five areas: (1) General Principles and

Literature Review, (2) Distributed Computing, (3) Systems Biology, (4) Scientific

Visualization, and (5) Computing Architectures



General Principles and Literature Review

* A clear formulation of requirements necessary for a computing

architecture to support the building and computing of large scale complex

models of the cell and complex cellular functions

* One of the most comprehensive literature reviews to date of the methods

used to build integrated models from ensembles of biological pathway

models

* A detailed presentation of why biology is a complex systems problem

along with an exposition of why ab initio and monolithic approaches to

build whole cell models are intractable and not scalable, respectively.

Distributed Computing

* A novel distributed computing architecture for integrating ensembles of

distributed biological pathway models

* Complete implementation of a scalable computational architecture for

performing integration of distributed biological pathway models. This

initial prototype was implemented using publicly available software tools.

* A unique Controller program that performs the computational integration

of an ensemble of individual biological pathway models without requiring

any access to the source codes



* An optimal mechanism for orchestrating the activation and parallel

processing of calculations across a system of biological pathway models

to evaluate an accurate solution

* Creation of the pathway interface descriptor (PID) which serves to enable any

biological pathway models to be used and accessed by the architecture

requiring only minimal information

* An algorithm for distributed mass balance which performs the real-time

calculation and synchronization of species concentrations in real-time

across an ensemble of biological pathway models

* A distributed solver architecture for integrating biological pathway

models written in SBML, CellML, or in any other format

Systems Biology

* The first distributed implementation of the EGFR model of Kholodenko

which yields results that are consistent with published literature

* Identification of a set of biological pathway models that form the

components of the interferon (IFN) response to viral infection

* Integrative modeling and solution of the IFN response to virus infection

with both positive and negative feedback



Scientific Visualization

* A detailed choreography of the IFN response dynamics including four

three-dimensional (3-D) animation scenes

* A complete 3-D computer graphics video of the IFN response to virus

infection. This has also been used as a teaching tool in BE440, one of the

core graduate classes in Systems Biology at MIT.

Computing Architectures

* A categorization existing architectures for integrating multiple models

* A quantitative methodology for evaluating architectures for integrating

biological pathway models that takes into account the particular needs of

different stakeholders

* The development of architectural notation to describe computational

architectures for modeling the cell

* A quantitative proof of why a distributed parallel architecture with model

reuse is superior to a monolithic approach that relies on merging the

source codes of multiple models.



1.6 Organization of Thesis

This thesis contains nine chapters and three Appendices.

Chapter 2: Prior Work

A comprehensive review of the existing methods for integrating biological

pathway models is provided in this chapter.

Chapter 3: Methodology

A description of the step-by-step approach to designing, implementing and

testing the proposed architecture for integrating biological pathway models is

provided in this chapter.

Chapter 4: Architecture

A detailed description of Cytosolve, the scalable architecture for integrating

multiple biological pathway models is provided in this chapter. Thee details of

the architecture are presented along with details of implementation including

initial tests to understand computation time.



Chapter 5: EGFR Model of Kholodenko

The EGFR model of Kholodenko is used to validate and compare the Cytosolve

architecture with existing monolithic approaches. Both computation time and

accuracy are compared.

Chapter 6: Integrative Model of IFN Response to Virus Infection

In this chapter, we present the results of using Cytosolve to develop the

integrative model of the interferon (IFN) response to virus infection using the

Cytosolve architecture.

Chapter 7: Quantitative Methodology for Evaluating Architectures for

Integrating Biological Pathway Models

This chapter provides a new methodology for evaluating architectures for

integrating biological pathway models. This methodology is applied to define

various types of architectures, then to evaluate quantitatively their efficacy based

on different stakeholder needs.

Chapter 8: Video of the IFN Response to Virus Infection

The storyboards of the four major scenes of the 3-D animation of IFN response to

virus infection along with the actual DVD format of the video are provided in



this chapter. The scenes include virus infection, up regulation of IFN-Beta, then

IFN-Alpha and finally IFN-Gamma.

Chapter 9: Conclusions

A summary of the thesis along with the key findings and future areas of research

are provided.



Chapter 2

Prior Work

2.0 Introduction

Integrating biological pathway models is becoming an important area of research

for advancing the field of systems biology. In the next section, we review the key

factors that are driving this need and some recent efforts to create integrative

models of biological systems. In the third section, we survey general

computational architectures for integrating models. The fourth section

specifically surveys the current approaches for integrating biological pathway

models in the field of systems biology. We conclude this chapter by

summarizing the current approaches in tabular form. We also provide a

discussion on the critical weakness limiting the integration of biological pathway

models.

2.1 Movement to Integrate Biological Pathway Models

There is a worldwide movement in the computational systems biology

community to find powerful ways to integrate the growing number of biological

pathway models. This movement is being driven by a transition from

diagrammatic representation of pathways to quantitative and predictive



mathematical models, which span time-scales, knowledge domains and spatial-

scales (Gianchandani, et al., 2006; Palsson, 2004; Papin, et al., 2005). This

transition is being accelerated by high-throughput experimentation which

isolates reactions and their corresponding rate constants (Hood, et al., 2004).

Vast amounts of information is now available at the level of genes, proteins, cells,

tissues and organs, which requires the development of mathematical models that

can define the relationship between structure and function at all levels of

biological organization (Hunter, 2003).

Systems biology aims to provide a comprehensive quantitative analysis of the

manner in which all the components of a biological system interact functionally

over time (Hood and Perlmutter, 2004). Such an objective is pursued by an

interdisciplinary team of investigators (Aderem, 2005). A significant

computational challenge is how we can integrate such sub-cellular models

running on different types of algorithms to construct higher order models

(Takahashi, et al., 2004).

Biological pathways, including metabolic pathways, protein interaction

networks, signal transduction pathways, and gene regulatory networks, are

currently represented in over 220 diverse databases. These data are crucial for

the study of specific biological processes, including human diseases. Standard

exchange formats for pathway information, such as BioPAX, CellML, SBML and



PSI-MI, enable convenient collection of this data for biological research, but

mechanisms for common storage and communication are required (Cerami, et

al., 2006). However, one the greatest challenges in establishing this systems

approach are not biological but computational and organizational (Liu, 2005).

The critical need across all domains of molecular and cell biology is to effectively

integrate large and disparate data sets (Hwang, et al., 2005).

Vigorous interest in understanding the dynamic aspects of cellular networks is

also another driver in the development of integrative techniques for biological

pathway models (Endy and Brent, 2001; Sauro, et al., 2003). Such explorations

could provide insight into the mechanisms of healthy and diseased cells, as well

as a better understanding of how system-level or whole-cell properties emerge

from intracellular interactions of molecular components (Lindon, et al., 2006).

Moreover, understanding dynamics at the global network level seems to be now

a reachable goal which has motivated the growth of systems biology. Also, it is

commonly admitted that the study of the network dynamics is able to enlighten

the function of genes and groups of genes (Pecou, 2005).

A central question now confronting virtually all fields of biology is whether

scientists can deduce from this torrent of molecular data how systems and whole

organisms work. All this information needs to be sifted, organized, compiled,

and-most importantly- connected in a way that enables researchers to make



predictions based on general principles (Pennisi, 2005). Mapping protein

interactions and transactions (such as phosphorylation, ubiquitination, and

degradation) within a cell or organism is essential to developing a molecular

understanding of physiology. Over the past decade, protein interaction

mapping has evolved from low throughput manual screens to systematic

interrogations of entire proteomes (Bader and Chant, 2006). Reconstitution of

biochemical and biophysical processes from 'minimal systems' of proteins has

built confidence that top-down and bottom-up approaches to biology meet

somewhere in the middle.

Systems biology has sought to integrate these results and data to reverse-

engineer an understanding of biological network function and dynamics. The

infrastructure for storing and disseminating information on biological systems,

and for modeling them, has grown concurrently. In turn, this allows the rapid

access and cross-comparison of information that is critical to establishing data

quality and creating interoperability standards that will enable biologists to

leverage their efforts and build scalable systems (Arkin and Fletcher, 2006).

2.2 Existing Methods

Two critical elements need to be carefully assessed when selecting a modeling

approach for any dynamic system: 1. the level of abstraction and 2. the methodology



of implementation. In determining which level of abstraction and which

methodology of implementation to use, the notions of tractability, scalability and

accuracy are some of the important selection criteria, among others. Tractability

is measured by the time and expense needed to design, implement, and test and

assess the viability of the modeling approach. Scalability is determined by the

ease with which the modeling approach can integrate new components at a

particular level of abstraction. Accuracy is determined by the ability of the

modeling approach to yield results which match that observed in nature.

Different users of the modeling approach will have these and other qualitative

criteria in determining which modeling approach are the most optimal for their

particular needs.

Currently there are two existing methods towards building whole cell models.

The first method proposes to use first principles (ab initio) and large-scale

computing, as has been applied in other fields such as climatology, particle

dynamics, etc. to build a whole cell model. The second method involves

downloading and accessing existing models and manually integrating their

source codes together by hand to create one monolithic software program: the

monolithic approach. A variation on this approach is to use semi-automation tools

that help one to automatically read and integrate source codes together to create

one monolithic software program



First Principles - Ab Initio

There are various choices for which level of abstraction to use in modeling the

cell. In Figure 2-1 four potential abstractions are illustrated: quantum, atomic,

biological pathways, and organelles. In the first principles approach, one could

Atoms Molecules

gical Pathways

Organelles

Figure 2-1: Various levels of abstraction in modeling the whole cell.

start at the atomic level of abstraction and solve the time-dependent

Schroedinger equation (quantum mechanics, QM) to quantify the dynamics of

the whole cell (Vaidehi, 2001). Such an approach would lead to a detailed

understanding of the role that atomic level interactions play in determining the

fundamental biochemistry of the whole cell. The difficulty in using QM, for

example, is that the vast range of length and time scales, from a nitrous oxide

molecule to an organelle, makes the QM solution both impractical and useless

(Vaidehi, 2001). It is impractical since there are too many degrees of freedom



describing the motions of the electrons and atoms, whereas in the functioning of

a cell it may only be the rate of transfer across some membrane. The complexity

of QM limits its applications to systems with only 10 to 200 atoms (depending on

the accuracy), leading to distance scales of less than 20 Angstroms and time

scales of femtoseconds. Even the simplest protein in the cell contains over 1000

atoms. While the atomic level abstraction offers high level of accuracy, the level

of abstraction is not scalable as the addition of each new atom increases the

computational needs exponentially. This potential solution is also impossible,

today, as the computing power needed to model the cell using this level of

abstraction does not exist.

The first principle method therefore attempts to leap frog some of the steps in

modeling the cell as shown in Figure 2-2 by using the laws of physics to model

the cell versus experiments, which are the basis of biology. Another choice of

abstraction in using the first principles method is at the molecular level, where

Newton's equations are used rather than Schroedinger's to model molecular

dynamics (or MD). Where in QM the solution is determined by averaging over

the scale of electrons to describe the forces on atoms, in molecular dynamics

(MD), one averages over the dynamics of atoms to describe the motion of large

molecules. While MD provides the ability to predict the dynamic interaction of

molecules ab initio in an accurate manner, this level of abstraction is neither

tractable nor scalable for modeling the whole cell since biological molecules such



as proteins have far more atoms, degrees of freedom and numbers of states not

encountered in other engineering fields where the species and interactions are

well-defined (White, 2007). We consider the simple problem of modeling the

interaction of two proteins to demonstrate the intractability of using MD for

whole cell modeling.

/ .. --. . .. Cells
Metabolism

Protein-Protein Interactions/i / *5 z . ..Genes and Proteins Biochemical Reactions

Figure 2-2: First principles approach to modeling the cell by using the laws of physics.

Consider the interaction of two proteins A and B to form the complex AB. We

assume that each protein has 100 amino acid residues and each residue has three

states (e.g. alpha, beta and other). In MD to model this simple interaction, two

key calculations need to take place: 1. Thermodynamic and 2. Kinetic in order to

find the most likely transition state of protein A and protein B combining to

c11sr

"P" *a~ds*

rr"" ~p""~ss~pPd) ~b



produce complex AB (Stultz, 2007). For the thermodynamic calculations, MD

requires the calculation of thermodynamic properties such as entropy which

requires the need to evaluate all the possible states and associated probabilities of

protein A, protein B and the complex AB. Protein A will have 3100 possible states

(100 residues, each of which can be in 3 possible states), protein B will have 3100

possible states, and the complex AB can have up to 3200 (since AB is a

combination of A and B) possible states. Just performing this calculation to

determine the states and associated probabilities using modem computers is

impossible and therefore intractable.

The kinetic calculation requires the identification of an appropriate reaction

coordinate by computing the relative energies (or probabilities) for all the

conformations along this reaction coordinate. In this case, it will require

determining all the possible conformations of A and B that are at the energy of

the activated complex, denoted by A' and B', (a higher energy than the energy of

A and B); then determining all the possible conformations of A and B within

complex AB stage, denoted by A" and B", (at an energy lower than that of A and

B); and then finally determining all the conformations of AB complex. The

kinetic calculation then attempts to link the most probable conformations starting

with A and B, then A' and B', then A" and B", and finally the AB complex to

calculate the reaction coordinate. These sets of multiple calculations using atom-

by-atom MD to determine the reaction coordinate, as shown in Figure 2-3, to



solve even the simple molecular interaction of two proteins is intractable using

modern day computers (Stultz, 2007). Moreover, this level of abstraction is not

scalable as the number of interactions, number of proteins, and number of atoms

/

L4

a)

a)

activated complex

A"9. D" A D

reaction coordinate

Figure 2-3: Reaction coordinate of A and B reactants going to activated complex A' and
B', and then to products A" and B" which then form the complex AB.

per protein increases. In summary, while MD has powerful applications for

determining protein conformations, it is not viable for whole cell modeling

where hundreds of thousands of proteins are involved in millions of molecular

interactions. Therefore, neither QM nor MD, using the laws of physics, offers

tractable approaches to modeling the whole cell.

Biological Pathways as Modules

Another approach towards modeling the cell is to consider biological pathways

as being the elemental modules from which complex cellular functions and the

S



whole cell can be modeled. In this section, we present various viewpoints in the

existing literature that supports such an approach. Biological systems are

thought to have large number of parts almost all of which are related in complex

ways (Keller, 2007). Functionality emerges as the result of interactions between

many proteins relating to each other in multiple cascades and in interaction with

the cellular environment. By computing these interactions, it can be used to

determine the logic of healthy and diseased states (Noble, 2006). One way to

model the whole cell is through bottom up reconstruction. Such bottom up

reconstruction, for example, of the human metabolic network was done

primarily through a manual process of integrating databases and pathway

models (Duarte, et al., 2007).

It is possible, for example, to regard signaling networks as systems that decode

complex inputs in time, space and chemistry into combinatorial output patterns

of signaling activity (Bhalla, 2003). By treating biological pathways as modules

our minds can still deal with the complexity. In this way, accurate

experimentation and detailed modeling of network behavior in terms of

molecular properties can reinforce each other (Hornberg, et al., 2006). The goal

then becomes that of linking kinetic models on small parts to build larger models

to form detailed kinetic models of larger chunks of metabolism, and ultimately of

the entire living cell (Snoep, et al., 2006). The value for integrating pathways is

that it was found that the integrated network shows emergent properties that the



individual pathways do not possess, like extended signal duration, activation of

feedback loops, thresholds for biological effects, or a multitude of signal outputs

(Klipp and Liebermeister, 2006). In this sense, a cell can be seen as an adaptive

autonomous agent or as a society of such agents, where each can exhibit a

particular behavior depending on its cognitive capabilities.

Unique mathematical frameworks will be needed to obtain an integrated

perspective on these complex systems, which operate over wide length and time

scales. These may involve a two-level hierarchical approach wherein the overall

signaling network is modeled in terms of effective "circuit" or "algorithm"

modules, and then each module is correspondingly modeled with more detailed

incorporation of its actual underlying biochemical/biophysical molecular

interactions (Asthagiri and Lauffenburger, 2000). The mammalian cell may be

considered as a central signaling network connected to various cellular machines

that are responsible for phenotypic functions. Cellular machines such as

transcriptional, translational, motility, and secretory machinery can be

represented as sets of interacting components that form functional local networks

(Ma'ayan, et al., 2005).

As biology begins to move into the "postgenomic" era, a key emerging question

is how to approach the understanding of how complex biological pathways

function as dynamical systems. Prominent examples include multi-molecular



protein "machines," intracellular signal transduction cascades, and cell-cell

communication mechanisms. As the proportion of identified components

involved in any of these pathways continues to increase, in certain instances

already asymptotically, the daunting challenge of developing useful models-

mathematical as well as conceptual-for how they work is drawing interest

(Lauffenburger, 2000).

Multi-scale modeling is essential to integrating knowledge of human physiology

starting from genomics, molecular biology, and the environment through the

levels of cells, tissues, and organs all the way to integrated systems behavior.

The lowest levels concern biophysical and biochemical events. The higher levels

of organization in tissues, organs, and organism are complex, representing the

dynamically varying behavior of billions of cells interacting together

(Bassingthwaighte, et al., 2005). Biological pathways can be seen to share

structural principles with engineered networks, along with three of the most

important shared principles, modularity, robustness to component tolerances,

and use of recurring circuit elements. (Alon, 2003).

An important attribute of the complexity pyramid is the gradual transition from

the particular (at the bottom level) to the universal (at the apex) (Kitney, 2007;

Oltvai and Barabasi, 2002). Others have recognized that one can build cellular-

like structures from a bottom up approach (Seeman, 2002). Integrated models



would represent the most compact, unambiguous and unified form of biological

hypotheses, and as such they could be used to quantitatively explore

interrelationships at both the molecular and cellular levels. (Morgan, et al., 2004).

At this time, for instance, the computational function of many of the signaling

networks is poorly understood. However, it is clear that it is possible to

construct a huge variety of control and computational circuits, both analog and

digital from combinations of the cascade cycle (Sauro and Kholodenko, 2004).

2.3 Integrative Modeling Efforts

As discussed in the previous section, systems biology is determined to find new

ways to integrate biological pathway models to build larger systems.

Neuroscience, for example, seeks such integration of computational models for

better understanding of different signaling pathways in neurons (Mishra and

Bhalla, 2002).

In the area of metabolism, researchers have created comprehensive mathematical

descriptions of the cellular response of yeast to hyperosmotic shock. Their model

integrates a biochemical reaction network comprising receptor stimulation,

mitogen-activated protein kinase cascade dynamics, activation of gene

expression and adaptation of cellular metabolism with a thermodynamic

description of volume regulation and osmotic pressure (Klipp, et al., 2005).



The IUPS Physiome Project is an international collaborative open source project

intended to provide a public domain framework for computational physiology,

including the development of modeling standards, computational tools and web-

accessible databases of models of structure and function at all spatial scales and

across all organ systems (Hunter, et al., 2005).

For the first time, kinetic information from the literature was collected and used

to construct integrative dynamical mathematical models of sphingolipid

metabolism (Alvarez-Vasquez, et al., 2004). In another example, a model of 545

components (nodes) and 1259 interactions representing signaling pathways and

cellular machines in the hippocampal CA1 neuron were combined. Using graph

theory methods, this effort analyzed ligand-induced signal flow through the

system. Specification of input and output nodes allowed them to identify

functional modules. Networking resulted in the emergence of regulatory motifs,

such as positive and negative feedback and feed-forward loops, that process

information (Ma'ayan, et al., 2005).

(Oda, 2004) have developed a complete map of the macrophage pathway. In this

example, 234 published manuscripts were reviewed and 506 reactions were

integrated within the single centralized software framework of Cell Designer

(Kitano, et al., 2005) . No models were integrated in this case, rather the work



produced a large and complex monolithic diagram interconnecting the various

biological pathways.

These examples demonstrate current efforts to integrate models to gain greater

insight into a particular area of biology. The results seem promising, and such

efforts are only growing. There is an also an equally growing need for

foundational tools and architectures that support the continued development of

such integrated models in a far more scalable manner. This has led to the

development of many new tools such as Cell Designer which aim to offer an

easy-to-use interface for linking biological pathway models. In the next sections,

we first survey general techniques that are used for integrating such models in

order to gain a perspective for reviewing the more specific techniques in

computational systems biology.

2.4 Generalized Architectures for Integrating Models

There are computationally two broad approaches to integrating multiple models:

monolithic and messaging. The monolithic approach involves the creation of one

monolithic source code resulting from the merger of the source code of the

individual models. The messaging approach involves the need for no such

merger, but creates a mechanism by which the necessary input and output data

streams common across all models can be shared and transferred either statically



or dynamically. Some have referred to this messaging approach as a

communications approach (Bulatwicz, 2006).

Monolithic Approach

There are three broad types of monolithic approaches for integrating models:

manual, semi-automated and module-based.

-••

Figure 2-4a: Monolithic approach of cutting and pasting source codes of two models: Model
A and Model B to produce a new source code of Model C.

Manual Monolithic Approach

The manual monolithic approach is process where the model integrator manually

creates a single program or "file" by "cutting and pasting" the source codes or

"wiring together" the pathway diagrams of individual models. Figure 2-4a

illustrates the cutting and pasting of source codes from two biological pathway



models Model A and Model B to produce Model C. Figure 2-4b similarly shows

A A ..

.......... a . ...M o l ......... to .......... .ana d m of M......... ..... . . ..• • .......

Although this approach works, it has significant drawbacks. The individual

constituent models. In many cases, the source code is often difficult to obtainsince legacy model codes are frequently complex, uncommented, and poorly

Figure 24b: Monolithic approach of wiring the pathway diagrams of two model's source Model A
and Model B to produce a new pathway diagram of Model C.

how a model integrator may alternatively wire together the pathway diagrams of

two pathway models to produce a single pathway diagram using a visual design

tool. Many find the manual monolithic approach easy to use. It offers full control

to the model integrator of the source codes or pathway diagrams. The model

integrator has control of all the coding details (control structure, memory

allocation, data types, input/output file formats, etc.) (Bulatwicz, 2006).

Although this approach works, it has significant drawbacks. The individual

performing the integration needs a complete and detailed understanding of the

constituent models. In many cases, the source code is often difficult to obtain

since legacy model codes are frequently complex, uncommented, and poorly

documented (Bulatwicz, 2006). The single integrated model's source code is also



difficult to work with from a software engineering point of view (testing,

debugging, verifying, updating, etc.) since it is much larger than its constituent

model source codes, and improvements made to the original model source codes

must be repeatedly made to each integrated model's source code as well.

Examples of recent published papers in using this monolithic approach are

shown in Figure 2-5a and Figure 2-5b. In Figure 2-5a, four models are integrated

to produce on monolithic model for modeling the cellular function of

osmoregulation (Klipp, et al., 2005). In Figure 2-5b, three existing kinetic models

are linked with one focusing on yeast glycolysis, a second extending this

glycolytic pathway to the glycerol branch, and a third model introducing the

glyoxalase pathway (Snoep, et al., 2006).

/Phosho m&duW

I,'

3d

taboiam
dlub

4sIVI

NO"

%N4 D

[AkyD)

i ugpmklan I ioprysioat chages
'. ,, ,- modulo

Figure 2-5a: An example of integrating models using the monolithic approach to
integrate a model for the cellular function of osmoregulation (Klipp, et al., 2005).



GIc -out DHAP
NADH -j

ATP " ADP ApAPP

ADP G•TPea G3P
Gyougen G6P --- Treha~tose P

ADPTP F (B) Gyoerol
ATP F6P

ADP4A
FlebP

DHAP G AP
NADH NAD

NAD F?. tNADH Ml"hyiGeyoxel
Glycerol BPG ADPADPW.ATP

3PGA

2ADP X Gý
2PGA SH

AMP ATP 1
PEP ADP (C) D-Lctate

PYR

succinate ~c A-oas8Lehyd

4ATP W N.
4A AO3 NAD APNAD

JA) 3 NADH [Ahthanof

Figure 2-5b: An example integrating three pathways in a monolithic approach
(Snoep, et al., 2006).

Semi-Automated Monolithic Approach

The semi-automated approach is a slight variation of the manual monolithic

approach. In the semi-automated monolithic approach, software tools are used

to accelerate the development of a single program from the individual model's

source codes. In these approaches, a software tool, as illustrated in Figure 2-6a,

combines together source codes or diagrams using some additional information

to produce a single source code or diagram. Rarely do these tools produce the

right source code, the first time. There is always manual intervention to review

the initially produced output and then perform manual manipulations to

produce the final output.



S- -- --

a-

... .... . .... . .f.......• si,. ....-AW-rý'.s:~k'----"'

O\ w*rl ~rs~ r·
r*r dL dr
~

;tph ,x~"ir~
I ~.........· a~........,.............:

Figure 2-6a: Semi-automated monolithic approach of wiring the pathway diagrams of two
models: Model A and Model B to produce a new pathway diagram of Model C.

This semi-automated monolithic approach has the advantage of speeding up the

initial merger process of source codes; however, the result varies based on the

kind of semi-automation tool being used. In some cases, more effort is spent

Model A

-•-0

V +

Model B

-U

• •sa

Figure 2-6b: SBMLMerge is an example of a tool that takes two biological pathway models
and produces a merged model in a monolithic format (Schulz, et al., 2006).

62

..... ..................................... .........................................T

I .2.

it ••.~.-*...... ........................

.. . ... ...

i ........... .............. .......... L. i .. .... .............:~:
axh egr~;a~:~~~" '

ie~

Merged Model

-77

NP "IN Inr~
I· JiI :L II- I-... . . .. .. . . . . .. .. .. . ... .. . . . . . . . .. . . . . . . . . . . .



trying to get the tool itself working properly. Although this approach works, it

too has the same significant drawbacks as the manual monolithic approach.

One example of such a tool, SBMLMerge, is shown in Figure 2-6b (Schulz, et al.,

2006). This tool merges two biological pathway models to produce one

biological pathway model. For this tool to operate, both biological pathway

models need to be in SBML format and the tool produces one monolithic source

code of the merged model in SBML format.

While these semi-automated tools may speed up the process, one disadvantage is

that the model integrator does not have as much control of the resulting

integrated source code, as they had in the manual approach. Some semi-

automated tools insert new proprietary code and data structures along with a

new format which may take time to understand and debug. The model

integrator, in that event, needs to not only have a complete and detailed

understanding of the constituent models and their source code, as in the

monolithic approach, but also now needs to understand how the tool for semi-

automation itself works.

Module-Based Monolithic Approach

The module-based monolithic approach addresses some of the limitations and

drawbacks of the manual and semi-automated monolithic approaches. This

approach offers the ability to employ reusable techniques for integrating models.



The module-based monolithic approach results in the creation of single set of

source code, but differs in that rather than decompose each model's source codes

into blocks of source code designed for integration into another specific model's

source code, the scientist decomposes each model's source code into software

modules. Modules are subroutines that are reusable and can be written with

little knowledge of the other modules, and they can be replaced independently

without significant changes to the rest of the program (Bulatwicz, 2006). We use

the term reusable to mean that a module can be used in a variety of different

situations without any changes made to it. Each module possesses a standard

interface for invoking and passing parameters. The modules are then

recomposed by connecting their interfaces.

The interfaces for each module are generally simple and consist of a set of input

data that must be supplied before the module can be executed, and a set of

output data that is available upon completion (Bulatwicz, 2006). The

computation that a module performs is encapsulated and hidden within the

module. These modules can be classified and organized into searchable libraries

and the strict interfaces allow for automatic compatibility checking.

The specification of the module connections can either be through a visual

environment or textual configuration files. Modules are connected by specifying

which module outputs map to which module inputs. This configurable



dependence is a key feature of modules (Bulatwicz, 2006). The module-based

monolithic approach is advantageous because simpler modules are easier to test,

debug, update, compare, and verify. Once the modules are created, they can be

easily assembled, reassembled in different ways, and can be reused to create new

compositions. In addition, there are architectures that supply pre-made general

purpose modules for common operations. Some architectures standardize the

argument data types of the modules while others allow no arguments and

require put/get calls (from a custom library) within the component for data

input/output, and some use a combination (Bulatwicz, 2006).

Architectures can be general purpose or apply to specific domains such as

climatology, hydrology (Bulatwicz, 2006) or systems biology . Those that apply

to specific domains typically support the transfer and transformation of domain-

specific data types (grids, flux, etc.). Although the module-based monolithic

approach addresses the issues of the integrated model's source code complexity

(by breaking the computations down into simple components) and reuse (by

allowing easy reuse via standard interfaces), it still requires the scientist to have a

complete and detailed understanding of the underlying model codes in order to

rewrite them into modules. Although the integrated models would be easier to

create from modules than from scratch, such an approach to integrating models

requires substantial reprogramming.



Messaging Approach

Due to the limitations of the monolithic approaches, scientists turned to

approaches that obviate the need to produce either manually, semi-automated

manually or even programmatically, one source code from the combined models

and approaches that require a substantial programming. This led to the

messaging approach. There are two types of messaging approaches: static and

dynamic.

Static Messaging Approach

In the static messaging approach, the models remain independent programs and

do not affect each other as they are executing. Any one model accepts as input a

dataset, which may reside in any variety of formats, and executes to completion

to generate an output dataset. That output dataset is then given to another model

(perhaps after some transformation) which that model uses it as input and also

executes through to completion. This process can then be continued with other

models, and they can be executed concurrently if there are no dependencies

between their datasets.

Architectures for supporting static messaging architectures offer tools that

provide automated ways for the user to select models and datasets, and then

specify the distribution of datasets (Bulatwicz, 2006). For example, in one such

architecture, called Le Select, a database-oriented approach is used in which both



models and datasets are stored in geographically distributed databases and the

user specifies the execution and data distribution through textual queries in a

standard database query language (Bulatwicz, 2006). Other architectures provide

a visual interface to specify the order of execution of the models (Akarsu, 1998;

Whelan, 1997) . These architectures typically have different user interfaces and

different input/output data formats making them difficult to use, especially for

non-specialists, requiring a significant investment of time to learn.

Some architectures provide a standard user interface to each model (Neteler,

2004). This requires that the original user interface source code be removed from

each model and replaced with the common user interface source code. To

address the issue of non-uniform data input and output formats, some

architectures require the user to perform this data transformation manually

between model runs while others require the user to change the model codes so

that they use a standard data format (Akarsu, 1998; Whelan, 1997). This requires

that all the input and output source code be removed and replaced with source

code to access the common database and use its data types.

Dynamic Messaging Approach

Using the dynamic messaging approach, the underlying model's source codes

remain independently executing programs that interact only by exchanging data

via message passing during execution. Architectures that use this approach can



be classified by whether or not they include an independent application (a

controller) that mediates the execution and messaging between the models.

The primary role of the controller is to transform exchanged data, which

typically involves data type conversions, but they also sometimes control the

startup of the models or track the global state of the integrated model as well.

Architectures that do not include a controller are essentially libraries of data

transfer and transformation routines customized for the data types and

messaging styles needed by models. Architectures that do include a controller

have messaging libraries that support direct model-to-model messaging as well

as model-to controller messaging. In either case, these libraries often require the

scientist to convert the model data into a standard data type, which is then

communicated. All of these architectures require the scientist to perform an

initial exercise of creating some mechanism of interfacing with each model

through library calls in order to send or receive data.

The user then writes configuration files that specify which models are to execute,

and the data that are to be sent and received. The messaging approach avoids

the substantial model code rewriting required by the monolithic approaches, but

the user still needs a complete and detailed understanding of the model codes in

order to properly set up the correct interfacing for them (Bulatwicz, 2006).



In systems biology, for example, if one biological pathway model is written in

MATLAB, and other model is in SBML, with each sharing four common

variables that need to be communicated to solve the integrated problem, then the

interface code is developed for the MATLAB model and for the SBML model.

Once this interface code is written, both can transfer data. This interfacing

process is often specific to a specific type of integration, so the interfacing process

has to be to be repeated for each different type of interfacing.

These architectures also suffer from the problem that the interfacing of the model

code (e.g. adding a send 0 call which sends a value to another model) is separate

from the specification of the integration which is done in configuration files (e.g.

specifying that one model will be sending a value to the controller and another

will be receiving a value from the controller) (Bulatwicz, 2006). This can make

setting up an interfacing error-prone because there is no way to perform

consistency checks to ensure that the model's source codes are interfacing in a

way consistent with the controller's configuration files. This typically isn't a

serious problem when the projects that use these integrated architecture are large

(often climate-related) and specialists familiar with the models are available to

interface with them, but this does become a problem for scientists in other

domains seeking to create prototype integrations quickly and easily (Bulatwicz,

2006).



2.5 Approaches to Integrating Biological Pathway Models

In this section, we will review current approaches to integrating biological

pathway models within the field of systems biology. Two developments are

predominant in addressing this integration problem: 1. the development of new

software systems that allow the integration of multiple biological pathway

models within a single centralized software framework, and 2. the development

of common standards to define and code biological pathway models.

Software Systems for Integrating Biological Pathways

As discussed in the previous section on Generalized Approaches to Integrating Multiple

Models, there are two broad classifications for approaches to performing such

model integration: monolithic and messaging.

In systems biology, there is another dimension of classification: informational and

computational. Informational approaches are those that provide a way for

integrating multiple sources of biological pathway information but do no

computing with that integrated information. Computational approaches are

those that are a superset of informational architectures by also provide the ability

to perform integrated computations across the biological pathways. In the

diagram below, we review the predominant software systems for integrating



biological pathways and characterize them in this two-dimensional context of

monolithic versus messaging and informational versus computational.

Popular Monolithic Tools for Pathway Modeling

There are a set of architectures including Virtual Cell, Kinetikit/Genesis, Cell

Designer, Jarnac/JDesigner, JSim, XPAUT, E-CELL, Gepasi, Jarnac, StochSim

which are manual monolithic and use a computational approach. These tools force

one to bring all biological pathway models into their particular tool and place

into one format prior to integration. They offer easy-to-use user interfaces that

makes it convenient for cell biologists to facilitate the construction of models and

the generation of predictive simulations from them (Slepchenko, et al., 2003).

Some of them use programming markup languages such as SBML (Hucka, et al.,

2003). Beyond the ones stated here, there are many other graphical tools and

mathematical solvers to construct and solve biological pathway models using a

manual monolithic approach. Currently, 136 such software systems exist for

constructing biological pathway models. These monolithic systems, such as Cell

Designer (Kitano, et al., 2005), allow for the integration of multiple biological

pathway models; however, each individual pathway model needs to be loaded

and combined within this one centralized framework, and typically each

pathway model is assumed to exist in one of the several standard formats such as

SBML or CellML. If individual pathway models were developed in other



computing systems or other formats, these systems either do not support such

integration or make such integration extremely onerous.

MATLAB

MATLAB uses a module-based monolithic and provides computational approach for

integrating biological pathway models. MATLAB offers programming interfaces

that can be used to communicate with different models stored in different

programs. All models, for all practical purposes, need to be within the MATLAB

framework.

PathSys

PathSys uses a static messaging and informational approach for integrating biological

pathway model information. It provides a way for creating a combined

database of biological pathways for generating an integrated view of biological

mechanisms. It does not offer a way to compute solutions as it is an

informational, not computational, mechanism. PathSys has been used to

integrate over 14 curated and publicly contributed data sources for the budding

yeast (S. cerevisiae) and Gene Ontology. It serves as a general-purpose,

scalable, graph-data warehouse of biological information, complete with a graph

manipulation and a query language, a storage mechanism and a generic data-

importing mechanism through schema-mapping (Baitaluk, et al., 2006). While

PathSys provides robust functions for biological pathway model archival and



storage including the ability to integrate data from other models source, it is not

useful for any computational modeling.

SBMLMerge

SBMLMerge uses a semi-automated monolithic and computational approach for

supporting the integration of biological pathway models written in SBML format

only. It provides a tools for combining biological pathway models that must be

in the SBML format (Schulz, et al., 2006). By its nature, this approach attempts to

force all models into SBML. In fact, ancillary tools are provide as a part of this

approach which convert models expressed in CellML into SBML without

significant loss of information (Schilstra, et al., 2006).

CellAK

CellAK (for Cell Assembly Kit) is such an agent-based method and follows a

static messaging and computational approach. Systems biology is seeing the

emergence of agent-based modeling methods. These methods treat each

biological pathway model as a single entity (or agent) obeying its own pre-

defined rules and reacting to its environment and neighboring agents

accordingly (Pogson, et al., 2006). CellAK has been used to model an

abstracted cell, consisting of membrane-bounded compartments with chemical

reactions and internal organelles (Webb and White, 2005). It produces models

that are similar in structure and functionality to those that can be specified using



the systems biology markup language (SBML), and CellML, and implemented

using E-CELL (Tomita, et al., 1999), Gepasi, Jarnac, StochSim, Virtual Cell, and

other tools currently available to the biology community. This tool does not use

differential equations to determine the time evolution of cellular behavior, as is

the case with most of the cell modeling systems, since differential equations find

it difficult to model directed or local diffusion processes and sub-cellular

compartmentalization and they lack the ability to deal with non-equilibrium

solutions. This approach offers many positive ways for integrating biological

pathway models; however, as with other static messaging approaches for

computing, a non-specialist has very high learning curve in preparing a set of

biological pathway models for use with this approach.

Cellulat

Cellulat (Gonzalez, et al., 2003) is another static messaging and computational

approach in which a collection of autonomous agents (our active objects-

enzymes, transport proteins, lipid bilayers) act in parallel on elements of a set of

shared data structures called blackboards (our compartments with small

molecule data structures). The dynamics of a Cellulat model result from

messages passing between active objects through the blackborad. Agent-based

modeling of cells is becoming an area of increasing research interest owing in no

small measure to the desire to understand cellular processes at an increasing

level of detail.



Cellware

Cellware offers a module-based monolithic and computational approach. Recent

advancements in systems biology have encouraged researchers to move from

'few-reactions-based' to the 'whole-cell-based' and 'whole-organ-based' models.

Though the initial efforts have been fairly successful, the task of finding a closest

mathematical equivalent of cellular processes has been truly daunting.

Cellware, a multi-algorithmic modeling and simulation software, has been

developed to precisely address this requirement of the modeling community

(Dhar, et al., 2004). The Cellware approach is based on the view that a uniform

modeling approach cannot capture the immense diversity of a cell since in the

past a number of tools have been developed for cell modeling and simulation

which are based on just one mathematical technique (Kierzek, 2002; Le Novere

and Shimizu, 2001; Loew, 2002; Mendes and Kell, 2001; Tomita, et al., 1999; You,

et al., 2003). Cellware argues that an integrated modeling environment is

warranted to model diverse cellular processes using distinct mathematical

descriptions. For example, for modeling gene expression a stochastic method is

more appropriate while for modeling metabolic pathways a deterministic

approach is more suitable. The philosophy behind Cellware is correct for the

need for an integrated environment; however, in execution, they are still a

module-based monolithic approach computationally.



SigPath

SigPath is a static messaging and informational approach that connects qualitative

information stored in biological databases with the quantitative data required for

biochemical modeling approaches (Campagne, et al., 2004). SigPath does not

offer a way to compute and integrate biological pathway models.

Gaggle

Gaggle follows dynamic messaging and informational approach. It attempts

through a loose coupling of diverse software and databases to integrate disparate

systems to enable simultaneous exploration of experimental data (mRNA and

protein abundance, protein-protein and protein-DNA interactions), functional

associations (operon, chromosomal proximity, phylogenetic pattern), metabolic

pathways (KEGG) and Pubmed abstracts (STRING web resource), creating an

exploratory environment useful to 'web browser and spreadsheet biologists', to

statistically savvy computational biologists, and those in between (Shannon, et

al., 2006). Again, it is important to note that Gaggle does not compute integrated

models as it is an informational approach.

Standards for Integrating Biological Pathways

An ancillary approach to support the integration of biological pathways is to

promote and enforce standards; however, standards are only as good as their

adoption. In the systems biology community, two competing standards are



currently being promoted: Systems Biology Markup Language (SBML); and Cell

Markup Language (CellML) for coding and storing mathematical models of

biomolecular pathways. Approximately 100 biological pathway models are

coded in SBML. While the CellML standard receives less mention in the

literature than SBML, over 150 models are coded in CellML. CellML models can

be converted by sub-sampling the information they contain into SBML, but

SBML models are difficult to convert to CellML. In spite of the promotion of

these two standards, most mathematical models are coded in programming

languages such as FORTRAN, C, MATLAB, etc. and not in any one particular

standard format. The development of standards, while valuable, has not

resulted in widespread adoption of any one particular standard; however, in

biological pathway modeling, the use of SBML and CellML is growing.

Some have attempted to use standards in combination with a manual monolithic

approach to build larger biological pathways. One such effort is that of Oda et

al. In this work, the diagrams of multiple biological pathways that were coded in

SBML were connected together using Cell Designer, which was used as the

standard and monolithic software system. This effort served to build a complete

map of the macrophage pathway. In this example, 234 published manuscripts

were reviewed and 506 reactions were integrated within the single centralized

software framework of Cell Designer. No mathematical modeling was executed

in this case, but the integration of many pathway diagrams was accomplished.



2.6 Summary

In the previous sections, we have surveyed a number of different architectures

that can be used for integrating biological pathway models. In Table 2-1, we

summarize these extant approaches based on our two-dimensional classification

Architecture Monolithic/Messaging Informational/Computational

Virtual Cell Monolithic (Manual) Computational

Kinetikit/Genesis Monolithic (Manual) Computational

Cell Designer Monolithic (Manual) Computational

Jarnac/JDesigner Monolithic (Manual) Computational

JSim Monolithic (Manual) Computational

E-CELL Monolithic (Manual) Computational

Gepasi Monolithic (Manual) Computational

Jarnac Monolithic (Manual) Computational

StochSim Monolithic (Manual) Computational

PathSys Messaging (Static) Informational

SBMLMerge Monolithic (Semi-Automated) Computational

CellAK Messaging (Module-Based) Computational

Cellulat Messaging (Module-Based) Computational

Cellware Monolithic (Module-Based) Computational

SigPath Messaging (Static) Informational

Gaggle Messaging (Dynamic) Informational

XPAUT Monolithic (Manual) Computational

MATLAB Monolithic (Module-Based) Computational

Table 2-1: Summary of architectures for integrating biological pathways.

methodology from the previous section. The 18 architectures summarized in

Table 2-1 represent those architectures that support the integration of multiple



biological pathway models. As noted earlier, some of these architectures support

the integration of biological pathway model information but do not support the

computing of the integrated models.

Most of the approaches are monolithic. Clearly within the monolithic approach,

the module-based mechanism is an ideal way to construct new models if

modules are available, but the approach is impractical for integrating existing

models. Cellware and MATLAB offer a module-based monolithic approach;

however, they are very difficult to perform the actual programming for this kind

of application for a non-specialist, have a significant learning curve, and cannot

produce code that is scalable. What is interesting to note; however, is that the

most widely use architectures in the systems biology community is the

monolithic approach.

The messaging approach allows existing models to be integrated with minimal

changes to the model's source codes. Since we are interested in model reuse and

scalability, we will focus on the messaging approach in this work. Moreover,

we will ignore those architecture that are only informational for obvious reasons,

since the do not support computation.

Based on Table 2-1, there are only two messaging-style architectures in the

current systems biology community: CellAK and Cellulat. These two



architectures offer an approach that lets biological pathway models be integrated

without the need to explicitly integrate the source codes as in the monolithic

approach. Neither of these approaches, however, performs dynamic messaging

among the integrated models, which would be even more advantageous.

Weakness of the Current Approaches

As can be seen from the previous discussion, the predominant method for

performing such integration is a monolithic approach, which involves creating one

large biological pathway model through either a manual, semi-automated or

module-based method that executes on a single computer. There are many

weaknesses which make this approach not scalable.

* First, scaling to, for example, approximately 1,000 pathways - the level

required to describe a single cell - would require a massive effort beyond

the research and development expended to obtain the original individual

pathways (Dewey, 2006).

* Second, each pathway represents a knowledge domain, and it would be

essentially impossible to have one person sufficiently knowledgeable in all

the scientific areas to understand each of these domains well enough to

manually construct a single monolithic program.

* Third, the monolithic approach does not provide a means for pathways

from proprietary models to be used with other models that are open



source. The monolithic approach wrongly assumes that the owners of any

one model will be freely willing to share their models directly and will not

protect proprietary information. The reality is that some models may be

public and others, say ones owned by a pharmaceutical company may be

private.

* Fourth, most monolithic approaches support only one standard format.

This means all other models need to be converted to that standard format.

* Fifth, and related to the previous weaknesses, the monolithic approach

wrongly assumes that all models within an ensemble to be integrated are

in the same format. The reality is that, while standards efforts are

underway, models are coded in software platforms convenient to the

author; and more practically any one platform is not capable of modeling

all biological pathways. In the (Oda, 2004) example, all pathways had to

be constructed in SBML and the integration had to be performed within

the centralized framework of Cell Designer. Thus, this monolithic

approach demands that in order to model the whole cell, all pathways

would have to be placed into SBML or one common standard and then

integrated within the framework of a centralized software system such as

Cell Designer. Given the reality of standards adoption as aforementioned

and the existence of 136 different software systems such as Cell Designer,

a monolithic approach does not provide a scalable method to integrate

multiple biological pathways to model the whole cell.



* Sixth, the monolithic approach also wrongly assumes that all the models

will run on the same computer and/or the same hardware platform.

Different models may run on only certain hardware platforms, and more

than likely were optimized and tested to run on particular hardware

systems. This will become more important as the size and complexity

increase, and special coding and computational accelerators are used to

control the computational time.

* Seventh, the monolithic approach assumes that all models reside in the

same geographical location and ignores that biologists, even in a

particular domain area of research such as immune response or cell

motility, are distributed across laboratories worldwide. While they may

build models within the same software platform and on the same

hardware environment, the models themselves may be resident at a

completely different location.

* Eighth, the monolithic approach offers no real viable or practical

mechanism to maintain the single large body of software code emerging

from the merger of the software codes of the individual models. Consider

four individual models that have been merged using the monolithic

approach, and consider what process the author of the monolithic model

will need to employ to track and maintain updates and changes to any of

the four individual models. To any experienced software development

manager, this is known as a change management nightmare. The reality is that



any model may change constantly due to any one of several reasons

including new advances in measurement, corrections to rate constants or

identification of new species in a particular pathway.

* Ninth, the monolithic approach, since it is centrally managed and

maintained, places a new burden on the authors of the integrated model:

that they become experts in the multiple domains represented by the

individual pathway domains that were merged. This is nearly impossible.

* Tenth and finally, many of the monolithic approaches attempt to enforce

"standards" as a way to further reinforce a "monotheism". This

centralized approach that would not fare well compared with more

democratic, community-based approaches that understand and include

research-driven development efforts. Creating a rigid standard before a

field has matured can result in a failed and unused standard, in the best of

circumstances, and, in the worst, can have the effect of stifling innovation

(Quackenbush, et al., 2006).

What is Necessary

What is needed is a method that directly addresses this integration and

scalability problem by providing a parallel and distributed architecture allowing

any individual pathway model to exist in any format and across different

computers. Such a method would obviate the need to manually load,

understand and interconnect each individual pathway, as is required in



monolithic systems. It is clear from the above literature review, the common

approach today is a monolithic approach in which computational biologists

seeking to create an integrate model "cut and paste" source codes to create on

monolithic model. More specifically, of the two recent papers that provide

examples of integrating biological pathway models, both involve the merging of

SBML models using a manual monolithic approach (Klipp, et al., 2005; Snoep, et

al., 2006). Thus, from a short-term perspective, even an architecture which

allows the integration of distributed SBML models would be of huge benefit.

SBMLMerge offers a tool that is a semi-automated monolithic approach, while

valuable for those seeking to "cut and paste" models faster, it is not a scalable

solution, since the resulting code base still cannot be maintained as the models

change overtime, requiring re-integration each time every time the elemental

models change.

A more advantageous solution would be an architecture that could, with

minimal effort and no programming, connect or couple the codes of multiple

SMBL models, linking their computations. Such a tool would be of immense

benefit. If this same architecture could allow for the integration of models also

not written in SBML, but in any other format, it will accelerate the development

of complex models, versus waiting for all extant models to be converted and

curated in SBML. This too will be particularly useful, given the reality that

most of the encoded models available in scientific publications or on the Internet



are not in a standard format. Of those that are encoded in a standard format, it

turns out that most actually fail compliance tests developed for these standards

(Le Novere, et al., 2005). In fact markup languages for model encoding such as

SBML may not be always the only way for modeling biological pathway models,

there are others that provide a range of descriptive and analytical powers. As the

field matures, there will be a wider uptake of these alternative approaches for

several reasons, including the need to take into account the great complexity of

cellular organization (Gilbert, et al., 2006).

From a software engineering perspective, each biological pathway model

represents an individual software program, each with different inputs and

outputs, written in different programming languages, by different developers,

potentially distributed worldwide. Modeling the whole cell, therefore, can be

likened to a large-scale systems integration problem.

The research goal of this thesis, therefore, is to develop a new approach to

integrate biological pathway models that overcomes the intractability and lack of

scalability of existing approaches. In his seminal work, (Brooks, 1975) has

demonstrated that the amount of effort to develop such a large-scale system

increases exponentially with the amount of additional personnel

communications required to coordinate development personnel. The thesis will

explore a method that resolves this bottleneck in personnel communications by



allowing individual teams to own and manage their own pathway models

without being involved in a massive project management effort to coordinate the

integration.



Chapter 3

Methodology

3.0 Introduction

This chapter of the thesis is an important transition point. The previous two

chapters have provided an introduction to the nature of biological pathway

models, general approaches to integrating models, the specific approaches used

in the systems biology field, along with a discussion of their weaknesses. At this

point, it should be clear to the reader that there is a need for solution for

integrating biological pathway models in a scalable manner, and that no extant

solution exists for supporting such scalability. Since the goal of this thesis is to

create a solution to meet this growing need, this chapter provides a disciplined

step-by-step methodology to meet this goal.



3.1 Approach

There are eight steps that will be followed.

Step 1 - Specify Requirements

A solution is only as good as the specified requirements. Prior to designing or

implementing the solution, our first step will be to create an itemized list of

requirements that the ideal solution will satisfy. This list will serve as the basis

for guiding the design of the architecture. In Chapter 4, the section entitled

Requirements Specification, contains such an itemized list.

Step 2 - Design Architecture

In this step, we develop the design of the computational architecture design.

This design will offer diagrams and descriptions to identify the key components

of the architecture along with their roles and responsibilities. In Chapter 4, the

section entitled Architectural Design, contains the details of the architecture's

design.

Step 3 - Select Tools

In this step, based on the architectural design, particular tools are selected to

implement the architecture. The right tools selection can greatly affect the

implementation of the architecture, particularly time and expense. In Chapter 4,



the section entitled Architecture Implementation, contains the details of the tools that

were selected for the implementation.

Step 4 - Implement the Architecture to Produce Initial Prototype

This step involves setting up the hardware, installing the tools, programming the

software to implement the architecture based on the requirements specification

and architectural design. In Chapter 4, the section entitled Architecture

Implementation contains the details of the implementation of the initial prototype.

Step 4 - Validate the Architecture by Solving a Known Problem

This step involves validating the architecture by first selecting a biological

problem with known solutions, executing that same biological problem using the

implemented architecture, and then comparing the results with a monolithic

approach. In Chapter 5, the section entitled EGFR Model of Kholodenko contains

the results of validating the architecture using a known problem.

Step 6 - Identify and Solve a New Problem Using the Architecture

This step involves using the architecture to integrate biological pathway models

to solve a complex problem. This step of our methodology is critical to proving

the value of the architecture to integrate and solve new problems in a scalable

manner. Chapter 6 presents the solution of a complex cellular function, the



interferon (IFN) response to virus infection, using the architecture. This Chapter

also compares the solution to a monolithic approach of doing the same problem.

Step 7 - Quantitatively Evaluate and Compare Architecture with Other

Approaches

Based on the experience of using the initial prototype and with the

understanding of how biologists work, it will now be important to assess and

analyze the conditions in which a particular architecture is most optimal. In

Chapter 7, we develop a methodology to assess architectures for integrating

biological pathway models and evaluate the conditions when the distributed

and parallel architecture of Cytosolve is best used over the monolithic approach

Step 8 - Propose Enhancements to Architecture and Future Areas of Research

This step involves outlining ways to improve the architecture. The output of

Step 4 and Step 5 can be used to enhance the architecture's design and

implementation. In Chapter 9, we present the key findings of this research effort

and summarize areas of future research.

3.2 Summary

In this section we have presented the methodology that will be used in

designing, developing, testing, evaluating the proposed architecture for



integrating biological pathway models. This methodology serves to provide a

clear path for supporting the research goals of this thesis.



Chapter 4

Architecture

4.0 Introduction

This chapter presents a new scalable architecture for integrating biological

pathway models. This architecture is called Cytosolve. The next section

specifies the requirements for such an architecture. The third section defines the

design of the architecture to meet the requirements. The fourth section describes

the set of tools that were selected to meet the design and the requirements to

implement the architecture. The fifth section details the implementation effort.

The sixth section provides the reader with a simple example to demonstrate how

the architecture performs in real-time. The final section summarizes the

chapter.



4.1 Architecture Requirements Specification

This section outlines the requirements along with the key decisions that are

necessary fro developing a scalable solution for integrating biological pathway

models. Ten key requirements are identified below to address the weaknesses

of previous approaches.

1. Scalability

If the goal is to model complex cellular systems and eventually the whole cell,

the architecture must be able to integrate new pathway models with the same

ease as it is to integrate the first one. Scalability is measured by the ease in

which additional models can be integrated. Recall that complexity of

integration, from our earlier discussion, has little to do with the number of

equations in any one model. Two models with numerous equations can be

relatively easy to integrate if they are written in the same program, same time

scales, in the same domain and developed on the same hardware platform.

2. Opacity of Multiple Knowledge Domains

The architecture must express the property of opacity. Opacity means that when

one individual is integrating a particular pathway model into a pre-existing

ensemble of integrated models, one should not have to know the details and



inner workings of all other pathway models. Each pathway may represent a

unique knowledge domain, and it would be essentially impossible to have one

person sufficiently knowledgeable in all the scientific areas to understand each of

the domains.

3. Support for both Public and Proprietary Models

The architecture must support both Public models (models where the source

code is readable and available to all) and Proprietary models (models where the

source code is inaccessible). The monolithic approach does not provide a means

for pathways from proprietary models to be used with other models that are

open source. Many pharmaceutical companies, for example, will not want to

share the inner source code of their particular proprietary models; however, they

are interested in coupling their models with other models to gain better

understanding of a larger cellular process. Alternatively, researchers in the

academic environment may wish to integrate their Public models with existing

Proprietary models to learn some new aspect of science, but cannot currently due

to confidentiality issues. By enabling a way to ensure protection of the source

code of those Proprietary models, new industry and academic collaborations will

be possible with far greater ease. Those with Proprietary models currently chose

either not to follow standards to protect their models or if they do follow

standards are unwilling to share their model code, which was the reason for the

standard itself.



4. Support for Multiple "Standards"

The architecture must support any pathway model code in any format or

"standard." While the architecture should support the integration of pathway

models constructed in a standard such as SBML, for example, it should be able to

communicate with models in any format.

5. Heterogeneity of Integration

At any time models may be in different formats. The architecture should

support the ability to integrate, in real-time, models that are in different formats.

Thus, if there are 3 models, even if one model is in SBML, another in MATLAB

and a third in FORTRAN, the architecture should be able to integrate them with

minimal to no effort.

6. Cross Platform Support

The architecture should allow models developed on different hardware and

computing environments to be integrated with ease. Different models may run

on only certain hardware platforms and more than likely were optimized and

tested to run on a particular hardware system. It will be far easier to keep a

model resident on a hardware platform for which it was designed and tested for

versus having to recode or reconfigure it in any manner to a new hardware

platform, which could prove to be very expensive and time-consuming.



7. Independence of Location

The architecture should support integration of models across geographical

boundaries. While each model may be on different computers, they may also be

physically at different locations anywhere in the world. The model should

support protocols for communicating with models anywhere without regard to

geographical location.

8. Ease of Maintenance

Any model integrated within the architecture should be able to dynamically

change with little to no source re-coding efforts to incorporate changes for that

model into the larger integrated model. In the monolithic approach, any change

to an individual model typically requires significant recoding and retesting of the

integrated model. In this new architecture, we want to avoid such a process.

This requirement is extremely important to create a scalable architecture. The

addition of new models should not require changes to any of the other existing

models.

9. Decentralized Management and Distributed Control

Decentralized management and distributed control means that each model is

maintained at the "local" level, not at a central level. The current monolithic

approach requires centralized model curation, such as many of the existing

model repositories. We want to support local management of models.



Moreover, any creator of a model should be able to integrate their model from

their local location to an ensemble of distributed models. This means that if one

owner of a model has Model A and wishes to quickly test or integrate their

model with a set of three other models: Model B, C and D. They should not have

to download each of the other models to their local computer. With ease, the

architecture should enable the owner of Model A to integrate with the other

three models with little to no effort.

10. Hierarchical Support

Biological systems are systems of systems. This means that the architecture

should support the ability for systems to be composed of other systems, while

ensuring that each system satisfies the requirements herein.

The above ten requirements will be used as the basis for defining the

architectural design.

4.2 Architecture Functional Specification

The goal of this section is to specify the functional requirements that will be used

to design the architecture. We begin our functional specification process by

abstracting the cell to be interconnection of biological pathways, as shown in

Figure 4-1.



Insulin Signaling Pathway
(Ref: White, M., Stke.Org,,

(Ref: Norris, J.D., Stke.Org)

Chemotaxis Pathway
(Ref: Parent, C., Stke.Org),

ma'b ft" -W

nr xapW'W 4 :~t

Qiw I- #V- ai

Adrenergic Pathway
(Ref: Kobilka, B.K., Stke.Org)

S•,..:..w .

..... ' '• .

(Ref. Stke.Org)

Figure 4-1 - A cell as an interconnection of biological pathways.

Each biological pathway, within the cell, will need to communicate its state

concentrations to other biological pathways, as shown in Figure 4-2, in the

the function of the whole cell.

~·---
"-'

Aai.$

Br~ars~ "~

si~xu*
li~s~ )~

(~k~r;s~b~ce

ensemble in order to simulate



Figure 4-2: Communication among an ensemble of biological pathways from 1 to D pathways.

Formally, we present any one model in the ensemble as shown in Figure 4-3.

Figure 4-3: Formal representation of a biological pathway model in the ensemble.

Let \M denote the structure of a single biological pathway model in the
architecture:

IN = <\·n, Yn, Q, Sixt, X ta>

where,

X, is a set of input values of species concentrations

Y,n is a set of output values of species concentrations

Q is a set of states

CSit: Q -, Q is the internal truantsition function

X: Q -)- Y is the external transition function

ta: Q -- S0,in,,t is the time advance function



Also, the entire ensemble representing the whole cell model is formally

represented as shown in Figure 4-4.

Figure 4-4: Formal representation of the total ensemble of interconnected biological pathway
models.

Mathematically, if we allow Xi to denote the molecular species in the integrated

model within the architecture where:

X , i-=1...N

With,

x,,i = 1...N
representing the number of molecules of species xi, then the state of the cell or

any compartment within the cell (e.g. nucleus) is determined by:

x = (Xl, x2,...** XN) T

A reaction in this formalism is then represented as:

100

Let 0 denote the structure of a coupled or integrated mcxodel in the
architecture:

O = <X, Y, {M}i)>

where,

X is a set of input values of species concentrations

Y is a set of output values of species concentrations

For each i,

Mi is a individual model



Xr W(Xr)

Where,

X r represents the state of the system before the reaction.

and,

Wr (Xr) represents the reaction propensity (the probability of

reaction per unit time.

Based on the above formulation, this leads the Chemical Master Equation

(Andersen, 1983):

dp(x, t) R Rdp •t Z W(Xr)P(Xr, t) - W'r(X)P(X, t).
r=1 r=1

The above formalism provides us with the basis for providing a set of functional

requirements.

First, the cell or compartment is well-mixed. This means that a sufficiently

long-time between reaction collisions takes place to ensure that each pair

of molecules is equally likely to be the next to collide. This also means

101



that the concentration of each species is high and transport essentially

instantaneous.

* Second, the progress of the system only depends on previous state (e.g.

Markov process).

* Third, between cells and compartments, transport is slower and

associated with an observable rate.

* Fourth, we treat each pathway model as a black box. This means the

following:

* Inputs and outputs are species concentrations

* Changes in localization are represented by compartments

* Species are defined by their compartments

* Species can move through compartments

* Species can inhabit one or more compartments

* Fifth, the cell can be modeled as an integration of biological pathway

models. Recall, biological pathways are moving from diagrammatic

representations as shown in Figure 4-5 to biological pathway models, and

each biological pathway model has internal parameters along with inputs

and outputs which are the molecular species concentrations for the nth and

(n+l)th time step, respectively.

102



Biological Pathway Model

Figure 4-5: Transition of biological pathways to biological pathway models.

Thus, modeling the cell therefore can be seen as an interconnection of biological

of pathway models as shown in Figure 4-6.

Insulin Signaling Pathway Chemotaxis Pathway
(Ref: White, M., Stke.Org (Re: Parent, C., Stke.Org

4
S

J

Estrogen Receptor Pathway
(Ref: Norris, J.D., Stke.Org)

Adrenergic Pathway
(Ref: Kobilka, B.K., Stke.Org)

4

Figure 4-6: Modeling the cell as an interconnection of biological pathway models.

Recalling Figure 4-2, the cell can be represented as an ensemble of multiple

biological pathway communicating inputs and outputs as shown in Figure 4-7.

103

Biological Pathway

S

-*
-- *

J



Estrogen Receptor Pathway

(Zurich, 2EE)

Model 1

Figure 4-7: Modeling the cell as an ensemble of biological pathway models sharing and
communicating input and output species concentrations.

4.3 Architecture Design

Based on the earlier discussions, it is clear that the monolithic approach, as

shown in Figure 4-8, is widely used primarily because there are no other real

alternatives in systems biology today. The main problems with this approach

have already been discussed. The messaging approach, which has not been fully

developed for systems biology, except in the two cases of Cellware and Cellulata,

is in the right direction. However, both of these methods use a static messaging

approach. There are no known solutions, to our knowledge, which use a

dynamic messaging approach that supports scalability as well as ease of

maintenance. Our first decision is to pursue a dynamic messaging approach

104



Monolithic Approach - Merge/"Wire"
All Pathway Models Into a Single System

Figure 4-8: Monolithic approach involves "wiring" all models together.

as the basis of the architecture. This dynamic messaging approach provides

nearly all of the advantages to address the weaknesses of the monolithic

approach and the static messaging approach, for the reasons previously stated.

Cytosolve: A Dynamic Messaging Approach

Based on the above discussion, we now introduce Cytosolve, a scalable

architecture for integrating an ensemble of distributed biological pathway

models. In Figure 4-9 the layout of the architecture for supporting a dynamic

messaging approach is illustrated. The layout of this architecture will meet all of

the requirements of the specifications outlined in the previous sections.

105



The elements of this architecture are:

* Biological Pathway Models - These are the boxes with the input and

output arrows along the outer edges of the diagram. Each biological

pathway model is a computer software program.

* Internet - This is represented by the internet "clouds". This serves to

show that the biological pathway models can reside anywhere

geographically on the planet and can use the internet for communication

through the controller. This does not mean that we have to use the

Internet. All models can be centralized on one computer and Cytosolve

will communicate locally to each model.

Chemotaxis Pathway
(Tokyo., SBML)

Insulin Signaling Pathway
(Boston MATL$B)

y

Mrenergic Pathway
(Sydney. Excel)

Figure 4-9: Cytosolve- A Dynamic messaging approach.

106

E
t
p



Controller - This module serves to coordinate the computational activities

across the various models. Note, that any one model itself could be

another replication of this architecture as shown in Figure 4-10 to support

systems of systems.

0>,aV4~
. . . .

Arenergic Pathuay
(Sydney, Excel)

tor Pathway
J2EE)

bff

Figure 4-10:- Dynamic messaging of systems within systems.

Controller-to-Pathway Interface - These are the arrows in the diagram

from the Controller to the Pathway, and represent the mechanism by

which the controller communicates with each individual pathway model.

107

"1'

~p~
'·-~~ ~



* User Interface - The user interface allows the user to specify which models

will be included within the architecture.

* Ontology - This is the data which specifies characteristics of each model's

input-output behavior to allow the Controller to effectively communicate

across all models.

The key features of this architecture include an infrastructure that provides

simple communications interface to each model, is distributed, Web-enabled,

and automatically aggregates the models to build the integrated model. The

architecture supports both distributed and parallel processing, while using a

hybrid of shared memory and message passing. The shared memory is for

tracking the species concentrations across all models in time. Message passing is

used for remote communications between the controller and individual models.

The architecture is to be built in an open environment supporting: 1. publicly

available tools, and 2. emerging standards.

In the next sections of this chapter, major elements of the architecture design are

discussed in detail. Prior to the end of this chapter, a simple example is provided so

the reader can follow the exact mechanics of how the architecture integrates

models to compute a solution.

108



4.4 Architecture Implementation

This section discusses the details of implementing the architecture. The

architecture was implemented using open source tools to reduce expense and to

ensure that future research could be pursued on the architecture with minimal

reliance on proprietary tools.

Development Environment and Tools Selection

Various third-party open source software tools were selected to implement the

initial prototype of the architecture. These are listed below.

ODE SOLVER LIBRARY

The SBML ODE Solver Library (SOSlib) is a programming library for symbolic

and numerical analysis of chemical reaction network models encoded in the

Systems Biology Markup Language (SBML) (Machne, et al., 2006). This Library

takes as input an SBML model file and then computes the steady-state solution of

species concentrations for a given number of time steps.

SOAP/WSDL

SOAP 1.2 & WSDL 1.1 - SOAP (Simple Object Access Protocol)

(http://www.w3.org/TR/soap) based Web Services

technology(http://www.w3.org/ws) has gained much attention as an open

109



standard enabling interoperability among applications across heterogeneous

architectures and different networks. The European Bioinformatics Institute (EBI)

is using this technology to provide robust data retrieval and data analysis

mechanisms to the scientific community and to enhance utilization of the

biological resources it already provides (N. Harte, V. Silventoinen, E. Quevillon,

S. Robinson, K. Kallio, X. Fustero, P. Patel, P. Jokinen and R. Lopez (2004)

Nucleic Acids Res., 32, 3-9]. These services are available free to all users from

http://www.ebi.ac.uk/ Tools/web services.

BIOMODELS

The BioModels Database, located at http://www.ebi.ac.uk/biomodels/, is part

of the international initiative BioModels.net, provides access to published, peer-

reviewed, quantitative models of biochemical and cellular systems, stored in the

SBML and CellML formats. Each model is carefully curated to verify that it

corresponds to the reference publication and gives the proper numerical results

(Le Novere, et al., 2006).

C PROGRAMMING LANGUAGE

The C programming language was used to build the Controller-Pathway

Interfaces. Visual C++ 8.0 is the version used.

110



WEB SERVER

The web server Apache Tomcat Apache 5.5.23 / ANT 1.7.0 is used

IAVA

The Controller is programmed using J2EE 1.4.

For the initial implementation, the Controller was developed on a DELL

Windows Machine running Microsoft XP with Service Pak 2.2 with 1 GB of RAM

on a Pentium Processor.

Communications Protocol

The Cytosolve web service is designed for remote model simulations through

the use of SOAP/WSDL. During a run, the web service can be instructed by a

remote computer to execute a local model and send back results. The remote

computer can instruct the web service to perform two major operations. First,

the web service can be instructed to simulate a local model over a single time

step. After simulation, the service sends back new concentration values

calculated by the model. In the second operation, the web service can be

instructed to insert new species concentration values into the model simulation.

This allows external control of the simulation.

111



Using these two operations, a centralized controller can theoretically couple

multiple models together, with each model running on different computers.

During operation, the WSDL web service will be continuously running, waiting

for remote simulation commands. When a command is received, the WSDL web

service passes the command to intermediate Java layer called Cytosolvejava.

Cytosolvejava simply calls Cytosolve_C, which executes the simulation

commands and returns the result to Cytosolvejava. Cytosolvejava in turn

returns the results to the WSDL web service, which sends it back to the remote

computer. Figure 4-11 gives a code example of the initialization using the

Cytosolve_C code.

A layer called JNI is used to enable messaging of Java module Cytosolvejava

with the simulation module Cytosolve_C. Even though this step makes

compiling the source code significantly more complicated, it is essential to

establish the messaging.

Since web services are stateless, information is not retained during separate calls

to a single web service. This is a problem since simulation results must somehow

be retained between individual web service calls. Otherwise, it would be

impossible to simulate an SBML model beyond a single time step since results for

that single time step would then be immediately lost.

112



A number of approaches were explored to address this problem. One approach

was to write out all of the simulation results to a file during one WSDL

113

/* initializes the solver */
static int IntegratorInstance initializeSolver(integratorInstancejt *engine,

Data_t *data,
Settingst *opt, odeModel_t *om)

int i;
Solver_t *solver = engine->solver;
Results_t *results = data->results;;

/* irreversibly linking the engine to its input model */
engine->om = om;

/* joining option, data and result structures */
engine->opt = opt;
engine->data = data;
engine->results = data->results;

/* initialize the solver's time settings */

/* set initial time, first output time and number of time steps */
solver->t0 = opt->TimePoints[0]; /* initial time */

/* first output time as passed */
if ( opt->Indefinitely )

solver->tout = opt->Time;
else

solver->tout = opt->TimePoints[1];

solver->nout = opt->PrintStep; /* number of output steps */
solver->t = opt->TimePoints[O]; /* current time, always 0,

when starting from odeModel */

/* set up loop variables */
solver->iout=l; /* counts integration steps, start with 1 */

/* write initial conditions to results structure */
if ( opt->StoreResults ) {
results->time[0] = data->currenttime;
for ( i=0; i<data->nvalues; i++ )
results->value[i[0] = data->value[i];

/* count integration runs with this integratorInstance */
data->run++;

/* initialize specific solver structures */
return IntegratorInstanceinitializeSolverStructures(engine);

Figure 4-11: Cytosolve_C code sample.



invocation, then read the file during the next. However, it was discovered that

with this approach, accuracy was lost over time. The reason is that the Solver

has a large number of internal variables that must be saved between individual

time steps. Failure to save these internal variables causes slow degradation in

the accuracy of the results. Saving each of these numerous internal variables is a

tedious task as there are hundreds of internal variables in the Solver.

This approach is hard to implement and hence dropped because (a) identifying

those internal variables that need to be saved is not practical; and (b) large

amounts of code would need to be rewritten. Another approach considered was

to send to the remote computer all information that is needed to reconstruct

itself. However, this approach was proved to be inefficient and tedious as it

would involve sending and receiving enormous amount of information. Hence

this approach was also dropped.

The third approach was to use Stateful web services. Stateful web services allow

variables to be saved between different WSDL invocations. Even though stateful

web services appeared to be an appropriate solution to the problem, it was

discovered that in order to use stateful web services, all variables that are

required to be maintained between WSDL invocations must be declared as

resources. This approach was also dropped because (a) declaring variables is

tedious; and (b) programming environment in C is different from that of WSDL,

114



which is Java-based which made it impossible to therefore declare C variables to

keep between invocations.

The final approach used to solve this problem was to open a continuously

running Java thread that waits for commands from the WSDL web service. With

this approach, the internal variables are not lost between WSDL invocations

because the Java thread is continuously running. Messaging between the WSDL

web service and continuously running Java thread is performed using files. This

approach successfully allowed the stateless WSDL web service to communicate

with stateful data.

This continuously running thread was named SolverController, and is made part

of the Cytosolvejava package. CytosolveJava therefore performs two roles. It

acts as a bridge between Java and C environments, and in addition acts as a

bridge between the stateless WSDL web services to stateful data. We consider

this implementation of using Java and C for supporting a "stateful" web service a

significant accomplishment which allows us to use open standards.

Logical Software Architecture

The logical software architecture is developed in a three-tier layered approach as

shown in Figure 4-12.

115



GUI Distributed Biological Pathway Models {MIIA I I FWeb Server Web Services c

Monitor Comm Mgr Mass Balance C

Global Local Local tr
Vector Vectori Vector D Ontology

Figure 4-12:- Logical software architecture.

'resentation &
.ommunication Layer

,ontroller Layer

)ata Layer

At the Data Layer resides the memory-resident data to track species

concentrations in time within the integrated model (Global Vector) and across

each individual biological pathway model (Local Vector 1 to D). The Data Layer

also contains the Ontology that is used to manage nomenclature and species

identification across all individual biological pathway models.

The Controller Layer consists of three main components, the Monitor,

Communications Manager (Comm Mgr) and the Mass Balance algorithm. These

three components work in concert to orchestrate the calculation and integration

of all D biological pathway models.

116



The Presentation and Communications Layer provides the communications

support, aforementioned, to support communication among the models as well

as with the User Interface.

A detailed implementation of the Logical Software Architecture is provide in

Figure 4-13. At the Data Layer, the Global Vector data structure is depicted in

this diagram consisting of rows for each time step from 1 to N.

Presentation &
Communication Layer

Controller Layer

Data Layer
rgY

Figure 4-13:- Detailed Logical Software Architecture.

The columns are for all species from 1 to C across the entire ensemble of

integrated models. The Local Vector data structure is also shown. The Ontology

117

)9Yv.



consists of individual entries for each model from 1 to D models, specifying the

species components, which is discussed in detail below.

At the Controller Layer, only the Mass Balance component can communicate

with the Data Layer. The Comm Mgr orchestrates communication between the

Monitor and the Mass Balance components. The Monitor serves to modulate and

monitor calculations across the ensemble of [Mi] models. Both the Comm

Manager and the Monitor can communicate through to the Presentation and

Communication Layer. The benefits of his logical architecture are to specialize

different components for different tasks thus optimizing performance.

4.5 Pathway Model Representation

Each biological pathway model is represented or encoded into a computer

software program which includes code and data. While there are many formats,

these formats are the most common used to encode biological pathway models:

SBML - Systems Biology Markup Language. This is a file XML format for

storing the differential equations and the data used solve a biological pathway

model. SBML does not actually solve the model, that solving is done by another

program called the solver which takes as input the SBML files.

118



CellML - Cell Markup Language. This, like SBML, is an alternative XML format

for storing differential equations and describing cellular systems.

MATLAB - is software architecture for solving mathematical problems. The

equations of biological pathway models can be encoded in MATLAB and solved

using its own solver.

FORTRAN - is a language developed at IBM, as the name implies for FORmula

TRANslation. Many biological models are encoded and can be solved in this

language.

C/C++ - Like Fortran, this language is also used to encode biological models and

includes external libraries which an be invoked to perform the solving

Models encoded in the above languages typically have internal parameters ,

while the inputs and outputs of these models are the species concentrations at a

particular time n, and a particular time n+1, respectively. The input species

concentration is denoted as

S",in

119



where, for any one model Mi, i is from 1 to D models, at time step n, S is a vector

of species concentrations for species j, where j is from 1 to C species.

Similarly, the output species concentration, at time step n+1, is denoted as

S Jin+1

This architecture is agnostic the format of the model. The only requirement is

that the model can be configured through SOAP/WSDL protocols to receive

input species concentrations for time step n and send output species

concentrations for time step n+1. Beyond, this requirement, the architecture

treats any pathway model as a black box.

4.6 Pathway Registration and Ontology

The architecture herein treats each model as an independent part of a collective

or ensemble of models which are computed together (through a computational

mechanism discussed later). How does a new pathway become part of this

collective?

This process is enabled through pathway registration. The pathway registration

process serves to create elements with the architecture's Ontology to describe the

pathway's inputs and outputs to the Controller, through a Pathway Interface

120



Document (PID). In the case of biological pathway models, we are concerned

primarily with coupling and mass-balancing (see Controller section) of a system of

biological pathway models, thus our PID format needs to provide support for

such integration. The format of the PID is show in Table 4-1. In Figure 4-14 is a

picture of an example PID file for a model called Model 1.

Name of Variable Meaning

ModelName The unique name of the model
ModelURL The location on the Internet where the model

executable code resides
Species The number of species in the model
Speciesl,Loc The name of the first species (as used in the Model)

and its location ID
Species 2,Loc The name of the second species (as used in the Model)

and its location ID.

Species n,Loc The name of the nth species (as used in the Model) and
its location ID

Table 4-1 - PID Format.

The Loc is the location ID denoting which compartments the species appears in

the cell. For example in Figure 4-14, the species STAT1 can appear in two

locations. Loc ID "1" may denote the nucleus and Loc ID "2" may denote the

mitochondrion, etc. The key point is that species need to be distinguished by

their location. The MIRIAM standard was published which serves to provide a

framework for model developers to provide a minimal set of information for

defining biochemical models (Le Novere, et al., 2007). Our Ontology can link to

take advantage of this emerging standard.

121



ModelName = Modell
Model URL = http://18.80. 5.1:8080/axis/services/biomodell
speci es = 5
Speclesi = <STAT1,1>
specles2 = <IFN,1
species3 = <EGFR,1>
Species4 - <Co2,1
species5 = <STAT1,2>1

Figure 4-14 - Representation of simple biological pathway model.

Each model when it registers itself to be part of the collective of models creates

one of the above files and ensures the PID is placed into the Controller's

Ontology, which organizes all the PID files for a particular Controller. There are

some interesting challenges that can take place during registration of two

different models. One example is if two species names are assigned the same

name but mean something different or two species names are assigned different

names but mean the same thing. (Schulz, et al., 2006) have identified this as a

problem in the implementation of their tool SBMLMerge to support the

integration of SBML model files, albeit in a monolithic manner. In our case, the

solution is managed by the Ontology without requiring recoding of the

individual biological pathway models. The Ontology provides a list of Unique

Identifiers for mapping species names, and this list can grow as needed. In many

ways it is like a thesaurus. An example Ontology is shown in Table 4-2.

122



Unique Identifier Synonym

11231 Ca

11231 Calcium

11231 Ca+

11245 SOCS

Table 4-2 - Ontology Example.

Let us consider the case of two models where the species name "EGFR" is

assigned the same name in each model. When any model registers itself with the

system, the PID file for that model is compared with other existing PID files and

the Ontology. If EGFR name is used in another model, than the system, through

the User Interface (UI) displays a message to the user indicating that EGFR is

currently being used by these other models, along with the Unique Identifier. If

the developer of that model believes that EGFR in fact refers to the same species,

then no changes are required. If the developer believes that the species name is

different, than the onus is on the developer to create a new name and resubmit.

Let us consider the other case, where two models have two different names for

the exact same species. For example, suppose one model refers to a species

called "Calcium" and another model refers to a species called "Ca+". In the

Ontology in Table 4-2, during registration, both of these species will point to

123



Unique ID 11231. The system will automatically resolve those species to be the

same species internally during model integration. Thus, again the developers of

the model do not have to worry about renaming their species to be the same

species names.

The Ontology is public, thus, prior to registering a new model, the developer can

decide to use existing names or add their own new name to the Ontology. For

example, let us say a developer has a species called "Cal" and that also refers to

the same species as "Calcium" or "Ca+", then the developer can update the

Ontology so 11231 also has an entry for "Cal" or they can adjust their species

name to one of the existing synonyms.

4.6 Controller-Pathway Interface Description

For all registered pathways the controller needs to be able to interact with each

pathway to solve the integrated problem. The registration of the PID to the

controller's Ontology assumes that interface protocols to the model are provided

in the format the controller seeks. This section describes the necessary interface

between the controller and the pathway models. There are only three interface

protocols that are needed for any pathway model.

124



Initializing Access to the Pathway Model

The function createPathwayO as shown below is used by the controller to setup the

initial connection with the pathway model

public pathwayProcess uidPathway createPathway {

String URL //location of the pathway model

double totalTime, //total time in sec for execution

int numSteps); //number of time steps

I

The above function serves to return a unique identifier to the controller for the

pathway model during initialization. For example, the call:

uidPathwayl = createPathway(Modell URL, 10, 50);

will return a value of say 11214122 for uidPathwayl. This handle will be used to

refer to the pathway model in future interface calls. The first parameter in this

call is the URL at which the executable code of the model resides. The next

parameter denotes the time in seconds (in this case 10 seconds) how long the

model should run. The final parameter denotes the number of time steps (in this

case 50 time steps) for the model to run.

Processing a Time Step on Pathway Model

The function pathway stepPathway 0 as shown below is used by the controller to

request the pathway model to return the species results for one time step.

125



double[] results = new double[numSpecies];

results = stepPathway(uidPathwayl, speciesList, newValues)

The above function call is used by the Controller to contact the pathway at uid

for uidPathwayl, with the list of species, speciesList that pathway manages, along

with the input list of species to be used for the input time step n, which are in

new Values. The stepPathwayO returns a list of results which are the species values

for that next time n+1 given the input values of newValues.

Closing Access to a Pathway Model

The interface call closePathwayO is used to close the session by the Controller with

the pathway model.

errorCode = closePathway(uidPathwayl);

This function for example closes the pathway with uid uidPathwayl.

4.7 Controller

The Controller serves two purposes. First, it mediates communication across all

pathway models. Second, it provides computational steering by ensuring mass

conservation across all integrated models for each time step. Referring to Figure

4-13 will assist in understanding the Controller's processes described in this

section. The first sub-section describes how the Controller manages

communications across all pathway models. The next sub-section discusses how

126



the Controller performs mass balance and steers the solution by managing this

constraint across all models.

Controller Communication

The controller communication proceeds along various key steps which are

outlined in detail below.

Step 1- Controller Initialization

//Create the controller at the start of the main program

public static void main(String [1 args) throws Exception {
Controller controller = new Controller();
controller.process 0;

Figure 4-15 - Controller startup.

When the system first starts the Controller is initiated from the main program as

shown in Figure 4-15. Here, the controller creates a new object for itself as

shown in Figure 4-16.

Step 2 - Memory Allocation

The controllerO object is shown in Figure 4-16. Many startup activities are

initiated upon creation of the controller () object. Critical ones are the memory

allocation for the storage of the species concentrations for each pathway over

127



time, as well as the global vector of species concentrations for the integrated

model over time.

Step 3 - Initialize Monitor

The Monitor is a sub-system of the Controller. It serves to track the progress of

public Monitor (int pc){
processCount = pc; //number of independent pathways
newRow = 0; //starting row in Global Pathway Matrix

Figure 4-17 - Monitor initialization

each pathway's solution time. In Figure 4-16, the last event of the ControllerO

object is to initiate the Monitor, which initializes the number of pathways and the

state of processing across all pathways as shown in Figure 4-17.

128

// Controller object
public Controller() {

// Ontology is loaded along with the PID's
loadProperties();

// Vector of matrices, a matrix for each pathway
localVect = new Vector<Vector>();
for (int x=O; x<numPathways; x++)

localVect.add(new Vector<Object>());

// Global vector for integrated model species concentrations
globalVect = new Vector<Object>( ;

// Create the Monitor
monitor = new Monitor(numPathways);

Figure 4-16 - Controller object.



Step 4 - Comm Mgr Messages All Pathways to Wake Up

The Comm Mgr messages all of the pathway models to start up using the

createPathwayO Controller-Pathway interface call. There is quite a bit of complex

messaging and communication that takes place to accomplish this using the Web

Services Description Language Protocol (WSDL) as shown in Figure 4-18. This

code sample shows just one small piece of code for handling any port

initialization errors that occurs. Many such errors are possible and need to be

handled appropriately. Appendix A provides more code samples of the details

of message error processing. At the end of this step all pathway models are

awaiting to begin processing a time step upon initiation.

129

* For the given interface, get the stub implementation.
* If this service has no port for the given interface,
* then ServiceException is thrown.
*/
public java.rmi.Remote getPort(javax.xml.namespace.QName portName, Class
serviceEndpointInterface) throws javax.xml.rpc.ServiceException {

if (portName == null) {
return getPort(serviceEndpointInterface);

}
java.lang.String inputPortName = portName.getLocalPart();
if ("pathwaySolver".equals(inputPortName))

return getsbmlSolver0;

else {
java.rmi.Remote _stub = getPort(serviceEndpointInterface);
((org.apache.axis.client.Stub) _stub).setPortName(portName);
return _stub;

Figure 4-18 - Port error processing code sample.



Step 4 - Initiate Monitor

The Monitor is initiated. All models are awoken and started simultaneously.

Monitor continues to run observing state of calculation across all models.

Step 5 - All Models Execute a Time Step in Parallel

Since each model is its own process, running on its own machine, each model

process its input species concentrations and updates it local species vector and

sends signal back to the Monitor that it has completed. After each model is

130

try {
results = solverProcess.step(uid, speciesToChange, newValues, wantedSpecies);
if(results == null)

{
System.exit(1);

catch (Exception e) {
System.out.println("Module : failed" + e);

// add data to local memory vector
double[] currentSum = new double[resultSize];
for (int x = 0; x < resultSize; x++){

currentSum[x] = results[x];

//update values in local vector for time step n+1
localVect.add(currentSum);
for (int i = 0; i < currentSum.length; i++)

{
System.out.print(currentSum[i] +" ");

System.out.println();
//tells monitor it is done
monitor.complete0;

Figure 4-19 - A model executes, notifies monitor and rests.



completed, it goes to sleep in order to optimize CPU usage. This is shown in

Figure 4-19.

Step 6 - Monitor Observes Completion of Calculation of Time Step

The Monitor observes the completion of a Time Step across all models. Once all

models have completed their processing for a Time Step, the Monitor passes

control to the Comm Mgr.

Step 7- Comm Mgr Executes Mass Balance for Time Step

For a time step, the Comm Mgr now contacts the Mass Balance module sets the

new values for all species across all models based on the mass balance calculation

(which is detailed in the next section). If this is the last time step, then the Comm

Mgr exits in Step 8, otherwise the Comm Mgr continues to Step 4.

Step 8 - Controller Stops

The Comm Mgr stops by sending closePathwayO calls to each pathway model and

performs a variety of cleanup functions to release resources, memory, etc. Figure

4-20 shows a small code sample of such cleanup processes. These processes

include the ability to manage exceptions as well as the proper unlocking of Web

Services connections to ensure proper resource and memory management.

131



Controller Computational Steering of Automated Mass Balance

Computational steering (or interactive program steering, application steering,

interactive steering) enables us to observe and interact with a simulation during

its execution, steering it as necessary. This is formally what is taking place in

Step 7 above. In the next section we provide more detail on how the

architecture's controller performs this automated mass balance by steering each

model's input for the subsequent time step based on species values calculated

through mass balance.

132

public void cleanup(java.lang.String inO) throws java.rmi.RemoteException {
if (super.cachedEndpoint == null) I

throw new org.apache.axis.NoEndPointException();

org.apache.axis.client.Call _call = createCall0;
_call.setOperation(_operations[2]);
call.setUseSOAPAction(true);
call.setSOAPActionURI("");
call.setSOAPVersion(org.apache.axis.soap.SOAPConstants.SOAP11_CONSTANTS);

_call.setOperationName(new javax.xml.namespace.QName("urn:pathwaySolver",
"cleanup"));

setRequestHeaders(_call);
setAttachments(_call);

try I java.lang.Object _resp = _call.invoke(new java.lang.Object[] {inO));

if (_resp instanceof java.rmi.RemoteException) I
throw (java.rmi.RemoteException)_resp;

)
extractAttachments(_call);

I catch (org.apache.axis.AxisFault axisFaultException) {
throw axisFaultException;

Figure 4-20 - Clean up of pathway model resources.



4.8 Mass Balance

The Mass Balance component of the architecture serves to provide the calculation

of species concentration for each time step n across the ensemble of models. This

section describes the mathematical formalism and the implementation

Mathematical Formalism

As previously stated, we treat each model as a black box with the input and

output being a vector of species concentrations denoted by the following two

variables:

n

which denotes the species concentration at time step n, of the ith model and the jth

species, and,

S J,i
n+l

which denotes the species concentration at time step n+1, of the ith model and the

jth species, respectively. Using this notation, we define a new variable

S j"i
g,n

which denotes the species concentration of the integrated model in the global

vector (denoted by subscript 'g') contributed by the ih model and the jth species.

133



Using the above notations, mathematically the formalism for the mass balance is

represented as follows:

Sg = (Si ) + (S -So(sgn+l g h,n n n+C

Algorithm and Code

Based on the above mathematical formalism, for each time step, the Controller

maintains a store of all species concentrations across all pathway models. After

each time step, by each model, the Controller calculates for each species which

models consumed and which models contributed to a species concentration.

This summation is used to supplant the input for the species value across all

models. The Controller, therefore, manipulates the next input and steers the

134

// initialize sum vector
double[] sum = new double[globalSpecies.length];
for ( int z=0; z < globalSpecies.length; z++)

sum[z] = ((double [])(globalVect.lastElemento))[z];

//for each solver, add result to sum vector using local->global species mapping
for (int y=O; y < numSolvers; y++){

double[] rs = (double[])((localVect.get(y)).lastElement 0 );
int[] map = (int [])mapping.get(y);
double[] oldrs = ((double [])(globalVect.lastElement());

// mass balance calculation across all species
for ( int z=0; z < rs.length; z++)

sum[map[z]] = sum[map[z]] + (rs[z] - oldrs[map[z]]);

// add new row or the inputs for all pathways
globalVect.add(sum);

Figure 4-21 - Core code for automated mass balance.



calculation of the integrated model through this automated mass balance

process. In Figure 4-21, a small code sample shows the core of this algorithm.

Algorithmically, this code is summarized in Figure 4-22.

Based on the logical software architecture, the Mass Balance component interacts

with the Data Layer and Comm Manager to execute the algorithm through intra-

process communications as shown in Figure 4-23.

135

Algorithm

Initialize
Contact all Mi with {So} values from GlobalVect
Initialize LocalVects with {So}
Where,

{SO} denotes the initial conditions across {Mi)

For each time step, tn
{
LookUpGlobalVect (Row n, S)
SendSpeciesValues (TimeStep n, (Mi )
Sleep (); until all LocalVects for current time step calculated
MassBalanceCalculation(Si,j, (Mi)) for each compartment
UpdateGlobalVect(Sj)
I

Figure 4-22 - Algorithm for automated mass balance.



Figure 4-23 - Intra-process communications of mass balance component.

In Figure 4-23, the Comm Mgr serves to communicate and ensure that each

model updates its Local Vector with the current species concentration outputs.

The Mass Balance component, using the Ontology, executes its algorithm by

evaluating the species concentration in the Global Vector, for the integrated

model, by receiving the most up to date values for species concentrations from

each model [Mi]'s Local Vectors.

136



4.9 Test Example

Once the architecture is implemented initial tests were run to validate the

implementation as well as to understand the elements contributing to the

computation time.

3 Test Models, Local Network, All J2EE
Test Model P2 Test Model P3

(MIT, Cambridge, MA - J2EE) (MIT, Cambridge, MA - J2EE)

7 Float Outputs
112 Bytes
14 Packets

Figure 4-24 - Implementation test for Test Case 1.

Test Case 1

In the first test, three models are setup on three different computers within a

local network as shown in Figure 4-24. Each model is a simple calculation which

takes as its input on value and performs the same and simple mathematical

calculation within each model to return seven values. Each model is in the same

137



format. In this case, each model is written in J2EE. The results of performing

this test are shown in Figure 4-25.

3 Test Models, Local Network, All J2EE

*Averaging from 50 tests for each sample

Figure 4-25 - Results of performing Test Case 1.

Test Case 2

In the second test, three models are setup on three different computers within a

local network as shown in Figure 4-26. Each model is a simple calculation which

takes as its input one value and performs the same and simple mathematical

calculation within each model to return seven values. Two models are in the

same format: J2EE and one model is in MATLAB.

138

" Model Formats

j All on J2EE, Local

" Transmission Time (ms)

a - 6 ms

" Computation Time (ms)

o Model: -9 to 18 ms

a Controller: ~3 ms

" Total Time: ~-27 ms



3 Test Models, Local Network, 2 J2EE, 1 MATLAB
Test Model P2

(MIT, Cambridge, MA- J2EE)
Test Model P3

(MIT, Cambridge, MA - MATLAB)

7 Float Outputs

14 Packets

Figure 4-26 - Implementation test for Test Case 2.

The results from performing Test Case 2 are shown in Figure 4-27.

3 Test Models, Local Network, 2 J2EE, 1 MATLAB

*Averaging from 50 tests for each sample

Figure 4-27 -Results from Test Case 2.

139

* Model Formats

o 2 on J2EE, Local

o 1 on MATLAB, Local

a Transmission Time (ms)

o 6 ms

* Computation Time (ms)

o J2EE: -9 to 18 ms

o MATLAB: -251 ms

o Controller: ~-3 ms

* Total Time: -265 ms



Test Case 3

3 Test Models, Local Network AND Remote Network: 2 J2EE, 1 MATLAB
Test Model P2 Test Model P3

(India, Madras, MA - J2EE) (MIT, Cambridge, MA - MATLAB)

7 Float Outouts
112 Bytes
14 Packets

Figure 4-28 - Implementation test for Test Case 3.

In the third test, three models are setup on three different computers. Two of the

models are setup within a local network and the third model is setup at a remote

network, as shown in Figure 4-28. Each model is a simple calculation which

takes as its input on value and performs the same and simple mathematical

calculation within each model to return seven values. Two models are in the

same format: J2EE and one model is in MATLAB.

The results from performing Test Case 2 are shown in Figure 4-29.

140



3 Test Models, Local Network AND Remote Network: 2 J2EE, 1 MATLAB

*Averaging from 50 tests for each sample

Figure 4-29 - Results from Test Case 3.

4.10 Summary

The results from the above three implementation tests provide us with an

understanding of the architecture's performance. Specifically, three types of

timings are involved:

1. Transmission Time

2. Model Computation Time

3. Controller Computation Time

141

" Model Formats
a 1 on J2EE, Local
o 1 on J2EE, Remote
o 1 on MATLAB, Local

, Transmission Time (ms)
o Local: -6 ms
a Remote: -654 ms

, Computation Time (ms)
a J2EE: ~-9 to 18 ms
. MATLAB: ~-257ms

o Controller: -3 ms
* Total Time: -673 ms



These three times determine the Total Time for computing an integrated

solution. The first and second test cases provided us with the Model

Computation Time of a J2EE model to be -9 to 18 ms per time step and a

MATLAB Model Computation Time to be -250 ms per time step. The

Transmission Time across networks is summarized in summarized in Figure 4-

30.

Figure 4-30 - Transmission time per packet across three different networks with Controller
located at MIT.

For the total of 16 packets, which is what is transmitted per time step (2 packets

outbound and 14 packets inbound), the Transmission Time for the Local

Network is approximately -6 ms per time step and for the Remote Network in

142



India is -650 ms per time step. The Controller Time is approximately -3 ms per

time step. The results are summarized in Figure 4-31.

Various factors affect the Transmission Time including: Network hops, CPU-to-

NIC (Network Interface Card), and Network bandwidth and traffic. The Model

Computation Time is affected by: Hardware and local CPU power, Software

Operating System (O/S), Software implementation (e.g. MATLAB, C, J2EE, etc.),

and Mathematical representation (e.g. ODE, Stochastic, Boolean Networks, etc.).

The Controller Computation Time is also affected by these same factors and the

number of models that need to be integrated.

143



Chapter 5

EGFR Model of Kholodenko

5.0 Introduction

This chapter serves to validate and to test the Cytosolve architecture. In the

previous Chapter, a simple problem was used to understand the elements

affecting the computation time. In this Chapter, we use Cytosolve to solve a

well known biological model in the systems biology community. The purpose

of this effort is: 1. To validate the architecture's capability to produce known

results, 2. compare our new approach with an existing monolithic approach, and

3. demonstrate the scalability and ease of use of the Cytosolve approach. In the

next section, the methodology for performing this validation is presented. In the

third section, the results from this effort are presented. In the fourth section,

conclusions are made.

144



5.1 Materials and Methods

Materials

Two elements are necessary to execute this validation: 1. a known ensemble of

biological pathway models along with their fully coupled system, previously

solved in a monolithic approach, and 2. a popularly used monolithic approach

for solving the model in order to compare the resulting solutions with Cytosolve.

Relative to (1), the biological model the Epidermal Growth Factor Receptor

(EGFR) model published by Kholodenko (Kholodenko, et al., 1999). The EGFR

model is selected since known solutions exist for this problem thus enabling

direct confirmation of the Cytosolve approach. In BioModels.Net this model has

been instantiated into SBML, which can be solved using various monolithic

approaches. This pathway can be viewed as an ensemble of four different

biological pathways as shown in Figures 5-1 through 5-4, when coupled yields

the full EGFR model shown in Figure 5-5.

145



Figure 5-1 - Model 1: EGFR Dimerization Pathway.

(EGFEGFR)2-P (EGF EGFR)2 Grb2

Grb2

SOS

Grb2 SOS FEGF (EGFR)2Grb2 SOS

Figure 5-2 - Model 2: SOS Production Pathway.

146



PLCg-Pathway.

Figure 5-3 - Model 3: PLCg Production Pathway.

Figure 5-4 - Model 4: Shc Production Pathway

147

She(EGFaQGFRL$P~tF*-GFEGFR)ŽSI1W- l

sos

(EGF.EGFR)2_ýShc t S

I ... ................ ....

raalli~a A nows

Q

$(EGF



Figure 5-5 - EGFR Model

Relative to (2), for the selection of a monolithic approach, we select Cell Designer

by (Kitano, et al., 2005) to compare our method. There are over 130 other systems

such as Cell Designer that could have been selected; this tool was selected

primarily based on its current popular use in the systems biology community

and it is free. Cell Designer provides both a graphical mechanism for

constructing the pathway diagram shown in Figure 5-5 as well as an ordinary

differential equation (ODE) solver for calculating the various species

concentrations values over time. In Figure 5-5, the creator of this pathway in Cell

Designer had to "by hand" draw each and every species and then connect the

species and instantiate the rate equations. Cell Designer requires the entire

148

Figure 

5-5 - EGFR Model



pathway to be coded into the Cell Designer system exclusively using the Cell

Designer program prior to solving the pathway model. The total number of time

steps used in the simulation is 100 or N=100, and the physical time is 10 seconds.

Method - Monolithic Approach

First, for each of the pathways shown in Figures 5-1 to 5-4, they were each loaded

into Cell Designer separately and solved separately to produce baseline solutions

for each pathway. Second, each of the individual pathways shown in Figures 5-1

to 5-4 were manually "hand-wired" together to produce full EGFR model shown

in Figure 5-5. The resulting species concentrations over time of each of the

species in the integrated EGFR model was output and documented.

Method - Cytosolve Approach

Cytosolve was then used to solve the same EGFR problem but in a distributed

fashion. In Cytosolve, any one pathway model can exist in any format be it

SBML, CellML, C++, C, FORTRAN, MATLAB, or any programming language,

and there is no need to manually load, understand and interconnect each

individual pathway, as is required in monolithic systems. In this case, to prove

the efficacy of Cytosolve and to simulate the concept of four different teams

working in four different locations world wide, each of the models was

distributed on four different computers within a local area network. The total

number of time steps is 100 or N=100, and the physical time is 10 seconds.

149



The results from Cytosolve were then compared with Cell Designer for both

individual and the fully integrated models. Cell Designer and Cytosolve's

central controller are executed on a Pentium 4 CPU 3.00 GHz Dell Workstation

with 2 GB of RAM running Windows XP with Service Pack 2. In Cytosolve, each

pathway model is treated as an independent entity, and is activated by

messaging with the central controller, as described in Chapter 4, to ensure mass

conservation. Each of the individual models, in the Cytosolve case, are also

executed on a Pentium 4 CPU 3.00 GHz Dell Workstation with 2 GB of RAM

running Windows XP with Service Pack 2.

5.2 Results

There are two sets of results. The first set of results provides the comparison of

each individual model (Figures 5-1 to 5-4) executed in Cell Designer and in

Cytosolve. The second set of results provides the entire EGFR model executed in

both Cell Designer and Cytosolve.

In reviewing the four models, in Figures 5-1 to 5-4, one will recognize that the

species (EGF_EGFR)2-P is shared by all four models; however the species SOS is

shared only between the models in Figures 5-3 and 5-4.

150



Individual Model Solutions

Figure 5-6 provides the results of Cytosolve's time for solving each problem

individually. The first column lists each model, the second column is the

Model Transmission Time Model Computation Controller Total Time
(ms) Time (ms) Time (ms) (ms)

Model 1 822 1795 520 3137

Model 2 910 2265 476 3651
Model 3 915 2280 507 3702

Model 4 1405 2615 532 4552

Figure 5-6: Time for executing Cytosolve for each individual model.

Transmission Time involved for the Controller to communicate for 100 time steps

to the model. The third column is that particular model's local Model

Computation Time to execute the problem. The fourth column is the Controller

Computation Time. The fifth column is the Total Time.

Figure 5-7 provides the results of Cell Designer's time for solving each problem

individually.

Model Transmission Time Model Computation Time Controller Time (ms) Total Time
(ms) (ms) (ms)

Model 1 N/A 1310 N/A 1310

Model 2 N/A 1752 N/A 1752
Model 3 N/A 1763 N/A 1763

Model 4 N/A 2133 N/A 2133

Figure 5-7: Time for executing Cell Designer for each individual model.

151



In this case, since Cell Designer is executed monolithically, there are no times for

column 2 and column 4. Only, the individual Model Computation Time

contributes to the Total Time.

Figure 5-8 compares the Cytosolve and Cell Designer compute times.

Model Cytosolve Cell Designer Time Cytosolve Computation Difference Time
(ms) (ms) (ms) (ms)

Model 1 3137 1310 1795 1342

Model 2 3651 1752 2265 1386

Model 3 3702 1763 2280 1422

Model 4 4552 2133 2615 1937

Figure 5-8: Comparison of time between Cytosolve and Cell Designer.

Column 2 and column 3 are the Total Time's for Cytosolve and Cell Designer,

respectively. Column 4, for Cytosolve, is the Model Computation Time on the

local server. This time should be the same as Column 3; however, it is not since

the local server's compute time on Cytosolve also involves read's and write's to

the Global Vector and Local Vector. Thus, there is an overhead. The Difference

Time in Column 5 is the difference between Column 2 and Column 4. This time

offers us insights into overhead of Cytosolve's Transmission Time and Controller

Time. Nearly 65% of this Difference Time is for Transmission Time and the

remaining 35% for the Controller Time to perform the integration calculation.

152



Note, that for Cell Designer, each model was loaded in one at time and then

executed. For Cytosolve, Cytosolve's central controller was implemented on one

server and each model was implemented on another server. The results in above

figures were calculated as the RMS average across fifty test runs for various

species concentrations.

Whole EGFR Model Solution

In this case, the full integration of all four models is performed to derive the

whole EGFR model in Figure 5-5. For Cell Designer, all four models were loaded

into the Cell Designer system and had to be connected by hand to recreate the

diagram in Figure 5-5. This process took nearly four several days to perform and

to ensure consistency and accuracy of the pathway as described by Kholodenko.

For Cytosolve, the central controller was run on one machine and four separate

computers were setup, each running one independent model. This process took

less than four hours. Recall, the goal in this exercise was to evaluate the

difference in solution between Cytosolve and Cell Designer as well as

computational time differences for deriving the whole EGFR model.

153



Model Transmission Time Model Computation Time Controller Time Total Time
(ms) (ms) (ms) (ms)

Integrated 1424 2615 1893 5932

Figure 5-9: Compute time for integrated model using Cytosolve.

In Figure 5-9, the results from executing the integrated model using Cytosolve

are shown. In this case, it is important to note that Column 2 and Column 3 are

the maximum Transmission Time's along any Controller-Model path. This

means that Column 2 is the longest Transmission Time taken by the Controller to

communicate with any one of the model's over 100 time steps, and that Column

3 is the sum of the longest Computation Time across all the models. It is

interesting to note that the compute time of 2615 in Column 2 is the compute

time of the longest model, Model 4. Cytosolve took a total of 5932 ms to solve

the integrated model.

Figure 5-10: Compute time for integrated model using Cell Designer.

In Figure 5-10, the results from executing the integrated model using Cell

Designer are shown. In this case, the total time is 3217 ms to solve the integrated

model. Cytosolve requires approximately two times the time to solve the

integrated model; however, most of this time appears to be spent in the

Transmission Time and then the Controller Time for integration

154



The above discussion focused on comparing the computation times of the two

different approaches. Figure 5-11 and Figure 5-12 illustrate the comparison of

actual solutions for the EGF and bound EGF-EGFR concentration profiles,

respectively, from Cytosolve and Cell Designer.

EGF Concentration Profile
i Cytosolve 0 Cell Designer

nmrr

6OU

650
640
630
620
610
600
590
580
570

0 2 4 6

Seconds

Figure 5-11 - Solving EGF using Cytosolve and Cell Designer.

8 10 12

155

rr~n



Bound EGF-EGFR Concentration Profile
N Cytosolve o Cell Designer

nm/I

.2

0

U.aWo
r,.

(3w
w'U

*0
a
m

0 2 4 6 8 10 12

Seconds

Figure 5-12 - Solving bound EGF-EGFR using Cytosolve and Cell Designer.

The above two figures show that there is little difference between the Cytosolve

and Cell Designer solutions. There was less than 0.01% difference between both

solutions.

5.3 Summary

The results demonstrate the viability of Cytosolve's unique distributed approach

not only to solve problems that monolithic approaches are capable of solving but

also to provide greater flexibility and scalability in integrating multiple biological

pathway models, which monolithic approaches are incapable of doing. In

Cytosolve, any one pathway can exist in any format on any computer, and there

156



is no need to manually load, understand and interconnect each individual

pathway, as is required in monolithic systems.

Cytosolve generated exact results to Cell Designer; more importantly, the

integration of the four models in Cytosolve did not require any manual "wiring"

as is needed by Cell Designer. Cytosolve's compute time was greater than Cell

Designer; however, most of this compute time was due to Transmission Time.

Since Cytosolve works in a distributed parallel fashion, its compute time is a

direct function of the compute time of the largest pathway plus the associated

Transmission Time and overhead for Controller Time to integrate. For Cell

Designer, the compute time will be the compute time of the whole integrated

pathway.

Initial results from the EGFR example have demonstrated that Cytosolve can

serve as an alternative to the monolithic approaches for integrating and solving

biomolecular pathways. Most important is Cytosolve's core feature for

integrating multiple pathway models, which can be distributed across multiple

computing systems, without "hand wiring" of each model. While such a manual

approach may be viable for a handful of models, it will not scale to support the

integration of all pathway models necessary to model the whole cell. Moreover,

the monolithic approach does not provide a means for pathways from

proprietary models to be used with other models that are open source. An

157



architecture such as Cytosolve will allow individual research teams to contribute

the output of their pathway models to an external dynamic network of models

without revealing the details of their internal structure. There has been also no

research to show that monolithic pathways can be distributed between machines

for computational scalability. The Cytosolve approach parallelizes the

computations from the beginning, making computational parallelization

automatic.

Finally, and perhaps equally important, is that managing a monolithic model,

composed of other models, is a change management nightmare. Consider a

small example of a monolithic model "cut and pasted" or concatenated from the

four models of EGFR, aforementioned, and each model being published and

created by different authors. Now, suppose once the monolithic model has been

constructed, that many months later, the authors of each of these models changes

rate constants, pathway connections, etc., at that point the author of the

monolithic model would have to rebuild the entire monolithic model, by

instantiating changes from each author's model, which may be tenable for four

models (possibly based on the complexity and domain specificity of each model).

Modeling the whole cell while managing such changes across a suite of hundreds

of such models will be untenable.

158



In summary, the results are the same as monolithic approach. Cytosolve's local

Model Computation Time is approximately 30% to 40% more than the

monolithic approach. Cytosolve's integrated model requires no more than 2x

amount than the monolithic approach. Cytosolve's "overhead" equals the

Transmission Time + Controller Time. Of the total "overhead" for Cytosolve

-65% is for Transmission Time and -35% is for Controller Time.

159



Chapter 6

Integrative Model of Interferon
Response to Virus Infection

6.0 Introduction

The purpose of this chapter is to solve a heretofore unknown problem by

integrating multiple biological pathway models. In this chapter we begin by

first giving a background on Interferons (IFNs). The next section gives an

overview of the four key biological pathway models involved in the IFN

response to virus infection. The third section itemizes the key molecular agents

involved in IFN response. The fourth section details each biological pathway

model within the IFN response mechanism. The fifth section provides the

solution for each individual pathway model using the Cytosolve architecture.

The sixth section provides the complete solution of the IFN response to virus

infection using the Cytosolve architecture. The seventh section performs a test of

160



replacing one of the pathway models within the integrated IFN model to

demonstrate Cytosolve's ability to easily integrate updates to a given model in

the ensemble. The eighth section uses the integrated model to study new

biological phenomena of the IFN response to virus infection. The final section

provides a summary and discussion of the results.

6.1 Background on Interferons

The immune system has many different types of cells acting together to protect

the body against viruses, bacteria, and other "foreign invaders." Part of this

protection includes the production of interferon (IFN), a protein that plays a

special role in triggering the body's response. The following describes what

interferon is and why it is so important to the immune system.

What Is Interferon

The immune system consists of a complex network of cells, tissues, and organs

all working in tandem to ward off infection and keep us healthy. This includes

interferon, one of the proteins called cytokines, which are diverse and potent

chemical messengers that can trigger the immune system to attack invading

pathogens. Interferon signals neighboring cells into action and also interferes

with how foreign cells grow and multiply. Interferon is also considered

essential for optimal health because it can boost the immune system's ability to

161



recognize foreign invaders. It is because of this special role that interferon is

used in drug form as an anti-viral agent to treat many different diseases.

Moreover, researchers have shown that interferon, given by nasal spray in daily

doses, can prevent infection and illness. However, pharmaceutical forms of

interferon cause side effects such as nosebleeds, fatigue, headache and aches, and

may not be useful in treating established colds (Wikipedia, 2007).

In humans, IFNs also play a roles in cell growth, differentiation and immuno-

modulation. IFNs are divided into two groups depending on their molecular

basis; type I IFNs (IFN-alpha and IFN-beta) are produced by a variety of cells

following virus infection, and type II IFN (IFN-gamma) is produced by activated

T cells and natural killer (NK) cells (Sato, 2001). There are three classes of

Interferon, alpha, beta and gamma. Interferon alpha and beta are produced by

many cell types, including the infection-fighting T-cells and B-cells in the blood,

and are an important component of the anti-viral response. In contrast,

interferon gamma is involved in the regulation of the immune and inflammatory

responses and is produced by activated T-cells (Sato, 2001).

The History of Interferon

Since more than half of the communicable diseases affecting human beings are

caused by viruses, scientists in the 1950's began searching for clues into how the

body protects itself against viruses, leading to the discovery of interferon.

162



During studies on virus replication, two groups of researchers in different parts

of the world separately discovered interferon. The first discovery occurred in

Japan in 1954 when researchers at Tokyo University were studying viruses in

rabbits and found that a natural protein made the rabbits resistant to subsequent

viral infection. Then, in 1957, Scottish virologist Alick Issacs and Swiss scientist

Jean Lindenmann found that when chick embryos were injected with influenza

virus, the protein produced by the cells destroyed the virus and also inhibited

the growth of any other viruses in the embryos. Isaacs and Lindenmann named

the protein interferon because of its ability to interfere with virus replication

(Isaacs, 1957).

Further research showed that interferon was produced within hours of a viral

invasion (antibodies take several days to form) and that most living things,

including plants, can make the protective protein. Interferon was seen as the

cell's first line of defense against viral infections, but because the body produces

interferon in small amounts and the protein was thought to be species-specific -

meaning only human interferon will work in human beings - research on the use

of interferon in drug form inched forward at a snail's pace. Then, in the late

1960's, Ion Gresser, an American researcher working in Paris, and the Finnish

virologist Kari Cantell developed a way to make interferon in useful amounts

from human blood cells. Monoclonal antibodies, first produced in 1975, made

large-scale purification of interferon possible, and the mid-1980s saw the advent

163



of genetically engineered interferon (Glick, 2006). During the same period,

scientists learned that there are three classes of interferon and that these

Interferons are not species-specific but can produce a response in other species .

While these developments were occurring, Japanese researchers were focusing

on interferon-inducing activities in Chinese herbal medicines. This led extensive

research on ways to boost the body's ability to produce interferon through the

interaction of botanicals. After screening, testing and evaluating over 200

different herbs, the research successfully isolated four botanicals that, in

combination, naturally increase the body's production of its own interferon. As

a result of this extensive research, interferon is being used today in drug form to

treat viral diseases like rabies, hepatitis, and herpes infections. At the same time,

new research now makes it possible for healthy adults to boost their immune

system through a dietary supplement that naturally increases the production of

interferon in the body.

How Interferon is Used To Treat Diseases and Boost Immunity

In drug form, several different types of interferon are now approved for use in

humans, and are usually administered as an intramuscular injection. Interferon

alpha is used as a cancer therapy and a treatment for Hepatitis C, the AIDS-

related Kaposi's sarcoma and genital warts. Interferon beta is used in the

164



treatment and to control the neurological disorder multiple sclerosis (Glick,

2006).

In therapeutic doses, interferon can be hard to tolerate because of its side

effects, which include fatigue, headache and aches, and less frequently, low

thyroid activity, low platelet count and depression. It is because of these side

effects that researchers have not pursued the use of interferon alpha for the

common cold and flu, even though studies find that interferon, given in daily

doses by nasal spray, can prevent infection and illness. However, new research

now makes it possible for healthy adults to boost their immune system through

a dietary supplement that naturally increases the production of interferon in the

body.

In summary, IFNs perform the following key functions:

* Inhibit virus replication (combat viral infections)

* Inhibit cell growth (used in anti-cancer therapy)

* Activate monocyte/macrophages

* Inhibit non-viral intracellular pathogens

* Produce pyrogenic activity (the fever you get with a cold)

165



6.2 Key Molecular Components of IFN Activity

The IFN response activity is evident across the extra cellular matrix (ECM), the

cell membrane, the cytoplasm and the nucleus as shown in Figure 6-1

(Taniguchi, 2001).

ECM

Cytoplasm

Nucleus

Figure 6-1: IFN signaling affects various cellular components (Taniguchi, 2001).

166



IFN Receptors

IFNs actions are exerted through specific cell surface receptors.

ý 1.

wsmrnU~~
ONu

muqla~

A
Figure 6-2: IFN receptors (Taniguchi, 2001).

While new ones, no doubt, will be discovered, it is currently known that IFNa,

IFNP and IFNco appear to have a common receptor and that IFNy binds to a

different receptor that has 2 subunits, as shown in Figure 6-2. IFN signaling

involves an IFN-mediated hetero-dimerization of the cell surface receptor

subunits as shown in the figure.

167

IM

SMrrs



Signal Transducers and Activators of Transcription (STATs)

Figure 6-3: STATs in action (Taniguchi, 2001).

STATs are latent transcription factors in the cytoplasm. They are activated and

then translocated to nucleus. Their activation is supported through the

phosphorylation by the receptor-associated Janus family of tyrosine kinase

OAK) enzymes in response to cytokine stimulation, as shown in Figure 6-3.

There are different members of the JAK and STAT families have distinct

functions in cytokine signaling. For example, Jak-1, Jak-2, Tyk-2, STAT-1 and

STAT-2 play central roles in mediating IFN-dependent antiviral activities.

168

IFN-affi IF"3



Interferon Regulatory Factors (IRFs)

IRFs are transcriptional regulators important in regulating the interferon

response. Some IRFs are induced by IFN signaling. Historically, there are nine

known family members: IRF-1 to IRF-9 . Recently tenth one was discovered.

IRFs and STATs function together to induce and control the expression of

proteins that constitute the antiviral state.

6.3 Elements of the IFN Response

The IFN response mechanism of the cell to virus infection is a core cellular

function. There are four key biological pathways which are involved to elicit

IFN response to virus infection:

* Up regulation of IFN-Beta

* IFN receptor signaling to produce IRF-7

* Virus amplification cycle to produce more IFN-Beta and IFN-Alpha

* Regulation and balancing by SOCS-1

169



USA, Hancloglu, et al,
Journal of Theor. Biology, 2006

SOCS1 Regulation

Japan, Yamada. et al,
Genome Informatics, 2001

Figure 6-4 - Integration of the efforts of multiple research teams is required to develop an
integrated model of IFN response to viral infection.

Figure 6-4 illustrates how the entire model of the IFN response involves the

integration of work efforts from four countries and three continents. Each

research paper used in this integration effort involves the work of multiple

research groups.

Virus Infection Model

The high level biological pathway of virus infection is depicted in Figure 6-5

below. This pathway creates IFN-Beta as an initial response to virus infection.

Scientists in Moscow, Russia in 1994 modeled this pathway in the Journal of

Theoretical Biology (Bocharaov, 1994). The original code was written in MATLAB.

170

Russia, Bocharov, at al,
Journal of Theor. Biology, 1994

......... .. _. ....°. .



000t

Figure 6-5 - Virus infection pathway (Bocharaov, 1994).

A detailed diagram of this pathway is shown in Figure 6-6 which includes all

the species and molecular interactions. Here viruses inject their single-stranded

RNA into the host cell, which leads to the formation of double-stranded RNA.

Double-stranded RNA triggers the activation of virus-activated kinase (VAK),

which phophorylates IRF-3. Phosphorylated IRF-3 is a transcription factor for

the IFN-Beta gene. The expression of this gene results in the initial production

of IFN-Beta.

171



extracellular space

Figure 6-6 - Virus infection pathway detailed mechanics.

172



In Figure 6-7 are listed the differential equations defining the molecular

interactions for this pathway.

Reactions Math

[virus]4-[ssBAA dkn
S. ir d* r us]

[1 T,-t _.gvailon dRindi

(VA] actition dtion r

dii

[IRF-3Pc3]+--IRF-3Pn] dRn
- k (LAV-3Pc-k- (L RF - 3Pc

N-b n production dn k
[IRF - 3]+ "

IRm-beb ......... ]b dRwn

-- &

[e6 N-bea Dfeetl degqadation A -nPer- vrjt&et ptcjdRxI - production d~n 4 -[IRF - 3Pn][I1~RFZ~-btact RNJ~S!arR [llN- beta. RMcJ

[IcFN-beta) -.j lFdtetra]at d3Rn =k -(IFN-becajRNrc]

di
= kfl [cFN -beta]

[IFN-beta devgadation 4RXn
= [k13 41 -beta]

Figure 6-7 - Differential equations for viral infection pathway.

173



In Figure 6-8 are listed the internal parameters, rate constants and initial

conditions for this pathway.

Symbol Description Value Unit
, Virus infection rate 0.01 1/

ki Double strand RNA formation rate I 1/(pMbs)

k2 Double strand RNA degradation rate 0.0001 1k

k). VAK actiation rate 0.00011 I1

k4 VAK protein degradation rate 0.0005 /s

ks IRF-3 & VAK association rate 0.008 1/(nMs)

k :IRF-3-VAK complex dissociation rate 0.8 11
k IRF-3 phosphorylation rate 0.4 1/s

k, IRF.3 dephosphoxylation rate 0.005 .1

ka Rate of IRFJP transport to nucleus 0.005 1k
ka :Rate of IRF-3P transport to cytosol 0.05 1

k& Rate constant (chemistry) of RNA formnation 0.01 nM/s

ksb Rate constant (association) of RNA formation 400 nM

k . . Rate of mRNA raansport to cytosal 0.001k .l

km Rate of mRNAc degradation 0.0005 1k

kit Rate of IFN-beta production 0.01 1k

k1t2 Rate of IFN-beta transport to extracellular space 0.0011/s

_k Rate of IFN-bet degradation 0.0001 1S

[virus Initial extracellular virus concentration 10 nM
1lRF-3o Steady stgate IRF-3 concentration before infection 10 M

Figure 6-8 - Parameters for viral infection pathway.

174



IFN Receptor Signaling Model

The high level biological pathway of IFN receptor signaling is depicted in

Figure 6-9 below. This biological pathway produces IRF-7 as a preparation

mechanism for the infected cell and neighboring cells. Scientists in China in

2005 defined this pathway model in FEBS (Zi, 2005). Only a pathway diagram

along with parameters exists for this pathway model, but no software code.

~wN~

Figure 6-9 - IFN receptor signaling (Zi, 2005).

A detailed diagram of the this pathway is shown in Figure 6-10 which includes

all the species and molecular interactions. In Figure 6-10, IFN-Beta (or IFN-

Alpha) lands on the IFNAR receptor to initiate the up regulation of IRF-7 which

is a critical protein for signaling the cell itself as well as neighboring cell of the

virus infection. The binding of IFN with the receptor leads to the STAT protein

175



being phosphorylated. The phophorylated STAT forms a homo-dimer and

becomes the transcription factor for IRF-7 gene after binding to IRF-9, which

leads to expression of IRF-7. This signaling mechanism prepares the cell for

further defenses by producing IRF-7.

xtracellularspace

nucleus

. .. ......-1 - ..F .o si .a .n.................. ... . ....... ...

Figure 6-10 - IFN receptor signaling pathway detailed mechanics.

176



In Figure 6-11 are listed the differential equations defining the molecular

interactions for this pathway.

C j.i. I . .....Reajios Mat[JAKj & [FNAR) dtnxx kin [ IM [ IFYAM -[k[,, [tIFNAI Iassociation A
(WAIFI R& (FEW-ba) dMrn

m + Ik-l- [- IPAR· +mP - i.-,Nx- ( ,?,-hn- .assoidation 7
tiN-b(I-boMA-4] tNn- i-P-m,- -b

[IFN-bea-BoundJ dan
- k4 [LN-bsa-boumd 2

daIMP~Jt~imids~7a g4 + ka
(1M R2*] & l d n................

____ 7 Zk I, -FMR2l(SFATT*l-k,,, [IPANR2*STATC)

~E~~iR~al dbn kR w NfNR2 16T4TAc]

,A [,STATe]+ k5 +k,

U&Ia uwl 4*4
a= t pjS STATJ(LTld (fTcf-lTcJ

ik .[STAR*f -k,, (STATh*f]

M= dh - k, , PPXX(STAT C2]

A jZTATe*2f+

. *dh+ kI PPN]-JSTA7 r21

pLj Th*2t+ ..t.+ t+ -i L~kr ~,I~~t~fS"APW......... .. ........ ... -I ... .

Figure 6-11 - Differential equations for IFN receptor signaling pathway.

177



In Figure 6-12a and 6-12b are listed the internal parameters, rate constants and

initial conditions for this pathway.

bl De..uiption Value Uuit
Rate constant (chemistry) of RMA formalin 0.01 nMA

Rate constat (ociatio) Od RNA kration 400 iJf

S Ra ofmRNA transporI t oClool 000114
kw Rate of tmRNAc deadation 0OM005 1k
k" _haeof IFN producion 0.0111

kM, IFN-Panma &P11Ji a ti rat O.021•(MWs)
k FN-gamna-RJ PM dim ona e 04214
ki IIFNARJ dikizton and docy e 0.00D5 1Is)

km IFNAR2* & STATc asociaicae O8 11M(1)
ka IFNAR2-4TATc complae di rci ate 0.8 *

k1 STATc Osphor n rate 0.4 1

kfi IFNAR' & STATe roada e 0.005 IiMM)
ko IFNAR2'4TATc' comple dioc rate 01
k STAT: dimrizalion rate 0.02 1/Ms)

ka STATc dimer dismcation ate 0.1 W
mfi IFIAR2* & SHF2 assciation iate 0 1(ns)

k___ IFINAR2R4HP.2 compl r&atn me 02 1
k IFHAR•2 dqhooWlation ate 0.0031k

_a STATct & PPX association ae 0.001 UM4 s)

kam STATc-k.PX compex disociation e 021

ka STATe ]pho olatio rate 00 31k
ko STATc & STATO association rate 01.000002 lJaMs)

k___ STA-STAI compc disociaton ate 02 1

ks Rate o STATc' U1nsporto lcleus 05 1k
k, IMP & STA aociation rate I 1i Ms)
ka ?P4NTATh' complex dissociation te 02 1h

k2 STAT? dephosphoryation rate 0514
k WeRat of STATn tsan"po qcyol 0.05 1

k JAK &IfNAR aociation ate 10014 M)

); , J-ltdN--tcondardisocialia uat0 05 rtr

Figure 6-12a - Parameters for IFN receptor signaling pathway.

178



.............. IF. RD. .C. .ta. __

flak ____________ _ 12* _

PTIAtC l i edSTalk 1low..__

Figure 6-12b - Parameters for IFN receptor signaling pathway.

IFN Amplification Cycle Model

The IFN amplification cycle is a critical step in the response to protect the cell

from virus infection. It is depicted in Figure 6-13 below. A team of scientists

from the America created a dynamic model of this pathway. The article was

published in the Journal of Theoretical Biology (Hancioglu, 2007). They

programmed the pathway in XPAUT which can be saved in SBML.

179



. . . . .IRP.00~S
0

Figure 6-13 - IFN amplification cycle pathway (Hancioglu, 2007).

A detailed diagram of the this pathway is shown in Figure 6-114 which includes

all the species and molecular interactions. In Figure 6-14, virus interaction with

IRF-7 not only serves to up-regulate IFN-beta but also serves to up-regulate

IFN-alpha.

180

via



s*iJihmltv OASP*

Figure 6-14 - IFN amplification cycle pathway detailed mechanics.

181



In Figure 6-15a and 6-15b are listed the differential equations defining the

molecular interactions for this pathway.

d.

di
[VAljdegradtan 1k

Mf.3+-•+;4[r-3Pc]

., k.,- +k

dMArn-- t k .[M -3] k,, (& -3

bde cadio n dt+7

QOFN-44 ku d*Rn -( (-7.A)

dprodtion I& IRP-7N*tk,[@[j:l-ttai] ab+• +,

x • ,~ ~ ~ ~ ............ j• J ......... !• " '+ , .....................

Figure 6-15 - Differential equations for IFN amplification cycle pathway.

182

I



Figure 6-15b - Differential equations for IFN amplification cycle pathway.

In Figure 6-16 are listed the internal parameters, rate constants and initial

conditions for this pathway.

ialm... . T ,- --hedu..i.... Value Uf.il
llputewoftwo Vim deian ae 0.01 16
•i•.mwojuwo Dlow 1sMa1Aatin ta 1 14h•M)

pbawjvosuxrvwo 2i DlondRRNAde gradl0.0001-14

ptue.t .tpasetwo _AKXptd~ideM l raem a .0.0005 1A

pbmjwtwtate kg IRJ4 & V AK a to a ci00tIion rttea)
pbetwoLartu g IRF-I-VAK unmpki atiom ate 0 lt

p ttwehiwo _ IRE p.ala e 0.416

pivartt wo k IRF-e l dxb~l u ta*e 00 itIs
pifme.ntopstwo aIl IRIFtiaspotm05os w 00d05 IA

piej,tourtjwo cantf r (4 mihy)l RNA toeaim 0.01 MA

pliajnaw.~prtwo tSGconWit (mdlotCAiatiRatitrmcb rM
phue.wspLtwo __ dh ak taoparc ywoufel 0001 IA

pamw.t uto eh la lalai Vluin,~ 1o0hceniatn1 M
phtjtwoapajtv ] a Ih I mae iRE inat & beffoi uahWio Il M
pvasetjw ntwo PRLJ S atea 1REyqwm.7 Co *ce kira ooal lw i 0.01 am

Figure 6-16 - Parameters for IFN amplification cycle pathway.

183

.......... .. .k. .[.. ........ . .. ....W04 halw A"

IwF7ftI)a4RPu Aeft

7 kg [ RIA-7P4j-k,?lR -I &



SOCS1 Regulation Model

The high level biological pathway of virus infection is depicted in Figure 6-17

below. This biological pathway produces SOCS1 to regulate and balance the

production of IFNs. It is depicted in Figure 6-7 below. Without this pathway,

the additional levels of IFNs, beyond what is necessary to stop the virus

infection, can itself have detrimental effects on the cell. . Scientists in Japan in

2001 defined this pathway model in Genome Informatics (Yamada, 2001). They

programmed the pathway in MATLAB.

^ 0: n

I11

Figure 6-17 - SOCS1 regulation pathway(Yamada, 2001).

A detailed diagram of this pathway is shown in Figure 6-18 which includes all

the species and molecular interactions. Here, JAK binds to the IFN receptor and

184

0"1 •



forms the JAK-IFNR receptor complex. Once IFN binds to the receptor, the

resulting complex associate with each other and forms a homo-dimer. This

dimer undergoes phosphorylation, leading to a form as IFNRJ2*, which

catalyzes the phosphorylation of STAT1. The phosphorylated STAT1 also

forms a homo-dimer and acts as a transcription factor of SOCS1 gene. The

resulting protein, SOCS1, inhibits the kinase activity of IFNRJ2 and is the key

component of the negative feedback loop.

V fluCh~I s

Figure 6-18 - SOCS1 regulation pathway detailed mechanics.

185

~ .. ....~~ .... ..s

~"1*~"~"'ii`""`"'~'""

.........: . • •-~"~"

i
Z



In Figure 6-19a and 6-19b are listed the differential equations defining the

molecular interactions for this pathway.

UJ&aFlkflaummiton deka---- I .-| .. -... .... ... ... ...-- =i, :[FR I , (NPJ)

4*

-. ky[ Immf -, [m[+I+(fWNR32) dhv(iFNarF aa .(IPafI

(IST1A7& ,ST ei H c .,a

amociatiwn 4oIaSTiU n A4;*Ygl dW S
fTI&'SAl & k X (fS hM-k-SATh'JT

PTAlTIMn k-itr f klln

rkr

(STAXlcaSTATltl] dawI(STfl el X71nt1Om

sWmUk jPPXTVJ STA *-ZrATkmj• t+ :• +:e+,. ~ k s...... . . IS. .......... .... ...... ................ ........IS•1TM O,-STA M d ti ..._• .*..6 PP• fj+TA',# .,1- S "]......A7 .............

..........................

Figure 6-19a - Differential equations for SOCS1 regulation pathway.

186

1



1w-STdinS4A tl dkuW

[SreEmon & 1tTshlZTA d ,h, !TnAWn4T-A ATh-kUe[$AT%* )

CSTAI dAr kIPPJ [ST4
[ STR$ITI W+dr

[SOCSIPiie dk-Cnm

(SOCSl.E 112' dirn

rn~x -•, (0l = f - W =2 '-fAl Tk- T-h

eC-Sl9 difr l met I dr

Figure 6-19b - Differential equations for SOCS1 regulation pathway.

187



In Figure 6-20 are listed the internal parameters, rate constants and initial

conditions for this pathway.

5, tJ4Swauten030 ifwv

UrnAm _ A ASIAM eAOctte* OR Im

t ~~. ..... .A mrtS4A ~tateintnni
Trlk AC A

£ . VaM'&T-k-CAW mk ro* 0213W_____ A a7AIW M

ri SSWm~ 5R~dsSr~Soma i

)~na Wa*M IFS____:tkr~nli*Lt~aOlifta
~J~il~a~ i~a~~i~g r14rjlwa *... ........ .~

Jli E~. . ................
.................

rrW1
........... O

CclC~fc ~ 0-1m221 --JAWt~
iU* (A

paTYW'1ý tm"

1-6-iUMk S ;41 vI"W * a

Figure 6-20 - Parameters for SOCS1 regulation pathway.

188



6.4 Individual Model Solutions

In this section for each of the pathway models in the previous section, we solve

each pathway model using Cytosolve. For each solution, a single graph is

presented which provides. the time-dependent variations in species

concentration of the relevant species.

Virus Infection Model Solution

This system assumes the infection of a cell by one virus does not inhibit further

infection by other viruses. It is also assumed that the only source of virus is

from initial application of virus.

Figure 6-21 - Virus infection model solution.

189

•:.i : ,:": • "" ........................ :'• .............................



Initially, as shown in Figure 6-21, the concentration of VAK and IRF-3 both

increase. The IRF-3 then activates the expression of IFN-beta. Due to the

limiting amount of virus and absence of a positive feedback system, the

concentration of IFN-beta reaches its maximum value of 0.33 nM in the extra

cellular space at around 3.6 hours and gradually declines.

IFN Receptor Signaling Model Solution

/<
/

/

I
//

/

I/
//

IR.F-7Pc

5.000 10.000 15.000 20.000
Tnme (seconds)

Figure 6-22 - IFN receptor signal model solution.

25000 30.W 35 AM 40M.

In Figure 6-22, the concentration of IRF-7 through time is a sigmoidal curve

which reaches near the steady state value of 0.01 nM at around 4 hours. Fast

activation of IRF-7 is required to activate the positive feedback system.

190

0.006

%I00.

i 0:........

..v,=•..., ,.•~~~ _·_ ··· ··_····I · · _1_ 111111_··_·__1.....1

1~-1In M,~

1.



IFN Amplification Cycle Model Solution

it

Figure 6-23 - IFN amplification cycle model solution.

In Figure 6-23, most of the IRF-7 is used to produce IFN-Beta. Very little IRF-7

exists for significant production of IFN-Alpha.

191

2ca

tffE-3PR

-~ I~F~J-li~fZZ

• ..... •" ...



SOCS1 Regulation Model Solution

I

Figure 6-24 - SOCS1 regulation model solution.

In Figure 6-24, it is assumed the extra-cellular concentration of IFN is constant.

The concentration of IFNR2* reaches its maximum value of 2 nM several

minutes after starting the simulation, and gradually declines due to inhibition

by SOCS1. The concentration of SOCS1 has a maximum value of 30 nM at 1.5

hour. After the peak, SOCS1 decreases to reach a steady state value of 2.5 nM

because of the negative feedback loop.

192

1

ire.



6.5 Integrated Model of IFN Response

The high level diagram of the integrated model is shown in Figure 6-25. This

integrated model illustrates the integration of the four biological pathway

models involved in the IFN response.

Figure 6-25 - Integrated model of the IFN response to virus infection.

A detailed diagram of this pathway is shown in Figure 6-26 which includes all

the species and molecular interactions of the integrated model.

193



___

~~

;" P~~
·~""; -~ i ~---·-,

:" iS ~·--~ ";-----i_::::: ~ rr r

;; -1·-

~a l~~j-·

`:::::-:::::

Virus Infection

--

SOCS1 Regulation
'id

4 " "'C .,•

Figure 6-26 - Detailed integrated model of the IFN response to virus infection.

This integrated model combines the four models of the interferon pathway:

virus infection leads to up regulation of interferon beta; massive production of

IFN-alpha and IFN-beta with a positive feedback system; and, then negative-

feedback control of JAK/STAT signal transduction pathway by SOCS1.

194

~-iJj ~·VI·i

_i,-i_-



Integrated Model Solution

Cytosolve Approach

In the first case, we integrate the four IFN models using Cytosolve as shown in

Figure 6-27.

IFN Amplification Cycle
IFN Receptor Signaling

Regulation
Virs Infection

.....

, 5

Figure 6-27 - Cytosolve approach to integrating the four models.

Figure 6-28 contains the solution from the integration of all four biological

pathway models.

195

.... ... ..... ...

///""0
I

ir
--·-

- I



IRF-3Pfl

[-a~ :RFF~;P·

Figure 6-28 - Integrated model solution.

The key molecular species presented in this figure are IRF-3, IRF-7, IFN_Beta

and IFN-Alpha. This integrated model combines the four pieces of interferon

pathway: virus infection leads to up regulation of IFN-Beta; IFN-Beta then

results in the creation of IRF-7; the existence of IRF-7 then results in positive

feedback to which increases a massive production of IFN-Alpha and IFN-Beta;

finally, control of JAK/STAT signal transduction pathway by SOCS1 results in

regulating and balancing the production of IFN-Alpha and IFN-Beta. Close

review of Figure 6-28 reveals several important elements of the integrated

model.

196



First, during the first -13 hours (-50,000 seconds), the concentration of IRF-7

through time is a sigmoidal curve which reaches the steady state value of 0.7

nM.

Second, during this same first -13 hour period, the concentration of IFN-Beta

and IFN-Alpha slowly increases. What is interesting to note is that, in Figure 6-

29 (below) which offers a zoomed in version of the first 3.3 hours (-12,000

seconds), the initial production of IFN-Beta is then followed by the production

of IFN-Alpha. IFN-Beta is produced within the first 30-40 minutes (-2000

seconds to -2500 seconds). The initial production of IFN-Beta after the 40

minute period and before the 3.3 hour period is defined by a marked increase in

IFN-Beta production.

Third, in Figure 6-28, above, after the first -13 hours (-50,000 seconds) to -25

hours (-90,000 seconds), IFN-Beta and IFN-Alpha exponentially increases.

Fourth, in Figure 6-28, above, after -25 hours (-90,000 seconds), IFN-Beta and

IFN-Alpha concentrations reach their maximum and gradually approach steady

state due to the balance between positive feedback system and negative

feedback control from SOCS1 activation.

197



cm

4*i

Figure 6-29 - A detailed, zoomed in, view of IFN-Beta and IFN-Alpha production.

198

~:~ i:
I

*~ Z-
I·f~ III:

i'.

mu*bcli i

I:I :



Monolithic Approach

In the second case, we integrate the four IFN models using Cell Designer by

merging all the models as shown in Figure 6-30.

.*VAW*&

Figure 6-30 - Monolithic approach (Cell Designer) to integrating the four models.

The integration of the above models yields the same results as in Figure 6-28.

The mathematical equations and internal parameters for this approach are

included in Appendix C.

199



6.6 Re-Integration and Maintenance Test

In earlier chapters, we discussed that the central aspect Cytosolve's architecture

is its ability to scale. Given the nature of biology, which is an experimental

science, where new protein structures and new protein-protein interactions are

discovered daily, it is clear that any one biological pathway model in an

integrated model will change. Such changes mean that the integrated model

itself will have to be rebuilt or re-integrated constantly. Thus, as an integrated

model grows, the maintenance of such a model may become onerous to

maintain, resulting in a lack of scalability for further growing and maintaining

such a model. In this section, we measure Cytosolve's ability to maintain an

integrated model.

Methodology

To demonstrate Cytosolve's ability to easily update changes to an integrated

model, we consider the SOCS1 regulation pathway model previously

mentioned. In this case, we consider a different variation of this model,

denoted as the SOCS1' model, consisting of the same species as shown in

Figure 6-18, but, in this version of the model, we have changed the kinds of

molecular interactions as well as the internal parameters. Such a scenario is

highly likely given the nature of biology. Using the SOCS1' model, we measure

200



the time and effort involved to reintegrate or "swap out" the SOCS1 model

from Figure 6-26, with the new SOCS1' model. We contrast the effort of doing

this reintegration first using the Cytosolve approach and then with the

monolithic approach.

Cytosolve Approach

Reintegration of SOCS1' with the SOCS1 model using Cytosolve took less than

2 hours to perform. The effort involved the following steps:

1. Loading the SOCS1' model on a server

2. Updating the PID file

3. Running the Controller

Monolithic Approach

Reintegration of SOCS1' with the SOCS1 model using the monolithic approach

took approximately 4 days to perform. The following efforts were involved in

this reintegration effort:

1. The rate constants needed to be reorganized to avoid confusion.

2. While doing copy and paste of different reactions form SOCS1' to

replace reactions in the SOCS1 model, the mathematics of the reactions

did not automatically change with the updated species identifiers in

Cell Designer. This problem required the identifiers to be reset

manually to make sure the right reactants go to the right product.

201



3. It became very tedious to link the actual arrows with the new SOCS1'

model and errors were very easy to make.

4. Deleting the changes in the SOCS1 model with the new SOCS1' model

is a very tedious, manual and menial process, in short a boring process.

5. Many mistakes were made in the reintegration effort required repeated

rework.

Discussion

It is clear from the above results, Cytosolve offers a much more scalable

approach to maintain and update an existing integrated model. Cell Designer

took far more effort than Cytosolve (e.g. 2 hours versus 4 days). While a more

rigorous analysis can be performed, the effort of reintegrating one of the four

models into the IFN integrated model serves to demonstrate the many

challenges in using a monolithic approach.

6.7 Analysis of IFN Integrated Model

Cytosolve has been used to develop an integrated model of the IFN response to

virus infection. One of the goals of building larger models from integrating

smaller models is to reveal new understanding of biological phenomena not

possible through experimentation. In this section, we perform various

numerical experiments to reveal such understanding.

202



Decreasing the SOCS1 Degradation Rate

The degradation rate of SOCS1 is set from the original value 5.OE-4 to zero with

an interval 1.OE-4. As the degradation rate is lowered, more SOCS1 is present

in the system. The presence of more SOCS1 means less IFN. This modification

is valid based on the assumption that the production rate of SOCS1 highly

exceeds its degradation rate, the few days after the negative feedback control is

turned on and increases.

I:
- IFM-tlpha

-0 IF"-i,-af*76.k4-
2.0E-4

fe76.k4.
3,0E-4

-IMf-alpha

4.01-4
- fIF-alpha
rel6.k4 .
5,0E-4

Figure 6-31 - IFN-Alpha lowers as the degradation rate of SOCS1 is increased (more SOCS1 is
produced to suppress production of IFN-Alpha).

203



-* Am WMW

04

I
9,l

V~krM.

wI[lrFar
I-.j

,~1Q4tM P1alE

I~81~n4~

t mEIS

eRA'-]L~3
444~i

ST

Figure 6-32 - IFN-Beta lowers as the degradation rate of SOCS1 is increased (more SOCS1 is
produced to suppress production of IFN-Alpha).

Thus, by lowering the degradation rate, we are simulating this phenomena. In

Figure 6-31 and 6-32, we present the graphs for both IFN-Alpha and IFN-Beta,

respectively. Therefore, the concentration of SOCS1 can build up through time.

The simulation shows that the maximum level of interferon, both IFN-Alpha

and IFN-Beta, is lowered. In the extreme case that the SOCS1 degradation rate

is set to zero, the bottom most curve in each figure, IFNs gradually degrade

during the 4-5 days after the peak.

204

T** bow**



Increasing the VAK Activation Rate

The VAK activation rate is increased from 1.OE-4 to as high as 8.OE-4.

SI

I

::i

• ,ne secondS)
3541M

Figure 6-33 - IFN-Alpha is relatively unaffected by changes to VAK activation rate..

205

WN-alpha
t@7.kla l*
A02

- wN-alpha

- fm alpha

S.............



hiet e

Figure 6-34 - IFN-Beta peak is raised with increase of VAK activation rate..

We now refer to Figure 6-33 and 6-34 above. Increasing this rate of VAK

activation does not significantly affect the IFN-Alpha curve. Increasing the rate,

however, does raise the peak of IFN-Alpha. Recall, that VAK phosphorylates

IRF-3, which is a transcription factor for IFN-Beta activation. Thus, it makes

sense why the peak is raised during the initial phase as more IFN-Beta will be

created; however, this change does not affect the steady state level of both IFN,

which suggests that the steady state level is independent of initiation process,

but is determined by the balance between positive feedback amplification and

negative feedback control.

206

;j:

i
·i

•if

=il



Increasing Rate of Transcription of IFN Beta

The rate of transcription of IFN-Beta is set from the original value 1.OE-2 to as

high as 4.OE-2.

1k

0.

0.01

0.01NreAb -

- IFi-alp

0 50*00 100L*0 150 00 200:00o 2o5m0 300*0 350*000 40000
TFNt (Secords)

Figure 6-35 - IFN-Beta is relatively unaffected.

207

~_.--..~.~11·~~-----·~·.~I~----·--i--~--
rii

-;-
• . . . .



i

re7.kSa

0.01

rel.k m-

- IM-beta0.02

0.03
--- I-beta

0,04

ODe

Figure 6-36 - IFN-Beta production increases with rate of transcription increase.

We now refer to Figure 6-35 and 6-36. The steady state concentration of IFN-

Alpha is not affected. However, the steady state concentration of IFN-Beta

significantly increases. This phenomenon is possible if conformational change

of RNA polymerase induced by binding to IFN-Beta gene and the transcription

factor is more favorable.

208



Decreasing Association Rate of IFN-Beta Transcription

The physical association process of IFN-beta is set from the original value 400 to

as high as 1600 (high value means less efficient association). This is possible if

there are more transcription factors required to diffuse to the transcription

starting sites to initiate transcription.

23

1

I

0

0 %W4o00

re1kb-- IF-al"pi
re7.k8b -

L reO.k

100a,, co,

Figure 6-37 - IFN-Alpha reaches same steady state; however, greater delay exists in reaching
steady state with decreasing the association rate.

209



:I 40T !OTWbeA

r7AkGb-aWO~
zaookto

tylkb-

rl 60.0,

Figure 6-38 - IFN-Beta lowers as the degradation rate of SOCS1 is increased (more SOCS1 is
produced to suppress production of IFN-Alpha).

We now refer to Figure 6-37 and 6-38. IFN-Alpha reaches same steady state;

however, greater delay exists in reaching steady state with decreasing the

association rate. This change significantly reduces the IFN-Beta produced, and

increases the time required for the system to reach steady state. These figures

and the previous set of modifications suggest that the ratio between the two

IFNs is greatly affected by the relative efficiency of transcription process.

Similarly, the relative translation rate (production rate) and protein degradation

rate also plays a key role in determining the steady state level of both IFNs.

210



Increasing Rate of pSTAT2c-IRF9c Complex Transport to Nucleus

The rate of pSTAT2c-IRF9c complex transport rate to nucleus is set from the

original value 0.005 to as high as 0.02. This complex plays a major role in the

nucleus and in transcribing IRF-7, which itself is a transcription factor for IFN-

Alpha and IFN-Beta during the amplification cycle. As a result, there are more

IFNs being produced which leads to a higher steady state level for both IFNs as

shown in Figures 6-39 and 6-40.

U

- IFN-alpha
re67.k29

0.0050
.FM-alpha

re67.k29

- IFN-alpha
re67,k29 a
0.015

- IFN.aipha

re67.kZ9 a
0.02

211

Time (sexntds)

Figure 6-39 - IFN-Alpha increases with greater complex transport.



I

- IFN-beta

IFN-beta
re67 k29.
0.01

- IFN-beta
re67.k29 -
0015

- IFN-beta
re67kiZ9
0.02

. someo loe: ... oop .o . .... ..os ae e ean

Time (seconds)

Figure 6-40 - IFN-Beta increases with greater complex transport.

6.8 Summary

The purpose of this chapter was to demonstrate that Cytosolve can be used to

solve a heretofore unsolved problem by integrating multiple biological

pathway models. Cytosolve has successfully integrated four biological

pathway models to create and integrative model of the IFN response to virus

infection. This is the first time such an integrative model has been developed.

212

i



More importantly, the integrated model has verified known phenomena and

has offered new insights to biological phenomena.

First, the IFN Beta is produced in the first 30 to 40 minutes as expected by

experimental data.

Second, IFN-Alpha begins production in after -3 hours delay time as is the

approximate expected time required for the positive feedback cycle to start.

Third, both IFNs reach their peak in the -20 hour range as predicted by various

experimental research as shown in Figures 6-41, 6-42, 6-43 (Cella, 1999; Cooley,

1987; Takauji, 2002).

35,000

30,000

25,000

15,000
IL.
" 10,000

5,000

O1
0 4 8 12 16 20

Incubation Time (h)

Fig. I. Time course of CpG-DNA-induced IFN-a production in PDC. IFN-ar
production was analyzed in PDC incubated with CpG) DNA (5 IpM) for the
indicated [peri;sl. The culture supernatants were harvestel, and the amounts
of IFN-a were measured byhv EIJSA. The data shown are representative of three
experiments using PDC from different donors. IFN-ca was not detected at each
time point throughout the culture with medium alone or control oligo 2GC in

Figure 6-41 - IFN-Alpha reaches a peak -20 hours (Takauji, 2002).

213

, -



.LL

20o 30s 40 so TtNF-a LS PPS C040L 1t IEtus
TMO thwrs)

Figure 3. MxA expression is rapidly induced in DCs by LPS, poly I:C
and viral infection. Time course of MxA upregulation as detected by in-
tracellular staining (A) or immunoblotting (B). (C) Time course of type I
IFN production in cultu.ire supernatant. DCs were stimulated with the
following: 50 U/ml IFN-a (O, panel A only), LPS (A), 20 pg/ml poly I:C
(0), 1 HAU PR8 (0), TNF-c (V), and CD40L (O). (D) MxA induc-
tion after 5 h of stimulation in the absence (black bar) or in the presence
of two neutralizing sheep antisera to human type I IFN: Iivari, hatched
bars, and Kaaleppi, empty bars.

Figure 6-42 - IFN-Alpha reaches a peak -20 hours (Cella, 1999).

3.0

- 20

Ir

I a

10 20 30 40 50 60
Figure 6-42 - IFN-Alpha reaches a peak -20 hours(Cooley, 1987).

Four, the initial production of IFN-Beta after the 40 minute period and before

the 3.3 hour period is defined by a marked increase in IFN-Beta. This makes

sense since most of the IRF7 produced initially is used for IFN-Beta; however,

214

IIL I

a



as IFN-Alpha starts to be produced, both IFNs share in the consumption of IRF-

78.

Fifth, the integration of the SOCS1 for regulating the IFN response is of utmost

value; otherwise, while still valuable, the integrated model would only provide

the amplification cycle, not the regulation and balance phenomena provided by

the SOCS1.

Sixth, the time scale of the integrated model also matches the various

experiments. For example, IFN-Alpha starts its production in Figure 6-41

during the 4-6 hour range as also shown by the integrated model at -4 hours. In

addition, IFN-Beta, based on most literature starts within the ~half-hour, as is

also predicted by experiments.

Thus, we have an integrated model of IFN response to virus infection that can

be used as the basis for studying biological phenomena. In addition, this

model, with the Cytosolve approach, can be expanded and refined by adding

new models and/or updates to existing models. The relative ease by which

Cytosolve supports such reintegration was effectively demonstrated in Section

6.6.

215



In summary, Cytosolve has shown its viability to integrate an ensemble of

biological pathway models in a scalable manner to create an integrated model

to explore new biological phenomena.

216



Chapter 7

Quantitative Methodology to
Evaluate Architectures for
Integrating Biological Pathway
Models

7.0 Introduction

Currently, the design of computing architectures is a "black art". Over the past

few years, in other field such as finance, e-business and defense, there has been

a trend to define formalisms, both qualitative and quantitative methods, to

evaluate computing architectures (Clements, 2007; Dabous, 2005; Kazman,

2001). Systems biology can benefit from this trend and emerging body of

work. In the area of e-business applications, a very nice formulation and

formalism for deriving types of architectures based on specifying architectural

217



design has been accomplished (Dabous, 2005). Others have also defined

quantitative methods for evaluating a particular architecture's value to

stakeholders based on their particular needs and priorities (Kazman, 2001). In

recent work, there has also been an attempt to quantify the economic impact of

architecture decisions (Clements, 2007).

The earlier chapters of this thesis have served to provide a framework for

recognizing the complexity of development and integration of biological

pathway models, given the experimental nature of biology which requires

enormous effort of focused teams to just characterize one protein or one

protein-protein interaction. In addition, early chapters discussed the effort

required to develop and maintain just one biological pathway diagram or

model. We also reviewed the value of integrating biological pathway models

to provide new understanding of cellular function. The main architectural

approach that exits today for integrating biological pathway models is a

monolithic approach that involves the manual or semi-automatic creation of a

single source code from multiple biological pathway models' source code,

which is then run on one central computer. This thesis has presented an

alternative distributed and parallel approach for integrating biological pathway

models. Initial tests were run to understand the computational times and

accuracy of the Cytosolve approach versus the monolithic approach using the

218



Kholodenko EGFR model. The Cytosolve approach was then used to solve the

IFN response to viral infection.

This chapter serves to provide a unique quantitative approach for evaluating

and comparing architectures for integrating biological pathway models by

uniquely combining the approaches of two works by (Dabous, 2005; Kazman,

2001) and applying this approach to systems biology. Specifically, we use our

current knowledge of extant monolithic approaches and the distributed and

parallel approach of Cytosolve to develop this quantification. The second

section presents the mathematical formalism to represent the architectural

notation. The third section presents the critical requirements for evaluating

architectures for integrating biological pathway models. The fourth section

presents different types stakeholders of an architecture. The fifth section provides

the description of the two main architectures for integrating biological pathway

models. The sixth section presents the architectural design elements. The

seventh section provides the architectural design alternatives. The eighth

section provides quantitative architectural selection by stake holder. The ninth

section provides a conclusion and summary of results for this chapter.

219



7.1 Architectural Notation

This section provides the mathematical formalism use to represent the

architectural notation. This notation is used for the first time to describe

architectures for integrating biological pathway models; however, it combines

the approaches of previous work (Clements, 2007; Dabous, 2005; Kazman, 2001)

to evaluate architectural designs in various other non-biological fields.

Biological Pathway Models

Earlier we used the notation M to denote biological pathway models. Here, we

still refer to M, but define it in the context of the architectural notation and

lower case m refers to a particular biological pathway model. Here, a biological

pathway model corresponds to a particular model that is part of a larger

cellular function, also defined below formally, and involves a set of species and

molecular interactions, as previously defined. We now define using standard

set theory nomenclature:

to represent the set of all biological pathway models within the whole cell.

to represent the set of all biological pathway models within the whole cell.

220



Common Biological Pathway Models

Common biological pathway models refer to a set of biological pathway models

that are similar. This could be the real case in biology where two different

research groups may be working on the exact same biological pathway;

however, one group has different species, interactions and rate constants than

another group. Or it could be the case where there are the exact same number

of species and interactions but the rate constants vary. We assume in this case

that the implementations of these models are not exactly the same. We now

define:

C - {ci 1 < i < C}

to represent the set of all groups of equivalent biological pathway models. With

each,

Ci CM all

being the ith set of a number of equivalent biological pathway models such that

Icil -
and,

CanCb = 0: a b
and,

221



UIll c = Mal

Cellular Functions

Cellular functions are derived from linking a set of biological pathway models

and also represent the connections and flow between one biological pathway

model and another. Typically a diagram is associated with a cellular function.

In Figure 7-1, are various biological pathways linked for a portion of the cellular

Figure 7-1: An example of how biological pathways interact to support a cellular function. Eight
(8) biological pathways including a. glycogen metabolism, b. amino acid degradation and urea
cycle, c. glycolysis, d. gluconeogenesis, e. citric acid cycle, f. pentose phosphate, g. ketogenesis,
h. fatty acids beta-oxidation, and i. fatty acids synthesis involved in the cellular function of
metabolism (Silva, 2002).

222



function of metabolism. We now define:

F =- f: 1 <iIF

to represent all the cellular functions and we use the notation:

pathways(f ) M .a

to represent a function which identifies the set of biological pathway models

that are required by a particular cellular function i. This function will return the

set of all biological pathway models within its cellular function. For Figure 7-1,

for example, 8 different biological pathway models will be returned. We will

also assume that every:

m EMall

has at least one corresponding

fe Fall

such that

me pathways (fi)

Or,

U1,• pathways(f) = M

223



Existing Biological Pathway Models

Currently approximately 300 biological pathway models are published within a

variety of databases, publications and repositories. These we consider to be

existing biological pathway models. We will assume two classes of such

models: 1. where the source codes are accessible and 2. where the source codes

are not accessible. While some academic and research organizations will freely

publish their model source codes, certain commercial for-profit organizations

will not publish their source codes. We denote:

(PuO) C Mall

where, 0 represents the set of all the existing biological pathway models where

source code is available

O = {o i: 15i < ol

and where, P represents the set of all existing biological pathway models

where the source code is not available. Interaction with these kinds of

biological pathway models can only be achieved through defined interfaces.

We will also use the following notation:

P =- pi 1<i 5IP

to denote those existing biological pathway models without source code

accessibility. Note that within P there may be biological pathway models

which are similar. In such a case if,

224



m,xmy E Pi

then,

mx ,my I cjVcj E C

Pathway Communication Methods

Pathway communication methods refer to the way a particular module in the

architecture is accessed. We define the following notation:

T =- {ti: l1 i TI

to represent the different communication methods. Here are four examples of

communication methods identified by (Dabous, 2005):

* T1 includes the communication at the network protocol levels such as

TCP/IP packets

* T2 includes the use of facilities offered by the operating system(s) and

Remote Procedure Calls (RPCs)

* T3 includes the use of distributed object technology interfaces such as

CORBA DIL and Java RMI

* T4 includes the use of service-oriented standards such as Web Service

standards like SOAP/ WSDL.

225



Cell Definition

Based on the notation developed in the previous discussions, we define the cell

by a tuple denoted by <O, P, Mal, C, F>. To conceptually illustrate how this

notation can be used, we assume that a particular cell has 4 cellular functions,

15 biological pathway models, 12 groups (labeled C in Figure 6-2) of common

biological pathway models, and 7 biological pathway models which exist

(among which 3 do not have source code availability) and 8 which have yet to

be built. Figure 7-2 illustrates this diagrammatically.

Figure 7-2: Formal representation of a Cell using architectural notation references.
Mall is the set of all possible biological pathway models. O is the set of models which
have source code available and accessible. P is the set of models for which source
code is not accessible. C denotes the sets of models that are similar. F are the
functions that the cell provides by integrating various models.

226



7.2 Critical Requirements for Architectural Evaluation

In previous chapters we have itemized numerous functional architectural

requirements for a computing architecture to integrate biological pathway

models. In this section, we propose four critical architectural evaluation

requirements to assess competing computational architectures.

Low Development Costs

The development costs represent the overall effort in developing a whole cell

model or even a cellular function, which is the integration of multiple biological

pathway models. One way to perform such calculation is to use Person Months

(PM) to determine how many developers will be required to integrate a set of

biological pathway models to produce the integrated model. Development

costs can also include the cost to integrate just one biological pathway model

into an existing integrated model. Alternatively, development costs can be

associated with the need for a user to swap one similar biological pathway

model with another similar biological pathway model.

227



Performance

This requirement addresses the need for an implementation to be efficient.

Efficiency includes fast computation time of the integrated model as well as the

ability to efficiently handle complex biological pathway models where there

may be varying time scales across a set of models.

Low Maintenance Costs

This requirement addresses the issues of maintaining the integrated model. As

discussed earlier, any one biological pathway model may be changing

constantly due to new biological experiments; thus, as time progresses and the

integrated model grows, maintenance costs can potentially grow, based on the

architecture selected.

Security

This requirement addresses the need for ensuring that certain biological

pathway models may need to be secured with limited access to the source

codes. In biology, certain pharmaceutical companies, who have invested

significant amounts in development of a particular biological pathway model,

will require that such a model's source code is secure or it can only be accessed

via a firewall at a distributed location.

228



There are potentially many other requirements for evaluating architectures;

however, in this thesis we propose that the above four be the critical criteria for

evaluating an architecture.

7.3 Stakeholders of an Architecture

System architectures are not developed in a vacuum. An architecture will be

used by individuals or stakeholders for a particular purpose (Kazman, 2001).

While there may be many types of stakeholders, using the criteria established in

the previous section, we identify four types of stakeholders based on the needs

that will be served by the architecture. In the discussion below, for each

stakeholder, we qualitatively assign their relative weight or Stakeholder Score

(SKScore) for a particular criteria. In this approach a total of 100 points is

assigned across the four criteria identified in the previous section to denote the

relative importance of a criterion to a stakeholder.

Biologist

We define for the purpose of this discussion that a biologist is a stakeholder

who: 1. may from time to time develop a biological pathway model based on

experimental data and 2. wishes to integrate her model into an existing

integrated model or may wish to swap out a model from the integrated model

to test the efficacy of their model. For a biologist, element (2) is of utmost

229



value in determining how well their model (and the results of their

experiments) compares with existing efforts. Figure 7-3, using the above

criteria, qualitatively assigns relative importance to the four different criteria,

from a biologist's view point, thus providing a unique profile of this

stakeholder.

Biologist Sta keholder

50

40

30

20

10

0
Developnent Performance Maintenance Security

Figure 7-3: Biologists relative level of importance for architectural criteria.

In this case, we have assigned a high value of importance to keep Development

costs low, since a biologist does not want to be burdened by significant

development efforts to link one of their biological pathway models with an

existing integrated model, for example. Performance, relative to the

Development criteria, would be the next important criteria, with Maintenance

and Security being the least concern to the biologist.

230



Systems Biologist

We define for the purpose of this discussion that a systems biologist is a

stakeholder who: 1. focuses on developing a biological pathway models, 2.

integrates existing biological pathway models to build larger models, and 3. has

a much higher degree of computing and programming experience than a

biologist. For a systems biologist, the ability to integrate existing models is

important to their goals of modeling larger systems such as cellular functions

and the cell. The ability to swap in new models, given updates from biological

Systems Biologist Stakeholder

40

30

20

10

0
Development Performance Maintenance Security

Figure 7-4: Systems biologists relative level of importance for architectural criteria.

experiments, will also be important to this stakeholder Figure 7-4, using the

above criteria, qualitatively assigns importance to the four different criteria,

231



from a systems biologist's view point, thus providing a unique profile of this

stakeholder. In this case, as shown in Figure 7-4, we have assigned the highest

values to low Development and Maintenance costs, next being Performance

and finally Security. This makes intuitive sense since a systems biologists'

interest is to rapidly develop larger pathway model from smaller one's will

ensuring ease of maintenance as models constantly change.

Pharmaceutical Company

We define for the purpose of this discussion that a pharmaceutical company is a

stakeholder who: 1. develops very particular models to support their internal

initiatives for drug discovery, 2. they may wish to integrate their model into an

existing integrated model or may wish to swap out a model from the integrated

model to test the efficacy of their model and 3. they do not want others in the

public domain to access the source codes of their models. Figure 7-4, using the

above criteria, qualitatively assigns importance to the four different criteria,

from a pharmaceutical company's view point, thus providing a unique profile

of this stakeholder.

In Figure 7-4, we have assigned the highest value to Security of their biological

pathway models. Next to these criteria, relative equal value has been assigned

to the criteria of Development, Maintenance and Performance.

232



Pharmaceutical Stakeholder

50

40

30

20

10

0
Development Performance Maintenance Security

Figure 7-5: Pharmaceutical company's relative level of importance for architectural
criteria.

Consumers

We define for the purpose of this discussion that a consumer is a stakeholder

who: 1. may wish to use an integrated model of biological pathways, 2. vary

certain parameters including perhaps their own personal data (such as blood

test levels of certain species concentrations as initial conditions) and 3. will not

do any development work of any individuals models or any such integration.

Consumers of integrated models may in fact be a student who wishes as class

exercise to vary parameters of a model of metabolism to gain insights or to

merely answer some homework questions. Consumers in the future may be

web-based users wishing to perform self-diagnosis as a part of a larger

personalized medicine application. Figure 7-6, using the above criteria,

233

~-----~---~---~--~-~---~·
Pharmaceutical Stakeholder

5· ·



qualitatively assigns importance to the four different criteria, from a consumer's

view point, thus providing a unique profile of this stakeholder.

Consumer Stakeholder

70

60

50

40

30

20

10-

0
Development Peiformance Maintenance Security

Figure 7-6: Consumers level of importance for architectural criteria.

As is evident from this figure, a consumer's main criteria of importance is

performance. For example, if the consumer is using a web-based application to

vary parameters and is seeking certain solutions, waiting hours or even minutes

for execution will not be acceptable.

7.4 Description of Architectures

In the Chapter on Prior Work, we determined two broad classes of architectures:

monolithic and messaging. Cytosolve is built on a messaging paradigm. In this

234



section, using the notation developed in Section 6.1, we provide a formalism to

describe these two architectures.

Architectural Diagrams

In this discussion, we review the high-level architectural diagrams for both the

monolithic and Cytosolve architectures.

Monolithic Architecture

In Figure 7-7 is a high-level diagram of a typical monolithic architecture. This

Key Modules of Monolithic Architecture

nterfacePresentation

Application

SMonolthic Other Data
Data Data Store Pathway (ontology)

Source Code (

Figure 7-7: High-level monolithic architecture and key modules.

architecture has five key modules: 1. The User Interface at the Presentation

Layer, 2. The Computational Solver at the Application Layer, 3. The Data Store,

4. Monolithic Pathway Source Code, and 5. Other data (e.g. Ontology). The last

three modules are within the Data Layer. Note, that in this monolithic

235



architecture all of the biological pathway model's source codes have been

integrated into one monolithic source code as illustrated.

Cytosolve Messaging Architecture

In Figure 7-8 is a high-level diagram of the Cytosolve architecture. Here, as in

Key Modules of Cytosolve Architecture

Presentation

Application

D Oher DataData Data Store (ontology)

Figure 7-8: High-level distributed architecture and key modules.

the previous diagram, we have left out various details to focus on the key

modules. This architecture has 4 + Mall key modules: 1. The User Interface at

the Presentation Layer, 2. Mall number of Pathway Models, 3. The Controller at

the Application Layer, 4. The Data Store, and 5. Other data (e.g. Ontology). The

last two modules are within the Data Layer. Note that in this Cytosolve

architecture the biological pathway model's entire source codes remain

distributed within each Pathway Model.

236

rrr ýMaall



Architectural Modules

An architecture is defined by a set of modules. We define an architecture in

terms of a set of modules, H, such that:

H={ -Q 1<i < IH
A module is defined such that,

Q eH

is described according to four essential features (Dabous, 2005): 1. the tasks that

are supported by the module, 2. the set of modules accessed by this module, 3.

the set of modules that access this module, and 4. the method by which each

module is accessed. Using these features we define any Qi module by the

tuple <tasks(Qi), conTo(Qi), invBy(Qi), access(Qi)> using the formulation of

(Dabous, 2005) and applying it to systems biology for modeling the cell.

Tasks

We define tasks(Qi) as a function that identifies the set of tasks that are

supported by the module Qi. Each task can be one of three types.

The first one is the implementation ofa functionality such as a biological pathway

model (and/or the Controller for example) such that m e Mall that is denoted

by Z(m) and is used in three different cases. The first case is when m e P refers

to an existing functionality within a pre-existing component. This would be the

237



case of a biological pathway model that already exists. The second case is when

m E P refers to redeveloping (i.e. reengineering) an existing functionality, such

as the effort to recode an existing pathway model. The third case is when m E

(Mall - P - O) i.e m is a new functionality such as a new biological pathway

model that is not yet implemented.

The second type of tasks correspond to the implementation of a wrapper for a

functionality m, denoted by ZW(m). It is used when Qi masks out the actual

module that embeds Z(m) using a higher level access method.

The third type of tasks correspond to implementing a cellular function f, denoted

by ZBL(f). We will use the term cellular function to refer to the implementation

code that integrates multiple biological pathway models, m. Therefore, each

task corresponds to implementation code resulting from applying one of the

task constructors Z, ZW, or ZBL on its parameters

Modules Invoked

We define conTo(Qi) c H. This is a function that returns the set of modules that

Qi invokes while executing its tasks. For example, for the Cytosolve

architecture conTo(Controller) would return all the modules at the Data Layer

and all the biological pathway models at the Presentation Layer.

238



Modules Invoked By

We define invBy(Qi) c H. This is a function that returns the set of modules that

invoke Qi while executing its tasks. invTime(Qi) returns the time of invocation

of module Qi, the timestamp denoting the time (e.g. in GMT) on when the

module was invoked. For example, for the Cytosolve architecture, invBy(mi)

would return the Controller, since that is the only module that can invoke a

biological pathway model.

Access Method

We define access(Qi). This is a function that returns the access method, Ti, used

by component Qi. This means that accessType(access(Qi)) e T while executing

its tasks. For example, for the Cytosolve architecture access(mi) would return

T4 since SOAP/WSDL, Web services is used as the access method.

7.5 Architectural Design Elements

Architectural design elements are used to determine particular architectures. In

this section, we will derive the variations of monolithic and the Cytosolve

architectures based the following design elements: Model Reuse, Model

Migration to Common Format, Distributed Models, Merged Models, Parallel

Processing, Serial Processing.

239



Model Reuse

This design element emphasizes the importance of leveraging existing

biological pathway models without having to recode them by wrapping the

biological pathway model to provide access by other modules. This design

element will create P new modules in H. Using our formalism,

For each Z(mk) e tasks(Qi):

Qx = createNew();

access(Qx) = Ti; (the access method)

tasks(Qx)= [ZW(mk)];

invBy(Qi) = Qx;

conTo(Qx) = Qi

H = Hu [Qx]

This design element allows biological pathway models to be reused, swapped

in and out, and shared across different cellular functions, F.

Migration to Common Format

This design element refers to the need to migrate a biological pathway model to

one common format (e.g. SBML). In cases where a systems biologists believes

that an older format in which the model was coded, for example, in Fortran 77,

will become a legacy, the task will be port or migrate that model to a common

240



format. In this case the functionality of that particular pathway model will be

redeveloped from scratch in a process that we refer to as 'migration'. There are

different possibilities of rearranging the redeveloped functionalities of a

biological pathway model in one format into either one other format within one

new biological pathway model or splitting them into several biological pathway

models. In this case, we define the migration process such that any biological

pathway model that is created from this migration is treated the same whether

it exists in the collection or is a new biological pathway model.

Here we group each set of equivalent biological pathway models c E C into one

module. Each new biological pathway model contains a task Z(mk) for each mk

e c. This design element also uses a uniform access method across all new

biological pathway models. Using our formalism, we denote this design

element as:

For each ci e C:

Qx = createNew();

access (Qx) = Ti;

tasks (Qx) = [Z(mk): mk E Ci]

H = Hu [Qx]

241



Distributed Models

A distributed model is one in which each biological pathway model can

communicate with other modules of the architecture and the source codes are

not merged into one source code. This means that other modules can invoke a

model and a model can invoke another module. This is formally denoted as

follows:

For each mi e Mall:

invBy(mi) c H;

conTo(mi) c H;

Merged Models

A merged model is one in which the source codes of all biological pathway

models are merged to form one monolithic source code, which becomes a

module of the architecture. This module, as shown in Figure 7-7, can be

invoked by other modules; however, the merged model cannot invoke other

modules of the architecture. This is formally denoted as follows:

For each mi E Mall:

invBy(M) c H;

conTo(M) <r H;

242



Parallel Processing

Parallel processing is when computation is performed in parallel across a

collection of biological pathway models. This means that at each invocation all

M set of models are invoked in parallel. The calling module of all M models

may not receive the replies at the same time; however, invocation occurs at the

same time and each model performs its processing in parallel independent of

the other models for an invocation time period. Formally, we define as follows:

For each mi E Mall:

mx, my E mi: x # y

invTime(mx) = invTime(my)

Serial Processing

Serial processing is when computation is performed in serial across a collection

of biological pathway models. This means that at each invocation each model

within the M set of models is invoked at: 1. a different time, and 2. after the

completion the invoked module returns control to the module which called it.

This is expressed by the following:

For each mi E Mall:

mx, my E mi: x # y

invTime(mx) # invTime(my)

243



7.6 Architectural Design Alternatives

All of the above sections serve to help us finally define architectural

alternatives. This process involves specifying two elements as defined by

(Dabous, 2005): Design Decisions and Alternatives. In this process based on a

Design Decision, we elect to use certain design elements, from the previous,

section. Table 7-1 below provides us the Design Decisions and the Alternatives

based on the design elements.

Design Decisions
DD1
DD2
DD2

Alternatives

1st Alternative 2nd Alternative
Model Reuse Migration to Common Format
Distributed Models Merged Models
Parallel Serial

Table 7-1: Design decisions and alternatives

This table shows that each of DD1, DD2 and DD3 has two alterative designs.

Derived Architectural Alternatives

Figure 7-9: Eight possible architectures predicted based on design decisions and alternatives.

244



Using this Table, we can now construct a tree which shows eight paths which

represent all possible architectures, as shown in Figure 7-9.

7.7 Architectural Evaluation

We have now systematically, using architectural formalisms, identified the

possible architectures for integrating biological pathway models based on

relevant design elements. In this section, we assign quantitative measures to

the ability of a particular architecture to satisfy different criteria, previously

developed, based on experience in software engineering. The assignment of

quantitative measures, in this section, was applied using the author's personal

experience; in future research, other approaches could be developed to assign

quantitative assignments based on objective historical data. Currently, given

that systems biology is a relatively new field, less than five years old, little

historical data are currently available.

In an earlier discussion in Section 6.2, the following critical requirements were

defined:

* Low Development Costs

* Performance

* Low Maintenance Costs

* Security

245



We now qualitatively build a matrix, called the architectural matrix (ArchMi,j)

that measures these critical requirements across the eight different

architectures. In Table 7-2, this matrix is provided based on the author's

discretion. The reasoning for which is described below.

Architecture

H1
H2
H3
H4
H5
H6
H7
H8

Critical Criteria
Low High Low High Security

Development Performance Maintenance
Costs Costs

3 2 3 3
3 1 3 3
2 2.5 2 2
2 2.5 2 2

2.5 2 3 1
2.5 1 3 1
1 3 1 1
1 3 1 1

Table 7-2: Qualitative favorability ratings by author of critical criteria for each architecture.

Reasoning Behind Quantitative Assignments

In Table 7-2, the author has assigned favorability ratings on a scale of 0 to 3 in

increments of 0.5 for the Critical Criteria for each architecture. This assignment

was done in a columnar approach and within each column in a relativistic

manner.

Low Development Costs

Specifically, for this criterion, the relative costs were estimated in a step-like

manner. In the first step, it is surmised that architectures H1, H2 and H5, H6, in

which the models are distributed would have the lowest development costs in

246



integrating a new model. We assign in this case H1 and H2 to be the lowest

development costs with a rating of 3, while we give H5 and H6 a slighter lower

rating or 2.5 since we believe that building a wrapper, in general, to an existing

code base will be much easier than completely recoding and migrating an

existing code base to a new format, since far more core level software testing

will be needed for a model integrated into an H5 architecture.

In the second step, we assign a rating of 2 to H3 and H4 since this describes a

module-based monolithic approach (see Chapter 2) which is a far easier

integration effort than merging the source codes of all models in a manual or

semi-manual monolithic approach.

In the third step, we assign the lowest rating of 1 to H7 and H8, since they

represent the manual or semi-manual monolithic approach of merging all the

codes into one monolithic source code. In fact, both of these architectures in

practice are the same since H7 and H8 are the merged source codes, so there is

no distinction between serial and parallel here.

High Performance

Specifically, for this criterion, the relative performance was estimated in a step-

like manner. In the first step, it is surmised that architectures H7 (and H8 since

running a merged model in serial mode is the same as running it in parallel

247



mode, since there is only one model) will be the fastest for obvious reasons since

no Transmission Time nor any orchestration of model calculations is needed,

and receive a rating of 3.

In the second step, we surmise that H3 and H4 will be the next fastest since

while they are merged, they are merged using a module-based monolithic

approach which involves intra-process calls between each pathway model. We

assign a rating of 2.5 for these two architectures. Note again, as in the

reasoning for H7 and H8, whether they run serially or in parallel, since there is

only one model, there will be no performance differences.

In the third step, we surmise that H2 and H6 will be the slowest, with a rating

of 1, since they are distributed and serially invoked.

In the fourth step, by process of elimination and a relativistic view of earlier

assignments, we assign H1 and H5 a rating of 2. Intuitively, these two

architectures will be faster than H2 and H6 but slower than the others.

Low-Maintenance Costs

Specifically, for this criterion, the relative to costs were estimated in a step-like

manner. In the first step, it is surmised that architectures H1, H2, H5 and H6

will all have the lowest maintenance costs since all models are distributed and if

248



any one model undergoes changes, no recoding of the original model will be

needed.

In the second step, we surmise that the hardest to maintain will be the merged

models in a single source code format. These are architectures H7 and H8 and

receive the lowest rating of 1.

In the third step, by process of elimination and a relativistic view of earlier

assignments, we assign H3 and H4 a rating of 2. Intuitively, these two

architectures will be easier to maintain, since they are merged using a module-

based monolithic approach. If the source code of any one model changes, only

that model and the communication interface needs to change.

Security

Specifically, for this criterion, the relative security was estimated in a step-like

manner. In the first step, it is surmised that architectures H1, H2 will have the

highest security since models are distributed and the source codes need not be

revealed.

In the second step, we surmise that the worst security will be models H5, H6,

H7 and H8 since all source code needs to be revealed either to merge them or to

distribute them since models need to be migrated into a common format.

249



In the third step, by process of elimination and a relativistic view of earlier

assignments, we assign H3 and H4 a rating of 2. Intuitively, these two

architectures will be more secure than H5, H6, H7 and H8, since merging them

in a module-based approach does not require the need to fully expose th source

code, but rather, in most cases, the variable interface.

7.8 Quantitative Architectural Selection for Stakeholder

Our goal now is to for each stakeholder: Biologist, Systems Biologist,

Pharmaceutical Company and Consumer identify the optimal architecture

among the eight that were systematically identified using our process.

Calculation of Value Matrix

Using a similar approach by (Kazman, 2001) we now evaluate the Value of a

particular architecture to a stakeholder by using the following formula:

Value(H ) = Arch,jSKScoreJ

Figure 7-9 contains the summary of the SKScorei across the four different

stakeholders of Biologist, Systems Biologist, Pharmaceutical Company and

Consumers.

250



Stakeholder Scoring (SKScorej)

0 Sys. Bio 40 20 30 10
0 Pharma 20 10 20 50
0 Consumer 10 70 10 10

I Biologist m Sys. Bio o Pharma 0 Consumer

Figure 7-9: Stakeholder scoring summary data.

Table 7-3 contains the results of calculating Value (Hi). Here I = to 8, and j=

1 to 4.

Value Matrix of Architecture to Stakeholder
ArchU

Pharmaceutical
Company

215
215

225
195
160
160

270(H1)

Consumers
270
240
215
215
225
195
160
160

270(H1)

272.5
245

213.75
213.75
228.75
201.25

155
155

Table 7-3: Value matrix calculation for each architecture by stakeholder.

251

H1
H2
H3
H4
H5
.H6

H7

H8
Max

oloiB gist

21540
215
215
225
195
160
160

270(H1)

210
210

220
140
140

280(iH1)

...............i __ __ I

Rating
1
2
4

4
3
5
6
6

Systems

oloiB gist

Mean



7.9 Summary

The Table in 7-3 provides a great deal of information. In Figure 7-10, this table

is plotted using a surface plot format. Along the x-axis are the different

architectures. Along the y-axis are the different stakeholders. Along the z-axis

are the Value scores evaluated using the formula from the previous discussion.

This figure serves to show graphically which architectures have the most value

to the particular stakeholder.

300-

250

200

150

100

11

H8

m0-50 uM 50-100 0100.150 0150-200 =200-250 250-300

Figure 7-10: Surface plot of Value(Hi) by stakeholder and architecture.

Conrsumer

Ba elolist

First, the results demonstrate that regardless of the stakeholder, architecture H1

provides the best alternative. H1 represents the architecture that is the

252



dynamic messaging approach and is in fact the Cytosolve architecture! What is

interesting to note is H2, involving serial processing, with model reuse is

second best architecture. This may be due to the high level of rating assigned

for security, low development and low maintenance costs.

Second, the worst architectures are H7 and H8 which are the manual or semi-

manual monolithic approaches. These are the monolithic architectures that

involve the merging of source code and conversion to a common format such as

SBML.

Third, architecture H5 is the third best architecture. This makes sense since this

architecture, while requiring migration to a common format, uses the design

elements of distributed models in a parallel processing mode. We believe that

this architecture can be very optimal for the case where a set of models are in

SBML, for example, and without having to merge them into one source code,

they can be distributed and solved. In fact, there may be cases where

competing standards may have distributed sets of integrated models using the

H5 architecture.

The Cytosolve architecture is highly flexible and can operate any mode;

however, it was designed to work in a distributed environment, either serial or

253



parallel. Thus, architectures H1, H2, H5, H6 are representative of the Cytosolve

architecture.

In conclusion, this chapter has provided a detailed formalism and a

quantitative paradigm for assessing architectures for integrating biological

pathway models. This analysis quantitatively demonstrates that for the

stakeholders considered, the Cytosolve architecture is best suited.

254



Chapter 8

3-D Animated Video of IFN
Response

8.0 Introduction

In the summer of 2005, I met Philip Pfeifer who was in the midst of a career

move from electrical engineering to biomedical visualization. In July of 2006,

Philip and I reconnected and we agreed to collaborate with some members of

his team of artisans who belonged to a virtual guild of 3-d animators. We

agreed that I would direct the video sequence and provide them an opportunity

to create a great demonstration for their future portfolio, for which they offered

to render and animate the video. This chapter provides the details of that

effort. The next section contains the storyboards for Scene 1. The third, fourth

and fifth sections contain the storyboards for Scene 2, Scene 3 and Scene 4,

respectively. Finally section six contains the video itself in DVD format.

255



In these scenes, Scene 1, 2, 3, and 4 are labeled as A, B, C, and D. Note, Scene D

animates the up regulation of IFN-Gamma, something that is not part of the

IFN model discussed previously and this scene is highly speculative. Figure 8-1

is the first outline story board.

4 repetitive animations
A. Producing IFN-Beta

1. Virus infecting cell

2. immune system response

3. Ends with Production of IFN Beta proteins

B. Producing the IRF-7 factor
1. Begins with IFN -Beta leaving cell

2. Repeat all steps (different camera angles) (shorter animations)

3. Ends with ribosome producing IRF-7

C. Producing IFN Alpha - Simplify sequence dramatically
A. Begins with IRF-7 joining IRF-3 (already present in cytoplasm)

B. IRF-7 stays within cytoplasm

C. Ends with production of IFN-Alpha.

D. Upregulation of IFN Gamma - Simplified seauence

A. Begins with IFN Alpha leaving cell

B. Beta & Alpha combine to factor transcription of IFN Gamma

C. Gamma leaves cell and reenters many cells setting off signals
D. Ends with many signals rippling thru cell (transcription of 300 proteins)

Figure 8-1: All scenes A, B, C, D story board.

256



8.1 Scene 1 - Virus Infection

Scene 1 is the virus infection phase to produce IFN Beta. Storyboards are

provided for this phase in Figures 8-2 to Figures 8-6.

Animation A - shot 1 - Harry

•Thi. is ýN,,s "U1 I a,•~ -',,· row a.., .l & Giuliani" ba,= P

. ,rlftninf Ufiur. 6 . ..)1l.-

alls~

DONE

.W& SOI Fin"I ftf I aslgn Finih *hlw hO I as T m. FýIIIA. - a- T-,I I -'fl
3113.31,. Man 3. EwM*.l 333 M*13 41.13eft 3113 3131 Usning.3U3 I 3
3131 I f w al. gn-el .31h 3.. nnning133p. r331.3

Panti 131313333

Animation A - shot 2 - Harry

l....c Ucrip 1n

DONE

is, I Ill Fiis I Mind~ - I assll
ý Ism 1 Eca, Hal, I 631 13 Is H1.y 35131 OM I l. I H. I M"

Ih [ 333.313331bshnss sw le il

Animation A- shot 3 - Geertjar
lUllho Dst.omtion

-CýW-11.fta se-winuhande " ijases, RNRauDpalin, Ule 41PANt3l133141
h.3Il3vubiU

3
1.331 313133313.33

I.M. Insets RK, la sepole. Mases
Call" 3..,.mlll..Ip.3.3~k .3331 M3 MOM3 of1 cell PO4O W o

hoeltdol aRMwc~alefolloixdlin Ceh33.1 PillRI133I,3133m.3T

l'131.1333.1.IlaknuI.313.l

1133 31.. oI 3113 C 139 3r 111 3MU 71331 3.3n 3.. 3j 343133. 3 111 313133
Lsed 0-1ODW4 EM OMI 7.- ain Maw ý oan C. MM

ew v . -de;
Iwo . llaal113, 33, 3.W.313 ases RNA33111,3 - 131

Figure 8-2: Storyboards for Scene 1.

257



Animation A- shot 3 - continued info Geertjan
%1%6 A-4 s *l ý r4.

asbu 4ta · Ot~

Animation A - shot 4- Arik
blas Oascslpttos

OadSOqule DSRONA enatatcal bealod hpualow) ottoplaedsm
Awts We stoekloagtblue)signal psresenc of05050- *- kle-t.4K nT

tiltW w-4L- h.l k'.Dtiatdoi

4i)( RF-3 potens posatlin cam a sp olars- idtls-brta swReCatt
oat do losing sVa oft RNA(ed siggte)ard the ognshdlsitsaer

m-':,JL,*rds jmal.
tee T-balls areobtroatbtlsnhec0toFplasmt d-an .'b too-ii Tt

.RF-3 pottens ihosphwiaze byttnecrig O (dark blue) phosphates
Actlot

-4 secondst F ad squiggl.t mess io, coplias sanl senatde Soff-vi

E babllos isbrhanths O acttmhe blua Dalls( 3sec)thencombo tof and
ban balls lek d in cytoplaoim headingtowardsuclbes (4 secs)

Cata M RA as d int calOhancontinuesto pa belowRN
followng he'r- andblue beg

Uglang
~ T)ONE-inernl lighting as as charactrs" e vtsible ifth CypW= asWage D O Nvolveardr

models assign Finish Mdo assign Finsth A tovomp assi g tm oam assign Finsh due
due I due CIA I

D5RNA Denniws :flE oapla Nary OC10 3 see.RRA Arik Jv.o Lggh 00n. RK Omit
-73: 00 U, Ey am- wZ 5 7? : balls coop.
W. light anddo"viboatof reonder
blue 0green 0 sec -blu
pluoph colo bob appear ai
Wtv istchto x

aid mitdo-st

Animation A - shot 4- Arik
grabs of tsm erndlplasmi retlculum
I'm askbg Sean to model a smplled version er(h Ike wha
shows n thes bottom left plc just a couple of folds and a
open spot lwhet we can have our IRFE jus pass atru one set
of folds before enteg the nucleus. WA need to showblack
dots on the relcakr n .which Is whe the rlbosomes we
aiached.

Figure 8-3: Storyboards for Scene 1.

258



h

Animation A - shot 4 continued- Arik

f

•:; i •:•ti.• ....
..l*:

Animation A - shot 4 continued- Arik

Animation A - shot 5 - Arik/Brian

Shot Demcription
oTI., ,rbwablqo1lRF-E)ispWdcllhe spnngý,pr gp- •i, :

pToee ey rentbe nucus , hty•Iw) a n atohe DNA

Action
:3 •MM descend CNA sirand
DNra a ramng sy plst to make mlan
Ca• na follim f as aached W DN

Ughtlng
. .e.

1
nal gmng so E.character re inle . -n as bkd

voic"DON E
md cls assg Fins a59 n Fosh Armnfiocomp assign arn 9 coo t sgo Foh

due ue due dce

DNA Bnan 000424 nuus- han n 0 o20 13 de 0ern 16d-W 060515 1 i'g. Bn00 0Aco cand a3dach MkV con0 .
mrendecolor

Figure 8-4: Storyboards for Scene 1.

259

d
3"~~~ur;-:

e



Animation A - shot 6 - Brian

Stot hacrIpUon
,Oilier rnsr, tcmrr (one. elar) for IFNB approach and smeon

DNA8ý -EooanA (Ignt tFln) approachn and se eks in"% of IR-E

Action

knrn46 secon.cls, descend onto DNsAd. DN•A a; rotatin SIM*/just in mete d organs:
Carara

Cma dons Si m•wa be direanmb cktlyabone d and poymere so
M KrlOzipp n S g I o m& and eayto undetwo nd

U011114 o ~.l8 010y1.d'

.i; "fac" ,,ira nucivrs as fdp
oke Wo

DONE
mods asof Fa b0 s as13 Finish alnoom Iap Oarm comp aign Fiit

due due *ue due*

Other Brin O424 nucleus Hrr 0M0410 5secdnced Bian 08M515 L.ighg. r 08050D
factors "• D•W E ard afach ' cltp.
taen yelow render

rubarea C DFlor

or
4•: ." .'..

Animation A - shot 7 - Brian

Shot DescrIpuon
Enry Ihe a fm of a ght flash bekav poSmerase ign'er tie rafs0 epaon

.P mar m -mansrparer (light blue) rmsas ay hom I actors and rVa s
vr mc DNA e Pmrml

4 mssl.063.611005 ,j bsb..Pl ~ OPsr, Se.aon s O .d:"i..

•Camera sroZ oom in to se chlv y a unzipping And fcoll the poaymrnne astrams h•nds in ONA bnnd

hussng
I flsh implyenergi

-I thml can ake twls unPms pocess by msng t DNA lujf te
plmm s )assmsk c Ids Ierses the DNA SO al need do isdo*

•e ofn. • ~th•e polymere can hile the transai fromaflnanediTIw d apm ouPde.'Thes almosot irnId la we

sat l a band f SRNA ' sS odel in ac so it like its being

Yokce everralc. anr

models asia Fimh g ao s lsgn sh iF A omttoomp assign m s onP asin FmSh
due due, due due

P01w tan May15 nudMous Harry O SIClasO h then oh May 15 Ligtlg. IBrian *ni

unatp yd mas • ONA
,d colr" strandjigingDA Sm,:d PPDNAt

Animation A - shot 7 - Brian
DOslals oi DNA muIIation

Figure 8-5: Storyboards for Scene 1.

260

~~7n.* j~l* 7
**C*I~C~,

~J4 nCf ~u~

.:
:

... ''I..

i



Animation A - shot 8 - BrianlDennis

Messeoeg RN g rand lengw as pdulyrnase races on ONg A
SON elMNA0 5 O0d0O eath .0*010l7m

Actlio
6 seconds.p*em z o scm eln. std a o aflrd lM oa iep

Caemra
Cam o ns.o.Oufm cm0 00C•5lr, Cas t.1 s• termsaner
u sIw

lei fl otpRNA
uenkow

ewco t j;

DONE
mdedk, aadi Frubh ftda "sign Munal- I asi I n•'n •rns Irsa cr • -

M " 0 I0- H a l 010410 1 
6 m o t a D m • 015 5 I 1 1.1 0 ' D I 0

c'alpm rndr

• i / •' ..

Animation A - shot 9 - Dennis/Arik/Phiip

a . : b . . .. ,•

C&D t DONE
Dermis lets color the IFN-Beta all riodt orag

"Is 10 F1 shI haf sh o fih as aso 0 use F Ist
ue ea

do C•O 0i0 Mek 0 s71 00 10 Dfl 00710 UIqg. ery 00717

At's

Animation A - shot 9 - DennislSean

Details on Sean's model to match Geertjan's

~t·r

40I~Y· 5 a~~ sbipf

Sic A
1Ac WGAt&

Figure 8-6: Storyboards for Scene 1.

261

I



8.2 Scene 2 - IFN Signaling to IRF-7 Production

Scene 2 is the IFN-Beta signaling to produce IRF-7. Storyboards are provided in

Figures 8-7 to Figures 8-11.

Figure 8-7: Storyboards for Scene 2.

262



Figure 8-8: Storyboards for Scene 2.

263



Figure 8-9: Storyboards for Scene 2.

264



Figure 8-10: Storyboards for Scene 2.

265



Figure 8-11: Storyboards for Scene 2.

266



8.3 Scene 3 - Up regulation of IFN-Alpha
Scene 3 is the Up regulation of IFN-Alpha. Storyboards are provided in Figures

8-12 to Figures 8-13.

Figure 8-12: Storyboards for Scene 3.

267



Figure 8-13: Storyboards for Scene 3.

268



8.4 Scene 4 - Up regulation of IFN-Gamma

Scene 4 is the Up regulation of IFN-Gamma. As aforementioned, this scene is

highly speculative but serves to show at a high-level how the up regulation of

IFN-Gamma serves to provide a broad protection against viruses by IFN-

Gamma serving to up-regulate numerous genes for protecting the cell from

viral attack. Storyboards are provided in Figures 8-14 to Figures 8-18.

Animation D - shot 1 - Harry

*Z*my. Sod M!WW4.

-1VWII gV;_::·fgnb·"717 F-Nr

.. ..... ..

Animation 0 -shot 2.- Geelan

Ca-w

Hwy.

revie 2 shotssi t4a4k-~r .wa~~~ vrla. qnfan. -dKr*. IV~·1PV~ V Lr*~~r

Figure 8-14: Storyboards for Scene 4.

269



Animaton D sot 3- Gee arry A

Harry - lets make sigtnal lavedar
To coincide with IFN Alpha color

ertjan - my mistake the

I I • I- : 1- : .II 1: ~

ot 4- Peter

phosphates bonding toaftier the 2 uats4 attach
then as well

I. r I 14 II ý O10 I Hwy Iy

Animao••iD -ishot5 -Peter

.. . a•... h . ..

Stat and2 with their respective phosph
IAtith to iF:.. ~:3 with its 2 phosphatos
Alredy attached ..

S:: .

I I - ISkl s Pea inZm . ...ann . .. .pa

Figure 8-15: Storyboards for Scene 4.

270

I
::::`i

mar

,,
:::il I Ldn

-- -- -

1 " . .. .

I I I III I I

:•.. kD ;.'.,

a m.r



Animation D - shot 6 - Peter

C arm~r~ candbpe~~StW D ~ aurt rr~m-A- Wn flýo E -7 fk.,g d,

Animation D - shot 7 - Brian

S ahecdpeon

Ughtk-g

Lets make niessenger RNA
lavendar for AnimD

Animation D - shot 8 - Dennis/Arik

Sbot~

Lets make messenger RNA
lavendar for AnimD

Dennis doing D8A. Arik D8B

Figure 8-16: Storyboards for Scene 4.

271

~mrCr
aaldl i 1~

pas

~
. . .. 1. h. .D - I F.

5em amnh fO?"ll Be~ 0mW Hm

i ·
t • ' t •' 1

Sn I• • 'o

1..... .. ýh(4:- I.... D5 ý .. .. ..

emn



Animation bD - shot- 9
Dennis/Philip
... ..... :: .

c-•••••. :::... :.::

U-MM

lavendar forAnimD and 1FN-Ga
z . mz• .. .... ..:. ... :.:

.. ... .. . . ...... ..
.........

.... .... ....... .....::.....

AnimationD -shot 10

C-,-~~o~r~ d~~o~a u

• . +M,•-

..v

•

. . . .

..... . ....

Animation D - shot II -Geeran

Gee.an wil model the orange pipes .i•h. ..p t::d.

.,mm .. ... 0 ." -.
" . . :

Figure 8-17: Storyboards for Scene 4.

272



ation D - shot 12 - Goertin Ha rry
da"

1g,

edfr phostphoration - video cznds
...ig. .. . .

.W.. 6. . .A.Y W. y Does . .Y
I..

:::..

3 - Harry

. .

~::iprIr-E111:

Animation D -shot5- Peter

Statl and2 with their respective phom
Attach to SGF3 with its 2 phosphatt
Alreadv a tachod

... . INV,? I ow.. I .

Figure 8-18: Storyboards for Scene 4.

273



8.5 Video Animation

This thesis also includes a full video of the scenes described above and is

included herein with this thesis in a video DVD format. On the DVD Scene 1

can be found on the menu as Infection and IFN-Beta. Scene 2 can be found on

the menu as IRF-7. Scene 3 can be found on the menu as IFN-Alpha. We did

not include the SOCS1 regulation as that component was discovered after the

making of the video. However, Scene 4 has a "bonus" conceptual scene of IFN-

Gamma.

8.6 Summary

The video animation done for this thesis is an attempt to conceptually illustrate

the various pathway mechanisms involved in the IFN response to virus

infection. This video provides the key steps involved in this IFN system. We

believe that videos such as these can be instructive in the classroom setting to

convey complex pathway dynamics, currently represented using simple chalk

and board or static diagrams using presentation graphics. At MIT, this video

has been used in one of core systems biology courses BE440, a course which the

author took himself in 2005 to illustrate the dynamics of the IFN pathway.

274



Students were asked in the lass to view the video and critique elements of the

pathway demonstrate their understanding. We look forward to compiling this

feedback and enhancing the video to produce more realistic depiction of the

IFN response.

275



Chapter 9

Conclusions
The research objective of this thesis was to present a new architecture for

integrating biological pathway models. We have met this objective by: 1.

Defining and implementing an initial prototype of Cytosolve, a scalable

computational architecture for integrating biological pathway models; 2.

Testing the architecture and validating its accuracy by applying it to solve a

known problem: the Kholodenko EGFR model; 3. Demonstrating the efficacy of

the architecture by building an integrative model of the IFN response to viral

infection by integrating multiple models created by different authors

worldwide in varying formats, and 4. Presenting a new quantitative method for

evaluating different architectures for integrating biological pathway models.

276



9.0 Key Findings

This research has resulted in the following key findings:

* First, using the new quantitative methodology for evaluating

architectures developed in this, we have found that the distributed

architecture provides the most optimal architecture for integrating

biological pathway models, unanimously across the entire spectrum of

stakeholders.

* Second, the initial literature review of experimental research

substantiates the time scales predicted by the integrated model of IFN

response, developed in this thesis. This integrative model of IFN

immune response can now serve as a vehicle for further studies,

alongside experimental research, to provide greater understanding of the

IFN response mechanism.

* Third, the Cytosolve architecture has demonstrated through initial tests

that it offers a far easier way to maintain an integrated model, in which

various elements of that model may be constantly changing. This

beneficial feature of Cytosolve, in addition to many others, makes it a

scalable computational architecture for building modeling complex

cellular functions, and eventually for modeling the whole cell.

277



9.1 Future Research

This thesis serves as a foundation for many new areas of research as itemized

below:

* Spatial scale variation. In this thesis we have not considered changes in

spatial scale. We believe that the architecture, based on its modular

approach and support for multiple compartments, can support varying

spatial scales. However, more testing will have to be performed to

understand the computation times required to fully support such spatial

variations.

* Adaptive time stepping of the Controller. Currently, all models are invoked

using one constant time step, which is taken to be the fastest time step

among the ensemble of models. This is not optimal, as some models

may be varying slower than others. Additional effort is required to

implement intelligent adaptive time stepping at the Controller level to

observe the time scales of different models and invoke them only when

necessary. Such an effort will result in improved computation time

performance.

* Implementation and integration with emerging ontologies. The

Cytosolve PID has support for integrating other ontologies such as

MIRIAM; however, future research needs to be done to fully integrate

278



MIRIAM and other such ontologies. This effort will enable Cytosolve to

support many more model formats with greater ease, leveraging

standards that the systems biology community globally accepts.

* Addition of new pathways to the IFN integrated model. There is much scope

for continued research in growing the current integrated IFN response

model. This will involve finding new add-on models that affect the IFN

system and then integrating those into the existing integrated model.

Such additions will provide a mechanism for others to evaluate the

performance of their own particular models when integrated into the

IFN response system. In addition, linking the IFN integrated model to

other systems such as TGF-Beta up regulation, for example, can provide

insights and direction to support on going experimental research.

* Web-enabled GUI. One area of development will be to web-enable the

current user interface so an individual scientist can more easily integrate

their local model from their desktop to an integrated ensemble. The goal

of this future research should be to open a formal public portal for

worldwide use.

* Video realism. While a great deal of work was invested in creating the

video, there are many elements that can be updated to the video to make

it far more biologically realistic. Future efforts could include adjusting

the relative spatial sizes of the different graphic objects (e.g. virus,

membrane, etc.) to match biological reality. In addition, the time scales

279



are not well represented in the video. More accurate time scales would

enable one to see the rate limiting steps in the pathway.

280



Appendices

A. WSDL Error Management

* ProcessCatalogServiceLocator.java
*

*/

package pathwaySolver.ws;

public class ProcessCatalogServiceLocator extends org.apache.axis.client.Service
implements pathwaySolver.ws.ProcessCatalogService {

Fublic ProcessCatalogServiceLocator( {

public ProcessCatalogServiceLocator(org.apache.axis.EngineConfiguration config) {
super(config);

}
public ProcessCatalogServiceLocator(java.lang.String wsdlLoc,

javax.xml.namespace.QName sName) throws javax.xml.rpc.ServiceException {
super(wsdlLoc, sName);

// Use to get a proxy class for pathwaySolver
private java.lang.String pathwaySolver_address=

"http://localhost:8080/ axis/services/ pathwaySolver";

public java.lang.String getpathwaySolverAddress() {
return pathwaySolver address;

}
// The WSDD service name defaults to the port name.
private java.lang.String pathwaySolverWSDDServiceName = "pathwaySolver";

public java.lang.String getpathwaySolverWSDDServiceName() {

281



return pathwaySolverWSDDServiceName;

public void setpathwaySolverWSDDServiceName(java.lang.String name) {
pathwaySolverWSDDServiceName = name;

public pathwaySolver.ws.ProcessCatalog getpathwaySolver() throws
javax.xml.rpc.ServiceException {

java.net.URL endpoint;
try {
I endpoint = new java.net.URL(pathwaySolver_address);

catch (java.net.MalformedURLException e) {
throw new javax.xml.rpc.ServiceException(e);

return getpathwaySolver(endpoint);

public pathwaySolver.ws.ProcessCatalog getpathwaySolver(java.net.URL
portAddress) throws javax.xml.rpc.ServiceException {

try {
pathwaySolver.ws.PathwaySolverSoapBindingStub stub = new

pathwaySolver.ws.PathwaySolverSoapBindingStub (portAddress, this);
stub.setPortName(getpathwaySolverWSDDServiceName();

return _stub;
}
catch (org.apache.axis.AxisFault e) {

return null;
}

public void setpathwaySolverEndpointAddress(java.lang.String address) {
pathwaySolver_address = address;

/**
* For the given interface, get the stub implementation.
* If this service has no port for the given interface,
* then ServiceException is thrown.
*/

public java.rmi.Remote getPort(Class serviceEndpointInterface) throws
javax.xml.rpc.ServiceException {

try I
if

pathwayySolver.ws.ProcessCatalog.class.isAssignableFrom(serviceEndpointInterface))

pathwaySolver.ws.PathwaySolverSoapBindingStub _stub = new
pathwaySolver.ws.PathwaySolverSoapBindingStub(new
java.net.URL(pathwaySolveraddress), this);

stub.setPortName(getpathwaySolverWSDDServiceName0);
return _stub;

catch (java.lang.Throwable t) {
throw new javax.xml.rpc.ServiceException(t);}

282



throw new javax.xml.rpc.ServiceException("There is no stub implementation for
the interface: "+ (serviceEndpointInterface == null ? "null":
serviceEndpointInterface.getName 0));

/**
* For the given interface, get the stub implementation.
* If this service has no port for the given interface,
* then ServiceException is thrown.
*/

public java.rmi.Remote getPort(javax.xml.namespace.QName portName, Class
serviceEndpointInterface) throws javax.xml.rpc.ServiceException {

if (portName == null) {
return getPort(serviceEndpointInterface);

java.lang.String inputPortName = portName.getLocalPart0;
if ("pathwaySolver".equals(inputPortName)) {

return getpathwaySolver(;
I
else {

java.rmi.Remote _stub = getPort(serviceEndpointInterface);
((org.apache.axis.client.Stub) _stub).setPortName(portName);
return _stub;

public javax.xml.namespace.QName getServiceName() {
return new javax.xml.namespace.QName("urn:pathwaySolver",

"ProcessCatalogService");

private java.util.HashSet ports = null;

public java.util.Iterator getPorts 0 I
if (ports == null) {

ports = new java.util.HashSet();
ports.add(new javax.xml.namespace.QName("urn:pathwaySolver",

"pathwaySolver"));
I
return ports.iterator();

/**
* Set the endpoint address for the specified port name.
*/
public void setEndpointAddress(java.lang.String portName, java.lang.String

address) throws javax.xml.rpc.ServiceException {

if ("pathwaySolver".equals(portName)) {
setpathwaySolverEndpointAddress(address);

else
{// Unknown Port Name

throw new javax.xml.rpc.ServiceException(" Cannot set Endpoint Address for
Unknown Port" + portName);

I

283



* Set the endpoint address for the specified port name.
*/
public void setEndpointAddress(javax.xml.namespace.QName portName,

java.lang.String address) throws javax.xml.rpc.ServiceException {
setEndpointAddress(portName.getLocalPart 0 , address);

}

284



B. Implementation of SBML Solver

This Appendix provides details of the implementation of a distributed version

of the SBML Solver.

Initializing the Solver

1) External computer sends 'createSolver' command to the WSDL web service.

The 'createSolver' command has the parameters of model filename, amount of

time that the model will be simulated, and the number of time steps that will be

used to simulate the model. (Note that these last two parameters control how

long each time step will be)

2) WSDL web service receives the 'createSolver' command, and creates an

SolverController using the above parameters.

3) SolverController constructs an LSolver. Solver calls 'initSolver' in the

Cytosolve_C code, which takes in the above parameters and loads the specified

model, initializing everything that is needed for model simulation.

4) SolverController enters a wait loop that waits for an input file from the

WSDL web service.

285



Simulating a single time step

1) External computer sends 'step' command. The 'step'

following parameters: species to change concentration

concentration values for those species, and the species for

computer wants results.

command has the

values for, new

which the external

2) WSDL web service receives 'step' command. The web service takes the

parameters and writes them out to the input file that SolverController is

waiting for. The WSDL web service then enters a wait loop, waiting for an

output file.

3) The SolverController wait loop sees the new input file. It then opens the file,

parses the parameters, and calls 'step' in Solver. The 'step' function in Solver

then calls 'runSolver' in the Cytosolve_C code, which replaces species

concentration values as specified, simulates over a single time step, then returns

results back to the 'step' function in Solver. The 'step' function in SBMLSolver

in turn returns the result to SolverController.

4) SBMLSolverController writes out results to the output file that the WSDL

web service is waiting for. The SBMLSolverController also destroys its input

file.

286



5) The WSDL web service sees the output file and parses the results. The

results are returned to the external computer, and the output file is destroyed.

Destroying the Solver

1) External computer sends 'kill' command.

2) WSDL web service receives 'kill' command, writes out 'kill' to the input file

that the SolverController is waiting for.

3) SolverController sees input command parses out 'kill'. It then calls Solver's

'cleanup' function, which calls 'destroySolver' in the Cytosolve_C code.

4) SolverController destroys input file, and stops execution.

287



Equations for IFN Solution Using Monolithic
Approach

Reactions Math

[virus]-[ssPRNAJ dRxn
-= k, [virus]

dt

-k .[ssNA ]
dt

[dýNA] degradation dRxn
-k. [dsRWA]dt

[VAK] activation dRxn

dt

[VAK] degradation dRxn

di

[IRF-3]}---4[IRF-3Pc]
dRxn kI1 6 [IRF -3] [VAK]

d k,, [IRF -3Pc]
d krS + k 6[IRF - 3] + k

ky,

[IRF-3Pc•e---[IRF-3Pn dRxn
d- = k [IRF -3Pc]-k,r [IRF -3Pn]] dt

[IFN-beta TAn] dRxn k, .[ IRF - 3Pn] +a IRF - 7Pn]
production dt [IRF - 3Pn]+k,, [IPR -7Pn]+k,,

[IRF-beta dRxn --bta d [ IFN- beta _ RA4An ]
RNAn]---ýIFN-beta dt

[IFN-beta RNAc] d[xn
-kio- [ IFN- beta _ RNAc ]degradation dt

[.•N-beta] production aRxn
= kn • [IFN -beta _ RVAc ]at

[cýTN-beta] -- [IFN-beta] drn = [ et]
di

[ItN-beta] degradation dRxn
= k3. [ IFN -beta]

dt

[IFN-alpha EJAN dRxn k .E [IRF - 7Pn]

production dt [IRF -7Pn]+k$,

Figure AC-1 - Differential equations for integrated monolithic approach.

288

C.



[IFN-alpha d/-n =k, d [IFN- alpha _ R n]
RAn] '---[IFN-alpha dt

[IFN-alpha t~AF ] dirxn
-- = kl, [IFN -alpha_ RNVAc]

degradation dt

[..Ij-alpha] production dlRn
k= k, IFN- alpha_ RNAc]

dt

[.f•J.-alpha] •R-n
--a = kj, [clFV - alpha]

- [IFN-alpha] t

[IFN-alpha] degradation dR=n
d = k, ,[ IFN- alpha]
dt

[JAK] & [IFNAR] dRxn S= k, .[JAK]. [IFNAR -k,z- [ITFARJ]
association dt

[IFNARJ] & [IFN-alpha] dgrn = [IFNAR]k 1 [ IFN- alpha] -[IFNrARf] -k [IFN- alpha -bound
association dt

[IFNARTI] & [IFN-beta] dRxn-- = k .• [[IFN- beta] [IFNARJ]- k,13 [IF -beta -bound]
association dt

[IFN-alpha-bound] dxn = k ý, 3 [IFN- alpha - bound f'

-k, 3 [FN- alpha - bound _ 2]

[IFN-beta-bound] d!•-n kN-be-bou], [IFN- beta -boundf] - k 3 [IFNR-beta -bound 2]

[IFN-alpha-bound] dRan
S d = k, [IFN- alpha - bound _ 2]

[IFN-beta-bound] dcnm
- = k, • [IFN -beta -bound _ 2]

[IFNAR2*] dREn kI, [ IFNAR2*] -[SHP2]

9dt k x, + k,•PPNWY1a44 t [INAR2*]+ k 19 + k
k, 19

[IFNBR2*] dRran =k, .[IFTNBR2*] -[SHP2]

igre AC-2 - dt k.10, + kl[IFRvBR2*]+ +

k,.19

Figure AC-2 - Differential equations for integrated monolithic approach.

289



[IFNAR2*1 & [ZIAT~) dor - k, .[JFNAR2*].[STATc*]-k, ,.[IFNAR2*STATc]
association dt

[IFNBR2*] & [ETi*] d - ki7 .[IFMBR2*].[STATc*]- k,17 [IF•JBR2*STATc]
association dt

[=QAIQ1 RnbsbM1M3Uon dRrn kc (JUFNAR2*]+[(FNBR2*])4STATc]

[STATc]+ k , +k
k;I1

SdR~n kn [PPX] -[STArT*]
4fnkzagatian I= [STATc*]+k,21 + Ck2

k,31

M[T("J & [( Q*]A din =_ k,.2 ( [ STATc*] - k,, [STATc *-STATc]
association dt
[ •TAT•*C] ~ 6~~. dRoodlzn _ k=jls [STATc*]2 - ks -[STATc * 2]

at

(g'[gg*• dRxn k,, [ PPX .[STATc*2)

dt [STATc * 2]+k, +n

[,EIA2g*) 2transport to dR .
[ = ks, l [STA Tc * 2]nucleus dt

[14AT~Ql*-iRATA] dcn k,, [PPN] [STATn * 2]

[STATn * 2]+ k , + 26

[W5T *2] dissociation daRn =k,,s [STATn * 2] -kýs [STATn*] [STATn*]
dt

[ITAI-- & k•-,, -[STATn]-[STATn*] - k, -[STATn*-STATn]
association dt

[S•iT] d&nR k, [PPNJ [STATn*]

Al-butm d [STATn*] + ,1 + Jk
ki.,

-- export to d k [STATn]

[~tIa*-STATn-IRF9n] d•Rn =-r~ .[STAT *-STATn-,RPn]
dissociation dt

-k,3~1 [STATn *-STATn] [nIRF- 9]

Figure AC-3 - Differential equations for integrated monolithic approach.

290



[nIRF-9] export to dR ]
, k. [nlRF- 9]

[cIRF-9] and [gl,'*2] dR4n -i,,n -[STATc*2][clRF-9]-kn .[STATc*2-IRF9c]
association dt

[TA*2-IRF9fc] =dR- k, [STA Tc * 2 -IRF9c]
transport to nucleus dt

[W1Ta*2-RF9n] dRma k,,. [PPN] [STATn*2-IRF9n]

[STATn*2- IRF9n]+ k,,, +k,,
i,,,

[IRF-7 B~ MdRm ks,. [STATn*2- IRFPn]
production dt [STATn* 2 - IRFPn] + kg,

[IRF-7 RNnJ-{[IRF-7 dRmn k [RF-7RAn
9KW] dt
[IRF-7 4IRAF] dRTm[IRF-7 R ] dn = ke [ IRF- 7 RNAc]
degradation dt

[IRF-7Pc] production dRm [R- ]
dt

(IRF-7Pc] degradation dR = k [R- 7 _ P]
=k, .[IRF-7 Pc]dt

[IRF-7Pc][---[IRF-7Pn dRxn
t = k,, [IRF- 7Pc].--k,, [IRF7- Pn]

[SOCSI U p dRm ic, -[SOCSl_mRNIAn)
production dt [SOCSl_mR4An] + k,

[ = k, -[SOCSI_mRAn
export to QUAJ Ot C R

[socsl~ •gg dR •.
- ki,, [SOCS1 mRNAc]

degradation dt

[SOCSI] protein dRm = k1 .[SOCS mRM4c]

production dt

[SOCS1] degradation d [O I
- k- -[50(51]dt

[SOCS1] & [IFNAR2*] dRr = k,z, [IFNAR2*]. [SOCS] -k,,, [[FAR2 *-SOCS1]
association dt

Figure AC-4 - Differential equations for integrated monolithic approach.

291



Bibliography
Aderem, A. (2005) Systems biology: its practice and challenges, Cell, 121, 511-513.

Akarsu, E., Fox, F., Furmanski, W., Haupt. T. (1998) WebFlow-high-level
programming environment and visual authoring toolkit for high performance
distributed
computing.. Proceedings of Supercomputing '98: High Performance Networking and
Computing. IEEE Computer Society, 1-7.

Alon, U. (2003) Biological networks: the tinkerer as an engineer, Science, 301, 1866-1867.

Alvarez-Vasquez, F., Sims, K.J., Hannun, Y.A. and Voit, E.O. (2004) Integration of
kinetic information on yeast sphingolipid metabolism in dynamical pathway models, J
Theor Biol, 226, 265-291.

Andersen, D.H. (1983) Compartmental Modeling and Tracer Kinetics. Springer, Berlin.

Arkin, A.P. and Fletcher, D.A. (2006) Fast, cheap and somewhat in control, Genome Biol,
7,114.

Asthagiri, A.R. and Lauffenburger, D.A. (2000) Bioengineering models of cell signaling,
Annu Rev Biomed Eng, 2,31-53.

Bader, J.S. and Chant, J. (2006) Systems biology. When proteomes collide, Science, 311,
187-188.

Baitaluk, M., Qian, X., Godbole, S., Raval, A., Ray, A. and Gupta, A. (2006) PathSys:
integrating molecular interaction graphs for systems biology, BMC Bioinformatics, 7,55.

Bassingthwaighte, J.B., Chizeck, H.J., Atlas, L.E. and Qian, H. (2005) Multiscale
modeling of cardiac cellular energetics, Ann N Y Acad Sci, 1047, 395-424.

Bhalla, U.S. (2003) Understanding complex signaling networks through models and
metaphors, Prog Biophys Mol Biol, 81, 45-65.

292



Bocharaov (1994) Mathematical model of antiviral immune response III. Influenza A
virus infection., Journal of Theoretical Biology, 167, 323-359.

Brooks, F. (1975) The mythical man month: essays in software engineering.

Bulatwicz, T.F. (2006) SUPPORT FOR MODEL COUPLING: AN INTERFACE-BASED
APPROACH. Department of Computer and Information Science. University of Oregon,
216.

Campagne, F., Neves, S., Chang, C.W., Skrabanek, L., Ram, P.T., Iyengar, R. and
Weinstein, H. (2004) Quantitative information management for the biochemical
computation of cellular networks, Sci STKE, 2004, pl11.

Cannon, W.B. (1933) The Wisdom of the Body. Norton, New York.

Cella (1999) Maturation, Activation, and Protection of Dendritic Cells IInduced by
Double-stranded RNA, Journal of Experimental Medicine, 189, 821-829.

Cerami, E.G., Bader, G.D., Gross, B.E. and Sander, C. (2006) cPath: open source
software for collecting, storing, and querying biological pathways, BMC Bioinformatics,
7, 497.

Clements (2007) An Economic Model for Software Architecture Decisions. In IEEE (ed),
First International Conference on Economics of Software and Computation.

Cooley, M. (1987) CYTOKINE ACTIVITY AFTER HUMAN BONE MARROW
TRANSPLANTATION: Production of Interferons by Peripheral Blood Mononuclear
Cells from Recipients of HLA-Identical Sibling Bone Marrow Transplants, Journal of
Immunology, 138.

Cuellar, A.A., Lloyd, C.M., Nielsen, P.F., Bullivant, D.P., Nickerson, D.P., Hunter, P.J.
(2003) An Overview of CellML 1.1, a Biological Model Description Language,
SIMULATION, 79, 740-747.

Dabous, F.T. (2005) Estimating pattern consequences for the architectural design of e-
business applications. 7th International Conference on Enterprise Information Systems
ICIES, Miami, USA, 248-254.

Davidson, M.W. (2007) Eukaryotic Animal Cell. Molecular Expressions, Tallahassee.

293



Dewey, C.F. (2006) Personal communication. In Ayyadurai, S. (ed). Cambridge,
Personal communication.

Dhar, P., Meng, T.C., Somani, S., Ye, L., Sairam, A., Chitre, M., Hao, Z. and Sakharkar,
K. (2004) Cellware--a multi-algorithmic software for computational systems biology,
Bioinformatics, 20, 1319-1321.

Duarte, N.C., Becker, S.A., Jamshidi, N., Thiele, I., Mo, M.L., Vo, T.D., Srivas, R. and
Palsson, B.O. (2007) Global reconstruction of the human metabolic network based on
genomic and bibliomic data, Proc Natl Acad Sci U S A, 104, 1777-1782.

Endy, D. and Brent, R. (2001) Modelling cellular behaviour, Nature, 409, 391-395.

Gianchandani, E.P., Brautigan, D.L. and Papin, J.A. (2006) Systems analyses
characterize integrated functions of biochemical networks, Trends in Biochemical
Sciences, 31, 284-291.

Gilbert, D., Fuss, H., Gu, X., Orton, R., Robinson, S., Vyshemirsky, V., Kurth, M.J.,
Downes, C.S. and Dubitzky, W. (2006) Computational methodologies for modelling,
analysis and simulation of signalling networks, Brief Bioinform, 7,339-353.

Glick, N. (2006) Interferon and its role in immune health. Center for Immune Research.

Gonzalez, P.P., Cardenas, M., Camacho, D., Franyuti, A., Rosas, 0. and Lagunez-Otero,
J. (2003) Cellulat: an agent-based intracellular signalling model, Biosystems, 68, 171-185.

Hancioglu, B., Swigon, D., Clermont, G. (2007) A dynamical model of human immune
response to influenza A virus infection, Journal of Theoretical Biology.

Hodgkin, J. (2001) What does a worm want with 20,000 genes?, Genome Biology, 2, 1-4.

Hood, L., Heath, J.R., Phelps, M.E. and Lin, B. (2004) Systems biology and new
technologies enable predictive and preventative medicine, Science, 306, 640-643.

Hood, L. and Perlmutter, R.M. (2004) The impact of systems approaches on biological
problems in drug discovery, Nat Biotechnol, 22, 1215-1217.

294



Hornberg, J.J., Bruggeman, F.J., Westerhoff, H.V. and Lankelma, J. (2006) Cancer: a
Systems Biology disease, Biosystems, 83, 81-90.

Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, J.C., Kitano, H., Arkin, A.P.,
Bornstein, B.J., Bray, D., Cornish-Bowden, A., Cuellar, A.A., Dronov, S., Gilles, E.D.,
Ginkel, M., Gor, V., Goryanin, II, Hedley, W.J., Hodgman, T.C., Hofmeyr, J.H., Hunter,
P.J., Juty, N.S., Kasberger, J.L., Kremling, A., Kummer, U., Le Novere, N., Loew, L.M.,
Lucio, D., Mendes, P., Minch, E., Mjolsness, E.D., Nakayama, Y., Nelson, M.R., Nielsen,
P.F., Sakurada, T., Schaff, J.C., Shapiro, B.E., Shimizu, T.S., Spence, H.D., Stelling, J.,
Takahashi, K., Tomita, M., Wagner, J. and Wang, J. (2003) The systems biology markup
language (SBML): a medium for representation and exchange of biochemical network
models, Bioinformatics, 19, 524-531.

Hunter, P., Borg, T. (2003) Integration from proteins to organs: the Human Physiome
project, Nature Reviews Molecular Cell Biology, 4, 237-243.

Hunter, P., Smith, N., Fernandez, J. and Tawhai, M. (2005) Integration from proteins to
organs: the IUPS Physiome Project, Mech Ageing Dev, 126, 187-192.

Hwang, D., Smith, J.J., Leslie, D.M., Weston, A.D., Rust, A.G., Ramsey, S., de Atauri, P.,
Siegel, A.F., Bolouri, H., Aitchison, J.D. and Hood, L. (2005) A data integration
methodology for systems biology: experimental verification, Proc Natl Acad Sci U S A,
102, 17302-17307.

Ideker, T. and Lauffenburger, D. (2003) Building with a scaffold: emerging strategies
for high- to low-level cellular modeling, Trends Biotechnol, 21, 255-262.

Isaacs, A., Lindenmann, J. (1957) Virus Interference. I. The interferon, Proc. Roy. Soc.
Lond. B Biol. Sci., 147, 258-267

Kazman, R., Asundi, J. (2001) Quantifying the costs and benefits of architectural
decisions. In IEEE (ed), The 23rd International Conference on Software Engineering. IEEE,
297-306.

Keller, E.F. (2007) A clash of two cultures, Nature, 445, 603.

Kholodenko, B.N., Demin, O.V., Moehren, G. and Hoek, J.B. (1999) Quantification of
short term signaling by the epidermal growth factor receptor, J Biol Chem, 274, 30169-
30181.

295



Kierzek, A.M. (2002) STOCKS: STOChastic Kinetic Simulations of biochemical systems
with Gillespie algorithm, Bioinformatics, 18, 470-481.

Kimmel, A.R., Parent, C. A. (2003) The signal to move: D. discoideum go orienteering,
Science 300, 1525-1527

Kitano, H. (2000) Perspectives on systems biology, New Generation Computing, 18, 199-
216.

Kitano, H. (2001) Foundations of Systems Biology. The MIT Press, Cambridge.

Kitano, H. (2002) Computational systems biology, Nature, 420, 206-210.

Kitano, H., Funahashi, A., Matsuoka, Y. and Oda, K. (2005) Using process diagrams for
the graphical representation of biological networks, Nat Biotechnol, 23, 961-966.

Kitney, R., Dollery, C. (2007) Systems Biology: a vision for engineering and medicine.
In Engineering, A.o.M.S.a.T.R.A.o. (ed).

Klipp, E. and Liebermeister, W. (2006) Mathematical modeling of intracellular
signaling pathways, BMC Neurosci, 7 Suppl 1, S10.

Klipp, E., Nordlander, B., Kruger, R., Gennemark, P. and Hohmann, S. (2005)
Integrative model of the response of yeast to osmotic shock, Nat Biotechnol, 23, 975-982.

Krueger, C.W. (1992) Software reuse, ACM Computing Surveys (CSUR), 24,131-183.

Laue, M.v. (1913) Kritische Bemerkungen zu den Deutungen der Photoframme von
Friedich und Knipping, Physikalische Zeitschrift, 14, 421-423.

Lauffenburger, D.A. (2000) Cell signaling pathways as control modules: complexity for
simplicity?, Proc Natl Acad Sci U S A, 97, 5031-5033.

Lauffenburger, D.A. (2003) Four M's of Systems Biology. MIT, Cambridge.

Le Novere, N., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M., Dharuri, H., Li, L.,
Sauro, H., Schilstra, M., Shapiro, B., Snoep, J.L. and Hucka, M. (2006) BioModels

296



Database: a free, centralized database of curated, published, quantitative kinetic
models of biochemical and cellular systems, Nucleic Acids Res, 34, D689-691.

Le Novere, N., Finney, A., Hucka, M., Bhalla, U.S., Campagne, F., Collado-Vides, J.,
Crampin, E.J., Halstead, M., Klipp, E., Mendes, P., Nielsen, P., Sauro, H., Shapiro, B.,
Snoep, J.L., Spence, H.D. and Wanner, B.L. (2005) Minimum information requested in
the annotation of biochemical models (MIRIAM), Nat Biotechnol, 23, 1509-1515.

Le Novere, N., Finney, A., Hucka, M., Bhalla, U.S., Campagne, F., Collado-Vides, J.,
Crampin, E.J., Halstead, M., Klipp, E., Mendes, P., Nielsen, P., Sauro, H., Shapiro, B.,
Snoep, J.L., Spence, H.D. and Wanner, B.L. (2007) Minimum information requested in
the annotation of biochemical models (MIRIAM), Nat Biotechnol, 23, 1509-1515.

Le Novere, N. and Shimizu, T.S. (2001) STOCHSIM: modelling of stochastic
biomolecular processes, Bioinformatics, 17, 575-576.

Lindon, J.C., Holmes, E. and Nicholson, J.K. (2006) Metabonomics techniques and
applications to pharmaceutical research & development, Pharm Res, 23, 1075-1088.

Liu, E.T. (2005) Systems biology, integrative biology, predictive biology, Cell, 121, 505-
506.

Loew, L.M. (2002) The Virtual Cell project, Novartis Found Symp, 247, 151-160;
discussion 160-151, 198-206, 244-152.

Ma'ayan, A., Jenkins, S.L., Neves, S., Hasseldine, A., Grace, E., Dubin-Thaler, B.,
Eungdamrong, N.J., Weng, G., Ram, P.T., Rice, J.J., Kershenbaum, A., Stolovitzky, G.A.,
Blitzer, R.D. and Iyengar, R. (2005) Formation of regulatory patterns during signal
propagation in a Mammalian cellular network, Science, 309, 1078-1083.

Machne, R., Finney, A., Muller, S., Lu, J., Widder, S. and Flamm, C. (2006) The SBML
ODE Solver Library: a native API for symbolic and fast numerical analysis of reaction
networks, Bioinformatics, 22, 1406-1407.

Mendes, P. and Kell, D.B. (2001) MEG (Model Extender for Gepasi): a program for the
modelling of complex, heterogeneous, cellular systems, Bioinformatics, 17, 288-289.

Mishra, J. and Bhalla, U.S. (2002) Simulations of inositol phosphate metabolism and its
interaction with InsP(3)-mediated calcium release, Biophys J, 83, 1298-1316.

297



Morgan, J.J., Surovtsev, I.V. and Lindahl, P.A. (2004) A framework for whole-cell
mathematical modeling, J Theor Biol, 231, 581-596.

Neteler, M., Mitasova, H. (2004) Open Source GIS: A GRASS GIS Approach., Boston.

Noble, D. (2006) Systems biology and the heart, Biosystems, 83, 75-80.

Oda, K. (2006) Map of the TLR signaling network, Nature Molecular Systems Biology.

Oda, K., Kimura, T., Matsuoka, Y., Funahashi, A., Muramatsu, M., Kitano, H. (2004)
Map of the TLR signaling network, AfCS Research Reports, 2, 1-12.

Oltvai, Z.N. and Barabasi, A.L. (2002) Systems biology. Life's complexity pyramid,
Science, 298, 763-764.

Palsson, B. (2004) Two-dimensional annotation of genomes, Nat Biotechnol, 22, 1218-
1219.

Palsson, B.O., Price, N.D. and Papin, J.A. (2003) Development of network-based
pathway definitions: the need to analyze real metabolic networks, Trends in
Biotechnology, 21, 195-198.

Papin, J.A., Hunter, T., Palsson, B.O. and Subramaniam, S. (2005) Reconstruction of
cellular signalling networks and analysis of their properties, Nat Rev Mol Cell Biol, 6,
99-111.

Patwardhan, B., Warude, D., Pushpangadan, P., Bhatt, N. (2005) Ayurveda and
Traditional Chinese Medicine: A Comparative Overview, Oxford Journals Medicine
Evidence-based Complementary and Alternative Medicine, 2, 465-473

Pecou, E. (2005) Splitting the dynamics of large biochemical interaction networks, J
Theor Biol, 232, 375-384.

Pennisi, E. (2003) A Low Number Wins the GeneSweep Pool, Science, 300, 1484.

Pennisi, E. (2005) How will big pictures emerge from a sea of biological data?, Science,
309, 94.

298



Peri, S., Navarro,J.D., Amanchy,R., Kristiansen, T.Z., Jonnalagadda,C., Surendranath,
V., Niranjan,V., Muthusamy, B., Gandhi, T.K.B., Gronborg, M., Ibarrola,N.,
Deshpande, N., Shanker, K., Shivashankar, H.N., Pandey, A. (2003) Development of
Human Protein Reference Database as an Initial Platform for Approaching Systems
Biology in Humans, Genome Research, 13, 2363-2371.

Pogson, M., Smallwood, R., Qwarnstrom, E. and Holcombe, M. (2006) Formal agent-
based modelling of intracellular chemical interactions, Biosystems, 85, 37-45.

Putnam, N.H., Srivastava, M., Hellsten, U., Dirks, B., Chapman, J., Salamov, A.,
Rokshar, D.S. (2007) Sea anemone genome reveals the gene repertoire and genomic
organization of the eumetazoan ancestor. Lawrence Berkeley National Laboratory.

Quackenbush, J., Stoeckert, C., Ball, C., Brazma, A., Gentleman, R., Huber, W., Irizarry,
R., Salit, M., Sherlock, G., Spellman, P. and Winegarden, N. (2006) Top-down standards
will not serve systems biology, Nature, 440, 24.

Raczynski, S. (1996) Differential inclusions in system simulation, Transactions of the
Society for Computer Simulation 13, 47-54.

Rajlich, V., Wilde, N. (2002) The role of concepts in program comprehension. 2002
International Workshop on Program Comprehension. IEEE Computer Society Press, Los
Alamitos, CA, 271-278.

Ray, L.B., Adler, E.M., Gough, N.R. (2003) Building a Case for Signaling, Science, 300,
1523-1524.

Robinson, S., R. E. Nance, R. J. Paul, M. Pidd, and S. J. E. Taylor (2004) Simulation
model reuse: Definitions, benefits and obstacles., Simulation Modelling Practice and
Theory, 12, 479-494.

Sato, M., Taniguchi, T., Tanaka, N. (2001) The interferon system and interferon
regulatory factor transcription factors - studies from gene knockout mice, Cytokine &
Growth Factor Reviews, 12, 133-142.

Sauro, H.M., Hucka, M., Finney, A., Wellock, C., Bolouri, H., Doyle, J. and Kitano, H.
(2003) Next generation simulation tools: the Systems Biology Workbench and
BioSPICE integration, Omics, 7, 355-372.

299



Sauro, H.M. and Kholodenko, B.N. (2004) Quantitative analysis of signaling networks,
Prog Biophys Mol Biol, 86, 5-43.

Schilstra, M.J., Li, L., Matthews, J., Finney, A., Hucka, M. and Le Novere, N. (2006)
CellML2SBML: conversion of CellML into SBML, Bioinformatics, 22, 1018-1020.

Schulz, M., Uhlendorf, J., Klipp, E. and Liebermeister, W. (2006) SBMLmerge, a System
for Combining Biochemical Network Models. Genome Informatics 62-71.

Seeman, N.C., Belcher, A. M. (2002) Emulating biology: building nanostructures from
the bottom up, Proc Natl Acad Sci U S A, 99 Supplement 2, 6451-6455.

Shannon, P.T., Reiss, D.J., Bonneau, R. and Baliga, N.S. (2006) The Gaggle: an open-
source software system for integrating bioinformatics software and data sources, BMC
Bioinformatics, 7, 176.

Silva, P. (2002) A general overview of the major metabolic pathways. In
http://www2.ufp.pt/-~pedros/bq/integration.htm (ed). Universidade Fernando
Pessoa.

Slepchenko, B.M., Schaff, J.C., Macara, I. and Loew, L.M. (2003) Quantitative cell
biology with the Virtual Cell, Trends Cell Biol, 13, 570-576.

Snoep, J.L., Bruggeman, F., Olivier, B.G. and Westerhoff, H.V. (2006) Towards building
the silicon cell: a modular approach, Biosystems, 83, 207-216.

Stultz, C. (2007) Intractability of using atom-by-atom molecular dynamics for modeling
biological pathways. In Ayyadurai, S. (ed). Cambridge, Personal Communication.

Subbarayappa, B.V. (1997) Siddha medicine: an overview, Lancet, 350, 1841-1844.

Takahashi, K., Kaizu, K., Hu, B. and Tomita, M. (2004) A multi-algorithm, multi-
timescale method for cell simulation, Bioinformatics, 20, 538-546.

Takauji (2002) CpG-DNA-induced IFN- r production involves p38 MAPKdependent
STAT1 phosphorylation in human plasmacytoid dendritic cell precursors, Journal of
Luekocyte Biology, 72, 1011-1019.

300



Taniguchi, T., Ogasawara, K., Takaoka, A., Tanaka, N. (2001) IRF family of
transcription factors as regulators of host defense, Annual Review Immunology, 19.

Tomita, M., Hashimoto, K., Takahashi, K., Shimizu, T.S., Matsuzaki, Y., Miyoshi, F.,
Saito, K., Tanida, S., Yugi, K., Venter, J.C. and Hutchison, C.A., 3rd (1999) E-CELL:
software environment for whole-cell simulation, Bioinformatics, 15, 72-84.

Vaidehi, N., Goddard, W.A. (2001) Atom-Level Simulation and Modeling of
Biomacromolecules. In Bower, J.M., Bolouri, H. (ed), Computational Modeling of Genetic
and Biochemical Networks. MIT Press, Cambridge, 161-163.

Wang, X.H., Connors, M., Wilson, D., Wilson, G., Nicholosn, G.M., Smith, R., Shaw, D.,
MacKay, J., Alexwood, P., Chrisite, M., King, G. (2001) Discovery and structure of
potent and highly specific blocker of insect calcium channels, Journal of Biological
Chemistry, 276, 40306-403012.

Watson, J.D., Crick, F.H. (1953) Molecular structure of nucleic acids: A structure of
deoxyribose Necleic Acid, Nature, 171, 737-738.

Webb, K. and White, T. (2005) UML as a cell and biochemistry modeling language,
Biosystems, 80, 283-302.

Whelan, G., Castleton, K.J., Buck, J.W., Hoopes, B.L., Pelton, M.A., Strenge, D.L.,
Gelston, G.M., Kickert, R.N. (1997) Concepts of a framework for risk analysis in
multimedia environmental systems (FRAMES). In Laboratory, P.N.N. (ed), PNNL-
11748. Pacific Northwest National Laboratory, Richland.

White, J. (2007) Two protein interactions are intractable using molecular dynamics. In
Ayyadurai, S. (ed). Cambridge, Personal Communication.

Wiener, N. (1948) Cybernetics or Control and Communciation in the Animal Machine. The
MIT Press, Cambridge.

Wikipedia (2007) Interferon, Wikipedia, The Free Encyclopedia, 10,
<http://en.wikipedia.org/wiki/Interferon>.

Xia, L., Wang, L., Chung, A., Ivanov, F. (2002) Identification of Both Positive and
Negative Domains with the Epidermal Growth Factor Receptor COOH-terminal

301



Region for Signal Transducer and Activator of Transcription (STAT) Activation, Journal
of Biochemical, 277, 30716-30723.

Yamada (2001) Computer Modeling of JAK/STAT Signal Transduction Pathway,
Genome Informatics.

You, L., Hoonlor, A. and Yin, J. (2003) Modeling biological systems using Dynetica--a
simulator of dynamic networks, Bioinformatics, 19, 435-436.

Zi, Z., Cho, K., Sung, M., (2005) In silico identification of the key components and steps
in IFN-gamma induced JAK-STAT, FEBS, 579, 1101-1108.

302



Colophon

Endnote was used to format the bibliography format. It was primarily selected

due its ease of use and integration with Microsoft Word.

This thesis was typeset using Microsoft Word, a decision that was agonized

over long and hard. The alternative was to use FrameMaker or pdfLATEX. But

FrameMaker has been largely abandoned by Adobe and pdfLATEX and only

had indirect support EndNotes.

The text of this thesis was set in Book Antigua. This thesis has many screen

shots. The Windows screen shots were created using the simple screen capture

from Windows operating system.

This thesis was written and typeset to the music of Bruce Springsteen, Bob

Dylan, Johnny Cash and from time to time music.

As of August 29, 2007, the PDF file that was used to print this thesis is

approximately 20.3 megabytes in length.

303


