Scalable Computational Architecture for
Integrating Biological Pathway Models

by
V.A. Shiva Ayyadurai

S.B., Electrical Engineering and Computer Science, MIT (1987)
S.M., Media Arts and Sciences, MIT (1989)
S.M., Mechanical Engineering, MIT (1990)

SUBMITTED TO THE DEPARTMENT OF BIOLOGICAL ENGINEERING IN
PARITAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY IN BIOLOGICAL ENGINEERING
AT THE
-MASSACHUSETTS INSTITUTE OF TECHNOLOGY

AUGUST 2007

J /.

Signature of Author: — = ooy e, '
Departmeﬁtéﬁ?uologlcal Engmeermg
August 29, 2007

— /} /

Certified by: 4 - /7 e Y\ e ey
s D?wey, Jr.
Professor of Mechanical and BlOlOgl eering
Thesis ervisor

il IS s

Accepted by: é/ - L[2N £y (

’ [Al J. Grodzinsky
Professor of Eléctrical, Mechani tolagical Engineering

Chairman, Biological Engineering Graduate Program Committee

'MABSAGHUGETTS INSTITUTE

, OF TECHNOLOGY

JAN 28 2008 ARCHIVES
LIBRARIES V.|

Copyright © 2007 by V.A. Shiva Ayyadurai.

All rights reserved. The author hereby grants MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document in whole or in
part in any medium now known or hereafter created.

Thesis Defense Date: August 13, 2007 *.

! The thesis was presented on August 13, 2007, which also marks the 89™ birthday of Dr. Frederick Sanger (b. August 13, 1918).
Dr. Sanger won two Nobel prizes in Chemistry. In 1958, he was awarded his first Nobel prize in Chemistry for proving that proteins
have definite structure by sequencing insulin. In 1980, he was awarded his second Nobel prize in Chemistry along with Walter
Gilbert for the sequencing the first DNA-based genome. This discovery has been the basis of the Human Genome Project. In 1992,
the Sanger Centre near Cambridge, England was founded in honor of Dr. Sanger. The visit to the Sanger Institute by the author in
October 2003 marked the start of the author’s journey into the field of systems biology and biological engineering.

ii

To my loving parents

it

v

Scalable Computational Architecture for
Integrating Biological Pathway Models

by
V.A. Shiva Ayyadurai

Submitted to the Department of Biological Engineering
on August 13, 2007, in Partial Fulfillment of the
Requirements for the Degree of
Doctor of Philosophy in Biological Engineering

Abstract

A grand challenge of systems biology is to model the cell. The cell is an integrated
network of cellular functions. Each cellular function, such as immune response, cell
division, metabolism or apoptosis, is defined by an interconnected ensemble of biological
pathways. Modeling the cell or even one cellular function requires a computational
architecture that integrates multiple biological pathway models in a scalable manner
while ensuring minimal effort to maintain the resulting integrated model. Scalable is
defined as the ease in which more and more biological pathway models can be
integrated. Current architectures for integrating biological pathway models are
primarily monolithic and involve combining each biological pathway model’s software
source code to build one large monolithic model that executes on a single computer.
Such architectures are not scalable for modeling complex cellular functions or the whole
cell.

We present Cytosolve, a new computational architecture that integrates a distributed
ensemble of biological pathway models and computes solutions in a parallel manner
while offering ease of maintenance of the integrated model. The individual biological
pathway models can be represented in SBML, CellML or in any number of formats. The
EGFR model of Kholodenko with known solutions is used to compare the Cytosolve
solution and computational times with a known monolithic approach. A new
integrative model of the interferon (IFN) response to virus infection is developed using
Cytosolve. Each model within the integrated model, spans different time scales, is
created by different authors from four countries and three continents across different
disciplines, is written in different software codes, and is built on different hardware
platforms. A new quantitative methodology and formalism is then derived for
evaluating different types of monolithic and distributed architectures for integrating
biological pathway models.

As more biological pathway models develop in a disparate and decentralized manner,
the Cytosolve architecture offers a unique platform to build and test complex models of
cellular function, and eventually the whole cell.

Thesis Supervisor: C. Forbes Dewey, Jr.
Title: Professor of Biological Engineering & Mechanical Engineering

vi

Acknowledgments

While a dissertation is meant to represent the work of a single person, every dissertation
is necessarily the result of numerous interactions between the author, the author’s
advisors, peers, colleagues, friends, and family. This one is no different.

My advisor

Prof. C. Forbes Dewey, a fellow pioneer, is my primary collaborator. Without him, this
thesis would not have been possible. He provided me the opportunity to enter into the
new field of systems biology and continually offered his wisdom and encouragement to
move forward with conviction. Forbes is one of the kindest and insightful people I have
ever come across and am honored and fortunate have his friendship and mentorship.

My thesis committee members, readers and advisors

My thesis committee members and other advisors including Prof. John M. Essigmann,
Prof. Robert C. Berwick, Prof. Ahmed F. Ghoniem, Prof. Bruce Tidor and Prof. Douglas
A. Lauffenburger. Their wisdom, friendship, feedback and encouragement have been
invaluable.

My friends
My most sincere thanks and love to my long time friends Sonu Mathews Abraham,
Gene Deans, and Hariharan Subramanian, three people who I don’t know what I would
do without.

New friends and old ones that I reconnected with who shared their compassion and
insights both professionally and personally including Simon Dao, Saloni Fadia, David
Calvo, Sen Song, Carolyn Dewey, Asawari Desai, Devan Dewey, Sangeetha Modi,
David Calvo, Phil and Alise Rheinstein, Sen Song, Marina del Rohrer, Kim Moore,
Tenzin Priyardarshi, Tricia Harris, Nevan Hanumara, Martin Feuerman and Dick Kitney

MIT

Catherine Howell afforded her time on many occasions to provide the knowledge
needed to understand JSIM and the actin polymerization model, developed by Jim
McGrath and Mike Binschadler. It was this model which first introduced me to the area
of biological pathway modeling.

Over the past four years, at Hatsopolous Microfluidics Laboratory, is where my home

has been at MIT. That home has included a cast of characters: Donna Wilker, Kurt
Stiehl, Yu Yao, Aleksandr Rabodzey, Khanh Dang, and many others.

vii

At the start of my doctoral program, given my background across three departments, it
was Frank E. Perkins initially and then later Ike Colbert who provided me the guidance
to formulate the administration behind my doctoral program, at a time when the
Biological Engineering Division, did not even exist.

This journey was also a great opportunity to reconnect with my Freshman Advisor
Roger Mark, and also Paul E. Gray, Samuel]. Keyser, Bob Randolph and others who
knew me well during my undergraduate years and were kind and gracious to see me
back.

I want to also give a special thanks to Leslie Regan, Joan Kravit, Dalia Fares and
Michelle Carmichael who took care of all the little details and for their dedication to
students and faculty.

During my return to MIT, Joel Moses was very helpful in offering his time to brainstorm
on different thesis topics.

Very special thanks to Dawn Metcalf for her compassion, generosity and wisdom.

My friends Dan Burns and Devin McCombie were great partners to have as a part of the
study team during the doctoral qualifiers.

John Essigmann is a great teacher. Ithank him for his wonderful and positive attitude in
my learning his course his BE440. Paul Huang also deserves special thanks for first
being my TA in BE440 and later a good friend.

Ram Sasisekharan, Alan Grodzinsky, Forbes Dewey, Roger Kamm. Bruce Tidor, Jacob
White, Anthony Patera and Jaime Peraire, deserve much appreciation for their great
courses, in which they conveyed new knowledge with grace and elegance, while
expanding my universe of biology and numerical computing.

My utmost appreciation and respect to Paul Matsudaira, Doug Lauffenburger and Subra
Suresh for their vision in being able to bring together new platforms for education and
research including computational systems biology (CSBi), biological engineering (BE)
and new programs such as GEM4 and SMA so many can pursue their dreams.

Architecture Development and Testing
Ceryen Tan, Gene Deans and Prasad Jayakumar for providing me information on Web

Services, and supporting my time to time programming needs of the distributed solver.

Jia-An (Andrew) Koo for his help at the last minute in helping test the IFN pathway
along with Boon Siew Seah'’s last minute programming efforts on the controller.

viii

Video Production

In August of 2005, I met Philip Pfeifer, my Vipassana teacher. Later Philip and his three
artisans, part of a non-profit collective, Brian Sneed, Arik Thusen, Harry Hunsberger
performed the 3-D animation and video rendering of the IFN response to virus infection
video. That video would not have been possible without them.

Singapore-MIT Alliance (SMA)

The Singapore MIT Alliance for their funding my last three years of research along with
their generous travel grants. My special thanks to Sourav Bhowmick for his friendship
and making me feel at home during my travels to Singapore.

EchoMail

Leaving EchoMail to take on the PhD was a bigger transition than I thought. My friends
and colleagues at EchoMail including Angie Christensen, Roman Zavolly, Evan Siegel
made that transition easier. The Board including Larry Weber, Sonu Abraham, V.
Ayyadurai (my dad), Ed Fredkin and Ted Johnson deserve my thanks for their many
years of support and encouraging of my intellectual desires. = Special thanks for
EchoMail’s financial support of my first year in the PhD program.

My teachers

There are many through the years stretching back to secondary school who are part of
this thesis including: Mr. Melvin Roth (my sixth grade teacher), Mr. Walker (my
chemistry teacher), Mr. Kramer (my calculus teacher), Mr. Sommer (my algebra teacher),
Mrs. Hall and Ms. Payne (my writing teachers). Special thanks to Paul Pitchford and the
Heartwood Institute (for teaching me TCM), Rick Buckely (for opening my eyes to the
power of observation), Kelly Mara (my Yoga teacher), Philip Pfeifer and S.N. Goenka
(who taught me Vippassana), Alise Newton (who taught me to walk right), Warren
Senders (who taught me to hear so I could sing).

I will never forget Dr. Leslie P. Michelson for bringing me into the world of computers
and giving me my first programming job when I was 13 at the UMDN]J which led to my
work on developing one of the world’s first E-Mail system. He is one of the most
brilliant people I've met. He taught me the importance of writing well and thinking
clearly. Without him I would never have gotten such a head start in computer science.

In memory

Two years ago, Swamy Laxminarayan passed away. He was the one who introduced
me to biomedical engineering when I was a high school sophomore and gave the
opportunity to learn signal processing on a sleep apnea project, for which he also made
me a co-author on my first paper in 1985, that took me to Espoo, Finland for the IEEE
International Conference on Medical and Biological Engineering.

My maternal grandparent Annamalai who was always there for me and I will always
remember her great cooking and kindness.

X

My paternal grandparents would have been happy to see this work. My grandmother
Chinnathai and my grandfather Vellayappa, passed on in 2005. I pay reverence to their
loving spirits.

Satguru Sivaya Subramuniyaswami deserves many thanks for his wonderful writings
and teachings, which are a source of great truth and comfort.

My family
Last but not least, I want to thank my family.

My mother, Meenakshi Ayyadurai, the most amazing person I know in the entire world.
She embodies the independence, resourcefulness and grace of being a powerful woman,
blending East and West, being a living example to others who struggle to reach that
balance. Without her, I would never have entered the world of computing nor would I
have had access to many of the unique doors that she opened that led me to great
opportunities at a very early age.

My father, Vellayappa Ayyadurai, my living hero, who as a child experienced bombs
being dropped in WWII in Burma, educated himself, electrified villages, mentored
thousands, and embodies the wisdom and compassion of a long-lost statesman, the
kind the world sorely needs today.

My loving sister Dr. Uma Dhanabalan and my wonderful nephew Shivaji Dhanabalan
deserve my love and thanks for always being there. Uma is one the kindest human

beings I know who has always been a great source of support and wisdom.

Finally, Romeo, thanks for keeping me company during late night writing sessions.

Biographical Note

V.A. Shiva Ayyadurai is a Fulbright Scholar, MIT-Lemelson Awards Finalist and
Westinghouse Science Award recipient. He was born in Bombay, India and moved to
the United States at the age of seven. He completed his secondary school education in
New Jersey. He is the inventor of one of the world’s first E-Mail systems holding the
first US Copyright on E-MAIL. Shiva also holds three US Patents in automatic pattern
recognition. He has published scientific articles in several conference proceedings and
refereed journal articles. In January of 2000, one of Shiva’s inventions EchoMail was the
featured story in The MIT Technology Review. He has appeared in columns and articles in
The Wall Street Journal, New York Times, NBC News, USA Today and other major
publications. He was named Top 40 in the Improper Bostonian. He is also the author of
two books: Arts and the Internet and The Internet Guide to Publicity. He is a member of
Sigma-Xi, Eta Kappa Nu and Tau Beta Pi. He is a founder of the Shanthi Foundation
which raises money to provide scholarships for education to orphaned girls. Heis also a
supporter of various arts and non-profit organizations. Shiva enjoys yoga, travel, tennis,
animals, art and architecture, and lives Belmont, MA, USA.

Xi

X1i

Content

Preface xvi
Introduction 1
1.0 Background and SignifiCance..........coceueeciniveninencicincsnicesc s 1
11 The Complexity of BiOIOZYcccecveurimmrerierrinimnissiecrirenssrisenneeseetstssenseas i esenseseaseasseens 3
1.2 Biological PAthways.........ccccccommmriiiccininencieicticicnic e ecnse 10
1.3 Systems BiOlogy ..ottt 14
1.4 Research Motivation...........cericiciccscici s 24
1.5 Original Contributions...........ocouiincnciricc s 35
1.6 Organization Of TRESIS ...ttt 39
Prior Work 42
2.0 INPOAUCHON ..ottt et es s s nreee 42
21 Movement to Integrate Biological Pathway Models...........cccocoericevuninnnncrnenna. 42
22 Existing Methods.........couiiinicirenicnnccrrcsee et sasssneseseasessnas 45
23 Integrative Modeling Efforts ... 55
24 Generalized Architectures for Integrating Modelsceerrevurrmreervcrnercunennce. 57
25 Approaches to Integrating Biological Pathway Models..........c.ccocovrerrencnennnee. 70
2.6 SUIMIMATY ..corrercncreet st s s ss bbbt b s s s bttt et 78
Methodology 87
3.0 INrOAUCHON ...ttt et aee 87
31 APPIOAC...... sttt 88
3.2 SUMMATY .ocveereeetnsese st ss s s sb s s bbbt et st bes st snaes 90
Architecture 92
4.0 INTOAUCHON c..voeteeeer sttt et sttt n s 92
41 Architecture Requirements Specificationc..ovueeeereerernersreeresnessescsseenennnanens 93

Xiil

42 Architecture Functional Specificationc..coceeeeuecureeercencsrseescsiseseneeresesinennes 97
43 Architecture DeSign.........oooemririiiiiictn e 104
44 Architecture Implementation........cccoirceeenrmrenercereccereeerenneee st seneeesnas 109
45 Pathway Model Representation...........ccoeceueuecmemcicenicenisnisinnnissisiscsssesinnns 118
46 Pathway Registration and Ontologyccviincviiicvcciiiciicnsiceces 120
46 Controller-Pathway Interface Description............ccoceurucencuricnncusnsninsisensencsecans 124
4.7 CONLTOIIET ..ottt sttt en 126
4.8 Mass Balance........cuiiiinniiii st as 133
4.9 Test EXample.......ciieccctistn e sses 137
410 SUMMATY ..crerrcrrririrenienniisiss s sas bbb sas s sas s ssssssssessansesessasens 141
EGFR Model of Kholodenko 144
5.0 INETOAUCHON ...t 144
51 Materials and Methods...........ccoomiiriininii s 145
5.2 RESUIMS..ttrt s 150
TSR 114521 41T 1 OO 156
Integrative Model of Interferon Response to Virus Infection 160
6.0 INtrOdUCHON ...ttt 160
6.1 Background on INterferons..........oeecemncncinincnc s 161
6.2 Key Molecular Components of IFN ACHVItYccccocrmriricicvciinisiseinienes 166
6.3 Elements of the IFN ReSPONSE.......cooreoemrercnimcerneeiresre et aessenas 169
6.4 Individual Model SOIUtONS ...t e seeseaeas 189
6.5 Integrated Model of IFN Response.........cccoooeiriininenicennncccnncsecsicrccsrecenens 193
6.6 Re-Integration and Maintenance Test.........cc.cocccruvciirinrcecinnicncsnccne s 200
6.7 Analysis of IFN Integrated Model..........ccccovuuiemicremrenecrnennieeeseireneesssesnens 202
6.8 SUINMATIY ...ttt et ettt 212
Quantitative Methodology to Evaluate Architectures for Integrating Biological
Pathway Models 217
7.0 INEOAUCHON ..ottt s st s s anes 217
7.1 Architectural NOtation ...t sssens 220
7.2 Critical Requirements for Architectural Evaluationcccoceeerueeueccceenennes 227
7.3 Stakeholders of an Architecture............ccocvuuiicmerinniniccireece et 229
74 Description of ArchiteCtures...........cooecveuiineurevceierincmneneserenecnensssesessssesassssesssssssens 234

Xiv

75 Architectural Design Elements..........cocoeciirennivicinincnncinniiisssisiesinenes
7.6 Architectural Design Alternatives...........ooccoevrmcerivcrecrcincincnncciccicncscens
7.7 Architectural Evaluation..........ciicnncciccccnnsssese s seeeseens
7.8 Quantitative Architectural Selection for Stakeholderc.ccccevvereervcrrrerersinecne
7.9 SUINMALY ..orrertcnctiiesct i ssssessass s ssss s s ts s et sess s sttt sanesness
3-D Animated Video of IFN Response
8.0 INtrOAUCHON ...ttt tenees
81 Scenel - Virus INfECton ..ottt
8.2 Scene 2 - IFN Signaling to IRF-7 Productionc....ccceeveureverseresinereseenseeecens
83 Scene 3 - Up regulation of IFN-Alpha.........cccovvmrinincnnciceccencriccrecenes
84 Scene 4 - Up regulation of IFN-Gamma.........ccceceuieemnirencmeninininncccnsicscnrescanens
8.5 Video ANIMAatioN.......oceerirececcecct s s
8.6 SUIMNIMATY ...eerirerectmncessrs st s e s st s
Conclusions
9.0 Key FINAINGS ...ttt ssses s eas
9.1 Future Research......... st sasssesecseens
Appendices
A. WSDL Error Management..........cococucuiuemmisiuscenireissaissnsissesensessssssssssssssessssessssenns
B. Implementation of SBML SOIVETccoiuuineriniisincnensisienessseseseeseescsseeaeanens
C. Equations for IFN Solution Using Monolithic Approach..........cccooecornuiunrcanee.
Bibliography
Colophon

XV

255
255
257
262
267
269
274
274

276
277
278

281
281
285
288

292
303

Preface

This thesis is motivated by my interest in biology, computing, medicine and integrative
systems research. Growing up in the outskirts of Bombay, India as a young child, my
backyard was a true jungle. Animals of all shapes and sizes lurked including large
poisonous snakes, parrots, land crabs, mongoose and bugs of all kind. The vegetation
was lush with many fruits: mangoes, guava, bananas, cherimoyas, and coconuts.
Nearby, and in contrast to this wilderness, was the bustling city of Bombay, filled with
road side vendors, snake charmers, colors, smells and sounds that never made any day
boring.

My first introduction to medicine came from my grandmother who lived in a village in
the depths of South India. I recall here once saying to my uncle, “Go down to the
stream and you will see a flower which has pointed green leaves and purple flowers,
that are fuzzy, but have thorns at the end of them, go bring those.” He had a sinus
infection and had to her for help. A few hours later he came back with a handful of
leaves and flowers. She processed them to make a formulation. She administered it to
him directly through his nose. A few drops of blood appeared, and he immediately felt
great relief.

My paternal grandmother was the Shaman of our village Muhavur in South India. Over
the years, the story goes that traveling Yogis had imparted their secrets and knowledge
to her. Each Saturday, numerous people milled at her doorstep waiting for her medical
wisdom. She had excellent powers of observation and exceptional diagnosis skills.
Using mortar and pestle she would make simple to esoteric formulations. For our
village, she was a boon. As a young child, I was both awed and inspired. I developed a
curiosity to understand the secrets of her formulations and the holistic medicine she
practiced to diagnose and treat without any modern instruments.

My father taught me mathematics and chemistry. I recall him getting me my first
chemistry set and making formulations using common concepts that one studies in their
first high school undergraduate chemistry class. I was amazed by his wizardry. Asa
trained chemical engineer, he ironically also went on to become a provider of medicines
for many people. He took a different approach by becoming the head of manufacturing
in Bombay, India for Parke-Davis, a leading pharmaceutical company. Like his mother,
he created formulations; however, these formulations were proprietary and patented,
developed by using reductionist principles of modern Western science and employed
modern instruments, products of high technology.

Xvi

My family moved to the United States in the early 1970's and I grew up in two worlds:
Indian at home, American at school and work. The stark difference between these two
modes of life was as different as the ways in which my grandmother and my father
formulated medicines for their customers. Ihad great regard for both of these different
systems, and felt that one of my life’s missions was to find ways to integrate them.
These differences influenced me to seek unity and holism in any activity that I pursued.

My mother, a mathematician and software programmer, introduced me to computer
programming during the mid-70s. As a 13 year old, I attended the New York
University, Courant Institute of Mathematical Sciences on an accelerated summer
program to learn five different computer languages including: FORTRAN, COBOL,
PL/1, SNOBOL and Basic. In 1977, I used that knowledge to build one of the world’s
first E-Mail Systems. Because of my mom, I became a decent software programmer and
learned about architecting large-scale enterprise computing systems. In 1994, while in
the midst of my doctoral program at MIT, I took a hiatus to start a company, EchoMail,
Inc. During 1994 to 2003, I found and ran EchoMail, a leading enterprise software
company that provided an intelligent and scalable E-Mail management system for
Global 2000 companies such as American Express, Nike, Citigroup, JC Penney and
Allstate.

In the Fall of 2003, I came back to MIT to visit old friends, administrators and professors.
I ran into Forbes Dewey on the second floor of Building 3. In the mid-80’s, I had worked
as a laboratory teaching assistant and student programmer for one of Forbes’ courses.
He remembered me and invited me to chat with him and shared the vision of systems
biology. Forbes said that he was on his way the following Monday, October 27 to attend
the I3C Conference in Hinxton, U.K. which was focused on “accelerating drug discovery
using software interoperability,” and invited me to come. A few days thereafter I was
on a plane to the UK. After attending that I3C Conference, understanding Forbes’
vision, and touring the Sanger Institute, where critical portions of the human genome
were sequenced, it became clear to me that biology was about to change drastically.
New technologies that enabled biological information to be transacted and integrated
with ease would revolutionize medicine. During this same time, MIT had created the
Biological Engineering Division and a program in Computational Systems Biology.

Forbes encouraged me to return to MIT to pursue a doctorate in the field of systems
biology. I was enthused, particularly because this field seemed committed to integrate
smaller things to find emergent properties of the whole. The field also provided a vision
of Personalized Medicine, where one size does not fit all, encouraging a holistic and
targeted approach to the development of new medicines versus the highly reductionist
approach. More importantly, systems biology offered me the opportunity to integrate
two of my interests: Software Development and Medicine.

In 2004, I returned back to MIT and began my journey in pursuit of my doctorate in - a
journey that ends on August 13, 2007 with the completion of my Thesis Defense. I hope
I have made a contribution to the field through by offering a new paradigm for
integrating biological pathway models - a paradigm that leverages the advent of the

xvii

World Wide Web and the global use of the Internet, where biologists can create
independent models and then collaborate to build new models, with ease, accelerating
the development of new discoveries.

The completion of this thesis also has a new beginning. Starting in October of 2007, I
will return for nine months back to India on a Fulbright to study a 6,000 year-old form of
ancient Indian medicine known as Siddha, the same system my grandmother used
which is still practiced today. My task is to consider the cellular function of
inflammatory response, but this time approach this phenomenon with two eyes: one of
the East and one of the West’s. My hope is to integrate two systems of knowledge to
discover an integrative link between them. I am confident that in the not too distant
future, technologies perhaps even the one developed in this thesis, will enable one to
combine knowledge from seemingly disparate medical systems, to discover new
formulations to age-old ailments that neither the Eastern system nor the Western system
could discover alone.

Belmont, Massachusetts

August 2007

Xviii

Chapter 1

Introduction

1.0 Background and Significance

A grand challenge of systems biology is to model the whole cell. This thesis offers

Figure 1-1: Diagram of a eukaryotic animal cell illustrating its key components. Examples of cellular
functions by component include: protein synthesis at the Ribosomes, metabolism within the
Mitochondria, cell motility using Cilia and Microfilaments (Davidson, 2007).

a new computational architecture to address that challenge. A model in this
thesis is defined to be a mathematical representation along with its

implementation in software including any input data and documentation.

A cell consists of a set of organelles as the ones shown in Figure 1-1. These
organelles interact through the medium of molecular interactions to provide
cellular functions such as protein synthesis, metabolism, apoptosis, or motility.
Systems biology aims to develop a model of the cell by connecting the
biochemical kinetics of these interactions at the molecular mechanistic level to
derive the quantitative descriptions of higher level cellular functions (Hood, et
al., 2004; Ideker and Lauffenburger, 2003; Kitano, 2002; Palsson, et al., 2003;
Tomita, et al., 1999). Systems biology as a new field is also interdisciplinary
attracting those from a wide range of disciplines. Many who approach this field
come with various biases. Core to many of these biases is a failure to understand
the complexity of biology and a mistaken notion that systems biology is not a
new field. The next two sections serve to clarify basic concepts concerning the

complexity of biology as well as why systems biology is a new field.

1.1 The Complexity of Biology

Biology is a field based on experiments, not first principles (ab initio) such as
physics or engineering. It is fundamentally an experimental science. Biologists

do many experiments to understand genes, proteins, protein-protein interactions.

Genes

One example of perhaps the largest experiments in biology is the Human
Genome Project (HGP) begun in 1990 and completed in 2005. This effort resulted
in the discovery of only 20,000 to 25,000 genes, far less than what was originally
theorized (Pennisi, 2003). More interesting is the discovery that this number of
genes is in the same realm as that of the nematode Caenorhabditis elegans which
has approximately 19,000 genes (Hodgkin, 2001). More recently, the genome of
the starlet sea anemone - Nematostella vectensis, a delicate, few-inch-long animal
in the form of a transparent, multi-tentacled tube - was sequenced and found to

have 18,000 genes (Putnam, 2007).

Human and a nematode (or sea anemone) have a similar number of genes, but a
great difference in complexity of function as whole organisms. This contradiction
has led scientists to conclude that perhaps the number of genes in the genome is

not connected with the complexity of the organism. Much of an organism's

complexity can be ascribed to regulation of existing genes by other substances
(such as proteins) rather than to novel genes (Putnam, 2007). The types and
kinds of molecular interactions across the nucleus, cytoplasm and organelles,
beyond the number of genes in the nucleus, may be the critical element in
determining the difference between human and nematode, for example. This
reasoning has led to an even greater activity to understand the structure of

proteins (e.g. the product of genes) and protein-protein interactions.

Proteins
Approximately 30,000 proteins have been documented across various
publications world wide (Peri, 2003). Thousands of research teams across the

world have contributed to these discoveries.

Protein SITHCIUTOS wmmmmmwmmmwmormwm

bt A P:m ssmem & Engineering Lab

D‘“‘ in is the lethal comp in the venom of Australian fnnel-web spiders. It contains four intramolecular disulfide bonds. The toxin
hally fatal] in primates by slowing the mactivation of voltage~gated sodim charnels. The toxin is umusual in that it
bmd: to boﬂx insect and vertebratz voltage-gated sodium channels at picomolar concentrations.

Reference: Fletcher o2 al. (1997) Structure 5, 1525-1535.

Omega-atracotoxin-Hv2a appears to be the most potent and specific blocker of msect calcium channels discovered to date. It is a 45-residue insecticidal
neurotoxin isolated from the venom of the Australian funnel-web spider. The toxin contans three intramolecular disulfide bonds (shown in red) that form a

cystine knot motif. The C-terminal 13 residues (not shown) are highly bpophilic, structurally disordered in solution, and essential for insecticidal activity. The

toxin inhibis insect voltage-gated calcium channels with an ECy of about 130 picomolar, but it is more than 10,000-fold less effective on vertebrate calclum !
channels.

Reference: Wy ¢f al. (2001) Joumal of Biological Chemistry 276, 40306-40312

Figure 1-2: Diagram demonstrating how a research group at one laboratory facility in the world
focuses on understanding a handful of proteins. In this case, one research team focuses on
understanding the structure of certain types of toxins extracted from certain insects.

Discovering the structure of just one protein is a difficult experimental effort.
Such efforts are highly domain specific and one research team, for example, by
itself may focus on understanding a small set of genes or the structure of a set of
For

specific proteins or the interactions between certain types of proteins.

example, consider the Protein and Structure and Engineering Laboratory at the

W
Prvns

‘0 the aboraory. You tan towniond uneompe
Animate ok 0 vie

op Brouowsca. Cimosmy

T Joosar Vol. 276, No. 43, Lasue of Octobar 26, pp. 4030840312, 2001
© 2601 by The Americen Society far Biochemietry and Moloculer Biclogs, fnc. Prinzed

i USA

Discovery and Structure of a Potent and Highly Specific Blocker
of Insect Calcium Channels*

Ruceived for publiestion, June 6, 2001, and in revised form, August 21, 2001
Published, JBC Papers in Press, August 24, 2001, DOL 10.1074/jbc. M105206200

Xtu-hong Wangt, Mark Connord, David Wilseny, Harry 1. Wilson}, Graham M. Nicholsoni,
Ross Smith*¢, Denis Shaw#i, Joel P, Mackay$}, Paul F. Alewoods, Macdonald J. Christie$,
and Glenn F. Kinginy

From the $Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 08632,
Departments of !Pharmm‘obg and §§Biochemistry, menuy of Sydncy, Sydney, New &mﬂl Wdu 2005, Avatralia,
WUnstitute fur Me Tk of Bi istry, University of @

Queensland 4078, Australia, iDepartment o[‘ Health Sciences, Uuwnmh/of T&hnolag) Syelnz_y

New South Wales 2007, Australia, and ttJohn Curtin School of Medical Ri ional University,
Canberre, Austratian Cepital Territory 0200, Australia

We have isolated n novel family of insect-selective
neurotoxins that appear to be the most potenc bloa&ers
1 to

number of target insects without harming non-target animals
4, 5%

of insect voltage-gated calci p

date. These toxins displny phyl H
epecificity, with at least a lo,mfo!d pn-fmnce for in-
sect persus vertobrate culcium channels. The structure
of one of the toxins reveals a hnghly m‘ucmmd, dn\ul

Unfor there are few wall chnm!:&nzed pephddpm
tein toxins that lend th lves to these
Spider venoms can. be viewed as pmophm:ud combinatorial
libraries of i id fore we decided to
exp]o!t these venoms m ihe mu:h ﬁ)r insect-specific toxins

fide-rich core and a iy &i
ion that is tial for ch .| hlocking tivity
Wenk smtnmm‘ jonal b logy with

IVA/B, the pr of b P-type eal

eiam channels, suggem tlw! ﬂwse two toxin families
might share a similar of action despite their
vastly different phylogenetic specificities.

ing into plants and insect viruses. Here we

le for
¥+ describe a pew fmm}y of insecticidal neuroioxins isolated by

screening the venam of the lethal Ausiralian funnel-web spider
Hadronyche versuta (Fig. 1, inset). Thess toxing are the most
potent blockers of insect voltage-gneed calumn channels re-
ported to date, but they are vil on vertel ion
channels, making them ideal biopesticide candidates. The
of one of the toxins reveals a compack dlsnlﬁd&ud:

U T IR R N C—

Figure 1-3: An example of a publication focused on the structure and dlscovery of]ust one
protein. Work on this research was the result of effort by three research groups across two

countries: United States and Australia.

University of Connecticut’s Health Center. One research team at this laboratory
focuses on just understanding the protein structure of toxins from certain
animals as shown in Figure 1-2. The protein structures are determined from
experiments using x-ray crystallography (Laue, 1913). While new proteins are

discovered each day, the crystal structure of most proteins is not known. In

many cases, understanding just one protein structure requires the effort of not
just this one laboratory’s research team but the effort of multiple research teams
spread across the world. Figure 1-3 presents the title and abstract of a paper
published in the Journal of Biological Chemistry (Wang, 2001). This paper shares
the discovery of a particular protein structure. The paper is the result of a

combined effort of three research groups across two countries: United States and

D IR I B A et R SR S T - R A P R o i

Figure 1-4: The Human Protein Reference Database (HPRD) is an example of one of many web-
based repositories of protein data information(Peri, 2003) .

Australia. New databases such as: HPRD, OMIM, PDB, Entrez Gene, HGNC,
Swiss-Prot, GenProt are becoming repositories for storing protein structure. A
web site for one of them, the Human Protein Reference Database (HPRD), is
shown in Figure 14 (Peri, 2003). The HPRD contains protein data aggregated
from the contribution of over 70 laboratories worldwide. Nearly 45,000 papers
were reviewed in developing this database. The database also represents the

results of nearly 3,000 experiments.

Protein-Protein Interactions

Using this database one can, for example, query to find a particular protein such
as EGFR (or Epidermal Growth Factor Receptor) as shown in Figure 1-5. Once
the EGFR entry is found, one can then search for the proteins that interact with

EGFR, as shown in Figure 1-6. This list shows a small subset of the 60 proteins

) |EGFR

ProtelnName | Tl UK
:_Gene Symbol EGFR
i Summary-

; Epldermal growth. fact
Epidermal giowth factor receptor Isoform b
: Epidermal growth factor receptor isoform c
1EC 2,7.1.112
: : Epidermat qmwth factor receptor isoform a
: Alternate Names ; ERBB1
' ; MENA
lp17n

ine protein kil ErbB-1
Truncatad eplderrnal growth factor receptor
:Speclesantigen?

Figure 1-5: The entry for the EGFR entry in HPRD.

which interact with EGFR. This database also contains references to the
published research articles which detail the experiments documenting the
particular protein-protein interaction. For example, we can find the reference to
the published article documenting the EGFR-STAT1 protein-protein interaction,

as illustrated in Figure 1-7 (Xia, 2002).

Figure 1-6: Display of a subset of the total of 60 proteins in HPRD which interact with EGFR.

Approximately 40,000 protein-protein interactions are documented today. Each

day, new protein-protein interactions are found. In addition, each day, updates

ysical Interaction i) R PR T i s Mool B Tac. V7050 b o At 5.y 24978 Tt

Identification of Both Positive and Negative Domains within the
Epidermal Growth Factor Receptor COOH-terminal Region for
Bignal Transdueer and Activator of Transcription (STAT)
Activation®

for publisation, March 26, 3902, und in revissd farm. Juno 14, V0T
MJ’C Pupers in Pross, Jumne 17, 2@, DOT 10,407 t/jhe. MI0QIG2200

Ling Xiat, Lijuan Wangd, Advia S, Dhung?, Sanimir 8 lvanor), Mike Y. Lingd, Aua M. Denget},
Adsm Platthn, Tooa M. Gilmeri, Sio.Yuun Fuj, and Y. Bugene Chinj**

From. ttu: {Departmant of Petholagy and Laboestery Metinine, Brow Usiversity Sehool of Meiioine, Prowidence, Rhoe
Mmmmmtqmw Yok School of Maticine, New Haven, Comecricut 08510, and toe
Department of Calit Bodogy, Clase. WelErsmse Revesrod Inatituate, Beseard Trisnghe Pork, Nosth Careline 37700

The eydoplammic o d prowih iral in m variety of normal and maligank sells.
aesiainn am miricaie fyroeine Howrvew, BUF aboinbibits esll aad induces spoptows
linaee OR7-9A8) remducinag CODH- ia some cancer ecll mes with shorvant o

32) Enllowed by M1
terminel iul (Cealy. whick pontuins muliple frrosine reorptor (EGVE) (1. 3 Bnding o DG tu the 170414 BFE
rebven. To cxonine he i < the mmc.;l; “‘amdm—um Kinsne accriy rvel-
ig mﬁ-- ripi i

opbasgheryhation
g g o s g
sivected Transient iransfoction of 998 cells Amﬂ!
eking he et ;...mmm-v;;aﬁ'mx.au e e the EOTR Tiajumse domeln (850~
. 0P 4
sheres FaP-tepentsat STAT setivativn wos sosbored ,'2_“"",6,";,,"’,‘ e o) OOt il
m.u.m»a.mw Tyr ™ Tyy'6s, Tyrti® ond were
‘i..mia..ummnmwﬁh:m 3 Trm s demomeriod ey
srumented form h&un-Munh ~LETAT “".lyl & "'M‘*g"-m rrborzlation sitee 1 Boweven & s geoes-

—d Ty rriy Fooy-brchag. e gy stion tites do not siriagentiy define all goseible assscistion
s campeti : ifs of Thi3-contuining peoteias {0). Aaocng ol of the C-tad
"“"'""’"“““m’"’"" ‘t"""""" L ey uﬂhm:'m-:;\:
Sou ot Stusd und Seuid, A hat negutivel ‘saquences, witheomme
red STAT st T mamy b YAXLAN and TXXID mccile
Eren Tyr+14 o Gln™™™, coneisteat with the ability of this withix thed e downa oo dcking s o
vegion te rearuik a of cytokiar sigonling fac the SHR domsnoomieining protuins. ZAP-7D, SHRS, smd
tore Whea sotransfocted with the et all Aave beun fund m recepuize these sequeaaes 5T
fulJeagth EGPR, but not YWSAECFR, SOCH! o SOCB) The TXXQ withia the eytoplammic domsain of gpI%0
inkdited STAT: by in 398 eells. Thinsage was progosed to be the Statd biading consemsss sequance (31
m BOCE1 sned SOCHD can negatively rogu- whasess proteins v do-
ECrR by ublquiti aneins can recogaios 8 WDVRXY metif (9. The foatures.
pasendependent eradation upec lguad onews Sanking he tron o wikin e Cosilow
oy ‘cortam racre lw
the BUF ecoptar Ctail regulates STAT sctivity. ".,h..........:us.-. 20t boen recogoied pev-
viovsly The diverwicy of peteutisl motife

Figure 1-7: Example of a published article in Journal of Biological Chemistry documenting the
identification of a protein-protein interaction between EGFR and STAT (Xia, 2002).

of knowledge are made to existing protein-protein interactions. Experiments are
used to derive such protein-protein interactions since these interactions cannot
be derived from first principles. Moreover, sometimes, different research teams

may get differing results for the same pair of protein interactions.

46% - proteins with 0 to 1 interactions
80- 10% - proteins with 2 interactions
8% - proteins with 3 interactions
5% - proteins with 4 interactions

=]
S 31% - proteins with 5 or greater interactions
S %
2
2 31

30
3
£ 20
]
é 10

- 10 8

.
o1 2 3 4 »5

Number of interactors

Figure 1-8: Distribution of the number of interactors within the HPRD (Peri, 2003).

Within the HPRD, as shown in Figure 1-8, is the distribution of interactors, or the
number of protein-protein interactions of a single protein. In this diagram, it is
of interest to note that the majority of proteins either have 0 to 1 interactors or 5
or greater interactors. This means, for example, 10% of the protein-protein
interactions involve one protein interacting with two other proteins (the second

bar in the above bar chart).

1.2 Biological Pathways

Biological pathways are networks of protein-protein interactions. Single protein-
protein interactions can be combined to build biological pathways. Biologists,
in addition to understanding the nature and function of genes, proteins and
protein-protein interactions, also perform experiments to discover biological
pathways. Today, approximately 60,000 biological pathways are recorded across
a variety of databases including KEGG, Science STKE, Nature PID, BioPax,
BioCarta and others. New biological pathways are being discovered each day.

A Dbiological pathway consists of two elements: (1) molecules (also known as

@ _—&

Figure 1-8: Combination of A and B to P. Figure 1-9: Degradation of P to A and B.

molecular species or species) and (2) interactions among those molecules. A
biological pathway is visually represented using a “ball and stick” diagram.
Each “ball” denoted by circles, rectangles or other geometric shapes represent the
individual molecules. Each “stick” denoted by arrows or lines represents the
molecular interaction. There are two main types of molecular interactions: (1)

combination of two or more molecules to create a new molecule as shown in Figure

10

1-8 or (2) disassociation of a molecule to create two other molecules as shown in

Figure 1-9.

TGF-Beta Signaling
in Gastrointestinal Stem Cells

VisM@ At | PLEeCaturs o p 3t igriabig | 1WAy STRE v Abown STKE

it > SDE i - Debabaen ot el el » Verieheates

Compcons Maps & RLUEIEC

Dta

CanonicH Palways ALPHABETICAL LISTING

. Paltmays 1-1 0f11 t0ta: a1 displayed.

»Speesic Patoweass
» Tanacral Mesin
+ Spaess Componens ﬁwzsmvfanu RobertJ. Lehowik § 5109
Ovvienn Soeckic Palbways h

R TSRO e - Cobs
» Pafivacsy uthorives i Kt Y ¥ L] Tapas Sata and Loos Mshns

T 8. g 838, AL
» Terms, Setwaie T3 & e d -

Terns, Sobene T3 pecic Pty
s omamestial Protutis . ots

5 Kiit iitisin, TEany Blake, Yi Tang, Tapas Saha, Nady Golestanen, Natarajan Janesarn 3nd Lopa Mishra
» Forpaaet i DRy Sci STKE &,&@‘m p F y), hdlpas g MP_17698
> Turros ofve el Patthwviy)
Fos Signalieng Pathway in Cotilempocytes
Vit
NP_9933

* 11 Species
» 18 Molecular Interactions

Figure 1-10: Example of a biological pathway diagram containing 11 molecular species and 18
molecular interactions (Ray, 2003).

Figure 1-10 is an example of a biological pathway with many molecular species

and many molecular interactions as found in the Science STKE repository (Ray,

2003).

Another example is shown in Figure 1-11. Because experiments not first
principles determine the description of a biological pathway (e.g. which
molecules will interact with another), biological pathways are constantly
changing as new experiments reveal either changes in molecular species or

nature of molecular interactions.

11

Figure 1-11: Example of a biological pathway diagram containing many molecular species
denoted by the geometric shapes of circles, ellipses and diamonds along with the multiple
molecular interactions denoted by lines and arrows (Kimmel, 2003).

The biological pathway in Figure 1-10 was the result of aggregating knowledge
from nearly 35 different published articles as shown in Figure 1-12. On average
each biological pathway consists of approximately 5 to 15 molecular species and
approximately 10 to 25 molecular interactions. The development of just this one
biological pathway requires the integrated effort of multiple laboratories, spread
across the world to construct and maintain. Elements of the biological pathway,
the number of molecular species and the types of interactions, are subject to

change based on new experimental results.

12

Goumans, M., and Muramery, C., Funetionl analysis of the TGFbeta receptor’Smad pathway through gene ablation In
mice irdJ Dey Biot4d 25365 (2000) ¥,

Hoh, 8, ok, 7, Gounians, ¥.i., and Ten D

28.117-18 (2001).

LRerature

Houssaint, E., Differentiation of ihe mouse hepstic primordium. Ii. Extrinsic origin of the haemopgietic cel) tine. Cesf Difer
10,243-52 (1961). Medfling »

Bporn, M.B., and Roberts, AB., Peplide growth factors are multifunclionai. Nalure 332,217-9 (1988). Mudling ».

Sporn, M.B, and Roberts, A B, The transformeng growth factor-betas: past, present, and future. Ann N ¥ Acodf 5¢:593,1-6
{1990). Megline ».

Moses, HL , Yang, E.Y., and P:etengol, J &, Regulation of epithalial profiferation by TGF-beta Ciba Found Symp 157,66-74;
discussion 76-80 (1981). Meding o

Stack, J.M., Developmental biology ofthe pancraas. Development 121,1569-80 (1985). Megime »

Markowitz, 3., Wang, J, Myerof, ., Parsons, R, Sun, L, Lutlerbaugn, 3, Fan, RS, Zhorowska, E. Kinzier, iKW, Vogeistain,
B, and &t al,, Inaciivation of the fype il TGF-beta receptor in colon cancer cells with microsateitite instability. Science
268,1336-8 (1995). Hadlins »

Zaret, KS., Wolecular genetics of early liver development Annu Rev Physiol 58,231-51 (1998). Mading 5

Hahn, SA, Schutte, M., Hoque, AT. Moshaluk, C A, da Costa, LT, Rozenblum, £, Weinstein, C.L, Fischer. A, Yeo, C.J,,
Hruban, RH,, and Kem, §.E., DPCA, a candidate tumor suppresse: gene athuman chromosome 18q21.1. Selerce
271,350-3 (1996). Medling »

Takenoshita, 8, Tani, M, Nagashima, M, Hagiwara, K, Bennet, W.P_, Yokota, J., and Hamis, C.C., Mutation anatysis of
soding sequences cf the entire transforming arowti factor beta type It receplor gene in sporadic human colon cancer using
genomic DNA and inlron grimers. Oncogene 14,1255-8 (1997). Medling o

8, P . Bignaling of transforming grawth facfor-beta family members thicugh
Smad p!l.‘elns Euwr u&oc‘)en257 5954-67 (2000). Megtne »

Dernck, R, Ahurst, RJ., and Baimain. A, TOF-beta signaling in tumor suppression and cancer progression. ¥at Genet
edine »
et

Jomad signal ransauction pathway. Blocnem Ce 810180.605-22 (2002

Jar.d Alison, M, Hepaiic stern cells, J Pathol 187 510-8 (2002). ktfiine »
fals, and iineages in pancreas development. Anni Rev Ceil Dev Biof19,74-89

k3, C.X, and Mishra, L, Dlsm;mon of transfarming growth factor-beta signaling
po9,574-7 (2003). Mecine »
F-bela signaling from cell membrane b the nutleus. Ceff113,885-700 {2093

ier, D.%., A celfular or gut-looping 1n zebrafisk.
B, Dumcni, N., Shappel!, S, Washington, MK, Neilsor. € 6, and Moses,
ates the encogenic pelential of adjscend epitheia. Science 303,848-51 (2064)

bota signalling pathway by ubiqui diated Lncogene
Factivaled Smad3 MEF2-
pdiing »

and Massague, J , infegraticn of Smad and forkhead palhways i the control of
blion. Ceff 117,211-23 (2004), Mgiting &

7, Naturs 432,298-306 (2004). Megiine »
prishra, B., ang Mishra, L. Orofacial and gastrointestinal hyperpiasia and

Mishra, L., Cal, T, Levine, A, Weng, O, Mezey, E, Mishra, B, and Gearhan, .}, Identificaton of elft, 2 beta-spectrin, in early

mouse iver development int J Dev £i0742,271-4 (1298). Me:iing « utant oie. JOral Panaiffes34,23-9 2005). e

Goggins, M, Shekher, M., Tumaclogly, K. Yeo, C.J , Hruban, R H., and Kem, S.E., Genelic aierajions ofthe fransforming P . & . Th roie of TOF-beta and Wnlsign

growth factor beta receplor genes in ang diliaty Cancer Res58,5229-32 (1998). Mediing » Kl

Grady, W.M,, Myeroff, LL, Swirler, SE., Rajput A, 1 S.,l A D A Bvanam M.G,, Chang,

J.. Kim, 8.4, Kinzter, kw . Vogelstain, B Wiltson, JX., snd il i i gfwmfamr

tela receptor ype ll in microsatelite stable colon cancers. Cancer Reew 320-4 (1999). ggmm__

Siyaki, M., hitma, T, Konishi, M., Sakai, K, Ishii, A, Yasuno, ¥, Hishima, T, Koike, M., Shitara, N, wama, 1., U\su'\enlva N

Kuroki, T, and Mori, T, Higher frequency of 3mad4 gene mulsﬂm in humsn r,ancevw'tr distant

Dnecpene 18, 3099-!03 {1989). Mading »

Roberts, A.8., TOF-beta signaling from recepiors to the nucleus. Ak robes infact 4,1 265-73 (1998). Medline »

Miyazono, K., ten Dijke, P., and Heldls, C.H., TGF-beta signaling by Smad proteins. Adv immunof75,115-57 (2000). Hedline
s

intestinal stern

Figure 1-12: Multiple published articles are aggregated to formulate a single biological
pathway diagram from the Science STKE repository (Ray, 2003).

In summary, the development of each and every biological pathway is a highly
collaborative effort, requiring the aggregation and integration of numerous
experimental results, derived from the fundamental understanding of genes,
proteins, and protein-protein interactions. Moreover, such a development effort,
as will be discussed in forthcoming sections, is not linear, but cyclic, involving
constant updates and refinements to the biological pathway, based on new

experiments.

13

1.3 Systems Biology

Systems biology is a new field of biology; however, building systems-level
understanding of biology is not a new phenomenon. Over 6,000 years ago,
many traditional systems of medicine including Siddha, Unani, Ayurveda and
Traditional Chinese Medicine (TCM) proposed systems approaches to describing
the whole human physiome (Patwardhan, 2005; Subbarayappa, 1997). During
modern times, starting in 1930's, with the concept of homeostasis (Cannon, 1933)
and biological cybernetics (Wiener, 1948) attempts were made to understand
biology from a systems level using the modern language of physics and control

systems theory.

The discovery of the structure of DNA in 1953 (Watson, 1953) combined with
recent high-throughput measurement techniques for imaging and quantifying
molecular level interactions has enabled a completely new field of biology:
systems biology. Systems biology aims to develop system-level understanding
by connecting knowledge at the molecular level to higher level biological
functions (Kitano, 2000). Such a goal was not possible before. Previous attempts
at system-level approaches to biology, whether ancient or modern, were
primarily focused on the description and analysis of biological systems, limited
to the physiological level. Since these approaches had little to no knowledge of

how molecular interactions were linked to biological functions, a systems biology

14

of connecting molecular interactions to biological functions was not previously
possible. Systems biology, therefore, is a new field of biology as it offers the
opportunity, as never before in human history, to link the behaviors of molecules
to the characteristics of biological systems. This new field will enable us to
eventually describe cells, tissues, organs and human beings within a consistent
* framework governed by the basic principles of physics (Kitano, 2001). Systems
biologists aim to link molecular-level interactions with cellular-level functions

through quantitative modeling.

Biological Pathways ey Biological Pathway Models

Figure 1-13: Systems biologists work to convert biological pathway diagrams to biological
pathway models.

Over the past decade, new measurement techniques are enabling biologists to

quantify the molecular concentrations and rates of molecular interactions within

15

biological pathways. Such techniques are being used to transform diagrammatic
representations of biological pathways to build biological pathway models.
Systems biologists convert “ball and stick” diagrams to biological pathway models,
mathematical representations expressed in software program code along with

the inputs and data needed to run the model.

Figure 1-13 illustrates the high-level process by which a biological pathway is
converted to a biological pathway model. There are approximately 300
published biological pathway models today. The software program source code
of these models may be represented in different formats: MATLAB, C++, C,
SBML, CellML, etc. Different mathematical representations including ordinary
differential equations (ODE’s), Boolean Networks, Stochastic approaches,
analytical functions, etc. are used to specify these models. The internal
parameters for these models, such as kinetic rate constants, for example, are also
determined through experimentation. Maintaining just one biological pathway
model is a complicated task since the biological pathway models and the internal
parameters are constantly updated based on changes to the biological pathway
diagrams (e.g. based on new experiments). There are different emerging
repositories for hosting biological pathway models including BioModels.Net

(www.Biomodels.net) and CellML.Org (www.cellml.org) (Cuellar, 2003; Le

Novere, et al, 2006). A page from the BioModels.net web site is shown in

Figure 1-14.

16

i Eotor Tod Hora G 7

B;owso - Curated mu'd“yls

* Curated Motels

* Ner-turated Medeis

* Bearcn . e BioModels D ~ A unique stiing of characters associated with the model, which will never be re-used even if the model is deleted from the BioModels Database.

» Rimutate in WS e Name - The name of the model, as written in the mode! itself by its creator(s)

o Publication ID - The unigue identifier of the refarence publication describing the model, specified either as a PugMad identifier (inked to the EBI Medline databass), or as a DOt
(inked to the original publication through a DO} resolver), or as an URL Being all published, al models must have one publication identifier, and the same identifier can be shared
amongst several modsls if they have been described in the same publication.

© Last Modified ~ The date when the model was last modified.

%1 The foliowing fields are used to describe a model:

To view a model, simply click on the comespondant BioModels ID provided within the lefimast column of the 1ow carresponding to the model.

* Haws

» Hocsi ofthe Month
* Hesiings

* Suppan

¥ Cornitact

BIONAODELS, NET

e

Figure 1-14: BioModels.Net is one repository of biological pathway models (Le Novere, et al.,
2006).

From BioModels.Net, one can download a biological pathway model and execute
it on a local computer. In Figure 1-15 is a portion of the biological pathway
diagram of the EGFR model of Kholodenko (Kholodenko, et al., 1999) fro

BioModels.Net.

* 5 Species
« 5 Molecular interactions

Figure 1-15: Example of a portion of the Kholodenko EGFR model’s biological pathway
diagram from BioModels.Net (Kholodenko, et al., 1999).

17

This biological pathway has 5 molecular species and 5 molecular interactions.
Figure 1-16 illustrates the transformation of the biological pathway diagram, on
the left hand side, to a black box biological pathway model, on right hand side.
This black box has inputs, being the species concentrations of the molecular
species at time t=n, and outputs being the species concentrations of the
molecular species at time t=n+1. The internals of the black box contain the
software code and the mathematical representation. In this case, the
mathematical representation is an ODE and the software code is in SBML.

However, the mathematical representation and the software code could be in any

Biological Pathways

« 5 Species
» 5 Molecular Interactions

Figure 1-16: Representation of the biological pathway model as a “black box”.

format as described earlier. Execution of this biological pathway model will

yield results as shown in Figure 1-17.

18

. EGF_EGFR

| s (EGF_EGFR)2

{ = (EGF_EGFR)2-P
{ w— EGF

Figure 1-17: Results from the execution of the biological pathway model.

The results in Figure 1-17 are the time varying changes in species concentrations.
Along the x-axis is time and along the y-axis is the species concentration in nM
(nano-molar). Such a biological pathway model serves to provide a quantitative
and predictive capability to describe the interactions of 5 molecular species.
Each biological pathway model is treated as a black box, having a defined set of
input species and the same defined set of outputs, the values of which are the
species concentrations. The construction and validation of such biological
pathway models remains a tedious and time-consuming process mainly due to
the experimental effort required to determine the many internal parameter
values. Most biological pathway models are developed, used for a single
application by a single developer, and then forgotten. One can only imagine

how many biological pathway models, for example built in MATLAB, and never

19

published are located in some file folder, in some unknown computer, developed
by some graduate student. Therefore, considering all the hard work that goes
into developing a model, it is rather surprising that so little attention is paid to

the presentation and conservation of existing models (Snoep, et al., 2006).

Systems biologists are attempting to create reusable components of biological
pathway models by constructing online repositories like BioModels.Net, which
offer an archive and curated repository. In addition to supporting the conversion
of the diagrammatic representation of biological pathways to biological pathway

models, systems biologists also aim to build larger biological pathway models by

Figure 1-18: An example of how biological pathways interact to support a cellular function. Eight
(8) biological pathways including a. glycogen metabolism, b. amino acid degradation and urea
cycle, c. glycolysis, d. gluconeogenesis, e. citric acid cycle, f. pentose phosphate, g. ketogenesis,
h. fatty acids beta-oxidation, and i. fatty acids synthesis involved in the cellular function of
metabolism (Silva, 2002).

20

integrating smaller biological pathway models. The purpose of such effort is to
gain new insights on cellular functions not possible from experimental research.
For example, Figure 1-18 illustrates the integration of 8 different biological
pathways that are part of the cellular function of metabolism. In this example,
only the integration of the diagrams of the biological pathways is shown, not the
integration of the mathematical models for each biological pathway. Figure 1-19

is another example of an integrated biological pathway, represented also

Figure 1-19: Example of a integrated biological pathway constructed from aggregating
knowledge from approximately 200 published papers on the TLR signaling network (Oda,
2006).

currently only as a diagram, constructed from the aggregation of multiple

21

biological pathways from across approximately 200 papers (Oda, 2006). These
two examples illustrate the integration of just smaller “ball and stick” biological
pathway diagrams to create larger “ball and stick” biological pathway diagrams.
Recently, systems biologists are moving beyond just integrating the diagrams of
biological pathways to integrating biological pathway models. Such integration
efforts, currently few and less than a handful, are providing higher level system
understanding not possible by experiments alone. One such example is shown

in Figure 1-20.

The integrated biological pathway model, shown in Figure 1-20, serves to
provide an integrated model of the cellular function of osmoregulation. The
model is predictive since it suggests previously unrecognized features as

confirmed with experiments and serves as a valuable tool for future studies on

* 48 Species
* 78 Interactions

« 22 Interactions

) / Phosphoroiay moduis
* 9 Species e -
+ 10 Interactions josr sewdem s 1, 24 Species
e ! { -~ 32 Interactions
Tyl % et [RDV
e
lying Byearct i
e s e 2 P b e u},/_—'mup .:‘“ ."ak.‘ i
* 14 Species] B - & - Y 4 ‘
L H i
§

3
1, = fiGyoorad ;
i
Voiume change = iWaterion :

« 6 Species
* 10 Interactions

Figure 1-20: Example of an integrated biological pathway model constructed by integrating
four different biological pathway models to provide new understanding of the cellular
function of osmoregulation (Klipp, et al., 2005).

22

osmoregulation (Klipp, et al., 2005). Currently, there are approximately 5 to 10
such integrated biological pathway models. There are three main reasons why
there is such a low number of integrated biological pathway models. First, the
individual biological pathway models are in different formats. Second,
understanding any one model requires a great deal of domain specific
knowledge and expertise. Third, the primary method of integration involves
merging the source codes of each biological pathway model into one large source
code. Because of these reasons, it is very time-consuming and expensive to
integrate biological pathway models. Maintenance of the resulting integrated
model is also very difficult since the integrated model can become invalid as it
has a “half-life.” New proteins, protein-protein interactions and new parameters
(e.g. rate constants) in any one of the individual biological pathway models are
being discovered and/or updated constantly. Integrating models can also
become especially difficult, within the current method, if the source code for any
one particular biological pathway model is not publicly available. This would

require one to recode that entire model’s source code from scratch.

23

1.4 Research Motivation

Figure 1-21 illustrates the path to modeling the whole cell and summarizes the

concept from the previous sections.

~5 to 10 Models

>> 60,000 diagrams
~300 models

Protein-Protein Interactions

>> 40,000 %
%

20,000 - 25,000 Genes
> > 30, 000 Proteins

Cellular
Functions

TN . SN TR RS (Integrated Models)

v
. I b GO | i ¢ Pathways
AR W/- P Y

- Protein-Protein Interactions
Genes and Proteins Biochemical Reactions

Figure 1-21: Summary of the development path towards whole cell modeling.

This figure presents four major steps to modeling the cell. First, the
understanding of genes and proteins are used to build an understanding of
protein-protein interactions. Second, these protein-protein interactions are
networked to create biological pathways. Third, the integration of biological
pathways serves to describe cellular functions. Fourth, and finally, the

integration of cellular functions serves to model the whole cell. Currently, as

24

shown in Figure 1-21, there are only 5 to 10 such integrated models of cellular
function. It is expected that the number of biological pathway models, currently
numbering approximately 300, will grow; however, the step in developing larger
integrated models is severely limited by the time consuming and expensive
effort, for the three reasons highlighted earlier. The discussion below provides

greater insights on the efforts needed to build biological pathway models.

Development of Biological Pathway Models
The process to create and maintain a particular biological pathway model is an
iterative process of manipulating, measuring, mining and modeling as shown in

Figure 1-22. The two major areas are experimentation and modeling.

Quantitative Modeis Systematic Experiments

Viodel Manipulate
work Models Molecular Genetics

nologies
atabas
Data Sema:

Figure 1-22: The four M’s of systems biology (Lauffenburger, 2003).

25

Systematic experiments involve manipulation and measurement. Manipulation
involves modifying an existing biological system. Measurement involves
collection of data from that manipulated biological system. Quantitative
modeling involves both mining and modeling. Mining enables the identification
of underlying relationships in large datasets. These relationships can be used to
create predictive mathematical models. Biologists, working in highly domain
specific areas, perform systematic experiments, using a range of advanced
measurement devices quantify the molecular concentrations and dynamics of
molecular interactions. Data mining and modeling efforts are used to refine their
conclusions. Biological pathway models are developed and refined through this
constant and arduous iterative process. The World Wide Web (WWW) offers a
vehicle for scientists to more easily share and publish their biological pathway
models. There are thousands of such biological pathway models being
published and refined each day by teams of biologists world wide. Figure 1-23,
for example, illustrates three different research teams, spread across the globe,
performing the iterative process of systematic experiments and modeling to
produce biological pathways which are made available and published over the

WWW.

Given the decentralized nature of these efforts, the source code of any one
biological pathway model may be written and stored in a variety of software

programming languages, may be publicly accessible or proprietary. A

26

particular source code is typically built and tested on a particular computer
hardware platform, and multiple teams may be involved in maintaining that one

source code.

Figure 1-23: Scenario of three research teams performing systematic experiments to produce
biological pathway models which are published and made available over the WWW.

Complexity of Integrating Multiple Biological Pathway Models

As the number of biological pathway models and our ability to accurately model
any one biological pathway model increases, the challenge becomes how to
integrate an ensemble of biological pathway models to build more complex
models of cellular function. As an aside, this term complex needs to be discussed
prior to proceeding. Any one biological pathway model within an integrated

model may contain hundreds of species and a set of hundreds of resulting

27

mathematical equations describing those interactions; however, this does not
mean the model is necessarily complex. For example, on a personal computer,
super computer or even powerful handheld devices, hundreds of simultaneous
differential equations can be solved; however, this does not mean that the model
we solve is complex just because it has many equations. A complex system, on
the other hand, may be complex even if the number of equations is small and
apparently simple if the individual elements of the system have their own
unique dynamic behavior. Such a system is said to be complex if it has multiple
elements which reveal different dynamic properties. This may occur, for
example, when all system elements are continuous with concentrated
parameters, but the model includes very fast and very slow parts (Raczynski,
1996). Another example is a system where discrete parts interact with
continuous sub-models of different speed and different kind such as an
electronic circuit that contains integrated circuits as well as electro-mechanical
parts such as relays and motors (Bulatwicz, 2006). In other words, the model

complexity has little to do with the model size.

Let us now consider a complex biological system: the interferon (IFN) response
to virus infection. This integrated system involves various biological pathways,
each of which is a unique domain of knowledge and effort for modeling. Figure
1-24 illustrates the four key biological pathways involved in this complex

integrated system. Each pathway is developed by different research teams world

28

wide. At the lower left of this figure is the virus infection pathway. This biological
pathway model simulates the virus infection of a cell and results initially in the
up regulation of IFN-Beta, a critical signaling protein; and later on, results in the

up regulation of IFN-Alpha, another signaling protein.

USA, Hancloglu, et al,
Journal of Theor. Blology, 2006

Russia, Bocharov, et al,

Journal of Theor. Biology, 1994 Japan, Yamada, et al,
Genome Informatics, 2001

Figure 1-24: Scenario of scientists performing systematic experiments to produce biological
pathway models which are published and made available over the WWW.

A second biological pathway model is IFN receptor signaling, as shown in the
upper left. This biological pathway model represents the interactions of IFN
proteins, either IFN-Alpha or IFN-Beta, landing on cell receptors to trigger the
activation of other proteins within the cell’s cytoplasm to up regulate IRF-7, an

interferon regulatory factor. A third pathway is the IFN amplification cycle, as

29

shown in the upper right. This biological pathway model simulates the
production of increased amounts of both IFN-Alpha and IFN-Beta, which results
from the by-product of virus infection with IRF-7. A fourth pathway is SOCS1
regulation, shown in the lower right. This pathway serves to regulate the

production of IFNs by inhibiting the IFN receptor signaling pathway.

The ensemble of all of the biological pathways depicted in Figure 1-24, if
integrated, can provide an integrative model of IFN response to virus infection.
Each biological pathway is a contribution of different research teams across three
continents of North America, Asia, Europe, and four countries: China, Russia,
United States and Japan. Any individual biological pathway model within this
ensemble does not have thousands of equations but the activity to integrate these
four models to create one new model is unequivocally a complex problem for a
number of reasons. First, based on the literature, not all of the biological
pathway models depicted in Figure 1-24 have source codes for their models.
Second, the biological pathway models were built using different software
programming languages. Third, each team developed their biological pathway
models on different hardware platforms. Fourth, each of the biological pathway
model exhibits different dynamic properties (e.g. different time scales). To
integrate these four models is a complex problem. Such a problem is
representative of most cellular functions that involve multiple biological

pathways which need to be connected to build a larger model.

30

Complexity of Maintaining an Integrated Model

The above discussion outlined the complexity of creating an integrative model of
cellular function from combining various biological pathway models. This
complexity is only one part of the problem. Another critical function is: the
maintenance of the resulting integrated model. In the scenario described in
Figure 1-24, each biological pathway model is developed by different teams
worldwide. Each team provides a particular domain of knowledge. As
discussed in a previous section, the development of any one particular biological
pathway model is an iterative process of systematic experimentation combined

with quantitative modeling, both supporting each other.

The reality is this: any one biological pathway model is constantly undergoing refinement.

This means that the maintenance of a combined set of biological pathway models
can be nearly impossible if there is no easy mechanism to receive and incorporate
the updates from each biological pathway model; otherwise, the integrated
model’s accuracy is only good as its latest update. Since each model is
developed in different mathematical and software representations, the

integration and maintenance is made even more complicated.

31

~ Integration of Biological Pathway Models

Thus far, we have used the term integrated model without formally defining it.
Moving forward in our discussion, an integrated model refers to a group of
biological pathway models executing together that have the ability to affect each
other’s computations. Based on the previous discussion, the question arises as to
how does one effectively integrate an ensemble of biological pathway models

and maintain them to ensure reliability.

One way is to avoid the problem entirely and take a completely different
approach: develop from scratch an entirely new biological pathway model that
encompasses the multiple phenomena across each individual biological pathway
model. In essence, create one large biological pathway model. The time and
expense, however, involved in developing such a model is prohibitive. The
design and implementation of a model requires a combination of software
engineering skill and domain expertise. In addition, it involves an extensive
amount of verification and validation, requiring the iterative process of

systematic experimentation and quantitative modeling as previously discussed.

Another way is to acquire and reuse the source codes from each biological
pathway model, and merge them through some mechanism to create one large

biological pathway model. While this process may be appearing easier than the

32

previous one, it may not be so. The reuse of software is a key principle of
software engineering and is usually achieved by developing a set of simple
components, or modules that can be combined in different ways to create more
complex components. Ideally scientists would connect their biological pathway
models by integrating the existing source codes, treating them as modular pieces
that can be easily and quickly plugged together. This, however, can be a very
difficult task when the legacy source codes themselves may be poorly
understood, and more than likely, were not originally designed to be integrated,
and may be written in different software programming languages for different

hardware computing platforms.

Despite the potential benefit of building new models from existing ones,
integrating pathway models is not a common practice in systems biology
community because of the difficulties inherent in working with source codes.
Reusing source code in general is difficult for many reasons. Not only are
programs difficult to comprehend (a necessary part of any software reuse) but
the task of identifying useful source code fragments and integrating these source
code artifacts that were not designed for reuse is challenging (Bulatwicz, 2006;
Krueger, 1992; Rajlich, 2002). This is especially true for source codes written in
unstructured languages and languages that make extensive use of global data
(e.g. Fortran) (Bulatwicz, 2006). Reusing source code is particularly difficult

because biological pathway models are a unique class of computer programs

33

whose design and use is intertwined with a great deal of domain-level theory

outside the model code itself (Robinson, 2004).

In short, the amount of time and expense required to understand the legacy
source codes of each individual biological pathway model, prior to merging
them may be more costly than starting from scratch. Moreover, once the
integrated model is created, the next problem becomes the complexity of
maintaining the resulting integrated model, since changes will no doubt take
place in the originating biological pathway model’s source codes, as they are

refined and enhanced, through systematic experiments and modeling.

Perhaps a better way is to integrate biological pathway models in a decentralized
manner such that the integrated model functions as one whole, while any of its
component biological pathway models can continue to be owned and
maintained by its original authors. If this approach is taken, effort will be
required to build a new messaging architecture that enables disparately
produced biological pathway models to interface, obviating the need to explicitly
integrate the source codes. Such an infrastructure would allow scientists to
quickly prototype integrated models. This thesis is motivated to create such a

computational infrastructure to integrate biological pathway models.

34

Research Question

The above discussion should have clarified to the reader that biology is
fundamentally an experimental science. The development and understanding of
genes, proteins, and protein-protein interactions, or just any one element along
the path to modeling the whole cell (as shown in Figure 1-21), is difficult, time-
consuming and complex, requiring the collaborative effort of multiple teams of
scientists world wide. . This thesis, therefore, poses the following research

question:

How can we build larger models from smaller models in a scalable framework to support

whole cell modeling given the reality of biology — an experimental science?

1.5 Original Contributions

This thesis summarizes a body of research performed at MIT over the past four
years. Original contributions were made in five areas: (1) General Principles and
Literature Review, (2) Distributed Computing, (3) Systems Biology, (4) Scientific

Visualization, and (5) Computing Architectures

35

General Principles and Literature Review

A clear formulation of requirements necessary for a computing
architecture to support the building and computing of large scale complex
models of the cell and complex cellular functions

One of the most comprehensive literature reviews to date of the methods
used to build integrated models from ensembles of biological pathway
models

A detailed presentation of why biology is a complex systems problem
along with an exposition of why ab initio and monolithic approaches to

build whole cell models are intractable and not scalable, respectively.

Distributed Computing

A novel distributed computing architecture for integrating ensembles of
distributed biological pathway models

Complete implementation of a scalable computational architecture for
performing integration of distributed biological pathway models. This
initial prototype was implemented using publicly available software tools.
A unique Controller program that performs the computational integration
of an ensemble of individual biological pathway models without requiring

any access to the source codes

36

An optimal mechanism for orchestrating the activation and parallel
processing of calculations across a system of biological pathway models
to evaluate an accurate solution

Creation of the pathway interface descriptor (PID) which serves to enable any
biological pathway models to be used and accessed by the architecture
requiring only minimal information

An algorithm for distributed mass balance which performs the real-time
calculation and synchronization of species concentrations in real-time
across an ensemble of biological pathway models

A distributed solver architecture for integrating biological pathway

models written in SBML, CellML, or in any other format

Systems Biology

The first distributed implementation of the EGFR model of Kholodenko
which yields results that are consistent with published literature
Identification of a set of biological pathway models that form the
components of the interferon (IFN) response to viral infection

Integrative modeling and solution of the IFN response to virus ir\fection

with both positive and negative feedback

37

Scientific Visualization
® A detailed choreography of the IFN response dynamics including four
three-dimensional (3-D) animation scenes
® A complete 3-D computer graphics video of the IFN response to virus
infection. This has also been used as a teaching tool in BE440, one of the

core graduate classes in Systems Biology at MIT.

Computing Architectures

® A categorization existing architectures for integrating multiple models

® A quantitative methodology for evaluating architectures for integrating
biological pathway models that takes into account the particular needs of
different stakeholders

* The development of architectural notation to describe computational
architectures for modeling the cell

* A quantitative proof of why a distributed parallel architecture with model
reuse is superior to a monolithic approach that relies on merging the

source codes of multiple models.

38

1.6 Organization of Thesis

This thesis contains nine chapters and three Appendices.

Chapter 2: Prior Work
A comprehensive review of the existing methods for integrating biological

pathway models is provided in this chapter.

Chapter 3: Methodology
A description of the step-by-step approach to designing, implementing and
testing the proposed architecture for integrating biological pathway models is

provided in this chapter.

Chapter 4: Architecture

A detailed description of Cytosolve, the scalable architecture for integrating
multiple biological pathway models is provided in this chapter. Thee details of
the architecture are presented along with details of implementation including

initial tests to understand computation time.

39

Chapter 5: EGFR Model of Kholodenko
The EGFR model of Kholodenko is used to validate and compare the Cytosolve
architecture with existing monolithic approaches. Both computation time and

accuracy are compared.

Chapter 6: Integrative Model of IFN Response to Virus Infection
In this chapter, we present the results of using Cytosolve to develop the
integrative model of the interferon (IFN) response to virus infection using the

Cytosolve architecture.

Chapter 7: Quantitative Methodology for Evaluating Architectures for
Integrating Biological Pathway Models

This chapter provides a new methodology for evaluating architectures for
integrating biological pathway models. This methodology is applied to define
various types of architectures, then to evaluate quantitatively their efficacy based

on different stakeholder needs.

Chapter 8: Video of the IFN Response to Virus Infection

The storyboards of the four major scenes of the 3-D animation of IFN response to

virus infection along with the actual DVD format of the video are provided in

40

this chapter. The scenes include virus infection, up regulation of IFN-Beta, then

IFN-Alpha and finally IFN-Gamma.

Chapter 9: Conclusions

A summary of the thesis along with the key findings and future areas of research

are provided.

41

Chapter 2

Prior Work

2.0 Introduction

Integrating biological pathway models is becoming an important area of research
for advancing the field of systems biology. In the next section, we review the key
factors that are driving this need and some recent efforts to create integrative
models of biological systems. In the third section, we survey general
computational architectures for integrating models. The fourth section
specifically surveys the current approaches for integrating biological pathway
models in the field of systems biology. = We conclude this chapter by
summarizing the current approaches in tabular form. We also provide a
discussion on the critical weakness limiting the integration of biological pathway

models.

2.1 Movement to Integrate Biological Pathway Models

There is a worldwide movement in the computational systems biology
community to find powerful ways to integrate the growing number of biological
pathway models. This movement is being driven by a transition from

diagrammatic representation of pathways to quantitative and predictive

42

mathematical models, which span time-scales, knowledge domains and spatial-
scales (Gianchandani, et al, 2006; Palsson, 2004; Papin, et al, 2005). This
transition is being accelerated by high-throughput experimentation which
isolates reactions and their corresponding rate constants (Hood, et al.,, 2004).
Vast amounts of information is now available at the level of genes, proteins, cells,
tissues and organs, which requires the development of mathematical models that
can define the relationship between structure and function at all levels of

biological organization (Hunter, 2003).

Systems biology aims to provide a comprehensive quantitative analysis of the
manner in which all the components of a biological system interact functionally
over time (Hood and Perlmutter, 2004). Such an objective is pursued by an
interdisciplinary team of investigators (Aderem, 2005). A significant
computational challenge is how we can integrate such sub-cellular models
running on different types of algorithms to construct higher order models

(Takahashi, et al., 2004).

Biological pathways, including metabolic pathways, protein interaction
networks, signal transduction pathways, and gene regulatory networks, are
currently represented in over 220 diverse databases. These data are crucial for
the study of specific biological processes, including human diseases. Standard

exchange formats for pathway information, such as BioPAX, CellML, SBML and

43

PSI-MI, enable convenient collection of this data for biological research, but
mechanisms for common storage and communication are required (Cerami, et
al., 2006). However, one the greatest challenges in establishing this systems
approach are not biological but computational and organizational (Liu, 2005).
The critical need across all domains of molecular and cell biology is to effectively

integrate large and disparate data sets (Hwang, et al., 2005).

Vigorous interest in understanding the dynamic aspects of cellular networks is
also another driver in the development of integrative techniques for biological
pathway models (Endy and Brent, 2001; Sauro, et al., 2003). Such explorations
could provide insight into the mechanisms of healthy and diseased cells, as well
as a better understanding of how system-level or whole-cell properties emerge
from intracellular interactions of molecular components (Lindon, et al., 2006).
Moreover, understanding dynamics at the global network level seems to be now
a reachable goal which has motivated the growth of systems biology. Also, it is
commonly admitted that the study of the network dynamics is able to enlighten

the function of genes and groups of genes (Pecou, 2005).

A central question now confronting virtually all fields of biology is whether
scientists can deduce from this torrent of molecular data how systems and whole
organisms work. All this information needs to be sifted, organized, compiled,

and —most importantly — connected in a way that enables researchers to make

44

predictions based on general principles (Pennisi, 2005). Mapping protein
interactions and transactions (such as phosphorylation, ubiquitination, and
degradation) within a cell or organism is essential to developing a molecular
understanding of physiology. = Over the past decade, protein interaction
mapping has evolved from low throughput manual screens to systematic
interrogations of entire proteomes (Bader and Chant, 2006). Reconstitution of
biochemical and biophysical processes from ‘minimal systems’ of proteins has
built confidence that top-down and bottom-up approaches to biology meet

somewhere in the middle.

Systems biology has sought to integrate these results and data to reverse-
engineer an understanding of biological network function and dynamics. The
infrastructure for storing and disseminating information on biological systems,
and for modeling them, has grown concurrently. In turn, this allows the rapid
access and cross-comparison of information that is critical to establishing data
quality and creating interoperability standards that will enable biologists to

leverage their efforts and build scalable systems (Arkin and Fletcher, 2006).

2.2 Existing Methods

Two critical elements need to be carefully assessed when selecting a modeling

approach for any dynamic system: 1. the level of abstraction and 2. the methodology

45

of implementation. In determining which level of abstraction and which
methodology of implementation to use, the notions of tractability, scalability and
accuracy are some of the important selection criteria, among others. Tractability
is measured by the time and expense needed to design, implement, and test and
assess the viability of the modeling approach. Scalability is determined by the
ease with which the modeling approach can integrate new components at a
particular level of abstraction. Accuracy is determined by the ability of the
modeling approach to yield results which match that observed in nature.
Different users of the modeling approach will have these and other qualitative
criteria in determining which modeling approach are the most optimal for their

particular needs.

Currently there are two existing methods towards building whole cell models.
The first method proposes to use first principles (ab initio) and large-scale
computing, as has been applied in other fields such as climatology, particle
dynamics, etc. to build a whole cell model. The second method involves
downloading and accessing existing models and manually integrating their
source codes together by hand to create one monolithic software program: the
monolithic approach. A variation on this approach is to use semi-automation tools
that help one to automatically read and integrate source codes together to create

one monolithic software program

46

First Principles - Ab Initio
There are various choices for which level of abstraction to use in modeling the
cell. In Figure 2-1 four potential abstractions are illustrated: quantum, atomic,

biological pathways, and organelles. In the first principles approach, one could

Atoms Molecules

Figure 2-1: Various levels of abstraction in modeling the whole cell.

start at the atomic level of abstraction and solve the time-dependent
Schroedinger equation (quantum mechanics, QM) to quantify the dynamics of
the whole cell (Vaidehi, 2001). Such an approach would lead to a detailed
understanding of the role that atomic level interactions play in determining the
fundamental biochemistry of the whole cell. The difficulty in using QM, for
example, is that the vast range of length and time scales, from a nitrous oxide
molecule to an organelle, makes the QM solution both impractical and useless

(Vaidehi, 2001). It is impractical since there are too many degrees of freedom

47

describing the motions of the electrons and atoms, whereas in the functioning of
a cell it may only be the rate of transfer across some membrane. The complexity
of QM limits its applications to systems with only 10 to 200 atoms (depending on
the accuracy), leading to distance scales of less than 20 Angstroms and time
scales of femtoseconds. Even the simplest protein in the cell contains over 1000
atoms. While the atomic level abstraction offers high level of accuracy, the level
of abstraction is not scalable as the addition of each new atom increases the
computational needs exponentially. This potential solution is also impossible,
today, as the computing power needed to model the cell using this level of

abstraction does not exist.

The first principle method therefore attempts to leap frog some of the steps in
modeling the cell as shown in Figure 2-2 by using the laws of physics to model
the cell versus experiments, which are the basis of biology. Another choice of
abstraction in using the first principles method is at the molecular level, where
Newton’s equations are used rather than Schroedinger’s to model molecular
dynamics (or MD). Where in QM the solution is determined by averaging over
the scale of electrons to describe the forces on atoms, in molecular dynamics
(MD), one averages over the dynamics of atoms to describe the motion of large
molecules. While MD provides the ability to predict the dynamic interaction of
molecules ab initio in an accurate manner, this level of abstraction is neither

tractable nor scalable for modeling the whole cell since biological molecules such

48

as proteins have far more atoms, degrees of freedom and numbers of states not
encountered in other engineering fields where the species and interactions are
well-defined (White, 2007). ~We consider the simple problem of modeling the
interaction of two proteins to demonstrate the intractability of using MD for

whole cell modeling.

/ Cellular
R Functions
Biological

Pathways

TN -t Protein-Protein Interactions

Genes and Proteins Biochemical Reactions

Figure 2-2: First principles approach to modeling the cell by using the laws of physics.

Consider the interaction of two proteins A and B to form the complex AB. We
assume that each protein has 100 amino acid residues and each residue has three
states (e.g. alpha, beta and other). In MD to model this simple interaction, two
key calculations need to take place: 1. Thermodynamic and 2. Kinetic in order to

find the most likely transition state of protein A and protein B combining to

49

produce complex AB (Stultz, 2007). For the thermodynamic calculations, MD
requires the calculation of thermodynamic properties such as entropy which
requires the need to evaluate all the possible states and associated probabilities of
protein A, protein B and the complex AB. Protein A will have 3100 possible states
(100 residues, each of which can be in 3 possible states), protein B will have 31%
possible states, and the complex AB can have up to 32 (since AB is a
combination of A and B) possible states. Just performing this calculation to
determine the states and associated probabilities using modern computers is

impossible and therefore intractable.

The kinetic calculation requires the identification of an appropriate reaction
coordinate by computing the relative energies (or probabilities) for all the
conformations along this reaction coordinate. In this case, it will require
determining all the possible conformations of A and B that are at the energy of
the activated complex, denoted by A" and B’, (a higher energy than the energy of
A and B); then determining all the possible conformations of A and B within
complex AB stage, denoted by A”” and B”, (at an energy lower than that of A and
B); and then finally determining all the conformations of AB complex. The
kinetic calculation then attempts to link the most probable conformations starting
with A and B, then A’ and B’, then A” and B”, and finally the AB complex to
calculate the reaction coordinate. These sets of multiple calculations using atom-

by-atom MD to determine the reaction coordinate, as shown in Figure 2-3, to

50

solve even the simple molecular interaction of two proteins is intractable using
modern day computers (Stultz, 2007). Moreover, this level of abstraction is not

scalable as the number of interactions, number of proteins, and number of atoms

A activated complex
)
E A B
g
= A B
L
8.
_products
A"+ B” > AB
reaction coordinate ~
=

Figure 2-3: Reaction coordinate of A and B reactants going to activated complex A’ and
B’, and then to products A” and B” which then form the complex AB.

per protein increases. In summary, while MD has powerful applications for
determining protein conformations, it is not viable for whole cell modeling
where hundreds of thousands of proteins are involved in millions of molecular
interactions. Therefore, neither QM nor MD, using the laws of physics, offers

tractable approaches to modeling the whole cell.

Biological Pathways as Modules
Another approach towards modeling the cell is to consider biological pathways

as being the elemental modules from which complex cellular functions and the

51

whole cell can be modeled. In this section, we present various viewpoints in the
existing literature that supports such an approach. Biological systems are
thought to have large number of parts almost all of which are related in complex
ways (Keller, 2007). Functionality emerges as the result of interactions between
many proteins relating to each other in multiple cascades and in interaction with
the cellular environment. By computing these interactions, it can be used to
determine the logic of healthy and diseased states (Noble, 2006). One way to
model the whole cell is through bottom up reconstruction. Such bottom up
reconstruction, for example, of the human metabolic network was done
primarily through a manual process of integrating databases and pathway

models (Duarte, et al., 2007).

It is possible, for example, to regard signaling networks as systems that decode
complex inputs in time, space and chemistry into combinatorial output patterns
of signaling activity (Bhalla, 2003). By treating biological pathways as modules
our minds can still deal with the complexity. In this way, accurate
experimentation and detailed modeling of network behavior in terms of
molecular properties can reinforce each other (Hornberg, et al., 2006). The goal
then becomes that of linking kinetic models on small parts to build larger models
to form detailed kinetic models of larger chunks of metabolism, and ultimately of
the entire living cell (Snoep, et al., 2006). The value for integrating pathways is

that it was found that the integrated network shows emergent properties that the

52

individual pathways do not possess, like extended signal duration, activation of
feedback loops, thresholds for biological effects, or a multitude of signal outputs
(Klipp and Liebermeister, 2006). In this sense, a cell can be seen as an adaptive
autonomous agent or as a society of such agents, where each can exhibit a

particular behavior depending on its cognitive capabilities.

Unique mathematical frameworks will be needed to obtain an integrated
perspective on these complex systems, which operate over wide length and time
scales. These may involve a two-level hierarchical approach wherein the overall
signaling network is modeled in terms of effective "circuit" or "algorithm"
modules, and then each module is correspondingly modeled with more detailed
incorporation of its actual underlying biochemical/biophysical molecular
interactions (Asthagiri and Lauffenburger, 2000). The mammalian cell may be
considered as a central signaling network connected to various cellular machines
that are responsible for phenotypic functions. Cellular machines such as
transcriptional, translational, motility, and secretory machinery can be
represented as sets of interacting components that form functional local networks

(Ma'ayan, et al., 2005).

As biology begins to move into the “postgenomic” era, a key emerging question
is how to approach the understanding of how complex biological pathways

function as dynamical systems. Prominent examples include multi-molecular

53

protein “‘machines,” intracellular signal transduction cascades, and cell-cell
communication mechanisms. As the proportion of identified components
involved in any of these pathways continues to increase, in certain instances
already asymptotically, the daunting challenge of developing useful models—
mathematical as well as conceptual —for how they work is drawing interest

(Lauffenburger, 2000).

Multi-scale modeling is essential to integrating knowledge of human physiology
starting from genomics, molecular biology, and the environment through the
levels of cells, tissues, and organs all the way to integrated systems behavior.
The lowest levels concern biophysical and biochemical events. The higher levels
of organization in tissues, organs, and organism are complex, representing the
dynamically varying behavior of billions of cells interacting together
(Bassingthwaighte, et al,, 2005). Biological pathways can be seen to share
structural principles with engineered networks, along with three of the most
important shared principles, modularity, robustness to component tolerances,

and use of recurring circuit elements. (Alon, 2003).

An important attribute of the complexity pyramid is the gradual transition from
the particular (at the bottom level) to the universal (at the apex) (Kitney, 2007;
Oltvai and Barabasi, 2002). Others have recognized that one can build cellular-

like structures from a bottom up approach (Seeman, 2002). Integrated models

54

would represent the most compact, unambiguous and unified form of biological
hypotheses, and as such they could be used to quantitatively explore:
interrelationships at both the molecular and cellular levels. (Morgan, et al., 2004).
At this time, for instance, the computational function of many of the signaling
networks is poorly understood. =~ However, it is clear that it is possible to
construct a huge variety of control and computational circuits, both a;nalog and

digital from combinations of the cascade cycle (Sauro and Kholodenko, 2004).

2.3 Integrative Modeling Efforts

As discussed in the previous section, systems biology is determined to find new
ways to integrate biological pathway models to build larger systems.
Neuroscience, for example, seeks such integration of computational models for
better understanding of different signaling pathways in neurons (Mishra and

Bhalla, 2002).

In the area of metabolism, researchers have created comprehensive mathematical
descriptions of the cellular response of yeast to hyperosmotic shock. Their model
integrates a biochemical reaction network comprising receptor stimulation,
mitogen-activated protein kinase cascade dynamics, activation of gene
expression and adaptation of cellular metabolism with a thermodynamic

description of volume regulation and osmotic pressure (Klipp, et al., 2005).

55

The IUPS Physiome Project is an international collaborative open source project
intended to provide a public domain framework for computational physiology,
including the development of modeling standards, computational tools and web-
accessible databases of models of structure and function at all spatial scales and

across all organ systems (Hunter, et al., 2005).

For the first time, kinetic information from the literature was collected and used
to construct integrative dynamical mathematical models of sphingolipid
metabolism (Alvarez-Vasquez, et al,, 2004). In another example, a model of 545
components (nodes) and 1259 interactions representing signaling pathways and
cellular machines in the hippocampal CAl neuron were combined. Using graph
theory methods, this effort analyzed ligand-induced signal flow through the
system. Specification of input and output nodes allowed them to identify
functional modules. Networking resulted in the emergence of regulatory motifs,
such as positive and negative feedback and feed-forward loops, that process

information (Ma'ayan, et al., 2005).

(Oda, 2004) have developed a complete map of the macrophage pathway. In this
example, 234 published manuscripts were reviewed and 506 reactions were
integrated within the single centralized software framework of Cell Designer

(Kitano, et al., 2005) . No models were integrated in this case, rather the work

56

produced a large and complex monolithic diagram interconnecting the various

biological pathways.

These examples demonstrate current efforts to integrate models to gain greater
insight into a particular area of biology. The results seem promising, and such
efforts are only growing. There is an also an equally growing need for
foundational tools and architectures that support the continued development of
such integrated models in a far more scalable manner. This has led to the
development of many new tools such as Cell Designer which aim to offer an
easy-to-use interface for linking biological pathway models. In the next sections,
we first survey general techniques that are used for integrating such models in
order to gain a perspective for reviewing the more specific techniques in

computational systems biology.

2.4 Generalized Architectures for Integrating Models

There are computationally two broad approaches to integrating multiple models:
monolithic and messaging. The monolithic approach involves the creation of one
monolithic source code resulting from the merger of the source code of the
individual models. The messaging approach involves the need for no such
merger, but creates a mechanism by which the necessary input and output data

streams common across all models can be shared and transferred either statically

57

or dynamically. =~ Some have referred to this messaging approach as a

communications approach (Bulatwicz, 2006).

Monolithic Approach
There are three broad types of monolithic approaches for integrating models:

manual, semi-automated and module-based.

Model C
Model A Model B oy
otk Lo Mg e i
W
” — P
o ot
wtin i
wtd oo iRt S seigro g B
e o S ST 5 NP 556 W
<l pacis e SIRART 8 s, 8
hvaaad T e s 53 o
st fiperrossies riueuis. oo
s ity n:
oy © a0 Dt 1 RS MALY
it e, MY /Wb i A gt s
it netie ALY SWEL KO vty X WS j=re
+ fevwron —

R s a2
TN e ey ook

« e Dupcrggicn of dr'a ST
B idaad

Figure 2-4a: Monolithic approach of cutting and pasting source codes of two models: Model
A and Model B to produce a new source code of Model C.

Manual Monolithic Approach

The manual monolithic approach is process where the model integrator manually
creates a single program or “file” by “cutting and pasting” the source codes or
“wiring together” the pathway diagrams of individual models. Figure 2-4a

illustrates the cutting and pasting of source codes from two biological pathway

58

models Model A and Model B to produce Model C. Figure 2-4b similarly shows

T -
v il e s W e W

o~ [e &
- e e &
g, b i g T
ity b o o i
LI L 2 L D —
e e M
e X
e i
. Y
e

Figure 2-4b: Monolithic approach of wiring the pathway diagrams of two models: Model A
and Model B to produce a new pathway diagram of Model C.

how a model integrator may alternatively wire together the pathway diagrams of
two pathway models to produce a single pathway diagram using a visual design
tool. Many find the manual monolithic approach easy to use. It offers full control
to the model integrator of the source codes or pathway diagrams. The model
integrator has control of all the coding details (control structure, memory
allocation, data types, input/output file formats, etc.) (Bulatwicz, 2006).
Although this approach works, it has significant drawbacks. The individual
performing the integration needs a complete and detailed understanding of the
constituent models. In many cases, the source code is often difficult to obtain
since legacy model codes are frequently complex, uncommented, and poorly

documented (Bulatwicz, 2006). The single integrated model’s source code is also

59

difficult to work with from a software engineering point of view (testing,
debugging, verifying, updating, etc.) since it is much larger than its constituent
model source codes, and improvements made to the original model source codes
must be repeatedly made to each integrated model’s source code as well.
Examples of recent published papers in using this monolithic approach are
shown in Figure 2-5a and Figure 2-5b. In Figure 2-5a, four models are integrated
to produce on monolithic model for modeling the cellular function of
osmoregulation (Klipp, et al., 2005). In Figure 2-5b, three existing kinetic models
are linked with one focusing on yeast glycolysis, a second extending this
glycolytic pathway to the glycerol branch, and a third model introducing the

glyoxalase pathway (Snoep, et al., 2006).

ey
module 1
alk S i
Syrehasis 42 Ghuos-P Giycard, o 3
P : iy P]
Froos 868 Cyoural ;
m/u it v, I
"o iy ey o ;
2a0P
IATE of™ Ly o bl ;
y s

By Syrehedia mmc;“—mo i
o N >.'< H

D e ADP"9 %P

o, p
P - -———— ~
phy ¢ i
= f{Glycerol !
atadflow over membrane =, 1, 1)
! Vokime change = iWaterfiow) 1
ootmty |

o e i i . e o it 1%

Figure 2-5a: An example of mtegratmg models using the monolithic approach to
integrate a model for the cellular function of osmoregulation (Klipp, et al., 2005).

60

Gle_in NAD
ATe
aop . aTPR™" asp
Giyoogen asP Trehatose ‘/ﬁ
ATP ﬁ Pi
ADP (8) Giyoerol
arp F6P
ADP.
F160P

DHAP 5. GAP
NADH NAD

NAD NADH MathylGlyoxal
Giycerol BPG
w»m:v
3PGA HIA
2 ADP
2PGA SOLGSH
AnaP ATP
PEP \op © D-Lactate
ATP
PYR
{:(:;2«’
Suctingte < 2 Aoetaidehx‘de
ADH

4ADP SATE NAD
{A) 3nNADH SNAD Ethanot

Figure 2-5b: An example integrating three pathways in a monolithic approach
(Snoep, et al., 2006).

Semi-Automated Monolithic Approach

The semi-automated approach is a slight variation of the manual monolithic
approach. In the semi-automated monolithic approach, software tools are used
to accelerate the development of a single program from the individual model’s
source codes. In these approaches, a software tool, as illustrated in Figure 2-6a,
combines together source codes or diagrams using some additional information
to produce a single source code or diagram. Rarely do these tools produce the
right source code, the first time. There is always manual intervention to review
the initially produced output and then perform manual manipulations to

produce the final output.

61

Figure 2-6a: Semi-automated monolithic approach of wiring the pathway diagrams of two
models: Model A and Model B to produce a new pathway diagram of Model C.

This semi-automated monolithic approach has the advantage of speeding up the
initial merger process of source codes; however, the result varies based on the

kind of semi-automation tool being used. In some cases, more effort is spent

Model A Model B
» - WT Merged Mode! e &
S .« o e
i e)
L
éx ‘[\ + é:m» //;’"Mﬁ
£ smam By Es -3 P W n.%m"%. e Thd

Figure 2-6b: SBMLMerge is an example of a tool that takes two biological pathway models
and produces a merged model in a monolithic format (Schulz, et al., 2006).

62

trying to get the tool itself working properly. Although this approach works, it
too has the same significant drawbacks as the manual monolithic approach.
One example of such a tool, SBMLMerge, is shown in Figure 2-6b (Schulz, et al.,
2006). This tool merges two biological pathway models to produce one
biological pathway model. For this tool to operate, both biological pathway
models need to be in SBML format and the tool produces one monolithic source

code of the merged model in SBML format.

While these semi-automated tools may speed up the process, one disadvantage is
that the model integrator does not have as much control of the resulting
integrated source code, as they had in the manual approach. Some semi-
automated tools insert new proprietary code and data structures along with a
new format which may take time to understand and debug. The model
integrator, in that event, needs to not only have a complete and detailed
understanding of the constituent models and their source code, as in the
monolithic approach, but also now needs to understand how the tool for semi-

automation itself works.

Module-Based Monolithic Approach
The module-based monolithic approach addresses some of the limitations and
drawbacks of the manual and semi-automated monolithic approaches. This

approach offers the ability to employ reusable techniques for integrating models.

63

The module-based monolithic approach results in the creation of single set of
source code, but differs in that rather than decompose each model’s source codes
into blocks of source code designed for integration into another specific model’s
source code, the scientist decomposes each model’s source code into software
modules. Modules are subroutines that are reusable and can be written with
little knowledge of the other modules, and they can be replaced independently
without significant changes to the rest of the program (Bulatwicz, 2006). We use
the term reusable to mean that a module can be used in a variety of different
situations without any changes made to it. Each module possesses a standard
interface for invoking and passing parameters. The modules are then

recomposed by connecting their interfaces.

The interfaces for each module are generally simple and consist of a set of input
data that must be supplied before the module can be executed, and a set of
output data that is available upon completion (Bulatwicz, 2006). The
computation that a module performs is encapsulated and hidden within the
module. These modules can be classified and organized into searchable libraries

and the strict interfaces allow for automatic compatibility checking.

The specification of the module connections can either be through a visual
environment or textual configuration files. Modules are connected by specifying

which module outputs map to which module inputs. This configurable

64

dependence is a key feature of modules (Bulatwicz, 2006). The module-based
monolithic approach is advantageous because simpler modules are easier to test,
debug, update, compare, and verify. Once the modules are created, they can be
easily assembled, reassembled in different ways, and can be reused to create new
compositions. In addition, there are architectures that supply pre-made general
purpose modules for common operations. Some architectures standardize the
argument data types of the modules while others allow no arguments and
require put/get calls (from a custom library) within the component for data

input/output, and some use a combination (Bulatwicz, 2006).

Architectures can be general purpose or apply to specific domains such as
climatology, hydrology (Bulatwicz, 2006) or systems biology . Those that apply
to specific domains typically support the transfer and transformation of domain-
specific data types (grids, flux, etc.). Although the module-based monolithic
approach addresses the issues of the integrated model’s source code complexity
(by breaking the computations down into simple components) and reuse (by
allowing easy reuse via standard interfaces), it still requires the scientist to have a
complete and detailed understanding of the underlying model codes in order to
rewrite them into modules. Although the integrated models would be easier to
create from modules than from scratch, such an approach to integrating models

requires substantial reprogramming.

65

Messaging Approach

Due to the limitations of the monolithic approaches, scientists turned to
approaches that obviate the need to produce either manually, semi-automated
manually or even programmatically, one source code from the combined models
and approaches that require a substantial programming. This led to the
messaging approach. There are two types of messaging approaches: static and

dynamic.

Static Messaging Approach

In the static messaging approach, the models remain independent programs and
do not affect each other as they are executing. Any one model accepts as input a
dataset, which may reside in any variety of formats, and executes to completion
to generate an output dataset. That output dataset is then given to another model
(perhaps after some transformation) which that model uses it as input and also
executes through to completion. This process can then be continued with other
models, and they can be executed concurrently if there are no dependencies

between their datasets.

Architectures for supporting static messaging architectures offer tools that
provide automated ways for the user to select models and datasets, and then
specify the distribution of datasets (Bulatwicz, 2006). For example, in one such

architecture, called Le Select, a database-oriented approach is used in which both

66

models and datasets are stored in geographically distributed databases and the
user specifies the execution and data distribution through textual queries in a
standard database query language (Bulatwicz, 2006). Other architectures provide
a visual interface to specify the order of execution of the models (Akarsu, 1998;
Whelan, 1997) . These architectures typically have different user interfaces and
different input/output data formats making them difficult to use, especially for

non-specialists, requiring a significant investment of time to learn.

Some architectures provide a standard user interface to each model (Neteler,
2004). This requires that the original user interface source code be removed from
each model and replaced with the common user interface source code. To
address the issue of non-uniform data input and output formats, some
architectures require the user to perform this data transformation manually
between model runs while others require the user to change the model codes so
that they use a standard data format (Akarsu, 1998; Whelan, 1997). This requires
that all the input and output source code be removed and replaced with source

code to access the common database and use its data types.

Dynamic Messaging Approach

Using the dynamic messaging approach, the underlying model’s source codes
remain independently executing programs that interact only by exchanging data

via message passing during execution. Architectures that use this approach can

67

be classified by whether or not they include an independent application (a

controller) that mediates the execution and messaging between the models.

The primary role of the controller is to transform exchanged data, which
typically involves data type conversions, but they also sometimes control the
startup of the models or track the global state of the integrated model as well.
Architectures that do not include a controller are essentially libraries of data
transfer and transformation routines customized for the data types and
messaging styles needed by models. Architectures that do include a controller
have messaging libraries that support direct model-to-model messaging as well
as model-to controller messaging. In either case, these libraries often require the
scientist to convert the model data into a standard data type, which is then
communicated. All of these architectures require the scientist to perform an
initial exercise of creating some mechanism of interfacing with each model

through library calls in order to send or receive data.

The user then writes configuration files that specify which models are to execute,
and the data that are to be sent and received. The messaging approach avoids
the substantial model code rewriting required by the monolithic approaches, but
the user still needs a complete and detailed understanding of the model codes in

order to properly set up the correct interfacing for them (Bulatwicz, 2006).

68

In systems biology, for example, if one biological pathway model is written in
MATLAB, and other model is in SBML, with each sharing four common
variables that need to be communicated to solve the integrated problem, then the
interface code is developed for the MATLAB model and for the SBML model.
Once this interface code is written, both can transfer data. This interfacing
process is often specific to a specific type of integration, so the interfacing process

has to be to be repeated for each different type of interfacing.

These architectures also suffer from the problem that the interfacing of the model
code (e.g. adding a send() call which sends a value to another model) is separate
from the specification of the integration which is done in configuration files (e.g.
specifying that one model will be sending a value to the controller and another
will be receiving a value from the controller) (Bulatwicz, 2006). This can make
setting up an interfacing error-prone because there is no way to perform
consistency checks to ensure that the model’s source codes are interfacing in a
way consistent with the controller’s configuration files. This typically isn't a
serious problem when the projects that use these integrated architecture are large
(often climate-related) and specialists familiar with the models are available to
interface with them, but this does become a problem for scientists in other

domains seeking to create prototype integrations quickly and easily (Bulatwicz,

2006).

69

2.5 Approaches to Integrating Biological Pathway Models

In this section, we will review current approaches to integrating biological
pathway models within the field of systems biology. Two developments are
predominant in addressing this integration problem: 1. the development of new
software systems that allow the integration of multiple biological pathway
models within a single centralized software framework, and 2. the development

" of common standards to define and code biological pathway models.

Software Systems for Integrating Biological Pathways
As discussed in the previous section on Generalized Approaches to Integrating Multiple
Models, there are two broad classifications for approaches to performing such

model integration: monolithic and messaging.

In systems biology, there is another dimension of classification: informational and
computational. Informational approaches are those that provide a way for
integrating multiple sources of biological pathway information but do no
computing with that integrated information. Computational approaches are
those that are a superset of informational architectures by also provide the ability
to perform integrated computations across the biological pathways. In the

diagram below, we review the predominant software systems for integrating

70

biological pathways and characterize them in this two-dimensional context of

monolithic versus messaging and informational versus computational.

Popular Monolithic Tools for Pathway Modeling

There are a set of architectures including Virtual Cell, Kinetikit/Genesis, Cell
Designer, Jarnac/JDesigner, JSim, XPAUT, E-CELL, Gepasi, Jarnac, StochSim
which are manual monolithic and use a computational approach. These tools force
one to bring all biological pathway models into their particular tool and place
into one format prior to integration. They offer easy-to-use user interfaces that
makes it convenient for cell biologists to facilitate the construction of models and
the generation of predictive simulations from them (Slepchenko, et al., 2003).
Some of them use programming markup languages such as SBML (Hucka, et al.,
2003). Beyond the ones stated here, there are many other graphical tools and
mathematical solvers to construct and solve biological pathway models using a
manual monolithic approach. Currently, 136 such software systems exist for
constructing biological pathway models. These monolithic systems, such as Cell
Designer (Kitano, et al., 2005), allow for the integration of multiple biological
pathway models; however, each individual pathway model needs to be loaded
and combined within this one centralized framework, and typically each
pathway model is assumed to exist in one of the several standard formats such as

SBML or CellML. If individual pathway models were developed in other

71

computing systems or other formats, these systems either do not support such

integration or make such integration extremely onerous.

MATLAB

MATLAB uses a module-based monolithic and provides computational approach for
integrating biological pathway models. MATLAB offers programming interfaces
that can be used to communicate with different models stored in different
programs. All models, for all practical purposes, need to be within the MATLAB

framework.

PathSys

PathSys uses a static messaging and informational approach for integrating biological
pathway model information. It provides a way for creating a combined
database of biological pathways for generating an integrated view of biological
mechanisms. It does not offer a way to compute solutions as it is an
informational, not computational, mechanism. PathSys has been used to
integrate over 14 curated and publicly contributed data sources for the budding
yeast (S. cerevisiae) and Gene Ontology. It serves as a general-purpose,
scalable, graph-data warehouse of biological information, complete with a graph
manipulation and a query language, a storage mechanism and a generic data-
importing mechanism through schema-mapping (Baitaluk, et al.,, 2006). While

PathSys provides robust functions for biological pathway model archival and

72

storage including the ability to integrate data from other models source, it is not

useful for any computational modeling.

SBMLMerge

SBMLMerge uses a semi-automated monolithic and computational approach for
supporting the integration of biological pathway models written in SBML format
only. It provides a tools for combining biological pathway models that must be
in the SBML format (Schulz, et al., 2006). By its nature, this approach attempts to
force all models into SBML. In fact, ancillary tools are provide as a part of this
approach which convert models expressed in CellML into SBML without

significant loss of information (Schilstra, et al., 2006).

CellAK

CellAK (for Cell Assembly Kit) is such an agent-based method and follows a
static messaging and computational approach. Systems biology is seeing the
emergence of agent-based modeling methods. These methods treat each
biological pathway model as a single entity (or agent) obeying its own pre-
defined rules and reacting to its environment and neighboring agents
accordingly (Pogson, et al.,, 2006). CellAK has been used to model an
abstracted cell, consisting of membrane-bounded compartments with chemical
reactions and internal organelles (Webb and White, 2005). It produces models

that are similar in structure and functionality to those that can be specified using

73

the systems biology markup language (SBML), and CellML, and implemented
using E-CELL (Tomita, et al., 1999), Gepasi, Jarnac, StochSim, Virtual Cell, and
other tools currently available to the biology community. This tool does not use
differential equations to determine the time evolution of cellular behavior, as is
the case with most of the cell modeling systems, since differential equations find
it difficult to model directed or local diffusion processes and sub-cellular
compartmentalization and they lack the ability to deal with non-equilibrium
solutions. This approach offers many positive ways for integrating biological
pathway models; however, as with other static messaging approaches for
computing, a non-specialist has very high learning curve in preparing a set of

biological pathway models for use with this approach.

Cellulat

Cellulat (Gonzalez, et al, 2003) is another static messaging and computational
approach in which a collection of autonomous agents (our active objects—
enzymes, transport proteins, lipid bilayers) act in parallel on elements of a set of
shared data structures called blackboards (our compartments with small
molecule data structures). The dynamics of a Cellulat model result from
messages passing between active objects through the blackborad. Agent-based
modeling of cells is becoming an area of increasing research interest owing in no
small measure to the desire to understand cellular processes at an increasing

level of detail.

74

Cellware

Cellware offers a module-based monolithic and computational approach. Recent
advancements in systems biology have encouraged researchers to move from
‘few-reactions-based’ to the ‘whole-cell-based’” and ‘whole-organ-based’ models.
Though the initial efforts have been fairly successful, the task of finding a closest
mathematical equivalent of cellular processes has been truly daunting.
Cellware, a multi-algorithmic modeling and simulation software, has been
developed to precisely address this requirement of the modeling community
(Dhar, et al., 2004). The Cellware approach is based on the view that a uniform
modeling approach cannot capture the immense diversity of a cell since in the
past a number of tools have been developed for cell modeling and simulation
which are based on just one mathematical» technique (Kierzek, 2002; Le Novere
and Shimizu, 2001; Loew, 2002; Mendes and Kell, 2001; Tomita, et al., 1999; You,
et al, 2003). Cellware argues that an integrated modeling environment is
warranted to model diverse cellular processes using distinct mathematical
descriptions. For example, for modeling gene expression a stochastic method is
more appropriate while for modeling metabolic pathways a deterministic
approach is more suitable. The philosophy behind Cellware is correct for the
need for an integrated environment; however, in execution, they are still a

module-based monolithic approach computationally.

75

SigPath

SigPath is a static messaging and informational approach that connects qualitative
information stored in biological databases with the quantitative data required for
biochemical modeling approaches (Campagne, et al., 2004). SigPath does not

offer a way to compute and integrate biological pathway models.

Gaggle

Gaggle follows dynamic messaging and informational approach. It attempts
through a loose coupling of diverse software and databases to integrate disparate
systems to enable simultaneous exploration of experimental data (mRNA and
protein abundance, protein-protein and protein-DNA interactions), functional
associations (operon, chromosomal proximity, phylogenetic pattern), metabolic
pathways (KEGG) and Pubmed abstracts (STRING web resource), creating an
exploratory environment useful to 'web browser and spreadsheet biologists', to
statistically savvy computational biologists, and those in between (Shannon, et
al., 2006). Again, it is important to note that Gaggle does not compute integrated

models as it is an informational approach.

Standards for Integrating Biological Pathways
An ancillary approach to support the integration of biological pathways is to
promote and enforce standards; however, standards are only as good as their

adoption. In the systems biology community, two competing standards are

76

currently being promoted: Systems Biology Markup Language (SBML); and Cell
Markup Language (CellML) for coding and storing mathematical models of
biomolecular pathways. Approximately 100 biological pathway models are
coded in SBML. While the CellML standard receives less mention in the
literature than SBML, over 150 models are coded in CellML. CellML models can
be converted by sub-sampling the information they contain into SBML, but
SBML models are difficult to convert to CellML. In spite of the promotion of
these two standards, most mathematical models are coded in programming
languages such as FORTRAN, C, MATLAB, etc. and not in any one particular
standard format. The development of standards, while valuable, has not
resulted in widespread adoption of any one particular standard; however, in

biological pathway modeling, the use of SBML and CellML is growing.

Some have attempted to use standards in combination with a manual monolithic
approach to build larger biological pathways. One such effort is that of Oda et
al. In this work, the diagrams of multiple biological pathways that were coded in
SBML were connected together using Cell Designer, which was used as the
standard and monolithic software system. This effort served to build a complete
map of the macrophage pathway. In this example, 234 published manuscripts
were reviewed and 506 reactions were integrated within the single centralized
software framework of Cell Designer. No mathematical modeling was executed

in this case, but the integration of many pathway diagrams was accomplished.

71

2.6 Summary

In the previous sections, we have surveyed a number of different architectures
that can be used for integrating biological pathway models. In Table 2-1, we

summarize these extant approaches based on our two-dimensional classification

Architecture Monolithic/Messaging Informational/Computational
Virtual Cell Monolithic (Manual) Computational
Kinetikit/Genesis Monolithic (Manual) Computational
Cell Designer Monolithic (Manual) Computational
Jarnac/JDesigner Monolithic (Manual) Computational
JSim Monolithic (Manual) Computational
E-CELL Monolithic (Manual) Computational
Gepasi Monolithic (Manual) Computational
Jarnac Monolithic (Manual) Computational
StochSim Monolithic (Manual) Computational
PathSys Messaging (Static) Informational
SBMLMerge Monolithic (Semi-Automated) Computational
CellAK Messaging (Module-Based) Computational
Cellulat Messaging (Module-Based) Computational
Cellware Monolithic (Module-Based) Computational
SigPath Messaging (Static) Informational
Gaggle Messaging (Dynamic) Informational
XPAUT Monolithic (Manual) Computational
MATLAB Monolithic (Module-Based) Computational

Table 2-1: Summary of architectures for integrating biological pathways.

methodology from the previous section. The 18 architectures summarized in

Table 2-1 represent those architectures that support the integration of multiple

78

biological pathway models. As noted earlier, some of these architectures support
the integration of biological pathway model information but do not support the

computing of the integrated models.

Most of the approaches are monolithic. Clearly within the monolithic approach,
the module-based mechanism is an ideal way to construct new models if
modules are available, but the approach is impractical for integrating existing
models. Cellware and MATLAB offer a module-based monolithic approach;
however, they are very difficult to perform the actual programming for this kind
of application for a non-specialist, have a significant learning curve, and cannot
produce code that is scalable. What is interesting to note; however, is that the
most widely use architectures in the systems biology community is the

monolithic approach.

The messaging approach allows existing models to be integrated with minimal
changes to the model’s source codes. Since we are interested in model reuse and
scalability, we will focus on the messaging approach in this work. Moreover,
we will ignore those architecture that are only informational for obvious reasons,

since the do not support computation.

Based on Table 2-1, there are only two messaging-style architectures in the

current systems biology community: CellAK and Cellulat. These two

79

architectures offer an approach that lets biological pathway models be integrated
without the need to explicitly integrate the source codes as in the monolithic
approach. Neither of these approaches, however, performs dynamic messaging

among the integrated models, which would be even more advantageous.

Weakness of the Current Approaches

As can be seen from the previous discussion, the predominant method for
performing such integration is a monolithic approach, which involves creating one
large biological pathway model through either a manual, semi-automated or
module-based method that executes on a single computer. There are many

weaknesses which make this approach not scalable.

o First, scaling to, for example, approximately 1,000 pathways - the level
required to describe a single cell - would require a massive effort beyond
the research and development expended to obtain the original individual
pathways (Dewey, 2006).

® Second, each pathway represents a knowledge domain, and it would be
essentially impossible to have one person sufficiently knowledgeable in all
the scientific areas to understand each of these domains well enough to
manually construct a single monolithic program.

® Third, the monolithic approach does not provide a means for pathways

from proprietary models to be used with other models that are open

80

source. The monolithic approach wrongly assumes that the owners of any
one model will be freely willing to share their models directly and will not
protect proprietary information. The reality is that some models may be
public and others, say ones owned by a pharmaceutical company may be
private.

Fourth, most monolithic approaches support only one standard format.
This means all other models need to be converted to that standard format.
Fifth, and related to the previous weaknesses, the monolithic approach
wrongly assumes that all models within an ensemble to be integrated are
in the same format. The reality is that, while standards efforts are
underway, models are coded in software platforms convenient to the
author; and more practically any one platform is not capable of modeling
all biological pathways. In the (Oda, 2004) example, all pathways had to
be constructed in SBML and the integration had to be performed within
the centralized framework of Cell Designer. Thus, this monolithic
approach demands that in order to model the whole cell, all pathways
would have to be placed into SBML or one common standard and then
integrated within the framework of a centralized software system such as
Cell Designer. Given the reality of standards adoption as aforementioned
and the existence of 136 different software systems such as Cell Designer,
a monolithic approach does not provide a scalable method to integrate

multiple biological pathways to model the whole cell.

81

* Sixth, the monolithic approach also wrongly assumes that all the models
will run on the same computer and/or the same hardware platform.
Different models may run on only certain hardware platforms, and more
than likely were optimized and tested to run on particular hardware
systems. This will become more important as the size and complexity
increase , and special coding and computational accelerators are used to
control the computational time.

e Seventh, the monolithic approach assumes that all models reside in the
same geographical location and ignores that biologists, even in a
particular domain area of research such as immune response or cell
motility, are distributed across laboratories worldwide. While they may
build models within the same software platform and on the same
hardware environment, the models themselves may be resident at a
completely different location.

* Eighth, the monolithic approach offers no real viable or practical
mechanism to maintain the single large body of software code emerging
from the merger of the software codes of the individual models. Consider
four individual models that have been merged using the monolithic
approach, and consider what process the author of the monolithic model
will need to employ to track and maintain updates and changes to any of
the four individual models. To any experienced software development

manager, this is known as a change management nightmare. The reality is that

82

any model may change constantly due to any one of several reasons
including new advances in measurement, corrections to rate constants or
identification of new species in a particular pathway.

Ninth, the monolithic approach, since it is centrally managed and
maintained, places a new burden on the authors of the integrated model:
that they become experts in the multiple domains represented by the
individual pathway domains that were merged. This is nearly impossible.
Tenth and finally, many of the monolithic approaches attempt to enforce
“standards” as a way to further reinforce a “monotheism”. This
centralized approach that would not fare well compared with more
democratic, community-based approaches that understand and include
research-driven development efforts. Creating a rigid standard before a
field has matured can result in a failed and unused standard, in the best of
circumstances, and, in the worst, can have the effect of stifling innovation

(Quackenbush, et al., 2006).

What is Necessary

What is needed is a method that directly addresses this integration and

scalability problem by providing a parallel and distributed architecture allowing

any individual pathway model to exist in any format and across different

computers. Such a method would obviate the need to manually load,

understand and interconnect each individual pathway, as is required in

83

monolithic systems. It is clear from the above literature review, the common
approach today is a monolithic approach in which computational biologists
seeking to create an integrate model “cut and paste” source codes to create on
monolithic model. More specifically, of the two recent papers that provide
examples of integrating biological pathway models, both involve the merging of
SBML models using a manual monolithic approach (Klipp, et al., 2005; Snoep, et
al., 2006). Thus, from a short-term perspective, even an architecture which
allows the integration of distributed SBML models would be of huge benefit.
SBMLMerge offers a tool that is a semi-automated monolithic approach, while
valuable for those seeking to “cut and paste” models faster, it is not a scalable
solution, since the resulting code base still cannot be maintained as the models
change overtime, requiring re-integration each time every time the elemental

models change.

A more advantageous solution would be an architecture that could, with
minimal effort and no programming, connect or couple the codes of multiple
SMBL models, linking their computations. Such a tool would be of immense
benefit. If this same architecture could allow for the integration of models also
not written in SBML, but in any other format, it will accelerate the development
of complex models, versus waiting for all extant models to be converted and
curated in SBML. This too will be particularly useful, given the reality that

most of the encoded models available in scientific publications or on the Internet

84

are not in a standard format. Of those that are encoded in a standard format, it
turns out that most actually fail compliance tests developed for these standards
(Le Novere, et al., 2005). In fact markup languages for model encoding such as
SBML may not be always the only way for modeling biological pathway models,
there are others that provide a range of descriptive and analytical powers. As the
field matures, there will be a wider uptake of these alternative approaches for
several reasons, including the need to take into account the great complexity of

cellular organization (Gilbert, et al., 2006).

From a software engineering perspective, each biological pathway model
represents an individual software program, each with different inputs and
outputs, written in different programming languages, by different developers,
potentially distributed worldwide. Modeling the whole cell, therefore, can be

likened to a large-scale systems integration problem.

The research goal of this thesis, therefore, is to develop a new approach to
integrate biological pathway models that overcomes the intractability and lack of
scalability of existing approaches. In his seminal work, (Brooks, 1975) has
demonstrated that the amount of effort to develop such a large-scale system
increases exponentially with the amount of additional personnel
communications required to coordinate development personnel. The thesis will

explore a method that resolves this bottleneck in personnel communications by

85

allowing individual teams to own and manage their own pathway models
without being involved in a massive project management effort to coordinate the

integration.

86

Chapter 3

Methodology

3.0 Introduction

This chapter of the thesis is an important transition point. The previous two
chapters have provided an introduction to the nature of biological pathway
models, general approaches to integrating models, the specific approaches used
in the systems biology field, along with a discussion of their weaknesses. At this
point, it should be clear to the reader that there is a need for solution for
integrating biological pathway models in a scalable manner, and that no extant
solution exists for supporting such scalability. Since the goal of this thesis is to
create a solution to meet this growing need, this chapter provides a disciplined

step-by-step methodology to meet this goal.

87

3.1 Approach

There are eight steps that will be followed.

Step 1 - Specify Requirements

A solution is only as good as the specified requirements. Prior to designing or
implementing the solution, our first step will be to create an itemized list of
requirements that the ideal solution will satisfy. This list will serve as the basis
for guiding the design of the architecture. In Chapter 4, the section entitled

Regquirements Specification, contains such an itemized list.

Step 2 - Design Architecture

In this step, we develop the design of the computational architecture design.
This design will offer diagrams and descriptions to identify the key components
of the architecture along with their roles and responsibilities. In Chapter 4, the
section entitled Architectural Design, contains the details of the architecture’s

design.

Step 3 - Select Tools
In this step, based on the architectural design, particular tools are selected to
implement the architecture. The right tools selection can greatly affect the

implementation of the architecture, particularly time and expense. In Chapter 4,

88

the section entitled Architecture Implementation, contains the details of the tools that

were selected for the implementation.

Step 4 - Implement the Architecture to Produce Initial Prototype

This step involves setting up the hardware, installing the tools, programming the
software to implement the architecture based on the requirements specification
and architectural design. In Chapter 4, the section entitled Architecture

Implementation contains the details of the implementation of the initial prototype.

Step 4 - Validate the Architecture by Solving a Known Problem

This step involves validating the architecture by first selecting a biological
problem with known solutions, executing that same biological problem using the
implemented architecture, and then comparing the results with a monolithic
approach. In Chapter 5, the section entitled EGFR Model of Kholodenko contains

the results of validating the architecture using a known problem.

Step 6 - Identify and Solve a New Problem Using the Architecture

This step involves using the architecture to integrate biological pathway models
to solve a complex problem. This step of our methodology is critical to proving
the value of the architecture to integrate and solve new problems in a scalable

manner. Chapter 6 presents the solution of a complex cellular function, the

89

interferon (IFN) response to virus infection, using the architecture. This Chapter

also compares the solution to a monolithic approach of doing the same problem.

Step 7 - Quantitatively Evaluate and Compare Architecture with Other
Approaches

Based on the experience of using the initial prototype and with the
understanding of how biologists work, it will now be important to assess and
analyze the conditions in which a particular architecture is most optimal. In
Chapter 7, we develop a methodology to assess architectures for integrating
biological pathway models and evaluate the conditions when the distributed

and parallel architecture of Cytosolve is best used over the monolithic approach

Step 8 - Propose Enhancements to Architecture and Future Areas of Research

This step involves outlining ways to improve the architecture. The output of
Step 4 and Step 5 can be used to enhance the architecture’s design and
implementation. In Chapter 9, we present the key findings of this research effort

and summarize areas of future research.

3.2 Summary

In this section we have presented the methodology that will be used in

designing, developing, testing, evaluating the proposed architecture for

90

integrating biological pathway models. ~This methodology serves to provide a

clear path for supporting the research goals of this thesis.

91

Chapter 4

Architecture

4,0 Introduction

This chapter presents a new scalable architecture for integrating biological
pathway models. This architecture is called Cytosolve. = The next section
specifies the requirements for such an architecture. The third section defines the
design of the architecture to meet the requirements. The fourth section describes
the set of tools that were selected to meet the design and the requirements to
implement the architecture. The fifth section details the implementation effort.
The sixth section provides the reader with a simple example to demonstrate how
the architecture performs in real-time. The final section summarizes the

chapter.

92

4.1 Architecture Requirements Specification

This section outlines the requirements along with the key decisions that are
necessary fro developing a scalable solution for integrating biological pathway
models. Ten key requirements are identified below to address the weaknesses

of previous approaches.

1. Scalability

If the goal is to model complex cellular systems and eventually the whole cell,
the architecture must be able to integrate new pathway models with the same
ease as it is to integrate the first one. Scalability is measured by the ease in
which additional models can be integrated. Recall that complexity of
integration, from our earlier discussion, has little to do with the number of
equations in any one model. Two models with numerous equations can be
relatively easy to integrate if they are written in the same program, same time

scales, in the same domain and developed on the same hardware platform.

2. Opacity of Multiple Knowledge Domains
The architecture must express the property of opacity. Opacity means that when
one individual is integrating a particular pathway model into a pre-existing

ensemble of integrated models, one should not have to know the details and

93

inner workings of all other pathway models. Each pathway may represent a
unique knowledge domain, and it would be essentially impossible to have one
person sufficiently knowledgeable in all the scientific areas to understand each of

the domains.

3. Support for both Public and Proprietary Models

The architecture must support both Public models (models where the source
code is readable and available to all) and Proprietary models (models where the
source code is inaccessible). The monolithic approach does not provide a means
for pathways from proprietary models to be used with other models that are
open source. Many pharmaceutical companies, for example, will not want to
share the inner source code of their particular proprietary models; however, they
are interested in coupling their models with other models to gain better
understanding of a larger cellular process. Alternatively, researchers in the
academic environment may wish to integrate their Public models with existing
Proprietary models to learn some new aspect of science, but cannot currently due
to confidentiality issues. By enabling a way to ensure protection of the source
code of those Proprietary models, new industry and academic collaborations will
be possible with far greater ease. Those with Proprietary models currently chose
either not to follow standards to protect their models or if they do follow
standards are unwilling to share their model code, which was the reason for the

standard itself.

94

4. Support for Multiple “Standards”

The architecture must support any pathway model code in any format or
“standard.” While the architecture should support the integration of pathway
models constructed in a standard such as SBML, for example, it should be able to

communicate with models in any format.

5. Heterogeneity of Integration

At any time models may be in different formats. The architecture should
support the ability to integrate, in real-time, models that are in different formats.
Thus, if there are 3 models, even if one model is in SBML, another in MATLAB
and a third in FORTRAN, the architecture should be able to integrate them with

minimal to no effort.

6. Cross Platform Support

The architecture should allow models developed on different hardware and
computing environments to be integrated with ease. ~Different models may run
on only certain hardware platforms and more than likely were optimized and
tested to run on a particular hardware system. It will be far easier to keep a
model resident on a hardware platform for which it was designed and tested for
versus having to recode or reconfigure it in any manner to a new hardware

platform, which could prove to be very expensive and time-consuming.

95

7. Independence of Location

The architecture should support integration of models across geographical
boundaries. While each model may be on different computers, they may also be
physically at different locations anywhere in the world. The model should
support protocols for communicating with models anywhere without regard to

geographical location.

8. Ease of Maintenance

Any model integrated within the architecture should be able to dynamically
change with little to no source re-coding efforts to incorporate changes for that
model into the larger integrated model. In the monolithic approach, any change
to an individual model typically requires significant recoding and retesting of the
integrated model. In this new architecture, we want to avoid such a process.
This requirement is extremely important to create a scalable architecture. The
addition of new models should not require changes to any of the other existing

models.

9. Decentralized Management and Distributed Control

Decentralized management and distributed control means that each model is
maintained at the “local” level, not at a central level. The current monolithic
approach requires centralized model curation, such as many of the existing

model repositories. We want to support local management of models.

96

Moreover, any creator of a model should be able to integrate their model from
their local location to an ensemble of distributed models. This means that if one
owner of a model has Model A and wishes to quickly test or integrate their
model with a set of three other models: Model B, C and D. They should not have
to download each of the other models to their local computer. With ease, the
architecture should enable the owner of Model A to integrate with the other

three models with little to no effort.

10. Hierarchical Support
Biological systems are systems of systems. This means that the architecture
should support the ability for systems to be composed of other systems, while

ensuring that each system satisfies the requirements herein.

The above ten requirements will be used as the basis for defining the

architectural design.

4.2 Architecture Functional Specification

The goal of this section is to specify the functional requirements that will be used
to design the architecture. We begin our functional specification process by
abstracting the cell to be interconnection of biological pathways, as shown in

Figure 4-1.

97

Insulin Signaling Pathway c .
¥ ¥ hemotaxis Pathway
(Ref: White, M., Stke.Org. (Ref: Parent, C., Stke.Org).

. o ke

Adrenergic Pathway
(Ref: Kobilka, B.K., Stke.Org)

Estrogen Receptor Pathway
(Ref: Norris, J.D., Stke.Org)

Eowwonw e frthepen
o &

[iy
Y &
o w8 (ot &
oo (R ot Yoz £
Bt e o {Mster s

v

Gtvtoncusnne Gow Shostorantes trrston | Wekvons

(Ref. Stke.Org)

Figure 4-1 - A cell as an interconnection of biological pathways.

Each biological pathway, within the cell, will need to communicate its state

concentrations to other biological pathways, as shown in Figure 4-2, in the

ensemble in order to simulate the function of the whole «cell.

98

Model 2 > | Model 3

Figure 4-2: Communication among an ensemble of biological pathways from 1 to D pathways.

Formally, we present any one model in the ensemble as shown in Figure 4-3.

Let M denote the structure of a single biological pathway model in the
arclutecture:

M= <N Y Q S A ta>

where,
X 18 a set of input values of species concentrations
Yo 18 & set of output values of species concentrations
Q is a set of states
Sar: Q — Qs the internal transition function
A Q — Y 1s the external transition function

. + . . o
ta: Q — g iopny 18 the time advance function

Figure 4-3: Formal representation of a biological pathway model in the ensemble.

99

Also, the entire ensemble representing the whole cell model is formally

represented as shown in Figure 4-4.

Let O denote the structure of a coupled or integrated model in the
architecture:

O=<XY, M>
where,
X is a set of input values of species concentrations
Y is a set of output values of species concentrations
For each i,
M; is a individual model

Figure 4-4: Formal representation of the total ensemble of interconnected biological pathway
models.

Mathematically, if we allow Xi to denote the molecular species in the integrated
model within the architecture where:

X.,i=1...N
With,

x,i=1...N
representing the number of molecules of species x; then the state of the cell or

any compartment within the cell (e.g. nucleus) is determined by:

X = (X, Xy,... Xy)

A reaction in this formalism is then represented as:

100

w,(x,)

Where,
X r Tepresents the state of the system before the reaction.
and,
W, (X,) represents the reaction propensity (the probability of

reaction per unit time.

Based on the above formulation, this leads the Chemical Master Equation

(Andersen, 1983):

ap (x t) Zw,.(xr)p(xr,t) Ewr(x)p(x,t).

r=1

The above formalism provides us with the basis for providing a set of functional

requirements.
e First, the cell or compartment is well-mixed. This means that a sufficiently

long-time between reaction collisions takes place to ensure that each pair

of molecules is equally likely to be the next to collide. This also means

101

that the concentration of each species is high and transport essentially
instantaneous.
Second, the progress of the system only depends on previous state (e.g.
Markov process).
Third, between cells and compartments, transport is slower and
associated with an observable rate.
Fourth, we treat each pathway model as a black box. This means the
following:

¢ Inputs and outputs are species concentrations

¢ Changes in localization are represented by compartments

® Species are defined by their compartments

® Species can move through compartments

® Species can inhabit one or more compartments
Fifth, the cell can be modeled as an integration of biological pathway
models. Recall, biological pathways are moving from diagrammatic
representations as shown in Figure 4-5 to biological pathway models, and
each biological pathway model has internal parameters along with inputs
and outputs which are the molecular species concentrations for the nth and

(n+1)th time step, respectively.

102

Biological Pathway e Biological Pathway Model

Figure 4-5: Transition of biological pathways to biological pathway models.

Thus, modeling the cell therefore can be seen as an interconnection of biological

of pathway models as shown in Figure 4-6.

i Chemotaxis Pathway
Insulin Signaling Pathway N
(Ref: White, M., Stke.Org (Ref: Parent, C., Stke.Org

Adrenergic Pathway
(Ref: Kobilka, B.K., Stke.Org)

Estrogen Receptor Pathway
(Ref: Norris, J.D., Stke.Org)

Figure 4-6: Modeling the cell as an interconnection of biological pathway models.

Recalling Figure 4-2, the cell can be represented as an ensemble of multiple

biological pathway communicating inputs and outputs as shown in Figure 4-7.

103

Model 2 /\. Model 3
Insulin Signaling Pathway Chemotaxis Pathway '\

(Boston, MATLAB) (Tokyo, SBML)

Adrenergic Pathway "
(Sydney, Excel)

Estrogen Receptor Pathway
@urich, J2EE)

b v

7]

3

Model 1

Figure 4-7: Modeling the cell as an ensemble of biological pathway models sharing and
communicating input and output species concentrations.

4.3 Architecture Design

Based on the earlier discussions, it is clear that the monolithic approach, as
shown in Figure 4-8, is widely used primarily because there are no other real
alternatives in systems biology today. The main problems with this approach
have already been discussed. The messaging approach, which has not been fully
developed for systems biology, except in the two cases of Cellware and Cellulata,
is in the right direction. However, both of these methods use a static messaging
approach. There are no known solutions, to our knowledge, which use a
dynamic messaging approach that supports scalability as well as ease of

maintenance. Our first decision is to pursue a dynamic messaging approach

104

Monolithic Approach — Merge/"Wire”
All Pathway Models Into a Single System

Figure 4-8: Monolithic approach involves “wiring” all models together.

as the basis of the architecture. This dynamic messaging approach provides
nearly all of the advantages to address the weaknesses of the monolithic

approach and the static messaging approach, for the reasons previously stated.

Cytosolve: A Dynamic Messaging Approach

Based on the above discussion, we now introduce Cytosolve, a scalable
architecture for integrating an ensemble of distributed biological pathway
models. In Figure 4-9 the layout of the architecture for supporting a dynamic
messaging approach is illustrated. The layout of this architecture will meet all of

the requirements of the specifications outlined in the previous sections.

105

The elements of this architecture are:

* Biological Pathway Models - These are the boxes with the input and
output arrows along the outer edges of the diagram. Each biological
pathway model is a computer software program.

¢ Internet - This is represented by the internet “clouds”. This serves to
show that the biological pathway models can reside anywhere
geographically on the planet and can use the internet for communication
through the controller. This does not mean that we have to use the
Internet. All models can be centralized on one computer and Cytosolve

will communicate locally to each model.

I Chemotaxis Pathway
{Tokyo, SBML)

Insulin Signaling Pathway

Adrenergic Pathway
{Sydney. Excel)

Estrogen Receptor Pathway
{2Zurich, J2EE)

ONTOLOGY

Figure 4-9: Cytosolve- A Dynamic messaging approach.

106

¢ Controller - This module serves to coordinate the computational activities
across the various models. Note, that any one model itself could be
another replication of this architecture as shown in Figure 4-10 to support

systems of systems.

Adrenergic Pathway
(Sydney, Excel)

Estrogen Receptor Pathway
(2urich, J2EE)

Figure 4-10:- Dynamic messaging of systems within systems.

¢ Controller-to-Pathway Interface - These are the arrows in the diagram
from the Controller to the Pathway, and represent the mechanism by

which the controller communicates with each individual pathway model.

107

e User Interface - The user interface allows the user to specify which models

will be included within the architecture.

* Ontology - This is the data which specifies characteristics of each model’s
input-output behavior to allow the Controller to effectively communicate

across all models.

The key features of this architecture include an infrastructure that provides
simple communications interface to each model, is distributed, Web-enabled,
and automatically aggregates the models to build the integrated model. The
architecture supports both distributed and parallel processing, while using a
hybrid of shared memory and message passing. The shared memory is for
tracking the species concentrations across all models in time. Message passing is
used for remote communications between the controller and individual models.
The architecture is to be built in an open environment supporting: 1. publicly

available tools, and 2. emerging standards.

In the next sections of this chapter, major elements of the architecture design are
discussed in detail. Prior to the end of this chapter, a simple example is provided so
the reader can follow the exact mechanics of how the architecture integrates

models to compute a solution.

108

44 Architecture Implementation

This section discusses the details of implementing the architecture. The
architecture was implemented using open source tools to reduce expense and to
ensure that future research could be pursued on the architecture with minimal

reliance on proprietary tools.
Development Environment and Tools Selection

Various third-party open source software tools were selected to implement the

initial prototype of the architecture. These are listed below.

ODE SOLVER LIBRARY

The SBML ODE Solver Library (SOSIib) is a programming library for symbolic
and numerical analysis of chemical reaction network models encoded in the
Systems Biology Markup Language (SBML) (Machne, et al., 2006). This Library
takes as input an SBML model file and then computes the steady-state solution of

species concentrations for a given number of time steps.

SOAP/WSDL

SOAP 12 & WSDL 11 - SOAP (Simple Object Access Protocol)

(http:/ /www.w3.org/TR/soap) based Web Services

technology (http:/ /www.w3.org/ws) has gained much attention as an open

109

standard enabling interoperability among applications across heterogeneous
architectures and different networks. The European Bioinformatics Institute (EBI)
is using this technology to provide robust data retrieval and data analysis
mechanisms to the scientific community and to enhance utilization of the
biological resources it already provides (N. Harte, V. Silventoinen, E. Quevillon,
S. Robinson, K. Kallio, X. Fustero, P. Patel, P. Jokinen and R. Lopez (2004)
Nucleic Acids Res., 32, 3-9]. These services are available free to all users from

http:/ /www.ebi.ac.uk/ Tools/web services.

BIOMODELS

The BioModels Database, located at http://www.ebi.ac.uk/biomodels/, is part
of the international initiative BioModels.net, provides access to published, peer-
reviewed, quantitative models of biochemical and cellular systems, stored in the
SBML and CellML formats. Each model is carefully curated to verify that it
corresponds to the reference publication and gives the proper numerical results

(Le Novere, et al., 2006).

C PROGRAMMING LANGUAGE

The C programming language was used to build the Controller-Pathway

Interfaces. Visual C++ 8.0 is the version used.

110

WEB SERVER

The web server Apache Tomcat Apache 5.5.23 / ANT 1.7.0 is used

JAVA

The Controller is programmed using J2EE 1.4.

For the initial implementation, the Controller was developed on a DELL
Windows Machine running Microsoft XP with Service Pak 2.2 with 1 GB of RAM

on a Pentium Processor.

Communications Protocol

The Cytosolve web service is designed for remote model simulations through
the use of SOAP/WSDL. During a run, the web service can be instructed by a
remote computer to execute a local model and send back results. The remote
computer can instruct the web service to perform two major operations. First,
the web service can be instructed to simulate a local model over a single time
step. After simulation, the service sends back new concentration values
calculated by the model. In the second operation, the web service can be
instructed to insert new species concentration values into the model simulation.

This allows external control of the simulation.

111

Using these two operations, a centralized controller can theoretically couple
multiple models together, with each model running on different computers.
During operation, the WSDL web service will be continuously running, waiting
for remote simulation commands. When a command is received, the WSDL web
service passes the command to intermediate Java layer called Cytosolve_Java.
Cytosolve_Java simply calls Cytosolve_C, which executes the simulation
commands and returns the result to Cytosolve_Java. Cytosolve_Java in turn
returns the results to the WSDL web service, which sends it back to the remote
computer. Figure 4-11 gives a code example of the initialization using the

Cytosolve_C code.

A layer called JNI is used to enable messaging of Java module Cytosolve_Java
with the simulation module Cytosolve C. Even though this step makes
compiling the source code significantly more complicated, it is essential to

establish the messaging.

Since web services are stateless, information is not retained during separate calls
to a single web service. This is a problem since simulation results must somehow
be retained between individual web service calls. Otherwise, it would be
impossible to simulate an SBML model beyond a single time step since results for

that single time step would then be immediately lost.

112

/* initializes the solver */

static int IntegratorInstance_initializeSolver(integratorInstance_t *engine,
Data_t *data,
Settings_t *opt, odeModel_t *om)

inti;
Solver_t *solver = engine->solver;
Results_t *results = data->results;;

/* irreversibly linking the engine to its input model */
engine->om = om;

/* joining option, data and result structures */
engine->opt = opt;

engine->data = data;

engine->results = data->results;

/* initialize the solver's time settings */

/* set initial time, first output time and number of time steps */
solver->t0 = opt->TimePoints[0]; /* initial time */

/* first output time as passed */
if (opt->Indefinitely)
solver->tout = opt->Time;
else
solver->tout = opt->TimePoints[1};

solver->nout = opt->PrintStep; /* number of output steps */
solver->t = opt->TimePoints[0]; /* current time, always 0,
when starting from odeModel */

/* set up loop variables */
solver->iout=1; /* counts integration steps, start with 1 */

/* write initial conditions to results structure */
if (opt->StoreResults) {
results->time[0] = data->currenttime;
for (i=0; i<data->nvalues; i++)
results->value[i][0} = data->valueli];

}

/* count integration runs with this integratorInstance */
data->run++;

/* initialize specific solver structures */
return IntegratorInstance_initializeSolverStructures(engine);

}

Figure 4-11: Cytosolve_C code sample.

A number of approaches were explored to address this problem. One approach

was to write out all of the simulation results to a file during one WSDL

113

invocation, then read the file during the next. However, it was discovered that
with this approach, accuracy was lost over time. The reason is that the Solver
has a large number of internal variables that must be saved between individual
time steps. Failure to save these internal variables causes slow degradation in
the accuracy of the results. Saving each of these numerous internal variables is a

tedious task as there are hundreds of internal variables in the Solver.

This approach is hard to implement and hence dropped because (a) identifying
those internal variables that need to be saved is not practical; and (b) large
amounts of code would need to be rewritten. Another approach considered was
to send to the remote computer all information that is needed to reconstruct
itself. However, this approach was proved to be inefficient and tedious as it
would involve sending and receiving enormous amount of information. Hence

this approach was also dropped.

The third approach was to use Stateful web services. Stateful web services allow
variables to be saved between different WSDL invocations. Even though stateful
web services appeared to be an appropriate solution to the problem, it was
discovered that in order to use stateful web services, all variables that are
required to be maintained between WSDL invocations must be declared as
resources. This approach was also dropped because (a) declaring variables is

tedious; and (b) programming environment in C is different from that of WSDL,

114

which is Java-based which made it impossible to therefore declare C variables to

keep between invocations.

The final approach used to solve this problem was to open a continuously
running Java thread that waits for commands from the WSDL web service. With
this approach, the internal variables are not lost between WSDL invocations
because the Java thread is continuously running. Messaging between the WSDL
web service and continuously running Java thread is performed using files. This
approach successfully allowed the stateless WSDL web service to communicate

with stateful data.

This continuously running thread was named SolverController, and is made part
of the Cytosolve_Java package. Cytosolve_Java therefore performs two roles. It
acts as a bridge between Java and C environments, and in addition acts as a
bridge between the stateless WSDL web services to stateful data. We consider
this implementation of using Java and C for supporting a “stateful” web service a

significant accomplishment which allows us to use open standards.

Logical Software Architecture

The logical software architecture is developed in a three-tier layered approach as

shown in Figure 4-12.

115

GUI | Distributed Biological Pathway Models {M |

| L[]

v]] v
- Presentation &
lWeb Serverl [Web Services] Communication Layer

3

4 4

A
L Monitor J Comm Mgr Controller Layer

v
- Data Layer

Ontology

Global
Vector

Local
Vector1

Local
VectorD

Figure 4-12:- Logical software architecture.

At the Data Layer resides the memory-resident data to track species
concentrations in time within the integrated model (Global Vector) and across
each individual biological pathway model (Local Vector 1 to D). The Data Layer
also contains the Ontology that is used to manage nomenclature and species

identification across all individual biological pathway models.

The Controller Layer consists of three main components, the Monitor,
Communications Manager (Comm Mgr) and the Mass Balance algorithm. These
three components work in concert to orchestrate the calculation and integration

of all D biological pathway models.

116

The Presentation and Communications Layer provides the communications
support, aforementioned, to support communication among the models as well

as with the User Interface.

A detailed implementation of the Logical Software Architecture is provide in
Figure 4-13. At the Data Layer, the Global Vector data structure is depicted in

this diagram consisting of rows for each time step from 1 to N.

Estrogen Rec Pathwaylinsulin Signaling Pathway|Chemotaxis PathwayjAdrenergic Pathway|
(Zurich, J2EE) (Boston, MATLAB) {Tokyo, SBML) | (Sydney, Excel)

GUI IMmBE IAmPE IAME IAME
T - —> - sl SN &N
1} 1 T 1 Presentation &
Communication Layer
Web Server SOAP/WSDL
4
Controller Layer
Monitor |¢ Comm Mgr Mass Balance
b4 \ D
Y ata Layer
Global Vector ocal Vector 1+~ Local Vector D > Ontology
stis2|.. |sc stis2|.. {sc st|s2}.. |sc st{s2|.. }sc
T T T M,
T2 T2 L M,
™ ™ N Mp

Figure 4-13:- Detailed Logical Software Architecture.

The columns are for all species from 1 to C across the entire ensemble of

integrated models. The Local Vector data structure is also shown. The Ontology

117

consists of individual entries for each model from 1 to D models, specifying the

species components, which is discussed in detail below.

At the Controller Layer, only the Mass Balance component can communicate
with the Data Layer. The Comm Mgr orchestrates communication between the
Monitor and the Mass Balance components. The Monitor serves to modulate and
monitor calculations across the ensemble of [Mi] models. Both the Comm
Manager and the Monitor can communicate through to the Presentation and
Communication Layer. The benefits of his logical architecture are to specialize

different components for different tasks thus optimizing performance.

4.5 Pathway Model Representation

Each biological pathway model is represented or encoded into a computer
software program which includes code and data. While there are many formats,

these formats are the most common used to encode biological pathway models:

SBML - Systems Biology Markup Language. This is a file XML format for
storing the differential equations and the data used solve a biological pathway
model. SBML does not actually solve the model, that solving is done by another

program called the solver which takes as input the SBML files.

118

CelIML - Cell Markup Language. This, like SBML, is an alternative XML format

for storing differential equations and describing cellular systems.

MATLAB - is software architecture for solving mathematical problems. The
equations of biological pathway models can be encoded in MATLAB and solved

using its own solver.

FORTRAN - is a language developed at IBM, as the name implies for FORmula

TRANSslation. Many biological models are encoded and can be solved in this

language.

C/C++ - Like Fortran, this language is also used to encode biological models and

includes external libraries which an be invoked to perform the solving

Models encoded in the above languages typically have internal parameters ,
while the inputs and outputs of these models are the species concentrations at a
particular time n, and a particular time n+1, respectively. The input species

concentration is denoted as

Jol
5,

119

where, for any one model Mi, i is from 1 to D models, at time step n, S is a vector

of species concentrations for species j, where j is from 1 to C species.

Similarly, the output species concentration, at time step n+1, is denoted as
S
n+l
This architecture is agnostic the format of the model. The only requirement is
that the model can be configured through SOAP/WSDL protocols to receive
input species concentrations for time step n and send output species

concentrations for time step n+l. Beyond, this requirement, the architecture

treats any pathway model as a black box.

4.6 Pathway Registration and Ontology

The architecture herein treats each model as an independent part of a collective
or ensemble of models which are computed together (through a computational
mechanism discussed later). How does a new pathway become part of this

collective?

This process is enabled through pathway registration. The pathway registration
process serves to create elements with the architecture’s Ontology to describe the

pathway’s inputs and outputs to the Controller, through a Pathway Interface

120

Document (PID). In the case of biological pathway models, we are concerned
primarily with coupling and mass-balancing (see Controller section) of a system of
biological pathway models, thus our PID format needs to provide support for
such integration. The format of the PID is show in Table 4-1. In Figure 4-14is a

picture of an example PID file for a model called Model 1.

Name of Variable | Meaning

ModelName The unique name of the model

ModelURL The location on the Internet where the model
executable code resides

Species The number of species in the model

Speciesl,Loc The name of the first species (as used in the Model)
and its location ID

Species 2,Loc The name of the second species (as used in the Model)
and its location ID.

Species n,Loc The name of the nth species (as used in the Model) and
its location ID

Table 4-1 - PID Format.

The Loc is the location ID denoting which compartments the species appears in
the cell. For example in Figure 4-14, the species STAT1 can appear in two
locations. Loc ID “1” may denote the nucleus and Loc ID “2” may denote the
mitochondrion, etc. The key point is that species need to be distinguished by
their location. The MIRIAM standard was published which serves to provide a
framework for model developers to provide a minimal set of information for
defining biochemical models (Le Novere, et al., 2007) . Our Ontology can link to

take advantage of this emerging standard.

121

EModalName Modell

imodelurRL = http://18.80.5.1:8080/axis/servicas/biomodell
Species = 5

Speciesl = <STAT1,1>

Species2 = <IFN,1

Species3 = <EGFR, 1>

Sspeciesd = <Co2,1

speciess = <STAT1, 25|

Figure 4-14 - Representation of simple biological pathway model.

Each model when it registers itself to be part of the collective of models creates
one of the above files and ensures the PID is placed into the Controller’s
Ontology, which organizes all the PID files for a particular Controller. There are
some interesting challenges that can take place during registration of two
different models. One example is if two species names are assigned the same
name but mean something different or two species names are assigned different
names but mean the same thing. (Schulz, et al., 2006) have identified this as a
problem in the implementation of their tool SBMLMerge to support the
integration of SBML model files, albeit in a monolithic manner. In our case, the
solution is managed by the Ontology without requiring recoding of the
individual biological pathway models. The Ontology provides a list of Unique
Identifiers for mapping species names, and this list can grow as needed. In many

ways it is like a thesaurus. An example Ontology is shown in Table 4-2.

122

Unique Identifier Synonym

11231 Ca
11231 Calcium
11231 Ca+
11245 SOCS

Table 4-2 - Ontology Example.

Let us consider the case of two models where the species name “EGFR” is
assigned the same name in each model. When any model registers itself with the
system, the PID file for that model is compared with other existing PID files and
the Ontology. If EGFR name is used in another model, than the system, through
the User Interface (UI) displays a message to the user indicating that EGFR is
currently being used by these other models, along with the Unique Identifier. If
the developer of that model believes that EGFR in fact refers to the same species,
then no changes are required. If the developer believes that the species name is

different, than the onus is on the developer to create a new name and resubmit.

Let us consider the other case, where two models have two different names for
the exact same species. For example, suppose one model refers to a species
called “Calcium” and another model refers to a species called “Ca+”. In the

Ontology in Table 4-2, during registration, both of these species will point to

123

Unique ID 11231. The system will automatically resolve those species to be the
same species internally during model integration. Thus, again the developers of
the model do not have to worry about renaming their species to be the same

species names.

The Ontology is public, thus, prior to registering a new model, the developer can
decide to use existing names or add their own new name to the Ontology. For
example, let us say a developer has a species called “Cal” and that also refers to
the same species as “Calcium” or “Ca+”, then the developer can update the
Ontology so 11231 also has an entry for “Cal” or they can adjust their species

name to one of the existing synonyms.

4.6 Controller-Pathway Interface Description

For all registered pathways the controller needs to be able to interact with each
pathway to solve the integrated problem. The registration of the PID to the
controller’s Ontology assumes that interface protocols to the model are provided
in the format the controller seeks. This section describes the necessary interface
between the controller and the pathway models. There are only three interface

protocols that are needed for any pathway model.

124

Initializing Access to the Pathway Model
The function createPathway() as shown below is used by the controller to setup the
initial connection with the pathway model
public pathwayProcess uidPathway createPathway {
String URL /flocation of the pathway model
double totalTime, //total time in sec for execution

int numSteps); //number of time steps

}

The above function serves to return a unique identifier to the controller for the
pathway model during initialization. For example, the call:
uidPathway1 = createPathway(Model1URL, 10, 50);

will return a value of say 11214122 for uidPathway1. This handle will be used to
refer to the pathway model in future interface calls. The first parameter in this
call is the URL at which the executable code of the model resides. The next
parameter denotes the time in seconds (in this case 10 seconds) how long the
model should run. The final parameter denotes the number of time steps (in this

case 50 time steps) for the model to run.

Processing a Time Step on Pathway Model
The function pathway stepPathway () as shown below is used by the controller to

request the pathway model to return the species results for one time step.

125

double[] results = new double[numSpecies];

results = stepPathway(uidPathway1, speciesList, newValues)
The above function call is used by the Controller to contact the pathway at uid
for uidPathway1, with the list of species, speciesList that pathway manages, along
with the input list of species to be used for the input time step n, which are in
newValues. The stepPathway() returns a list of results which are the species values

for that next time n+1 given the input values of newValues.

Closing Access to a Pathway Model
The interface call closePathway() is used to close the session by the Controller with
the pathway model.

errorCode = closePathway(uidPathway1);

This function for example closes the pathway with uid uidPathway]1.

4.7 Controller

The Controller serves two purposes. First, it mediates communication across all
pathway models. Second, it provides computational steering by ensuring mass
conservation across all integrated models for each time step. Referring to Figure
4-13 will assist in understanding the Controller’s processes described in this
section. The first sub-section describes how the Controller manages

communications across all pathway models. The next sub-section discusses how

126

the Controller performs mass balance and steers the solution by managing this

constraint across all models.
Controller Communication
The controller communication proceeds along various key steps which are

outlined in detail below.

Step 1- Controller Initialization

/ /Create the controller at the start of the main program

public static void main(String [] args) throws Exception {
Controller controller = new Controller();
controller.process();

}

Figure 4-15 - Controller startup.

When the system first starts the Controller is initiated from the main program as
shown in Figure 4-15. Here, the controller creates a new object for itself as

shown in Figure 4-16.

Step 2 - Memory Allocation

The controller() object is shown in Figure 4-16. Many startup activities are
initiated upon creation of the controller () object. Critical ones are the memory

allocation for the storage of the species concentrations for each pathway over

127

time, as well as the global vector of species concentrations for the integrated

model over time.

// Controller object

public Controller() {
// Ontology is loaded along with the PID’s
loadProperties();

// Vector of matrices, a matrix for each pathway

localVect = new Vector<Vector>();

for (int x=0; x<numPathways; x++)
localVect.add(new Vector<Object>()) ;

// Global vector for integrated model species concentrations
globalVect = new Vector<Object>() ;

// Create the Monitor
monitor = new Monitor(numPathways);

}
Figure 4-16 - Controller object.

Step 3 - Initialize Monitor

The Monitor is a sub-system of the Controller. It serves to track the progress of

public Monitor (int pc){
processCount =pc; //number of independent pathways
newRow =0; / / starting row in Global Pathway Matrix

}

Figure 4-17 - Monitor initialization

each pathway’s solution time. In Figure 4-16, the last event of the Controller()
object is to initiate the Monitor, which initializes the number of pathways and the

state of processing across all pathways as shown in Figure 4-17.

128

Step 4 - Comm Mgr Messages All Pathways to Wake Up

The Comm Mgr messages all of the pathway models to start up using the

createPathway() Controller-Pathway interface call. There is quite a bit of complex

/ *%
* For the given interface, get the stub implementation.
* If this service has no port for the given interface,
* then ServiceException is thrown.
*
/
public java.rmi.Remote getPort(javax.xml.namespace.QName portName, Class
serviceEndpointInterface) throws javax.xml.rpc.ServiceException {
if (portName == null) {
return getPort(serviceEndpointinterface);
}
java.lang.String inputPortName = portName.getLocalPart();
if ("pathwaySolver".equals(inputPortName)) {
return getsbmiSolver();
}
else {
java.rmi.Remote _stub = getPort(serviceEndpointInterface);
((org-apache.axis.client.Stub) _stub).setPortName(portName);
return _stub;

}
}

Figure 4-18 - Port error processing code sample.

messaging and communication that takes place to accomplish this using the Web
Services Description Language Protocol (WSDL) as shown in Figure 4-18. This
code sample shows just one small piece of code for handling any port
initialization errors that occurs. Many such errors are possible and need to be
handled appropriately. Appendix A provides more code samples of the details
of message error processing. At the end of this step all pathway models are

awaiting to begin processing a time step upon initiation.

129

Step 4 - Initiate Monitor

The Monitor is initiated. All models are awoken and started simultaneously.

Monitor continues to run observing state of calculation across all models.

Step 5 - All Models Execute a Time Step in Parallel

try {

results = solverProcess.step(uid, speciesToChange, newValues, wantedSpecies);
if(results == null)
{
System.exit(1);
}
}

catch (Exception e) {
System.out.printin("Module : failed" + e);

// add data to local memory vector
double[] currentSum = new double[resultSize];
for (int x = 0; x < resultSize; x++){
currentSum|x] = results[x];
}
/ /update values in local vector for time step n+1
localVect.add(currentSum);
for (inti=0;i < currentSum.length ; i++)
{
System.out.print(currentSum[i] + " ");
}
System.out.printin();
/ /tells monitor it is done
monitor.complete();

Figure 4-19 - A model executes, notifies monitor and rests.

Since each model is its own process, running on its own machine, each model
process its input species concentrations and updates it local species vector and

sends signal back to the Monitor that it has completed. After each model is

130

completed, it goes to sleep in order to optimize CPU usage. This is shown in

Figure 4-19.

Step 6 - Monitor Observes Completion of Calculation of Time Step

The Monitor observes the completion of a Time Step across all models. Once all
models have completed their processing for a Time Step, the Monitor passes

control to the Comm Mgr.

Step 7 - Comm Mgr Executes Mass Balance for Time Step

For a time step, the Comm Mgr now contacts the Mass Balance module sets the
new values for all species across all models based on the mass balance calculation
(which is detailed in the next section). If this is the last time step, then the Comm

Mgr exits in Step 8, otherwise the Comm Mgr continues to Step 4.

Step 8 - Controller Stops

The Comm Mgr stops by sending closePathway() calls to each pathway model and
performs a variety of cleanup functions to release resources, memory, etc. Figure
4-20 shows a small code sample of such cleanup processes. These processes
include the ability to manage exceptions as well as the proper unlocking of Web

Services connections to ensure proper resource and memory management.

131

public void cleanup(java.lang.String in0) throws java.rmi.RemoteException {

if (super.cachedEndpoint == null) {

throw new org.apache.axis.NoEndPointException();

)

org.apache.axis.client.Call _call = createCall();

_call.setOperation(_operations[2]);

_call.setUseSOAPACction(true);

_call.setSOAPActionURI("");

_call.setSOAPVersion(org.apache.axis.soap.SOAPConstants.SOAP11_CONSTANTS);

_call.setOperationName(new javax.xml.namespace.QName("urn:pathwaySolver",
"cleanup"));

setRequestHeaders(_call);
setAttachments(_call);
try{ java.lang.Object _resp = _call.invoke(new java.lang.Object[] {in0});

if (_resp instanceof java.rmi.RemoteException) {
throw (java.rmi.RemoteException)_resp;
}
extractAttachments(_call);
} catch (org.apache.axis. AxisFault axisFaultException) {
throw axisFaultException;

}

Figure 4-20 - Clean up of pathway model resources.

Controller Computational Steering of Automated Mass Balance

Computational steering (or interactive program steering, application steering,

interactive steering) enables us to observe and interact with a simulation during

its execution, steering it as necessary. This is formally what is taking place in

Step 7 above. In the next section we provide more detail on how the

architecture’s controller performs this automated mass balance by steering each

model’s input for the subsequent time step based on species values calculated

through mass balance.

132

4.8 Mass Balance

The Mass Balance component of the architecture serves to provide the calculation
of species concentration for each time step n across the ensemble of models. This

section describes the mathematical formalism and the implementation

Mathematical Formalism
As previously stated, we treat each model as a black box with the input and
output being a vector of species concentrations denoted by the following two

variables:
S/
n

which denotes the species concentration at time step n, of the ith model and the jth

species, and,
S
n+l
which denotes the species concentration at time step n+1, of the it» model and the

jtt species, respectively. Using this notation, we define a new variable
s
&:n
which denotes the species concentration of the integrated model in the global

vector (denoted by subscript ‘g’) contributed by the itr model and the jth species.

133

Using the above notations, mathematically the formalism for the mass balance is

represented as follows:
B

(82,)= (82,)+| 2087 =824

i=1

Algorithm and Code

// initialize sum vector
double[] sum = new double{[globalSpecies.length];
for (int z=0; z < globalSpecies.length; z++)
sum|z] = ((double [])(globalVect.lastElement()))[z];

// for each solver, add result to sum vector using local->global species mapping
for (int y=0; y < numSolvers; y++){

doublef] rs = (double[])((localVect.get(y)).lastElement());

int[] map = (int [])mapping.get(y);

double[] oldrs = ((double [])(globalVect.lastElement()));

// mass balance calculation across all species

for (int z=0; z < rs.length; z++)
sum[map][z]] = sum[map[z]] + (rs[z] - oldrs[map|z]]);
}

// add new row or the inputs for all pathways
globalVect.add(sum);

Figure 4-21 - Core code for automated mass balance.

Based on the above mathematical formalism, for each time step, the Controller
maintains a store of all species concentrations across all pathway models. After
each time step, by each model, the Controller calculates for each species which
models consumed and which models contributed to a species concentration.
This summation is used to supplant the input for the species value across all

models. The Controller, therefore, manipulates the next input and steers the

134

calculation of the integrated model through this automated mass balance
process. In Figure 4-21, a small code sample shows the core of this algorithm.

Algorithmically, this code is summarized in Figure 4-22.

Algorithm

Initialize
Contact all Mi with {So} values from GlobalVect
Initialize LocalVects with {So}

Where,
{S0} denotes the initial conditions across {Mi}

For each time step, tn
{
LookUpGlobalVect (Row n, S)
SendSpeciesValues (TimeStep n, {Mi})
Sleep (); until all LocalVects for current time step calculated
MassBalanceCalculation(Si,j, {Mi}) for each compartment
UpdateGlobalVect(Sj)

}

Figure 4-22 - Algorithm for automated mass balance.

Based on the logical software architecture, the Mass Balance component interacts
with the Data Layer and Comm Manager to execute the algorithm through intra-

process communications as shown in Figure 4-23.

135

Global Vector
stis2! ... |sc Mass Balance 0\
T1
= COMM Manager
N /_—_
Local Vector ,
S1{s2|..|Sc
T
T2
™
Local Veciorp ¢ On v
st|s2]..]sc st{s2|..|sni
T M1
T2 M2
TN Mp

Figure 4-23 - Intra-process communications of mass balance component.

In Figure 4-23, the Comm Mgr serves to communicate and ensure that each
model updates its Local Vector with the current species concentration outputs.
The Mass Balance component, using the Ontology, executes its algorithm by
evaluating the species concentration in the Global Vector, for the integrated
model, by receiving the most up to date values for species concentrations from

each model [Mi]’s Local Vectors.

136

49 Test

Example

Once the architecture is implemented initial tests were run to validate the

implementation as well as to understand the elements contributing to the

computation time.
[3 Test Models, Local Network, All J2EE]
Test Model P2
Test Model P3
(MIT, Cambridge, MA - J2EE) (MIT, Cambridge, MA - J2EE)
1 Float Inputs 7 Float Outputs
16 Bytes Ef 112 Bmug g ——
2 Packets 14 Packets 1 Float Input 7 Float Outputs
—— 16 Bytes 112 Bytes
2 Packets 14 Packets

(MIT, Cambridge, MA - J2EE)

L7
[1 &Qgc}e}s

CONTROLLER
(J2EE)

Test Model P1

L)
[t4patkets]

1 F npy
16 Bytes
2 Packets

Figure 4-24 - Implementation test for Test Case 1.

Test Case 1

In the first test, three models are setup on three different computers within a

local network as shown in Figure 4-24. Each model is a simple calculation which

takes as its input on value and performs the same and simple mathematical

calculation within each model to return seven values. Each model is in the same

137

format. In this case, each model is written in J2EE. The results of performing

fhis test are shown in Figgre 4-25.

[3 Test Models, Local Network, All J2EE |

s Model Formats Three Models, 1 Machine, All J2EE, MIT Local Network
o All on J2EE, Local

» Transmission Time (ms)
a ~6ms

= Computation Time (ms)
a Model: ~9to 18 ms
a Controller: ~3 ms

Time (ms)

= Total Time: ~27 ms

Program Name

*Averaging from 50 tests for each sample

Figure 4-25 - Results of performing Test Case 1.

Test Case 2

In the second test, three models are setup on three different computers within a
local network as shown in Figure 4-26. Each model is a simple calculation which
takes as its input one value and performs the same and simple mathematical
calculation within each model to return seven values. Two models are in the

same format: J2EE and one model is in MATLAB.

138

| 3 Test Models, Local Network, 2 J2EE, 1 MATLAB |

Test Model P3
(MIT, Cambridge, MA — MATLAB)

Test Model P2
(MIT, Cambridge, MA - J2EE)

Test Model P1
(MIT, Cambridge, MA - J2EE)

CONTROLLER

M,
(J2EE) -

P
[‘Mpagkets]

1 Float Inputs
16 Bytes
2 Packets

Figure 4-26 - Implementation test for Test Case 2.

The results from performing Test Case 2 are shown in Figure 4-27.

{ 3 Test Models, Local Network, 2 J2EE, 1 MATLAB |
s Model Formats Three Models, 2 Machines, 2 J2EE on Local Server on MIT Local
Network, and 1 Running MATLAB on Remote Server
o 2onJ2EE, Local on MIT Network
o 1on MATLAB, Local 300

= Transmission Time (ms) 250
o ~6ms 200 4

= Computation Time (ms)
o J2EE:~9t0 18 ms
a MATLAB: ~251 ms
a Controller: ~3 ms

= Total Time: ~265 ms

Program Name

*Averaging from 50 tests for each sample

Figure 4-27 -Results from Test Case 2.

139

Test Case 3

[3 Test Models, Local Network AND Remote Network: 2 J2EE, 1 MATLAB |

Test Model P2

Test Model P3
(india, Madras, MA - J2EE) (MIT, Cambridge, MA — MATLAB)

1 Float Inputs
16 Byles

2 Packels

Test Model P1

CONTROLLER
(MIT, Cambridge, MA - J2EE)

(J2EE)

Figure 4-28 - Implementation test for Test Case 3.

In the third test, three models are setup on three different computers. Two of the
models are setup within a local network and the third model is setup at a remote
network, as shown in Figure 4-28. Each model is a simple calculation which
takes as its input on value and performs the same and simple mathematical
calculation within each model to return seven values. Two models are in the

same format: J2EE and one model is in MATLAB.

The results from performing Test Case 2 are shown in Figure 4-29.

140

ﬁ Test Models, Local Network AND Remote Network: 2 J2EE, 1 MATLAB J

= Model Formats

a 1 onJ2EE, Local Three Models, 3 Machines, 1 J2EE on Local Server - MIT Network, 1
! J2EE Remote Sever - India Network, 1 MATLAB on Remote Server -
a 1 onJ2EE, Remote

_MIT Network
o 1 onMATLAB, Local :
» Transmission Time (ms)
a Local: ~6 ms
o Remote: ~654 ms
» Computation Time (ms)
a J2EE:~91i0 18 ms

g

g

Time (ms)
g § § §‘

200

o MATLAB: ~257ms 100 7
a Controller: ~3 ms s .
. P1 p2 P3
u Total Time: ~673 ms Program Name

*Averaging from 50 tests for each sample

Figure 4-29 - Results from Test Case 3.

4.10 Summary

The results from the above three implementation tests provide us with an
understanding of the architecture’s performance. Specifically, three types of
timings are involved:

1. Transmission Time

2. Model Computation Time

3. Controller Computation Time

141

These three times determine the Total Time for computing an integrated
solution. The first and second test cases provided us with the Model
Computation Time of a J2EE model to be ~9 to 18 ms per time step and a
MATLAB Model Computation Time to be ~250 ms per time step. The
Transmission Time across networks is summarized in summarized in Figure 4-

30.

Transmission Time (ms) per Packet

Time (ms)
N N

MIT NJ India
Location

Figure 4-30 - Transmission time per packet across three different networks with Controller
located at MIT.

For the total of 16 packets, which is what is transmitted per time step (2 packets
outbound and 14 packets inbound), the Transmission Time for the Local

Network is approximately ~6 ms per time step and for the Remote Network in

142

India is ~650 ms per time step. The Controller Time is approximately ~3 ms per

time step. The results are summarized in Figure 4-31.

Various factors affect the Transmission Time including: Network hops, CPU-to-
NIC (Network Interface Card), and Network bandwidth and traffic. The Model
Computation Time is affected by: Hardware and local CPU power, Software
Operating System (O/S), Software implementation (e.g. MATLAB, C, J2EE, etc.),
and Mathematical representation (e.g. ODE, Stochastic, Boolean Networks, etc.).
The Controller Computation Time is also affected by these same factors and the

number of models that need to be integrated.

143

Chapter 5

EGFR Model of Kholodenko

5.0 Introduction

This chapter serves to validate and to test the Cytosolve architecture. In the
previous Chapter, a simple problem was used to understand the elements
affecting the computation time. In this Chapter, we use Cytosolve to solve a
well known biological model in the systems biology community. = The purpose
of this effort is: 1. To validate the architecture’s capability to produce known
results, 2. compare our new approach with an existing monolithic approach, and
3. demonstrate the scalability and ease of use of the Cytosolve approach. In the
next section, the methodology for performing this validation is presented. In the
third section, the results from this effort are presented. In the fourth section,

conclusions are made.

144

5.1 Materials and Methods

Materials

Two elements are necessary to execute this validation: 1. a known ensemble of
biological pathway models along with their fully coupled system, previously
solved in a monolithic approach, and 2. a popularly used monolithic approach
for solving the model in order to compare the resulting solutions with Cytosolve.
Relative to (1), the biological model the Epidermal Growth Factor Receptor
(EGFR) model published by Kholodenko (Kholodenko, et al., 1999). The EGFR
model is selected since known solutions exist for this problem thus enabling
direct confirmation of the Cytosolve approach. In BioModels.Net this model has
been instantiated into SBML, which can be solved using various monolithic
approaches. This pathway can be viewed as an ensemble of four different
biological pathways as shown in Figures 5-1 through 5-4, when coupled yields

the full EGFR model shown in Figure 5-5.

145

EGF_EGFR €———>(EGF EGFR)2

f

Epidermal\rowth_Factor (EGF_EGFRI2P

Figure 5-1 - Model 1: EGFR Dimerization Pathway.

(EGF_EGFR)2-P

Grb2 /\

508

Grb2_S0S ﬂ*\ EGF_EGFR)2_Grb2_S0S
. (EGF_EGFR)2_Grb2_

Figure 5-2 - Model 2: SOS Production Pathway.

146

S R

Figure 5-3 - Model 3: PLCg Production Pathway.

Figure 5-4 - Model 4: Shc Production Pathway

147

Figure 5-5 - EGFR Model

Relative to (2), for the selection of a monolithic approach, we select Cell Designer
by (Kitano, et al., 2005) to compare our method. There are over 130 other systems
such as Cell Designer that could have been selected; this tool was selected
primarily based on its current popular use in the systems biology community
and it is free. Cell Designer provides both a graphical mechanism for
constructing the pathway diagram shown in Figure 5-5 as well as an ordinary
differential equation (ODE) solver for calculating the various species
concentrations values over time. In Figure 5-5, the creator of this pathway in Cell
Designer had to “by hand” draw each and every species and then connect the

species and instantiate the rate equations. Cell Designer requires the entire

148

pathway to be coded into the Cell Designer system exclusively using the Cell
Designer program prior to solving the pathway model. The total number of time

steps used in the simulation is 100 or N=100, and the physical time is 10 seconds.

Method - Monolithic Approach

First, for each of the pathways shown in Figures 5-1 to 5-4, they were each loaded
into Cell Designer separately and solved separately to produce baseline solutions
for each pathway. Second, each of the individual pathways shown in Figures 5-1
to 5-4 were manually “hand-wired” together to produce full EGFR model shown
in Figure 5-5. The resulting species concentrations over time of each of the

species in the integrated EGFR model was output and documented.

Method - Cytosolve Approach

Cytosolve was then used to solve the same EGFR problem but in a distributed
fashion. In Cytosolve, any one pathway model can exist in any format be it
SBML, CellML, C++, C, FORTRAN, MATLAB, or any programming language,
and there is no need to manually load, understand and interconnect each
individual pathway, as is required in monolithic systems. In this case, to prove
the efficacy of Cytosolve and to simulate the concept of four different teams
working in four different locations world wide, each of the models was
distributed on four different computers within a local area network. The total

number of time steps is 100 or N=100, and the physical time is 10 seconds.

149

The results from Cytosolve were then compared with Cell Designer for both
individual and the fully integrated models. Cell Designer and Cytosolve’s
central controller are executed on a Pentium 4 CPU 3.00 GHz Dell Workstation
with 2 GB of RAM running Windows XP with Service Pack 2. In Cytosolve, each
pathway model is treated as an independent entity, and is activated by
messaging with the central controller, as described in Chapter 4, to ensure mass
conservation. Each of the individual models, in the Cytosolve case, are also
executed on a Pentium 4 CPU 3.00 GHz Dell Workstation with 2 GB of RAM

running Windows XP with Service Pack 2.

5.2 Results

There are two sets of results. The first set of results provides the comparison of
each individual model (Figures 5-1 to 5-4) executed in Cell Designer and in
Cytosolve. The second set of results provides the entire EGFR model executed in

both Cell Designer and Cytosolve.

In reviewing the four models, in Figures 5-1 to 5-4, one will recognize that the

species (EGF_EGFR)2-P is shared by all four models; however the species SOS is

shared only between the models in Figures 5-3 and 5-4.

150

Individual Model Solutions
Figure 5-6 provides the results of Cytosolve’s time for solving each problem

individually. The first column lists each model, the second column is the

Model Transmission Time Model Computation Controller Total Time
(ms) Time (ms) Time (ms) (ms)
Model 1 822 1795 520 3137
Model 2 910 2265 476 3651
Model 3 915 2280 507 3702
Model 4 1405 2615 532 4552

Figure 5-6: Time for executing Cytosolve for each individual model.
Transmission Time involved for the Controller to communicate for 100 time steps
to the model. The third column is that particular model’s local Model
Computation Time to execute the problem. The fourth column is the Controller

Computation Time. The fifth column is the Total Time.

Figure 5-7 provides the results of Cell Designer’s time for solving each problem

individually.

o ~

Model | Transmission Time Model Computation Time Controller Time {ms) | Total Time
(ms) (ms) (ms)
: Model 1 N/A 1310 N/A 1310
Model 2 N/A 1752 N/A 1752
Model 3 N/A 1763 N/A 1763
Model 4 N/A 2133 N/A 2133

Figure 5-7: Time for executing Cell Designer for each individual model.

151

In this case, since Cell Designer is executed monolithically, there are no times for
column 2 and column 4. Only, the individual Model Computation Time

contributes to the Total Time.

Figure 5-8 compares the Cytosolve and Cell Designer compute times.

; Model | Cytosolve | Cell Designer Time | Cytosolve Computation Difference Time
: (ms) (ms) (ms) {ms)
: Model 1 3137 1310 1795 1342
‘ Model 2 3651 1752 2265 1386
i [Modgeia| 3702 1763 2280 1422
- [Modera| 4552 2133 2615 1937

Figure 5-8: Comparison of time between Cytosolve and Cell Designer.

Column 2 and column 3 are the Total Time’s for Cytosolve and Cell Designer,
respectively. Column 4, for Cytosolve, is the Model Computation Time on the
local server. This time should be the same as Column 3; however, it is not since
the local server’s compute time on Cytosolve also involves read’s and write’s to
the Global Vector and Local Vector. Thus, there is an overhead. The Difference
Time in Column 5 is the difference between Column 2 and Column 4. This time
offers us insights into overhead of Cytosolve’s Transmission Time and Controller
Time. Nearly 65% of this Difference Time is for Transmission Time and the

remaining 35% for the Controller Time to perform the integration calculation.

152

Note, that for Cell Designer, each model was loaded in one at time and then
executed. For Cytosolve, Cytosolve’s central controller was implemented on one
server and each model was implemented on another server. The results in above
figures were calculated as the RMS average across fifty test runs for various

species concentrations.

Whole EGFR Model Solution

In this case, the full integration of all four models is performed to derive the
whole EGFR model in Figure 5-5. For Cell Designer, all four models were loaded
into the Cell Designer system and had to be connected by hand to recreate the
diagram in Figure 5-5. This process took nearly four several days to perform and
to ensure consistency and accuracy of the pathway as described by Kholodenko.
For Cytosolve, the central controller was run on one machine and four separate
computers were setup, each running one independent model. This process took
less than four hours. Recall, the goal in this exercise was to evaluate the
difference in solution between Cytosolve and Cell Designer as well as

computational time differences for deriving the whole EGFR model.

153

Model Transmission Time | Model Computation Time | Controller Time | Total Time
(ms) {ms) (ms) {ms)
Integrated 1424 2615 1893 5932

Figure 5-9: Compute time for integrated model using Cytosolve.

In Figure 5-9, the results from executing the integrated model using Cytosolve
are shown. In this case, it is important to note that Column 2 and Column 3 are
the maximum Transmission Time’s along any Controller-Model path. This
means that Column 2 is the longest Transmission Time taken by the Controller to
communicate with any one of the model’s over 100 time steps, and that Column
3 is the sum of the longest Computation Time across all the models. It is
interesting to note that the compute time of 2615 in Column 2 is the compute
time of the longest model, Model 4. Cytosolve took a total of 5932 ms to solve

the integrated model.

Model Transmission Time | Model Computation Time | Controller Time | Total Time
{ms} {ms) {ms) (ms)

Integrated N/A 3217 N/A 3217

Figure 5-10: Compute time for integrated model using Cell Designer.

In Figure 5-10, the results from executing the integrated model using Cell
Designer are shown. In this case, the total time is 3217 ms to solve the integrated
model. Cytosolve requires approximately two times the time to solve the
integrated model; however, most of this time appears to be spent in the

Transmission Time and then the Controller Time for integration

154

The above discussion focused on comparing the computation times of the two

different approaches. Figure 5-11 and Figure 5-12 illustrate the comparison of

actual solutions for the EGF and bound EGF-EGFR concentration profiles,

respectively, from Cytosolve and Cell Designer.

EGF Concentration

Figure 5-11

EGF Concentration Profile
B Cytosolve @ Cell Designer

nmil

660
650
640
630
620
610
600 |
590
580
570

Seconds

- Solving EGF using Cytosolve and Cell Designer.

155

Bound E GF-IEGFR Concentration Profile
Hl Cytosolve @ Cell Designer

s
g

Bound EGF-EGFR Concentration

Seconds

Figure 5-12 - Solving bound EGF-EGFR using Cytosolve and Cell Designer.

The above two figures show that there is little difference between the Cytosolve
and Cell Designer solutions. There was less than 0.01% difference between both

solutions.

5.3 Summary

The results demonstrate the viability of Cytosolve’s unique distributed approach
not only to solve problems that monolithic approaches are capable of solving but
also to provide greater flexibility and scalability in integrating multiple biological
pathway models, which monolithic approaches are incapable of doing. In

Cytosolve, any one pathway can exist in any format on any computer, and there

156

is no need to manually load, understand and interconnect each individual

pathway, as is required in monolithic systems.

Cytosolve generated exact results to Cell Designer; more importantly, the
integration of the four models in Cytosolve did not require any manual “wiring”
as is needed by Cell Designer. Cytosolve’s compute time was greater than Cell
Designer; however, most of this compute time was due to Transmission Time.
Since Cytosolve works in a distributed parallel fashion, its compute time is a
direct function of the compute time of the largest pathway plus the associated
Transmission Time and overhead for Controller Time to integrate. For Cell
Designer, the compute time will be the compute time of the whole integrated

pathway.

Initial results from the EGFR example have demonstrated that Cytosolve can
serve as an alternative to the monolithic approaches for integrating and solving
biomolecular pathways. Most important is Cytosolve’s core feature for
integrating multiple pathway models, which can be distributed across multiple
computing systems, without “hand wiring” of each model. While such a manual
approach may be viable for a handful of models, it will not scale to support the
integration of all pathway models necessary to model the whole cell. Moreover,
the monolithic approach does not provide a means for pathways from

proprietary models to be used with other models that are open source. An

157

architecture such as Cytosolve will allow individual research teams to contribute
the output of their pathway models to an external dynamic network of models
without revealing the details of their internal structure. There has been also no
research to show that monolithic pathways can be distributed between machines
for computational scalability. The Cytosolve approach parallelizes the
computations from the beginning, making computational parallelization

automatic.

Finally, and perhaps equally important, is that managing a monolithic model,
composed of other models, is a change management nightmare. Consider a
small example of a monolithic model “cut and pasted” or concatenated from the
four models of EGFR, aforementioned, and each model being published and
created by different authors. Now, suppose once the monolithic model has been
constructed, that many months later, the authors of each of these models changes
rate constants, pathway connections, etc., at that point the author of the
monolithic model would have to rebuild the entire monolithic model, by
instantiating changes from each author’s model, which may be tenable for four
models (possibly based on the complexity and domain specificity of each model).
Modeling the whole cell while managing such changes across a suite of hundreds

of such models will be untenable.

158

In summary, the results are the same as monolithic approach. Cytosolve’s local
Model Computation Time is approximately 30% to 40% more than the
monolithic approach. Cytosolve’s integrated model requires no more than 2x
amount than the monolithic approach. Cytosolve’s “overhead” equals the
Transmission Time + Controller Time. Of the total “overhead” for Cytosolve

~65% is for Transmission Time and ~35% is for Controller Time.

159

Chapter 6

Integrative Model of Interferon
Response to Virus Infection

6.0 Introduction

The purpose of this chapter is to solve a heretofore unknown problem by
integrating multiple biological pathway models. In this chapter we begin by
first giving a background on Interferons (IFNs). The next section gives an
overview of the four key biological pathway models involved in the IFN
response to virus infection. The third section itemizes the key molecular agents
involved in IFN response. The fourth section details each biological pathway
model within the IFN response mechanism. The fifth section provides the
solution for each individual pathway model using the Cytosolve architecture.
The sixth section provides the complete solution of the IFN response to virus

infection using the Cytosolve architecture. The seventh section performs a test of

160

replacing one of the pathway models within the integrated IFN model to
demonstrate Cytosolve’s ability to easily integrate updates to a given model in
the ensemble. The eighth section uses the integrated model to study new
biological phenomena of the IFN response to virus infection. The final section

provides a summary and discussion of the results.

6.1 Background on Interferons

The immune system has many different types of cells acting together to protect
the body against viruses, bacteria, and other “foreign invaders.” Part of this
protection includes the production of interferon (IFN), a protein that plays a
special role in triggering the body’s response. The following describes what

interferon is and why it is so important to the immune system.

What Is Interferon

The immune system consists of a complex network of cells, tissues, and organs
all working in tandem to ward off infection and keep us healthy. This includes
interferon, one of the proteins called cytokines, which are diverse and potent
chemical messengers that can trigger the immune system to attack invading
pathogens. Interferon signals neighboring cells into action and also interferes
with how foreign cells grow and multiply. Interferon is also considered

essential for optimal health because it can boost the immune system'’s ability to

161

recognize foreign invaders. It is because of this special role that interferon is
used in drug form as an anti-viral agent to treat many different diseases.
Moreover, researchers have shown that interferon, given by nasal spray in daily
doses, can prevent infection and illness. However, pharmaceutical forms of
interferon cause side effects such as nosebleeds, fatigue, headache and aches, and

may not be useful in treating established colds (Wikipedia, 2007).

In humans, IFNs also play a roles in cell growth, differentiation and immuno-
modulation. IFNs are divided into two groups depending on their molecular
basis; type I IFNs (IFN-alpha and IFN-beta) are produced by a variety of cells
following virus infection, and type II IFN (IFN-gamma) is produced by activated
T cells and natural killer (NK) cells (Sato, 2001). There are three classes of
Interferon, alpha, beta and gamma. Interferon alpha and beta are produced by
many cell types, including the infection-fighting T-cells and B-cells in the blood,
and are an important component of the anti-viral response. In contrast,
interferon gamma is involved in the regulation of the immune and inflammatory

responses and is produced by activated T-cells (Sato, 2001).

The History of Interferon
Since more than half of the communicable diseases affecting human beings are
caused by viruses, scientists in the 1950’s began searching for clues into how the

body protects itself against viruses, leading to the discovery of interferon.

162

During studies on virus replication, two groups of researchers in different parts
of the world separately discovered interferon. The first discovery occurred in
Japan in 1954 when researchers at Tokyo University were studying viruses in
rabbits and found that a natural protein made the rabbits resistant to subsequent
viral infection. Then, in 1957, Scottish virologist Alick Issacs and Swiss scientist
Jean Lindenmann found that when chick embryos were injected with influenza
virus, the protein produced by the cells destroyed the virus and also inhibited
the growth of any other viruses in the embryos. Isaacs and Lindenmann named
the protein interferon because of its ability to interfere with virus replication

(Isaacs, 1957).

Further research showed that interferon was produced within hours of a viral
invasion (antibodies take several days to form) and that most living things,
including plants, can make the protective protein. Interferon was seen as the
cell’s first line of defense against viral infections, but because the body produces
interferon in small amounts and the protein was thought to be species-specific -
meaning only human interferon will work in human beings - research on the use
of interferon in drug form inched forward at a snail’s pace. Then, in the late
1960’s, Ion Gresser, an American researcher working in Paris, and the Finnish
virologist Kari Cantell developed a way to make interferon in useful amounts
from human blood cells. Monoclonal antibodies, first produced in 1975, made

large-scale purification of interferon possible, and the mid-1980s saw the advent

163

of genetically engineered interferon (Glick, 2006). During the same period,
scientists learned that there are three classes of interferon and that these

Interferons are not species-specific but can produce a response in other species .

While these developments were occurring, Japanese researchers were focusing
on interferon-inducing activities in Chinese herbal medicines. This led extensive
research on ways to boost the body’s ability to produce interferon through the
interaction of botanicals. After screening, testing and evaluating over 200
different herbs, the research successfully isolated four botanicals that, in
combination, naturally increase the body’s production of its own interferon. As
a result of this extensive research, interferon is being used today in drug form to
treat viral diseases like rabies, hepatitis, and herpes infections. At the same time,
new research now makes it possible for healthy adults to boost their immune
system through a dietary supplement that naturally increases the production of

interferon in the body.

How Interferon is Used To Treat Diseases and Boost Immunity

In drug form, several different types of interferon are now approved for use in
humans, and are usually administered as an intramuscular injection. Interferon
alpha is used as a cancer therapy and a treatment for Hepatitis C, the AIDS-

related Kaposi's sarcoma and genital warts. Interferon beta is used in the

164

treatment and to control the neurological disorder multiple sclerosis (Glick,

2006).

In therapeutic doses, interferon can be hard to tolerate because of its side
effects, which include fatigue, headache and aches, and less frequently, low
thyroid activity, low platelet count and depression. It is because of these side
effects that researchers have not pursued the use of interferon alpha for the
common cold and flu, even though studies find that interferon, given in daily
doses by nasal spray, can prevent infection and illness. However, new research
now makes it possible for healthy adults to boost their immune system through
a dietary supplement that naturally increases the production of interferon in the

body.

In summary, IFNs perform the following key functions:
¢ Inhibit virus replication (combat viral infections)
¢ Inhibit cell growth (used in anti-cancer therapy)
e Activate monocyte/macrophages
¢ Inhibit non-viral intracellular pathogens

* Produce pyrogenic activity (the fever you get with a cold)

165

6.2 Key Molecular Components of IFN Activity

The IFN response activity is evident across the extra cellular matrix (ECM), the
cell membrane, the cytoplasm and the nucleus as shown in Figure 6-1

(Taniguchi, 2001).

ECM

Cytoplasm

Nucleus

Figure 6-1: IFN signaling affects various cellular components (Taniguchi, 2001).

166

IFN Receptors

IFNs actions are exerted through specific cell surface receptors.

Figure 6-2: IFN receptors (Taniguchi, 2001).

While new ones, no doubt, will be discovered, it is currently known that IFNa,
IFNp and IFNw appear to have a common receptor and that IFNy binds to a
different receptor that has 2 subunits, as shown in Figure 6-2. IFN signaling
involves an IFN-mediated hetero-dimerization of the cell surface receptor

subunits as shown in the figure.

167

Signal Transducers and Activators of Transcription (STATS)

IFN-o/p IFN-y

Figure 6-3: STATS in action (Taniguchi, 2001).
STATs are latent transcription factors in the cytoplasm. They are activated and
then translocated to nucleus. Their activation is supported through the
phosphorylation by the receptor-associated Janus family of tyrosine kinase
(JAK) enzymes in response to cytokine stimulation, as shown in Figure 6-3.
There are different members of the JAK and STAT families have distinct
functions in cytokine signaling. For example, Jak-1, Jak-2, Tyk-2, STAT-1 and

STAT-2 play central roles in mediating IFN-dependent antiviral activities.

168

Interferon Regulatory Factors (IRFs)

IRFs are transcriptional regulators important in regulating the interferon
response. Some IRFs are induced by IFN signaling. Historically, there are nine
known family members: IRF-1 to IRF-9 . Recently tenth one was discovered.
IRFs and STATSs function together to induce and control the expression of

proteins that constitute the antiviral state.

6.3 Elements of the IFN Response

The IFN response mechanism of the cell to virus infection is a core cellular
function. There are four key biological pathways which are involved to elicit
IFN response to virus infection:

¢ Up regulation of IFN-Beta

e [FN receptor signaling to produce IRF-7

® Virus amplification cycle to produce more IFN-Beta and IFN-Alpha

* Regulation and balancing by SOCS-1

169

USA, Hancloglu, et al,
Journal of Theor. Biology, 2006

China, Z, et al, FEBS, 2005

Russla, Bocharov, et al,

Journal of Theor. Blology, 1994 Japan, Yamada. et al,
Genome Informatics, 2001

Figure 6-4 - Integration of the efforts of multiple research teams is required to develop an
integrated model of IFN response to viral infection.

Figure 6-4 illustrates how the entire model of the IFN response involves the
integration of work efforts from four countries and three continents. Each
research paper used in this integration effort involves the work of multiple

research groups.

Virus Infection Model

The high level biological pathway of virus infection is depicted in Figure 6-5
below. This pathway creates IFN-Beta as an initial response to virus infection.
Scientists in Moscow, Russia in 1994 modeled this pathway in the Journal of

Theoretical Biology (Bocharaov, 1994). The original code was written in MATLAB.

170

Figure 6-5 - Virus infection pathway (Bocharaov, 1994).

A detailed diagram of this pathway is shown in Figure 6-6 which includes all
the species and molecular interactions. Here viruses inject their single-stranded
RNA into the host cell, which leads to the formation of double-stranded RNA.
Double-stranded RNA triggers the activation of virus-activated kinase (VAK),
which phophorylates IRF-3. Phosphorylated IRF-3 is a transcription factor for
the IFN-Beta gene. The expression of this gene results in the initial production

of IFN-Beta.

171

extracellular space

FN-beta

nucleus

Figure 6-6 - Virus infection pathway detailed mechanics.

172

In Figure 6-7 are listed the differential equations defining the molecular

interactions for this pathway.

Reactions | Math
(virus]—{esBIA) Bon o b, irus)
(ssRNA] —{dsRNA] %—'5“‘: [esRNA)
[&sRNA] degradation ;‘%"'.mk, [dsRNA)
[VAK) activation ;‘%}5, k, [dsRNA)
[VAK] degradation g{g_g =k, -[VAK)

[IRF-3]e~—{IRF-3Pc] dRen - k¢ -[IRF -3){VAK}
& IW _ 3}+k),’ 'i'k,‘

- kg - [IRF - 3Pc]

ks

(IRF-3Pc}e——s{IRF-3Pn] é%': = kyy -(IRF =3Pc]-k,, (IRF ~3Pn]

[IFN-beta RNAn] production dfxn - kyo [IRF - 3Pn})
di [IRF -3Pnl+k,

-beta RNAn]e——>{IFN beta RN
(IRF-beta RNAnje——(IFN-beta RNAc] %ﬁ,_k,.gm-.mmml

[IFN-beta RNA¢] degradation %:xw.(;pw—aem“m:]
(TN betal production %ﬁﬁh,.[m—mm,,mac]
[SIFN-beta] —{IFN-beta] .__"if”ﬂ,,»{czﬁ.w—aza}
[IFN-beta] degradation dRan

W =k, [IRN - beta)

Figure 6-7 - Differential equations for viral infection pathway.

173

" In Figure 6-8 are listed the internal parameters, rate constants and initial

conditions for this pathway.

Symbol | Description Value Unit
{ky Virus infection rate 00114
Iky |Double strand RNA formation rate)
lka Double strand RNA degradation rate 0.000L|L5
lks VAK activation rate 0.0001 {15
Ik [VAK protein degradation rate 0.0005]15
lks IRF-3 & VAK association rate 0.008L/nM*s)
hiﬁ IRF-3-VAK complex dissociation 1ate 0.8]ls
ke |RF3phosphorplationrate | o4t
lke IRF-3 dephosphorylation rate 0.005(Ls
lke Rate of IRF-3P transport fo nucleus 00051
lka [Rate of IRF-3P transport to cytosol 05|14
Kaa Rate constant {chemistry) of RNA formation 0.01 inMAk
ks {Rate constant (association) of RNA formation 400'11!4
lks Rate of MRNA transport to cytosol 0.00L|ls
fkso Rate of MRNAC degradation 0.0005]1s
ku {Rate of IFN-beta production 001ils
ko [Rate of IFN-beta transport o extracellular space 0.001 |15
lkss Rate of IFN-beta degradation 00001 {16
livirusly _ |mitil extracellular virus concentration 10/uM
JURF-3 _|Steady stae IRE-3 concentration before nfection 10jnM

Figure 6-8 - Parameters for viral infection pathway.

174

IFN Receptor Signaling Model

The high level biological pathway of IFN receptor signaling is depicted in
Figure 6-9 below. This biological pathway produces IRF-7 as a preparation
mechanism for the infected cell and neighboring cells. Scientists in China in
2005 defined this pathway model in FEBS (Zi, 2005). Only a pathway diagram

along with parameters exists for this pathway model, but no software code.

A detailed diagram of the this pathway is shown in Figure 6-10 which includes
all the species and molecular interactions. In Figure 6-10, IFN-Beta (or IFN-
Alpha) lands on the IFNAR receptor to initiate the up regulation of IRF-7 which
is a critical protein for signaling the cell itself as well as neighboring cell of the

virus infection. The binding of IFN with the receptor leads to the STAT protein

175

being phosphorylated. The phophorylated STAT forms a homo-dimer and
becomes the transcription factor for IRF-7 gene after binding to IRF-9, which
leads to expression of IRF-7. This signaling mechanism prepares the cell for

further defenses by producing IRF-7.

mtleus

Figure 6-10 - IFN receptor signaling pathway detailed mechanics.

176

In Figure 6-11 are listed the differential equations defining the molecular

interactions for this pathway.

Reactions Math

B e ——

IENARJ) & (IEN-bet) %’! = by [PN - bta] {FNART |- by [PN - beta - bound]

asseciation
(IFN-beta-bound] dRen o RN e
dtriation — =k U - bota bouend | = ks [IFH - bata - bownd _2]
UNbowbomd] | dBon_ (1PN~ beta-bownd _2)
ehoshorvlation #
RBR2"] dhon b UPBRE')[SHP2)
dt s o Fhy

(IPNERZ¥)+

kﬂ’

(IFNBR2*] & [STATc™] ? = kyyy{IFNBR2¥) (STATc)- by (IFNBR2* STAT)

asociation
ion | dRen by -(FNBRZ).[STATe]
#orams Bt
km
dhon_ by (PEX] [STATE]
GEDRGED)] "‘;'\J K d‘ {ﬂxi&*}+5’;+zﬂ
il
[FTAC] S [STAIEY) | dRem_ | o o .
—— — =y STATE) [STAT)~ by (STATe*~STAT:)
(FTTe") dumerizeien %’f:xﬂ.{mm’ ~ k- [STATe®2)
[STAL=2] dRen _ky [PPX){STAT:*2)

dephosphorylation a wmﬁnﬁ_,.km*kﬂ

iz

(ST vapertto [dRor
— — =y (ST 2]
STASSTAT | dRon_ by (PPH) [STATH?]
bmiootin | &y Fa e
138

Figure 6-11 - Differential equations for IFN receptor signaling pathway.

177

In Figure 6-12a and 6-12b are listed the internal parameters, rate constants and

initial conditions for this pathway.

Symbol | Description Value [Unit
sy Rate constant chemistr) of RNA formation 001 jnMe
% [Rate constani (sssociaion) of RNA formation #0fm
X IRate of mRNA transport o cyiosol 000114
ko [Rae ot mRNAC degradation 0.0005|L
ke [Rate ot 1N production 00114

|IFN-gamma & R} assocation mate 0.02]1AaMs)
N gamma-RJ complex dissociation ate 002l1h

w_ VFNAR dimerizaton and endoeyieis e 0005{1M*s)

s |IFNAR2* & STATc association rate 0.008]14nMs)
s |IFNARD®-$TATc complex dissociation rate 08|14
ki STATc phosphorylation rate 041k

1 HFNARZY & STATC® association fate 0005{14nM*s)
5 [IENARRE-STATe! comple dissoiation rate 0514

 |STATC dimerization rate 0021 aM*s)
STATe dimer dissociaion rale e

® |IFNAR2Y & SHP-2 association vale 0001 {1aM*s)
oo [IFNAR®-SHP2 complex dissociaion rae 02{lk
HENAR2* dephosphorylation rate 0003{14

' STATCY & PPX association fale 000114 Ms)
STATCS~FPX complez dissociation tate 02)i4
ka _ISTATC! dephosphoryhation rae 0.003{16

STATc & STATC? association rate 0.0000002]LiaM*s)
. STATC-STATC! complex dissociation ale 02|14
xR of STATC* tansport to mucleus 000514

ke PPN & STATY® asociaion rate 1Mt
ks [PPN-STAT® complex dissotiation rate 021
% |STATN® dephosphorylation rate 0005{Ls
Rate of STATn lraneport 1o Cyioat 005114

] JAK & IFNAR association rate LimM®s)

Figure 6-12a - Parameters for IFN receptor signaling pathway.

M
AR=FNAX compies dissorabon
T s

178

(e Sy e T oo i |

T r————_—"

e e
[k et 120l
[Tt i ol STae 100
- 100
D1 oty Y omiaien Sl
il e o o

Figure 6-12b - Parameters for IFN receptor signaling pathway.

IFN Amplification Cycle Model

The IFN amplification cycle is a critical step in the response to protect the cell
from virus infection. It is depicted in Figure 6-13 below. A team of scientists
from the America created a dynamic model of this pathway. The article was
published in the Journal of Theoretical Biology (Hancioglu, 2007). They

programmed the pathway in XPAUT which can be saved in SBML.

179

Figure 6-13 - IFN amplification cycle pathway (Hancioglu, 2007).

A detailed diagram of the this pathway is shown in Figure 6-114 which includes
all the species and molecular interactions. In Figure 6-14, virus interaction with
IRF-7 not only serves to up-regulate IFN-beta but also serves to up-regulate

IFN-alpha.

180

adracaliular space

s

5, nuclous

Figure 6-14 - IFN amplification cycle pathway detailed mechanics.

181

In Figure 6-15a and 6-15b are listed the differential equations defining the

molecular interactions for this pathway.

Reations Mt
o} ENA
[rus|{sENA) %ﬁ-k,{w;
BNA
CIIETTIR PR
[4sBHA] degradstion %ﬁ%_[m]
[VAK] activation %sk,-(aRiA)
VAR degradation %ﬁh-ims
MRESARER | n b lRP 314K

"{‘mw“*nfiw“ml

{IRF - Y4 -2 P
ks
e

TRE S50 %ﬁtﬂqw-m)—mw-w
TonlUd | dn_ kL3P K U -7P
production d [IRF=3Pul+ky, [IRR-1Prl+k,
{TRF-beta dRxn
Kk (TN | g 1~ elo. Ry)
NG BAl | o RN -bets_Rie]
degadation P -
[cTER:beta] production %a@,((w-m_mz
e ER—
——— A
el | 2.y, (o-bo
Ewnlial | dbs_ b (00790
production & [P,

Figure 6-15 - Differential equations for IFN amplification cycle pathway.

182

[t apa s, -cbha_

Bitsl{ap

R

eI
degadation g "l -opla. k]

Akl | 20 g o)

ol | B -
TRl | 22 b -]

e—ARF s .
[IE-Thejo—{ 3%;&,{1&#‘7&1‘4,,‘{!&?7-&1

Figure 6-15b - Differential equations for IFN amplification cycle pathway.

In Figure 6-16 are listed the internal parameters, rate constants and initial

conditions for this pathway.

.h_ﬂm.__%&lm ' Valve _Jon
‘phase_fwo_pait_teo Virws mfection e lila

phise two_pwtmo fk; Double srand RNA ormation e iftdane)
hase,bwo_pariwo iy Double sirasd BNA degradaion e 000Ht%
shase two_pat_two fey VAK actraion il 0000114
phate teo_patt tvo ity VAK prosin degradation rale 0200514
ol two,_pn teo kg 153 & VAK aowocaficn rle Do0e]lmMY)

s two,_pan_two 1RF-3-VAK complex dimciation ate e
phase_two_pait two IRF-J phosphorylation st 04

‘plhse_two_part_two IRF-3 deshasplioryhation ate Q005HA
iphase_two_pr o Liae of IRE.3F transport o pucess 0005116
plase two_par, w0 {Rateof IRF.3¢ wansport o cyvocl 005k
phate_two_pat_wo Rate consat (chesioy) of RNA ormatin 001l
phate to pattwo By [Rate constant issociaton) of ANA formiticn 00leM
phass twosatteo By [haeof mEMA mascntio cpionl ot

Rate of mRMAC degradation] 00005414

001
Rate of 1PN ramspont ® exspacelhilar space G0tila
00001114
1012M
' suie [RF.3 concantration befose infection 10}aM
‘hase_two_partwo [IRF-Thck [Seady sa 1RF7 comosniralion i crioeo aes infecion 051

Figure 6-16 - Parameters for IFN amplification cycle pathway.

183

SOCS1 Regulation Model

The high level biological pathway of virus infection is depicted in Figure 6-17

below. This biological pathway produces SOCS1 to regulate and balance the

production of IFNs. It is depicted in Figure 6-7 below. Without this pathway,
the additional levels of IFNs, beyond what is necessary to stop the virus

infection, can itself have detrimental effects on the cell. . Scientists in Japan in

2001 defined this pathway model in Genome Informatics (Yamada, 2001). They

programmed the pathway in MATLAB.

Figure 6-17 - SOCS1 regulation pa'thway(Yamada, 2001).
A detailed diagram of this pathway is shown in Figure 6-18 which includes all

the species and molecular interactions. Here, JAK binds to the IFN receptor and

184

forms the JAK-IFNR receptor complex. Once IFN binds to the receptor, the
resulting complex associate with each other and forms a homo-dimer. This
dimer undergoes phosphorylation, leading to a form as IFNRJ2*, which
catalyzes the phosphorylation of STAT1. The phosphorylated STAT1 also
forms a homo-dimer and acts as a transcription factor of SOCS1 gene. The
resulting protein, SOCS]1, inhibits the kinase activity of IFNR]2 and is the key

component of the negative feedback loop.

e U nuclaus

Figure 6-18 - SOCS] regulation pathway detailed mechanics.

185

In Figure 6-19a and 6-19b are listed the differential equations defining the

molecular interactions for this pathway.

Reactions Math
JAR] & (R} association .ﬁz*_.kﬂwimm-x,.m
[RJ] & [TFN] assecintion %,kﬁ PN} (R7)~k, (LFNRT]
[IFNRY) dimeisation %%n;mwr-k,,:mzx
[FNRI2) %q,wwe)
dRan _ by [IFNRI 2 (SHPY)
e

ks

dRn_ K, [FNRIZT(STATY]
¢ sngsisth
ky

N

. T +E
% (amanee st
km
(ENRIZIRISTATIET) | dfon o UNRI 2. STATY) - by {NRI2%STATIC)
asociation at
(STATIC|& (STATIe) [dRen , oo .
Cesociation 5 =km [STATY) [STAT Y] b,y [STATI *~STATX]
{STAT1c*] dumerization %, kn (STATIC*Y ~ k., {STATIc *~-STATIC™)
[STAT1:*-8TAT1cY] @ . ky, - [PEX){STATI *-5TATRY]
dashesoharylation iSTATk*-&TATk*}%M
by
{STAT1c*-STAT1:%) dlen
O by (STATY *-5TA
yamponbopuclens | & t”i T STM
[STATIn® STATIn"] | dkw _ by (PPN} {STATIA™~STATI"]
drphesphoryiation & immu_wgm+ﬁ%ﬁ
Ens

Figure 6-19a - Differential equations for SOCS1 regulation pathway.

186

{STAT1n*-STAT Y]

%ﬁ‘. =k, [STATIN *~STATV®]= &y (STATIN

dissoristicn
[STAT1a*] & [STAT1a] m* e ’ a .
ssocistion =5 A (STATW {STATN)= by [STATIA STATin)
[STATI™] % by (PPN ISTAT]
Ao ismaTury B

fis
[STATa] waasportto | dixe
pu SRa b fstatn)
(SOCSTwRNASl | 4R SOCS_mididn
prodaction at {mmumm,_,ﬁ
{30CS1 pEiAn e ,
expatto o - by [SOCH_sdNAR]
degradation ?*%'EMLMI
[OCSTIpeotem | dhon_, -
obenon = ke 8001 mitiAe]
[SOCS1] degradation %= &y (5008
?@Wmfm’ B0« b UPHRIZ SOy (PN 2-50081)
[$TaTc} & dRxn _ .
v coosy | g (NI -SO0CSYSTATE]
ssociation =k [S0CH1 = IFNRI2*-STATIE)
[SOCS1-IFNRI2®-STAT | dr _ e
i 2w by 190081~ NI 2-STATCRSHE?)
wpociation = by JBOCE - [FNRI 2* - STATc « SHPZ)
(ROCS! TN STAT | dhon E—
1o-SHP] dsocintion -—;‘m &y, [SOCEY= IFNRI2*-ETATE ~ BHP2)

Figure 6-19b - Differential equations for SOCSI regulation pathway.

187

In Figure 6-20 are listed the internal parameters, rate constants and initial

conditions for this pathway.

e, e E !SAK&MWM e iﬁiﬁ@ﬁ“i}
phass e §

R ———
T m & 33 samcciafion o
g rwe fEo o <Sowcdation: sale
shute B _ Ty —

m 3hmm
mm he

m m-kmmmm
MM | RIES_STATS: comples dmsochtion s
jo 8 Aﬂ(m

:r&zux *m

mrw& nx ﬂm e

o ove ﬁ STATLC 25 couphen dsnciubon

' FIATLC dapdoupbicrienss ooy ’

i STATE & STATIcH wanciabion nie % by
ettt fhog S TATIe-STATIES <insocingiot row 2ish

phaoe der fhy o s TATIES STATLE wempent 1 worieas Ml
plase tawe BN & STATLGt wmociats ren Uit
s b 813 STATIE! complex dimociation ue Bl

Figure 6-20 - Parameters for SOCS1 regulation pathway.

188

6.4 Individual Model Solutions

In this section for each of the pathway models in the previous section, we solve
each pathway model using Cytosolve. For each solution, a single graph is
presented which provides the time-dependent variations in species

concentration of the relevant species.

Virus Infection Model Solution
This system assumes the infection of a cell by one virus does not inhibit further
infection by other viruses. It is also assumed that the only source of virus is

from initial application of virus.

Figure 6-21 - Virus infection model solution.

189

Initially, as shown in Figure 6-21, the concentration of VAK and IRF-3 both
increase. The IRF-3 then activates the expression of IFN-beta. Due to the
limiting amount of virus and absence of a positive feedback system, the
concentration of IFN-beta reaches its maximum value of 0.33 nM in the extra

cellular space at around 3.6 hours and gradually declines.

IEN Receptor Signaling Model Solution

SO /
Rt /
gom /f
. /
/
/
o 5000 . 10000 - 15,000 20,000 25,000, 30000 35000 40,000

Figure 6-22 ~ IFN receptor signal model solution.

In Figure 6-22, the concentration of IRF-7 through time is a sigmoidal curve
which reaches near the steady state value of 0.01 nM at around 4 hours. Fast

activation of IRF-7 is required to activate the positive feedback system.

190

IFN Amplification Cycle Model Solution

Figure 6-23 - IFN amplification cycle model solution.

In Figure 6-23, most of the IRF-7 is used to produce IFN-Beta. Very little IRF-7

exists for significant production of IFN-Alpha.

191

SOCS1 Regulation Model Solution

- . S
W -
= == 50CS1
kL
g
£
8
10
E3
ovg. R 1000 T m"“m ' mwe m

Tiete (seconds)

Figure 6-24 - SOCS] regulation model solution.

In Figure 6-24, it is assumed the extra-cellular concentration of IFN is constant.
The concentration of IFNR2* reaches its maximum value of 2 nM several
minutes after starting the simulation, and gradually declines due to inhibition
by SOCSI. The concentration of SOCS1 has a maximum value of 30 nM at 1.5
hour. After the peak, SOCS1 decreases to reach a steady state value of 2.5 nM

because of the negative feedback loop.

192

6.5 Integrated Model of IFN Response

The high level diagram of the integrated model is shown in Figure 6-25. This
integrated model illustrates the integration of the four biological pathway

models involved in the IFN response.

090

Figure 6-25 - Integrated model of the IFN response to virus infection.

A detailed diagram of this pathway is shown in Figure 6-26 which includes all

the species and molecular interactions of the integrated model.

193

Figure 6-26 - Detailed integrated model of the IFN response to virus infection.

This integrated model combines the four models of the interferon pathway:
virus infection leads to up regulation of interferon beta; massive production of
IFN-alpha and IFN-beta with a positive feedback system; and, then negative-

feedback control of JAK/STAT signal transduction pathway by SOCSI.

194

Integrated Model Solution

Cytosolve Approach

In the first case, we integrate the four IFN models using Cytosolve as shown in

Figure 6-27.

Figure 6-27 - Cytosolve approach to integrating the four models.

Figure 6-28 contains the solution from the integration of all four biological

pathway models.

195

251 -
¥
[t RF3PR
Lt 1.2 70]
4 e iFN-alpha
: zg; 15 i e 1RFTP
v' ”\
§
/
v"(i’f
°

Figure 6-28 - Integrated model solution.
The key molecular species presented in this figure are IRF-3, IRF-7, IFN_Beta
and IFN-Alpha. This integrated model combines the four pieces of interferon
pathway: virus infection leads to up regulation of IFN-Beta; IFN-Beta then
results in the creation of IRF-7; the existence of IRF-7 then results in positive
feedback to which increases a massive production of IFN-Alpha and IFN-Beta;
finally, control of JAK/STAT signal transduction pathway by SOCS1 results in
regulating and balancing the production of IFN-Alpha and IFN-Beta. Close
review of Figure 6-28 reveals several important elements of the integrated

model.

196

First, during the first ~13 hours (~50,000 seconds), the concentration of IRF-7

through time is a sigmoidal curve which reaches the steady state value of 0.7

nM.

Second, during this same first ~13 hour period, the concentration of IFN-Beta
and IFN-Alpha slowly increases. What is interesting to note is that, in Figure 6-
29 (below) which offers a zoomed in version of the first 3.3 hours (~12,000
seconds), the initial production of IFN-Beta is then followed by the production
of IFN-Alpha. IFN-Beta is produced within the first 3040 minutes (~2000
seconds to ~2500 seconds). The initial production of IFN-Beta after the 40
minute period and before the 3.3 hour period is defined by a marked increase in

IFN-Beta production.

Third, in Figure 6-28, above, after the first ~13 hours (~50,000 seconds) to ~25

hours (~90,000 seconds), IFN-Beta and IFN-Alpha exponentially increases.

Fourth, in Figure 6-28, above, after ~25 hours (~90,000 seconds), IFN-Beta and
IFN-Alpha concentrations reach their maximum and gradually approach steady
state due to the balance between positive feedback system and negative

feedback control from SOCS1 activation.

197

Figure 6-29 - A detailed, zoomed in, view of IFN-Beta and IFN-Alpha production.

198

Monolithic Approach

In the second case, we integrate the four IFN models using Cell Designer by

merging all the models as shown in Figure 6-30.

L

Figure 6-30 - Monolithic approach (Cell Designer) to integrating the four models.

The integration of the above models yields the same results as in Figure 6-28.
The mathematical equations and internal parameters for this approach are

included in Appendix C.

199

6.6 Re-Integration and Maintenance Test

In earlier chapters, we discussed that the central aspect Cytosolve’s architecture
is its ability to scale. Given the nature of biology, which is an experimental
science, where new protein structures and new protein-protein interactions are
discovered daily, it is clear that any one biological pathway model in an
integrated model will change. Such changes mean that the integrated model
itself will have to be rebuilt or re-integrated constantly. Thus, as an integrated
model grows, the maintenance of such a model may become onerous to
maintain, resulting in a lack of scalability for further growing and maintaining
such a model. In this section, we measure Cytosolve’s ability to maintain an

integrated model.

Methodology

To demonstrate Cytosolve’s ability to easily update changes to an integrated
model, we consider the SOCS1 regulation pathway model previously
mentioned. In this case, we consider a different variation of this model,
denoted as the SOCS1’ model, consisting of the same species as shown in
Figure 6-18, but, in this version of the model, we have changed the kinds of
molecular interactions as well as the internal parameters. Such a scenario is

highly likely given the nature of biology. Using the SOCS1’ model, we measure

200

the time and effort involved to reintegrate or “swap out” the SOCS1 model
from Figure 6-26, with the new SOCS1’ model. We contrast the effort of doing
this reintegration first using the Cytosolve approach and then with the

monolithic approach.

Cytosolve Approach

Reintegration of SOCS1” with the SOCS1 model using Cytosolve took less than
2 hours to perform. The effort involved the following steps:

1. Loading the SOCS1’ model on a server

2. Updating the PID file

3. Running the Controller

Monolithic Approach

Reintegration of SOCS1” with the SOCS1 model using the monolithic approach
took approximately 4 days to perform. The following efforts were involved in
this reintegration effort:
1. The rate constants needed to be reorganized to avoid confusion.
2. While doing copy and paste of different reactions form SOCS1’ to
replace reactions in the SOCS1 model, the mathematics of the reactions
did not automatically change with the updated species identifiers in
Cell Designer. This problem required the identifiers to be reset

manually to make sure the right reactants go to the right product.

201

3. It became very tedious to link the actual arrows with the new SOCS1’
model and errors were very easy to make.

4. Deleting the changes in the SOCS1 model with the new SOCS1’ model
is a very tedious, manual and menial process, in short a boring process.

5. Many mistakes were made in the reintegration effort required repeated

rework.

Discussion

It is clear from the above results, Cytosolve offers a much more scalable
approach to maintain and update an existing integrated model. Cell Designer
took far more effort than Cytosolve (e.g. 2 hours versus 4 days). While a more
rigorous analysis can be performed, the effort of reintegrating one of the four
models into the IFN integrated model serves to demonstrate the many

challenges in using a monolithic approach.

6.7 Analysis of IFN Integrated Model

Cytosolve has been used to develop an integrated model of the IFN response to
virus infection. One of the goals of building larger models from integrating
smaller models is to reveal new understanding of biological phenomena not
possible through experimentation. In this section, we perform various

numerical experiments to reveal such understanding.

202

Decreasing the SOCS1 Degradation Rate

The degradation rate of SOCSI is set from the original value 5.0E-4 to zero with
an interval 1.0E-4. As the degradation rate is lowered, more SOCS1 is present
in the system. The presence of more SOCS1 means less IFN. This modification
is valid based on the assumption that the production rate of SOCS1 highly
exceeds its degradation rate, the few days after the negative feedback control is

turned on and increases.

e {FH- 20
reP6.kd
00
tPN-aipha
2075.X%4 »
1 L9064
et 2 20
=76 kk
2084
e SEN S DI
1676, k4 =
3.0E-4
s 534 21D
126 k4 «
4,06-4
e {3 phE
176,504 =
5.0€-4

Figure 6-31 - IFN-Alpha lowers as the degradation rate of SOCS1 is increased (more SOCS] is
produced to suppress production of IFN-Alpha).

203

B AW AT RS P TR GARAN WETN WA A NS N

Figure 6-32 - IFN-Beta lowers as the degradation rate of SOCS1 is increased (more SOCS1 is
produced to suppress production of IFN-Alpha).

Thus, by lowering the degradation rate, we are simulating this phenomena. In
Figure 6-31 and 6-32, we present the graphs for both IFN-Alpha and IFN-Beta,
respectively. Therefore, the concentration of SOCS1 can build up through time.
The simulation shows that the maximum level of interferon, both IFN-Alpha
and IFN-Beta, is lowered. In the extreme case that the SOCS1 degradation rate
is set to zero, the bottom most curve in each figure, IFNs gradually degrade

during the 4-5 days after the peak.

204

Increasing the VAK Activation Rate

The VAK activation rate is increased from 1.0E-4 to as high as 8.0E-4.

25

Time (seconds)

Figure 6-33 - IFN-Alpha is relatively unaffected by changes to VAK activation rate..

205

¢ ifi-alpha

re kia

0.01
- {PH-aipha
elkdy =

bt £ g
a7 kda =

| e (FN-REDRR

T RB »

TR0 M0d0 ISOM0 2000 25080 X000 . M0 4000

Figure 6-34 - IFN-Beta peak is raised with increase of VAK activation rate..

We now refer to Figure 6-33 and 6-34 above. Increasing this rate of VAK
activation does not significantly affect the IFN-Alpha curve. Increasing the rate,
however, does raise the peak of IFN-Alpha. Recall, that VAK phosphorylates'
IRF-3, which is a transcription factor for IFN-Beta activation. Thus, it makes
sense why the peak is raised during the initial phase as more IFN-Beta will be
created; however, this change does not affect the steady state level of both IFN,
which suggests that the steady state level is independent of initiation process,
but is determined by the balance between positive feedback amplification and

negative feedback control.

206

Increasing Rate of Transcription of IFN Beta

The rate of transcription of IFN-Beta is set from the original value 1.0E-2 to as

high as 4.0E-2.

23

. mnnes {EN QlplA

re? by

o0
© IPR-alphs
A

e Rt

7 kBa =

e [EN- PR
rel k8a »

TAM I0eW | IS000 2600 2000 MO0 BOM0 A0

Figure 6-35 - IFN-Beta is relatively unaffected.

207

n
*
’ |
i s 1N DOtR
1 oreTkSs
z & j i -
-4 T
g _ ; -bera
a5 AT
\‘ B () oom
] i Jome (FN-Dota
8 4) RO T
1 om
v i o [ENDeta
3 e] nlkBam
' ..
N !

mwg

Figure 6-36 - IFN-Beta production increases with rate of transcription increase.

We now refer to Figure 6-35 and 6-36. The steady state concentration of IFN-
Alpha is not affected. However, the steady state concentration of IFN-Beta
significantly increases. This phenomenon is possible if conformational change
of RNA polymerase induced by binding to IFN-Beta gene and the transcription

factor is more favorable.

208

Decreasing Association Rate of IFN-Beta Transcription

The physical association process of IFN-beta is set from the original value 400 to
as high as 1600 (high value means less efficient association). This is possible if
there are more transcription factors required to diffuse to the transcription

starting sites to initiate transcription.

05

Figure 6-37 - IFN-Alpha reaches same steady state; however, greater delay exists in reaching
steady state with decreasing the association rate.

209

15 - .

J disasgvewr wiy
re? kb

tFN-beta
n7k8b =

e 7R B0t
w7580 =
1200.0

e TN DL
17 k3D «
1600.9

350000 400,000

Figure 6-38 - JFN-Beta lowers as the degradation rate of SOCS] is increased (more SOCS1 is
produced to suppress production of IFN-Alpha).

We now refer to Figure 6-37 and 6-38. IFN-Alpha reaches same steady state;
however, greater delay exists in reaching steady state with decreasing the
association rate. This change significantly reduces the IFN-Beta produced, and
increases the time required for the system to reach steady state. These figures
and the previous set of modifications suggest that the ratio between the two
IFNs is greatly affected by the relative efficiency of transcription process.
Similarly, the relative translation rate (production rate) and protein degradation

rate also plays a key role in determining the steady state level of both IFNs.

210

Increasing Rate of pSTAT2¢-IRF9c Complex Transport to Nucleus

The rate of pSTAT2c-IRF9c complex transport rate to nucleus is set from the
original value 0.005 to as high as 0.02. This complex plays a major role in the
nucleus and in transcribing IRF-7, which itself is a transcription factor for IFN-
Alpha and IFN-Beta during the amplification cycle. As a result, there are more
IFNs being produced which leads to a higher steady state level for both IFNs as

shown in Figures 6-39 and 6-40.

e |FN-gipha
ret7.k29
-
0.0050

- [FN-alpha

re67 k29 =
£.01

s |FN-2|pha
I!57.-f(29 =

4 0015

s [P 2ph2
re67.k29 =
0.02

C o el 100000 10000 200000 250800 000 3000 AU000 -

Figure 6-39 - [FN-Alpha increases with greater complex transport.

211

a
7
év
. e [FN- e
5 re67-k29
g :
: A i 8 s+ g+ 4 e - . ‘e - - o‘m
g IFN-beta
ke re67.k20 =
S o0
: § : s [FN=<bet2
8, 1e67.429 =
3 ! 0.015
. [N TR
re67.k29 =
2 0.02
e

 Time:tseconds)-

Figure 6-40 - IFN-Beta increases with greater complex transport.

6.8 Summary

The purpose of this chapter was to demonstrate that Cytosolve can be used to
solve a heretofore unsolved problem by integrating multiple biological
pathway models. Cytosolve has successfully integrated four biological
pathway models to create and integrative model of the IFN response to virus

infection. This is the first time such an integrative model has been developed.

212

More importantly, the integrated model has verified known phenomena and

has offered new insights to biological phenomena.

First, the IFN Beta is produced in the first 30 to 40 minutes as expected by

experimental data.

Second, IFN-Alpha begins production in after ~3 hours delay time as is the

approximate expected time required for the positive feedback cycle to start.

Third, both IFNs reach their peak in the ~20 hour range as predicted by various
experimental research as shown in Figures 6-41, 6-42, 6-43 (Cella, 1999; Cooley,

1987; Takauji, 2002).

40,600
35,000}
30,000}
25,000}
20,000}
15,000}
10,000+

5,000}

0 i
0 4 8 12 16 20

Incubation Time (h)

IFN- [pg/mL]

Fiz. 1. Time course of CpG-DNA -induced IFN-a production in PDC. IFN-a
production was analyzed in PDC incubated with Cp(: DNA (3 uM) for the
indicated periods. The culture supematants were harvested, and the amounts
of IFN-o were measured by ELISA. The data shown are representative of three
experiments using PDC from different donors. 1FN-a was not detected at each
time point throughout the culture with medium alone or control olige 2GC in

Figure 6-41 - IFN-Alpha reaches a peak ~20 hours (Takauji, 2002).

213

Q0D 2EHG

+500 2000
£ £ o0
2 e £
é 50 ; 100D
5001
3
>0 5 i
o 1% 2% 30 39 50 THNF-u PSS PR CO40L ¥C WNw

Time thours)

Figure 3. MxA expression is rapidly induced in DCs by LPS, poly 1:C
and viral infection. Time course of MxA upregulation as detected by in-
tracellular staining {A) or immunoblotting (B). (C) Time course of type I
IFN production in culture supernatant. DCs were stimulated with the
following: 50 U/ml IFN-a (O, panel A only), LPS (4), 20 pg/mi poly I.C
(W), 1 HAU PRS (@), TNF-a (V), and CD40L (©). (D) MxA induc-
tion after 5 h of stimulation in the absence (black bar) or in the presence
of two neutralizing sheep antisera to human type I IFN: livari, hatched
bars, and Kaaleppi, empty bars.

Figure 6-42 - IFN-Alpha reaches a peak ~20 hours (Cella, 1999).

1] § 1 L 1

10 20 30 40 50 60
Figure 6-42 - IFN-Alpha reaches a peak ~20 hours(Cooley, 1987).

Four, the initial production of IFN-Beta after the 40 minute period and before
the 3.3 hour period is defined by a marked increase in IFN-Beta. This makes

sense since most of the IRF7 produced initially is used for IFN-Beta; however,

214

as IFN-Alpha starts to be produced, both IFNs share in the consumption of IRF-

78.

Fifth, the integration of the SOCS1 for regulating the IFN response is of utmost
value; otherwise, while still valuable, the integrated model would only provide

the amplification cycle, not the regulation and balance phenomena provided by

the SOCSI.

Sixth, the time scale of the integrated model also matches the various
experiments. For example, IFN-Alpha starts its production in Figure 6-41
during the 4-6 hour range as also shown by the integrated model at ~4 hours. In
addition, IFN-Beta, based on most literature starts within the ~half-hour, as is

also predicted by experiments.

Thus, we have an integrated model of IFN response to virus infection that can
be used as the basis for studying biological phenomena. In addition, this
model, with the Cytosolve approach, can be expanded and refined by adding
new models and/or updates to existing models. The relative ease by which

Cytosolve supports such reintegration was effectively demonstrated in Section

6.6.

215

In summary, Cytosolve has shown its viability to integrate an ensemble of
biological pathway models in a scalable manner to create an integrated model

to explore new biological phenomena.

216

Chapter 7

Quantitative Methodology to
Evaluate Architectures for
Integrating Biological Pathway
Models

7.0 Introduction

Currently, the design of computing architectures is a “black art”. Over the past
few years, in other field such as finance, e-business and defense, there has been
a trend to define formalisms, both qualitative and quantitative methods, to
evaluate computing architectures (Clements, 2007; Dabous, 2005; Kazman,
2001). Systems biology can benefit from this trend and emerging body of
work. In the area of e-business applications, a very nice formulation and

formalism for deriving types of architectures based on specifying architectural

217

design has been accomplished (Dabous, 2005). Others have also defined
quantitative methods for evaluating a particular architecture’s value to
stakeholders based on their particular needs and priorities (Kazman, 2001). In
recent work, there has also been an attempt to quantify the economic impact of

architecture decisions (Clements, 2007).

The earlier chapters of this thesis have served to provide a framework for
recognizing the complexity of development and integration of biological
pathway models, given the experimental nature of biology which requires
enormous effort of focused teams to just characterize one protein or one
protein-protein interaction. In addition, early chapters discussed the effort
required to develop and maintain just one biological pathway diagram or
model. We also reviewed the value of integrating biological pathway models
to provide new understanding of cellular function. The main architectural
approach that exits today for integrating biological pathway models is a
monolithic approach that involves the manual or semi-automatic creation of a
single source code from multiple biological pathway models’ source code,
which is then run on one central computer. This thesis has presented an
alternative distributed and parallel approach for integrating biological pathway
models. Initial tests were run to understand the computational times and

accuracy of the Cytosolve approach versus the monolithic approach using the

218

Kholodenko EGFR model. The Cytosolve approach was then used to solve the

IFN response to viral infection.

This chapter serves to provide a unique quantitative approach for evaluating
and comparing architectures for integrating biological pathway models by
uniquely combining the approaches of two works by (Dabous, 2005; Kazman,
2001) and applying this approach to systems biology. Specifically, we use our
current knowledge of extant monolithic approaches and the distributed and
parallel approach of Cytosolve to develop this quantification. The second
section presents the mathematical formalism to represent the architectural
notation. The third section presents the critical requirements for evaluating
architectures for integrlating biological pathway models. The fourth section
presents different types stakeholders of an architecture. The fifth section provides
the description of the two main architectures for integrating biological pathway
models. The sixth section presents the architectural design elements. The
seventh section provides the architectural design alternatives. The eighth
section provides quantitative architectural selection by stake holder. The ninth

section provides a conclusion and summary of results for this chapter.

219

7.1 Architectural Notation

This section provides the mathematical formalism use to represent the
architectural notation. This notation is used for the first time to describe
architectures for integrating biological pathway models; however, it combines
the approaches of previous work (Clements, 2007; Dabous, 2005; Kazman, 2001)

to evaluate architectural designs in various other non-biological fields.

Biological Pathway Models

Earlier we used the notation M to denote biological pathway models. Here, we
still refer to M, but define it in the context of the architectural notation and
lower case m refers to a particular biological pathway model. Here, a biological
pathway model corresponds to a particular model that is part of a larger
cellular function, also defined below formally, and involves a set of species and

molecular interactions, as previously defined. We now define using standard

j

to represent the set of all biological pathway models within the whole cell.

set theory nomenclature:

M» ={m,:1<i<|M

220

Common Biological Pathway Models

Common biological pathway models refer to a set of biological pathway models
that are similar. This could be the real case in biology where two different
research groups may be working on the exact same biological pathway;
however, one group has different species, interactions and rate constants than
another group. Or it could be the case where there are the exact same number
of species and interactions but the rate constants vary. We assume in this case
that the implementations of these models are not exactly the same. = We now

define:
C={¢:1<i<|c}

to represent the set of all groups of equivalent biological pathway models. With

each,

all
c;,CM

being the ith set of a number of equivalent biological pathway models such that
|c,.| 21
and,
c,Nc,=D:a#b

and,

221

IC] __ agall
Cellular Functions

Cellular functions are derived from linking a set of biological pathway models
and also represent the connections and flow between one biological pathway
model and another. Typically a diagram is associated with a cellular function.

In Figure 7-1, are various biological pathways linked for a portion of the cellular

Figure 7-1: An example of how biological pathways interact to support a cellular function. Eight
(8) biological pathways including a. glycogen metabolism, b. amino acid degradation and urea
cycle, c. glycolysis, d. gluconeogenesis, e. citric acid cycle, f. pentose phosphate, g. ketogenesis,
h. fatty acids beta-oxidation, and i. fatty acids synthesis involved in the cellular function of
metabolism (Silva, 2002).

222

function of metabolism. We now define:
F={f,:1<i<|Fl}

to represent all the cellular functions and we use the notation:

pathways(f,) c M “

to represent a function which identifies the set of biological pathway models
that are required by a particular cellular function i. This function will return the
set of all biological pathway models within its cellular function. For Figure 7-1,
for example, 8 different biological pathway models will be returned. We will

also assume that every:

me Mall

has at least one corresponding

f e Fall

such that
me pathways(f,)

Or,

Ul,-ill pathways(f;) =M all

223

Existing Biological Pathway Models

Currently approximately 300 biological pathway models are published within a
variety of databases, publications and repositories. These we consider to be
existing biological pathway models. We will assume two classes of such
models: 1. where the source codes are accessible and 2. where the source codes
are not accessible. While some academic and research organizations will freely
publish their model source codes, certain commercial for-profit organizations

will not publish their source codes. We denote:

(PUO)cM™

where, O represents the set of all the existing biological pathway models where

source code is available
0=1{o,:1<i<|0]}

and where, P represents the set of all existing biological pathway models
where the source code is not available. Interaction with these kinds of
biological pathway models can only be achieved through defined interfaces.

We will also use the following notation:
P=1{p,:1<i<|p|}

to denote those existing biological pathway models without source code
accessibility. Note that within P there may be biological pathway models

which are similar. In such a case if,

224

mx ’ my c pi
then,

{mx,my}gchcje C

Pathway Communication Methods
Pathway communication methods refer to the way a particular module in the

architecture is accessed. We define the following notation:
T=1,:1<i<|Ti}

to represent the different communication methods. Here are four examples of
communication methods identified by (Dabous, 2005):
¢ Ti includes the communication at the network protocol levels such as
TCP/1P packets
¢ T includes the use of facilities offered by the operating system(s) and
Remote Procedure Calls (RPCs)
* Tjs includes the use of distributed object technology interfaces such as
CORBA DIL and Java RMI
® T4 includes the use of service-oriented standards such as Web Service

standards like SOAP/WSDL.

225

Cell Definition

Based on the notation developed in the previous discussions, we define the cell
by a tuple denoted by <O, P, M, C, F>. To conceptually illustrate how this
notation can be used, we assume that a particular cell has 4 cellular functions,
15 biological pathway models, 12 groups (labeled C in Figure 6-2) of common
biological pathway models, and 7 biological pathway models which exist
(among which 3 do not have source code availability) and 8 which have yet to

be built. Figure 7-2 illustrates this diagrammatically.

Figure 7-2: Formal representation of a Cell using architectural notation references.
M-" is the set of all possible biological pathway models. O is the set of models which
have source code available and accessible. P is the set of models for which source
code is not accessible. C denotes the sets of models that are similar. F are the
functions that the cell provides by integrating various models.

226

7.2 Critical Requirements for Architectural Evaluation

In previous chapters we have itemized numerous functional architectural
requirements for a computing architecture to integrate biological pathway
models. In this section, we propose four critical architectural evaluation

requirements to assess competing computational architectures.

Low Development Costs

The development costs represent the overall effort in developing a whole cell
model or even a cellular function, which is the integration of multiple biological
pathway models. One way to perform such calculation is to use Person Months
(PM) to determine how many developers will be required to integrate a set of
biological pathway models to produce the integrated model. = Development
costs can also include the cost to integrate just one biological pathway model
into an existing integrated model. Alternatively, development costs can be
associated with the need for a user to swap one similar biological pathway

model with another similar biological pathway model.

227

Performance

This requirement addresses the need for an implementation to be efficient.
Efficiency includes fast computation time of the integrated model as well as the
ability to efficiently handle complex biological pathway models where there

may be varying time scales across a set of models.

Low Maintenance Costs

This requirement addresses the issues of maintaining the integrated model. As
discussed earlier, any one biological pathway model may be changing
constantly due to new biological experiments; thus, as time progresses and the
integrated model grows, maintenance costs can potentially grow, based on the

architecture selected.

Security

This requirement addresses the need for ensuring that certain biological
pathway models may need to be secured with limited access to the source
codes. In biology, certain pharmaceutical companies, who have invested
significant amounts in development of a particular biological pathway model,
will require that such a model’s source code is secure or it can only be accessed

via a firewall at a distributed location.

228

There are potentially many other requirements for evaluating architectures;
however, in this thesis we propose that the above four be the critical criteria for

evaluating an architecture.

7.3 Stakeholders of an Architecture

System architectures are not developed in a vacuum. An architecture will be
used by individuals or stakeholders for a particular purpose (Kazman, 2001).
While there may be many types of stakeholders, using the criteria established in
the previous section, we identify four types of stakeholders based on the needs
that will be served by the architecture. In the discussion below, for each
stakeholder, we qualitatively assign their relative weight or Stakeholder Score
(SKScore) for a particular criteria. In this approach a total of 100 points is
assigned across the four criteria identified in the previous section to denote the

relative importance of a criterion to a stakeholder.

Biologist

We define for the purpose of this discussion that a biologist is a stakeholder
who: 1. may from time to time develop a biological pathway model based on
experimental data and 2. wishes to integrate her model into an existing
integrated model or may wish to swap out a model from the integrated model

to test the efficacy of their model. For a biologist, element (2) is of utmost

229

value in determining how well their model (and the results of their
experiments) compares with existing efforts. Figure 7-3, using the above
criteria, qualitatively assigns relative importance to the four different criteria,
from a biologist’s view point, thus providing a unique profile of this

stakeholder.

Biologist Stakeholder

50 (1

401

30+

2017

10 1]

0

Development Performance Maintenance Security

Figure 7-3: Biologists relative level of importance for architectural criteria.

In this case, we have assigned a high value of importance to keep Development
costs low, since a biologist does not want to be burdened by significant
development efforts to link one of their biological pathway models with an
existing integrated model, for example. Performance, relative to the
Development criteria, would be the next important criteria, with Maintenance

and Security being the least concern to the biologist.

230

Systems Biologist

We define for the purpose of this discussion that a systems biologist is a
stakeholder who: 1. focuses on developing a biological pathway models, 2.
integrates existing biological pathway models to build larger models, and 3. has
a much higher degree of computing and programming experience than a
biologist. For a systems biologist, the ability to integrate existing models is
important to their goals of modeling larger systems such as cellular functions

and the cell. The ability to swap in new models, given updates from biological

Systems Biologist Stakeholder

Development Performance Maintenance Security

Figure 7-4: Systems biologists relative level of importance for architectural criteria.

experiments, will also be important to this stakeholder Figure 7-4, using the

above criteria, qualitatively assigns importance to the four different criteria,

231

from a systems biologist’s view point, thus providing a unique profile of this
stakeholder. In this case, as shown in Figure 7-4, we have assigned the highest
values to low Development and Maintenance costs, next being Performance
and finally Security. This makes intuitive sense since a systems biologists’
interest is to rapidly develop larger pathway model from smaller one’s will

ensuring ease of maintenance as models constantly change.

Pharmaceutical Company

We define for the purpose of this discussion that a pharmaceutical company is a
stakeholder who: 1. develops very particular models to support their internal
initiatives for drug discovery, 2. they may wish to integrate their model into an
existing integrated model or may wish to swap out a model from the integrated
model to test the efficacy of their model and 3. they do not want others in the
public domain to access the source codes of their models. Figure 7-4, using the
above criteria, qualitatively assigns importance to the four different criteria,
from a pharmaceutical company’s view point, thus providing a unique profile

of this stakeholder.

In Figure 7-4, we have assigned the highest value to Security of their biological
pathway models. Next to these criteria, relative equal value has been assigned

to the criteria of Development, Maintenance and Performance.

232

Pharmaceutical Stakeholder

Developmment Performance Maintenance Security

Figure 7-5: Pharmaceutical company’s relative level of importance for architectural
criteria.

Consumers

We define for the purpose of this discussion that a consumer is a stakeholder
who: 1. may wish to use an integrated model of biological pathways, 2. vary
certain parameters including perhaps their own personal data (such as blood
test levels of certain species concentrations as initial conditions) and 3. will not
do any development work of any individuals models or any such integration.
Consumers of integrated models may in fact be a student who wishes as class
exercise to vary parameters of a model of metabolism to gain insights or to
merely answer some homework questions. Consumers in the future may be
web-based users wishing to perform self-diagnosis as a part of a larger

personalized medicine application. Figure 7-6, using the above criteria,

233

qualitatively assigns importance to the four different criteria, from a consumer’s

view point, thus providing a unique profile of this stakeholder.

Consumer Stakeholder

Development Performance Maintenance Security

Figure 7-6: Consumers level of importance for architectural criteria.
As is evident from this figure, a consumer’s main criteria of importance is
performance. For example, if the consumer is using a web-based application to
vary parameters and is seeking certain solutions, waiting hours or even minutes

for execution will not be acceptable.

7.4 Description of Architectures

In the Chapter on Prior Work, we determined two broad classes of architectures:

monolithic and messaging. Cytosolve is built on a messaging paradigm. In this

234

section, using the notation developed in Section 6.1, we provide a formalism to

describe these two architectures.

Architectural Diagrams
In this discussion, we review the high-level architectural diagrams for both the

monolithic and Cytosolve architectures.

Monolithic Architecture

In Figure 7-7 is a high-level diagram of a typical monolithic architecture. This

{ Key Modules of Monolithic Architecture

Presentation

Application

Monolithic Other Data

{ontology)

Data

Pathway
Source Code

Figure 7-7: High-level monolithic architecture and key modules.

architecture has five key modules: 1. The User Interface at the Presentation
Layer, 2. The Computational Solver at the Application Layer, 3. The Data Store,
4. Monolithic Pathway Source Code, and 5. Other data (e.g. Ontology). The last

three modules are within the Data Layer. Note, that in this monolithic

235

architecture all of the biological pathway model’s source codes have been

integrated into one monolithic source code as illustrated.

Cytosolve Messaging Architecture

In Figure 7-8 is a high-level diagram of the Cytosolve architecture. Here, as in

’ Key Modules of Cytosolve Architecture

Presentation |

Application

Data Other Data
Data Stpre {ontology)

Figure 7-8: High-level distributed architecture and key modules.

the previous diagram, we have left out various details to focus on the key
modules. This architecture has 4 + M2 key modules: 1. The User Interface at
the Presentation Layer, 2. Ma! number of Pathway Models, 3. The Controller at
the Application Layer, 4. The Data Store, and 5. Other data (e.g. Ontology). The
last two modules are within the Data Layer. Note that in this Cytosolve
architecture the biological pathway model’s entire source codes remain

distributed within each Pathway Model.

236

Architectural Modules
An architecture is defined by a set of modules. We define an architecture in

terms of a set of modules, H, such that:
H={g :1<i<|H|}
A module is defined such that,

Q.eH

is described according to four essential features (Dabous, 2005): 1. the tasks that
are supported by the module, 2. the set of modules accessed by this module, 3.
the set of modules that access this module, and 4. the method by which each
module is accessed. Using these features we define any Qi module by the
tuple <tasks(Qi), conTo(Qi), invBy(Qi), access(Qi)> using the formulation of

(Dabous, 2005) and applying it to systems biology for modeling the cell.

Tasks
We define tasks(Qi) as a function that identifies the set of tasks that are

supported by the module Qi. Each task can be one of three types.

The first one is the implementation of a functionality such as a biological pathway
model (and/or the Controller for example) such that m € M¢! that is denoted
by Z(m) and is used in three different cases. The first case is when m € P refers

to an existing functionality within a pre-existing component. This would be the

237

case of a biological pathway model that already exists. The second case is when
m € P refers to redeveloping (i.e. reengineering) an existing functionality, such
as the effort to recode an existing pathway model. The third case is when m €
(Ml - P - O) i.e m is a new functionality such as a new biological pathway

model that is not yet implemented.

The second type of tasks correspond to the implementation of a wrapper for a
functionality m, denoted by ZW(m). It is used when Qi masks out the actual

module that embeds Z(m) using a higher level access method.

The third type of tasks correspond to implementing a cellular function f, denoted
by ZBL(f). We will use the term cellular function to refer to the implementation
code that integrates multiple biological pathway models, m. Therefore, each
task corresponds to implementation code resulting from applying one of the

task constructors Z, ZW, or ZBL on its parameters

Modules Invoked

We define conTo(Qi) c H. This is a function that returns the set of modules that
Qi invokes while executing its tasks. For example, for the Cytosolve
architecture conTo(Controller) would return all the modules at the Data Layer

and all the biological pathway models at the Presentation Layer.

238

Modules Invoked By

We define invBy(Qi) ¢ H. This is a function that returns the set of modules that
invoke Qi while executing its tasks. invTime(Qi) returns the time of invocation
of module Qi, the timestamp denoting the time (e.g. in GMT) on when the
module was invoked. For example, for the Cytosolve architecture, invBy(mi)
would return the Controller, since that is the only module that can invoke a

biological pathway model.

Access Method
We define access(Qi). This is a function that returns the access method, Ti, used
by component Qi. This means that accessType(access(Qi)) € T while executing

its tasks. For example, for the Cytosolve architecture access(mi) would return

T4 since SOAP/WSDL, Web services is used as the access method.

7.5 Architectural Design Elements

Architectural design elements are used to determine particular architectures. In
this section, we will derive the variations of monolithic and the Cytosolve
architectures based the following design elements: Model Reuse, Model
Migration to Common Format, Distributed Models, Merged Models, Parallel

Processing, Serial Processing.

239

Model Reuse
This design element emphasizes the importance of leveraging existing
biological pathway models without having to recode them by wrapping the
biological pathway model to provide access by other modules. This design
element will create P new modules in H. Using our formalism,
For each Z(my) € tasks(Qi):

Qx = createNew();

access(Qx) = Ti; (the access method)

tasks(Qx) = [ZW(my)};

invBy(Qi) = Qx;

conTo(Qx) = Qi

H=Hu[Qx]
This design element allows biological pathway models to be reused, swapped

in and out, and shared across different cellular functions, F.

Migration to Common Format

This design element refers to the need to migrate a biological pathway model to
one common format (e.g. SBML). In cases where a systems biologists believes
that an older format in which the model was coded, for example, in Fortran 77,

will become a legacy, the task will be port or migrate that model to a common

240

format. In this case the functionality of that particular pathway model will be
redeveloped from scratch in a process that we refer to as ‘migration’. There are
different possibilities of rearranging the redeveloped functionalities of a
biological pathway model in one format into either one other format within one
new biological pathway model or splitting them into several biological pathway
models. In this case, we define the migration process such that any biological
pathway model that is created from this migration is treated the same whether

it exists in the collection or is a new biological pathway model.

Here we group each set of equivalent biological pathway models c € C into one
module. Each new biological pathway model contains a task Z(m) for each mx
€ c. This design element also uses a uniform access method across all new
biological pathway models. Using our formalism, we denote this design
element as:
For eachcie C:

Qx = createNew();

access (Qx) = Ti;

tasks (Qx) = [Z(mk): mx € ¢

H=Hu [Qx]

241

Distributed Models

A distributed model is one in which each biological pathway model can
communicate with other modules of the architecture and the source codes are
not merged into one source code. This means that other modules can invoke a

model and a model can invoke another module. This is formally denoted as

follows:
For each m; € Malk:
invBy(mi) c H;
conTo(m;) c H;
Merged Models

A merged model is one in which the source codes of all biological pathway
models are merged to form one monolithic source code, which becomes a
module of the architecture. This module, as shown in Figure 7-7, can be
invoked by other modules; however, the merged model cannot invoke other
modules of the architecture. This is formally denoted as follows:
For each m; € Malk:
invByM) c H;

conToM) « H;

242

Parallel Processing
Parallel processing is when computation is performed in parallel across a
collection of biological pathway models. This means that at each invocation all
M set of models are invoked in parallel. The calling module of all M models
may not receive the replies at the same time; however, invocation occurs at the
same time and each model performs its processing in parallel independent of
the other models for an invocation time period. Formally, we define as follows:
For each mi ¢ Mal:
My, My € Mi:X#Y

invTime(my) = invTime(my)

Serial Processing
Serial processing is when computation is performed in serial across a collection
of biological pathway models. This means that at each invocation each model
within the M set of models is invoked at: 1. a different time, and 2. after the
completion the invoked module returns control to the module which called it.
This is expressed by the following:

For each m; € Mal:

My, My € Mi: X #Y

invTime(ms) # invTime(my)

243

7.6 Architectural Design Alternatives

All of the above sections serve to help us finally define architectural
alternatives. This process involves specifying two elements as defined by
(Dabous, 2005): Design Decisions and Alternatives. In this process based on a
Design Decision, we elect to use certain design elements, from the previous,
section. Table 7-1 below provides us the Design Decisions and the Alternatives

based on the design elements.

Alternatives
Design Decisions 15t Alternative 2nd Alternative
DD1 Model Reuse Migration to Common Format
DD2 Distributed Models | Merged Models
DD2 Parallel Serial

Table 7-1: Design decisions and alternatives

This table shows that each of DD1, DD2 and DD3 has two alterative designs.

Derived Architectural Alternatives

(serial | [Paralel] [Serial | [Pasalel] [Serial

G

Figure 7-9: Eight possible architectures predicted based on design decisions and alternatives.

244

Using this Table, we can now construct a tree which shows eight paths which

represent all possible architectures, as shown in Figure 7-9.

7.7 Architectural Evaluation

We have now systematically, using architectural formalisms, identified the
possible architectures for integrating biological pathway models based on
relevant design elements. In this section, we assign quantitative measures to
the ability of a particular architecture to satisfy different criteria, previously
developed, based on experience in software engineering. The assignment of
quantitative measures, in this section, was applied using the author’s personal
experience; in future research, other approaches could be developed to assign
quantitative assignments based on objective historical data. Currently, given
that systems biology is a relatively new field, less than five years old, little

historical data are currently available.

In an earlier discussion in Section 6.2, the following critical requirements were
defined:

¢ Low Development Costs

e Performance

* Low Maintenance Costs

® Security

245

We now qualitatively build a matrix, called the architectural matrix (ArchM;;)
that measures these critical requirements across the eight different
architectures. In Table 7-2, this matrix is provided based on the author’s

discretion. The reasoning for which is described below.

Critical Criteria
Architecture Low High Low High Security
Development Performance Maintenance
Costs Costs
H1 3 2 3 3
H2 3 1 3 3
H3 2 25 2 2
H4 2 2.5 2 2
H5 25 2 3 1
Hé 25 1 3 1
H7 1 3 1 1
H8 1 3 1 1

Table 7-2: Qualitative favorability ratings by author of critical criteria for each architecture.

Reasoning Behind Quantitative Assignments

In Table 7-2, the author has assigned favorability ratings on a scale of 0 to 3 in
increments of 0.5 for the Critical Criteria for each architecture. This assignment
was done in a columnar approach and within each column in a relativistic

manner.

Low Development Costs

Specifically, for this criterion, the relative costs were estimated in a step-like
manner. In the first step, it is surmised that architectures H1, H2 and H5, H6, in

which the models are distributed would have the lowest development costs in

246

integrating a new model. We assign in this case HI and H2 to be the lowest
development costs with a rating of 3, while we give H5 and H6 a slighter lower
rating or 2.5 since we believe that building a wrapper, in general, to an existing
code base wﬂl be much easier than completely recoding and migrating an
existing code base to a new format, since far more core level software testing

will be needed for a model integrated into an H5 architecture.

In the second step, we assign a rating of 2 to H3 and H4 since this describes a
module-based monolithic approach (see Chapter 2) which is a far easier
integration effort than merging the source codes of all models in a manual or

semi-manual monolithic approach.

In the third step, we assign the lowest rating of 1 to H7 and HS, since they
represent the manual or semi-manual monolithic approach of merging all the
codes into one monolithic source code. In fact, both of these architectures in
practice are the same since H7 and H8 are the merged source codes, so there is

no distinction between serial and parallel here.

High Performance

Specifically, for this criterion, the relative performance was estimated in a step-
like manner. In the first step, it is surmised that architectures H7 (and H8 since

running a merged model in serial mode is the same as running it in parallel

247

mode, since there is only one model) will be the fastest for obvious reasons since
no Transmission Time nor any orchestration of model calculations is needed,

and receive a rating of 3.

In the second step, we surmise that H3 and H4 will be the next fastest since
while they are merged, they are merged using a module-based monolithic
approach which involves intra-process calls between each pathway model. We
assign a rating of 2.5 for these two architectures. Note again, as in the
reasoning for H7 and H8, whether they run serially or in parallel, since there is

only one model, there will be no performance differences.

In the third step, we surmise that H2 and H6 will be the slowest, with a rating

of 1, since they are distributed and serially invoked.

In the fourth step, by process of elimination and a relativistic view of earlier

assignments, we assign H1 and H5 a rating of 2. Intuitively, these two

architectures will be faster than H2 and H6 but slower than the others.

Low-Maintenance Costs

Specifically, for this criterion, the relative to costs were estimated in a step-like
manner. In the first step, it is surmised that architectures H1, H2, H5 and H6

will all have the lowest maintenance costs since all models are distributed and if

248

any one model undergoes changes, no recoding of the original model will be

needed.

In the second step, we surmise that the hardest to maintain will be the merged
models in a single source code format. These are architectures H7 and H8 and

receive the lowest rating of 1.

In the third step, by process of elimination and a relativistic view of earlier
assignments, we assign H3 and H4 a rating of 2. Intuitively, these two
architectures will be easier to maintain, since they are merged using a module-
based monolithic approach. If the source code of any one model changes, only

that model and the communication interface needs to change.

Security

Specifically, for this criterion, the relative security was estimated in a step-like
manner. In the first step, it is surmised that architectures H1, H2 will have the
highest security since models are distributed and the source codes need not be

revealed.

In the second step, we surmise that the worst security will be models H5, H6,
H7 and HS8 since all source code needs to be revealed either to merge them or to

distribute them since models need to be migrated into a common format.

249

In the third step, by process of elimination and a relativistic view of earlier
assignments, we assign H3 and H4 a rating of 2. Intuitively, these two
architectures will be more secure than H5, H6, H7 and HS, since merging them
in a module-based approach does not require the need to fully expose th source

code, but rather, in most cases, the variable interface.

7.8 Quantitative Architectural Selection for Stakeholder

Our goal now is to for each stakeholder: Biologist, Systems Biologist,
Pharmaceutical Company and Consumer identify the optimal architecture

among the eight that were systematically identified using our process.

Calculation of Value Matrix
Using a similar approach by (Kazman, 2001) we now evaluate the Value of a

particular architecture to a stakeholder by using the following formula:

Value(H)= Arch, ,SKScore,
J

Figure 7-9 contains the summary of the SKScorej across the four different
stakeholders of Biologist, Systems Biologist, Pharmaceutical Company and

Consumers.

250

Stakeholder Scoring (SKScore,)

80y

70

60

50 ¥

40 A

30

20 4

10

0 Development Performance BB Mairtenance - Securily
@ Biologist 50 30 10 10
Sys. Bio 40 20 30 10
O Phama 20 10 20 50
£ Consumer 10 70 10 10

- {mBiologist m Sys. Bio OPharma 0 Consumer

Figure 7-9: Stakeholder scoring summary data.

Table 7-3 contains the results of calculating Value (Hi). HereI=1t08, and j=

1to 4.

Value Matrix of Architecture to Stakeholder

Arch, ;
Systems Pharmaceutical

Biologist Biologist Compan Consumers Mean Rating |

H1 L : 4 2725 1
_____ H2 . 200 245 2
H3 215 210 215 215 213.75 4
H4 215 210 215 215 21375 4
H5 225 o 225 225 228.75 3
Hé 195 220 195 195 201.25 5
H7 160 140 160 160 156 6
H$ 160 140 160 160 155 6
Max | 270(H1) 280(H1) 270(H1) 270(H1);—

Table 7-3: Value matrix calculation for each architecture by stakeholder.

251

7.9 Summary

The Table in 7-3 provides a great deal of information. In Figure 7-10, this table
is plotted using a surface plot format. Along the x-axis are the different
architectures. Along the y-axis are the different stakeholders. Along the z-axis
are the Value scores evaluated using the formula from the previous discussion.
This figure serves to show graphically which architectures have the most value

to the particular stakeholder.

|m0-50 w50.100 0 100-150 0 150-200 m200-250 @ 250-300 |

Figure 7-10: Surface plot of Value(Hi) by stakeholder and architecture.

First, the results demonstrate that regardless of the stakeholder, architecture H1

provides the best alternative. H1 represents the architecture that is the

252

dynamic messaging approach and is in fact the Cytosolve architecture! What is
interesting to note is H2, involving serial processing, with model reuse is
second best architecture. This may be due to the high level of rating assigned

for security, low development and low maintenance costs.

Second, the worst architectures are H7 and H8 which are the manual or semi-
manual monolithic approaches. These are the monolithic architectures that
involve the merging of source code and conversion to a common format such as

SBML.

Third, architecture H5 is the third best architecture. This makes sense since this
architecture, while requiring migration to a common format, uses the design
elements of distributed models in a parallel processing mode. We believe that
this architecture can be very optimal for the case where a set of models are in
SBML, for example, and without having to merge them into one source code,
they can be distributed and solved. In fact, there may be cases where
competing standards may have distributed sets of integrated models using the

H5 architecture.

The Cytosolve architecture is highly flexible and can operate any mode;

however, it was designed to work in a distributed environment, either serial or

253

parallel. Thus, architectures H1, H2, H5, H6 are representative of the Cytosolve

architecture.

In conclusion, this chapter has provided a detailed formalism and a
quantitative paradigm for assessing architectures for integrating biological
pathway models. This analysis quantitatively demonstrates that for the

stakeholders considered, the Cytosolve architecture is best suited.

254

Chapter 8

3-D Animated Video of IFN
Response

8.0 Introduction

In the summer of 2005, I met Philip Pfeifer who was in the midst of a career
move from electrical engineering to biomedical visualization. In July of 2006,
Philip and I reconnected and we agreed to collaborate with some members of
his team of artisans who belonged to a virtual guild of 3-d animators. We
agreed that I would direct the video sequence and provide them an opportunity
to create a great demonstration for their future portfolio, for which they offered
to render and animate the video. This chapter provides the details of that
effort. The next section contains the storyboards for Scene 1. The third, fourth
and fifth sections contain the storyboards for Scene 2, Scene 3 and Scene 4,

respectively. Finally section six contains the video itself in DVD format.

255

In these scenes, Scene 1, 2, 3, and 4 are labeled as A, B, C, and D. Note, Scene D
animates the up regulation of IFN-Gamma, something that is not part of the
IFN model discussed previously and this scene is highly speculative. Figure 8-1

is the first outline story board.

4 repetitive animations

A Producing IFN-Beta

1. Virus infecting celt
2. immune system response
3 Ends with Production of IFN Beta prateins

B. Producing the IRF-7 factor

1. Begins with IFN -Beta leaving cell
2. Repeat all steps {different camera angles) {shorter animations)
3 Ends with ribosome producing IRF-7

C. Producing IFN Alpha - Simplify sequence dramatically
A Begins with IRF-7 joining IRF-3 (already present in cytoptasm)
B. IRF-7 stays within cytoplasm
C. Ends with production of IFN-Alpha.

D. Upregulation of IFN Gamma - Simplified sequence

Begins with IFN Alpha leaving cell

Beta & Alpha combine to factor transcription of IFN Gamma

Gamma leaves cell and reenters many celis setting off signals

Ends with many signals rippling thru cell (transcription of 300 proteins)

oo m>»

Figure 8-1: All scenes A, B, C, D story board.

256

8.1 Scene 1 - Virus Infection

Scene 1 is the virus infection phase to produce IFN Beta. Storyboards

provided for this phase in Figures 8-2 to Figures 8-6.

Animation A - shot 1 - Harry

Shot Description
“Tille in Green Ugreglation of TN Beta. Alpha & Gomuna” fvles iy ow black st
of focrs. focnin i, Bod (3 secs) fadet ont
reen celis Fade np from black out of foems, focws in.
Action
4 secvads Cell maﬂm‘;nuﬁ; qna.g 0 ECM (dwhich
eytokanes i

04l vt e poricles Boon m.n-mn...
by ioryeid gl ey

“Raek focts em titic 2nd tien agam om ¢ol. vamers all

= vl Mumimate from i < fruius o
voice over

DONE

modets | assign | Finish | bkads asign | Fiosh | Animasontomo
s
Cetswit, | Hamy | w15 | ECMMig taler | Hary | 0G40 | 4 sec cels
ucleaus. ackgoundweh [v, moving eandng.
panicles. . contactng

Animation A - shot 2 - Harry

Shot Description.
ruses Swrms ko v f1om over left shouder
Action
<

camera
“Roek focus om virus. cells lose focws, camcrs sill, them canuers follows as vivos
s bowards cef

« light iliouniates virus and follows beion se virus ctays bt
velcoover

DONE

rmodels | assign | Finisn | bigds 333 | Finish Animationicome | assign | anim
e L e e
s Sear | 06042 | EC¥ Harr | 080410 | 6 soc virus. Hary | 060515 [Lightng, | Marmr BRI
L] fuddwar |y DOGE | moves inco view comp,
Lo | background and then swims render
wth towards Cefls
panticies. '
,
Animation A- shot 3 - Geerfjan

Shet Description
<Cutto Cel surface 3 vius fands #nd injects ANA-
mn-blmvme BEERTIANT JCALE
Rt
5 mmmmmmwumoﬂm
surtace Then:

veus. campressas the
heade ant oecs A, re0 S0k, 14 4065)

e o Se S 4t
e
581 0n cell surface then a5 ma it ijected camer .-un" "n."""
Dk 0 50 ke ST o 6306
kayer s0
.

o o away v U loyers erusl.

The s in effct couring e rage 5 show
oparieg e maga

i = ONE

- el fighting 5 virus i in ight and cytopiasim
wable ar fuid

vy,
[t asiat ol 4

modeis | assign | Fiien | shode assi | Finish | Aimatiovcomp | assige | anm | comp | aesign | Finish dus
oue o | due H o
Lpg Goery | 060424 | ECM Harr 0BM1 | 7 secvwus OGuertj | Mai 1t | Lghtng, | Geery | 56iS
biayer | an oo | tuadaaer |y 0 moves o view | an comp, | ar
mll! TN andthen tands renger
3 on cef and
E'Hl! mects RNA

Figure 8-2: Storyboards for Scene 1.

257

are

Animation A- shot 3 - continued info Geertjan

wrs Aoty drants ot i ¢ ey e
?:»\“ R T Al

it

S dherg
P
X S Nrargor eI R . NI 0N
LR S R R e it
st B o B DOV YAy of V1Y
Hormbes vrbnng hopen Boo hpng ok fonlegenrd
with badp ot o,

Animation A - shot 4- Arik
Shet Description

cytoplasm
Waves e shockwaves (ight biue) signal presence of DSRNA
a0 e b iy, L R
i e
i 34 ety S0t 3
ko boia aprmach Ton

; A St 2
2 i awakened- i
R squiggieland the signais it N 2
2 FF Py e s
Action .
3 1
signal - o
<T'zr balls vibrate/i then { 3 sec) Terand
i 4 sece)
' RS
camera

RF-3 prctiens phosphoraize by connecting with (dark biue) phasphates
4 seconds RNA . red squiggle, moves into cytoplasm and sends off wave-like
Camera
Tokowing the Tazs and bive bl -
Lo e DONE

volce over

assign | Finish | Annabonicomp | assign

g4
H
]
&
i
4

3sec RNA Ak Ughtng, | arnc | osos1s
s Tar-balls comp,

and they vibrate! render

Animation A - shot 4- Arik

grabs of the endoplasmic reticulum

I'm asking Sean to model a simpiified version of this ke wha
shows in the hotiam left picture just a coupie of folds and an
‘open spot whare we cah have our IRFE Just pass thiu one set
of folds before entering the nucleus. Wa naad to show black
dols on the reticulum , which Is where the 1ibosomes are
atlached.

-
i

Figure 8-3: Storyboards for Scene 1.

Animation A - shot 4 continued- Arik

satarfeie

Animation A - shot 5 - Arik/Brian

Shot Description

<This Combination(IRF-E) is part of the signaling process to transcribe < #5557
te required ma for IFNB. . car. ot s
.

+3 second descend ontn DNA strand
+DNA is rotating slawy st to make it amanic
Camera

Camera follows 5% as 1 attached to DNA
Lighting TG0 G 3 0
+ external lighting s 3l “characters™ are visible with nucteus as bkgd

“"DONE

e

models | assgn | Finisn | bkgds | assign | Frish | Anmaboricomp | assign | anm | comp | assgm | Frisn
e due due due
DNA | Bran | 080424 | mleus- | hamy | 080420 | 3secdescend | Briav | 060515 | Lighting, | Briay | 060BSS
3 and attach Ak comp,
yellow render
color

Figure 8-4: Storyboards for Scene 1.

259

Animation A - shot 6 - Brian

mh:ﬂwm
wyh lave: for IFN-B
Wl’ﬂf it oot gmpity -5 W gt :,-'_-.wa(O RSE]
W and settes in fronk of RF-E
on ONA strans.

<6 seconds, factors descend anto DNA strand

« DNA 1 rotating slowly just to make # oranic:
Camera

NOA strand 50

<ighting "factors” with nucieus 25 bhgd.
volcs over

DONE

models | assign | Fiish | bigds assign | Fiish | AnimaSon/comp | assign | asm | comp | assign | Finish
due ue due due
Other | Brisn 080424 [nucleous | Harry | 060410 | § sec descend Brian 880515 { Lighting, | Brion 080806
tactors e DCNE | andatach comp,
balisan yolow render
Subtrac color
st
”
ogert
L

Animation A - shot 7 - Brian

‘Shot Description
o a2k L ption
process
Pohmerase
Pt
Action
8 seconds. flash of snergy below Polymerase, then ¢ moves along ONA stacd
+ DA is unzipped inside
Camera
vk Wik "
L

gt flash to imply energy ntion

Animation note:
Athmkwe can fake this. mmmumeub& INA (using the
:gmmnngmm)uimm revitholy need o s sy

g overner 0 % looks e MoV
wmenmcmnmmmmnm

3 band of RNA that's & locks like its being
grown curing the procass

voice over

models | assign | Finish | bkods assgn | Fimsh | Anmabioncomp | assign | anim comp. assign | Fish
de due due due

Poym {Bran | May 1S | nucleous | Hamy | 080410 ; Bsecflashthen [Brian | May15 | Lighting, | Brian | June$

erase Iraverse of DNA comp,

unziop yelow masking DNA

ed color strand jggling

oNA uizipnsd DNA

Animation A - shot 7 - Brian

Delails on DNA sunition

k Qi 4» x:‘mh 'Qﬂl“"'&wt
<) i

@:::::"‘?m @ tﬂkv A3 el wa ‘e
el L
mu ot %
y ""5 WA x\W

Be gpens raben Ml LR e T Wacs

[o M”
O T S W e
g riew Fh Py w Sf%mm’.‘

Figure 8-5: Storyboards for Scene 1.

260

Animation A - shot 8 - Brian/Dennis

Shet Description
Messenger
"messengerRNA strand separates and fioats in Cytoplasm
SThe e e e hets SRR G W AW
Action
8 seconds.
Camera
Cam
RNA a3 e foats up and awsy.
sight fulows RNA
volcs over
madels | assign | Finish | blkgds assign | Finish | Animation'comp | assign | anim como assgn | Fieish
due ue oue da
RNA | Oens | 080424 [cytoptas | Hany | 080410 [Bsacdetscn | Denniss | 0BOSS | Lighng, | Dennisr [oo0w0s
stand m-ight and asendinto. comp.
yelon cytoplasm render
color

Dennis fets color the IFN-Beta afl bright orsnge

models | shot9a | Finish shetgt finish shotgc | tinish shotid | anim comp assgn | Finish
due e due
done: Ak 060710 | Ak 06C710 | Dennis | 080710 Dennis | 060710 | Lighting, | Hamy 080717
comp,
unds
Animation A - shot 9 - pennis/sean
Detalls on Sean's modei to match Geertjan's
Gedyams wobt Kon's M, 0.4

Figure 8-6: Storyboards for Scene 1.

261

8.2 Scene 2 - IFN Signaling to IRF-7 Production

Scene 2 is the [FN-Beta signaling to produce IRF-7. Storyboards are provided in

Figures 8-7 to Figures 8-11.

Figure 8-7: Storyboards for Scene 2.

262

s
o

,l

-

Figure 8-8: Storyboards for Scene 2.

263

Figure 8-9: Storyboards for Scene 2.

264

5

Figure 8-10: Storyboards for Scene 2.

265

e
.

Figure 8-11: Storyboards for Scene 2.

266

8.3 Scene 3 - Up regulation of IFN-Alpha
Scene 3 is the Up regulation of IFN-Alpha. Storyboards are provided in Figures

8-12 to Figures 8-13.

Figure 8-12: Storyboards for Scene 3.

267

Figure 8-13: Storyboards for Scene 3.

268

8.4 Scene 4 - Up regulation of IFN-Gamma

Scene 4 is the Up regulation of IFN-Gamma. As aforementioned, this scene is
highly speculative but serves to show at a high-level how the up regulation of
IFN-Gamma serves to provide a broad protection against viruses by IFN-
Gamma serving to up-regulate numerous genes for protecting the cell from

viral attack. Storyboards are provided in Figures 8-14 to Figures 8-18.

- Shit Depciytiy i :
A ciflchsew of ENAhS sseibids
B RCHT COTE S fo erracy FN-Alphs .

camens

et mcepsors.

T L egmonFNEAmameours
‘velce over

(ieergan will change color of receptors fro
Previous 2 shofs similar to this

Figure 8-14: Storyboards for Scene 4.

269

Figure 8-15: Storyboards for Scene 4.

270

Animation D - shot6 - Peter

Shot Descriptien
Yy
R

Action

Camers
Kamefa sieaty o aondb
Vol over

Models | assige | Faish- | Shotsd
St 2 die

Sean " | 060708 | Peter

Animation D - shot7 - Brian

Shat Description.
A complex s o0
B Polymerase ataches. .
<C - Sleigh7iok beging meciencre RNA ledves pakimee

Action
“Use differ et Caimisa anighes. 700ms 1o add spce
Camara

L

Hht e foeegroun
volce over

Lets make: mess&}éer RNA
lavendar for AnimD

Animation D -'shot 8 - Dennis/Arik

Shot Desciiption
A RSSO RNA TS L 1 ICISUS DICKOTD
B cotimmessenger coming oLt p of B
Action
Cameia
susi Wferent camera angle and zoom
~Lighting

; B
Lets make messenger RNA

favendar for AnimD

Dennis doing D8A, Arik D8B

Figure 8-16: Storyboards for Scene 4.

271

“; m«smu;u;m "]
Geertan will modet the Orwgé pipes ixt o ¢
the receptors e ST

Finish
e

assign
Bl

L

Figure 8-17: Storyboards for Scene 4.

272

Animation D - shot 12-&9as'qaanaﬂyA :
Shot Déscifition s
: ot
SmfmmmommnmasEL
8- mmum o
; mﬂmm mmmmn
<Carnera ikds steady R . ! H
mo«r»amum

stion D _M13-Harry‘ e

E mummm-r ang oot e i
G apocoachey ShEgk el nnznnmna

Figure 8-18: Storyboards for Scene 4.

273

8.5 Video Animation

This thesis also includes a full video of the scenes described above and is
included herein with this thesis in a video DVD format. On the DVD Scene 1
can be found on the menu as Infection and IFN-Beta. Scene 2 can be found on
the menu as IRF-7. Scene 3 can be found on the menu as IFN-Alpha. We did
not include the SOCS1 regulation as that component was discovered after the
making of the video. However, Scene 4 has a “bonus” conceptual scene of IFN-

Gamma.

8.6 Summary

The video animation done for this thesis is an attempt to conceptually illustrate
the various pathway mechanisms involved in the IFN response to virus
infection. This video provides the key steps involved in this IFN system. We
believe that videos such as these can be instructive in the classroom setting to
convey complex pathway dynamics, currently represented using simple chalk
and board or static diagrams using presentation graphics. At MIT, this video
has been used in one of core systems biology courses BE440, a course which the

author took himself in 2005 to illustrate the dynamics of the IFN pathway.

274

Students were asked in the lass to view the video and critique elements of the
pathway demonstrate their understanding. We look forward to compiling this
teedback and enhancing the video to produce more realistic depiction of the

IFN response.

275

Chapter 9

Conclusions

The research objective of this thesis was to present a new architecture for
integrating biological pathway models. We have met this objective by: 1.
Defining and implementing an initial prototype of Cytosolve, a scalable
computational architecture for integrating biological pathway models; 2.
Testing the architecture and validating its accuracy by applying it to solve a
known problem: the Kholodenko EGFR model; 3. Demonstrating the efficacy of
the architecture by building an integrative model of the IFN response to viral
infection by integrating multiple models created by different authors
worldwide in varying formats, and 4. Presenting a new quantitative method for

evaluating different architectures for integrating biological pathway models.

276

9.0 Key Findings
This research has resulted in the following key findings:
¢ First, using the new quantitative methodology for evaluating
architectures developed in this, we have found that the distributed
architecture provides the most optimal architecture for integrating
biological pathway models, unanimously across the entire spectrum of
stakeholders.
® Second, the initial literature review of experimental research
substantiates the time scales predicted by the integrated model of IFN
response, developed in this thesis. This integrative model of IFN
immune response can now serve as a vehicle for further studies,
alongside experimental research, to provide greater understanding of the
IFN response mechanism.
¢ Third, the Cytosolve architecture has demonstrated through initial tests
that it offers a far easier way to maintain an integrated model, in which
various elements of that model may be constantly changing. This
beneficial feature of Cytosolve, in addition to many others, makes it a
scalable computational architecture for building modeling complex

cellular functions, and eventually for modeling the whole cell.

271

9.1 Future Research

This thesis serves as a foundation for many new areas of research as itemized
below:

* Spatial scale variation. In this thesis we have not considered changes in
spatial scale. We believe that the architecture, based on its modular
approach and support for multiple compartments, can support varying
spatial scales. However, more testing will have to be performed to
understand the computation times required to fully support such spatial
variations.

e Adaptive time stepping of the Controller. Currently, all models are invoked
using one constant time step, which is taken to be the fastest time step
among the ensemble of models. This is not optimal, as some models
may be varying slower than others. Additional effort is required to
implement intelligent adaptive time stepping at the Controller level to
observe the time scales of different models and invoke them only when
necessary. Such an effort will result in improved computation time
performance.

* Implementation and integration with emerging ontologies. The
Cytosolve PID has support for integrating other ontologies such as

MIRIAM; however, future research needs to be done to fully integrate

278

MIRIAM and other such ontologies. This effort will enable Cytosolve to
support many more model formats with greater ease, leveraging
standards that the systems biology community globally accepts.

e Addition of new pathways to the IFN integrated model. There is much scope
for continued research in growing the current integrated IFN response
model. This will involve finding new add-on models that affect the IFN
system and then integrating those into the existing integrated model.
Such additions will provide a mechanism for others to evaluate the
performance of their own particular models when integrated into the
IFN response system. In addition, linking the IFN integrated model to
other systems such as TGF-Beta up regulation, for example, can provide
insights and direction to support on going experimental research.

e Web-enabled GUI. One area of development will be to web-enable the
current user interface so an individual scientist can more easily integrate
their local model from their desktop to an integrated ensemble. The goal
of this future research should be to open a formal public portal for
worldwide use.

o Video realism. While a great deal of work was invested in creating the
video, there are many elements that can be updated to the video to make
it far more biologically realistic. Future efforts could include adjusting
the relative spatial sizes of the different graphic objects (e.g. virus,

membrane, etc.) to match biological reality. In addition, the time scales

279

are not well represented in the video. More accurate time scales would

enable one to see the rate limiting steps in the pathway.

280

Appendices

A. WSDL Error Management

*%
* ProcessCatalogServiceLocator.java
*

*/
package pathwaySolver.ws;

ublic class ProcessCatalogServiceLocator extends org.apache.axis.client.Service
implements pathwaySolver.ws.ProcessCatalogService {

rublic ProcessCatalogServiceLocator() {

public ProcessCatalogServiceLocator(org.apache.axis.EngineConfiguration config) {
super(config);

public ProcessCatalogServiceLocator(java.lang.String wsdlLoc,
javax.xml.namespace.QName sName) throws javax.xml.rpc.ServiceException {
super(wsdlLoc, sName);

// Use to get a proxy class for pathwaySolver
private java.lan .St)lfl{lg pathwaySoIveZ_Sac::ldress =
"http:/ /localhost:8080/ axis/ services/ pathwaySolver";

public java.lang.String getpathwaySolverAddress() {
return pathwaySolver_address;

// The WSDD service name defaults to the port name.
private java.lang.String pathwaySolverWSDDServiceName = "pathwaySolver";
public java.lang.String getpathwaySolverWSDDServiceName() {

281

return pathwaySolverWSDDServiceName;
}

public void setpathwaySolverWSDDServiceName(java.lang.String name) {
} pathwaySolverWSDDServiceName = name;

publi;ﬂpathwaySolver.ws.ProcessCatalog getpathwaySolver() throws
javax.xml.rpc.ServiceException {

java.net.URL endpoint;

endpoint = new java.net.URL(pathwaySolver_address);

catch (java.net.MalformedURLExceEtion e) {
throw new javax.xml.rpc.ServiceException(e);

| return getpathwaySolver(endpoint);

public pathwaySolver.ws.ProcessCatalog getpathwaySolver(java.net. URL
portAdc}ress) throws javax.xml.rpc.Service%ixception {

pathwaySolver.ws.PathwaySolverSoapBindingStub _stub = new
pathwaySolver.ws.PathwaySolve&amedi%Stub ortAddress, this);

_stub.setPortName(getpathwaySolverWSDDServiceName());
return _stub;

catch (org.apache.axis.AxisFault e) {
return null;

}
}

public void setpathwaySolverEndpointAddress(java.lang.String address) {
pathwaySolver_address = address;

*k

* For the given interface, get the stub implementation.
* If this service has no port for the given interface,

* then ServiceException is thrown.

*

/

publi;java.rmi.Remote getPort(Class serviceEndpointInterface} throws
javax.xml.rpc.ServiceException {
{

i

%pathwaySolver.ws.ProcessCatalog.class.isAssignableFrom(serviceEndpointInterface))

athwaySolver.ws.PathwaySolverSoapBindingStub _stub = new
pathwaygolver.ws.PathwaySolver50a Bindin, tub(nevg\rs

java.net.URLi) athwaySolver_address), this?;

_stub.setPortName(getpathwaySolverWSDDServiceName());
return _stub;

}

catch (java.lang.Throwable t) {
throw new javax.xml.rpc.ServiceException(t);

282

throw new javax.xml.rpc.ServiceException("There is no stub implementation for
the interface: " + (serviceEndpointInterface == null ? "null" :
serviceEndpointInterface.getName()));

*%

* For the given interface, get the stub implementation.
* If this service has no port for the given interface,
* then ServiceException is thrown.
*
public java.rmi.Remote getPort(javax.xml.namespace.QName portName, Class
serviceEnd ointInterface? throws javax.xml.rpc.ServiceException {
if (portName == null) {
return getPort(serviceEndpointInterface);

java.lang.Strin% inputPortName = portName.getLocalPart();
if ("pathwaySolver".equals(inputPortName)) ?
return getpathwaySolver();

else {
java.rmi.Remote _stub = getPort(serviceEndpointinterface);
((org.apache.axis.client.Stub) _stub).setPortName(portName);
| return _stub;
}

public javax.xml.namespace.QName %\e’tServiceName() {
return new javax.xml.namespace.QName("urn:pathwaySolver",
"P;ocessCatalogService");

private java.util. HashSet ports = null;

public java.util Iterator getPorts() {
if (ports == null) {
ports = new java.util. HashSet();
ports.add(new javax.xml.namespace.QName("urn:pathwaySolver",

"patl}1waySolver"));
return ports.iterator();

*%

* Set the endpoint address for the specified port name.

ublic void setEndpointAddress(java.lang.String portName, java.lang.String
address) throws javax.xml.rpc.ServiceException {

if ("pathwaySolver".equals(portName)) {
setpathwaySolverEndpointAddress(address);

else
{ // Unknown Port Name

throw new javax.xml.rpc.ServiceException(" Cannot set Endpoint Address for
Unk?own Port" + portName);

}

283

sk
* Set the endpoint address for the specified port name.
public void setEndpointAddress(javax.xml.namespace.QName portName,

java.lanhg.String address) throws javax.xml .rqc.ServiceException {
setEndpointAddress(portName.getLocalPart(), address);

284

B. Implementation of SBML Solver

This Appendix provides details of the implementation of a distributed version

of the SBML Solver.

Initializing the Solver

1) External computer sends 'createSolver' command to the WSDL web service.
The 'createSolver' command has the parameters of model filename, amount of
time that the model will be simulated, and the number of time steps that will be
used to simulate the model. (Note that these last two parameters control how

long each time step will be)

2) WSDL web service receives the 'createSolver' command, and creates an

SolverController using the above parameters.

3) SolverController constructs an LSolver. Solver calls 'initSolver' in the
Cytosolve_C code, which takes in the above parameters and loads the specified

model, initializing everything that is needed for model simulation.

4) SolverController enters a wait loop that waits for an input file from the

WSDL web service.

285

Simulating a single time step

1) External computer sends 'step' command. The 'step' command has the
following parameters: species to change concentration values for, new
concentration values for those species, and the species for which the external

computer wants results.

2) WSDL web service receives 'step' command. The web service takes the
parameters and writes them out to the input file that SolverController is
waiting for. The WSDL web service then enters a wait loop, waiting for an

output file.

3) The SolverController wait loop sees the new input file. It then opens the file,
parses the parameters, and calls 'step' in Solver. The 'step' function in Solver
then calls 'runSolver' in the Cytosolve_C code, which replaces species
concentration values as specified, simulates over a single time step, then returns
results back to the 'step' function in Solver. The 'step' function in SBMLSolver

in turn returns the result to SolverController.

4) SBMLSolverController writes out results to the output file that the WSDL

web service is waiting for. The SBMLSolverController also destroys its input

file.

286

5) The WSDL web service sees the output file and parses the results. The

results are returned to the external computer, and the output file is destroyed.

Destroying the Solver

1) External computer sends 'kill' command.

2) WSDL web service receives 'kill' command, writes out 'kill' to the input file

that the SolverController is waiting for.

3) SolverController sees input command parses out 'kill'. It then calls Solver's

'cleanup' function, which calls 'destroySolver' in the Cytosolve_C code.

4) SolverController destroys input file, and stops execution.

287

C.

Equations for IFN Solution Using Monolithic

Approach

Reactions Math

[virus]—[ssRINA] dRxn =k, - [virus]
dt

[ssRVA] —[dsRNA] ARXR _ b [ssRNA]
dt

3 -

[dsRNA] degradation dRxn _ k, -[dsRNA]

[VAK] activation dRxn =k, -[dsRNA]
dt

[VAK] degradation dRxn =k, .[VAK]

[IRF-3}«——[IRF-3Pc]

dRxn_kps [IRF =3) [VAK]

k. +k
A rp gt

5

kg - [IRF - 3Pc]

[[RF-3Pc}¢——[IRF-3Pn
]

5’% =ky, -[IRF =3Pc)-k,, -[IRF - 3Pn]

[TFN-beta RNAp]

dRxn_ ky, [IRF —3Pn] ko, -[IRF —7Px]

production gt [IRF -3Pn)+k,, [IRF-TPn]+k,
[IKE-beta xR o L IFN - beta_ RNAx)
RNAnje——[IFN-beta
RNAc]
[IFN-beta RITAc] AR ey (PN -beta_ RNAC]
degradation dt
[cIFN-beta] production ARxn =k, [FN - beta_ RNAC]

TEN-bet]
[cIFN-beta] —[IFN-beta] | dRxx — ks, [cIFN - bota]

8 d i

[IFN-beta] degradation di:n =k, [IFN - beta]

[IFN-alpha RNAn]

SRR

production

dRxn kg, -[IRF ~7Pn)
dt [IRF - 7Pn]+k,

Figure AC-1 - Differential equations for integrated monolithic approach.

288

[IFN-alpha

AR e [IFN - alpha_ RNan]

RNAn] «—[IFN-alpha | o

RNAG

[IFN-alpha RIYAc] AR _ - LIFN - aipha_ RNAc)
degradation dt

[sIEN-alpha] production g‘g{_n ke, -[IFN - aipha_ RNAC]
[IEN-atpha] 3Rm

—[IFN-alpha]

= i, -[¢IFN - alpha)

[IFN-alpha] degradation

T =k)1 [IFN’- a‘!pha]

[JAK] & [IFNAR]
association

% =k, [JAK]- [IFNAR} -k ¢ - [IFNARJ]

[IFNARJ] & [IFN-alpha}
association

% =k .y -[IFN - alpha) - [IFNARJ] - k 1, - [IFN —alpha — bound]

[IFNARJ] & [IFN-beta

arm _ k 1 -[IFIN - beta] -[IFNART - k ,; - [IFN - beta - bound]

association dt
[IFN-alpha-bound] AR e, LIFW - aipha ~bound T
dimerization d
-k ;5 -[IFN - alpha - bound _2)
(IFN-beta-bound] RO ko LIFI = beta - bownd : —k ;- -[IFN —beta —bound _7)]
dimerization &

;;FN"leha'b_‘md] %“3 =k, -[IFN - alpha - bound _2]
ospherylation
Lg N';z;;gj’d] % =k, [JFN ~beta —bound _2]

058 n
[IFNAR2*] dRm _k,, -[IFNAR2*]-[SHPI)]
dephosphorylation at [IFNAR2 + k»-l!’ + Ky

;19

[IFNBR2*] dRm _k,, [IFNBR2*]-[SHP])]
dephosphorylation dt [IFNBR2*] + k 1wt k?O

119

Figure AC-2 - Differential equations for integrated monolithic approach.

289

[TFNAR2*] & [&T4TC"]

association

? = k3 - [IFNARI*-[STATc*] -k 5 -[IFNAR2* STATt]

[IFNBR2*] & [STATc"]

R o ¥ vy - [IFNBR2*)- [STATc*} - K - [JFNBR2* STATc]

association dt
[STATS) phospharviation | dRan _ K, - (UFNARYY]+[JFNBR2'])-[STATc]
a@ [STATe) + P2t e
k_m
[STATE"] dRm _ ky [PPX) [STATc*]
dephosphorylation dt [STATe™)+ ko +hy
Fn

(STATe) & [STAIS™) | 4R (STATC)[STATE*] - ko -[STATC* ~STATC)
association at ’
[STATc*] disrization. gf;n; < (STATE T~ g [STATE 1]
[STATe A dRcn _ iy -[PPX]-[STATe *2])
dephospherylation dt [SrAn*mM

in
[STATc*2) tensportto | dRmv _, oo
nucleus = =ky [STATc *2)
(ST4T™-ST4T dRm _ &y, [PPN][STAIn*2]
@m@m dt [STAT)’J"21+k"3+k"

fL
[STa&In*2) dissociation | dRm

o = kan [STATR* 2}~ Ky (STATH")-(STAT")

(STATo’] & (STATAl | AR, 1 TATw) [STATH®) - Ky [STATH*~STAT)
association at
[S14Tn") dRm _ ky, -[PPN] [STADR"]
m&bmﬁﬂm @ [STA I‘nn] + k,u + kﬂ
525
(SZATs] export to i? =kyy - [STADY)

[STATn*-STATn-IRF 9n]
dissociation

R _ k,y -[STATn*-STAIn -~ IRF9n]
dt

~k,y - [STATn *-STAIn)-[nIRF - 9]

Figure AC-3 - Differential equations for integrated monolithic approach.

290

[“‘Rfil I A

[CIR}Z;‘] and [STA1e"2) % =¥, [STATe *2]-[cIRF - 9]~ K., -[STATc *2- IRF%]

asso on

[R7ATE*2-IRF9c] RN _ oy -[STATe *2 - IRFOc]

transport to nucleus &

[STATp*2-IRF9n] dRm _ Ky [PPN] [STATn* 2- IRF9n]

dephosphotylation a [STAZM*Z—IRF%]+-)"”—W—
£1

[IRF-7 RNan] R _ kg, [STATn 2~ IRFOA]

production & [STATn"2- IRFOn]+ky,

[IRF-7 RNAg]—~[IRF-7 a):n ity [RF—7_RA]

IRF-7 dRm

aeg:ada%?fd “a =l [IRF-7_ RNAC)

[IRF-7Pc] production

d’::" = kyy -[IRF -7 _RNAc]

[IRF-7Pc] degradation

i‘?—‘m-=k, [URF-7_Pc}

§IRF-7Pc]<-—>[IRF-7Pn %n_) URF—77) oy UIRFT - P
[SOCS! mRNAL] dR;_ K, [SOCS1_mRNA]

production d [SOCSI_mRNAn]+k,,

[SO;S: wRNAal f;ﬂ =k, -[SOCS1_mRNAn]

export to gytosal

[SOCSL gRNagl IR e -[SOCS1_mRNAC]

degradation at

oton | g 150051 mRk

[SOCS1] degradation d}:;m &, 50CS1]

[SOCSI) &0PNARYY | 9R0_, oot (50CS1} ks [IPRARR®-SOGST]

Figure AC4 - Differential equations for integrated monolithic approach.

291

[J L]
Bibliography
Aderem, A. (2005) Systems biology: its practice and challenges, Cell, 121, 511-513.

Akarsu, E., Fox, F., Furmanski, W., Haupt. T. (1998) WebFlow-high-level
programming environment and visual authoring toolkit for high performance
distributed

computing. . Proceedings of Supercomputing ‘98: High Performance Networking and
Computing. IEEE Computer Society, 1-7.

Alon, U. (2003) Biological networks: the tinkerer as an engineer, Science, 301, 1866-1867.

Alvarez-Vasquez, F., Sims, K.J., Hannun, Y.A. and Voit, E.O. (2004) Integration of
kinetic information on yeast sphingolipid metabolism in dynamical pathway models, |
Theor Biol, 226, 265-291.

Andersen, D.H. (1983) Compartmental Modeling and Tracer Kinetics. Springer, Berlin.

Arkin, A P. and Fletcher, D.A. (2006) Fast, cheap and somewhat in control, Genome Biol,
7,114.

Asthagiri, A.R. and Lauffenburger, D.A. (2000) Bioengineering models of cell signaling,
Annu Rev Biomed Eng, 2, 31-53.

Bader, J.S. and Chant,]. (2006) Systems biology. When proteomes collide, Science, 311,
187-188.

Baitaluk, M., Qian, X., Godbole, S., Raval, A., Ray, A. and Gupta, A. (2006) PathSys:
integrating molecular interaction graphs for systems biology, BMC Bioinformatics, 7, 55.

Bassingthwaighte,].B., Chizeck, H.]., Atlas, L.E. and Qian, H. (2005) Multiscale
modeling of cardiac cellular energetics, Ann N Y Acad Sci, 1047, 395-424.

Bhalla, U.S. (2003) Understanding complex signaling networks through models and
metaphors, Prog Biophys Mol Biol, 81, 45-65.

292

Bocharaov (1994) Mathematical model of antiviral immune response III. Influenza A
virus infection., Journal of Theoretical Biology, 167, 323-359.

Brooks, F. (1975) The mythical man month: essays in software engineering.

Bulatwicz, T.F. (2006) SUPPORT FOR MODEL COUPLING: AN INTERFACE-BASED
APPROACH. Department of Computer and Information Science. University of Oregon,
216.

Campagpne, F., Neves, S., Chang, CW., Skrabanek, L., Ram, P.T., Iyengar, R. and
Weinstein, H. (2004) Quantitative information management for the biochemical
computation of cellular networks, Sci STKE, 2004, pl11.

Cannon, W.B. (1933) The Wisdom of the Body. Norton, New York.

Cella (1999) Maturation, Activation, and Protection of Dendritic Cells IInduced by
Double-stranded RNA, Journal of Experimental Medicine, 189, 821-829.

Cerami, E.G., Bader, G.D., Gross, B.E. and Sander, C. (2006) cPath: open source
software for collecting, storing, and querying biological pathways, BMC Bioinformatics,
7,497.

Clements (2007) An Economic Model for Software Architecture Decisions. In IEEE (ed),
First International Conference on Economics of Software and Computation.

Cooley, M. (1987) CYTOKINE ACTIVITY AFTER HUMAN BONE MARROW
TRANSPLANTATION: Production of Interferons by Peripheral Blood Mononuclear
Cells from Recipients of HLA-Identical Sibling Bone Marrow Transplants, Journal of
Immunology, 138.

Cuellar, A.A,, Lloyd, CM,, Nielsen, P.F., Bullivant, D.P., Nickerson, D.P., Hunter, P.J.
(2003) An Overview of CellML 1.1, a Biological Model Description Language,
SIMULATION, 79, 740-747.

Dabous, F.T. (2005) Estimating pattern consequences for the architectural design of e-
business applications. 7th International Conference on Enterprise Information Systems
ICIES, Miami, USA, 248-254.

Davidson, M.W. (2007) Eukaryotic Animal Cell. Molecular Expressions, Tallahassee.

293

Dewey, C.F. (2006) Personal communication. In Ayyadurai, S. (ed). Cambridge,
Personal communication.

Dhar, P., Meng, T.C., Somani, S., Ye, L., Sairam, A., Chitre, M., Hao, Z. and Sakharkar,
K. (2004) Cellware--a multi-algorithmic software for computational systems biology,
Bioinformatics, 20, 1319-1321.

Duarte, N.C., Becker, S.A., Jamshidi, N., Thiele, 1., Mo, M.L., Vo, T.D., Srivas, R. and
Palsson, B.O. (2007) Global reconstruction of the human metabolic network based on
genomic and bibliomic data, Proc Natl Acad Sci U S A, 104, 1777-1782.

Endy, D. and Brent, R. (2001) Modelling cellular behaviour, Nature, 409, 391-395.

Gianchandani, E.P., Brautigan, D.L. and Papin, J.A. (2006) Systems analyses
characterize integrated functions of biochemical networks, Trends in Biochemical
Sciences, 31, 284-291.

Gilbert, D., Fuss, H., Gu, X,, Orton, R., Robinson, S., Vyshemirsky, V., Kurth, M.J.,
Downes, C.S. and Dubitzky, W. (2006) Computational methodologies for modelling,
analysis and simulation of signalling networks, Brief Bioinform, 7, 339-353.

Glick, N. (2006) Interferon and its role in immune health. Center for Inmune Research.

Gonzalez, P.P., Cardenas, M., Camacho, D., Franyuti, A., Rosas, O. and Lagunez-Otero,
J. (2003) Cellulat: an agent-based intracellular signalling model, Biosystems, 68, 171-185.

Hancioglu, B., Swigon, D., Clermont, G. (2007) A dynamical model of human immune
response to influenza A virus infection, Journal of Theoretical Biology.

Hodgkin, J. (2001) What does a worm want with 20,000 genes?, Genome Biology, 2, 1-4.

Hood, L., Heath, J.R., Phelps, M.E. and Lin, B. (2004) Systems biology and new
technologies enable predictive and preventative medicine, Science, 306, 640-643.

Hood, L. and Perlmutter, R.M. (2004) The impact of systems approaches on biological
problems in drug discovery, Nat Biotechnol, 22, 1215-1217.

294

Hornberg,].]., Bruggeman, F.]., Westerhoff, H.V. and Lankelma, J. (2006) Cancer: a
Systems Biology disease, Biosystems, 83, 81-90.

Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle,].C., Kitano, H., Arkin, A.P.,
Bornstein, B.J., Bray, D., Cornish-Bowden, A., Cuellar, A.A., Dronov, S,, Gilles, E.D.,
Ginkel, M., Gor, V., Goryanin, II, Hedley, W.J., Hodgman, T.C., Hofmeyr,].H., Hunter,
P.J., Juty, N.S., Kasberger, J.L., Kremling, A., Kummer, U., Le Novere, N., Loew, L.M,,
Lucio, D., Mendes, P., Minch, E., Mjolsness, E.D., Nakayama, Y., Nelson, M.R., Nielsen,
P.F., Sakurada, T., Schaff,].C., Shapiro, B.E., Shimizu, T.S., Spence, H.D., Stelling, J.,
Takahashi, K., Tomita, M., Wagner, J. and Wang, J. (2003) The systems biology markup
language (SBML): a medium for representation and exchange of biochemical network
models, Bioinformatics, 19, 524-531.

Hunter, P, Borg, T. (2003) Integration from proteins to organs: the Human Physiome
project, Nature Reviews Molecular Cell Biology, 4, 237-243.

Hunter, P., Smith, N., Fernandez, J. and Tawhai, M. (2005) Integration from proteins to
organs: the IUPS Physiome Project, Mech Ageing Dev, 126, 187-192.

Hwang, D., Smith,].J., Leslie, D.M., Weston, A.D., Rust, A.G., Ramsey, S., de Atauri, P.,
Siegel, A.F., Bolouri, H., Aitchison,].D. and Hood, L. (2005) A data integration
methodology for systems biology: experimental verification, Proc Natl Acad Sci U S A,
102, 17302-17307.

Ideker, T. and Lauffenburger, D. (2003) Building with a scaffold: emerging strategies
for high- to low-level cellular modeling, Trends Biotechnol, 21, 255-262.

Isaacs, A., Lindenmann, J. (1957) Virus Interference. I. The interferon, Proc. Roy. Soc.
Lond. B Biol. Sci., 147, 258-267

Kazman, R., Asundi, J. (2001) Quantifying the costs and benefits of architectural
decisions. In IEEE (ed), The 23rd International Conference on Software Engineering. IEEE,
297-306.

Keller, E.F. (2007) A clash of two cultures, Nature, 445, 603.

Kholodenko, B.N., Demin, O.V., Moehren, G. and Hoek,].B. (1999) Quantification of

short term signaling by the epidermal growth factor receptor,] Biol Chem, 274, 30169-
30181.

295

Kierzek, A.M. (2002) STOCKS: STOChastic Kinetic Simulations of biochemical systems
with Gillespie algorithm, Bioinformatics, 18, 470-481.

Kimmel, A.R., Parent, C. A. (2003) The signal to move: D. discoideum go orienteering,
Science 300, 1525-1527

Kitano, H. (2000) Perspectives on systems biology, New Generation Computing, 18, 199-
216.

Kitano, H. (2001) Foundations of Systems Biology. The MIT Press, Cambridge.
Kitano, H. (2002) Computational systems biology, Nature, 420, 206-210.

Kitano, H., Funahashi, A., Matsuoka, Y. and Oda, K. (2005) Using process diagrams for
the graphical representation of biological networks, Nat Biotechnol, 23, 961-966.

Kitney, R., Dollery, C. (2007) Systems Biology: a vision for engineering and medicine.
In Engineering, A.o.M.5.a.T.R.A.0. (ed).

Klipp, E. and Liebermeister, W. (2006) Mathematical modeling of intracellular
signaling pathways, BMC Neurosci, 7 Suppl 1, S10.

Klipp, E., Nordlander, B., Kruger, R., Gennemark, P. and Hohmann, S. (2005)
Integrative model of the response of yeast to osmotic shock, Nat Biotechnol, 23, 975-982.

Krueger, CW. (1992) Software reuse, ACM Computing Surveys (CSUR), 24, 131-183.

Laue, M.v. (1913) Kritische Bemerkungen zu den Deutungen der Photoframme von
Friedich und Knipping, Physikalische Zeitschrift, 14, 421-423.

Lauffenburger, D.A. (2000) Cell signaling pathways as control modules: complexity for
simplicity?, Proc Natl Acad Sci U S A, 97, 5031-5033.

Lauffenburger, D.A. (2003) Four M's of Systems Biology. MIT, Cambridge.

Le Novere, N., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M., Dharuri, H., Li, L.,
Sauro, H., Schilstra, M., Shapiro, B., Snoep, J.L. and Hucka, M. (2006) BioModels

296

Database: a free, centralized database of curated, published, quantitative kinetic
models of biochemical and cellular systems, Nucleic Acids Res, 34, D689-691.

Le Novere, N., Finney, A., Hucka, M., Bhalla, U.S., Campagne, F., Collado-Vides, J.,
Crampin, EJ., Halstead, M., Klipp, E., Mendes, P., Nielsen, P., Sauro, H., Shapiro, B.,
Snoep, J.L., Spence, H.D. and Wanner, B.L. (2005) Minimum information requested in
the annotation of biochemical models (MIRIAM), Nat Biotechnol, 23, 1509-1515.

Le Novere, N., Finney, A., Hucka, M., Bhalla, U.S., Campagne, F., Collado-Vides, J.,
Crampin, E.J., Halstead, M., Klipp, E., Mendes, P., Nielsen, P., Sauro, H., Shapiro, B.,
Snoep, J.L., Spence, H.D. and Wanner, B.L. (2007) Minimum information requested in
the annotation of biochemical models (MIRIAM), Nat Biotechnol, 23, 1509-1515.

Le Novere, N. and Shimizu, T.S. (2001) STOCHSIM: modelling of stochastic
biomolecular processes, Bioinformatics, 17, 575-576.

Lindon,].C., Holmes, E. and Nicholson, J.K. (2006) Metabonomics techniques and
applications to pharmaceutical research & development, Pharm Res, 23, 1075-1088.

Liu, E.T. (2005) Systems biology, integrative biology, predictive biology, Cell, 121, 505-
506.

Loew, L.M. (2002) The Virtual Cell project, Novartis Found Symp, 247, 151-160;
discussion 160-151, 198-206, 244-152.

Ma'ayan, A., Jenkins, S.L., Neves, S., Hasseldine, A., Grace, E., Dubin-Thaler, B.,
Eungdamrong, N.J., Weng, G., Ram, P.T., Rice,].J., Kershenbaum, A., Stolovitzky, G.A.,
Blitzer, R.D. and Iyengar, R. (2005) Formation of regulatory patterns during signal
propagation in a Mammalian cellular network, Science, 309, 1078-1083.

Machne, R,, Finney, A., Muller, S., Lu, J., Widder, S. and Flamm, C. (2006) The SBML
ODE Solver Library: a native API for symbolic and fast numerical analysis of reaction
networks, Bioinformatics, 22, 1406-1407.

Mendes, P. and Kell, D.B. (2001) MEG (Model Extender for Gepasi): a program for the
modelling of complex, heterogeneous, cellular systems, Bioinformatics, 17, 288-289.

Mishra, J. and Bhalla, U.S. (2002) Simulations of inositol phosphate metabolism and its
interaction with InsP(3)-mediated calcium release, Biophys], 83, 1298-1316.

297

Morgan,].]., Surovtsev, L.V. and Lindahl, P.A. (2004) A framework for whole-cell
mathematical modeling,] Theor Biol, 231, 581-596.

Neteler, M., Mitasova, H. (2004) Open Source GIS: A GRASS GIS Approach., Boston.

Noble, D. (2006) Systems biology and the heart, Biosystems, 83, 75-80.

Oda, K. (2006) Map of the TLR signaling network, Nature Molecular Systems Biology.

Oda, K., Kimura, T., Matsuoka, Y., Funahashi, A., Muramatsu, M., Kitano, H. (2004)
Map of the TLR signaling network, AfCS Research Reports, 2, 1-12.

Oltvai, Z.N. and Barabeasi, A.L. (2002) Systems biology. Life's complexity pyramid,
Science, 298, 763-764.

Palsson, B. (2004) Two-dimensional annotation of genomes, Nat Biotechnol, 22, 1218-
1219.

Palsson, B.O., Price, N.D. and Papin, J.A. (2003) Development of network-based
pathway definitions: the need to analyze real metabolic networks, Trends in
Biotechnology, 21, 195-198.

Papin, J.A., Hunter, T., Palsson, B.O. and Subramaniam, S. (2005) Reconstruction of
cellular signalling networks and analysis of their properties, Nat Rev Mol Cell Biol, 6,
99-111.

Patwardhan, B., Warude, D., Pushpangadan, P., Bhatt, N. (2005) Ayurveda and
Traditional Chinese Medicine: A Comparative Overview, Oxford Journals Medicine
Evidence-based Complementary and Alternative Medicine, 2, 465-473

Pecou, E. (2005) Splitting the dynamics of large biochemical interaction networks, |
Theor Biol, 232, 375-384.

Pennisi, E. (2003) A Low Number Wins the GeneSweep Pool, Science, 300, 1484.

Pennisi, E. (2005) How will big pictures emerge from a sea of biological data?, Science,
309, 94.

298

Peri, S., Navarro,].D., Amanchy,R., Kristiansen, T.Z., Jonnalagadda,C., Surendranath,
V., Niranjan,V., Muthusamy, B., Gandhi, T.K.B., Gronborg, M., Ibarrola,N.,
Deshpande, N., Shanker, K., Shivashankar, H.N., Pandey, A. (2003) Development of
Human Protein Reference Database as an Initial Platform for Approaching Systems
Biology in Humans, Genome Research, 13, 2363-2371.

Pogson, M., Smallwood, R., Qwarnstrom, E. and Holcombe, M. (2006) Formal agent-
based modelling of intracellular chemical interactions, Biosystems, 85, 37-45.

Putnam, N.H., Srivastava, M., Hellsten, U., Dirks, B., Chapman, J., Salamov, A.,
Rokshar, D.S. (2007) Sea anemone genome reveals the gene repertoire and genomic
organization of the eumetazoan ancestor. Lawrence Berkeley National Laboratory.

Quackenbush, J., Stoeckert, C., Ball, C., Brazma, A., Gentleman, R., Huber, W., Irizarry,
R., Salit, M., Sherlock, G., Spellman, P. and Winegarden, N. (2006) Top-down standards
will not serve systems biology, Nature, 440, 24.

Raczynski, S. (1996) Differential inclusions in system simulation, Transactions of the
Society for Computer Simulation 13, 47-54.

Rajlich, V., Wilde, N. (2002) The role of concepts in program comprehension. 2002
International Workshop on Program Comprehension. IEEE Computer Society Press, Los
Alamitos, CA, 271-278.

Ray, L.B., Adler, EM., Gough, N.R. (2003) Building a Case for Signaling, Science, 300,
1523-1524.

Robinson, S, R. E. Nance, R. J. Paul, M. Pidd, and S. J. E. Taylor (2004) Simulation
model reuse: Definitions, benefits and obstacles. , Simulation Modelling Practice and
Theory, 12, 479-494.

Sato, M., Taniguchi, T., Tanaka, N. (2001) The interferon system and interferon
regulatory factor transcription factors - studies from gene knockout mice, Cytokine &
Growth Factor Reviews, 12, 133-142.

Sauro, H.M., Hucka, M., Finney, A., Wellock, C., Bolouri, H., Doyle, J. and Kitano, H.
(2003) Next generation simulation tools: the Systems Biology Workbench and
BioSPICE integration, Omics, 7, 355-372.

299

Sauro, H.M. and Kholodenko, B.N. (2004) Quantitative analysis of signaling networks,
Prog Biophys Mol Biol, 86, 5-43.

Schilstra, M], Li, L., Matthews, J., Finney, A., Hucka, M. and Le Novere, N. (2006)
CelIML2SBML: conversion of CellML into SBML, Bioinformatics, 22, 1018-1020.

Schulz, M., Uhlendorf, J., Klipp, E. and Liebermeister, W. (2006) SBMLmerge, a System
for Combining Biochemical Network Models. Genome Informatics 62-71.

Seeman, N.C., Belcher, A. M. (2002) Emulating biology: building nanostructures from
the bottom up, Proc Natl Acad Sci U S A, 99 Supplement 2, 6451-6455.

Shannon, P.T., Reiss, D.]., Bonneau, R. and Baliga, N.S. (2006) The Gaggle: an open-
source software system for integrating bioinformatics software and data sources, BMC
Bioinformatics, 7, 176.

Silva, P. (2002) A general overview of the major metabolic pathways. In

http:/ /www?2.ufp.pt/~pedros/bq/integration.htm (ed). Universidade Fernando

Pessoa.

Slepchenko, B.M., Schaff, J.C., Macara, I. and Loew, L.M. (2003) Quantitative cell
biology with the Virtual Cell, Trends Cell Biol, 13, 570-576.

Snoep, J.L., Bruggeman, F., Olivier, B.G. and Westerhoff, H.V. (2006) Towards building
the silicon cell: a modular approach, Biosystems, 83, 207-216.

Stultz, C. (2007) Intractability of using atom-by-atom molecular dynamics for modeling
biological pathways. In Ayyadurai, S. (ed). Cambridge, Personal Communication.

Subbarayappa, B.V. (1997) Siddha medicine: an overview, Lancet, 350, 1841-1844.

Takahashi, K., Kaizu, K., Hu, B. and Tomita, M. (2004) A multi-algorithm, multi-
timescale method for cell simulation, Bioinformatics, 20, 538-546.

Takauji (2002) CpG-DNA-induced IFN-r production involves p38 MAPKdependent
STATI phosphorylation in human plasmacytoid dendritic cell precursors, Journal of
Luekocyte Biology, 72, 1011-1019.

300

Taniguchi, T., Ogasawara, K., Takaoka, A., Tanaka, N. (2001) IRF family of
transcription factors as regulators of host defense, Annual Review Immunology, 19.

Tomita, M., Hashimoto, K., Takahashi, K., Shimizu, T.S., Matsuzaki, Y., Miyoshi, F.,
Saito, K., Tanida, S., Yugi, K., Venter, J.C. and Hutchison, C.A., 3rd (1999) E-CELL:
software environment for whole-cell simulation, Bioinformatics, 15, 72-84.

Vaidehi, N., Goddard, W.A. (2001) Atom-Level Simulation and Modeling of
Biomacromolecules. In Bower,].M., Bolouri, H. (ed), Computational Modeling of Genetic
and Biochemical Networks. MIT Press, Cambridge, 161-163.

Wang, X.H., Connors, M., Wilson, D., Wilson, G., Nicholosn, G.M., Smith, R., Shaw, D.,
MacKay, J., Alexwood, P., Chrisite, M., King, G. (2001) Discovery and structure of
potent and highly specific blocker of insect calcium channels, Journal of Biological
Chemistry, 276, 40306-403012.

Watson, J.D., Crick, F.H. (1953) Molecular structure of nucleic acids: A structure of
deoxyribose Necleic Acid, Nature, 171, 737-738.

Webb, K. and White, T. (2005) UML as a cell and biochemistry modeling language,
Biosystems, 80, 283-302.

Whelan, G., Castleton, KJ., Buck, J.W., Hoopes, B.L., Pelton, M.A., Strenge, D.L.,
Gelston, G.M,, Kickert, R.N. (1997) Concepts of a framework for risk analysis in
multimedia environmental systems (FRAMES). In Laboratory, P.N.N. (ed), PNNL-
11748. Pacific Northwest National Laboratory, Richland.

White, J. (2007) Two protein interactions are intractable using molecular dynamics. In
Ayyadurai, S. (ed). Cambridge, Personal Communication.

Wiener, N. (1948) Cybernetics or Control and Communciation in the Animal Machine. The
MIT Press, Cambridge.

Wikipedia (2007) Interferon, Wikipedia, The Free Encyclopedia, 10,
<http:/ /en.wikipedia.org/wiki/Interferon>.

Xia, L., Wang, L., Chung, A, Ivanov, F. (2002) Identification of Both Positive and
Negative Domains with the Epidermal Growth Factor Receptor COOH-terminal

301

Region for Signal Transducer and Activator of Transcription (STAT) Activation, Journal
of Biochemical, 277, 30716-30723.

Yamada (2001) Computer Modeling of JAK/STAT Signal Transduction Pathway,
Genome Informatics.

You, L., Hoonlor, A. and Yin, J. (2003) Modeling biological systems using Dynetica—a
simulator of dynamic networks, Bioinformatics, 19, 435-436.

Zi, Z., Cho, K., Sung, M., (2005) In silico identification of the key components and steps
in IFN-gamma induced JAK-STAT, FEBS, 579, 1101-1108.

302

Colophon

Endnote was used to format the bibliography format. It was primarily selected

due its ease of use and integration with Microsoft Word.

This thesis was typeset using Microsoft Word, a decision that was agonized
over long and hard. The alternative was to use FrameMaker or pdfLATEX. But
FrameMaker has been largely abandoned by Adobe and pdfLATEX and only

had indirect support EndNotes.
The text of this thesis was set in Book Antigua. This thesis has many screen
shots. The Windows screen shots were created using the simple screen capture

from Windows operating system.

This thesis was written and typeset to the music of Bruce Springsteen, Bob

Dylan, Johnny Cash and from time to time music.

As of August 29, 2007, the PDF file that was used to print this thesis is

approximately 20.3 megabytes in length.

303

