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Abstract

Approximately one in five Americans is affected by arthritis, making it one of the most
prevalent diseases and the leading cause of disability in the United States. Post-traumatic
arthritis occurs after joint injury (e.g., ACL rupture or intraarticular fracture) and makes up a
substantial proportion of the population with arthritis. In previous clinical studies, patients
suffering from a traumatic joint injury have shown an increased risk in osteoarthritis (OA),
independent of surgical intervention to stabilize the joint. Thus, the early events post-injury have
an important effect on tissue within the joint in the long term. To understand the processes
involved in the onset of OA and factors leading to OA post-traumatic injury, in vitro models
have been developed to isolate components of the complex processes occurring in vivo. While in
vitro models do not mimic true physiologic conditions in vivo, by isolating the effects of
mechanical compression, cytokine treatment, and cartilage co-cultured with adjacent tissue, in
vitro models can give insight into key biological and mechanical pathways occurring in vivo.

This study focuses on changes in cartilage gene and protein expression and associated
cartilage matrix degradation in response to static or injurious compression of the tissue in the
presence or absence of cytokines including TNF-a and IL-6. In addition, normal or injuriously
compressed cartilage explants were co-cultured with injured (excised) joint capsule tissue,
another in vitro model of post-traumatic cellular behavior. Both young bovine cartilage and
human cartilage from a wide range of ages were used. The growth factors insulin-like growth
factor-1 (IGF-1) and Osteogenic protein-i (OP-1), as well as the antioxidant, superoxide
dismutase mimetic (SODm), were tested to examine if they had the capability to abrogate the
negative effects of these injury models. Taking a systems approach, the effects of these stimuli
on expression of over 48 genes (in cartilage as well as joint capsule) were quantified, along with
measures of chondrocyte viability, biosynthesis, protein expression, and GAG loss.

Chondrocyte gene expression was differentially regulated by 50% static compression or
IGF- 1 treatment or the combination of compression and IGF- 1. Results showed that IGF- 1
stimulated aggrecan biosynthesis in a transcriptionally regulated manner, whereas compression
inhibited aggrecan synthesis in a manner not regulated by transcriptional activity. The injury
plus co-culture model was examined in detail, and OP-1 and IGF-1 were unable to rescue
changes in transcriptional expressions due to injury. However, these growth factors were able to
rescue cells from apoptosis, and slightly increase biosynthesis rates. Human tissue was used to
further validate the model of mechanical injury (INJ) combined with co-culture (Co).
Immunohistochemical analysis of human cartilage explants after INJ+Co treatment revealed
changes in versican and aggrecan protein expression, as well as changes in surface tissue
morphology, that mimicked certain changes observed in human osteochondral plugs taken from
patients at the time of notchplasty surgery (post ACL reconstruction) at 1, 3, or 57 months post-
ACL rupture.

The oxidative stress involved in a cytokine plus injury model showed that SODm had no
ability to selectively diminish protease transcriptional activity. Cartilage treated with this
antioxidant showed significant increases in GAG loss to the medium, but diminished levels of
chondrocyte apoptosis. Taken together, this work supports further investigation of the
mechanisms of action of OP-1, IGF-1, and SODm in order to elucidate their possible therapeutic
value, and demonstrates the usefulness of these complementary in vitro models of cartilage
injury.
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Chapter 1

Mechanobiology: Introduction, Background, and
Significance

* This chapter has appeared as a review paper in Current Opinions in Orthopaedics (Wheeler,

Cameron A; Fitzgerald, Jonathan B; Grodzinsky, Alan Cartilage mechanobiology: the

response of chondrocytes to mechanical force. Current Opinion in Orthopedics. 16(5):346-

353, October 2005.)



1.1 Purpose of the Chapter
A comprehensive understanding of chondrocyte mechanobiology is critically important

for a clear understanding of the etiopathology and treatment of osteoarthritis (OA) as well as for

the long-term survival of tissue engineered implants for cartilage repair.

Recent Findings

A large body of evidence has emerged documenting the effects of various mechanical

loading modalities on chondrocyte biosynthesis and gene expression. Many physical forces and

flows occur in cartilage during loading in vivo. For example, dynamic compression of cartilage

results in deformation of cells and the extracellular matrix, hydrostatic pressurization of the

tissue fluid, pressure gradients and the accompanying flow of fluid within the tissue, and

streaming potentials and currents induced by fluid convection of counter-ions through the

negatively charged extracellular matrix (ECM). In addition, local changes in tissue volume

caused by compression also lead to alterations in matrix water content, ECM fixed charge

density, mobile ion concentrations, and osmotic pressure. Any of these mechanical and

physicochemical phenomena in the micro-environment of chondrocytes may affect cellular

metabolism. While specific components of certain mechanotransduction pathways have been

identified, the exact mechanisms by which mechanical forces influence the biological activity of

chondrocytes are not yet fully understood. New genomic and proteomic technologies and

methodologies including systems biological analyses are being applied to better understand

cellular mechanotransduction.

Summary

Investigators have focused on mechano-regulation of upstream signaling and responses at

the level of gene transcription, protein translation and post-translational modifications.

Intracellular pathways including those involving integrin signaling, mitogen activated protein

kinases (MAPKs), and release of intracellular calcium have been confirmed in several

laboratories.



1.2 Introduction

Articular cartilage is an avascular, aneural, alymphatic tissue that provides a low friction

weight bearing surface for joint locomotion. During joint loading in vivo, cartilage is subjected to

mechanical stresses and strains that span a wide range of amplitudes and frequencies [1, 2]. Peak

stresses can reach 10-20 MPa (100-200 atm) during activities such as stair climbing [3]. While

compressive strains of 15% - 40% may occur in response to long-term or "static" loads within

the physiological range [1], compressions of only a few percent occur during normal ambulation

(e.g., the "dynamic" strains that occur at walking frequencies of -1 Hz). Chondrocytes occupy

3% to 5% of tissue volume in adult human cartilage [1]. These cells maintain a mechanically

functional extra-cellular matrix (ECM) by mediating the synthesis, assembly, and degradation of

proteoglycans (PGs), collagens, glycoproteins, and other matrix molecules. It is well known that

chondrocytes can sense and respond to their mechanical environment; however, the

mechanotransduction pathways by which mechanical forces influence the biological activity of

chondrocytes are not fully understood.

1.3 Systems for Studying Chondrocyte Mechanotransduction

Since mechanotransduction mechanisms are difficult to quantify in vivo, model systems

such as cartilage explant organ culture and three dimensional chondrocyte/gel culture have been

used. Cartilage explants preserve native tissue structure and cell-matrix interactions and thereby

enable quantitative correlations between mechanical loading parameters and biological responses

such as gene expression and biosynthesis. Muir [4] emphasized the important but complex role

of the native ECM and chondrocyte-ECM interactions in chondrocyte response to load; thus,

investigators [4] have cautioned that the use of isolated, plated chondrocytes that are depleted of

ECM must be approached with care regarding the potential for chondrocyte dedifferentiation and

the interpretation of the results in relation to the behavior of cartilage. In native tissue, however,



the coupling between mechanical, chemical, and electrical forces and flows within the ECM can

complicate the identification of specific physical stimuli, necessitating specialized experimental

and theoretical modeling approaches. Therefore, three-dimensional agarose [5], alginate [6], and

other scaffold culture systems have also been used to study chondrocyte response to mechanical

compression[7-9], hydrostatic pressure [10], stretch [ 11], physicochemical stimuli (pH and

osmolarity [12], and electrical currents [13]). Finally, a variety of specialized, incubator-housed

instruments have been developed to mimic mechanical stimuli found in vivo and apply

components of compression, shear, stretching, hydrostatic or osmotic pressure to explants,

isolated cells, or cell-encapsulated gel constructs in vitro [14-17], shown schematically in Fig.

1.1.

1.4 Chondrocyte biosynthesis and gene expression

Static compression (Fig. 1.1a) of animal and human cartilage explants [18, 19] as well as

high hydrostatic pressure applied to chondrocyte monolayers [20] can cause a dose-dependent

decrease in the biosynthesis of proteoglycans, collagens, and other ECM proteins as quickly as

one hour after application of compression. Complete recovery of biosynthesis can occur after

release of compression, but at different rates for different ECM macromolecules [21], strongly

suggesting that specific transduction pathways are involved. In contrast, dynamic compression

and shear (Fig 1.1b,c) [18, 22, 23] and cyclic hydrostatic compression [20, 24] can markedly

upregulate ECM biosynthesis in a manner dependent on compression amplitude and frequency

[20, 22], as well as the developmental stage and the depth from the articular surface of the

cartilage sample [14, 25, 26]. Tissue-level and cell-level quantitative autoradiography have been

used to visualize the spatial distribution of newly-synthesized ECM molecules in response to

compression and shear [23, 27, 28], and to compare with the theoretically predicted profiles of



physical stimuli, highlighting the roles of ECM and cell deformation as well as intratissue fluid

flow (shown schematically in Fig. 1.1).

PHYSICAL STIMULI in Unconfined Compression
Ramp - & - Hold

Transient -- Static Dynamic Dynamic W\
Compression /- Compression Shear

Transient effects
*hydrostatic pressure
*fluid exudation
estreaming current
S15-30 minutes (relax)

Static effects
*Matrix deformation
*Matrix consolidation

(a)

Transient effects
*same, but mild
*depends on offset comp

Steady (dyn) effects
*Cyclic matrix deform
*" Radially directed flow
*" High pressure: center
*Enhanced transport

(b)

Transient effects
*all but minor
*depends on offset

Steady (dyn) effects
*Cyclic matrix deform
'minimal HP build up
*minimal fluid flow
SNo transport effect

(c)

Figure 1.1: Schematic of physical forces and flows occurring during mechanical loading of
cartilage in vivo, that can be stimulated in vitro by means of (a) static compression, (b) dynamic
compression, and (c) dynamic tissue shear.

Mechanical forces can also influence aggrecan gene expression [29-33] and the

transcription of many matrix proteins and proteases in chondrocytes and other connective tissue

cells [33-36]. Investigators have also found thatfluid shear flow [37-40] can alter aggrecan

synthesis and the expression of aggrecan, TIMP-1, IL-6 and MMP-9. The induction of MMP-9

gene expression appeared to be mediated via the JNK signaling pathway [38], and the aggrecan

promoter via the ERK pathway [39]. While the fluid velocities in these experiments were much



higher than physiological for cartilage, the resulting shear stresses may be relevant. When

isolated bovine and human chondrocytes were cyclically stretched on flexible membranes,

aggrecan and type II collagen mRNA expression were increased [40], consistent with a role for

cell deformation and membrane perturbation. Cyclic (1 Hz square wave) uniaxial stretch (5%

elongation) of embryonic chick sternal chondrocytes seeded into a 3D collagen sponge induced

expression of Indian hedgehog (Ihh) and also upregulated bone morphogenic proteins 2 and 4

downstream of Ihh which, in combination, stimulated cell proliferation [11 ]. Interestingly,

mechanical induction of Ihh mRNA was abolished by blocking stretch activated channels [11].

1.5 Upstream Signaling

Investigators have been trying to map the sequential intracellular signaling pathways through

which mechanical forces can modify the gene expression of specific molecules. Major roles have

been identified for certain classical signaling pathways including those involving integrins,

mitogen activated protein kinases (MAPKs), and release of intracellular calcium.

Integrin signaling pathways

Evidence suggests that integrins can convert extracellular mechanical stimuli into

intracellular signals in a variety of cell types [41]. In chondrocytes, the alpha a5pl fibronectin-

binding integrins have been implicated as part of a mechanotransduction complex that involves

tyrosine protein kinases, cytoskeletal proteins, ion channels, and second-messenger signaling

cascades [42, 43]. Researchers have also shown that the a5pl integrin complex is present in OA

chondrocytes, but results in different downstream effects when activated or blocked compared to

normal chondrocytes [44]. Application of hydrostatic pressure to chondrocyte monolayers in a

manner that induced strain on the culture dish and plated cells caused interleukin-4 (IL-4)

secretion via x51I1 integrin and subsequent intracellular calcium release followed by cell

hyperpolarization [42, 45]. One possible connecting link is the N-methyl-D-aspartate (NMDA)



receptor, since integrin signaling has been shown to influence the activity of this receptor in

other cells [46]. NMDA is phosphorylated by protein kinases including protein kinase C (PKC)

and phosphotidylinositol 3-kinase (PI3K) [47]. Salter el al. observed that the NMDA receptor

induced depolarization in OA chondrocytes and hyperpolarization in normal chondrocytes,

suggesting a possible alteration in chondrocytic mechanotransduction as a consequence of the

function of the NMDA receptor during OA [48].

Mitogen activated protein kinase pathways

Investigators have been trying to map the sequential intracellular signaling pathways

through which mechanical forces may modify chondrocyte gene expression of specific

molecules. Several recent studies have demonstrated a role for mitogen activated protein kinases

(MAPKs) [49, 50] which can alter matrix gene expression and changes in matrix production by

chondrocytes within compressed cartilage and in chondrocyte monolayers [51]. This family of

ubiquitous signaling molecules includes extracellular-signal regulated protein kinases (ERK1/2),

c-Jun N-terminal kinase (JNK) and p38. Activated MAP kinases are thought to translocate to the

nucleus, where they may induce phosphorylation of transcriptional factors and eventual

upregulation of various genes.

Fanning et al. [52] examined the effects of slow ramp-and-hold compression of cartilage explants

to final static strains up to 50% that were held for a range of compression durations; these

compression conditions were found previously to inhibit chondrocyte biosynthesis but not to

affect cell viability. Mechanical compression caused (1) a rapid induction of ERK1/2

phosphorylation at 10 min followed by a rapid decay, as well as a sustained level of ERK2

phosphorylation that persisted for at least 24 hrs; (2) phosphorylation of p38 in strictly a transient

fashion, with maximal phosphorylation occurring at 10 min; and (3) stimulation of SEKI

phosphorylation with a maximum at the relatively delayed time point of 1hr and with a higher

amplitude than ERK1/2 and p38 phosphorylation. (SEKiis an immediate upstream specific



activator of JNKs 1,2 and 3 [53], and the JNK and p38 kinases together constitute the SAPK sub-

family of MAPKs [54]). Fanning et al. [50] proposed that the rapid activation of ERK1/2 and

p38 may be due to the cell deformation, fluid flow and pressurization, while the SEK1 pathway

was activated only under static compression without fluid flow or pressurization [50]. Thus, it

was suggested that the initial transient ERK1/2 response was due to the dynamic components of

static compression, consistent with the results of Li et al. [49], who found a significant

upregulation of ERK1/2 activation in response to dynamic compression.

ATP and Ca2+

Ion channels have been identified as another important factor in mechanotransduction, including

effects of cell stretching on chondrocyte hyperpolarization and depolarization [55]. ATP has

been shown to be involved in signaling in many cell types. Under compressive conditions,

bovine chondrocytes can release ATP [56, 57] which, in the extracellular space, can then bind to

membrane receptors and initiate a signaling cascade including stimulation of proteoglycan

synthesis [58]. While ATP can induce anabolic signaling in normal chondrocytes, OA

chondrocytes do not show upregulation of matrix production. Mechanical stimulation can also

increase the concentration of intracellular calcium ions, derived either from intracellular stores or

from the extracellular space and transported into the cell via stretch activated ion channels.

While hyperosmotic stress can initiate intracellular Ca2+ signaling in chondrocytes [59],

Erickson et al. demonstrated that the stretch activated ion channels were not necessarily

responsible for Ca2+ transients under these conditions. Cell volume was also shown to decrease

under hyperosmotic stress and, hence, the stretch effect was explained by an inhomogeneity in

the cell surface [59]. The role of intracellular calcium in native cartilage explants was studied by

Vahlmu and Raia [60]; using blockers of intracellular Ca2+ and protein kinase C, they

demonstrated that regulation of aggrecan mRNA levels under creep compression involved

Ca2+/calmodulin and myo-inositol 1,4,5-triphosphate signaling processes. Fitzgerald et al. also



found that compression of cartilage explants induces multiple time-dependent gene expression

patterns that involve intracellular calcium and cyclic AMP [61].

1.6 Pro-inflammatory pathways in normal and injurious

compression

Acute traumatic joint injury increases the risk for subsequent development of OA [62].

In order to quantify the events following cartilage and joint injury, investigators have turned to a

variety of in vitro and animal models. Studies have shown that threshold levels of compressive

strain, strain rate, and peak stress can cause cartilage matrix disruption, tissue swelling, cell

necrosis and apoptosis, and increased loss of matrix macromolecules [63-70]. As a baseline

control for changes in gene expression in bovine calf cartilage explants, mRNA levels measured

in non-injured free swelling tissue was found to vary over five orders of magnitude, with matrix

molecules being the most highly expressed of the genes tested and cytokines, matrix

metalloproteinases (MMPs), aggrecanases (ADAMTSs), and transcription factors showing lower

levels of expression [71]. While the matrix molecules showed little change in expression after

injurious compression, MMP-3 increased -250-fold, ADAMTS-5 increased -40-fold, and

TIMP-1 increased -12-fold over free swelling levels [66]. In addition, injurious compression

results in a decrease in biosynthetic rates in the remaining viable cells, and these viable cells no

longer respond to the stimulatory effects of moderate dynamic compression seen in normal

cartilage [70]. Taken together, these studies suggest that mechanical overload can cause long-

term cell mediated changes in matrix quality and turnover.

Deschner et al. recently summarized the interaction between loading and inflammatory pathways

[72], which may be activated by excessive loads and inhibited by moderate cyclical loading [42,

45, 73]. Thus, these interactions appear to depend on the magnitude and loading rate (frequency).



Mechanical forces can influence production of NO [16, 74, 75], PGE2 [37], and IL-6 [76].

Interestingly, cross-talk between NO and PGE2 pro-inflammatory pathways, and between NOS2

and COX2 (upstream of NO and PGE2), can be regulated by mechanical stimuli [77]. These

pathways have been traditionally associated with inflammatory cytokines such as IL-1, an

initiator of cartilage degradation [42, 45, 73, 78-80]. Dynamic compression (15% strain

amplitude, 1Hz, 48 hr) could inhibit NO synthesis by equine chondrocytes in agarose gel

constructs [81] ,and could inhibit NO and PGE2 release by superficial zone equine chondrocytes

stimulated by IL-103 [82].

Cell microenvironment and organelle morphology

Loading of cartilage (Fig. 1.2a) produces cellular deformation [83, 84] in proportion to the local

deformation of the ECM, and in a manner consistent with the depth-dependent compressive

properties of the bulk tissue [85]. Deformations within the pericellular matrix (Fig. 1.2b) also

affect the physicochemical microenvironment of the chondrocyte [28, 86] and may, in turn,

signal the cell to modulate its biosynthetic response. Deformation-induced fluid flow in the

pericellular region enhances transport of soluble factors to cell receptors, and alters the local

concentration of mobile ions leading to electrochemical changes such as shifts in pH[87]. Cell-

surface connections to the ECM enable pericellular deformations to be transmitted through the

cell membrane to intracellular organelles via cytoskeletal elements such as actin microfilaments,

microtubules, and intermediate filaments[20, 83, 88]. Compression can also dramatically affect

the morphology of intracellular organelles that regulate cell biosynthesis and metabolism by

altering gene transcription, intracellular transport and trafficking, and protein translation and

post-translational processing. Using chemical fixation, high-pressure freezing, and electron

microscopy, Szafranski et al. [89] observed that compression of bovine cartilage explants caused

a concomitant reduction in the volume of the extracellular matrix, chondrocyte, nucleus, rough

endoplasmic reticulum, and mitochondria. Interestingly, however, the Golgi apparatus was able



to resist loss of intraorganelle water and retain a portion of its volume relative to the remainder

of the cell. These combined results suggested the hypothesis that organelle volume changes

were driven mainly by osmotic interactions while shape changes were mediated by structural

factors, such as cytoskeletal interactions that may be linked to extracellular matrix deformations.

The observed volume and shape changes of the chondrocyte organelles and the differential

behavior between organelles during tissue compression provides evidence for an important

mechanotransduction pathway linking translational and post-translational events. For example,

since the Golgi is the site of post-translational modifications of aggrecan (e.g., glycosylation and

sulfation) [89, 90], changes in Golgi morphology and function with compression may play a

critical role in the known changes in GAG chain length and sulfation caused by compression

[21]. Such changes in GAG and aggrecan structure, which also occur naturally with age (Fig.

1.2c) may profoundly influence aggrecan function. Such functional mechanical changes can now

be measured directly using atomic force microscopy methodologies [91, 92] (Fig. 1.2d).



Cartilage Mechanobiology
(a)

Figure 1.2

Figure 1.2 : Loading of cartilage explants (a), or direct mechanical stimulation of cells (b) can
produce mechanical stimuli that may be sensed by the cell and its pericellular microenvironment
(b). These mechanical stimuli may alter the rate of synthesis as well as the molecular structure of
ECM molecules such as aggrecan (c) which, in turn, could ultimately affect tissue-level
biomechanical properties in a feedback fashion (a). New cell-level and molecular-level
measurement techniques, such as those based on atomic force microscopy, are being used to
quantify the molecular mechanical properties of ECM macromolecules (d) as well as cellular
mechanical properties (b).

1.7 Systems biology approaches

Real time PCR and gene clustering analyses have been used to study intermediate-size

gene sets (20-48 genes) thought to be involved with cartilage mechanotransduction. Fitzgerald et

al. [33] examined the kinetics of mechano-regulation of gene transcription in response to static

compression of bovine calf cartilage explants for periods between 1-24 hours in the presence or

absence of an intracellular calcium chelator or an inhibitor of cyclic AMP activated protein

kinase A. Cluster analysis of the data revealed four main expression patterns: two groups that

contained either transiently upregulated or duration-enhanced expression profiles could each be

(b)

OO



subdivided into genes that did or did not require intracellular calcium release and cyclic AMP

activated protein kinase A for their mechano-regulation. Transcription levels for aggrecan, type

II collagen, and link protein were upregulated approximately 2 to 3-fold during the first 8 hrs of

50% compression and subsequently down-regulated to levels below that of free-swelling controls

by 24hrs. Transcription levels of matrix metalloproteinases-3,9,13, aggrecanase- 1 and the matrix

protease regulator cyclooxygenase-2 increased with the duration of 50% compression 2 to 16-

fold up to by 24 hrs. Thus, transcription of proteins involved in matrix remodeling and

catabolism dominated over anabolic matrix proteins as the duration of static compression

increased. These approaches are also being used to study responses to dynamic compression and

tissue shear of cartilage explants.

Researchers have begun to integrate genomic and proteomic approaches with the

computational tools of systems biology for applications in musculoskeletal research, including

medical diagnostics, and drug discovery [93]. DNA microarray technology is being used to

explore the complex feedback loops in transcription factors and layered signaling pathways

underlying the mechanotransduction as well as the pathobiology of osteoarthritis. Aigner et al.

[94-96] examined transcript levels of matrix components and matrix degrading proteinases using

DNA arrays. By comparing normal chondrocytes with early and late stage OA chondrocytes,

they examined expression trends involving up and down regulation of MMPs, TIMPS,

proteoglycans, and collagens [96]. Such approaches can be directly applied to the study of

mechanotransduction. While DNA arrays can sample large numbers of genes, they are limited in

their sensitivity and they do not measure posttranscriptional regulation or modifications [94].

While recognizing these limitations, the potential of such profiling approaches is clear [95, 97],

since the results can be used to formulate hypotheses about specific molecules and mechanisms

in ways that are complementary to the traditional one-gene or one-protein hypothesis-testing

approach.



1.8 Conclusion

Chondrocytes can sense and respond to mechanical forces in an extraordinarily sensitive

and robust manner. These cells can distinguish between compression, tension and shear

deformation of the surrounding ECM, and respond in a manner that varies with the rate

(frequency) of loading. Recent studies have identified several intracellular signaling pathways

that are involved in chondrocyte mechanotransduction and the regulation of cartilage and exhibit

levels of overlap or crosstalk in their signaling. These complex signals are responsible for

activation of ECM molecules proteinases, inflammatory factors, and regulatory proteins which

govern tissue homeostasis. Significant technical advances have enabled the study of transduction

mechanisms by chondrocytes within their native, dense ECM. Advanced genomic and proteomic

technologies should lead to a further rapid increase understanding the fundamental link between

chondrocyte mechanobiology, physiology, and tissue homeostatis in health and disease, with

direct application to cartilage repair and tissue engineering.
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Chapter 2

Current in vitro Injury Models



2.1 Introduction

Approximately one in five Americans is affected by arthritis, making it one of the most

prevalent diseases and the leading cause of disability in the United States [1]. Post-traumatic

arthritis occurs after a traumatic joint injury (ACL rupture [2, 3] or intraarticular fracture [4, 5])

and makes up a significant proportion of the population with arthritis [6]. In previous clinical

studies, patients suffering from a traumatic joint injury have shown an increased risk in

osteoarthritis (OA), independent of surgical intervention to stabilize the joint [7-11]. Thus, the

early events post-injury have an important effect on tissue within the joint in the long term.

Studies have shown a dramatic increase in concentration of inflammatory cytokines IL-113 and

TNF-a in the synovial fluid within twenty-four hours post injury [12] and have shown them to

remain at high levels in the synovial fluid for longer periods of times (months to years) [4, 13,

14]. The interplay between mechanical forces and cellular response to these forces are thought

to play a crucial role in understanding the onset of OA [15, 16]. Aggrecan molecules and

collagen matrix play an essential role in cartilage homeostasis, and the degradation of this matrix

and loss of aggrecan from cartilage is a crucial event in osteoarthritis [17, 18].

To understand the processes involved in the onset of OA and factors leading to OA post-

traumatic injury, in vitro models have been developed to isolate components of the complex

processes occurring in vivo. While in vitro models do not mimic true physiologic conditions in

vivo, by isolating the effects of mechanical compression, cytokine treatment, and cartilage co-

cultured with adjacent tissue (to name a few models), in vitro models can give insight into key

biological and mechanical processes occurring in vivo.



The aim of this chapter is to review and analyze the current in vitro models of injury.

While many in vivo animal models exist mimicking the injury process [19-21], this chapter will

focus on experiment models which isolate the components of such in vivo models.

2.2 Models of Mechanical Injury

In vitro mechanical injury has been shown to increase hydraulic permeability [22] and

water content [23-25], decrease stiffness [24, 26], increase collagen lost to the medium[22], and

increase glycosaminoglycan (GAG) lost to the medium [24, 27-29]. Cells subject to this

mechanical injury have been shown to decrease biosynthesis rates [24], undergo apoptosis and

necrosis[23, 24, 30, 31], and have elevated levels of protease transcript activity within the first 3

hours post-injury [32] and within the first 24 hours post-injury [33].

There exist significant differences between loading of articular cartilage in vivo and

mechanically loading explants. In vivo, articular cartilage is prone to experience different stress

concentrations throughout the tissue due to the rigid topography of the osteochondral cartilage

interface. Stress concentration in vivo probably corresponds to irregularities in subchondral

bone, or to a local variation in cartilage composition [34]. While explant loading may have

different stress profiles than in vivo loading, the advantage of in vitro mechanical loading is the

specific and accurate measure of the load applied to the explant and the resulting peak stress,

strain, and strain rate. Under these controlled conditions, the strain, strain rate, and peak stress

can be measured with precision, and since the three are interdependent, one or two of these



factors can be controlled for as the dependent variables, while the remaining variables are

considered the independent variables.

The application of these loads are applied in various different manners, including impact

loading (drop tower-type devices [35], material testing machines[36], and free flight masses

[37]) and injurious compression [38]. Researchers have suggested that there may be a threshold

level of peak stress that separates injurious compression from non-injurious compression [23, 39,

40]. Injurious compression techniques tend to explore the stress-strain response of articular

cartilage and how it and other tissues attenuate impact load. Studies have shown that when

applied compression reaches 50% strain, chondrocyte viability decreases [24, 26, 40-42] and

cartilage surfaces become physically disrupted, with generation of fissures [42]. A recent study

investigated the effect of indentation probing used as a diagnostic tool during or after surgical

procedures and its effect on chondrocyte viability [43]. This study reported that 30% strain

performed in arthroscopy decreased cell viability. The effect of strain rates has been investigated

by varying speed of impact and has been shown to be an important parameter in defining

mechanical injury [24, 44]. Articular cartilage generally behaves as a visco- or poro-elastic

fibre-composite material, and as such, its material properties depend on the rate of loading [45].

For example, at high rates, cartilage acts as a quasi-elastic material provided the stress is not too

high. Studies have found that fissuring and cell death occurred in the superficial zone with a

higher release of glycosaminoglycan (GAGs) when the strain rate was increased [42] and

apoptosis was increased as peak stress increased [26]. Alternatively, loads can be applied in a

load-rate dependent manner. A high load-rate of 600 MPa/sec caused concentrated cell death in

the superficial zone of articular cartilage, and a lower load-rate (30 MPa/sec) showed a more



diffuse pattern of cell death [23, 42, 46]. In a separate experiment, load-rates of 900 MPa/sec

and 40 MPa/sec were applied to cartilage explants. Matrix damage increased at the high load-

rate and caused substantial cell death around fissures and fractures while cell death was diffuse

throughout the explants at the low rates, as seen before [47]. Recently, peak stress has been

shown to not be an important cause of GAG loss from human cartilage in a model of 65% total

strain at a relatively high strain rate of 400%/sec [48].

Mechanical injury has also been shown to stimulate chondrocytes to produce harmful

reactive oxygen species (ROS) which depolymerize hyaluronic acid and kill chondrocytes [30,

49, 50]. After mechanical injury, cell death was abrogated by blocking NO synthesis, and since

NO synthesis is unlikely in itself to cause cell death, it is likely that the high levels of NO in

combination with ROS react to form toxic compounds like peroxynitrite [50-52].

2.3 Cytokine treatment Models of Injury

Interleukin-1 (IL-1), a pro-inflammatory cytokine considered to play a pivotal role in OA,

is used often as a catabolic stimulant in in vitro studies [53, 54]. Studies have shown that IL-i

increases expression of matrix metalloproteinases (MMPs) and aggrecanases involved in

cartilage matrix catabolism [32, 55] and mediates matrix degradation [56]. Treatment with IL-la

at concentrations of 10 ng/ml and TNF-a at 100 ng/ml had a significant increase in GAG loss

compared to free swell conditions for immature bovine cartilage [27]. In both adult human knee

and ankle, IL-la had no affect on GAG loss after three days in culture. TNF-a also showed no



significant difference in GAG loss of human knee cartilage three days or seven days post TNF-a

treatment [27].

Interleukin-6 (IL-6) is a cytokine involved in the regulation of inflammatory and

immunological responses and has been shown to be produced by human chondrocytes [57]. The

known inflammatory and destructive cytokines, IL-1 and TNF-a, have been shown to stimulate

IL-6 production, which acts in an autocrine fashion to increase production of interleukin-6

receptor (IL-6R) [58]. Initially IL-6 and IL-6R were proposed as critical mediators in

controlling the catabolic effects of pro-inflammatory cytokines like IL-I and TNF-c [59].

Recently IL-6 and IL-6R have been shown to synergistically increase cartilage breakdown and

collagenase production in combination with IL-la [60], and have been shown to be upregulated

in the synovial fluid in patients who have undergone anterior cruciate ligament injuries (32

weeks post-surgery) [61].

2.4 Synovium-Joint Capsule co-culture models of Injury

Co-culturing un-injured cartilage with damaged joint capsule (JC) in vitro has resulted in

a decrease in cartilage biosynthesis rates [62, 63], as well as a loss of proteoglycan and collagen,

as seen through histology staining [64]. GAG release from cartilage co-cultured with synovial or

capsular tissue was not decreased with the inhibition of IL-10, TNF-a, and ACITIC [65]. Under

the same conditions of cartilage co-cultured with joint capsule, GAG loss was blocked by

treatment with EDTA [65]. Interestingly, studies have shown that the presence of dead joint

capsule as well as joint capsule with viable cells produce similar degradation effects. This



suggests that the factors contributed from the joint capsule need not be actively produced by cells

within the joint capsule and may reside in the extracellular space or ECM of the tissue [66].

While the effects of JC co-culture appear to accelerate degradation, studies have also shown that

synoviocytes from joint capsule tissue provide chondrocytes with protection against reactive

oxygen species, which are known to induce membrane damage and lipid peroxidation [67].

Synovial cells from normal bovine or osteoarthritic human tissue have been shown to

produce aggrecanase-2 (ADAMTS-5). Yet interestingly, aggrecanase activity or expression

were not induced by IL-la or retinoic acid [65, 68], two mediators that are known to induce

aggrecanase expression in cartilage [69, 70]. The specific factor or factors from joint capsule

and/or synovial cells responsible for increased cartilage degradation still remain to be

determined.

2.5 Combination Models of Injury

An in vitro model of injury has been established in our lab incorporating the effects of a

mechanical injury and injured joint capsule (JC) tissue [62, 66]. Mechanical injury of cartilage

explants followed by co-culture with excised joint capsule results in further reduction of

biosynthesis found after injury or co-culture alone [62]. Initial studies have also been performed

on gene expression up to 24 hours post-injury [66]. These studies found there were significant

changes in gene expression of key enzymes measured in response to joint capsule co-cultured

with un-injured cartilage and mechanically-injured cartilage and co-culture with joint capsule.



Chapters 4 and 5 explore this model of injury in greater depth. Chapter 4 introduces a

combination of growth factors and measures their effect on the combination of injury and co-

culture. Chapter 5 applies this model to human tissue.

Recent studies showed treatment with cytokines (e.g., IL-1, TNF-a, IL-6 [27, 71])

following injurious compression in vitro increased GAG loss and decreased biosynthesis greater

than either mechanical injury or cytokine treatment alone. Both bovine and human tissue

exhibited a synergistic increase in proteoglycan loss in response to TNF-a or IL- la treatment

combined mechanical injury [27, 72]. Also, new findings have shown that with the addition of

an anti-IL-6 Fab fragment, an inhibitor of IL-6, GAG loss was decreased when both mechanical

injury and TNF-a were present [71]. This result supports the idea that IL-6 is either

endogenously present in cartilage tissue and/or is produced by the chondrocytes in reaction to

injury and/or TNF-a treatment. Recent data has shown that IL-6 is produced in response to

TNF-a treatment in cartilage, supporting previously reported results [58, 72]. The combinatorial

injury model of TNF-a, IL-6, IL-6R, and mechanical compression is further explored on a

transcriptional level in Chapter 6.

Whether the combination of these factors and mechanical injury is simply a result of

increased ability for factors to diffuse through the cartilage due to the micro-damage within the

tissue associated with injurious load or is a result of the synergistic effect of a biological stimulus

combined with a mechanical stimulus acting on the chondrocyte itself remains to be seen.



2.6 Conclusion

In vitro cartilage injury models have provided important insights into the basic

understanding of the acute effects of injury and the development of posttraumatic OA in vivo.

These models are the principle avenue for investigating specific components of in vivo joint

trauma and allow the complex model of joint injury to be understood through compartmentalized

studies. While many joint injury models exist, the four models discussed here are mechanical

injury of cartilage, cytokine treatment, co-culture models that incubate adjacent tissue and cell

types with cartilage, and combination models composed of the combination of mechanical

injury, cytokine treatment, and co-culture. An understanding of how cartilage responds to

complex models of injury (such as co-culture of mechanically injured cartilage with excised

joint capsule) along with the characterization of cell and tissue mechanics and mechanisms of

cartilage degradation will, aid clinicians and researchers in treating posttraumatic osteoarthritis.
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Chapter 3

Transcriptional Effects of Combined Mechanical
Compression and IGF-1 Stimulation on Bovine Cartilage
Explants

* This chapter is in preparation for submission to the Journal of Orthopaedics Research
(Wheeler, Cameron A and Grodzinsky, Alan J.)



3.1 Abstract

Introduction: Insulin-like growth factor-i (IGF- 1) is a potent anabolic factor capable of

endocrine and paracrine/autocrine signaling. Numerous studies have shown that chondrocytes

produce this important growth factor, and that IGF-1 can stimulate ECM biosynthesis by

chondrocytes in native cartilage and tissue engineered constructs. Previous studies have

demonstrated that mechanical compression can regulate the action of IGF-1 on chondrocyte

biosynthesis in intact tissue; when applied simultaneously, these stimuli act by distinct cell

activation pathways. Our objectives were to elucidate the extent and kinetics of the chondrocyte

transcriptional response to combined IGF-1 and static compression in cartilage explants.

Methods: Cartilage explants were harvested as performed previously in our lab. Cartilage plugs

were placed in 50% compression and 0% compression with or without 300 ng/ml of IGF-1.

RNA was obtained and measured by real-time PCR for 2, 8, 24, 32, 48 hours after treatment and

compression.

Results and Discussion: Transcript levels in response to compression alone agreed with

previously published data. Key matrix molecules, aggrecan and collagen II, responded

positively to the addition of IGF- 1 without compression, but this effect was abrogated when

compression was applied in combination with IGF-1 treatment. Clustering analysis revealed five

distinct groups. TIMP-3 and ADAMTS-5, MMP-1 and IGF-2, and IGF-1 and Collagen II, were

all robustly co-expressed under all conditions tested. These co-expressed molecules suggest

inherent regulation and positive feedback in chondrocyte gene expression. In comparing gene

expression levels to previously measured aggrecan biosynthesis levels, aggrecan synthesis is

shown to be transcriptionally regulated by IGF-1, whereas inhibition of aggrecan synthesis by

compression is not transcriptionally regulated.



Conclusion: Many genes measured are responsive the effects of IGF-1 under 0% compression

and 50% compression. Clustering analysis revealed strong co-expressed gene pairings. IGF-1

stimulates aggrecan biosynthesis in a transcriptionally regulated manner, whereas compression

inhibits aggrecan synthesis in a manner not regulated by transcriptional activity.



3.2 Introduction

Insulin-like growth factor-1 (IGF-1) is a 7.6 kDa, 8.5 PI, potent anabolic factor capable of

endocrine and paracrine/autocrine signaling. While IGF-1 is primarily produced in the liver and

transported throughout the body via the blood stream, numerous studies have shown that

chondrocytes produce this important growth factor, and that IGF-1 can stimulate ECM

biosynthesis by chondrocytes in native cartilage and tissue engineered constructs. The use of

growth factors as therapeutics to reverse or inhibit cartilage degradation has been an underlying

focus in cartilage research. The avascular, alymphatic, and aneural nature of cartilage suggests

that the growth factor be administered though means of local delivery. Local delivery is

complicated due to joint motion and cartilage structure which affects special and temporal

diffusion rates.

To investigate the effects of exogenous IGF- 1, many studies have examined how

chondrocytes respond at the protein level as well as the gene transcript level. General protein

levels have been measured using conventional radiolabel incorporation (35S, 3H), and show that

chondrocytes respond in a dose dependent manner to IGF-1 [1-6]. The environment the

chondrocytes are cultured in varies (explants, gels, monolayer), but generally chondrocyte

biosynthesis levels are increased from 150% [4] to 2-6 fold control levels [3, 6-8]. Researchers

have also examined particular proteins using western blot analysis. For example, MMP-13 was

found to be suppressed in response to IGF-1 treatment [9]. When examining the transcript or

gene levels in response to IGF-1, researchers have focused on specific molecules using real-time

PCR and reverse transcription PCR. Type II collagen was shown in multiple studies to be

significantly upregulated by IGF-1 [3, 10-12]. Aggrecan transcripts have shown no significant



increase [3, 4] or slight upregulation [12] with the addition of IGF-1 in the first 48 hours of IGF-

1 treatment, yet were significant upregulation (130%) when treated for 1-3 weeks [10]. IGF-1

transcript levels were shown to peak at 24 hours after IGF-1 treatment, suggesting that IGF-1 has

an autocrine response [1]. Sox-9, a transcription factor was also shown to have no significant

response to IGF-1 [11].

Chondrocytes have been shown to be responsive to mechanical compression on both the

protein and gene transcript levels. Static compression in vitro has been shown to decrease

protein biosynthesis levels of type II collagen and proteoglycans in a dose dependent manner [5,

13]. In alginate and type I collagen gels seeded with chondrocytes, 50% static compression was

shown to decrease radiolabel incorporation by nearly half in comparison to non-compressed

controls [14, 15]. Similar findings have been shown in cartilage explants with proteoglycan and

type II collagen synthesis decreasing within 1-2 hours of loading and remaining suppressed for

the loading period (24 hrs) [16, 17]. When transcript levels were examined in response to static

loading, type II collagen and aggrecan were shown to initially peak anywhere from 1 to 4 hours

after compression, followed by a decrease to unaffected level of gene expression [13, 15, 18, 19].

Fitzgerald et al. have investigated 28 different ECM related molecules including matrix

proteinases, tissue inhibitors of matrix metalloproteinases (TIMPs), growth factors, cytokines,

and structural ECM molecules, under static compression for a 24 hour period and reported 4

distinct patterns associate with gene expression [19].

Bonassar et al. have examined the combination of IGF-1 treatment with static compression at a

protein level and found when cartilage explants were treated with IGF-1 under 0% compression



(cut thickness) a 2-3 fold increase was found over 48 hour [5]. Under static compression

biosynthesis was decrease by 50% compared to non-compressed conditions. When compressed

explants were treated with IGF-1, biosynthesis rates significantly increased, returning to levels

comparable to non-compressed, non-treated explants. Thus compression diminished the effects

of IGF-1, but did not altogether eliminate them. IGF-1 was still able to upregulate or rescues the

synthesis rate of statically compressed cartilage explants.

Chondrocyte gene expression under a combination of IGF-1 treatment and static

compression have not been examined thoroughly. Our objectives were to elucidate the extent

and kinetics of the chondrocyte transcriptional response to combined IGF-1 and static

compression in cartilage explants.



3.3 Methods
Cartilage Harvest, Mechanical Loading, and Growth Factor Treatment: Cartilage-bone

plugs were harvested from the patello-femoral groove of 1-2 week old calves. Cartilage disks

(1mm thick X 3mm diameter) were cored and punch from the middle zone as described

previously [20] and equilibrated for two days under free-swell conditions in the presence of

serum-free feeding medium consisting of high glucose Dulbecco's modified essential medium

supplemented with 10 nM Hepes Buffer, 0.1 mM nonessential amino acids, 20 gg/ml ascorbate,

100 units/ml penicillin, 100 gg/ml streptomycin, and 0.25 tg/ml amphoericin B. Five

anatomically matched disks were separated for each time point (Figure 3.1), and placed in

polysulfone loading chambers. Each time point consisted of four separate experiments. With

cartilage disks matched for time, 8 disks were allocated to 0% compression (i.e., compressed to

1-mm cut thickness from free swelling), 50% compression, 0% compression + 300 ng/ml IGF-1,

and 50% compression + 300 ng/ml IGF- 1, the IGF- 1 concentration found previously to

maximally stimulate similar free-swelling calf cartilage explants [5]. At time zero, all chambers

were slowly compressed to specified strains over a 3 minute period to avoid injurious effects of

high strain rates. These strains were maintained for each of the four conditions for 2, 8, 24, 32,

and 48 hours (Figure 3.1). Upon completion of loading time, disks were promptly removed,

flash frozen in liquid nitrogen, and stored at -80' C.
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Figure 3.1. A schematic of the four conditions measured. 5 plugs were punched for each time
point and matched for time. IGF-1 treatment and static compression were applied at time 0, and
plugs were flash frozen at 2, 8, 24, 32, and 48 hours.

RNA Extraction and Quantization, Primer Design, and Real-Time PCR: 8 disks for each

time point and condition were taken from -80o C freezer and pulverized. In order to prevent

RNA degradation, the pulverizing apparatus was constantly cooled using liquid nitrogen. Once

samples had been pulverized, Trizol (sigma, St. Louis) was added and homogenized to

thoroughly break down the tissue. After chloroform was added, the mixture was transferred to

pre-spun phase gel tubes, and spun at 13,000 rpm for 10 minutes at 40 C. Supernatant was

removed, and RNA was extracted using Qiagen RNAeasy mini kit protocol with recommended

DNase digest (Qiagen). RNA was stored in 50 ýtl of RNase free water under -80o C conditions.

m
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RNA quality and amount was quantified by using NanoDrop ND-1000 spectrophotometer.

According to RNA measurements, 1tg of RNA was reverse transcribed using Applied

Biosystems reagents as previously described [21]. Forward and reverse primers for 24 relent

genes (Table 3.1) were designed based on bovine genomic sequences and standard curves were

calculated as previously described [19]. Once cDNA was obtained, Real-Time PCR was

performed using MJResearch Opticon2 instrument and SYBR Green Master Mix (SGMM,

Applied Biosystems). SGMM was combined with RNase free water and cDNA and aliquated

into MJResearch 96-well plate. Using a multi-pipette, a premixed solution of forward and

reverse primer for 24 different genes was added to each well. Measured threshold values (Ct)

were converted to RNA copy number according to previously calculated standard curves.

Protease Cytokines Growth Transcription Stress Activated Housekeeping
inhibitors Factors Factors Genes Gene

Type II Collagen MMP1 Timp-1 TNF-a IGF-1 c-Jun HSP90 18s
Aggrecan MMP3 Timp-2 IL-1 IGF-2 c-Fos Txnip

Link Protein MMP13 Timp-3 IL-4 TGF-B Sox-9
Fibronectin ADAMTS-5 IL-6

Table 3.1. 24 Cartilage Relevant Genes. Primers were designed Primer3 software
(www.genome.wi.mit.edu/cgi-bin/primer/primer3www.cgi). Standard dilutions were used to
calculate relative mRNA copy number.

Data Normalization and Statistical Analysis: Under each loading condition and time

point, each gene RNA copy number was normalized to the 18s housekeeping gene from that

same condition and time point [22]. To examine the time course of gene expression, 0%

compression + IGF-1, 50% compression, and 50% compression + IGF-1 were normalized to 0%

compression levels. Thus, if a gene expression value was below or above 1, it represented a

decrease or increase of gene expression respectively compared to 0% compression. Expression

levels due to experimental error were removed. To assign statistical significance to expression



levels, a non-parametric test was used to ensure unbiased results by avoiding the assumption of a

parameter based distribution. The Wilcoxon sign ranked test was used to judge significance

which incorporates the amount of data in the significance statistic. Significance was assigned if

the Wilcoxon sign ranked test statistic produced a p-value less than 0.07. The minimum p-value

using the Wilcoxon sign ranked test is 0.068 due to the fact that there are only four replicates.

Thus, significance of 0.07 was chosen because with this non-parametric test and amount of data,

0.05 cannot be obtained.

Clustering Analysis: In order to understand general transcriptional patterns in the data,

clustering analysis was performed on all normalized conditions (0% compression + IGF-1, 50%

compression, and 50% compression + IGF-1) and time points (2, 8, 24, 32, 48 hours) over 23

genes. This resulted in a 15 x 23 matrix which was standardized by expression amplitude as

described previously [19], in order to accentuate gene expression patterns as appose to

expression magnitudes. The 15 gene expression array vectors were clustered using k-means

clustering. Principle component analysis (PCA) was used to determine the components that

contain the greatest variance in the expression data[23, 24]. Once the 15 principle components

had been calculated, the k-means clustering algorithm was applied to the 15 principle

components and clustered into k groups. The average and variance of each projected coordinate

group was calculated to compose a group centroid. Centroid vectors were formed by combining

the three main principal components weighted by their projected centroid coordinate. The

uniqueness of each Group's expression patterns were evaluated by the Wilcoxon sign ranked

test.



3.4 Results

Effects of static compression: Cartilage disks were subject to 2, 8, 24, 32, and 48 hours

of compression applied in a ramp and hold fashion. The disks experience a peak stress when the

compression is applied, followed by a slow stress relaxation due to the poroelastic properties of

cartilage. The five time points were chosen to capture the kinetics of gene expression in repose to

the changes in stress. Twenty-four different genes were measured at each one of the five time

points and were normalized to 18s, a housekeeping gene, and 0% compression with no added

IGF-1 was used as a control. 8 of the 23 genes measured were up-regulated for 3 or more of the

time points examined. These included ADAM-TS5, MMP-13, MMP-3, TGF-p, c-Fos, c-Jun,

and Sox-9 (Figure 3.2, Appendix 3.8.1). Matrix metalloproteinase- 3 (MMP-3) was significantly

up-regulated at 8, 24, 32, and 48 hours with a peak expression level of 30-fold compared to

control at 32 hours (Figure 3.2A). ADAM-TS5 and MMP-13 displayed a transient increase in

expression levels peaking at 48 hours with >6-fold and >17-fold up-regulation respectively

(Figure 3.2B, Appendix 3.8.1). TGF-3 was consistently up-regulated 2.5-fold from 8 hours to 32

hours (Figure 3.2D). Supporting previously reported data[ 19], c-Fos and c-Jun were

significantly up-regulated in response to 50% static compression at all time points measured

(Appendix 3.8.1). Interestingly, c-Fos, c-Jun and Sox-9 were all maximized at 8 hours (23-fold,

30-fold, and 6.8-fold respectively) (Appendix 3.8.1). Displaying a transient decrease, IGF-1 was

the only gene measured that showed a significant down-regulation in the presence of 50% strain

for at least 3 of the measured time points. IGF-1 was significantly down-regulated by 50% at 24

hours and up to 70% at 48 hours (Appendix 3.8.1).
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time points, MMP-13, MMP-1, TNF-a, and IL-103, which traditionally are thought to play

catabolic roles in cartilage. MMP-13, TNF-a, and IL- 10 were significantly up-regulated and

peaked at 24 hours to the level of 8-fold, 2.5-fold, and 2.75-fold respectively (Figure 3.2B and

Appendix 3.8.1). MMP-1 and IGF2 were transiently up-regulated to a significant level until a 32

hour peak (4.75-fold and 3-fold respectively), after which expression levels returned to control

(Figure 3.21, 3.2E). Link and Aggrecan were also transiently up-regulated with a peak of 32

hours (4-fold and 2.5-fold respectively), but expression levels at 48 hours were still significantly

above control (Figure 3.2F, 3.2G). As in 50% static compression, Sox-9 was significantly up-

regulated at 8 hours to a comparable level of 6.3-fold (Appendix 3.8.1). TIMP-3 and HSP90

were significantly upregulated at all time points and both displayed an initial peak of expression

(5-fold and 3-fold respectively), followed by a transient decrease of expression over time (Figure

3.2C, Appendix 3.8.1). No genes measured were significantly down-regulated by the treatment

of IGF-1.

Effects of IGF-1 and static compression: Combining the treatment of 300 ng/mL of IGF-

1 and static compression to a level of 50% strain, 11 of the 23 genes were significantly different

than the 0% control for 3 or more time points. MMP-13, MMP-3, TGF-P, c-Fos, c-Jun, TIMP-3,

and HSP90 were significantly up-regulated in at least 3 of the measured time points. MMP-13

and MMP-3 were significantly upregulated 4 out of the 5 time points and had peak values of 28-

fold and 33-fold respectively at 24 hours (Figure 3.2B, 3.2A). TGF-3 and HSP90 were

transiently upregulated to a peak level of 3.8-fold and 2.25-fold respectively, at 32 hours (Figure

3.2D, Appendix 3.8.1). c-Fos and c-Jun were again significantly up-regulated for all time points

with expression peaks at 24 and 8 hours (Appendix 3.8.1). The peak value of c-Fos, 22-fold, was



similar to the expression levels found in 50% static compression alone. Alternatively, the peak

value of c-Jun had decreased from 30-fold under 50% static compression to 16-fold under 50%

static compression with IGF-1. TIMP-3 showed a slow increase of expression which peaked at

24 hours to a level of 19-fold, followed by an up-regulated level of 10-fold (Figure 3.2C). Co12,

IGF-2, TIMP-2, and TXNIP were significantly down-regulated for 3 or more time points

measured. IGF-2 and TXNIP showed a transient decrease of expression over time and bottomed

out at 48 hours decreasing 45% and 52% expression below control (Figure 3.2E, Appendix

3.8.1). Co12 and TIMP-2 were drastically decreased under 50% static compression with IGF-1.

Co12 was transiently down-regulated, decreasing expression levels by 43% at 24 hours, to 62% at

48 hours (Figure 3.2H). TIMP-2 was also transiently down-regulated, decreasing expression

levels by 50% at 24 hours and 92% at 48 hours (Appendix 3.8.1).

Comparing effects of IGF-1 under 0% and 50% compression: To elucidate the different

effects of IGF-1, the effects of IGF-1 were isolated by normalized gene expression to like

loading conditions. 50% static compression with IGF-1 was normalized by 50% static

compression, and 0% static compression with IGF-1 was normalized to 0% static compression.

When examining the effects of IGF-1 under non-loaded conditions (0% static compression), 9 of

the 23 genes were significantly altered for 3 or more time points by the addition of IGF-1. Under

loading conditions (50% static compression), 4 of the 23 genes were significantly altered for 3 or

more time points by the addition of IGF-1 (Appendix 3.8.2). Of the significantly affected genes,

aggrecan, IGF-2, and TIMP-3 were significantly affected by IGF-1 in both loaded and un-loaded

conditions (Figure 3.3). Aggrecan, IGF-2, and Link were all up-regulated when treated with

IGF-1 under un-loaded conditions, and down-regulated when treated with IGF-1 under loaded



conditions (Figure 3.3A, 3.3B, 3.3C). Aggrecan in particular was significantly up-regulated for

all time points by IGF-1 under un-loaded conditions, and significantly down-regulated for all

time points by IGF-1 under loaded conditions (Figure 3.3A). In contrast, TIMP-3 was up-

regulated significantly under both un-loaded and loaded conditions (Figure 3.3D). MMP-1 was

up-regulated significantly with treatment of IGF-1 under un-loaded conditions, but was

unaffected by the treatment of IGF-1 when loading conditions were present (Figure 3.3E).
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Expression Trends and Groupings: After normalization of the data, using principle

component analysis (PCA), the 15 dimensional space was reduced to a three dimensional space,

by calculating three eigenvectors or principle components that represent 80% of the variance in

the data. With three principle components, each standardized gene was projected in to the

principle component space and can be visualized as shown in figure 3.4. All 15 dimensions of

each gene were used in the k-means clustering technique to ensure that smaller gene variations

were represented in the grouping. After dividing the genes into 2 to 8 cluster groups and visually

comparing the distinctness of the groups, 5 groups appeared to be an adequate number of

groupings (Figure 3.4). These 5 groups contained 4 to 7 genes as shown in Table 3.3A. The

mean expression level is represented by a centroid (Figure 3.4) and the mean expression profile

of the 5 groups is shown in Figure 3.5. The centroids were shown to be significantly separated

by taking the euclidean distance between centroids and calculating the gene to centroid

variance[22]. (Table 3.2).

P-value of Centroid Centroid 1 Centroid 2 Centroid 3 Centroid 4
Separation

Centroid 2 0.032

Centroid 3 0.017 0.034

Centroid 4 0.007 0.073 0.016

Centroid 5 0.001 0.015 0.006 0.042

Table 3.2. P-value of Centroid Profile Separation. P-values were obtained through student T-
test, comparing centroid to centroid Euclidean distance. Degrees of freedom were taken as the
number of genes in each group.
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Group 1 was significantly upregulated for all conditions and all time points (Figure

3.5A). Under treatment of IGF-1, a 2-fold increase was observed at 24 hours and under loading

conditions a > 6-fold increase was observed at 24 hours as well. When combining the treatment

of IGF- 1 and compression, it appears the expression levels of IGF- 1 treatment dominate initially

(2 hours). At 24 hours there appears to be an additive effect of compression and IGF-1 treatment

as the combined compression and IGF-1 levels are about 9-fold. (>6 + 2). At 32 and 48 hours,

the effects of compression appear to dominate the effects of IGF-1 treatment. Group 2 under

treatment, compression, and compression with treatment, are initially significantly upregulated,

but return to control expression levels at 48 hours (Figure 3.5B). In both compression and



treatment conditions, group 2 responds strongly by reaching > 3-fold and 2.5-fold respectively.

When IGF-1 treatment and compression are combined, all significantly upregulated time points

(2-32 hours) in treatment and compression are reduced with a peak value of 2-fold. Under

treatment conditions, with a strong significant up-regulated for the first three time points,

(peaked at > 3.5-fold) group 3 appears to be strongly upregulated by IGF-1 (Figure 3.5C). Under

compression, group 3 has no significant initial changes, but at 48 hours in upregulated > 2-fold.

When combining compression and treatment all time points are reduced to control levels, apart

from 24 hours, which is still significantly upregulated, but reduced to 2-fold from > 3.5-fold in

treatment alone. Group 4 under IGF-1 treatment conditions is increasing significantly up-

regulated until 32 hours (2.5-fold) before it returns to near control levels at 48 hours (Figure

3.5D). Under compression conditions, group 4 exhibits a near opposite effect as in the treatment

conditions, by initially being up-regulated ( 3-fold), and decreasing over time to return to control

levels. Previous data has shown that Aggrecan, a member of this group, acts in a similar

expression profile with a initial upregulation with compression followed by a return to control

levels [19]. Combining compression and treatment, no time points are significantly different than

control, but artifacts of the initial peak at 2 hours from compression alone and peak at 32 hours

from IGF-1 treatment alone appear. Group 5 showed very little change under IGF-1 treatment

with a significant upregulation at 32 hours of 1.5-fold (Figure 3.5E). Under compression

conditions, group 5 was upregulated significantly at 2 and 8 hours with a peak of 1.6-fold, but by

24 hours until 48 hours was significantly decreasingly down-regulated to a minimum point at 48

hours, loosing greater than 50% expression compared to control. When combining compression

and IGF-1 treatment, all time points were lower than either compression or IGF-1 treatment



alone, and 24-48 hour were decreasingly down-regulated to a significant level, loosing greater

than 60% expression compared to control at 48 hours.
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3.5 Discussion

To understand the transcriptional responses under different conditions, the 23 genes

observed were clustered according to IGF-1 treatment alone, 50% static compression alone, and
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the combination of static compression and IGF-1 treatment. Lastly, to understand a more global

view of transcriptional activity, all conditions and time points were clustered together. The

groupings assigned by clustering analysis can be seen in Table 3.3A. Looking at the groupings

under IGF-1 treatment alone, Link, type II collagen, and aggrecan which were significantly

upregulated, were grouped together, while TXNIP, thioredoxin interacting protein, the only

molecule that was significantly down regulated by IGF-1 treatment for multiple time points is

uniquely grouped (Table 3.3B). Groupings of compression alone isolate IL-6, highly non-

responsive to compression over the time course measured, in its own group. Transcription

factors, highly initially upregulated genes, were grouped together while transiently upregulated

proteinases were allocated to a different grouped, both of which support previous findings for

compression (Table 3.3C) [19]. Examining the combination of the treatments, Fibronectin was

partitioned to a unique group for its seemingly non-responsive behavior to compression and IGF-

1 treatment. The majority of proteinases were also grouped together (Table 3.3D). Looking at

all three sets of clusters, of note, MMP- 1 and IGF-2 were grouped together under the three

different conditions, as well as link protein, and the components of the AP-1 complex, c-Fos and

c-Jun. Type II collagen and IGF-1, TIMP-3 and MMP-3, Sox-9 and TIMP-1 were allocated in

the same group for all three conditions. Compiling all conditions observed into an expression

vector, cluster analysis revealed that all cytokines were grouped together, and were significantly

upregulated under IGF-1 treatment alone compared to controls. Under compression alone and

IGF-1 and compression experiments this extensive upregulation was not observed, suggesting

that IGF-1 has a stimulatory effect on cytokines which is mitigated when compression is present.

Also of note, Aggrecan, type II collagen, and link protein were all in separate groupings,

suggesting that there may be different mechanisms involved in the activation of these molecules.



Of the strongly upregulated group, transcription factors, growth factors, protease inhibitors, and

proteinases were grouped together, namely c-Fos, c-Jun, TGF-P, TIMP-3, MMP-3, MMP-13,

and ADAMTS-5.

Centroid Coordinates
Group Genes (PC1, PC2, PC3)

1 TGF-B, c-Fos, c-Jun, Timp-3, ADAMTS-5, MMP13, MMP3 (-2.46, 2.37, -0.33)
2 Sox-9, HSP90, Timp-1, Link (-3.10, 0.95, -0.07)
3 TNF-a, IL-1, IL-4, IL-6 (-2.78, -1.50, -0.94)
4 IGF-2, MMP1, Fibronectin, Aggrecan (-2.71, -0.24, 2.03)
5 IGF-1, Txnip, Timp-2, Collagen II (0.32, 3.21, -0.19)

B
Centroid Coordinates

Group Genes (PC1, PC2, PC3)
1 TGF-B, Sox-9, Timp-2, Timp-1, Fibronectin (-1.81, 0.93, 0.43)
2 Txnip (1.11,0.91, -1.55)
3 IGF-2, IGF-1, c-Jun, c-Fos, ADAMTS-5, MMP1, Link, Collagen II, Aggrecan (-2.05, 0.39, -0.25)
4 TNF-a, IL-6, IL-4, MMP13 (-1.48, -1.58, -0.22)
5 IL-1, HSP90, Timp-3, MMP3 (-2.03, -0.57, -0.05)

C
Centroid Coordinates

Group Genes (PC1, PC2, PC3)
1 IGF-1, Timp-2, Collagen II (0.44, 2.03, -0.13)
2 IGF-2, Txnip, MMP1, Fibronectin, Aggrecan (-1.41, 1.42, -0.48)
3 TNF-a, IL-4, IL-1, Timp-3, ADAMTS-5, MMP13, MMP3 (-1.92, 0.16, 0.56)
4 TGF-B, c-Jun, c-Fos, Sox-9, HSP-90, Timp-1, Link (-1.73, -0.86, -0.37)
5 IL-6 (0.59, -1.18, -1.76)

D
Centroid Coordinates

Group Genes (PC1, PC2, PC3)
IGF-2, MMP1

IL-6, IL-4, IL-1, Timp-3, ADAMTS-5, MMP13, MMP3
TGF-B, TNF-a, c-Jun, c-Fos, Sox-9, HSP90, Timp-1, Link

Fibronectin
IGF-1, Txnip, TIMP-2, Collagen II, Aggrecan

(-0.52, 0.62, -1.65)
(-1.88, -0.49, 0.14)
(-1.88, 0.62, 0.05)
(1.34, -1.62, -0.59)
(1.77, 0.70, 0.14)

Table 3.3. Gene clustering groupings. Resulted gene sorting according to extent and kinetics of
expression. Specific gene allocation and centroid coordinates when all data are clustered (A),
0% compression 300 ng/ml IGF-1 data clustered (B), 50% compression 0 IGF-1 data clustered
(C), and 50% compression 300 ng/ml IGF-1 data clustered (D).

With the 4 different sets of data clustered, (compression, IGF-1, compression + IGF-1, all

conditions) three interesting pairings were always present: MMP-1 and IGF-2, TIMP-3 and

1
2
3
4
5



ADAMTS-5, type II collagen and IGF-1. MMP-1 or collagenase-1 is shown to cleave key ECM

molecules including collagen I, collagen II, aggrecan (at the MMP cleavage site in the

interglobular domain), fibronectin, and link protein [25]. MMP-1 has been shown to play a role

in the regulation of paracrine signals, through the degradation of cytokines such as IL-10 [26].

Collagenase-1 has also been shown to degrade insulin-like growth factor binding proteins

(IGFBP) 3 and 5, which indirectly increases presence of free (unbound) IGF [27, 28]. IGF-1 and

IGF-2 are known to bind IGFBP-3, the most abundant IGF binding protein in human serum [29].

IGF-2 is known to stimulate DNA and proteoglycan synthesis in chondrocytes [30] and has been

shown to act in an autocrine fashion [31]. IGF-2 has also been shown to stimulate type 1 IGF

receptor, a key receptor for IGF-1 and also IGF-2 with lesser affinity [32, 33]. The co-

expression of MMP- 1 and IGF-2 suggests that the two contain each other through their anabolic

and catabolic activities and have the capability of a strong anabolic response, due to the

stimulatory secondary effects of MMP-1.

TIMPs act in a stochiometric fashion to reversibly inhibit metallo-proteinases [34]. Of

the four known TIMPs (1-4), TIMP-3 has been shown to be a strong inhibitor of Aggrecanase-1

(ADAM-TS4) and Aggrecanase-2 (ADAM-TS5) with Ki values in the subnanomolar range [35,

36]. When added exogenously to bovine nasal and porcine articular cartilage, TIMP-3 retains

the ability to inhibit aggrecanase activity induced by catabolic factors [37]. In the current study,

TIMP-3 is shown to be significantly upregulated with the addition of IGF-1, and acts in a

compression independent manner (Figure 3.3). Although Aggrecan can be degraded by multiple

members of the matrix metalloproteinase family, it has recently been shown that ADAMTS-5 is

the primary aggrecanase responsible for aggrecan degradation in a murine model of osteoarthritis

[38]. The constant grouping based on expression profile of TIMP-3 and ADAMTS-5 suggests a



biological control may present to ensure the turn over of aggrecan and the regulation of anabolic

and catabolic factors. Supporting these ideas, past clustering analysis with cartilage under

multiple conditions also grouped ADAMTS-5 and TIMP-3 together [19].

Type II Collagen, a key matrix protein, adds structure and strength to articular cartilage.

IGF-1 has been shown to elevate levels of type II collagen under a number of different

conditions [3, 10]. The co-expression of type II collagen and IGF-1 under compressive and/or

IGF-1 treated conditions suggests a positive feedback loop between IGF-1 and type II collagen.

Under IGF-1 treatment both are upregulated, while under compression, both are down regulated.

This supports previous data suggesting that IGF-1 acts in an autocrine fashion [1, 32]. Further

studies using promoter analysis must be performed to confirm if these pairings are co-expressed

or if these results are an artifact of the selected genes measured.

In contrast with previously published reports [3, 10, 11], the current results show only a

slight upregulation of type II collagen in response to IGF-1 alone, compared to a significant

upregulation (Figure 3.2H). A possible explanation for the discrepancy in the magnitude of type

II collagen expression induced by IGF-1 was the 0% compression control present in the current

study, where free swell conditions were used in previously published studies. Aggrecan was

previously shown to have no significant change in the first 48 hours [3], which this study

supports (Figure 3.2F). Previously published data show that MMP-1, MMP-3, and MMP-13

were unaffected by the addition of IGF-1 after 48 hours, while the current data suggests a

significant increase for 4 out of the 5 time points in MMP-1 and MMP-13 (Figure 3.21, 3.2B).

Again, reasons for this discrepancy may be due to the 0% static compression present during IGF-

1 treatment. IGF-1 mRNA levels were maximum at 32 hours (Appendix 3.8.1), where previous



studies reported them to peak at 24 hours [1]. Nixon et al. examined time points at 0, 4, 14, 24,

48, and 72 hours, thus finding a maximum of 32 hours is not in direct contradiction to the

previously published finding. Sox-9 expression was shown to be significantly upregulated by

IGF-1 at 4 of the 5 measured time points (2, 8, 32, 48), which previously was shown to be

unresponsive to IGF-1 at 72 hours (Appendix 3.8.1). Many differences in the two experiments

exist possibly explaining the difference in IGF-1 response, i.e., bovine vs. human, young tissue

vs. old tissue, explant tissue vs. monolayer, 300 ng/mL IGF-1 vs. 100 ng/mL IGF-1.

In agreement with previously published data [13, 15, 18, 19], under static compression, type II

collagen and aggrecan were initially upregulated and then down regulated to nearly control

levels (Figure 3.2H, 3.2G).

Examining the transcriptional effects of IGF-1 on aggrecan and link, IGF-1 appears to act

via a compression-dependent manner (Figure 3.3A, 3.3C), whereas the transcriptional effects of

IGF-1 on collagen II and fibronectin appear to be independent of compression (Figure 3.3F,

Appendix 3.8.2). This phenomenon could easily be explained by the compacted ECM present

under compression, dramatically restricting transport of IGF-1 to chondrocytes. To test this idea,

experiments were performed allowing IGF-1 to be incubated for 24 hours (transport studies

performed by Bonassar et al. [5]), to allow IGF-1 to diffuse completely into the cartilage explant.

Results of this experiment replicate the trends seen in Figure 3.3A, 3.3C, suggesting that

aggrecan and link act in a compression-dependent manner when treated with IGF-1. Whether

this change is due to decreased receptor-ligand affinity, or to mechanotransduction intracellular

signaling interference, remains to be determined.
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Figure 3.6. Aggrecan Protein Synthesis compared to Aggrecan Gene Expression. (A) Aggrecan
protein synthesis as measured by 35S radiolabel incorporation normalized to 0% compression 0
IGF-1 adapted from Bonassar et al [5]. Mean plotted. (B) Aggrecan gene expression
normalized to 18s and plotted relative to 0% compression 0 IGF-1. Significance was measured
by the Wilcoxon sign ranked test compared to like compression 0 IGF-1. (* p-value <0.07).

At the transcriptional level, the current study points out the anabolic response due to the

treatment of IGF-1 under 0% compression loading, and the mixed anabolic and catabolic signals

under 50% static compression coupled with IGF-1. To further investigate the transcriptional

response to the protein synthesis under IGF-1 treatment and compression, Figure 3.6 shows the

levels of aggrecan protein synthesis, normalized to 0% compression 0 IGF-1 compared to gene

expression of aggrecan. Aggrecan gene expression under 0% compression, 300 ng/ml IGF-1 is

upregulated compared to control for all 5 time points measured (Figure 3.6B). Examining the

corresponding aggrecan protein level at 0% compression, 300 ng/ml IGF-1, there is a strong

increase in aggrecan synthesis at 8, 24, and 48 hours (Figure 3.6A). These data suggest that

aggrecan synthesis is transcriptionally regulated by IGF-1. Examining the gene expression of

aggrecan under 50% compression 0 IGF-1, there is an initial bolus of transcript at early time
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points, followed by a return to control levels (Figure 3.6B). Examining the protein synthesis

levels of aggrecan, at the same early time points, aggrecan synthesis is reduced below control

and this reduction is sustained for all time points measured, suggesting that the inhibition of

aggrecan synthesis by compression, with no IGF-1, is not transcriptionally regulated (Figure

3.6A). Thus, in attempts to reconcile the responsiveness of aggrecan under 50% static

compression at the translational level with the unresponsiveness of aggrecan at the

transcriptional level, the authors support the hypothesis [4] that under static compression,

proteoglycan synthesis is regulated through post-transcriptional machinery.

3.6 Conclusion

Experiments have been performed to assess expression levels of a range of ECM related

genes in response to static loading in the presence and absence of IGF-1. Through k-means

clustering analysis, major co-expression trends were elucidated, grouping genes into highly

responsive, non-responsive, and differentially active gene profile groups. The gene pairs MMP-

1 and IGF-2, TIMP-3 and ADAMTS-5, and type II collagen and IGF-1 were consistently co-

expressed in multiple clustering conditions, suggesting the possibility of strong regulation and

control relationships between members of each pair. Aggrecan and link protein responded to

IGF-1 in a compression-dependent manner, whereas type II collagen and fibronectin appeared to

respond to IGF-1 in a manner independent of compression. While aggrecan transcripts were

significantly upregulated with the addition of IGF-1 under 0% compression, IGF-1 was unable to

upregulate aggrecan when the cartilage explants were statically compressed to 50% strain. In

comparing aggrecan gene expression to aggrecan synthesis, these data suggest that aggrecan

synthesis is transcriptionally regulated by IGF-1 while the inhibition of aggrecan synthesis by



compression is not transcriptionally regulated. However, more studies are needed to elucidate the

specific stimulatory mechanism(s) induced by IGF-1 and the post-transcriptional inhibitory

effects of compression.
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3.8 Appendix

Appendix 3.8.1- Gene Expression relative to Control
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Appendix 3.8.2- The Effects of IGF-1 on Gene Expression
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Chapter 4

Influence of OP-1 and IGF-1 on Cartilage Subjected to
Combined Mechanical Injury and Co-culture with Joint
Capsule

* This chapter is a manuscript in preparation for submission
(Wheeler, Cameron A., Wilkinson, Samuel, Perez, Anthony R., Kurz, Bodo, and Grodzinsky,
Alan J.)



4.1 Introduction

Osteogenic Protein-i (OP-1), or Bone Morphogenetic Protein-7 (BMP-7), is a potent

growth factor and belongs to the TGF-3 super family [1]. Bone morphogenetic proteins have a

variety of effects on biologic activity, including: cell proliferation, apoptosis, differentiation,

migration, embryogenesis, development, and supporting tissue homeostasis [1-3]. For the past

30 years, studies have been compiled and therapeutics have been developed documenting and

exploiting the effects of OP-1 and BMPs on bone formation [4]; for the past ten years, studies

have shown the possible use of this growth factor in cartilage [5]. OP-1 is found in many tissues,

and was recently found to be expressed in articular cartilage [6-8]. The apparent advantage of

OP-1 over other members of the TGF-3 family for the treatment of cartilage pathologies is the

ability of OP-1 to upregulate chondrocyte metabolic activities and proteoglycan synthesis while

avoiding uncontrolled cell proliferation and differentiation [5, 8-10]. Studies have shown that

OP-1 stimulates key extracellular cartilage proteins such as collagen type II, VI, aggrecan,

decorin, fibronectin, hyaluronan, and superficial zone protein (lubricin) [5, 11-14] while others

have shown that OP-1 has little stimulatory effect on gene expression [15]. OP-1 also stimulates

proteoglycan synthesis in osteoarthritic and non-osteoarthritic chondrocytes [16]. In addition to

stimulating key extracellular matrix (ECM) molecules, OP-1 has been shown to modulate

various growth factors, i.e., IGF-1, TGF-P, BMPs, and cytokine mediators (IL-6 family of

cytokines) [17]. OP-1 has also been able to regulate synthesis of chondrocyte cytoskeleton

proteins such as talin, paxillin, and focal adhesion kinase (FAK) while enhancing expression of

tissue inhibitor of metalloproteinases (TIMP) in human normal and OA chondrocytes [8]. OP-1

has been linked to cell survival [ 10-12] and appears to act in a distinct regulatory pathway



independent of other growth factors, including IGF-1, while augmenting IGF- I1 anabolic effects.

OP-1 has been reported to increase levels of IGF-1, IGF-1 receptor, and IGF-1 binding proteins,

and authors speculate that this augmentation acts to restore in part the responsiveness of adult

human chondrocytes to IGF-1 lost through aging [9, 10, 17, 18]. IGF-1 has also been well

documented in its anabolic effects on cartilage tissue [19-21 ], and OP- combined with IGF-1

has shown a synergistic effect on cell survival and matrix synthesis, hinting at the use of both

OP- and IGF- 1 in combination therapy [11]. Interestingly, recent studies have shown that the

effects of the combination of these two potent growth factors can be reversed with the addition of

basic fibroblast growth factor (bFGF or FGF-2); proteoglycan synthesis induced by OP-1 and

IGF-1 either independently or together were strongly inhibited by bFGF [12]. Acting in an anti-

catabolic fashion, OP-1 has been shown to effectively counteract the effects of IL-113 treatment

[22], as well as harmful fibronectin fragments [23] and HA hexasaccharides [24]. Studies have

also shown that OP- blocks gene expression of MMP- 1 and MMP- 13 in response to cytokine

treatment [17].

Endogenous OP-1 is also very important to cartilage homeostasis. Normal adult human

cartilage tissue contains approximately 50 ng of OP-1 per gram of dry tissue, which is within the

concentration range of recombinant OP-1 (50-200 ng/ml) used in various studies [9]. OP-1 has

also been detected in synovium, ligament, tendon, menisci [18], and synovial fluid from normal,

OA, and RA joints [25]. Recent studies have shown that through a gene silencing technique

(antisense) in which OP-1 was inhibited, there was a significant decrease of aggrecan mRNA

expression and a -50% decrease in proteoglycan synthesis. Recovery experiments with the

addition of recombinant OP- were able to partially restore proteoglycan production [25].



Showing an anabolic response to injury, active OP-1 was highly elevated in response to a

capsular incision in a rabbit model [26].

OP-1 has been suggested to aid long-term healing of cartilage defects [27] and has been

recently used in a reparative fashion in horses, sheep, goats, and rabbits. OP-1 was put on an

adenoviral vector and delivered to a focal chondral defect via transfected allogenic chondrocytes

in a horse model [28]. The defects seeded with chondrocytes enhanced with the OP-1 vector

showed significantly better healing at four weeks post injection and more hyaline-like

morphology. Recent data from rabbits subjected to an ACL transection showed that OP-1 had a

protective effect on cartilage degradation [29], and in goats OP-1 has been shown to promote

cartilage formation in subchondral defects [30]. OP-1 also prevented post-traumatic

osteoarthritis in a sheep model when intra-articular injections were administered at time of

mechanical injury and one week post injury [31].

An in vitro model of injury has been established in our laboratory incorporating the

effects of a mechanical injury and injured joint capsule (JC) tissue [32, 33]. In vitro mechanical

injury to cartilage alone has been shown to increase hydraulic permeability [34] and water

content [35-37], decrease stiffness [36, 38], and increase glycosaminoglycan (GAG) lost to the

medium [36, 39-41]. Cells with cartilage subject to this mechanical injury have been shown to

decrease biosynthesis rates [36], undergo apoptosis and necrosis[35, 36, 42, 43], and have

elevated levels of protease transcript activity within the first 24 hours [44]. Co-culturing un-

injured cartilage with damaged joint capsule in vitro has resulted in a decrease in cartilage

biosynthesis rates [32, 45], as well as a loss of proteoglycan and collagen as seen though

histology staining [46]. GAG release from cartilage co-cultured with synovial or capsular tissue

was not decreased with the inhibition of IL-10, TNF-a, and ACITIC [47]. Under the same



conditions of cartilage co-cultured with joint capsule, GAG loss was blocked by treatment with

EDTA [47]. While the effects of JC co-culture appear to accelerate degradation, studies have

also shown that synoviocytes from joint capsule tissue provide chondrocytes with protection

against reactive oxygen species, which are known to induce membrane damage and lipid

peroxidation [48].

The objectives of this study was to (1) more fully explore the degradative effects of

mechanical injury co-cultured with excise joint capsule through changes in transcript levels,

protein biosynthesis rates, and apoptosis, and (2) to test whether combined treatment with IGF-1

and OP-1 could mitigate those degradative effects on a short time scale (3 days) and a longer

time scale (16 days).

4.2 Materials and Methods

Tissue Harvest

Cartilage-bone plugs (9mm in diameter) were harvested from the patello-femoral groove

of 1-2 week old calves. Cartilage disks (lmm thick x 3mm diameter) were sliced and punched

from the middle zone as described previously[49] and equilibrated for two days under free-swell

conditions (37°C, 5% CO 2) in the presence of serum-free, 1% ITS supplemented feeding

medium consisting of high glucose Dulbecco's modified essential medium supplemented with 10

nM Hepes Buffer, 0.1 mM nonessential amino acids, 20 ýtg/ml ascorbate, 100 units/ml penicillin,

100 ýtg/ml streptomycin, and 0.25 ýtg/ml amphoericin B. Joint capsule was excised adjacent to

the medial and lateral femoral condyles, cut into approximately 5mm x 5mm squares, and



equilibrated for two days (37°C, 5% CO 2). Each section of JC included a section of synovial

tissue and was approximately 0.5mm thick.

Injury

After two days of equilibration, disks were allocated into 1 of 8 conditions: (1) free swell,

(2) normal cartilage co-cultured with JC (Co), (3) cartilage mechanically injured, and (4) injured

cartilage co-cultured with joint capsule (INJ+Co), (5-8) conditions (1)-(4) repeated with addition

of growth factors (100ng/ml OP-1 + 300ng/ml IGF-1) throughout culture duration. Growth

factor concentration was determined through dose-dependent measure of OP-1 and IGF-1

independently, as previously presented [50]. A custom designed incubator-housed loading

apparatus [51] was used to compress cartilage disks. Each cartilage disk designated for

mechanical injury was loaded individually in a polysulfone chamber allowing for radially-

unconfined compression [36, 39, 40]. Cartilage disks were measured for height, compressed to a

final strain of 50% at a velocity of 1mm/sec, and promptly removed and placed in fresh culture

media as described previously [44]. Application of this strain and strain rate produced a peak

stress on the order of 20MPa. Three to five pieces (to ensure equal amounts of JC tissue) of cut

joint capsule were added to Co and INJ+Co conditions.

Short and Longer Term Gene Expression Time Courses

Short Term: Due to the limited amount of cartilage available in young bovine knee joints,

experiments were divided into three distinct groups, each containing a control (FS) and control

plus treatment (FS+GF). The three experiments consisted of 4 conditions each; all contained FS

and FS+GF, the first consisted of Co and Co+GF, the second of INJ and INJ+GF, and the third

of INJ+Co and INJ+Co+GF. At time = 0 plugs were injured or treated as prescribed, incubated

at 370 C, 5% CO2, and flash frozen in liquid N2 at 2, 8, 24, 48, and 72 hours, and placed in -80'C



(medium changed every 48 hours). Each of the time point-conditions in the three experiments

contained 6 cartilage disks which were pooled and purposely matched across depth, location, and

time to prevent any bias in the results. Joint capsule was also flash frozen in liquid nitrogen at 2,

8, 24, 48, and 72 hours for the Co and Co+GF experiment. Longer Term: To examine gene

expression for longer periods of time, in a separate experiment, cartilage disks were subjected to

the same 8 conditions and were cultured for 1, 4, 8, and 16 days, whereupon the plugs were flash

frozen in liquid N2 and stored in -80'C (medium changed every 2 days). The shorter term gene

expression experiment was repeated six times, using six different animals for each of the three

experiments for an n=6. The longer term gene expression experiments were repeated five times,

for an n=5.

RNA Extraction and Quantization, Primer Design, and Real-Time PCR

6 disks for each time point and condition were taken from the -80o C freezer and

pulverized. In order to prevent RNA degradation, the pulverizing apparatus was constantly

cooled using liquid nitrogen. Trizol (Sigma, MO) was added and the tissue was thoroughly

homogenized. After chloroform was added, the mixture was transferred to pre-spun phase gel

tubes, and spun at 13,000 rpm for 10 minutes at 40 C. The supernatant was removed, and RNA

was extracted using Qiagen RNAeasy mini kit protocol with recommended DNase digest

(Qiagen). RNA was stored in 50 ld of RNase free water under -80o C conditions. RNA

abundance and purity was measured using NanoDrop ND-1000 (NanoDrop Technologies, DE)

with abundance ~80ug/ml and purity -2 (260nm/280nm). 1 pg of RNA was reverse transcribed

using Applied Biosystems reagents as previously described [44]. Forward and reverse primers

for 48 relevant genes (Table 4.1) were designed using Primer3 Software

(http://fokker.wi.mit.edu/primer3/input.htm) and Primer Express (Applied Biosystems, CA)



based on bovine genomic sequences, and standard curves were calculated as previously

described [52].

Table 4.1. List of Cartilage relevant genes measured by qPCR
ECM ECM Proteases Protease Inhibitors Transcription Factors Growth Factors

Aggrecan Link MMP-1 TIMP-1 SOX-9 IGF-1
Collagen II CD-44 MMP-3 TIMP-2 c-Fos IGF-2
Collagen IX HAS2 MMP-9 TIMP-3 c-Jun OP-1
Collagen XI COMP MMP-13 bFGF

Fibromodulin 3-actin ADAMTS-1 TGF-0
Fibronectin ADAMTS-4 VEGF

Decorin ADAMTS-5
Assorted Genes Cytokines Oxidation Genes Stress Induced Genes Housekeeping Gene

Cox-2 LIF ALPL TXNIP 18s
iNOS IL-13 SOD1 HSP90

Osteocalcin IL-4 SOD2
Caspase-3 IL-6 GPX-3

TNF-a
IL-6R

Table 4.1 List of 48 cartilage relevant genes measured by qPCR. Primer3 and Primer Express
were used to design primers. Standard dilutions were used to calculate relative mRNA copy
number.
Once cDNA was obtained, Real-Time PCR was performed using Applied Biosystems ABI

7900ht instrument and SYBR Green Master Mix (SGMM, Applied Biosystems, CA). SGMM

was combined with cDNA, and RNase free water was combined with forward and reverse

primers. Using a multi-pipette, 8 different samples of cDNA and SGMM were aliquoted into a

384 well plate, followed by 48 different primer and water mixes. Plates were run and inspected

for proper amplification and melting curves using SDS 2.3 (Applied Biosystems, CA).

Measured threshold values (Ct) were obtained through SDS 2.3 and converted to RNA copy

number according to previously calculated primer efficiencies using standard curves.

Protein Biosynthesis

Radiolabel incorporation was measured at days 1, 4, 8, 12, and 16 post-injury. Bovine

explants were cultured in fresh media 24 hours prior to 1, 4, 8, 12, and 16 days in 5 jtCi/ml 35SO4

and 10 jtCi/ml 3H-proline. After culture, cartilage explants were washed four times over 60

minutes in lml phosphate-buffered saline (PBS) supplemented with 0.8 mM sodium sulfate and



0.5 mM proline to remove free radiolabel, and digested in 1 ml protease K solution (100 pg/ml in

SO mM Tris-HCI and 1 mM CaClz at pH 8) at 60 0C for 12-18 h. Digested explants were

homogenized in Optiphase Supermix scintillation fluid and measured using a Microbeta plate

reader.

Apoptosis

At 1, 4, 8, and 16 days post-injury, disks were fixed in 4% paraformaldahyde

supplemented with 0.1% 1M NaOH as previously described [42]. In brief, disks were embedded

in Paraplast, cut into serial sections (7ýtm), and sectioned sagitally throughout the entire

thickness of the disk. Sections were immobilized on glass slides and stained with Mayer's

hematoxylin to quantify the percentage of cells showing nuclear blebbing. Each explant was

evaluated in 3-5 sections, as previously described [42]. Since cutting of the explants induces

apoptosis at the edges of the tissue, the margins of the sections (-150itm thickness) were

excluded. Using a Zeiss Axiophot microscope (Zeiss, Wetzlar, Germany) with a 40x objective,

positive and negative cells were counted in 3 optical fields in each section (60-100 cells/field).

One optical field was located in the center of the explant sections and 2 were located more

peripherally, near the corners of the sections (but not including the margins). The mean value

from each field was recorded. In a secondary analysis, cell apoptosis rates in the central and

peripheral fields were compared. Encoded labels were used on all samples to ensure blind

scoring.

Gene Expression Data Analysis

All data are shown as mean ± SEM. Under each condition and time point, each gene

RNA copy number was normalized to the 18s housekeeping gene from that same condition and

time point [44, 52]. 18s was chosen in light of recent studies showing the variation in expression



of alternative housekeeping genes (i.e., GAPDH, f3-actin) in response to certain conditions of

loading of cartilage explants [53]. To examine the time course of gene expression, all conditions

were normalized to their corresponding free swell condition. Thus, gene expression values

below or above 1 represent a decrease or increase in expression, respectively, compared to FS.

Expression levels due to experimental error, as defined by 60 from mean, were removed. The

Wilcoxon sign-ranked test (a non-parametric test which incorporates the amount of data in the

significance statistic and avoids the assumption of a parameter-based distribution) was used to

judge significance at a p-value less than 0.05. Clustering and Principle Component Analyses: In

addition to measuring changes in the expression magnitude of each gene, we further explored

patterns of co-expression using principle component analysis (PCA) and clustering analysis,

performed on all normalized conditions (fold change compared to FS) and time points (2, 8, 24,

48, 72 hours, short term and 1, 4, 8, 16 days, long term) over 47 genes. This resulted in a 35 x 47

(short term) and a 28 x 47 (long term) matrix which were each standardized by expression

amplitude as described previously [52]. After normalization of the data using PCA, the maximal

dimensional space was reordered according to greatest dimensional variance, where the first

three detentions or principle components represent -70% of the variance in the data [54, 55].

Once the principle components had been calculated, a k-means clustering algorithm was applied

to cluster the components into k groups. The average and variance of each projected coordinate

group was calculated to give the group centroid. Centroid vectors were formed by combining the

three main principal components weighted by their projected centroid coordinate. The

uniqueness of each group's expression patterns was evaluated by the Wilcoxon sign-ranked test,

and special separation between the centroids was measured and deemed significant through

euclidean distance and student's t-test.



Biosynthesis and Apoptosis Data Analysis

All data are represented as mean ± SEM. A three-way analysis of variance was used to

test significant differences in biosynthesis data. P-values less than 0.05 were considered

significant.

4.3 Results

Short Term Cartilage Gene Expression

Matrix Molecules: Key ECM molecules were downregulated over the three-day period

under the in vitro injury model. Uninjured cartilage co-cultured with excised joint capsule

significantly downregulated Aggrecan (Figure 4.1A), Collagen IX (Figure 4.1B), Collagen XI,

Fibromodulin, and HAS2 in a transient manner (Appendix 4.7.1).

Figure 4.1 Aggrecan and Collagen IX gene expression
A Aggrecan B Collagen IX
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Figure 4.1 Aggrecan and Collagen type IX short-term gene expression. Data was plotted
relative to FS conditions, and stars indicate significance (p-values < 0.05) between condition and
corresponding FS value. Mean ± SEM. Time points: m 2 Hrs, 0 8 Hrs, 17 24 Hrs, lO 48 Hrs, Q
72 Hrs.

At 72 hours, gene expression reached below 0.5 FS values (Aggrecan 0.36, Collagen IX 0.11,

Collagen XI 0.19, Fibromodulin 0.18, and HAS2 0.30). While Aggrecan, Collagen XI,



Fibromodulin, and HAS2 showed slight downregulation with INJ and INJ+Co, Collagen IX was

significantly downregulated when mechanical injury was present, with or without Co.

Fibronectin, Decorin, and CD-44 were significantly upregulated under the injury models, and

were most responsive to INJ+Co; reaching maximal values of 4.8-, 4.8-, and 16.6-fold FS values

respectively (24hrs) (Appendix 4.7.1). Collagen II was significantly downregulated with INJ

alone and INJ+Co but was unaffected with co-culture alone (Appendix 4.7.1). Link Protein,

Osteocalcin, and COMP were slightly upregulated with INJ alone, downregulated with co-

culture alone, and no different than FS with INJ+Co (Appendix 4.7.1). 3-actin was generally

unresponsive to the injury models and GF treatment (Appendix 4.7.1). Aggrecan was

significantly upregulated when GF was added under FS conditions (Appendix 4.7.2).

Fibromodulin was significantly upregulated at 2hrs, followed by a significant downregulation at

8, 48, and 72 hrs. Collagen II, Collagen IX, Collagen XI, Fibronectin, Decorin, Link, CD-44,

HAS2, Osteocalcin, and COMP were not dramatically altered by GF treatment under FS

(Appendix 4.7.2). Treatment of the GF combination had no effect on Aggrecan, Collagen II,

Collagen IX, Collagen XI, Fibromodulin, Fibronectin, Decorin, Link, CD-44, and Osteocalcin

under INJ, Co, or INJ+Co, and appeared to marginally upregulate HAS2 and COMP under the

same three injury conditions (Appendix 4.7.2).

Proteinases: MMP-3 (stromelysin) was significantly upregulated for 2, 8, 24, and 48 hrs

under Co alone, INJ alone, and INJ+Co and returned to FS levels at 72 hrs (Appendix 4.7.1).

INJ+Co facilitated the greatest fold upregulation (47x 8hrs) compared to co-culture alone (23x

24hrs) and injury alone (16x 8hrs). In a like manner, MMP-9 and MMP-13 were maximally

expressed with INJ+Co (Figure 4.2A, Appendix 4.7.1). MMP-9 and MMP-13 were transiently

upregulated and both peaked at the last time-point measured (72hrs). MMP-9 was significantly



upregulated at 8, 24, 48, and 72 hrs and peaked at 47x FS, while MMP-13 was significantly

upregulated at 24, 48, and 72 hrs and peaked at 46x FS.

Figure 4.2 MMP-9 and TIMP-1 gene expression
A MMP-9 B TIMP-1

Figure 4.2 MMP-9 and TIMP-1 short-term gene expression. Data was plotted relative to FS
conditions, and stars indicate significance (p-values < 0.05) between condition and
corresponding FS value. Mean ± SEM. Time points: 1 2 Hrs, m 8 Hrs, 0 24 Hrs, O 48 Hrs, 2
72 Hrs.

MMP-1 was slightly upregulated with INJ+Co, but was unaffected by Co and INJ alone

(Appendix 4.7.1). Growth factors appeared to stimulate MMP-9 expression by nearly doubling

expression under INJ, (35x to 95x) and INJ+Co (47x to 74x) (Appendix 4.7.2). MMP-3 and

MMP-13 showed a slight decrease in expression levels when GF was added to INJ+Co, but were

unaffected by GF under all other culture conditions (Appendix 4.7.2). MMP-1 was not clearly

regulated by GF treatment for all conditions (Appendix 4.7.2). All matrix metalloproteinases

showed little to no response to GF treatment under FS conditions. ADAMTS-1 was highly

responsive to INJ (40x 8hrs) and INJ+Co (58x 24hrs) but showed little significant difference

with Co alone (Figure 4.3A).



Figure 4.3 ADAMTS-1 and iNOS gene expression
A ADAMTS-1 B INOS

Figure 4.3 ADAMTS-1 and iNOS short-term gene expression. Data was plotted relative to FS
conditions, and stars indicate significance (p-values < 0.05) between condition and
corresponding FS value. Mean + SEM. Time points: m 2 Hrs, m 8 Hrs, O 24 Hrs, OE 48 Hrs, 1i
72 Hrs.

ADAMTS-4 was upregulated under Co, INJ, and INJ+Co, but again, the combination of INJ+Co

served as the most stimulant (Appendix 4.7.1). ADAMTS-5 appeared to be unresponsive to INJ

or Co alone, but the combination of the two lead to a synergistic transient increase of expression,

peaking at 14x FS (Appendix 4.7.1). Growth Factor treatment increased expression of

ADAMTS-1 and ADAMTS-5 (Appendix 4.7.2). ADAMTS-1 expression was increased at 8hrs

for both INJ (40x to 90x) and INJ+Co (49x to 81x) (Figure 4.3A and Appendix 4.7.2).

ADAMTS-5 retained the transient upregulation, as seen in the absence of GF, and reached values

of 18x FS. ADAMTS-4 showed a slight increase with GF treatment in magnitude of expression

for Co, INJ, and INJ+Co (Appendix 4.7.2).

TIMPS: TIMP-1, a general inhibitor of protease activity, was upregulated for INJ and Co

alone, but was significantly upregulated when the two were combined (INJ+Co) (Figure 4.2B).

Under this condition, TIMP-1 reached a maximum of 61x FS values at 24hrs. To a lesser effect,

TIMP-2 was stimulated by INJ, Co, and INJ+Co, and like TIMP-1 was maximally stimulated

under INJ+Co (5.7x FS) at 24hrs (Appendix 4.7.1). TIMP-3, an inhibitor which binds at high



affinity to ADAMTS-4, was also maximally stimulated at 24hrs, and in the combination of

INJ+Co, reached values 15x greater than FS condition (Appendix 4.7.1). GF treatment had little

effect on the TIMPS measured under FS conditions. While the changes in GF treatment were on

the same order of magnitude as without GF treatment, it appeared that the addition of GF slightly

stimulated all three TIMPS under the conditions of Co, INJ, and INJ+Co (Appendix 4.7.2).

Transcription Factors: c-Jun and c-Fos, both members of the AP-1 complex, were both

initially highly responsive to INJ and INJ+Co, but decreased over the time course (Appendix

4.7.1). After 2hr, c-Jun in INJ (23x) and INJ+Co (25x) returned to FS values and was not

responsive to Co alone. Alternatively, c-Fos was significantly upregulated for all time points

under INJ (transiently decreasing, 13x to 2x) and significantly upregulated for the first 48 hrs

(transiently decreasing, 19x to 8x) for INJ+Co. Sox-9 showed little response to Co, INJ, or

INJ+Co (Appendix 4.7.1). GF had little effect on expression of transcription factors measured

(Appendix 4.7.2).

Enzyme Mediators: Inducible Nitric Oxide Synthase (iNOS) was highly regulated when

Co was present (Figure 4.3B). In Co alone, iNOS expression peaked at 24hrs at a magnitude of

over 2000 times greater than FS values. iNOS was transiently upregulated under INJ+Co

peaking at 69x at 72hrs. INJ alone showed little effect on the production of iNOS. GF treatment

was effective in significantly lowering the transcript levels of iNOS under Co alone (2140x to

120x at 24hrs) but did not effect expression under INJ+Co (Figure 4.3B, Appendix 4.7.2). Cox-

2 was significantly induced by Co and INJ+Co at early time points, reaching levels of 42x (Co)

and 50x (INJ+Co), followed by a return to free swell levels at 72hrs (Appendix 4.7.1). GF

showed little difference in Cox-2 expression, with the exception of a slight decrease in

expression under INJ+Co (Appendix 4.7.2).



Growth Factors: IGF-2 showed sustained significant downregulation for INJ alone,

while IGF-1 was predominantly unaffected by Co, INJ, and INJ+Co (Appendix 4.7.1). OP-1 and

VEGF were significantly upregulated at 24 hrs in response to Co alone at magnitudes of 24x and

9x respectively (Appendix 4.7.1). Both were marginally upregulated by INJ alone, and

upregulated slightly with INJ+Co. bFGF and TGF-3 were upregulated for all conditions and

both were maximally expressed at 24hrs under INJ+Co (17x and 1lx respectively) (Appendix

4.7.1). GF treatment had little to no effect on IGF-1, IGF-2, bFGF, and TGF-P (Appendix 4.7.2).

OP-1 and VEGF showed a slight increase in expression with the GF under Co and INJ+Co

conditions (Appendix 4.7.2).

Cytokines: Leukemia Inhibitory Factor (LIF) was maximally expressed under the

combination of INJ+Co (76x 2hr), displaying a synergistic effect (Figure 4.4A). IL-4 and IL-1

were both significantly upregulated at 48 hrs under Co (4.7x and 4.0x) and showed an increase of

expression under INJ+Co (Appendix 4.7.1). IL-6 and its receptor, IL-6R, were upregulated

under Co (5.4x and 4.2x) and INJ+Co (5.4x and 4.6x) (Appendix 4.7.1). TNF-a was

significantly upregulated under INJ+Co (Appendix 4.7.1). GF treatment affected the measured

cytokines in a minimal amount, with the exception of IL-1 3 expression returning to FS levels

from statistically upregulated levels for INJ+Co (Appendix 4.7.2).

Stress Induced: TXNIP was primarily downregulated by Co alone and HSP90 was

significantly upregulated at 2 and 24hrs under INJ+Co (Appendix 4.7.1). GF showed little to no

effect on both TXNIP and HSP90 (Appendix 4.7.2).



Figure 4.4 LIF and Caspase-3 gene expression
A LIF B Caspase-3
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Figure 4.4 LIF and Caspase-3 short-term gene expression. Data was plotted relative to FS
conditions, and stars indicate significance (p-values < 0.05) between condition and
corresponding FS value. Mean ± SEM. Time points: N 2 Hrs, E 8 Hrs, E 24 Hrs, O 48 Hrs, 2
72 Hrs.

Apoptosis and Oxidation Factors: Caspase-3 was significantly upregulated under Co

conditions, reaching a > 12x FS level at 24hrs (Figure 4.4B). Caspase-3 was also significantly

upregulated under INJ+Co for 2, 8, 24, and 48hrs after injury. Interestingly, caspase-3 under INJ

did not show significant difference from the corresponding FS values. When GF was added,

caspase-3 levels for Co alone and INJ+Co slightly decreased (Appendix 4.7.2). ALPL and GPX-

3 were synergistically upregulated under INJ+Co (Appendix 4.7.1). ALPL showed a peak at 24

hrs (8.4x FS) where GPX-3 was transiently upregulated achieving at value of 9.5x FS at 72hrs.

Superoxide Dismutase-1 (SOD 1) and Superoxide Dismutase-2 (SOD2) were both slightly

upregulated with INJ+Co, reaching levels less than 4 fold FS at 24hrs (Appendix 4.7.1). GF

treatment showed little to no effect on ALPL, GPX-3, SOD1, and SOD2 (Appendix 4.7.2).

Clustering: The 47 normalized genes were clustered using PCA and k-means clustering

algorithms. After multiple iterations of groups, it was determined through analytical (Pareto plot

and euclidean distance separation) measures that there existed 5 distinct groups of genes. The

I-+Ur r +Ur +Ur



groups were plotted in the first three principle components, as seen in Figure 4.5, where the first

three principle components represent 80% of the variation in the data.

Figure 4.5 Genes Clustered in PC Space
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Figure 4.5 Standardized gene expression visualized in principle component space. Principle
components 1, 2, and 3 represent 80% of the variance in the data. Genes were allocated to one of
five distinct groups by way of k-means clustering. Large solid black circles denote the centroid
of the corresponding group.
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The corresponding genes in each grouping are shown in Table 4.2. The centroid profile for each

of the 5 groupings were converted from principle component space and plotted relative to FS

values, as seen in Figure 4.6. The first group, Figure 4.6A, was composed of aggrecan, collagen

II, collagen IX, collagen XI, Fibromodulin, Link, and IGF-2. This profile was characterized by

the strong downregulation of expression due to Co, INJ, and INJ+Co. The growth factor

treatment slightly stimulated the expression of this centroid, but did not dramatically overcome

the effects of Co or INJ or the combination of INJ+Co. Group 2 is composed of Sox-9, iNOS,

OP-1, VEGF, IL-6R, HSP90, and Caspse-3 (Figure 4.6B). This centroid was characterized by a

very strong upregulation to Co (6.5x FS at 24hrs) and to a lesser extent, INJ+Co (3x at 24hrs).

GF treatment appeared to change the dynamics of the Co response showing a peak at 72 hrs, but

in other conditions GF treatment showed no magnitudinous changes in expression. The third

group was composed of fibronectin, decorin, CD-44, Osteocalcin, MMP-1, MMP-9, MMP-13,

ADAMTS-4, ADAMTS-5, TIMP-1, TIMP-2, TIMP-3, p-actin, IGF-1, IL-1P, IL-4, IL-6, and

GPX-3 (Figure 4.6C). This centroid was characterized by the strong upregulation of expression

due to INJ+Co. This centroid profile peaked at 24 hrs at 4x FS. GF treatment showed little

significant effect, but appeared to change the temporal dynamics of expression with INJ+Co by

altering the peak 24 hr expression to a clear transient upregulation ending at 72hrs (~4x FS).

Group 4 was characterized by a slight upregulation due to GF treatment and was composed of

COMP, bFGF, TXNIP, ALPL, SOD1 and SOD2 (Figure 4.6D). While INJ+Co stimulated this

centroid at levels on the order of 3x (24 hrs), when GF was added to INJ+Co, the centroid

reached values of 8x (24 hrs). The Group 5 centroid profile was similar to the Group 3 centroid

profile in that it was strongly induced by the combination of INJ+Co. Differing from Group 3,

Group 5 showed an increase in expression magnitude, on the order of 2x Group 3. Group 5 was
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composed of HAS2, MMP-3, ADAMTS-1, c-FOS, c-JUN, TGF-f3, LIF, TNF-a, and Cox-2

(Figure 4.6E). This group was upregulated by Co and INJ alone, but the combination of INJ+Co

increased levels of gene expression >6x FS conditions at 8hrs. GF treatment did not appear to

show a significant effect on centroid profile for any of the measured conditions for Group 5.

Figure 4.6 Centroid Profiles of Gene Clustering
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Figure 4.6 Five expression profiles represent the combination of conditions and treatments.
Centroid profiles were calculated through the average projection coordinates of genes in each
group and transformed from principle component space through use of the calculated principle
components. Mean ± SEM (n varies based on group component number). Time points: 0 2 Hrs,
M 8 Hrs, O 24 Hrs, O 48 Hrs, •172 Hrs.
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Short-Term Joint Capsule Gene Expression

Understanding that there are multiple cell types and tissues in the joint capsule that may

contribute to cartilage homeostasis or degradation, the object of this section was to determine the

levels of expression of cartilage-relevant genes and to assess if GF had a stimulatory effect on

the JC. Gene expression of joint capsule was taken from the Co experiment, where uninjured

cartilage was co-cultured with excised joint capsule, with the addition or absence of GF. The

same 48 genes were measured in the JC and, interestingly, all 48 transcript levels were detected.

Examining the JC basal level of expression, many proteinases were abundantly expressed. The

basal level of gene expression in JC was compared to cartilage in Figure 4.7, where gene

transcript abundance was normalized to the least abundant gene (GPX-3 for JC and cartilage).

FIGURE 4.7. BASAL GENE EXPRESSION: JC vs. CARTILAGE
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Figure 4.7 Basal levels of gene expression for joint capsule and cartilage relative to
abundant gene. Proteinases are colored in red; ECM molecules are colored in blue.
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All measured proteases were expressed proportionally higher in JC compared to cartilage.

Cartilage had a much higher level of abundance compared to JC, but with this difference, MMP-

9 and TIMP-2 were more abundantly expressed in JC vs. cartilage (MMP-9 100x higher in JC,

TIMP-2 15x higher in JC). The effect of the growth factor on the JC gene expression was

primarily and predominantly stimulatory (Appendix 4.7.3). Almost all genes, with the exception

of ADAMTS-5, were strongly upregulated, and most genes showed a peak of expression at the

8hr time point. ADAMTS-5 was downregulated for the first 24 hours, returning eventually to

non-GF treated JC levels.

Longer-Term Cartilage Gene Expression

Matrix Molecules: Aggrecan, Collagen IX, and Collagen XI continued to be significantly

downregulated through day 4 under Co alone. At days 8 and 16, expression levels for Co alone

returned to FS levels (Figure 4.8A, Appendix 4.7.4). INJ alone showed no significant difference

from FS up to day 16, with the exception of a slight upregulation of Collagen IX at day 8 (1.3x

FS). INJ+Co showed no significant difference at later time points compared to FS values.
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Figure 4.8 Aggrecan and Fibronectin gene expression
A Aggrecan B Fibronectin

A• "I~~001 . .. .

10- **10*

C * IN I I

4

35

3

25

2

1.5

1

05

0

Figure 4.8 Aggrecan and Fibronectin longer-term gene expression. Data was plotted relative to
FS conditions, and stars indicate significance (p-values < 0.05) between condition and
corresponding FS value. Mean ± SEM. Time points: 1 Day 2, E Day 4, El Day 8, [L Day 16

When growth factors were added for the time course, a significant upregulation was seen in

Collagen IX under FS and INJ conditions compared to FS (Appendix 4.7.5). Growth factor

treatment showed little significant increase in transcript levels in aggrecan (3x under Co at day

4), collagen IX (2x under Co at day 8, 1.5x under FS at day 16), and collagen XI (1.9x under Co

at day 4) (Appendix 4.7.5). Collagen II and osteocalcin showed no significant differences for the

time course in Co, INJ, or INJ+Co. When growth factor was present, collagen II was

significantly downregulated under INJ at day 1 and day 4 compared to FS, where osteocalcin

was unaffected. There was no significant change in expression when comparing the effects of

the growth factor treatment to like conditions (Appendix 4.7.5).

Fibromodulin, HAS2, and COMP were significantly downregulated at day 1 under Co,

and COMP was significantly downregulated through day 4 under Co (Appendix 4.7.4). Day 8

and day 16 were consistent with FS levels for the three genes under INJ and INJ+Co. When

growth factor was added, Co alone resulted in no significant differences at days 4, 8, and 16

compared with FS (Appendix 4.7.5). Under injury, fibromodulin showed a slight increase in
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expression at day 4 (1.2x FS) followed by a decrease in expression at days 8 and 16. HAS2 was

slightly upregulated at day 8 under INJ+GF (1.4x FS), where COMP was significantly

upregulated in a transient fashion, peaking at day 16 with a magnitude of 2.5x FS (Appendix

4.7.4). Fibromodulin, HAS2, and COMP showed no significant differences under INJ+Co

compared to FS for days 4, 8, and 16. Further examining the effects of GF treatment under like

loading conditions, HAS2 appeared unaffected by GF treatment while fibromodulin appeared to

be downregulated, particularly under INJ, and COMP was upregulated for FS, Co, INJ, and

INJ+Co (Appendix 4.7.5).

Fibronectin and decorin expression was consistent with FS values under Co, but both

were significantly upregulated under INJ (Figure 4.8B, Appendix 4.7.4). Fibronectin was

upregulated for all time points measured, with a peak value of 3.6x FS at day 4, and decorin was

upregulated at days 4 and 16 with a peak value of 4x FS at day 4. Under INJ+Co, fibronectin

was not significantly different than FS for days 4, 8, and 16, while decorin was upregulated at

days 4 (2.6x FS) and 8 (6.5x FS). With the addition of GF treatment, there appeared to be no

dramatic effect compared to FS (Appendix 4.7.5). When examining the effects of the growth

factor under similar injurious conditions, fibronectin and decorin were both dramatically

downregulated, with fibronectin significantly downregulated at days 8 and 16 of INJ, and

decorin downregulated at day 8 under Co and INJ (Appendix 4.7.5).

Link and CD-44 were not significantly different than FS values for days 4, 8, and 16

under Co and INJ+Co (Appendix 4.7.4). Under INJ alone, link was significantly upregulated at

days 4 and 8, while CD-44 was significantly upregulated at day 4. GF treatment appeared to

have little effect on Link when comparing the FS values, and a slight increase in expression was

found in CD-44 under Co and INJ+Co conditions. Looking at the effects of GF treatment under
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like conditions, GF had no effect on CD-44 expression under all conditions and had a slight

effect on link under INJ and INJ+Co (Appendix 4.7.5). p-actin showed a slight but significant

upregulation under INJ for days 4, 8, and 16 (Appendix 4.7.4). When GF was added, there was

no dramatic change in expression compared to FS or like injury condition (Appendix 4.7.5).

Proteinases: MMP-9 showed sustained and dramatic upregulation for Co (peak 144x FS at day

16), INJ (peak 13.3x FS at day 8) and INJ+Co (peak 46x FS at day 16) at days 4, 8, and 16

(Figure 4.9B).

Figure 4.9 MMP-3 and MMP-9 gene expression
A MMP-3 B MMP-9
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Figure 4.9 MMP-3 and MMP-9 longer-term gene expression. Data was plotted relative to FS
conditions, and stars indicate significance (p-values < 0.05) between condition and
corresponding FS value. Mean + SEM. Time points: N Day 2, U Day 4, E Day 8, O Day 16
GF treatment appeared to slightly decrease the levels of MMP-9 in Co and INJ compared to FS.

Normalizing the effects of GF by like injury condition, the data revealed there was no significant

difference with the GF treatment (Appendix 4.7.5). MMP-1 transcript levels were consistent

with FS for Co and INJ for days 4, 8, and 16 (Appendix 4.7.4). Under INJ+Co, there appeared to

be a trend of upregulation, with day 8 values significantly different than FS (4x FS). Growth

factor treatment had no significant effect on MMP-1 expression compared to FS, but when

examining treatment under like conditions, MMP-1 was slightly downregulated at day 4 under

INJ alone (Appendix 4.7.5). MMP-3 and ADAMTS-1 were initially upregulated under INJ and
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INJ+Co followed by a decrease to FS conditions at day 16 (Figure 4.9A, Appendix 4.7.4).

MMP-3 was significantly upregulated at days 4 and 8 of culture under INJ, and ADAMTS-1 was

significantly upregulated at day 4 under INJ+Co. When GF treatment was added, MMP-3 and

ADAMTS-1 were significantly upregulated at later time points. MMP-3 was transiently

upregulated under FS conditions, peaking at a significant 6.9x FS at day 16. MMP-3 was also

significantly upregulated at day 16 under INJ (3.2x FS) and day 4 under INJ+Co (3.4x FS).

ADAMTS-1 was significantly upregulated for all time points under INJ+GF with a

sustained 2.7x FS at day 16. GF treatment appeared to have no effect on ADAMTS-1 under Co

and FS conditions. Looking at GF treatment under like loading conditions, MMP-3 was strongly

stimulated by GF under FS conditions and was stimulated to a lesser extent by Co and INJ

(Appendix 4.7.5). GF transiently stimulated ADAMTS-1 expression under Co conditions, while

uniformly upregulating expression under INJ (Appendix 4.7.5). MMP-13 and ADAMTS-5 were

both not statistically different than FS under Co, INJ, and INJ+Co at days 4, 8, and 16, with or

without the treatment of GF (Appendix 4.7.4). MMP-13 and ADAMTS-5 were slightly

downregulated under INJ and INJ+Co when GF treatment was normalized by like injury

conditions (Appendix 4.7.5). ADAMTS-4 was initially upregulated followed by a transient

return to slightly above FS levels under INJ and INJ+Co (Appendix 4.7.4). Under Co,

ADAMTS-4 showed a trend of upregulation over 16 days, but was not statistically different than

FS levels. GF treatment had little to no effect on each of the conditions when compared to FS or

when comparing like injury conditions (Appendix 4.7.5).

TIMPS: TIMP-1 and TIMP-3 showed a significant initial increase of expression followed

by a transient decrease in expression, returning to FS levels over the 16 days under Co, INJ, and

INJ+Co (Figure 4.10A, Appendix 4.7.4). GF treatment did not alter the magnitude of kinetics of
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transcript expression of TIMP-1 or TIMP-3 for any of the conditions measured (Appendix 4.7.5).

TIMP-2 showed a trend of sustained upregulation under INJ and an initial upregulation followed

by a transient return to FS values under Co (Appendix 4.7.4). GF treatment did not induce

significant changes in the conditions when compared to FS, but when examining the effect of GF

treatment normalized to like injury condition, GF significantly decreased levels of TIMP-2 under

INJ conditions (.14x INJ alone at day 16) (Appendix 4.7.5).

Figure 4.10 TIMP-1 and c-Fos gene expression
A TIMP-1 B c-Fos100

10

01

Figure 4.10 TIMP-1 and c-Fos longer-term gene expression. Data was plotted relative to FS
conditions, and stars indicate significance (p-values < 0.05) between condition and
corresponding FS value. Mean ± SEM. Time points: M Day 2, M Day 4, O Day 8, Ol Day 16

Transcription Factors: Sox-9 showed no significant difference from FS at days 4, 8, and

16 for Co, INJ, and INJ+Co (Appendix 4.7.4). When GF was present and values were

normalized to like injury condition, there were no significant alterations of expression with the

exception of Co+GF, where day 4 was significantly upregulated compared to Co. c-Fos showed

significant slight upregulation under Co (day 8) and INJ (day 4, 8) (Figure 4.10B). When GF

was added, there was an increase in time points that were significantly upregulated (compared to

FS), but none were upregulated above 3x FS values. Isolating the effects of GF by normalizing

by like injury condition, GF significantly increased c-Fos at days 8 and 16 but had no effect on
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Co, INJ, or INJ+Co (Appendix 4.7.5). c-Jun followed a similar trend as c-Fos, where in the

absence of GF, there were few values significantly different than free swell, and under GF, many

time points were significantly different than FS (FS+GF day 8, 16; INJ+GF day 4, 16)

(Appendix 4.7.4). Isolating the effects of the GF treatment, only FS+GF showed any significant

change (Appendix 4.7.5).

Enzyme Mediators: iNOS was initially upregulated under Co conditions, and returned to

FS levels over the 16-day period (Appendix 4.7.4). GF treatment strongly stimulated iNOS

expression under Co (24x at day 4) and INJ+Co (7.3x at day 8). Normalizing to like loading

conditions, iNOS was slightly stimulated or not affected by GF (Appendix 4.7.5). Though not

significantly different compared to FS, Cox-2 expression tended to increase over the 16-day time

course for Co, INJ, and INJ+Co (3x, 2.3x, 4x, respectively at day 16) (Appendix 4.7.4). GF

treatment appeared to decrease levels of Cox-2 but no significant differences were seen when

isolating the effects of GF (Appendix 4.7.5).

Growth Factors: After slightly above or below FS levels of expression, IGF-1 and IGF-2

appeared to be upregulated at days 8 and 16 under Co, INJ, and INJ+Co (Appendix 4.7.4).

Under the treatment of GF, IGF-2 showed a strong upregulation due to GF under FS and Co

conditions (Appendix 4.7.5). IGF-1 showed little to no effect when treated with GF (Appendix

4.7.5). OP-i and VEGF showed significant upregulation at day 8 under Co conditions (2x FS,

6.4x FS respectively). They both also showed little long-term response under INJ alone but an

upregulation under INJ+Co at day 8. With GF present, the magnitude of expression of both OP-

1 and VEGF declined under Co at day 8 (Appendix 4.7.4). GF treatment on other conditions and

time points had little effect. bFGF and TGF-P were both upregulated for later time points (days

8 and 16) under Co and INJ+Co. Under INJ, bFGF and TGF-3 were initially upregulated at days
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1 and 4 and returned to FS levels at days 8 and 16 (Appendix 4.7.4). The treatment of GF

induced a significant increase of expression at day 8 of FS+GF for TGF-P and appeared to have a

negative or downregulatory effect on bFGF expression for Co, INJ, and INJ+Co (Appendix

4.7.5).

Cytokines: IL-1 3 and TNF-a were generally consistent with FS values for days 1, 4, and

8, but tended to increase expression at day 16 for all conditions (Appendix 4.7.4). GF treatment

had little effect on IL-13p or TNF-a (Appendix 3.7.5). IL-6 and its receptor, IL-6R, were both

upregulated under Co and INJ+Co and unaffected by INJ alone (Appendix 4.7.4). When GF

treatment was added, IL-6 showed a slight decrease in expression for Co, INJ, and INJ+Co for

days 4, 8, and 16, while IL-6R appeared to be decreased to a lesser degree for INJ and INJ+Co at

days 4, 8, and 16 (Appendix 4.7.5). IL-4 and LIF both exhibited trends of transiently increasing

expression under Co, INJ, and INJ+Co (Appendix 4.7.4). The effects of GF on IL-4 and LIF

expression appeared to slightly downregulate expression at days 4, 8, and 16 under INJ

(Appendix 4.7.5).

Stress Induced Factors: TXNIP and HSP90 were both upregulated in response to Co

alone. HSP90 was also strongly upregulated under INJ+Co, whereas TXNIP did not appear to

respond to INJ and INJ+Co at later time points (Appendix 4.7.4). GF treatment seemed to

decrease TXNIP and HSP90 expression compared to FS. TXNIP was significantly

downregulated by GF when data was normalized to like injury conditions at day 4 for INJ and

INJ+Co (Appendix 4.7.5). HSP90 showed a general increase of expression with the addition of

GF, with the exception of INJ+Co, where GF appeared to downregulate HSP90 expression

(Appendix 4.7.5).
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Apoptotic and Oxidation Factors: Caspase-3 was constantly upregulated for the 4 time

points measured for Co and INJ+Co, and to a lesser extent, INJ alone. For each injury condition,

Caspase-3 was upregulated at day 1, which was followed by a decrease in expression (Appendix

4.7.4). With the addition of GF, Caspase-3 appeared to be upregulated under INJ and slightly

downregulated under Co and INJ+Co. Isolating the effects of GF, GF treatment had very little

effect on transcript levels under Co and INJ+Co, and significantly upregulated caspase-3 at day 8

under INJ+GF (1.7x INJ) (Appendix 4.7.5). ALPL and SOD2 showed little to no significant

differences compared to FS under Co, INJ, and INJ+Co (Appendix 4.7.4). With the addition of

GF, SOD2 showed a slight increase in expression under INJ+Co, and ALPL showed a strong

stimulation of expression under INJ and INJ+Co compared to FS at 16 days (Appendix 4.7.5).

SOD1 and GPX-3 showed slight upregulation due to Co, INJ, and INJ+Co (Appendix 4.7.4).

The treatment of GF decreased expression levels of GPX-3 and SOD 1, as seen in INJ+Co.

Examining the effects of GF, normalized by like injury condition, GF downregulated GPX-3 at

days 4 (INJ, INJ+Co), 8 (Co, INJ+Co), and 16 (INJ, INJ+Co) (Appendix 4.7.5).

Clustering: Clustering analysis revealed three distinct trends for the 47 genes measured

(Figure 4.11, Table 4.3).
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Figure 4.11 Genes Clustered in PC Space
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Figure 4.11 Standardized gene expression visualized in principle component space. Principle
components 1, 2, and 3 represent 70% of the variance in the data. Genes were allocated to one of
five distinct groups by way of k-means clustering. Large solid black circles denote the centroid
of the corresponding group.

The first group (11 genes) was composed of Collagen II, Osteocalcin, MMP-13, IGF-1, LIF, IL-

113, IL-4, TNF-a, IL-6R, TXNIP, and GPX-3. This group showed a late response to Co, INJ, and

INJ+Co, where all three conditions peaked at 8 or 16 days at a magnitude of 2x FS. The
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magnitude of the transcripts was diminished with the addition of GF treatment, while the kinetics

of the response was unaffected (Figure 4.12A). Group 2 (17 genes) was composed of Aggrecan,

Collagen IX, Collagen XI, Fibromodulin, Fibronectin, Decorin, Link, HAS2, COMP, MMP-1,

TIMP-2, SOX-9, c-Jun, f3-actin, IGF-2, HSP90, and SOD 1.

Figure 4.12 Centroid Profiles of Gene Clustering
A Group 1 Group 2
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Figure 4.12 Five expression profiles represent the combination of conditions and treatments.
Centroid profiles were calculated through the average projection coordinates of genes in each
group and transformed from principle component space through use of the calculated principle
components. Mean + SEM (n varies based on group component number). Time points: U Day
2, E Day 4, E Day 8, O Day 16

With many of the key ECM molecules in this group, the centroid expression was characterized

by initial low levels of expression at day 1 compared to FS, followed by increased expression of

up to 2x for Co, INJ, and INJ+Co (Figure 4.12B). INJ+Co appeared to be the most effected

condition with days 4 and 8 reaching levels above 2x FS. GF slightly increased basal level of

expression under the injury models, while FS combined with GF showed an increase in
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expression. Group 3 (19 genes) contained CD-44, MMP-3, MMP-9, ADAMTS-1, ADAMTS-4,

ADAMTS-5, TIMP-1, TIMP-3, c-Fos, iNOS, OP-1, bFGF, TGF-P, VEGF, IL-6, Cox-2,

Caspase-3, ALPL, and SOD2. This group showed sustained upregulation for 16 days with Co

alone, decreased expression with INJ, and maximum decreased expression with INJ+Co (Figure

4.12C). GF appeared to have little effect on group 3.

Longer-Term Cartilage Biosynthesis

Radiolabel incorporation was calculated as described previously [32]. Each plug was

digested and measured for radiolabeled [35S]-sulfate and [3H]-proline, which was normalized to total

DNA. Sulfate incorporation can be seen in Figure 4.13A. Incorporation in all conditions was

normalized to incorporation of free swell plugs. Over the 16-day period, INJ+Co showed the most

dramatic decrease in incorporation rates and had significantly lower rates at days 1, 8, and 16

compared to FS. INJ alone and Co alone showed no significant change from FS over 16 days.

When growth factor was added to the medium, over 16 days there was increased synthesis. INJ

alone resulted in a significant improvement in synthesis for days 12 and 16, and INJ+Co

significantly improved synthesis for day 8. These growth factor effects on sulfate incorporation can

be seen in Figure 4.13B.

115



Figure 4.13 Sulfate incorporation over 16 days
A Sulfate Relative to FS B Sulfate - Effects of GF
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Figure 4.13 Sulfate incorporation measured over 16 days. Data was plotted relative to FS
conditions (A) and relative to the corresponding treatment (B). Stars indicate significance (p-
values < 0.05) between condition and corresponding FS (A) or treatment (B) value. Mean +
SEM. Time points: U Day 2, E Day 4, 0 Day 8, O Day 12, 9 Day 16.

Examining [3H]-proline incorporation, INJ+Co biosynthesis rates were significantly lower than

FS levels, similar to sulfate incorporation results (Figure 4.14A). The addition of growth factor

stimulated synthesis in FS, INJ, and INJ+Co conditions relative to FS conditions. There was a

significant improvement in biosynthesis for all injury models with the addition of growth factors

when comparing to like injury. As seen in Figure 4.14B, when the effects of growth factor

treatment are isolated by normalizing to similar injury conditions, there is a significant

improvement in biosynthesis rates for all conditions: FS, Co, INJ, and INJ+Co. INJ alone

improved greater than 4-fold with the addition of growth factor at days 12 and 16. Slight, but

significant, increases were seen at day 4 (FS, INJ+Co), day 8 (FS, INJ+Co), day 12 (FS, Co,

INJ+Co), and day 16 (FS, INJ+Co).
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Figure 4.14 Proline incorporation over 16 days
A Proline Relative to FS B Proline - Effects of GF

Figure 4.14 Proline incorporation measured over 16 days. Data was plotted relative to FS
conditions (A) and relative to the corresponding treatment (B). Stars indicate significance (p-
values < 0.05) between condition and corresponding FS (A) or treatment (B) value. Mean +
SEM. Time points: N Day 2, U Day 4, 0 Day 8, OI Day 12, El Day 16.

Longer-Term Cartilage Apoptosis

Disks at day 1 showed little to no amounts of apoptosis. Disks at day 4 were sectioned

and examined to find the intensity of nuclear blebbing to be insufficient to determine apoptosis

accurately. At day 8, INJ and INJ+Co showed significantly larger amounts of apoptosis (Figure

4.15).
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Figure 4.15 Levels of Apoptosis at Day 8
eI"- -m

a 50-
0 40-

30-
0a 20
010-

AIX-

*

*r

ocG=

-I- ~

FS Co INJ INJ+-Co

Figure 4.15 Levels of apoptosis 8 days after loading. Percentage apoptotic cells represent the
amount of apoptotic cells divided by the total number of cells. Stars indicate significance (p-
values < 0.05) between condition and FS. Bar indicates statistical difference (p-values < 0.05)
between the two end points. Mean ± SEM.

INJ alone produced 48% apoptotic cells, INJ+Co produced 39% apoptotic cells, and FS

produced 0.3%. Co alone produced 6% apoptotic cells and was not statistically different than

FS. Examining the effects of GF treatment under INJ alone, GF treatment significantly lowered

the amount of apoptosis (p-value = 0.007), from 48% under INJ to 21% under INJ+GF. Day 16

samples were also prepared and can be seen in Figure 4.16. These data show INJ alone has a

significant effect on levels of apoptosis after 16 days, where INJ+Co was not significantly

different compared to FS conditions. GF treatment reaffirmed the trend seen in the day 8

samples under mechanical injury and mechanical injury co-cultured with joint capsule, though

there was no statistically significant difference between GF and non-GF treatment.
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Figure 4.16 Levels of Apoptosis at Day 16
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Figure 4.16 Levels of apoptosis 16 days after loading. Percentage apoptotic cells represent the
amount of apoptotic cells divided by the total number of cells. Stars indicate significance (p-
values < 0.05) between condition and FS. Mean ± SEM.

4.4 Discussion

Short-Term

Mechanical injury co-cultured with excised joint capsule caused modulation of most of

the 47 relevant cartilage genes tested by 3 days post-injury. Interestingly, aggrecan, collagen II,

collagen IX, collagen XI, fibromodulin, link, and HAS2 were significantly downregulated for

Co, INJ, and/or INJ+Co (Figures 4.1). These data agree with previous transcript data reported

for aggrecan and collagen type II [33]. The addition of excised joint capsule showed the most

significant change in expression for aggrecan, collagen IX, collagen XI, fibromodulin, link, and
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HAS2, supporting evidence that there is a key mediator, originating in damaged joint capsule,

which has a more suppressive effect on these transcripts' expression than mechanical injury

alone.

Having the opposite response as the injury models, fibronectin, decorin, and CD-44 were

significantly upregulated when placed in Co, INJ, and/or INJ+Co conditions. The response of

CD-44 (a cell-surface glycoprotein known to bind hyaluronic acid and interact with collagens

and MMPs) and decorin (proteoglycan that aids structure of collagen network) appears to be an

anabolic or reparative response to injury. However, it is unclear whether fibronectin

upregulation is an anabolic response, contributing towards its function as a building block of the

ECM and cell adhesion, or a catabolic response; when cleaved by proteolytic activity, fibronectin

fragments (upregulated in injury models) stimulate protease activity and cartilage degradation

[56, 57].

Matrix metalloproteinases 1, 3, 9, and 13 were upregulated and all showed maximal

stimulation under the combination of INJ+Co. As previously reported, MMP-1, MMP-3, and

MMP-13 were upregulated within the first 24 hours post injury [33, 53, 58], and these data show

a continued upregulation of MMP-13 through day 3, reaching 46x FS levels. Not previously

reported, MMP-9 was highly upregulated under INJ+Co and mirrored expression of the most

highly expressed TIMP, TIMP-1. Both were significantly upregulated under Co, INJ, and

INJ+Co (Figure 4.2A, B). This finding supports the notion that TIMP-1, a general inhibitor of

protease activity and a known inhibitor of MMP-9 [59, 60], and MMP-9, a collagenase

responsible for degrading decorin, collagens, and activating proTNF-a, are co-regulated in

chondrocytes in order to maintain a proper balance of proteolytic activity [61-63]. ADAMTS-1,

ADAMTS-4, and ADAMTS-5 were maximally expressed under INJ+Co, again showing that the

120



combination of mechanical injury co-cultured with joint capsule has an additive (ADAMTS- 1,2)

and synergistic effect (ADAMTS-5) (Figure 4.3A).

iNOS induction has been reported in crushed or injured tendon and synovium [64], and

through autocrine signaling coincides with the significant upregulation in cartilage iNOS in

response to excised joint capsule shown here (Figure 4.3B). Leukemia inhibitory factor (LIF),

an IL-6 class cytokine, was highly upregulated with the addition of Co, INJ, and INJ+Co,

reaching values above 100x FS (Figure 4.4A). Previous studies have also shown a strong

upregulation of LIF in response to chondrocytes treated with IL-10 [65]. This suggests that IL-

1 3 stimulation and INJ+Co stimulation have common mediators responsible for stimulation of

LIF.

Previous studies have shown that OP-1 transcript expression acts in an initial reparative

response in reaction of capsular incision [26]; though a different model of injury was used, our

data agree with this finding and show that OP-1 transcripts were highly upregulated when excise

joint capsule was present (Co and INJ+Co). Following a similar response to OP-1, growth

factors bFGF and VEGF were strongly upregulated in the case of Co, INJ, and INJ+Co. Yet

unlike OP-1, bFGF at elevated levels has been shown to inhibit and reduce anabolic activity by

IGF- 1 and OP-1 [12] and has been shown to stimulate matrix metalloproteinases, such as MMP-

13 [66]. VEGF, like bFGF, has been shown to promote cartilage degradation pathways [67], and

here we report a strong upregulation of VEGF under Co, INJ, and INJ+Co. Together this

suggests that VEGF and bFGF result in catabolic responses in our injury models.

Growth factor treatment was generally insufficient to negate the strong catabolic effects

of the injury model on the transcript level. The combination of OP- and IGF- 1 actually

appeared to stimulate, not abrogate, protease transcript levels, as seen in MMP-9, ADAMTS-1,
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and ADAMTS-5. In addition, known catabolic factors bFGF and VEGF were stimulated to a

greater extent with the addition of GF. GF treatment did significantly downregulate the response

of inducible nitric oxide synthase, and to a lesser extent, the expression of tumor necrosis factor-

a.

Clustering analysis showed genes allocated into 5 significantly separated groups (Table

4.4). Clustering allocated genes into groups that were highly upregulated (Group 2) or

downregulated (Group 1) in response to co-culture, the combination of injury and co-culture

(Groups 3 and 5), and a slight responsiveness to GF treatment (Group 4) (Figure 4.6). Clustering

showed robust grouping of key ECM molecules including aggrecan, collagen II, collagen IX,

collagen XI, fibromodulin, and link protein. Interestingly, all proteases and cytokines measured

were clustered in groups that were maximally expressed under the combination of mechanical

injury co-cultured with joint capsule. This introduces the idea that protease transcripts in

chondrocytes are modulated by mechanical forces and factors from surrounding tissues

(additive/synergistic manner), whereas iNOS, OP-1, and caspase-3 transcripts are modulated

predominantly by factors from the surrounding tissue.

Table 4.2 Centroid Uniqueness- Short Term
P-value of
Centroid Centroid 1 Centroid 2 Centroid 3 Centroid 4

Separation
Centroid 2 0.009
Centroid 3 0.000 0.035
Centroid 4 0.014 0.049 0.048
Centroid 5 0.004 0.039 0.023 0.014

Table 4.2. P-value of Centroid Profile Separation. P-values were obtained through student T-
test, comparing centroid to centroid Euclidean distance. Degrees of freedom were taken as the
number of genes in each group.
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Joint capsule is composed of multiple different cell types including synoviocytes,

synovial fibroblasts, and lymphocytes [68]. Understanding that multiple cell types may

contribute to an analysis of joint capsule gene expression, samples were taken to investigate a

global expression level of cartilage relevant genes and the tissue's response to the combination

GF treatment. The basal level of joint capsule gene expression reveals a proportionally large

number of proteolytic transcripts being produced in the JC (Figure 4.7). MMP-1, MMP-3,

MMP-9, and MMP-13 and ADAMTS-1, ADAMTS-4, and ADAMTS-5 were expressed

abundantly, as seen in previous experiments [69-72]. In particular, MMP-9 was expressed orders

of magnitude greater in joint capsule compared to cartilage. MMP-9 or gelatinase-B has been

shown to be increased in osteoarthritis [73]. This tissue also produced small amounts of

aggrecan and collagen type II, two transcripts that are characteristic of a chondrocyte phenotype

and that have been previously reported within joint capsule cells [74]. GF treatment stimulated

all measured genes in the JC with the exception of ADAMTS-5, hinting at a possible positive

effect of the treatment in an adjacent tissue (Appendix 4.7.3). This transcriptional data supports

the idea that the synovial membrane is a good target for investigation for both the pathogenesis

and progression of osteoarthritis [75].

Longer-Term

Examining gene expression over a longer period of time, up to 16 days, showed most

ECM molecules return to their respective FS values by day 16. Aggrecan was slightly

upregulated with the addition of joint capsule (Co and INJ+Co) at day 8, which was followed by

FS levels at day 16 (Figure 4.8A). Fibronectin was dramatically and significantly upregulated by

INJ alone for all 4 time points measured (Figure 4.8B). Growth factor treatment tended to
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slightly alter dynamics in expression over the 16 days, and collagen IX and COMP were

statistically upregulated under FS and INJ conditions for longer time points (days 8 and 16).

These data might explain the slight increase in proteoglycan synthesis with growth factor

treatment on the same timescale. Also interesting to note, levels of COMP in the synovial fluid

has recently been suggested to be a marker for cartilage degradation and possibly play a role in

cartilage degradation and inflammation [76-78].

Matrix metallo-proteinases showed significant increases in gene expression over the 16-

day period. MMP-9, shown to be extremely active in the first three days post-injury, was

upregulated at day 16 under Co and INJ+Co (Figure 4.9B). TIMPs, ADAMs, and transcription

factors returned to FS levels by day 16. GF treatment increased transcript levels of MMP-3, c-

Fos, and c-Jun at days 8 and 16 (Figure 4.9A, 4.10B). As reported here and previously [44, 50,

52, 79], c-Fos and c-Jun are regulated by injury or mechanical forces on small time scales (i.e.

hours). These data show that c-Fos and c-Jun are positively regulated by GF treatment on longer

time scales (i.e. days, weeks) as well. The upregulation of components of the activator protein-i

complex (AP-1) due to GF treatment supports the corresponding upregulation of MMP-3

(stromelysin-1) and MMP-9 (gelatinase-B) as previous reports have shown AP-1 to be a

promoter of many MMPs, including MMP-3 and MMP-9 [80-83]. Interestingly, TIMP-1 tracked

expression of MMP-9 in the first 3 days, but at days 8 and 16, TIMP-1 returned to FS levels

while MMP-9 continued high levels of expression (Figure 4.9B, 4. 10A). TIMP-2 transcript

levels were downregulated at day 16 when joint capsule was present (Co and INJ+Co), and

previous studies have shown TIMP-2 to be significantly reduced in canine OA cartilage [84].

Previous studies have shown that in late-stage osteoarthritic chondrocytes GPX-3, SOD2,

SOD3, and TXNIP were significantly downregulated in comparison to non-osteoarthritic
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chondrocytes [85]. In our longer-term investigation of genes involved in the defense of

oxidative damage, TXNIP, SOD 1, SOD2, and GPX-3 were not significantly downregulated at

day 16, but SOD 1, SOD2, and TXNIP showed signs of downregulation under many of the

conditions, particularly INJ+Co. This downregulation of oxidation enzymes and TIMP-2, as

seen in OA tissue, validates the co-culture model as an in vitro model of OA. Interestingly, key

cytokines measured, TNF-a, IL-10, IL-4, and LIF, were highly expressed, though quite variable,

after 16 days post-injury. This suggests an additional transcriptional cue that might explain the

onset of cartilage degradation on longer-term time scales, similar to MMP-9 expression

mentioned previously.

Clustering analysis partitioned the genes in three groups: (1) transcript levels are

increased at later time points (days 8. 16), (2) transcript levels peak at days 4 and 8 and return to

FS, and (3) transcripts that are generally upregulated under different dynamics with Co, INJ, and

INJ+Co (Figure 4.12). These groupings were statistically unique compared to one another

(Table 4.5). As seen in expression levels over a shorter-time period, GF treatment generally

showed little effect on transcript levels.

Table 4.3 Centroid Uniqueness- Longer Term

P-value of
Centroid Centroid 1 Centroid 2

Separation
Centroid 2 0.008
Centroid 3 0.006 0.009

Table 4.3. P-value of Centroid Profile Separation. P-values were obtained through student T-
test, comparing centroid to centroid Euclidean distance. Degrees of freedom were taken as the
number of genes in each group.

Proteoglycan incorporation rates showed significantly lower rates under INJ+Co for 35S

and 3H. GF treatment showed a significant increase in biosynthesis rates for 35S under INJ for
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later time points (days 12 and 16) and INJ+Co (Figure 4.13B). This result is not seen with the

aggrecan transcript levels, showing the discrepancy between GF action on transcription

compared to translation. When GF treatment was examined for 3H, biosynthesis rates

dramatically increased for all conditions (FS, Co, INJ, INJ+Co) (Figure 4.14B). While 3H is not

a specific marker of a particular molecule like 35S (aggrecans have abundant sulfated GAG

chains), from our clustering data, a majority of the collagens and ECM molecules measured were

allocated to group 2, which showed an increase in expression at days 4 and 8. While we cannot

definitively state that transcript levels correspond to 3H incorporation, the data suggests a

correlation between transcript and translated protein levels.

As seen previously, apoptosis was increased when mechanical injury was present [42].

Although apoptosis has been shown to be initiated as quickly as 24 hours post-injury [38], we

found examining later time points distinctly showed the effect of apoptosis on the cartilage

explants. Day 8 showed significant levels of apoptosis under injury. While co-culture alone did

not show a significant difference compared to FS, there was a trend of Co increasing the amount

of apoptosis (Figure 4.15). Caspase-3, cysteine-aspartic acid protease, is a known player in the

execution of cell suicide. Caspase-3 transcript was found to be upregulated in the first three days

under Co alone (Figure 4.4B), and continued to be upregulated until day 16. Caspase-3

transcript significantly increased with the addition of GF under all conditions, and particularly in

injury. Where previous work with human articular chondrocytes and murine bone marrow

neutrophils has shown that the inhibition of caspase-3 activity leads to apoptosis mitigation [86,

87], these data show that increase of caspase-3 transcript does not correlate with cell apoptosis.

126



4.5 Conclusion

This study has examined the transcriptional, translational, and apoptotic effects of various

models of cartilage injury in combination with growth factor stimulus. ECM genes were

generally downregulated and proteases upregulated in response to Co, INJ, and/or INJ+Co,

where genes predominantly responded most dramatically to INJ+Co for both short-term and

longer-term expression. GF treatment failed to rescue the downregulation of ECM transcripts

and the upregulation of protease transcripts. Clustering analysis of both short-term and longer-

term gene expression showed distinct groupings of co-regulated genes. Joint capsule gene

expression was also measured and revealed that protease production is much higher in joint

capsule when compared to cartilage tissue. Growth factor treatment stimulated all genes

measured in the JC, with the exception of ADAMTS-5. Examining the rates of biosynthesis, Co

and INJ+Co dramatically affected uptake of 35S and 3H over the 16 day time period measured.

After treatment with OP-1 and IGF-1, protein biosynthesis rates (3H-proline incorporation)

improved dramatically, while proteoglycan biosynthesis (35S-sulfate incorporation) only slightly

increased. Dramatic amounts of apoptosis were measured after mechanical injury. JC appeared

to have little effect on apoptosis. Growth factor treatment significantly decreased levels of

apoptosis under mechanical injury alone.

In conclusion, the in vitro models of injury, Co, INJ, and INJ+Co, mimic certain aspects

of joint injury result in changes in cartilage metabolism in vivo. Growth factor treatment had a

127



slightly stimulatory effect on biosynthesis rates, caused a significant decrease apoptosis, and had

little effect on recovering gene transcripts after injury. While OP-1 and IGF-1 had a positive

effect on apoptosis, these data support the role of OP-1 and IGF-1 as remodeling factors, as

opposed to anti-catabolic and pro-anabolic factors as has been previously reported. Further

studies are needed to understand the mechanistic action of OP-1 and IGF-1 to clarify their

reparative and possible therapeutic capabilities.
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4.7 Appendix of Figures

4.7.1 Short Term Gene Expression

12hrE8hrD24hr--148hr72hr Mean ± SEM * = p-value<O0.05 (n=6)
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I2hrE8hrD24hrOl48hrB72hr Mean ± SEM * = p-value<0.05 (n=6)
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*2hrE8hrL24hrl148hrli72hr Mean ± SEM * = p-value<0.05 (n=6)
ADAMTS-5

FS Co INJ INJ+Col FS
I +GF

Co INJ INJ+Co
+GF +GF +GF

c-Jun
60

50

40

30

20

10 .

FS Co INJ FS Co NJ INJ+Co
+GF +GF +GF +GF

B-actin

3-S

FS Co INJ INJ+Co FS Co INJ INJ+Co
+GF +GF +GF +GF

138

1

* ** I 4**



I2hrE8hrL24hrO48hr972hr Mean ± SEM * = p-value<0.05 (n=6)
bFGF

FS Co INJ INJ+C FS INJ NJ+Co
+GF +GF +GF +GF

IL-1P 3

6T

FS Co INJ INJ+Co FS Co INJ INJ+CoS+GF +GF +GF +GF

FS Co INJ INJ+Co+ FS Co INJ INJ+CoI +GF +GF +GF +GF

FS Co INJ INJ+Co FS Co INJ INJ+Co- +GF +GF +GF +GF

TNF-a

FS Co INJ INJ+Co FS Co INJ INJ+Co
+GF +GF +GF +GF

TGF-13 VEGF

IL-4
7

6

5

4

**t

2

0 -

IL-6
10

15-

FS Co INJ INJ+C FS Co NJ INJ+Co
+GF +GF +GF +GF

139

a

T*

'.

L

4

**

**
IKTTI



I2hrE8hrM24hr-48hrl72hr Mean ± SEM * = p-value<0.05 (n=6)
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4.7.2 Effects of GF Treatment- Short Term Gene Expression
12hrE8hrO24hrO48hrB72hr Mean ± SEM * = D-value<0.05 (n=6)
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Fibronectin

+GF
0oFS Co INJ INJ+C

Fibromodulin

2.5

2

1.5

1

0.5

0

r I

INJ+GF INJ+Co+GF
INJ INJ+Co

Co+GF
Co

FS+GF
FS

Osteocalcin

. .. .. . ....

Co+GF INJ+GF INJ+Co+GF
Co INJ INJ+Co

MMP-1

-kJIL

r :
**

FS+GF Co+GF INJ+GF INJ+Co+GF
FS Co INJ INJ+Co

MMP-3
0-

5-

4-

3-

2-

1-

0-
FS+GF Co+GF INJ+GF INJ+Co+GF

FS Co INJ INJ+Co

MMP-13

FS+GF Co+GF INJ+GF INJ+Co+GF
FS Co INJ INJ+Co

142

(n=6)

FS+GF
FS

COMP
"7

6

5

4

3

2

1

0
FS+GF Co+GF INJ+GF INJ+Co+GF

FS Co INJ INJ+Co

k~kr>

MMP-9

20 -

FS+GF Co+GF INJ+GF INJ+Co+GF
FS Co INJ INJ+Co

I

MMP-3

•r

**I X

~i~Sh:

c

i-i T-- -ra -- m-

1

h ~;JLc~.



S2hrE 8hr 124hrr148hrB 72hr Mean + SEM * = p-value<0.05 (n=6)
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S2hrE8hr 24hrr-148hrg 72hr Mean ± SEM * = p-value<0.05 (n=6)
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N2hrE 8hrE24hr-48hrB72hr Mean ± SEM * = p-value<0.05 (n=6)

T

B-actin
A4r

4-
3.5 -

3-
2.5-

2-
1.5

1-
0.5 -

0-

2- **IiTh
FS+GF Co+GF INJ+GF INJ+Co+GF

FS Co INJ INJ+Co

MnI

LIF

7

6
5
4-

3

2

0
FS+GF Co+GF
FS Co

INJ+GF INJ+Co+GF
INJ INJ+Co

FS+GF Co+GF INJ+GF INJ+Co+GF
FS Co INJ INJ+Co

IL-6
4.5

4
3.5

3
2.5
2

1.5

0.5
0

FS+GF Co+GF INJ+GF INJ+Co+GF
FS Co INJ INJ+Co

TNF-a

FS+GF Co+GF INJ+GF INJ+Co+GF
FS Co INJ INJ+Co

145

IL-lb
"7

6
5

4

3

2

1-

0

T,

k

r

7



12hr 8hrOJ24hr]48hrtf72hr

TXNIP

I T

FS+GF Co+GF INJ+GF INJ+Co+GF
FS Co INJ INJ+Co

Mean ± SEM * = p-value<0.05 (n=6)

ALPL

FS+GF Co+GF
FS Co

INJ+GF INJ+Co+GF
INJ INJ+Co

SOD2

FS+GF o +GF INJ+GF INJ+Co+GF
FS Co INJ INJ+Co

146

HSP90

L-----
FS+GF Co+GF INJ+GF INJ+Co+GF

FS Co INJ INJ+Co

Caspase-3
7

6

5

4

1

FS+GF Co+GF INJ+GF INJ+Co+GF
FS Co INJ INJ+Co

SOD1

*nt fiij
FS+GF Co+GF INJ+GF INJ+Co+GF

FS Co INJ INJ+Co

GPX-3

FS+GF Co+GF INJ
FS Co I

I
m

J+GF INJ+Co+GF

NJ INJ+Co

**·k

t

I ITi



4.7.3 Joint Capsule Gene Expression
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4.7.4 Longer Term Gene Expression

ED1 ED4 O D8 OD16 Mean ± SEM * = p-value<0.05 (n=5)
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ED1 ED4 O D8 OD16 Mean ± SEM * = p-value<0.05 (n=5)
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ED1 ED4 D D8 OID16 Mean ± SEM * = p-value<0.05 (n=5)
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ED1 ED4 D D8 EOD16 Mean + SEM * = p-value<0.05 (n=5)
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iD1 ED4 D D8 OD16 Mean ± SEM * = p-value<0.05 (n=5)
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4.7.5 Effects of GF Treatment- Longer Term Gene Expression
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ED1 ED4 O D8 OD16 Mean + SEM * = p-value<0.05 (n=5)
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Chapter 5

Human Tissue Response to Mechanical Injury and Co-
culture with excised Joint Capsule

* This study is in collaboration with Professors Anna Plaas and John Sandy, Rush University
Medical School, Chicago, IL.
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5.1 Introduction

An in vitro model of injury has been established in our laboratory incorporating the

effects of mechanical injury cartilage co-cultured with injured joint capsule (JC) tissue [1, 2]. In

vitro mechanical injury of cartilage alone has been shown to increase hydraulic permeability [3]

and water content [4-6], decrease stiffness [5, 7], and increase glycosaminoglycan (GAG) lost to

the medium [5, 8-10]. Cells in cartilage subjected to this injury have been shown to decrease

biosynthesis rates [5], undergo apoptosis and necrosis [4, 5, 11, 12], and have elevated levels of

protease transcript activity within the first 24 hours [13]. Co-culturing un-injured cartilage with

damaged joint capsule in vitro has resulted in a decrease in cartilage biosynthesis rates [1, 14] as

well as a loss of proteoglycan and collagen as seen though histology staining [15]. GAG release

from cartilage co-cultured with synovial or capsular tissue was not decreased with the inhibition

of IL-1 3, TNF-a, and ACITIC [16]. Under the same conditions of cartilage co-cultured with

joint capsule, GAG loss was blocked by treatment with EDTA [16]. While the effects of JC co-

culture appear to accelerate degradation, studies have also shown that synoviocytes from joint

capsule tissue provide chondrocytes with protection against reactive oxygen species, which are

known to induce membrane damage and lipid peroxidation [17]. This model of injury has not

been fully investigated in non-arthritic human cartilage tissue.

The objectives of this study was to more fully explore the degradative effects on human

cartilage of mechanical injury combined with co-cultured excise joint capsule as measured by

protein biosynthesis rates, the amount of GAG lost to the medium, and the prevalence of select

key cartilage proteins, including aggrecan and versican, using western blot analysis and
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immunohistochemistry. We hypothesize that the combination of mechanical injury co-cultured

with excised joint capsule will have a greater degradation effect compared to either mechanical

injury alone or co-cultured joint capsule alone, and that these will be evident in the measures of

GAG loss, biosynthesis rates, and protein levels.

5.2 Materials and Methods

Tissue Harvest

Human tissue composed of knees, ankles, and joint capsule were obtained through the

Gift of Hope Organ and Tissue Donor Network (Elmhurst, Illinois) and in collaboration with

Rush Medical Center (Chicago, Illinois). All research was approved by the Office of Research

Affairs at Rush-Presbyterian-St. Luke's Medical Center and by the Committee on the Use of

Humans as Experimental Subjects at the Massachusetts Institute of Technology. Five donors

with normal body mass index (BMI) levels (less than BMI 24.9) and no history of osteoarthritis

or autoimmune disease were obtained. The 5 donors included various ethnic backgrounds,

different sexes, and were of the ages 19, 19, 42, 55, and 74. A full description of the donors can

be seen in Table 5.1.
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Table 5.1 Information on Donor Tissue
Donor Age Grade Tissue M/F RACE

Human 1 42 0 Knee M Caucasian
Human 2 19 0 Knee and Ankle M Caucasian
Human 3 19 0 Knee and Ankle M Black
Human 4 74 1 Ankle M Asian
Human 5 55 0 Ankle F Caucasian

Table 5.1 List of human donor information and tissue provided by Gift of Hope Organ and
Tissue Donor Network.

In addition, all joint surfaces were scored as grade 0 or 1 on a modified Collins scale

[18], and only cartilage from an area that was smoothly reflective and unfibrillated to visual

inspection was harvested for these experiments. Joint capsule was extracted from the knee joint

of each donor and taken from the areas adjacent to the medial and lateral condyles (Figure 5.1).

Tissue was received and processed within 24 hours of donor death. Upon obtaining the femoral

portion of the knee joint and/or talus of the ankle joint, under sterile techniques articular cartilage

was removed from the medial and lateral femoral patello groove and medial and lateral condyles

(knee) and/or from the trochlear surface, the lateral and medial malleolus, and the anterior and

posterior calcaneal surfaces (ankle) and placed in feeding medium. Feeding medium consisted

of serum-free, 1% ITS supplemented feeding medium consisting of high glucose Dulbecco's

modified essential medium supplemented with 10 nM Hepes Buffer, 0.1 mM nonessential amino

acids, 20 tg/ml ascorbate, 100 units/ml penicillin, 100 ptg/ml streptomycin, and 0.25 ptg/ml

amphoericin B. Articular cartilage was punched with a 3mm diameter dermal punch and

allowed to equilibrate in medium at 370 C and 5% CO 2 for 1 day. After equilibration, 3mm

diameter cylinders were sliced into approximately 800-1000 ýpm thick disks using a brain cutter

instrument (TM-1000, ASI Instruments, Warren, MI). Disks were allocated into 1st mm
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(cartilage disks containing superficial zone of articular cartilage) and 2 nd mm (cartilage disks

absent of superficial zone) pools. These plugs were placed in fresh medium and allowed to

equilibrate for 1 day. JC excised adjacent to the lateral and femoral condyles was cut into -5mm

x 5mm sections approximately 0.5mm thick and equilibrated for 2 days in feeding medium.

Figure 5.1 Location of Joint Capsule and Articular Cartilage

A '

I.".,

JC

Figure 5.1 Schematic of knee joint where orange circles denote location of joint capsule
excision and white ovals denote areas of cartilage harvest. Adapted from Patwari, 2003 [19].

Injury

After two days of equilibration, disks were allocated into one of 4 conditions; (1) free

swell, (2) normal cartilage co-cultured with JC (Co), (3) cartilage mechanically injured, and (4)

injured cartilage co-cultured with joint capsule (INJ+Co). A custom designed incubator housed

loading apparatus[20] was used to compress cartilage disks. Each cartilage disk designated for

mechanical injury was loaded individually in a polysulfone chamber allowing for radially-

167



unconfined compression [5, 8, 9]. Cartilage disks were measured for height, compressed to a

final strain of 65% at a velocity of 400% per second, and promptly removed and placed in fresh

culture media as described previously [13]. As has been described previously [8], the different

size and mechanical properties of human cartilage compared to bovine cartilage necessitates an

increase in final strain and strain rate to obtain qualitatively similar mechanical injury.

Application of this strain and strain rate produced a peak stress on the order of 20MPa, and after

injury, visual inspection revealed most plugs altered their round disk shape to an elliptical shape

with samples occasionally showing substantial tissue fracture. Three to five pieces (to ensure

equal amounts of JC tissue) of cut joint capsule were added to Co and INJ+Co conditions.

Protein Biosynthesis

Radiolabel incorporation was measured at days 2, 6, and 16 post-injury for knee cartilage,

and days 2 and 6 for ankle cartilage. In some cases, due to the lack of cartilage tissue harvested,

knee experiments were limited to two time points, days 2 and 6. Human explants were cultured

in fresh media 24 hours prior to 2, 6, and 16 days in 10 jtCi/ml [35S]-sulfate and 20 gtCi/ml [3H]-

proline. After culture, cartilage explants were washed four times over 60 minutes in 1 ml

phosphate-buffer saline (PBS) supplemented with 0.8 mM sodium sulfate and 0.5 mM proline to

remove free radiolabel, and digested in 1 ml protease K solution (100 pg/ml in 50 mM Tris-HCI

and 1 mM CaClz at pH 8) at 600C for 12-18 h. Digested explants were homogenized in

Optiphase Supermix scintillation fluid and measured using a Microbeta plate reader.

Biosynthesis rates were normalized to levels of DNA in the tissue, which was measured by

CyQUANT Cell proliferation assay kit (Molecular Probes, Inc. Eugene, OR) and DNAse

(Applied Biosystems, Foster City, CA).
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Antibodies

Anti-CDAG antibody is used to detect HA binding sequence of aggrecan, versican, and

Link protein as well as the NITGE and VDIPEN neoepitopes. CDAG predominantly binds to

aggrecan species in cartilage [21]. Anti-DPE antibody binds to the N-terminus of versican, a

molecule known for its anabolic response to injury [22, 23].

Western Blotting:

Explants were placed in protease inhibitor and stored at -800 C until extraction. Cartilage

was washed in ice-cold phosphate-buffered saline (PBS) (supplemented with proteinase

inhibitors), and 6 plugs (-50 [tg wet weight) were pooled followed by extraction in 4 M

guanidine HCI (supplemented by proteinase inhibitors), 50 mM sodium acetate, pH 7.3, purified

by G50 and DE52 chromatography as described [24] and deglycosylated core protein from 75

mg dimethylmethylene blue-glycosaminoglycan (DMMB-GAG) was loaded per lane [25].

Immunohistochemistry

Select plugs were fixed in 10% formalin at appropriate time points, sectioned, treated,

and imaged as previously described [25]. IHC probes were individually optimized for

sensitivity, specificity and reproducibility. Thin (4 tm) sections were deparaffinized as described

[26] and incubated in dilute goat serum (1.5% v/v in PBS) for 20 min, prior to exposure to

specific IgGs, diluted to 1, 2, 5 and 10 mg/ml with 1.5% (v/v) goat serum for 30 min at RT. IgG

solutions were removed, and sections were washed extensively in PBS before incubation at RT

for 30 min with 7.5 mg/ml biotinylated goat anti-rabbit IgG (Vector labs). Sections were rinsed

in PBS and then treated with 3% hydrogen peroxide (v/v) in tap water for 10 min, rinsed again in

PBS, and incubated with horseradish peroxidase (HRP) labeled avidinebiotin complex (Vector

labs) for 30 min at RT, washed with PBS and incubated with 3,30-diaminobenzidine (DAB)
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substrate for 30 min. Negative controls (background staining) for each antibody were established

by omission of primary antibody and incubation with non-immune rabbit IgG at the same

concentration and under the same conditions. Specificity was independently established by

Western analysis with human, bovine, and recombinant antigens and antigenic peptide blocking

experiments [21, 24, 26-28].

GAG Loss

The amount of sulfated glycosaminoglycan (GAG) content within the condition medium

and within each cartilage plug was quantified using dimethylmethylene blue (DMMB) dye-

binding assay [29]. Standard curves were generated using known amounts of GAG (Sigma, St.

Louis, MO). Cartilage plugs were proteolytically digested through incubating overnight in

protease K at 600 C. GAG from plugs was measured though DMMB dye. For ease of

comparison, GAG loss data was expressed in percentage of GAG loss to the medium, normalized

by the total GAG (GAG in medium + GAG in plug).

GAG Loss and Biosynthesis Analysis

All data are represented as mean ± SEM. A three-way analysis of variance was used to

test significant differences in biosynthesis data. P-values less than 0.05 were considered

significant.
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5.3 Results

Biosynthesis

Generally the rates of biosynthesis measured over the five different subjects decreased

over time, having the greatest amount of biosynthesis on day 2, followed by a decrease in

biosynthesis on days 6 and 16. Knee Cartilage: Knee cartilage not containing the superficial

zone (2 nd mm) was not significantly responsive to mechanical injury or co-culture treatments, yet

cartilage containing the superficial zone (1st mm) was significantly downregulated in the

presence of INJ and INJ+Co, for 19-year-old tissue (Sulfate and proline) (Figure 5.2A, B,

Appendix 5.7.1), and significantly downregulated 42-year-old tissue by 14% under INJ (Proline)

(Appendix 5.7.1).

Figure 5.2 Biosynthesis rates of 1st mm Human 2 (19 years) Mean ± SEM (n=5)
A 1stmm Sulfate B lStmm Proline
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Figure 5.2 Biosynthesis rates of [35S]-Sulfate and [3H]-Proline 1st mm knee tissue in Human 2
(19 years). Stars represent significant difference compared to FS conditions (p-values <0.05).

Ankle Cartilage: Ankle cartilage was not significantly affected by co-culture, mechanical injury,

or the combination of co-culture and mechanical injury (Appendix 5.7.1). Interestingly, most of
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the conditions for the 4 tissue samples were transiently upregulated from days 2 to 6 (Figure

5.3A, B, Appendix 5.7.1). This trend was apparent in the youngest tissue, 19 years old (Figure

5.3A, B), as well as the oldest tissue tested, 74 years old (Figure 5.4A, B). This was most

apparent under all tissue specimens when mechanical injury alone was applied. Age: No clear

age-dependent trend was apparent when examining biosynthesis data in both knee and ankle

cartilage (Appendix 5.7.1).

Figure 5.3 Biosynthesis rates of Ankle Human 3 (19 years) Mean ± SEM (n=5)
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Figure 5.3 Biosynthesis rates of [35S]-Sulfate and [3H]-Proline ankle tissue in Human 3 (19
years).

Figure 5.4 Biosynthesis rates of Ankle
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Figure 5.4 Biosynthesis rates of [35S]-Sulfate and [3H]-Proline ankle tissue in Human 5 (74
years). Bars represent statistical significance between ends (p-value < 0.05).
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GAG Loss

Total sGAG content varied from donor to donor. Knee Cartilage: The combination of

mechanical injury and co-cultured JC produced the greatest sGAG loss to the medium in plugs

containing the knee superficial zone. The younger 19-year-old ist mm cartilage appeared more

resilient to the combination of joint capsule and mechanical injury (15% sGAG loss day 6)

compared to middle-age 1st mm cartilage (age 42) samples (40% sGAG loss, Day 6) (Figure

5.5A, Appendix 5.7.2). This age-dependent degradation was not seen in the 2 nd mm (Figure

5.5B, Appendix 5.7.2). The 2 nd mm of knee cartilage produced generally greater amounts of

GAG loss to the medium, as illustrated in Human 2 (Figure 5.5A, B). Injury had a significant

effect on the 19-year-old's GAG loss when comparing the 1st mm of INJ and INJ+Co to FS

conditions (Figure 5.5A). This difference was only apparent at the last time point measured, 16

days after the injury.
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Figure 5.5 Percentage GAG Loss- 19 year
A 1st mm B

N Day 2 EDay 6 O Day16
2nd mm

INJ INJ+Co
Ankle

FS Co INJ INJ+Co

25%

150/6

10%

5%

O'A,

Mean ± SEM
(n=5)

FS Co INJ INJ+Co

Figure 5.5 GAG loss to the medium in 1st mm Knee, 2nd mm Knee, and Ankle from Human 2
(19 years old). Percentage GAG loss was determined by GAG lost to the medium divided by
total GAG measured (GAG lost to medium + GAG in plug). Stars represent statistical
significance compared to FS conditions (p-value < 0.05).

Ankle Cartilage: The ankle tissue showed less sGAG loss (generally less than 10% after day 6,

depending on tissue) than the knee (generally 15%-20% after day 6) from human 3 (19 year old).

The older tissue, from donors 74 and 55, was more affected by INJ+Co compared to the two

other younger tissue samples (19 and 19 years) (Appendix 5.7.2).

Western Analysis

Using anti-CDAG antibodies, aggrecan levels were not significantly different under the

conditions of mechanical injury, uninjured cartilage co-culture with joint capsule, or
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mechanically-injured cartilage co-cultured with joint capsule. G -NITEGE/VDIPEN levels

showed no significant changes in aggrecan species within the tissue over the 4 conditions tested

(data not shown).

IHC

Sections were probed using anti-DPE and anti-CDAG antibodies. Versican-DPE showed great

abundance in the 1st mm in vitro injury model, in both the mechanical injury and mechanical

injury co-cultured with joint capsule conditions (Figure 5.6A). Versican, production of which is

indicative of an anabolic response to injury, was detected strongly in mechanical injury

conditions and, with the addition of joint capsule, was more prevalent in the 2 nd mm than in the

1st mm (Figure 5.6A, B).
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Figure 5.6 Versican-DPE 19 year
1st mm Day2 Day 6 2ndmm Day2
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INJ
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Day 6
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INJ+Co INJ+Co

Anti-DPE
Day 16

Figure 5.6 IHC samples stained with Anti-DPE targeting Versican expression from 1st mm and
2nd mm knee cartilage from Human 2 (19 years old). Plugs were placed in 10% formalin after 2,
6, and 16 days of treatment post treatment/injury.

Nuclear staining of versican GI domain is also present in the deeper half of the 1st mm

samples (Figure 5.6A). The 2 nd mm plugs are more affected by co-culture than the 1 st mm plugs,

as evidenced by the versican activation (Figure 5.6B). CDAG antibodies pointed out the new

population of aggrecan (Figure 5.7A, B). This staining shows cells in a hyper-anabolic state, and

cells were activated in groupings. These groupings of aggrecan stimulated cells were randomly

activated with no clear trend of spatial or depth dependence.

176



Figure 5.7 CDAG 19 years
1st mm Day2 Day6
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Day 16

Figure 5.7 IHC samples stained with Anti-CDAG targeting aggrecan expression from 1st mm
and 2nd mm knee cartilage from Human 2 (19 years old). Plugs were placed in 10% formalin
after 2, 6, and 16 days of treatment post treatment/injury.

5.4 Discussion

The in vitro injury model demonstrated little effect on the aggrecan species profile within

cartilage, as seen via Western blotting. This result agrees with previous studies [5] from injured

and late stage human OA tissue where no major differences in aggrecan were observed. The

IHC presented for mechanically-injured cartilage with the addition of joint capsule (INJ+Co)

(Figure 5.6, 5.7) have striking similarity to previous IHC where tissue underwent notchplasty

post-ACL reconstructive surgery (Figure 5.8, 5.9) [30].
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Figure 5.8 Notchplasty injured cartilage- Versican-DPE
Anti-DPE

*

MAorntht
IVIV l ILI I,1

Post-Injury 0 1 3 57
Figure 5.8 IHC samples stained with Anti-DPE targeting versican expression from human
cartilage tissue taken from notchplasty experiment post-ACL reconstructive surgery. Tissue was
examined 0, 1, 3, and 57 months post-surgery [30].

Human cartilage biopsies were obtained from the lateral femoral condylar notch

expansion as part of ACL repair surgery. Similarities exist in the versican-DPE signaling

abundance (Figure 5.6, 5.8) as well as the cell-associated localization (Figure 5.6, 5.8). From the

IHC, it appears the JC is less effective in the superficial zones of cartilage (1 st mm), and more

effective in the middle to deep zones (2 nd mm) of the cartilage (Figure 5.6, 5.7).
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Figure 5.9 Notchplasty injured cartilage- CDAG
Anti- CDAG

Mnnths

Post-Injury 0 1 3

Figure 5.9 IHC samples stained with Anti-CDAG targeting aggrecan expression from human
cartilage tissue taken from notchplasty experiment post-ACL reconstructive surgery. Tissue was
examined 0, 1, 3, and 57 months post-surgery [30].

Biosynthesis rates of both sulfate and proline were significantly downregulated only at

day 2, under mechanical injury and mechanical injury co-cultured with JC for a 10-year-old

tissue under the 1st mm. Knee cartilage showed a strong transient downregulation over time,

where ankle cartilage showed a transient increase in biosynthesis rates (Figures 5.2, 5.3, 5.4,

Appendix 5.7.1). Mechanical injury alone and mechanical injury plus co-cultured joint capsule
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only affected GAG loss in the 19-year-old cartilage significantly in the 1st mm at day 16 (Figure

5.5A). Ankle tissue showed to be more resilient to cartilage degradation measured through GAG

loss (Figure 5.5C). This point, coupled with the trend that biosynthesis rates increased over time,

provides a substantial difference between knee cartilage and ankle cartilage. The ankle cartilage

appears to have the ability to turn the insult into a stimulatory event, while minimizing the

amount of degradation compared to the control (FS). Knee cartilage, from both 1 st and 2 nd mm

does not exhibit this trend, but responds in an opposite fashion to an injury insult, where the

biosynthesis rates show substantial downregulation at early time points, and the GAG loss to the

medium shows significant changes at later time points compared to the control (FS).

Interestingly the 2 nd mm of knee cartilage tended to exhibit large amounts of GAG loss, while

maintaining comparable biosynthesis rates to the 1st mm. The surface area of the second mm

plugs were all cut, assumably causing major damage to the intricate collagen and general ECM

matrix. The 1st mm plugs still contained an intact superficial zone. This difference is likely a

factor accounting for the difference in GAG loss between the 1st mm and 2nd mm of knee

cartilage.

Taken together, it appears that our in vitro model of injury model mimic certain aspects

of changes in bone-cartilage plugs harvested from patients as part of the surgical procedure

involved in ACL repair. This work further verifies the viable model of mechanical injury co-

cultured with joint capsule in human articular cartilage, and therefore vindicates the mechanical

injury co-cultured with joint capsule model in bovine as has been reported in chapter 4 and

which has been previously investigated [2].
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5.5 Conclusion

An in vitro model of joint injury that includes the combination of mechanical injury to cartilage

and subsequent co-culture with excised joint capsule mimics specific changes observed in human

articular cartilage obtained from notchplasty post anterior cruciate ligament reconstructive

surgery, as seen through IHC analysis. After in vitro injury, knee cartilage exhibited increased

GAG loss and lower biosynthesis over time, while ankle cartilage exhibited less GAG loss over

time and increased biosynthesis rates. The consequence of mechanical injury took 16 days to

fully develop into a significant difference in GAG loss compared to FS. Biosynthesis rates in

knee cartilage were significantly downregulated with the addition of mechanical injury at the

first time point measured, two days after injury.

As previously reported, injurious conditions showed no significant difference in aggrecan species

profile as examined by immunoblotting, up to six days after injury. Ongoing studies are aimed at

further elucidating the molecular responses and cellular signaling pathways underlying the

response of human tissue to combined mechanical injury and joint capsule co-culture.
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5.7.2 GAG Loss to the medium

* indicates p-value < 0.05
compared to FS

Human 1 lStmm GAG Loss
* ."^'"1

..J....---

25%/-

20%

15%-

0%-

50%/6

45%

40%

35%

30%

25%

20%

15%

10%

5%

00/o

SDay2 E Day 6 ODay16
Bar indicates p-value < 0.05
between conditions

Human 1 2ndmn GAG Loss...........................................................................................................................................................................................................................................................
'~" "~ " " "~ " " " " " " " "(

r

FS Co INJ INJI+Co

Human 3 2ndmm GAG Loss

INJ INJ+Co

45%

40%-

35% -

30%-

25% -

20% -

15% -

10% -

5% -

0%-

_PM
'1 1

FS Co INJ INJ+Co

Human 3 Ankle GAG Loss
.. .... ..... . . ... .......T ..... .. . .

. . T .

FS Co INJ INJ+Co

FS Co INJ INJ+Co

Human 3 1Stmm GAG Loss
.................................................... .............................................................................................................. .................................................... ...............................

-*1
T

T F

25% -

20% -

15%-

10% -

5%-

0%

1l

CoFS

jI

188

--- ·-------- ~

-

-

I :

I

-

)
)

...

--- '

i

j

I

L I

t

0%-

............. ...... .... ....

..........



Human 4 Ankle GAG Loss

I Tr

EDay2 Day 6 0Day 16
Bar indicates p-value < 0.05
between conditions
* indicates p-value < 0.05
compared to FS

FS Co INJ INJ+Co

Human 5 Ankle GAG Loss

FS Co INJ INJ+Co

189

18% -

16%

14%

12%

10%-

8%-

6%-

4%-

2%

0%

14%

12%

10%

8%

6%

4%

2%

0%

r
I
If



Chapter 6

The Effects of SODm on Cartilage Subjected to Cytokine
Treatment Combined with Mechanical Injury

* This chapter is a manuscript in preparation for submission
(Wheeler, Cameron A., Perez, Anthony R., Wilkinson, Samuel, Kurz, Bodo, and Grodzinsky,
Alan J.)
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6.1 Introduction

Osteoarthritis (OA) is the most common disabling condition of man in the western world.

OA is a disease of the joint, and includes cartilage, synovial capsule, connective and muscular

tissue, as well as subchondral bone [1]. Adult cartilage is an avascular and hypoxic tissue, which

chondrocytes, the cells within cartilage, are well adapted to. Recently, many researchers have

sought to understand the role of oxygen levels and oxidative stress during the process of cartilage

degradation [2, 3]. In particular, researchers have investigated the role of reactive oxygen

species (ROS), which are byproducts of 02 processing. These ROS include hydrogen peroxide,

radicals (hydroxyl radical), ions (i.e. hypochlorite ion), and anions (superoxide anion). These

ROS have been shown to oxidize nucleic acids, transcription factors, lipids, and different cellular

components which hinder biologic activity, facilitate cell death, and promote extracellular matrix

breakdown [4-9]. Studies have also shown that ROS scavengers or ROS production inhibitors

decrease cartilage loss [10, 11]. ROS species have also been shown to be involved with

chondrocyte apoptosis induced by mechanical injury [12-14].

Superoxide dismutase catalyzes the dismutation of superoxide into oxygen and hydrogen

peroxide [15] As a protein SOD is not able to enter living cells. For that reason SOD mimetics

(SODm), like Manganese(III)tetrakis (1 -methyl-4-pyridyl) porphyrin pentachloride (Figure 6.1)

have been used in many studies in order to influence ROS-dependent cell mechanisms. SODm

has for example the potential to reduce chondrocyte apoptosis induced by injurious compression

[12].
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Figure 6.1 Superoxide Dismutase Mimetic
CH3

Figure 6.1 Superoxide dismutase mimetic structure, Manganese(III)tetrakis (1-methyl-4-pyridyl)
porphyrin pentachloride.

Extra-cellular SOD, the major scavenger of ROS in extracellular spaces, is decreased in

humans with OA, suggesting that inadequate controls of ROS plays a role in the pathophysiology

of OA [16]. While it has been suggested that superoxide dismutase mimetic, SODm (cell

permeable form of SOD), reduces cartilage degradation in mechanically-injured tissue, the

mechanisms by which SODm affect chondrocyte transcription, translation, or post-translational

machinery are not well known.

In vitro mechanical injury has been shown to increase hydraulic permeability [17] and

water content [18-20], decrease stiffness [19, 21], and increase glycosaminoglycan (GAG) lost to

the medium [19, 22-24]. Cells subject to this injury have been shown to decrease biosynthesis

rates [19], undergo apoptosis and necrosis [12, 18, 19, 25], and have elevated levels of protease
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transcript activity within the first 24 hours. Recent studies showed treatment with cytokines

(e.g., IL-1, TNF-a, IL-6 [22, 26]) following injurious compression in vitro increased GAG loss

and decreased biosynthesis greater than either mechanical injury or cytokine treatment alone.

The objectives of this study was to (1) more fully explore the degradative effects of

mechanical injury and subsequent treatment of inflammatory cytokines on chondrocyte transcript

levels in cartilage explants as well as on levels of tissue degradation (GAG loss), and (2) to test

whether an antioxidant, specifically superoxide dismutase mimetic (SODm), could ameliorate

the degradative effects on cartilage caused by mechanical injury followed by treatment with

selected cytokines.

6.2 Materials and Methods

Tissue Harvest

Cartilage-bone plugs (9 mm in diameter) were harvested from the patello-femoral groove

of 1-2 week old calves. Cartilage disks (1 mm thick x 3 mm diameter) were sliced and punched

from the middle zone as described previously [27], and equilibrated for two days under free-

swell conditions (370 C, 5% CO2) in the presence of serum-free, 1% ITS supplemented feeding

medium consisting of no phenol red, high glucose Dulbecco's modified essential medium

supplemented with 10 nM Hepes Buffer, 0.1 mM nonessential amino acids, 20 ýpg/ml ascorbate,

100 units/ml penicillin, 100 ptg/ml streptomycin, and 0.25 gg/ml amphoericin B.
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Combined Injury Cytokine Model

After two days of equilibration, disks were allocated into one of 4 conditions: (1) free

swell (FS), (2) FS with the addition of 2.5[tM SODm (FS+SOD), (3) cartilage mechanically

injured with the addition of 25 ng/mL TNF-a, 50 ng/mL IL-6, and 250 ng/mL sIL-6R and (4)

injured cartilage with the addition of 25 ng/mL TNF-a, 50 ng/mL IL-6, 250 ng/mL sIL-6R, and

2.59tM SODm. SODm concentration was determined through a dose-dependent experiment (25,

2.5, 0.25, and 0.025 gM SODm) measuring key cartilage related gene transcripts (Appendix 6.1),

as previously presented [28]. A custom designed incubator-housed loading apparatus [29] was

used to compress cartilage disks. Each cartilage disk designated for mechanical injury was

loaded individually in a polysulfone chamber allowing for radially-unconfined compression [19,

22, 23]. Cartilage disks were measured for height, compressed to a final strain of 50% at a

velocity of 1 mm/sec, and promptly removed and placed in fresh culture media as described

previously [30]. Application of this strain and strain rate produced a peak stress on the order of

20MPa.

Gene Expression Time Courses

One hour prior to injury, plugs designated for SODm treatment were incubated under free

swell conditions with medium supplemented with 2.5 tiM SODm. At time = 0, plugs designated

for injury were injured as prescribed and placed in medium that was supplemented with 25

ng/mL TNF-a, 50 ng/mL IL-6, and 250 ng/mL sIL-6R, and incubated at 370 C, 5% CO 2. At

hours, 2, 8, 24, 48, and 72, plugs were flash frozen in liquid N2 and placed in -800 C. Medium

was changed every 48 hours. Each of the time point-conditions in the experiment contained 6

cartilage disks which were pooled and purposely matched across depth, location, and time to

prevent any bias in the results. The gene expression experiment was repeated five times, using
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five different animals for each experiment for an n=5. Positive Control: A positive control

experiment was performed to illicit cellular responses to known reactive oxygen species.

Cartilage disks were harvested as described above, and allowed to equilibrate for 2 days. At time

t = 0, hydrogen peroxide at concentrations of 0, 10, 100, or 1000 giM was added to free swell

plugs. Twenty-four hours post treatment, cartilage plugs were flash frozen and stored in -800 C.

The gene expression experiment was repeated three times, using three different animals for each

experiment for an n=3.

RNA Extraction and Quantization, Primer Design, and Real-Time PCR

Six disks for each time point and condition were taken from the -800 C freezer and

pulverized. In order to prevent RNA degradation, the pulverizing apparatus was constantly

cooled using liquid nitrogen. Trizol (Sigma, MO) was added, and the tissue was thoroughly

homogenized. After chloroform was added, the mixture was transferred to pre-spun phase gel

tubes and spun at 13,000 rpm for 10 minutes at 40 C. The supernatant was removed, and RNA

was extracted using Qiagen RNAeasy mini kit protocol with recommended DNase digest

(Qiagen). RNA was stored in 50 1l of RNase free water under -800 C conditions. RNA

abundance and purity was measured using NanoDrop ND-1000 (NanoDrop Technologies, DE)

with abundance -80gg/ml and purity -2 (260nm/280nm). 1 pg of RNA was reverse transcribed

using Applied Biosystems reagents as previously described [30]. Forward and reverse primers

for 36 relevant genes (Table 6.1) were designed using Primer3 Software

(http://fokker.wi.mit.edu/primer3/input.htm) and Primer Express (Applied Biosystems, CA)

based on bovine genomic sequences, and standard curves were calculated as previously

described [31].
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Table 6.1. List of Cartilage relevant genes measured by qPCR
Housekeeping Matrix Molecules Proteinases Proteinase Inhibitors Apoptotic Gene

18s Aggrecan MMP-1 TIMP-1 Caspase-3
Collagen2 MMP-3 TIMP-2

Link MMP-9 TIMP-3
Fibromodulin MMP-13
Fibronectin ADAMTS-4

ADAMTS-5
Transcrition Factors Growth Factors Cytokines Stress Activated Genes Oxidative Factors

Sox-9 IGF-1 IL-lb CD-44 SOD1
Cox-2 IGF-2 IL-4 HAS2 SOD2
c-Fos TGF-B IL-6 INOS GPX-3
c-Jun OP-1 TNF-a HSP90

bFGF

Table 6.1 List of 36 cartilage relevant genes measured by qPCR. Primer3 and Primer Express
were used to design primers. Standard dilutions were used to calculate relative mRNA copy
number.

Once cDNA was obtained, Real-Time PCR was performed using Applied Biosystems

ABI 7900ht instrument and SYBR Green Master Mix (SGMM, Applied Biosystems, CA).

SGMM was combined with cDNA, and RNase free water was combined with forward and

reverse primers. Using a multi-pipette, 8 different samples of cDNA and SGMM were aliquoted

into a 384 well plate, followed by 48 different primer and water mixes. Plates were run and

inspected for proper amplification and melting curves using SDS 2.3 (Applied Biosystems, CA).

Measured threshold values (Ct) were obtained through SDS 2.3 and converted to RNA copy

number according to previously calculated primer efficiencies using standard curves.

Gene Expression Data Analysis

All data are shown as mean ± SEM. Under each condition and time point, each gene

RNA copy number was normalized to the 18s housekeeping gene from that same condition and

time point [30, 31]. 18s was chosen in light of recent studies showing the variation in expression

of alternative housekeeping genes (i.e., GAPDH, P-actin) in response to certain conditions of

loading of cartilage explants [32]. To examine the time course of gene expression, all conditions
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were normalized to their corresponding free swell condition. Thus, gene expression values

below or above 1 represent a decrease or increase in expression, respectively, compared to FS.

Expression levels due to experimental error, as defined by 6a from mean, were removed. The

Wilcoxon sign-ranked test (a non-parametric test which incorporates the amount of data in the

significance statistic and avoids the assumption of a parameter-based distribution) was used to

judge significance at a p-value less than 0.05. Clustering and Principle Component Analyses: In

addition to measuring changes in the expression magnitude of each gene, we further explored

patterns of co-expression using principle component analysis (PCA) and clustering analysis

performed on all normalized conditions (fold change compared to FS) and time points (2, 8, 24,

48, 72 hours) over 47 genes. This resulted in a 20 x 35 matrix which was standardized by

expression amplitude as described previously [31 ]. After normalization of the data using PCA,

the maximal dimensional space was reordered according to greatest dimensional variance where

the first three detentions or principle components represent -79% of the variance in the data [33,

34]. Once the principle components had been calculated, a k-means clustering algorithm was

applied to cluster the components into k groups. The average and variance of each projected

coordinate group was calculated to give the group centroid. Centroid vectors were formed by

combining the three main principal components weighted by their projected centroid coordinate.

The uniqueness of each group's expression patterns was evaluated by the Wilcoxon sign-ranked

test and special separation between the centroids were measured and deemed significant through

euclidean distance and student's t-test.

+/- Injury +/- Cytokine Models

To elucidate the effects of mechanical injury, cytokine treatment, and SODm treatment,

plugs were allocated into one of eight different conditions: (1) free swell (FS), (2) FS with the
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addition of 100 ng/mL TNF-a (FS+TNF), (3) mechanically-injured cartilage (INJ), and (4)

mechanically-injured cartilage with the addition of 100 ng/mL TNF-a (INJ+TNF). Conditions

(5)-(8) consisted of the first four conditions treated with 2.5gM SODm.

GAG Loss Time Course

One hour prior to injury, plugs designated for SODm treatment were incubated under free

swell conditions with medium supplemented with 2.5 gM SODm. At time = 0, plugs designated

for injury were injured and placed in their allocated medium conditions. Three days post injury,

medium and plugs were collected and stored in -200 C until processing.

GAG Loss

The amount of sulfated glycosaminoglycan (GAG) content within the condition medium

and within each cartilage plug was quantified using dimethylmethylene blue (DMMB) dye-

binding assay [35]. Standard curves were generated using known amounts of GAG (Sigma, St.

Louis, MO). Cartilage plugs were proteolytically digested by incubating overnight in protease K

at 60 0C. GAG from plugs was measured though DMMB dye. For ease of comparison, GAG

loss data was expressed in percentage of GAG loss to the medium, normalized by the total GAG

(GAG in medium + GAG in plug). Values were normalizes to FS to determine GAG loss-fold

change compared to FS values. Each condition had a total of 5 distinct plugs which were

matched across depth, location, and condition to ensure unbiased. This experiment was repeated

with 6 different animals.

GAG Loss Analysis

All data are represented as mean ± SEM. A three-way analysis of variance with post-hoc

Tukey was used to test significant differences in GAG loss data. P-values less than 0.05 were

considered significant.
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6.3 Results

Gene Expression

Similar to previous studies using injurious loading alone (no cytokines) [30], MMP-3,

ADAMTS-5, TIMP-1, c-Fos, c-Jun, and TGF-3 were upregulated in response to INJ, while

aggrecan, SOX-9, IGF-2, IL-10, and TNF-a remained largely unaffected (Figure 6.2A, Appendix

6.7.2).

Figure 6.2 Aggrecan and Collagen 2 Gene Expression
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Figure 6.2 Aggrecan and collagen type II gene expression at 2, 8, 24, 48, and 72 hours after
treatment. Data was plotted relative to FS conditions, and stars indicate significance (p-values <
0.05) between condition and corresponding FS value. Mean ± SEM.

When comparing the effects of SODm under FS or INJ, most genes, including: aggrecan,

collagen II, link, fibromodulin, MMP-1, MMP-3, ADAMTS-4, ADAMTS-5, TIMP-1, TIMP-3,

SOX-9, COX-2, c-Fos, c-Jun, IGF-1, IGF-2, TGF-P, bFGF, IL-10, IL-4, IL-6, TNF-a, CD-44,

HAS2, iNOS, and HSP90 were upregulated by SODm independent of INJ (Appendix 6.7.2), as

exemplified by aggrecan and collagen type II (Figure 6.2A, 6.2B). MMP-3, MMP-9, MMP-13,

ADAMTS-4, and ADAMTS-5 were severely upregulated by injury, and appeared to be further
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stimulated by SODm treatment (Figure 6.3B, Appendix 6.7.2).

Figure 6.
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Figure 6.3 Caspase-3 and MMP-9 gene expression at 2, 8, 24, 48, and 72 hours after treatment.
Data was plotted relative to FS conditions, and stars indicate significance (p-values < 0.05)
between condition and corresponding FS value. Mean ± SEM.

TIMP-1 and TIMP-2 were expressed on the same order of magnitude as the key degradative

enzymes, MMP-9, MMP-13, and ADAMTS-5 (Appendix 6.7.2). Cyclooxygenase 2 (COX-2)

was highly upregulated with SODm treatment and was synergistically upregulated when injury

and SODm were combined (Appendix 6.7.2). Osteogenic protein 1 (OP-1) was highly

upregulated in response to injury, underlying the finding that OP-1 acts as an initial anabolic

response to cartilage insult [36]. Also of note, basic fibroblast growth factor (bFGF) was highly

upregulated with the addition of SODm and injury, individually and in combination (Appendix

6.7.2). This growth factor has been shown to negate the effect of key anabolic stimuli and can be

interpreted as a negative or catabolic response to SODm treatment and injury [37]. Inducible

nitric oxide synthase (iNOS) was highly upregulated in response to injury (as seen in chapter 3)

and the treatment of SODm did not inhibit iNOS transcriptional activity (Appendix 6.7.2).

Caspase-3 was significantly upregulated when exposed to INJ (Figure 6.3A). SODm did not

appear to have a significant effect on caspase-3 transcripts under FS or INJ conditions. SOD2
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showed little to no transcriptional effect of SODm treatment or injury (Appendix 6.7.2). SODI

and GPX-3 were upregulated slightly with the addition of SODm and were significantly

upregulated with INJ. SODm significantly downregulated SOD2 under FS conditions but had

the opposite effect post INJ (Appendix 6.7.2).

Effects of SODm: Isolating the effects of SODm, under INJ, only aggrecan and collagen

II showed a distinct monotonic transient up-regulation in the presence of SODm (Figure 6.4A,

B).

Figure 6.4 Effects of SODm treatment- Aggrecan and Collagen 2
A Aggrecan B Collagen2
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Figure 6.4 Effects of SODm treatment on aggrecan and collagen type II gene expression at 2, 8,
24, 48, and 72 hours after treatment. Data was plotted relative to corresponding loading
conditions (FS or INJ), and stars indicate significance (p-values < 0.05) between SODm
treatment and corresponding loading value. Mean ± SEM.

No genes measured were consistently downregulated by SODm under FS or INJ conditions,

while most genes measured were upregulated by SODm (Appendix 6.7.4). Caspase-3, HAS2,

TNF-at, bFGF, TGF-j3, COX-2, TIMP-1, TIMP-3, and fibromodulin showed at least a ten-fold

increase of expression with SODm treatment under FS and/or INJ conditions (Appendix 6.7.4).

Positive Control: H202 treatment differed from the profile obtained through the

mechanical injury + cytokines model. Cartilage explants subject to 1000pm H20 2 did not
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survive the treatment and no significant amount of mRNA could be extracted. Hydrogen

peroxide dramatically decreased expression of aggrecan, ADAMTS-4, ADAMTS-5, SOX-9, c-

Fos, and c-Jun at concentrations of 10[tM and 100[tM (Appendix 6.7.2). MMP-3 and collagen

type II were upregulated with the treatment of H202 (Appendix 6.7.2). Yet aggrecan, c-Fos, c-

Jun, ADAMTS-4, and ADAMTS-5 were upregulated in response to SODm treatment under

H202 conditions, and MMP-3 was downregulated (Appendix 6.7.2).

Clustering: Clustering analysis of all conditions and all time points revealed 5 distinct

groups of genes as seen plotted in principle component space (Figure 6.5).
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Figure 6.5 Genes Clustered in PC Space
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Figure 6.5 Standardized gene expression visualized in principle component space. Principle
components 1, 2, and 3 represent 79% of the variance in the data. Genes were allocated to one of
five distinct groups by way of k-means clustering. Large solid black circles denote the centroid
of the corresponding group.

Group 1 was composed of potent proteinases MMP-13, ADAMTS-5; growth factors OP-1 and

bFGF; all oxidative factors measures SOD 1, SOD2, and GPX-3; as well as, CD-44, HAS2,

iNOS, and Caspase-3. Group 2 was composed of the key ECM gene, Collagen II, protease

inhibitors, TIMP-2, TIMP-3, as well as, SOX-9, IGF-1, and TNF-a. Group 3 was composed of

most of the matrix metalloproteinases measured, MMP-1, MMP-3, MMP-9, as well as
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ADAMTS-4, TIMP-1, Cox-2, c-Fos, c-Jun, and TGF-3. Group 4 was composed of key ECM

genes, Aggrecan, Link, Fibromodulin, the growth factor, IGF-2, and HSP90. Group 5 was

composed of the measured interleukins, IL-1 3, IL-4, and IL-6, and Fibronectin. Following

combined INJ + SODm treatment, Groups 1 and 2 (Figure 6.6A, B) were dominated by the

effects of INJ, although SODm upregulated earlier (Group 1) and later (Group 2) time points.

Group 3 (Figure 6.6C), containing mainly ECM molecules and proteinases, showed additive

effects under the combination of INJ and SODm. Group 4 (Figure 6.6D) was upregulated and

showed peaks under all conditions at 24 hours. Composed primarily of cytokines, Group 5

(Figure 6.6E) exhibited a strong effect at 8 hours for INJ, which was negated by addition of

SODm.
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Figure 6.6 Centroid Profile
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Group 1 MMP-13, ADAMTS-5, OP-1, bFGF,CD-44, HAS2, iNOS, Caspase-3, SOD1, SOD2, GPX-3
Group 2 Collagen II, TIMP-2, TIMP-3, SOX-9, IGF-1, TNF-a
Group 3 MMP-1, MMP-3, MMP-9, ADAMTS-4, TIMP-1, Cox-2, c-Fos, c-Jun, TGF-B
Group 4 Aggrecan, Link, Fibromodulin, IGF-2, HSP90
Group 5 Fibronectin, IL-1b, IL-4, IL-6

Figure 6.6 Five expression profiles represent the combination of FS + 2.5 gtM SODm, INJ, and
INJ + 2.5 giM SODm. Centroid profiles were calculated through the average projection
coordinates of genes in each group, and transformed from principle component space through
use of the calculated principle components. Mean ± SE (n varies based on group component
number)

GAG Loss

To more fully understand and isolate the effects of cytokine treatment, mechanical injury,

and the treatment of superoxide dismutase, GAG loss to the medium was measured under 8

different conditions; FS, mechanical injury, TNF-a treatment, and mechanical injury combined

with cytokine treatment, all with or without SODm treatment. A 3-way ANOVA showed

significant difference with TNF-a treatment (p<0.001), SODm treatment (p<0.001), and INJ

(p<0.001) over all the data (Figure 6.7). As seen previously, bovine disks treated with TNF-a
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had significantly higher GAG loss, even more pronounced by the combination of TNF-a +

mechanical injury. SODm significantly increased GAG loss in TNF-a treatment alone (>2.75x

FS conditions). Although not significant in all conditions measured, all conditions showed the

trend of increasing GAG loss with SODm treatment (Figure 6.7).
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Figure 6.7 sGAG loss to the medium in free swell (FS), mechanical injury (INJ), TNF-a
treatment (TNF), and mechanical injury with TNF-a treatment (INJ+TNF) and all conditions ±
2.5 gM SODm plotted relative to FS conditions. Stars indicate significance (p-values < 0.05)
between condition and FS, and bar indicates significance between two conditions. Mean ± SEM.

6.4 Discussion

Gene Expression

All genes examined were strongly stimulated by SODm treatment under FS conditions

suggesting SODm acts as a purely stimulatory factor. Consistent with the hydrogen peroxide
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positive control experiment, genes were upregulated when treated with the combination of the

strong oxidant hydrogen peroxide and SODm. Following INJ+C (mechanical injury + cytokine)

treatment plus SODm, most gene transcription levels were upregulated; this pattern was most

dramatic for aggrecan and IGF-2 (Figure 6.2A, Appendix 6.7.3). These findings suggest pro-

anabolic activity when INJ+C disks were treated with antioxidant.

The INJ+C+SODm condition elevated expression of COX-2, OP-1, bFGF, iNOS, and

HSP90 to levels greater than 100x FS. These highly responsive genes could be divided into two

groups: anabolic response to injury insult or catabolic response to injury insult. As has been

reported, OP-1 and HSP90 act as an initial anabolic response to injury, while COX-2, bFGF, and

iNOS are clearly catabolic factors [38-40]. The mechanical injury and cytokine model of injury

increased the magnitude of COX-2, OP-1, bFGF, iNOS, and HSP90 to a greater extent compared

to mechanical injury alone or cytokine treatment alone [30]. SODm had little effect on Caspase-

3 gene expression, although as expected, Caspase-3 was upregulated with INJ+C. Since SODm

has been shown to inhibit nuclear blebbing after mechanical injury significantly [12] it might be

suggested that the SODm effect on apoptosis is not based on an altered gene expression level of

caspase-3, but on an inhibition of the activation of pre-existing caspases. As part of the apoptotic

signaling pathway ROS seem to be generated at the mitochondrial membrane, resulting in

mitochondrial dysfunction and subsequent activation of caspases by release of cytochrome C and

other caspase activators [41-44]. SOD1 and GPX-3 responded positively through SODm

treatment but were dominated by the INJ+C response. SODm downregulated the injury-

dependent increase of SOD2 (primarily located in the mitochondria). Table 6.2 shows the

distinct separation of the 5 clustered groups.
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Table 6.2 Centroid Uniqueness
P-value of
Centroid Centroid 1 Centroid 2 Centroid 3 Centroid 4

Separation

Centroid 2 0.016
Centroid 3 0.021 0.031
Centroid 4 0.032 0.051 0.037
Centroid 5 0.064 0.107 0.116 0.036

Table 6.2. P-value of Centroid Profile Separation. P-values were obtained through student T-
test, comparing centroid to centroid Euclidean distance. Degrees of freedom were taken as the
number of genes in each group.

From clustering analyses, key cytokines (IL-113, IL-4, and IL-6) were grouped together in group

5 (Figure 6.6E) where the 8-hour peak under INJ+C conditions was significantly downregulated

by SODm treatment. These findings suggest a transcriptional mechanism by which the

antioxidant may abrogate the negative effects of the INJ+C model by upregulating anabolic

genes and downregulating cytokines. Examining the transcriptional effects of SODm on

ADAMTS-4, SOX-9, c-Fos, c-Jun, IGF-2, TGF-B, IL-1b, CD-44, and HAS2, SODm appears to

act via an INJ+C-dependent manner, whereas the transcriptional effects of SODm on fibronectin,

IL-4, and IL-6 were independent of INJ+C (Appendix 6.7.4).

GAG Loss

Surprisingly, GAG loss was increased with the addition of SODm. After three days in

culture, GAG loss is significantly increased compared to FS conditions, ranging from >2X FS

with TNF-a alone, to nearly 3X FS with TNF-a and mechanical injury. These values increase to

3x with TNF-a alone and 3.5x with TNF-a and mechanical injury when 2.5 jgM SODm is added.

These data further support the increases in transcription activity under INJ+C conditions of

MMP-1 (peak 10x FS), MMP-3 (peak 67x FS), MMP-9 (peak 62x FS), MMP-13(peak 26x FS),
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ADAMTS-4 (peak 25x FS) and ADAMTS-5 (peak 69x FS) with the addition of SODm over the

same time period measured. Previous studies have shown an upregulation of iNOS expression

with the addition of N-acetyl-l-cysteine (NAC), an antioxidant like SODm which may suggest a

role for antioxidants in GAG loss [45]. As a side note, NAC increased cell viability in isolated

chondrocytes, as seen with SODm [46]. In this study, iNOS was upregulated to peak values of

125x FS under the treatment of SODm alone (FS + SODm). When mechanical injury, cytokine

treatment, and SODm were combined, iNOS levels increased to peak values of 600x FS

(Appendix 6.7.3). This correlation with increased iNOS and GAG loss with the presence of an

antioxidant supports the idea that SODm mediates GAG loss through the increase of NO, a

product of the upregulated iNOS.

This work supports the notion that SODm does not have the general ability to protect

against cartilage matrix degradation. While SODm has been shown to decrease levels of

apoptosis post injury, it appears that SODm does not have the ability to protect the cartilage

matrix against the harmful effects of treatment with cytokines and/or mechanical injury and, in

some cases, exacerbates matrix degradation.
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6.5 Conclusion

In a complex model of injury, namely one composed of mechanical injury and treatment

of destructive cytokines, SODm, an antioxidant, does not demonstrate the ability to abrogate the

negative effects of this complex injurious assault on matrix degradation. On the contrary, the

treatment of SODm tended to stimulate all genes measured. In particular, it increased protease

transcript levels, as well as increased in GAG loss, a measure of cartilage degradation. The

injury model elicited dramatic responses of COX-2, OP-1, bFGF, iNOS, and HSP90 to levels

greater than 100 fold the control, suggesting these genes play a crucial role in the initial response

to traumatic injury within the first three days. The magnitude of these gene transcripts has not

been observed previously in the application of mechanical injury or cytokine treatment to our

knowledge. As has previously been suggested, the combination of cytokine treatment and

mechanical injury produced the most cartilage degradation, opening a possibly insightful in vitro

model of osteoarthritis. Since ROS influence on signaling pathways in chondrocytes depends on

the kind of ROS (superoxide versus hydrogen peroxide [1]), and SODm eliminates both

superoxides and hydrogen peroxide, further studies are needed with antioxidants with greater

specificity to determine the effect of ROS on chondrocytes. Whether antioxidants may serve as

therapeutics for osteoarthritis for their ability to decrease cell death, or as targets for therapeutics

because of their increased degradative effects on cartilage, as seen here, remains to be seen.
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6.7 Appendix

Appendix 6.7.1 SODm Dose Response
MMP-3

100 ..

10 -

1

0.1
FS+0.025 FS+0.25 FS+2.5 FS+25

1000

100

10

1

INJ INJ+0.025 INJ+0.25 INJ+2.5 INJ+25

ADAMTS-4

0.1 --
FS+0.025 FS+0.25 FS+2.5 FS+25

ADAMTS-5

100 -

10

1-i

INJ INJ+0.025 INJ+0.25 INJ+2.5 INJ+25

I UI I

FS+0.025 FS+0.25 FS+2.5 FS+25

Co

INJ INJ+0.025 INJ+0.25 INJ+2.5 INJ+25

Ilagen II

. -...

I

FS+0.025 FS+0.25 FS+2.5 FS+25 INJ INJ+0.025 INJ+0.25 iNJ+2.5 INJ+25

215

-

-

w n - D

----- ff

l

I I

--

I

~I

i

r

j

77777t=

1
i

I

j

i

~-- rl

I I

m-i mlm--a I m

7



Agg

c-Fos

.. ... .. .. . ..... . ....... . . ........ .. . ...... .. ........ ........... 1 " .." .1 -.1.......

T

TH

FS+0.025 FS+0.25 FS+2.5 FS+25 INJ+0.025 INJ+0.25 INJ+2.5 INJ+25

SOX-9

.. ... ... ...... .....

r

T

FS+0.025 FS+0.25 FS+2.5 INJ INJ+0.025 INJ+0.25 INJ+2.5 INJ+25

16 -

14 -

12 -

10

8 -

6

4 -

2
0 -I

FS+0.025 FS+0.25 FS+2.5 FS+25

1000

100

10

1-I

0.1

I

-i

c-Jun

1000 - .

100

10

1 -

0.1 1
FS+0.025 FS+0.25 FS+2.5 FS+25 INJ INJ+0.025 INJ+0.25 INJ+2.5 INJ+25

100

10

1

0.1

216

n

7=k=

......... ...... .. ..... - ........ .

-- - - --- -- ---

ý ý ý m ý ý ý
~·!s ~

0.1 I

libI m

m ý

I I I I I
FS+25

NJ+0.025 INJ+0.25 INJ+2.5 I N J+ 2



Appendix 6.7.2 H202 Positive Control
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Appendix 6.7.3 Gene Expression 35 Cartilage Relevant Genes
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12hrM8hrO24hrL]48hrl72hr Mean + SEM * = p-value<0.05 (n=5)
Appendix 6.7.4 The Effects of SODm on Gene Expression
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Chapter 7

Summary and Conclusion

The onset of osteoarthritis (OA) is a fascinating subject to study because of the

multifactorial influences that contribute to the disease. While genetic and environmental factors

play a role in the development of OA (obesity, exercise health, traumatic injury), the time scales

at which these factors act and contribute to degradation of cartilage are on the order of years to

decades. Given this complex etiopathogenesis, in vitro models of the onset of cartilage

degradation have been developed to isolate specific aspects of mechanical compression,

molecular communication (growth factor and cytokine), and tissue communication (joint capsule

and synovium). This study investigated models of joint injury in combination with potential

therapeutic agents having the ability to abrogate the negative effects of these in vitro injury

models.

In Chapter 3, cartilage explants subjected to a ramp and hold compression with a final

strain of 50% were treated with IGF-1. Experiments were performed to assess expression levels

of a range of ECM related genes in response to static loading in the presence and absence of

IGF-1. Through k-means clustering analysis, major co-expression trends were elucidated,

grouping genes into highly responsive, non-responsive, and differentially active gene profile

groups. The gene pairs MMP-1 and IGF-2, TIMP-3 and ADAMTS-5, and type II collagen and

IGF-1 were consistently co-expressed in multiple clustering conditions, suggesting the

possibility of strong regulation and control relationships between members of each pair.
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Aggrecan and link protein responded to IGF-1 in a compression-dependent manner, whereas

type II collagen and fibronectin appeared to respond to IGF-1 in a manner independent of

compression. While aggrecan transcripts were significantly upregulated with the addition of

IGF-1 under 0% compression, IGF-1 was unable to upregulate aggrecan when the cartilage

explants were statically compressed to 50% strain. In comparing aggrecan gene expression to

aggrecan synthesis, these data suggest that aggrecan synthesis is transcriptionally regulated by

IGF-1 while the inhibition of aggrecan synthesis by compression is post-transcriptionally

regulated. However, more studies are needed to elucidate the specific stimulatory mechanism(s)

induced by IGF-1 and the post-translational inhibitory effects of compression.

Chapter 4 focused on an extensive study of the transcriptional, translational, and

apoptotic effects of various models of injury in combination with growth factor stimulus. ECM

genes were generally downregulated and proteases upregulated in response to Co, INJ, and/or

INJ+Co, where genes responded most dramatically to INJ+Co for both short-term expression and

longer-term expression. GF treatment failed to rescue the downregulation of ECM transcripts

and the upregulation of protease transcripts. Clustering analysis of both short-term gene

expression and longer-term gene expression showed distinct groupings of co-regulated genes.

Joint capsule gene expression was also measured and revealed that protease expression is much

higher in joint capsule than normal (free swelling) cartilage tissue. Growth factor treatment

stimulated all genes measured in the JC, with the exception of ADAMTS-5. Examining the rates

of biosynthesis, Co and INJ+Co dramatically affected uptake of 35S and 3H over the 16 day time

period measured. After treatment with OP-1 and IGF-1, biosynthesis rates measured by 3H-

proline incorporation improved dramatically, while biosynthesis measured by 35S-sulfate
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incorporation only slightly increased. Dramatic amounts of apoptosis were measured after

mechanical injury. JC appeared to have little effect on apoptosis. Growth factor treatment

significantly decreased levels of apoptosis under mechanical injury alone. The in vitro models of

injury, Co, INJ, and INJ+Co, mimic a physiologic system of in vivo injury. Growth factor

treatment had a slightly stimulatory effect on biosynthesis rates, decreased apoptosis, and had

little effect on recovering gene transcripts after injury. While OP-1 and IGF-1 have a positive

effect on apoptosis, the data presented support the role of OP-1 and IGF-1 as remodeling factors,

as opposed to anti-catabolic and pro-anabolic factors as has been previously reported. Further

studies are needed to understand the mechanistic action of OP-1 and IGF-1 to clarify their

reparative and possible therapeutic capabilities.

In Chapter 5 the model of mechanically injured cartilage co-cultured with excised joint

capsule was examined using adult human tissue. The data showed that the combination of

cartilage mechanical injury and subsequent co-culture with excised joint capsule strongly mimics

certain changes in human articular cartilage obtained from notchplasty during reconstructive

surgery following anterior cruciate ligament rupture, as seen through IHC analysis. After injury,

knee cartilage exhibited increased GAG loss levels and lower biosynthesis rates, while ankle

cartilage showed less GAG loss and increased biosynthesis rates over time. The conditions

including mechanical injury took 16 days to fully develop a significant difference in GAG loss

compared to FS controls. Biosynthesis rates in knee cartilage were significantly downregulated

with the addition of mechanical injury at the first time point measured, two days after injury. As

previously reported, injurious conditions showed no significant difference in aggrecan species

profile as examined by immunoblotting, up to six days after injury. Ongoing studies are aimed at
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further elucidating the molecular responses and cellular signaling pathways underlying the

response of human tissue to combined mechanical injury and joint capsule co-culture.

In Chapter 6 a complex model of joint injury, consisting of mechanical injury to cartilage

and subsequent treatment with inflammatory cytokines (TNF-a, IL-6, and IL-6R) in combination

with an antioxidant, superoxide dismutase mimetic (SODm) was investigated at the level of

transcription. SODm did not demonstrate the ability to abrogate the negative effects of this

complex injurious assault. On the contrary, the treatment of SODm tended to stimulate all genes

measured. In particular, it increased protease transcript levels, as well as increased in GAG loss,

a measure of cartilage degradation. The injury model elicited dramatic responses of COX-2, OP-

1, bFGF, iNOS, and HSP90 to levels greater than 100 fold the control, suggesting these genes

play a crucial role in the initial response to traumatic injury within the first three days. The

magnitude of these changes in gene transcript levels had not been observed previously in the

application of mechanical injury or cytokine treatment to our knowledge. As has previously

been suggested, the combination of cytokine treatment and mechanical injury produced the most

cartilage degradation, opening a possibly insightful in vitro model of osteoarthritis. Since ROS

influence on signaling pathways in chondrocytes depends on the kind of ROS (superoxide versus

hydrogen peroxide), and SODm eliminates both superoxides and hydrogen peroxide, further

studies are needed with antioxidants with greater specificity to determine the effect of ROS on

chondrocytes. Whether antioxidants may serve as therapeutics for osteoarthritis for their ability

to decrease cell death, or as targets for therapeutics because of their increased degradative effects

on cartilage, as seen here, remains to be seen.
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In conclusion, this work has extensively investigated the effects of multiple injury models

including the combination of static compression, injurious loading, cytokine treatment, co-

culture with injured or excised joint capsule, and selected combinations of these models.

Through studies in both bovine cartilage and human cartilage, we have found these models

mimic the onset of osteoarthritis. The growth factors and antioxidants, IGF-1, OP-1, and SODm,

were tested to examine if they had the capability to abrogate the negative effects of these injury

models. Taking a systems approach, through extensive measures of gene expression, cell

viability, biosynthesis data, protein expression, and GAG loss, OP-1 and IGF-1 were unable to

rescue transcriptional expressions due to injury, but were able to rescue cells from apoptosis, and

slightly increase biosynthesis rates. The antioxidant, SODm, showed no ability to selectively

diminish protease transcriptional activity, and cartilage treated with this antioxidant significantly

increased GAG loss to the medium, while diminishing levels of apoptotic cells. Taken together,

this work supports further investigation of 1) the mechanisms of action of OP-1, IGF-1, and

SODm in order to elucidate their possible therapeutic value, and 2) the validation of in vitro

injury models in mimicking the onset of OA.
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Appendix A: Experimental Protocols

A.1 RNA Extraction Protocol- Bovine

Base & Top of Pulverizer

Pulverizer ready to pound

Stopper & pole

Pulverizer ready to freeze

Tissue Tearor (Homogenizer)

Sheath and Blade Blade is flush within sheath
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Tissue preparation
0) You should prepare/label all required tubes before starting. Also make up the DNase used in

step 6 of the RNA extraction protocol ahead of time and store in ice bath. All steps for the
RNA extraction are taken from the QIAGEN RNeasy MiniKit for animal tissue. Pages 54-55.
Obtain volumes of chloroform, 100% ethanol and RLT buffer (with 3-Me added). Add
20mls of DI water to two 50ml tubes for cleaning the homogenizer. Pre-spin Eppendorf
phasegel tubes for 15 seconds.

1) Samples should be stored by either flash-freezing in liquid nitrogen and placing in a -80C
freezer, or placing in RNAlater solution and placing in -80C freezer. It is best if cartilage has
been dissected into multiple 3x3xlmm pieces.

2) Place pulverizer and pole in container and bathe in liquid nitrogen repeatedly to cool.
Remove two samples from the -800 C freezer and place in ice bath. Cool pulverizer again
with liquid nitrogen.

3) Remove pulverizer and bend its arms downwards. Add cartilage samples to top of pulverizer
(make sure metal stopper is in place). Place pole into top base. Hit pole firmly 8-10 times
with a hammer, while holding pole and top of pulverizer.

4) Lift top of pulverizer and gently tap pole to release metal stopper. Place a 5ml polypropylene
tube beneath pulverizer, turn pulverizer sideways and tap pole on side of bench to release the
smashed cartilage into tube. Place polypropylene tube with pulverized cartilage in -80 deg
Freezer. **

5) Clean pulverizer with sterile gauss and if necessary re-cool with liquid nitrogen. Repeat steps
2 to 5 with next sample.

6) Remove all polypropylene tubes from -80 deg freezer, take off caps, and add 5401l of Trizol
to each. Ensure that cartilage is submerged in trizol; change tips.

7) All samples should now be pulverized and have Trizol added. Set up the homogenizer so that
the blade is flush with the sheath.

8) Place homogenizer in first water tube, turn on and rinse, turn off, remove and shake dry.
Repeat in second water tube. The second water tube should still look clean at the end of the
Tissue preparation protocol.

9) Place homogenizer into first sample, turn onto low speed, and slowly increase speed. Sample
should be homogenized in less than 20 seconds. Never turn tissue tearor past level 2. Place
sample back in ice bath. Repeat steps 7 & 8 until finished.

10) Remove samples from ice bucket, wait 30 min for samples to soak in trizol.
11) Add 60Wl of chloroform (final 10%) to each tube.
12) Mix Trizol, chloroform, cartilage (should turn cloudy pink) and transfer sample to pre-spun

phasegel tubes. Cut off end of pipette tips if cartilage repeatedly clogs pipette.
13) Spin phasegel tubes at maximum speed for 10 minutes at 40C (room temperature if cold

room centrifuge is not available).

234



RNA extraction
1) Make sure all QIAGEN reagents are ready. Buffer RPE should have ethanol added to the

bulk volume when the kit is first used. Each month a 10ml aliquot of Buffer RLT mixed with
1OOX P-Mercaptoethanol must be made. n-Me is highly toxic and must remain in the
chemical fume-hood.

2) The following steps are taken from the QIAGEN RNeasy Mini Protocol.
3) While the phasegel tubes are spinning add 250Wl of 100% ethanol to a set of RNase-DNase

free 1.5ml centrifuge tubes. Then add 3 5 0pl of RLT buffer (which contains n-Me).
4) Transfer the supernatant in a phasegel tube to the new centrifuge tube and immediately mix

the supernatant, ethanol and RLT buffer. Transfer half the solution to the pink RNeasy spin
column (less than 700gl). Repeat for each phasegel tube. Centrifuge spin columns for 15sec
at 10,000 rpm, allowing 5sec for ramping up, then discard flow through. The RNA is now
attached to the silica membrane in the pink tubes. Add the remaining sample from the
centrifuge tube to the spin columns and spin again at 10,000rpm. Discard flow through.

Steps 5 to 8 are the for DNase digestion to remove genomic DNA, and can be found in the
QIAGEN RNeasy Mini Protocol (p98-99).

5) Pipette 350l1 of Buffer RW1 into spin column and centrifuge for 15sec at 10,000rpm,
allowing 5sec for ramping up. Discard flow-through into separate bin and reuse collection
tube.

6) Prepare ahead: Make a mastermix of 10gl of DNase stock solution to 70•l of RDD Buffer
per sample. Once dissolved DNase should be stored in the -20C freezer in aliquots. Thawed
DNase aliquots should not be re-frozen, instead store in the 40 C fridge (generally choose
aliquot size carefully).

7) Pipette 80pl aliquots of DNase mix directly onto the spin column membrane, tap gently to
ensure the entire membrane is covered. Incubate on bench top for 15 minutes at room
temperature.

8) Pipette 350gl of Buffer RW1 into spin column and centrifuge for 15sec at 10,000rpm,
allowing 5sec for ramping up. Discard flow-through and collection tubes into appropriate
bins.

9) Place spin column into a new 2ml collection tube, add 500pl of Buffer RPE (with ethanol
previously added), centrifuge for 15sec at 10,000rpm, allowing 5sec for ramping up. Discard
flow-through into separate bin and reuse collection tube.

10) Pipette 500l of Buffer RPE (with ethanol added) into spin column, centrifuge for 2 minutes
at maximum speed. After spin remove spin column from collection tube and wipe the outside
gently with sterile gauze to remove any residual ethanol, which may interfere with
subsequent reactions.

11) Place spin column into 1.5ml collection tube (supplied, rounded bottom). Add 50gtl of Rnase-
Dnase free dH20 from QIAGEN kit. Spin at 10,000rpm for 1 minute, and then place
immediately in -800C freezer, discard column.

12) Keep RNA in -800 C to minimize degradation.
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A.2 RNA Extraction Protocol- Human Tissue

Small Scale Human Cartilage RNA Protocol - 11/21/04

This protocol is designed for harvesting intact RNA from ~ 0.05 - 0.2 g of snap frozen cartilage.
Expected yields should be about 10-15 gg RNA/g tissue.

Suggested reagents and materials:

All materials should be molecular biology grade or higher, and RNase-free. Gloves should be worn
at all times to prevent potential RNA degradation. Use of a fume hood is also recommended.

Ambion Pierce Chemicals
Acid Phenol:CHCl 3 - cat # 9720 Aquasil Silanizing Fluid - cat #
42799
Phenol:CHCl 3 :IAA - cat # 9730
1.5 ml Non-stick RNase free microfuge tubes - cat # 12450 Sigma Aldrich
Nuclease free water - cat # 9937 CHC13

Invitrogen Zymo Research
TriZol - cat # 15596-026 RNA clean up kit #R1015

Other materials
SPEX Certiprep 6750 Freezer mill
SPEX Certiprep Microvials # 6753
Microfuge
2 ml screw cap sample tubes
Barrier-tip pipet tips
Liquid nitrogen
Dry Ice
Wet ice
Methanol
Vortexer
Eppendorf Phase Lock Gel (Heavy, 2.0 ml) - Brinkman Instruments cat # 955154045

1. Silanize grinding microvials as per manufacturer's instructions, including impactors and end
caps. Air dry for 1 day in hood. Discard waste as appropriate. Store grinding microvials at -80
OC the day prior to RNA extraction, if possible..

2. Powder snap frozen cartilage (in liquid N2) using a SPEX 6750 Freezer mill. Pre-chill chamber
and grinding vials in liquid nitrogen prior to use (minimum of 10-15 minutes is recommended).
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Keep grinding vials cold at all times. Allowing the vials to warm even slightly will decrease
RNA yield and quality dramatically.

Powdered tissue using the suggested settings: Cycles: 3

Pre Cool: 5 minutes

Cool between cycles: 2 minutes

Rate: 10

Powder time: 1 minute

3. Remove one end cap from grinding microvial, and gently transfer powdered cartilage into 2 ml
screw cap tube on dry ice. Use 1-2 ml of TriZol per 100 mg tissue. Do not let powdered tissue
warm up! Vortex for 1 minute. Ensure powder is totally resuspended in TriZol. Rotate for 1
hour at RT.

4. Pellet samples, 12,000 x g, 5' at 4 OC. Transfer supernatant to 1.5 ml eppendorf tubes. (At this
point may need to split each sample equally into two tubes). Note initial starting volume. Add
0.2 volumes of CHC13 per tube. Vortex ~ 15 - 30 seconds. Incubate at RT for 3 minutes.
Centrifuge for 15 minutes @ 12,000 x g, 4 oC. Optional: Remove about 10% of lowest phase.
Add another 0.2 volumes CHCl3. Vortex for 15 seconds. Incubate at RTfor 3 minutes.
Centrifuge for 15 minutes @ 12,000 x g, 4 OC.

Transfer aqueous phase to fresh tubes.

5. Add one volume Ambion Acid Phenol:CHC13 and vortex. Incubate on ice, 10 minutes.
Centrifuge at 15,000 x g, 15 minutes. Added back 100-200 pl1 dH2O/tube and back extract.
Transferred aqueous phase to fresh tubes. Repeat extractions with one volume
Phenol:CHC13:Isoamyl (25:24:1). Chill on ice 10 minutes. Centrifuge at 15,000 x g, 15
minutes, remove aqueous phase. Finally, extract aqueous phase with one volume CHC13, vortex
briefly, and transfer to pre-spun Phase Lock Gel (Heavy, 2.0 ml) tubes. Centrifuge at 15,000 x g,
5 minutes. Remove upper aqueous phase. Determine final volume of the aqueous phase. Use
this value for determining how much RNA binding buffer to add. Per sample, add 4 volumes
Zymo Research RNA Binding Buffer.

6. Per sample, use one Zymo Research spin column/sample. Note: Binding capacity of columns are
~ 5 gtg of total RNA (this is a minimum). Load each column with up to 700 p1 of each sample in
RNA Binding buffer (700 ýtl is max volume per load). Centrifuge 11,000 x g, 15 seconds.
Discard flow through. Reload the column with more sample. Centrifuge 11,000 x g, 15 seconds.
Discard flow through. Repeat if necessary. Remove flowthrough. Add 200 •l wash buffer.
Spin at top speed, 15-30 seconds. Add another 200 p1 wash buffer. Spin at top speed, 30-60
seconds. Discard collection tube. Switch to supplied 1.5 ml eppendorf tube for collection. Add
8 •1 dH 20. Spin at 11,000 x g, 15 seconds. Add another 8 pl dH20. Spin at 11,000 x g, 15
seconds. Volume is now 16 p1. Run out 1 pl/sample on the Agilent Bioanalyzer using the Nano
kit. May want to also take OD's. Store remainder of samples at -80 oC.
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Notes: For RNA amplification, DNase treatment is usually not required. If DNasing is
deemed necessary, can do so prior to Zymo RNA spin column step.
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A.3 Extracted RNA Measurements

Materials:
* Ice bucket
* Samples (with extracted RNA)

* DNase/RNase-free deionized water

* P2, with pipette tips

Procedure:
1. Place a maximum of 12 samples in the ice bucket and go to the Nanodrop instrument

(located in the lab next door).
2. Lift the lever of the Nanodrop and spray eye with ethanol. Clean gently with a kimwipe.
3. Open the Nanodrop software and choose Nucleic Acids.
4. The software will ask you for a calibration measurement. Place lul of the DNase free

water on the eye. Lower lever and click OK.
5. Change the DNA tab to RNA and change the wavelength from 230 to 260.
6. Place another drop of water on the eye and re-calibrate. Measure the sample (water) to

check if the measurement is actually zeroed. Repeat re-calibrating until the measurement
is zeroed with the water sample.

7. Clean the eye with a kimwipe and place lul of the sample on the eye and lower lever.
8. Enter the sample name and click Measure.
9. Repeat steps 6 and 7 until samples are done. The Nanodrop should be re-calibrated about

every six samples.
10. After the samples are all measured, close the program. Save the excel file to a flash drive.

(Desktop -> Shortcut to Yusuke, go up one directory -> Nucleic Acids -> Default ->
Excel file, ordered by date)
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A.4 Reverse Transcription of RNA to cDNA
0) Before commencing ethanol all surfaces, use alcohol wipes on pipettes, pens & trays.

This is done to avoid contamination with proteins, RNAs, RNase and DNase, crucial! Also
calculate the appropriate volume needed for 1 tg of RNA. This should not be larger than
251l.

1) If proceeding straight from a RNA extraction ensure that RNA is kept cold (but not
frozen) by placing vials in an ice bucket and then placing in the 4°C fridge as calculation of
RNA volumes can take some time. If RNA has been frozen and stored in the -800 C freezer
then thaw it immediately before use, and then mix by pipetting.

2) Make a RT master mix using the following guide. Total reaction volume will be 401l once
RNA and H20 have been added.

Mix thoroughly

Keep cold, remove from freezer only when
needed, mix thoroughly by pipetting, (do
not vortex as enzymes are fragile).

3) Generally multiply all the above equations by the number of cartilage samples you have to
create a master mix. A total volume of 40•l was chosen here, but this can be scaled up or
down depending on the total needed volume.

4) Aliquot 15l of the mastermix into X different tubes. Then add the appropriate amount of
H20 (25[pl- volume of 1 tg RNA). Last step, add the RNA, immediately put on thermocycler
block, and run 40 program. This will ensure the mix does not degrade.

5) Load tubes into the thermocycler and follow these steps: GoldRT2
250 C 20 minutes (hybridization)
420 C 30 minutes (reverse transcription)
Hold 40 C (wait for removal)

6) Although cDNA is significantly more stable than RNA and thus doesn't degrade as fast as
RNA, quantitative RT-PCR aims to avoid degradation as much as possible. Hence, move
cDNA into the -200 C as soon as possible after the thermocycler reaches 40 C.

240

RT Reagents

10x PCR buffer

MgC12

dNTP(5mM)

Random Hexamers

Rnase Inhibitor

Multiscribe Reverse
Transcriptase



A.5 Standard Curve Measurements for qPCR Primers

1. Make primer stock by adding H20 to lyophilized primers. Make up 100 ýpmolar of
Primer. Add (10*(nmole)) ýtL of H20 to stock.

2. Make up Aloquats by diluting primer stock by 20:1
a. Use 200 gL eppindorf tubes, add 180 gtL of H20
b. Add 10 gtL of for and 10 tL of rev.

3. Amplify stock cDNA by adding new primer, SGMM, H20, and cDNA
a. For 20g1L, 10L SGMM, 1.5 gIL cDNA, 2 gL Primer, and 6.5 jL H20

4. Use RealPCR protocol on PCR machine
5. Purify the product- Centri-Spin Column

a. Tap column to insure powder is at the bottom
b. Add 650 gl of H20
c. Pipette vigorously till mixed.
d. Vortex, both top and bottom
e. Let sit at room temp for at least 2 hrs.
f. Take off Top and Bottom cap
g. Spin columns in throw away tubes provided for 2 min at 3000rpms
h. Empty flow through, dab bottom membrane with gauze.
i. Carefully pipette 20-50gL of cDNA into center of column, avoid the edges!
j. Place in labeled 1.5 mL eppindorf tube, and position the column in previous

orientation in centrifuge.
k. Spin Columns for 2 min a 3000rpms

6. Dilute purified cDNA amplification.
a. Make a series of 5 10:1 dilutions, this will dilute the cDNA -~10^6 times.
b. Then make a series of 5, 2:1 dilutions.

7. Plate these 5 2:1 dilution along with No Template Controls (NTC)
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A.6 Finding/Designing Primers for qPCR

Finding
http://www.ncbi.nlm.nih.gov/Genomes/index.html
search under locuslink

search under nucleotide
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&itool=toolbar
Bovine [orgn] IL-1
Click on gene ID = #####

Look at CDS coding region

Making
Primer3: http://frodo.wi.mit.edu/cgi-bin/primer3/primer3 www.cgi
Paste sequence in window
Change Product size ranges to 80-120
Primer GC% 40 to 60;
Click Pick Primers
Check primer3 results, look at any, and 3'. Want low any and low 3'
Want low pair any comp, and low pair 3' comp.

Blast
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?CMD=Web&LAYOUT=TwoWindo
ws&AUTO FORMAT=Semiauto&PAGE=Nucleotides&NCBI GI=ves&FILTER
=L&HITLIST SIZE=100&SHOW OVERVIEW=yes&AUTO FORMAT=yes&S
HOW LINKOUT=yes
Check forward Sequence given by Primer3
Check reverse transcribed reverse seq. given by Primer3
Check to see if other genes are coded by primer given

Alternatively, use Primer Express (Applied Biosystems) to design primers. With
sequences obtained, ensure proper design through Blast.

Ordering
Use Integrated DNA Technologies, http://www.idtdna.com/Home/Home.aspx
Create User/Password

242



A.7 Primer Inventory

Gene
1 AGGRECAN
2 COLLAGEN 1 *
3 COLLAGEN 2
4 COLLAGEN 9
5 COLLAGEN 11
6 FIBROMODULIN
7 FIBRONECTIN
8 DECORIN
9 LINK PROTEIN

10 CD44
11 HAS2
12 OSTEOCALCIN**
13 COMP
14 MMP-1
15 MMP-3
16 MMP-9
17 MMP-13
18 ADAMTS-1
19 ADAMTS-4
20 ADAMTS-5
21 TIMP-1
22 TIMP-2
23 TIMP-3
24 SOX-9
25 C-FOS
26 C-JUN
27 INOS
28 18S
29 6S*
30 G3PDH
31 B-ACTIN
32 IGF-1**
33 IGF-2
34 OP-1
35 BFGF
36 TGFB
37 VEGF
38 LIF
39 IL-1B
40 IL-4
41 IL-6**
42 TNFA
43 IL-6R**
44 COX-2
45 TXNIP
46 LUBRICIN*
47 HSP90
48 CASPASE-3
49 ALPL
50 SOD1
51 SOD2
52 GPX-3**

* These primers were not used in this work
** These primers could be redesigned to improve efficiency
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Forward Sequence
CCTGAACGACAAGACCATCGA
AATTCCAAGGCCAAGAAGCATG
AAGAAGGCTCTGCTCATCCAGG
AATTTGCCCTCCTTGTTCGA
CTGATGTGGCCTACCGAGTGT
ACAACCAGCTGCAGAAGATCC
ACTGCCCACTCCTACAACCA
GCTCCTTTGGTGAAATTGGA
AAGCTGACCTACGACGAAGCG
GTCCTATGCGGAAACCTCAA
GCACATCTGGAAGGAAAACC
AGGGGTGAGTCTCATGCCAGTG
GTGCCAGGGCGACTTTGAT
GGACTGTCCGGAAATGAGGATCT
CACTCAACCGAACGTGAAGCT
TCCCTTCCTTGTCAAGAGCAA
TCTTGTTGCTGCCCATGAGT
CGACACAAGAGAGGAAAGATGG
CTGGGCCATGTCTTCAGCAT
CTCCCATGACGATTCCAA
TCCCTGGAACAGCATGAGTTC
CCAGAAGAAGAGCCTGAACCA
TTTGGCACGATGGTCTACACC
TGAAGAAGGAGAGCGAGGAG
CTCCACTTCATCCTAGCGGC
AGCTGGAGCGCCTAATCATACA
AGGAGATAGAAACAACAGGAACC
TCGAGGCCCTGTAATTGGAA
TCGTGACTCCACGAGTTCTG
ATCAAGAAGGTGGTGAAGCAGG
GATGAGATTGGCATGGCTTT
CAGCAGTCTTCCAACCCAAT
TTCTACTTCAGCCGACCATCC
GGGCTTTTCCTACCCCTA
GCCATAATCGGAACAGCACT
CACGTGGAGCTGTACCAGAA
TCCCTGTGGGCCTTGCT
CAACATCACGAGAGACCAGAAG
GAAGAGCTGCATCCAACACC
GCGGACTTGACAGGAATCTC
TGAGTGTGAAAGCAGCAAGG
ACGGTGTGAAGCTGGAAGAC
GCACACCCGTCGTATTCTTT
AAAAGCTGGGAAGCCTTTTC
CAAGTTCGGCTTTGAGCTTC
AGGAATGCACTGTGGAGCTT
AAACTGTATGTCCGCCGTGT
GAAGTCTGACTGGAAAACCC
CCATGGTGAGTGACACAGACAA
TGGAGACCTGGGCAATGTG
AGGTCGGTTCACTCGGAAAGA
AGGGGTGAGTCTCATGCCAGTG

Reverse Sequence
TGGCAAAGAAGTTGTCAGGCT
GGTAGCCATTTCCTTGGTGGTT
TAGTCTTGCCCCACTTACCGGT
CCTTTCCACGCCAATCAT
AGCAGAGAGAAATCTTTGGGAAAA
TTCATGACATCCACCACGGT
CAAAGGCATGAAGCACTCAA
ACACGCAGCTCCTGAAGAGT
CGCAACGGTCATATCCCAGA
CTGCCCACACCTTCTCCTAC
AAAATCACACCACCCAGGAG
CCAAGGCAGATGTGAGAGCAGG
TCTCCGGACACACATCGATCT
TTGGAATGCTCAAGGCCCA
CGTACAGGAACTGAATGCCGT
TACTTGGCGCCCAGAGAAGAA
GGCTTTTGCCAGTGTAGGTGTA
CATCACTTTACCCGCTGCTAT
GGCGGGAGGTGCTCTCA
AATGCTGGTGAGGATGGAAG
TGTCGCTCTGCAGTTTGCA
TGATGTTCTTCTCCGTGACCC
CCTCAAGCTTAAGGCCACAGA
GTCCAGTCGTAGCCCTTGAG
GCCCCCACTCAGATCAAGAG
CCTCCTGCTCATCTGTCACGTT
TGCCATCTGGCATCTGGTAGC
GCTATTGGAGCTGGAATTACCG
TGGCCTCCTTCATTCTCTTG
TGAGTGTCGCTGTTGAAGTCG
GTCACCTTCACCGTTCCAGT
GAAGAGATGCGAGGAGGATG
TGGCACAGTAAGTCTCCAGCA
CACGAGATTGACGAAGCTCA
AGGAATGCACTGTGGAGCTT
ACGTCAAAGGACAGCCACTC
CGTCTGCGGATCTTGTACAAAC
TCTAGTTGGCACCACGTATAGG
ATGCAGAACACCACTTCTCG
TTCAGCGTACTTGTGCTCGT
AGCAAATCGCCTGATTGAAC
CCCTGAAGAGGACCTGTGAG
TGTCAGATTCAAGGCTGCTG
GCTCTTTCCTCCCTTTCACA
GCTGGGACGATCAAGAAAAG
GCCATAATCGGAACAGCACT
AGATGTTCAGGGGGAGGTCT
GAAGTCTGCCTCAACTGGTA
GGCCCGTTGCCGTACA
ACAATATCCACGATGGCAACAC
GGCGGTCCCTCTCCAACTA
CCAAGGCAGATGTGAGAGCAGG

Slope
-0.912
-1.151
-0.912
-1.018
-1.253
-1.222
-1.051
-1.025
-1.005
-0.998
-0.930
-0.910
-0.852
-1.057
-1.130
-1.439
-1.068
-0.961
-1.041
-1.110
-1.237
-1.210
-1.028
-1.127
-0.755
-1.063
-1.354
-1.104
-1.111
-1.073
-0.800
-0.986
-1.089
-0.909
-0.730
-0.859
-0.889
-1.135
-1.037
-0.862
-1.257
-1.237
-0.887
-1.127
-0.930

-1.090
-0.999
-1.010
-0.794
-0.871
-1.130

Offset
27.560
27.880
23.960
20.284
27.969
30.260
32.001
19.340
27.840
21.830
20.446
21.594
14.635
35.590
30.540
33.279
33.369
17.019
25.001
31.777
30.966
32.170
35.753
25.149
35.500
33.810
23.676
22.970
31.614
27.173
25.000
31.063
23.144
21.984
15.857
31.834
20.857
28.752
24.609
21.817
31.807
30.316
15.482
25.149
22.290

26.400
18.891
15.511
19.215
18.620
14.267



A.8 Bovine DNA Standard and Assay using Hoechst 33258 Dye

Material:
10x TEN Buffer located in 40 stock
lmg/mL Hoechst 33258 Dye (10,000x) located in 40 stock
Stock DNA solution at 10ýlg/ml located in -20' stock
Tris buffer at 50mM located in 40 stock

DNA Dye Solution Mixing Procedure:
* Add 45mL of DI H20 and 5mL of 10x TEN buffer into a 50mL test tube
* Mix well and add 5l of lmg/mL of Hoechst 33258 dye into the lx TEN buffer
* Mix well and wrap the test tube with aluminum foil to protect the dye from light. The

dye will have a final concentration of 0.1 ýtg/mL Hoechst 33258.

Procedure:
* Digest cartilage plugs in proteinase K solution
* Make up standard solutions using following chart:

Tube DNA conc. ig/mL Tris Buffer DNA stock 10ýpg/mL
1 10 0 tl 200 ld
2 5 100 ýl 100 ýl
3 4 120 pl 80 l
4 3 140 pl 60 gl
5 2 160 gl 40 gl
6 1 180 gl 20 tl
7 0 200 pl 0 gl

* Plate 20pl of
plate making
below. Plate

each standard and 20gl of each sample into a microflour 2 black 96 well
sure to duplicate all samples including the standards using the template
standards in descending order of concentration.

Standards Repeat 1 0

Standards Repeat 2 •

Samples #1-12 Repeat 1

Samples #1-12 Repeat 2

Samples #13-24 Repeat 1

Samples #13-24 Repeat 2

Samples #25-36 Repeat 1

Samples #25-36 Repeat 2
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* Use 12-channel pipette to add 180ptl of 0.1g pg/mL Hoechst dye to each well
* Put plate in the Victor machine and select the DNA quantification protocol in the Victor

software. Follow the on screen instructions to read plate.
Post Processing:
In order to process the raw data produced by this assay, a DNA standard curve must be made.
DNA concentrations can then be calculated.

* Open the Microsoft Excel Template called 'MIT_Bovine_DNA_assay_template'
* Paste the raw data obtained from the Victor plate reader into the highlighted area in the

'Data Columns' tab
* Click on the 'DNA standard template' tab to view the standard curve
* Click on the 'DNA analysis' tab to view the concentration of DNA in each well as well

as the average DNA concentration of the two repeats for each sample
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A.9 GAG Standard and the GAG Assay with Maxy Machine
This is the general assay for sulfated GAGs (CS6, CS4, HS, KS). Chondroitin-6-sulfate is used
as the standard because of its prevalence in articular cartilage.

Objective: DMMB Assay for GAG content

Material:
Tris buffer at 50mM located in 40 stock
GAG dye solution (DMMB Dye) located under bench 5
Stock GAG solution at 2mg/ml located in -20' stock

Procedure:
* Digest cartilage plugs in proteinase K solution
* Dilute samples so that GAG concentrations fall in the range of the standards

o For digested bovine cartilage samples, dilute 1:40 in Tris buffer
o For bovine media samples, dilute to 1:20 in Tris buffer

* Make up standard solutions using following chart:

Tube Tris Buffer Transfer GAG conc. [g/ml
1 900gl 100 ptl of 2mg/ml 200 ýtg/ml

stock solution
2 100tl 100 jil from tube 1 100 ýtg/ml
3 100gl 100 gl from tube 2 50 pg/ml
4 100tl 100 gl from tube 3 25 tg/ml
5 100gl 100 pl from tube 4 12.5 gg/ml
6 100gl 100 gl from tube 5 6.25 pg/ml
7 100tl 100 gl from tube 6 3.125 ýig/ml
8 100gl 100 gl from tube 7 1.5625 kg/ml
9 100[l 0 0 gg/ml

* Plate 20pl of each standard and 20pl of each sample into each well making sure to
duplicate all samples including the standards using the template below. Plate standards in
descending order:
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Standards Repeat 1

Standards Repeat 2

Samples #1-12 Repeat 1

Samples #1-12 Repeat 2
Samples #13-24 Repeat 1

Samples #13-24 Repeat 2

Samples #25-36 Repeat 1

Samples #25-36 Repeat 2



* Use 12-channel pipette to add 180l of DMMB dye to each well
* Turn on the Molecular Devices Kinetic Microplate Reader machine
* Select 520nm wavelength for reading
* Load plate and click "Read Plate"

Post Processing:
In order to process the raw data produced by this assay, a GAG standard curve must be made.
GAG concentrations can then be calculated.

* Open the Microsoft Excel Template called 'MIT_GAG_assay_template'
* Paste the raw data obtained from the Kinetic Microplate Reader into the highlighted area

in the 'Data Columns' tab
* Click on the 'GAG standard template' tab to view the standard curve
* Click on the 'GAG analysis' tab to view the concentration of GAG in each well as well

as the average GAG concentration of the two repeats for each sample
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A.10 Human DNA Standard and Assay using CyQUANT Dye

Material:
Molecular Probes CyQUANT Cell Proliferation Assay Kit located in -20' stock which
contains:

* CyQUANT GR Dye (Component A) at 400x
* Cell-lysis buffer (Component B) at 20x
* k DNA standard (Component C) at 100tg/mL

DNAse free H20 located in 40
DNAse located in -20' stock

DNAse Pretreatment
In order to correct for the presence of RNA in the cell, samples that have been treated with
DNAse will also be analyzed.

* Remove 50tl of each sample into 2ml 12-tube strips
* Add 3gl of DNAse to each sample
* Incubate at room temperature for one hour

DNA Dye Solution Mixing and X DNA Preparation Procedure:
* Calculate the volume of CyQUANT GR/Lysis Buffer that will be needed by multiplying

the number of samples to be tested by 800ptl, then adding 3mL for standards. 800itl of
the buffer/dye solution is allotted for each sample because each sample must be tested 4
times: 2 repeats of the sample treated with DNAse, and two repeats of untreated sample.

* Using this volume, dilute the cell-lysis buffer (Component B) 20-fold in DNAse free H20
* Make a 400 to 1 dilution of the CyQUANT GR Dye (Component A) in the lx cell-lysis

Buffer
* 1.5mL of 1p g/mL k DNA will be needed for the standard curve. Place 1.485mL of lx

CyQUANT GR/Lysis Buffer solution into a 2mL tube.
* Add 15itl of k DNA standard (Component C) at 100ptg/mL. The final concentration of

DNA will be 1 ýtg/mL
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DNA Standard Curve and Assay Procedure:
* Make up standard solutions in the first two rows

using following chart:
of a microflour 2 black 96 well plate

* Use 12-channel pipette to add 180tl of lx CyQUANT GR/Lysis Buffer solution to each
well

* Put plate in the Victor machine and select the CyQUANT protocol in the Victor software.
Follow the on screen instructions to read plate.
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Standards Repeat 1 -

Standards Repeat 2

Samples #1-12 Repeat 1

Samples #1-12 Repeat 2

Samples #1-12 DNAse treated Repeat 1

Samples #1-12 DNAse treated Repeat 2

Wel 1.tg/mL DNA
CyQUANT in CyQUANT Final DNA

Num GR/Lysis Buffer in CyQUANT ConcentrationNum (l) GR/Lysis (ng/mL)
Buffer (gl)

1 0 200 1000
2 40 160 800
3 80 120 600
4 120 80 400
5 160 40 200
6 180 20 100
7 190 10 50
8 198 2 10
9 200 0 0

Duplicate all standards using the template below.
Once the DNAse treated samples have been incubation for one hour, plate 20[l of each
sample into the microflour 2 black 96 well plate making sure to duplicate all samples,
using the template below. More samples can be added to additional plates using the same
pattern.



A.11 Radiolabel Scintillation Counting Using Microbeta Plate
Reader

Material:
Perkin Elmer Optiphase Supermix Scintillation fluid located under bench 5
Optically clear plastic film located under Microbeta machine
Disposable 24 well flexible plates located above Microbeta Machine

Procedure:
Preparing Samples

* Use clear 24 well disposable flexible plates. Plates are in boxes on the shelf above the
Microbeta machine

* Pipette 50-100p1l of each sample and standard into wells. The amount of sample plated is
dependant on the volume of proteinases K solution used to digest the samples. If lmL
was used, plate 100ul of each sample. If 500uL of proteinases K was used, plate 50ul. A
volume of 50uL should always be used for standards. Duplicate each sample and
standard in alternating rows, e.g., plate one set of samples in rows A and C and the next
set in rows B and D like in the following figure:

Samples #1-6 Repeat 1

Samples #7-12 Repeat 1

Samples #1-6 Repeat 2

Samples #7-12 Repeat 2

* Pipette lmL scintillation fluid into each well using a repeating pipette. Be sure not to
spill fluid on the black part of the plate.

* Cover plate with optically clear plastic film and seal with the roller. Run over the
boarders of each well with a spatula to ensure the wells are sealed.

* Shake all plates on the orbital shaker for 5-10 minutes, or until scintillation fluid is
homogenous

* Load flexible plates into white plate cassettes. These can be found in the drawer under
the Microbeta machine

* Place cassettes into the machine. The Microbeta machine can hold a maximum of 15
plates. Place a "STOP" cassette above the last plate if reading fewer than 15 plates.
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Reading Plates
* Start Microbeta Windows Workstation
* Choose protocol group "General" and click "Open"
* Choose the protocol you wish to use, e.g., "n Adjusted Dual Label"
* Click "Protocol" under the "Edit" heading to edit the count time
* Click "Plate map..." to view and edit the order the wells will be reported
* Click "Output" to change what will be included in the output file and to create a new

output file
* Click "Start..." A window will appear that will let you select which shelf to start

counting on. The machine will start at this shelf and continue until it hits the "STOP"
plate.

* Click on "Live Display" to view the counting progress
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Appendix B: Nitric Oxide Project

Nitric oxide enhances aggrecan degradation by aggrecanase
in response to TNF-a but not IL-1p treatment at a post-
transcriptional level in bovine cartilage explants. *

* This chapter has appeared as a paper in Osteoarthritis and Cartilage (Stevens AL, Wheeler
CA, Tannenbaum SR, Grodzinsky AJ. Nitric oxide enhances aggrecan degradation by
aggrecanase in response to TNF-alpha but not IL- beta treatment at a post-transcriptional level
in bovine cartilage explants. Osteoarthritis Cartilage. 2007 Oct 9)
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Abstract
Objective: The objective of this study was to determine the role of NO in TNF-ca-induced

matrix damage, compared to IL-1 , in bovine cartilage explant cultures.

Methods: Cartilage explants were subjected to treatment with TNF-a (100 ng/ml), IL-1 I3 (10

ng/ml) and to the nitric oxide synthase inhibitor, N-methylarginine (L-NMA; 1.25 mM) for 26,

50 or 120 hours (5 days). The collected medium was analyzed for sGAG, nitrate and nitrite,

MMP activity by zymography, and aggrecan degradation by immunoblotting of aggrecan G 1 and

aggrecan-G 1-NITEGE fragments. RNA was extracted from the 26 and 50 hour treated explants

for real-time PCR analyses.

Results: TNF-oa and IL-I3 treatment caused a 3-5 fold increase in sGAG release with an

increase in aggrecanase specific aggrecan breakdown and an increase in nitrate and nitrite

production. L-NMA treatment inhibited almost 50% of the sGAG release caused by TNF-a

treatment, with concomitant decrease in the aggrecanase-specific-NITEGE neo-epitope of

aggrecan released into the medium. No L-NMA effect was identified with IL-1 3. TNF-a and

IL-i1 both increased ADAMTS4 and ADAMTS5 transcription with no effect by L-NMA,

suggesting that nitric oxide regulates aggrecanase activity at a post-transcriptional level in

response to TNF-c. TNF-a and IL-1 3 both caused an increase in protease transcription (MMP3,

MMP13, ADAMTS4 and ADAMTS5) and in pro-inflammatory enzymes iNOS and COX2, as

well as a decrease in matrix protein transcription, including collagen II, aggrecan, fibromodulin

and link, protein (IL-1 3 only), and an increase MMP-3 and MMP-9 secretion. L-NMA had no

effect on gene transcription or MMP secretion.

Conclusion: Nitric oxide regulates aggrecanase activity at a post-transcriptional level in

response to TNF-c treatment while having no effect on IL-1 3 treated cartilage explants.
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Introduction
Nitric oxide (NO) is a neutral free radical product of nitric oxide synthase (NOS) with

potent biological effects through its actions on cGMP production as well as through various

oxidative and nitrosative chemistries that have been shown to modulate gene expression and to

alter protein structure and function (I). NO production by chondrocytes was first discovered by

Stadler et al. who showed that, in vitro, chondrocytes produce substantial amounts of NO in

response to interleukin 1 beta (IL-Ip) and to lipopolysaccharide (LPS) (2). Since these first

reports, numerous studies have shown that chondrocytes or cartilage explant cultures from most

species produce NO via inducible nitric oxide synthase (iNOS) in response to IL-13P, IL-lac, LPS,

and tumor necrosis factor alpha (TNF-a) (3, 4), as well as IL-17, IL- 18, interleukin I converting

enzyme (ICE), and fibronectin fragments (5-7

The inflammatory cytokines TNF-a and IL-1 contribute to disease processes in

rheumatoid arthritis (RA) and likely in osteoarthritis (OA). TNF-oa was identified in synovial

exudates of RA and OA joints (8, 9). In RA patients, TNF-ca may contribute to IL-1 production as

determined by anti-TNF-ca therapy (10), and TNF-oa alone or in combination with IL-i may cause

cartilage breakdown and a decrease in new matrix synthesis by chondrocytes in vitro ("). TNF-a

production by OA synovial cells and in synovial fluid and serum may be elevated in OA (10, 12, 13)

and OA cartilage explants may be more sensitive to IL-1 and TNF-a treatment (14-16). TNF-oa

receptor, TNF-R p55, is elevated in chondrocytes near OA lesions, and this expression correlates

with sGAG depletion (17). These data together suggest that TNF-ca as well as IL-1 may play a

role in cartilage breakdown in OA.

254



To determine whether NO production plays a role in mediating the pro-catabolic and

anti-anabolic effects of inflammatory mediators, in vitro studies have used the NOS inhibitors,

L-NMA (L-N-methyl-arginine), N.-nitro-L-arginine methyl ester (L-NAME), aminoguanidine,

and L-NIO (N-iminoethyl-L-ornithine), to evaluate the role of NO in IL-1-induced changes in

chondrocyte metabolism and matrix degradation in explant, hydrogel, and monolayer culture.

With the exception of bovine explant studies (18), inhibiting NOS partially reversed IL-i-induced

inhibition of proteoglycan synthesis in cartilage explants or chondrocyte cultures (4,1920). TNF-a

can decrease proteoglycan synthesis in a NO dependent manner (21), and the exogenous NO

donor, SNAP, may also decrease proteoglycan synthesis. Cao et al. found that NO decreased

collagen synthesis (22 ). Studies on matrix degradation have shown that inhibiting NO production

may enhance (18,23,24) or have no effect (25) on IL-l13-induced aggrecan degradation as measured

by sGAG release. IL-1-induced NO was also found to enhance gelatinase (2, 26, 27) and alter

stromelysin (MMP-3) (18,26) expression or activity. While most studies on inhibition of NOS are

associated with IL-i treatment, other inflammatory cytokines, such as TNF-ca, are capable of

mediating cartilage damage and enhancing NO production. Thus, understanding the

contributions of NO with other cytokines may be important in determining their role in cartilage

degradation.

The purpose of this study was to characterize the role of NO in matrix degradation in

response to TNF-a and compare it to the effects of NO following IL-i 1 treatment using a non-

specific NOS inhibitor, N-methylarginine (L-NMA). We found that inhibition of NOS by L-

NMA decreased sGAG release in response to TNF-Ca by almost 50%, with a concomitant

decrease in release of aggrecan-Gi-NITEGE fragments specific for aggrecanase-mediated

aggrecan degradation. No L-NMA effect was seen with IL- 13 treatment. L-NMA did not alter
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ADAMTS4 or ADAMTS5 transcription in response to cytokine treatment. Gene transcription

profiling of a panel of inflammatory molecules, proteases, and matrix proteins showed that

TNF-ca and IL-1 3 both inhibited transcription of matrix proteins including collagen II, aggrecan,

link protein, and fibromodulin, while enhancing matrix proteases and inflammatory factors such

as MMP-3, MMP-13, iNOS, and COX2, all with no effect of L-NMA. Overall these data

suggest that NO plays a role in TNF-a-induced aggrecan release at a post-transcriptional level

by altering ADAMTS4 or ADAMTS5 protein expression or post-translational modification, and

that TNF-oa and IL-1 3 appear to promote aggrecan degradation through different mechanisms of

aggrecanase regulation.

Methods
Reagents: ITS medium supplement and NOS inhibitor, N-methyl-arginine, were from

Sigma (St Louis, MI). Recombinant human IL-1 I and TNF-ca were from R&D systems

(Minneapolis, MN), PAGE gels were from BioRad (Hercules, CA). Protease-free chondroitinase

and keratanase II were from Seikagaku (Japan). Common chemicals were purchased from ICN,

Mallenkrodt, or Sigma.

Cartilage explant harvest and culture: Articular cartilage disks were obtained from the

patello-femoral groove of 1-2 week old bovine calves as described previously (28). Cartilage-bone

cylinders (9-mm-diameter) were cored from the patello-femoral groove, perpendicular to the

joint surface. Two 1-mm-thick slices were then microtomed from the middle zone and a 6-mm

diameter dermal punch was then used to core a 6-mm diameter by 1-mm thick disk from the

center of each of the 9-mm slice. The explants were cultured in high glucose DMEM with 1%

ITS as described previously with medium change every other day prior to treatment (29)

Explants were weighed two days prior to the start of cytokine treatment.
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TNF-a IL- lfi, and L-NMA treatments: Cartilage explants were allowed to rest 7 days in

culture, and were then treated with 10 ng/ml IL-1 IP or 100 ng/ml TNF-ot or left untreated in 2 ml

of medium without 1% ITS. After 2 hours, half the explants were further treated with 1.25 mM

L-NMA. Experiments utilized 5-8 different joints (5-8 different animals) with at least two

explants per joint per condition. Every 24 hours over 5 days, cultures underwent a 10% (200 PIl)

medium removal and supplementation. After day 5 of treatment, medium and explants were

collected, pooled to each treatment group, and stored at -80 'C. For real time PCR analyses

explants were cultured for 24 or 48 hours after the addition of L-NMA and snap frozen in liquid

nitrogen.

Sulfated Glycosaminoglycan (sGAG) Assay: sGAG released to the medium was measured

as an indicator of aggrecan degradation and assessed via the dimethylmethylene blue (DMMB)

assay using shark chondroitin C as a standard, as described previously (30)

Nitrate/Nitrite Analysis: Medium samples were diluted 1:2 in water prior to nitrate and

nitrite analysis by Griess assay (31). Total nitrogen oxides were determined by cadmium column

reduction of nitrate to nitrite followed by direct nitrite detection by Griess reaction. Nitrite was

assayed directly, and nitrate was calculated as the difference between the total nitrogen oxides

and nitrite.

Gelatin and Casein Zymography for MMPs.: Zymograms were performed as described

(32). Briefly, conditioned medium from day 5 was mixed with 4X non-reducing SDS-sample

buffer and electrophoresed in 10%/12% gelatin or casein zymogram gels. Proteases were

renatured in 2.5% triton X-100 solution, and placed in solution of 50 mM Tris and 5 mM CaCl2

for 18 hours at 370C. Gels were then fixed and stained with Coomassie brilliant blue and
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destained until bands became visible and distinct. EDTA was added to the incubation buffer to

verify MMP activity. MMP-3 and MMP-9 were verified by immunoblot.

Desalting and deglycosylation: Samples were desalted by ethanol precipitation or by

dialysis with deglycosylation. The medium equivalent of 10-20 gg sGAG was precipitated by the

addition of 3 volumes of ice-cold ethanol. The samples were resuspended (50 mM Tris-Acetate,

10mM EDTA) and sequentially deglycosylated beginning with 5 mU of protease-free

chondroitinase ABC for three hours followed by 0.1 mU of keratanase II and 0.1 mU of endo-p-

galactosidase for an additional four hours. Equal amounts of sGAG were loaded for aggrecan

western blots.

Western blot analysis. Concentrated samples (10-15 pl) were subjected to denaturing

SDS-PAGE on a 4-15% gradient gel run at 15 mA for 2 hours. Proteins were then transferred to

Immobilon (PVDF) membrane, and proteins were detected using a monoclonal antibody to the

aggrecan-NITEGE neoepitope in the interglobular domain of aggrecan associated with

aggrecanase degradation (from C. Flannery, Wyeth Pharmaceuticals).

RNA extraction and real time PCR: For each condition (untreated, L-NMA, TNF-•_ +, L-

NMA, IL- I ± L-NMA), 2-3 cartilage explants per condition per joint, from a total of 8 joints (8

animals) were taken at 26 and 50 hours of culture, pulverized under liquid nitrogen and

homogenized in Trizol (Invitrogen, San Diego,CA). As described previously (33), homogenates

were transferred to Phase Gel tubes according to the manufacturer's instructions (Eppendorf,

Hamburg, Germany) and spun at 10,000 rpm for 10 minutes at 40 C. The clear RNA containing

supernatant was removed from Phase Gel tubes and subjected to RNAeasy mini-kit clean-up

(Qiagen, Chatsworth, CA) according to manufacturer's instructions. RNA quantification was

determined by nano-drop method measuring absorbance at 260 nm and 280 nm, which gave the

258



concentration of RNA extracted from the tissue and the purity of the extract; the average 260/280

absorbance ratio for all samples was 2.12 ± 0.1. Equal amounts of RNA were subjected to

reverse transcription using AmpliTaq-Gold reverse transcription kit (ABI, Foster City, CA) to

generate cDNA for real time PCR analysis. Real time PCR analysis was performed with Applied

Biosystems SYBR-Green master mix in combination with cDNA and primers, using the ABI

prism 7900HT real time 384-well plate PCR instrument. Both forward and reverse primers were

designed using Primer3 software based on the bovine genomic sequence (33). Primers from 32

genes relevant to cartilage homeostasis were used: 18S-RNA, aggrecan, collagen II,

fibromodulin, fibronectin, proteoglycan link protein, MMP1, MMP3, MMP9, MMP13,

ADAMTS4, ADAMTS5, TIMP1, TIMP2, TIMP3, COX2, iNOS, G3PDH, 3-actin, IGF-1, IGF2,

TGF-P, TNF-o, IL-13, IL-4, IL-6, TXNIP, HSP90, CD44, HAS2, bFGF, and OP-1. Standard

curve analysis was performed on each primer to determine the efficiency of amplification and

proper primer concentration. The measured cycle threshold (CT) was determined and converted

to relative copy number using information from standard curves for comparisons.

Data analysis and statistics: Real time PCR data for each gene were first normalized to

18S-RNA; data from each sample were then normalized to the untreated control sample within

each sample set (animal), and these normalized data were pooled across all animals and are

reported as the mean +/- SEM (n=8) for each condition. Principal component analysis and k-

means clustering were performed on the PCR data using components of the Matlab Statistics

toolbox (33). Cluster analysis was performed(33) on a (31 x 5 x 2) matrix of data derived from the

set of 31 genes (i.e., all genes but 18S), 5 treatment conditions (each normalized to untreated

control), and 2 time points (26 or 50 hrs). Each time point was also clustered individually to test

the robustness of the co-expressed gene groupings. The Kruskal-Wallis test and Wilcoxon sign-
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rank test with Bonferroni correction for multiple comparisons were used to determine statistical

significance of the L-NMA effect and of pair-wise comparisons between treatments,

respectively. For the sGAG and nitrate/nitrite assays, multi-way ANOVA followed by a post-hoc

Student's t-test with Bonferroni correction for multiple comparisons were used to determine

statistical significance defined as p < 0.05. All statistical analyses were performed using Matlab

(Natick, MA) or Systat 11 (Richmond, CA).

Results
Nitrate/Nitrite: Nitrite and total nitrate plus nitrite were determined by the Griess assay

as described by Green et al. (31). IL-1 3 and TNF-oa both increased accumulated nitrate and nitrite

compared to the untreated control (p < 0.001) (Figure 1). The relative amounts of nitrite and

nitrate were similar between the two cytokine treatments by day 5 (data not shown). Treatment

of samples with L-NMA inhibited NO production to levels at or near untreated controls.

Sulfated glycosaminoglycan release: sGAG loss, which is known to be predominantly

the result of aggrecan degradation in cartilage explants, was measured by DMMB assay. TNF-oa

and IL-1 caused 3-4 fold increase in sGAG release to the medium compared to control samples

(Figure 2; p<0.001 for TNF-ca and IL-1I3 compared to controls at all time points). Treatment with

L-NMA partially inhibited TNF-ax induced sGAG release (p<0.003, all time points). However

with the exception of the 24-hour time point, L-NMA had no effect on IL- 1 -induced sGAG

release (p = 0.015 first 24 hours; p > 0.745 for all other points). No L-NMA effect was seen in

the absence of cytokine treatment. These results suggest that NO was partially responsible for

sGAG release in response to TNF-ca treatment, but had little or no effect on IL-1 I3 treatment.

Western analysis for aggrecanase generated aggrecan-G1 neo-epitope: To investigate

whether L-NMA was able to decrease sGAG release by decreasing aggrecanase mediated
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proteolysis of aggrecan, immunoblots were performed to probe for the aggrecan-NITEGE-

COOH neoepitope generated by aggrecanase activity (Figure 3). A 60-80 kDa band was visible

in the TNF-a and IL- 10 treated lanes but not in the untreated (control) lanes of the immunoblot.

While the addition of L-NMA to IL- 1 treatment had no effect on the anti-NITEGE-stained

band, samples treated with TNF-a and L-NMA showed a marked decrease compared to the

sample treated with TNF-a alone. This result suggests that the decrease in sGAG release seen

with the addition of L-NMA to TNF-a treatment was related to decreased aggrecanase-specific

proteolysis of aggrecan.

Zymographyfor Metalloproteinase Measurements: To examine MMP expression and

activity, zymography was performed on medium samples at the end of the experiment. Samples

subjected to IL-1 3 treatment and, to a lesser extent, TNF-a treatment showed a diffuse clearing

containing a doublet between 50 kDa and 75 kDa (with the lower band most prominent) by

casein zymography (Figure 4A), representing secreted pro-MMP-3. No activated MMP-3 band

(at 45 kDa) was visible in any of the samples. Gelatin zymography (Figure 4B) demonstrated

two bands running in between 75 kDa and 50 kDa in all samples, which represent the pro- and

the active forms of MMP-2. In addition, a -90 kDa band indicative of pro-MMP-9 was present

only in the cytokine treated samples. No differences in MMP-2, MMP-3, or MMP-9 were seen

with L-NMA treatment, as assessed by zymography.

Real time PCR analyses: To determined whether cytokine ± L-NMA treatments altered

transcription of aggrecanases, other proteases, matrix molecules, cytokines, and growth factors,

real time PCR analysis of a 32-gene set was performed on explants from 8 different animals

subjected to 26 and 50 hours of IL-i1 or TNF-a treatment ± L-NMA, or L-NMA alone. Relative

copy numbers were normalized to 18S-RNA and expressed in terms of the fold increase or
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decrease compared to untreated control samples within each set. Expression of both ADAMTS4

and ADAMTS5 was elevated in response to TNF-oa and IL-1 3 treatment (though little increase at

50 hours for ADAMTS5), with no statistically significant effect of added L-NMA at either the 26

hour or the 50 hour time point (Figure 5A). To elucidate the main expression patterns and

identify groups of genes co-expressed under different treatment conditions, gene clustering was

performed. The results are shown in principal component space (Figure 6); the first three

principal components accounted for -95% of the variance in the data. K-means clustering (31

genes, 5 normalized conditions, 2 time points) showed that the genes segregated well into two

spatially distinct groups with group centroids as indicated (Figure 6). The centroid profiles

(showing each condition for each group) are represented in Figure 5B,C as the mean ± SEM of

each centroid. Group 1 genes (Figure 5B) had little response or were slightly down regulated by

IL-1 3 and TNF-a treatment, while Group 2 genes were up regulated by IL-I1 and TNF-a

(Figure 5C). For each individual gene in Groups 1 and 2, the average-fold-change ± SEM is

listed in Table 1 (with TNF-a and IL-1 3 each compared to control, TNF-aX compared to TNF-

a + L-NMA, and IL-1I3 compared to IL-1I3 + L-NMA); asterisks represent statistical significance

for the comparison (p<0.05). While addition of L-NMA often slightly decreased gene

transcription compared to IL-1i or TNF-a alone, this decrease was not statistically significant

for any individual gene.

Discussion

IL-1 P and, to a lesser extent, TNF-ca, can induce chondrocyte-mediated matrix

degradation, with loss of aggrecan typically preceding collagen degradation (34). Previous studies

explored the role of NO in IL- 1 -induced aggrecan degradation; however, to our knowledge,

this is the first study to test the effect of NO on TNF-a-induced sGAG release and to explore its
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underlying mechanism. Cartilage explants treated with the NOS inhibitor, L-NMA, showed

marked inhibition of TNF-ax-induced sGAG release and concomitant production of aggrecan

Gl-NITEGE fragments, indicating a decrease in aggrecan proteolysis by aggrecanase. In

contrast, L-NMA did not alter IL- 1 -induced sGAG release or the generation of aggrecan-G 1-

NITEGE fragments. Real time PCR analyses showed no significant effect of L-NMA alone on

expression of ADAMTS4 or ADAMTS5 or a panel of 30 other matrix genes, proteases and

cytokines. Together, these results suggest that NO plays a role in the post-transcriptional

regulation of aggrecanases in response to TNF-a, while NO has no effect on IL-i I3 induced

aggrecan degradation. Thus, TNF-ca and IL-1 3 utilize different pathways of expression or

activation of aggrecanases to mediate aggrecanolysis, with that of TNF-oa being regulated in part

by an NO mediated post-transcriptional processing of ADAMTS4 and ADAMTS5.

NO can mediate its effects through enhancing cGMP, increasing protein nitrosation or

protein nitration which may serve as an important regulatory mechanism at the level of the cell

or individual proteins. NO concentration and chemistry, which depends in part of oxygen free

radicals, may determine its role as a second signal mediator. Treatment of cartilage with

cytokines caused an increase in NO production (Figure 1, p<0.001 for IL-1 I3 and TNF-a vs.

control for both nitrate and nitrite). In addition, TNF-ca or IL-1 P resulted in similar amounts of

nitrate and nitrite, each corresponding to approximately half of the NO production, suggesting

that NO chemistry was similar for both cytokine treatments. L-NMA decreased NO to control

levels for both cytokines (cytokine + L-NMA vs. control not significant). Equal nitrate and

nitrite production with both TNF-a and IL-1 3 treatment suggests that the effects of NO likely

depend on cellular processes induced with each cytokine treatment and not NO chemistry.
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The role of NO in matrix degradation associated with TNF-a may be quite different than

that with IL-1P. In this study, L-NMA treatment inhibited TNF-a-induced sGAG loss by -50%

(Figure 2). While we know of no previous reports of the effects of NO treatment with TNF-a

alone, van Bezooijen et al. (35) showed no measurable effect of L-NMA on cartilage damage

induced by the combination of TNF-oa and IL- 17, compared to the cytokine combination alone as

assessed by Alcian blue staining for sGAG. We found that L-NMA had no effect on sGAG loss

following IL-1 3 treatment (Figure 2), similar to the findings of Bird et al.(25) using equine

cartilage explants. In contrast, Stefanovic-Racic found that L-NMA in the presence of IL-1

significantly increased sGAG release compared to IL-1 I3 alone, using bovine, human, and rabbit

explants(18 .23). Regarding other matrix degrading signals, Pichika et al. (36) showed that inhibiting

NO resulted in a matrix protective effect when cartilage was treated with fibronectin fragments,

similar to the effect seen with TNF-a (Figure 2). The effects of NO appear to depend on the

cytokines or other signals with which it is produced and with which it signals. NO appears to

play a distinctly degradative role in TNF-a (but not in IL-1 3) treated cartilage.

Because aggrecanases are known to mediate aggrecan degradation in response IL-1 3 and

TNF-a (37, 38), we hypothesized that the mechanism of L-NMA inhibition of TNF-ax-induced

sGAG release was through a decrease in aggrecanase cleavage of aggrecan at the Glu 373-Ala 374

site in the interglobular domain (37, 39). Immunoblot analysis of the medium using an antibody to

the aggrecan-NITEGE 373 fragment showed that L-NMA + TNF-a resulted in less fragment

release than TNF-a alone (Figure 3), consistent with decreased sGAG release (Figure 2). And

while L-NMA did not alter sGAG release induced by IL-1 3, there was no decrease in aggrecan-

NITEGE 373 fragment release either. These results suggest that NO is partially responsible for

TNF-a-induced aggrecanase activity in cartilage explants.
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While aggrecanases are the main mediator of aggrecanolysis early in response to IL-10

and TNF-a treatment, NO has also been implicated in activation of MMPs through the disruption

of the cysteine switch present in the zymogens (40). Therefore, zymography was used to evaluate

the effects of L-NMA on expression and activation of selected MMPs in response to cytokine

treatment. IL-1 3 (and to a lesser extent, TNF-x) increased pro-MMP-3 secretion to the medium

with no effect of L-NMA on activation or secretion (Figure 4A). Pro-MMP-9 was expressed in

response to cytokine treatment, while MMP-2 was present under all conditions. L-NMA had no

effect on MMP-2 or MMP-9 secretion or activation. MMP-3 and MMP-9 protein in the medium

correlated well with the gene expression data (Figure 5,6; Table 1). These zymography results

were also similar to those of Dozin et al. (41), who saw no effect of NOS inhibition on MMPs with

chondrocyte monolayers treated with IL-lax and TNF-a in combination. Zymography failed to

show evidence of an active MMP-3 band and no effect of L-NMA was observed, suggesting NO

mediates aggrecan degradation in response to TNF-a by enhancing aggrecanase and not MMP-3

activity.

While ADAMTS 1, 8, 9, 15, 16, and 18 have aggrecanase activity (42, 43), only ADAMTS4

and 5 are known to potently cleave the Glu 373-Ala374 site forming the aggrecan-NITEGE

fragment(44 ). We thus focused on ADAMTS4 and ADAMTS5 to explore the possible mechanism

by which NO may be mediating an increase in aggrecanase activity. Because ADAMTS4 and

ADAMTS5 proteins could not be reliably identified in tissue or medium samples (data not

shown), we examined the effects of NO inhibition on gene expression of ADAMTS4 and 5 as

well as a panel of genes associated with cartilage homeostasis (Table 1). We hypothesized that

changes in expression of aggrecanases in response to cytokine and L-NMA treatments would

likely occur approximately 24 hours before sGAG release to the medium, allowing time for
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protein expression and diffusion of aggrecan fragments out of the tissue. Since the rate of sGAG

release was maximal between days 2 and 4 of treatment (Figure 2), real time PCR analysis was

performed on explants at 26 and 50 hours after treatment with IL- 1 3 or TNF-a ± L-NMA. While

IL- I and TNF-ax treatment caused significant changes in gene expression of many of the genes

tested including ADAMTS4 and ADAMTS5 (Figure 5, Table 1), L-NMA treatment did not alter

transcription of any genes evaluated in this study at either 26 or 50 hours.

Previous studies using young bovine explants showed significant increases in

transcription of ADAMTS4 after 24 hours of treatment with IL-1 a (45) and IL-1 p (46), while

ADAMTS5 was up-regulated by TNF-a (46). Here, we observed a strong increase in ADAMTS5

expression with TNF-a and IL-1 3 at 26 hours but little increase at 50 hours (Figure 5A). In

contrast, ADAMTS4 showed a sustained increase in expression at 26 and 50 hours with both IL-

1 and TNF-a (Figure 5A). Interestingly, while TNF-ax caused a greater average increase in

ADAMTS4 and 5 transcription than IL-1 3 (Table 1), IL-i1 3 treatment resulted in greater sGAG

release. In addition, L-NMA did not significantly alter transcription of either ADAMTS4 or 5 in

response to either cytokine treatment. Thus, the NO mediated regulation of ADAMTS4 and/or 5

activity in response to TNF-a is likely post-transcriptional and may be at the level of either

translation or post-translational modification such as proteolysis( 45). ADAMTS4 and 5 do

undergo proteolysis, which is known to change its binding affinity and proteolytic specificity of

aggrecan cleavage sites (44, 45, 47). Although less is known about ADAMTS5, some work on

ADAMTS4 suggests that its activity may be regulated in part through a combination of

proteolysis and/or protein-protein interactions rather than by protein expression (4 5, 48, 49). Further

work to explore the role of NO in modulating possible ADAMTS4 activators or inhibitors may

be warranted. While it is possible that NO could play a more direct role in ADAMTS4 and/or 5
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activity through direct chemical modification, this would still require a difference in ADAMTS4

and 5 protein expression between TNF-ca and IL- 1 3 in order to explain a TNF-a specific NO

effect. But based on our findings, changes in aggrecanase transcription cannot account for the

effects of L-NMA on TNF-oa induced aggrecan degradation or the differential effects of L-NMA

between IL-1 3 and TNF-oa.

While previous studies have not reported changes in expression via qPCR for the broad

panel of genes examined here (Table 1), we note several useful comparisons. Sasaki et al.

reported a NO dependent increase in bFGF and MMP-9 gene expression by rabbit chondrocytes

in monolayer in response to IL-1 p(SO). While we did find an increase in the mean transcription

level of bFGF and MMP-9 at 26 and 50 hours with TNF-a and IL- IP (not statistically

significant), no L-NMA effect was observed. In the present study, inducible nitric oxide

synthase (iNOS), responsible for chondrocyte production of NO, was elevated in response to

both IL-1I3 and TNF-c (p<0.05), as was COX-2, MMP-3, and MMP-13 but not IL-6 or MMP-1.

With the exception of IL-6 and MMP-1, these findings were consistent with the reported effects

of IL-1 3 on human chondrocytes (5 1 ) and effects on MMPs in human OA cartilage using TNF-a

and IL- 13 receptor inhibitors(52) as well as equine cartilage in response to TNF-o( 53). Decreases

in matrix geme expression (e.g., collagen II, aggrecan, fibromodulin, and link protein) were more

pronounced at 50 hours than 26 hours suggesting that effects of IL-1 3 and TNF-a on matrix

gene expression may occur later compared to the up regulation of matrix degrading enzymes (54)

(p<0.05 TNF-a and IL-1 3 compared to control for collagen alpha 1(II), aggrecan, fibromodulin,

and link protein (IL-i only) at 50 hrs). The inhibitory effect of IL-i I3 and TNF-a on aggrecan

and collagen synthesis is well characterized.
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In summary, NO plays an enhancing role in TNF-a (but not IL-I1 ) induced aggrecanase-

mediated aggrecan degradation. Inhibiting NO production with L-NMA caused no changes in

ADAMTS4 or ADAMTS5 gene transcription; however, L-NMA partially inhibited aggrecanase-

mediated aggrecan degradation in response to TNF-oa suggesting that NO must play a role in

regulating aggrecanases at a post-transcriptional level. At the same time, inhibiting NOS had no

detectable effects on IL- IP or TNF-oa induced MMP expression, activation, or the gene

expression of various other matrix proteins, cytokines or growth factors after 26 or 50 hours of

cytokine treatment. IL-1 3 and TNF-a-enhanced transcription of inflammatory genes such as

iNOS and COX2 as well as matrix degrading enzymes MMP-3 and MMP-13 at 26 hours, and

both cytokines decreased collagen II, aggrecan, link protein and fibromodulin at 50 hours,

consistent with known effects of these cytokines and with no effect of L-NMA. These findings

support the hypothesis of a post-transcriptional role for NO in regulating aggrecanase activity in

response to TNF-a treatment, and the hypothesis that TNF-a and IL- 10 regulate aggrecanase

activity though different mechanisms.
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Figure Legends

Figure 1: Five-day accumulated total nitrate and nitrite release to the medium

(nmol/mg wet weight) as a measure of NO production plotted as mean +/- SEM from

greater than 3 explants per joint pooled from from 5 different joints (animals) (* p<0.001

cytokine compared to control and ** p<0.01 cytokine compared to cytokine + NMA)

Figure 2: Accumulated sGAG release to medium over five day cytokine treatment in the

presence or absence of L-NMA plotted as mean +/- SEM. IL-1 3 and TNF-a alone cause a 3-5

fold increase in sGAG release compared to untreated controls (p<0.001 for all points). L-NMA

inhibited roughly half the sGAG release caused by treatment with TNF-ca (p<0.01 for all time

points).

Figure 3: Anti-Aggrecan-G 1-NITEGE-COOH Western blot to probe mechanism of

sGAG loss in response to IL-1 3 and TNF-ca treatment with and without NOS inhibitor, L-NMA.

A band is visualized in all cytokine-treated conditions; however, the TNF-aX + L-NMA band is

significantly lighter than that with TNF-a alone or with IL- 1 + L-NMA. This immunoblot is

representative of five different experiments and corresponding blots.

Figure 4. Casein (4A) and Gelatin (4B) zymograms of 5 day culture medium. (A) The

casein zymogram for both IL-1 3 and IL-1 3 - L-NMA contains a 54 kDa band, corresponding to

pro-MMP-3 that appears as a doublet, with a lighter upper band and a brighter lower band. A

faint doublet is seen for TNF-ca treatment and, in addition, a 90 kDa band is seen with all

cytokine treatments. (B) The gelatin zymogram contained a 72 kDa band (arrow) and a lower 65

kDa band in all samples, corresponding to the pro- and active forms of MMP-2, respectively.
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Only cytokine treated samples had a 92 kDa band corresponding to MMP-9. L-NMA had no

effect on MMP-3, MMP-9 or MMP-2 expression or activation as seen in medium samples.

Figure 5: Relative gene expression by real-time PCR and clustering analyses.

(5A) Expression of ADAMTS4 and ADAMTS5 at 26 and 50 hour time points, relative to

controls, in response to treatment with L-NMA alone, IL-i1 P L-NMA and TNF-a ± L-NMA.

(5B) Centroid profile for gene cluster 1 (group-1 genes) which showed decreased expression or

were unchanged in response to cytokine treatment. Centroids represent 26 and 50 hour time

points clustered together. (5C) Centroid profile for gene cluster 2, showing genes that were

upregulated in response to cytokine treatment. (Groups produced from clustering 26 hours alone

(see Table 1) vs. 26 and 50 hours together were identical, except IGF-2 and TIMP-3 in Table 1

swapped groups. The * indicates statistical significance compared to the untreated control

sample by pair-wise comparison (Wilcoxan Sign Rank test with Bonferroni correction for

multiple comparison; p<0.05)

Figure 6: Projection plot of gene behavior represented by the first three principal

components. The genes readily separated into 2 clusters which correspond to genes that respond

positively to IL- 1I3 and TNF-a treatment (triangles = Group 2 of Table 1) and those genes that

either did not respond or responded negatively to the cytokine treatment (squares; Group 1). The

black circles indicate the group centroids which are significantly different from each other

(p<0.001; Student's t-Test).
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Table Caption

Table 1: Genes probed by real time PCR, represented as the mean fold change over

control +/-SEM at 26 hours. Groups were determined using clustering analysis of data from the

26 hour time point. The expression data for the individual genes show similar trends at the 50

hour time point. The * indicates statistical significance compared to the untreated control sample

by pair-wise comparison (Wilcoxan Sign Rank test with Bonferroni correction for multiple

comparison; p<0.05). Data represent experiments from eight animals with 2 or 3 explants pooled

per animal for RNA extraction.
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Table 1

NMA

0.98+/-0.06
0.98+/-0.13
1.18+/-0.12
1.0+/-0.10
0.99+/-0.12
0.61+/-0.11
0.88+/-0.09
0.90+/-0.12
0.95+/-0.08

1.0+/-0.13
0.82+/-0.11
0.77+/-0.13
0.92+/-0.09
1.0+/-0.12

GENE
Group 1

Aggrecan
Collagen II
Fibromodulin
Link protein
TIMP-2
TIMP-3
MMP-1
G3DPH
b-actin
IGF-1
IL-4
IL-6
TXNIP
HAS2

Group 2
Fibronectin
MMP-3
MMP-9
MMP-13
ADAMTS4
ADAMTS5
TIMP- 1
COX2
NOS2
IGF-2
TGF-beta
TNF-alpha
IL- beta
HSP90
CD44
bFGF
OP-1

TNF- a

0.74+/-0.07*
0.73+/-0.11
0.59+/-0.06*
0.46+/-0.06*
0.53+/-0.03*
1.1+/-0.37
0.92+/-0.08
0.72+/-0.15
0.81+/-0.06

0.50+/-0.12*
0.78+/-0.11

0.82+/-0.15
0.55+/-0.05*
0.49+/-0.03*

1.60+/-0.15*
11+/-2.7*
115+/-60
12+/-4.4*
8.0+/-1.1*
68+/-9.1*
4.6+/-1.3*
11.4+/-2.7*
4513+/-1495*
0.92+/-0.08
2.3+/-0.20
2.5+/-1.6
4.4+/-2.8
2.2+/-0.27*
20+/-3.0*
1722+/-1109
80+/-16*

TNF- a/
TNF+NMA

1.17+/-0.14

1.14+/-0.27
0.98+/-0.08
0.95+/-0.07
1.12+/-0.16

4.07+/-3.18
1.02+/-0.10
0.93+/-0.21
0.92+/-0.05

1.05+/-0.21
1.10+/-0.26
1.56+/-0.38
0.87+/-0.09
0.95+/-0.11

1.16+/-0.10
1.75+/-0.43
1.11+/-0.24
1.87+/-0.66
1.24+/-0.16
1.28+/-0.24
1.40+/-0.38
1.13+/-0.20
1.04+/-0.31

0.94+/-0.17
0.91+/-0.06

0.91+/-0.13
1.35+/-0.25
1.21+/-0.11

1.06+/-0.09
10.56+/-5.86
1.32+/-0.28

IL-l f

0.91+/-0.05
0.81+/-0.10
0.86+/-0.06
0.81+/-0.08

0.50+/-0.08*
0.97+/-0.27

0.98+/-0.09
0.89+/-0.19
0.86+/-0.07

0.64+/-0.10
0.91+/-0.13
1.1+/-0.16

0.66+/-0.05*
0.47+/-0.04*

1.41+/-0.15*
34+/-9.1*
74+/-54
76+/-23*
5.9+/-1.4*
17.4+/-6.9*
3.4+/-0.64*
17.6+/-5.0*
894/-183*
1.1+/-0.11
1.7+/-0.18*
3.7+/-2.6

4.3+/-2.4
1.3+/-0.14

11+/-2.1*
61+/-48
26+/-10*

IL-l f/
IL-1 b+NMA

1.12+/-0.24
1.31+/-0.19
0.91+/-0.05
1.09+/-0.15
0.76+/-0.12
1.52+/-0.53
1.15+/-0.08
0.82+/-0.16
1.03+/-0.07

1.33+/-0.27
1.27+/-0.23
1.33+/-0.30
0.91+/-0.06
1.01+/-0.12

1.20+/-0.16
1.80+/-0.53

0.79+/-0.17
1.31+/-0.17
1.26+/-0.14
1.15+/-0.17

1.24+/-0.19
1.28+/-0.27
1.94+/-0.70
0.96+/-0.11
1.10+/-0.08
1.27+/-0.22
1.33+/-0.34
1.06+/-0.08
1.27+/-0.16
8.66+/-4.91
1.42+/-0.31
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U

0.96+/-0.08
1.0+/-0.18
1.1+/-0.24
0.83+/-0.17
0.98+/-0.09
1.26+/-0.23
10.1+/-0.16
1.2+/-0.11
1.5+/-0.57
0.99+/-0.10
0.92+/-0.07

2.0+/-0.98
0.95+/-0.12
0.85+/-0.07
1.0+/-0.17
9.0+/-7.0
1.6+/-0.41
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