{
; DOCUMENT OFFiICE 35-412

g RESEARCH Lans ATORY OF ELEC RONICS
i

P MASSACHUSETTS INSTITVUTE OF TECHNOLOSY

e
Q

AP

An Object-Oriented Signal Pfocessing Environment: The
Knowledge-Based Signal Processing Package

Software authors:
Webster P. Dove and Cory Myers

Document author:
Evangelos E. Milios

LJJA/ C’ap)/

Technical Report 502

October 1984

Massachusetts Institute of Technology
Research Laboratory of Electronics
Cambridge, Massachusetts 02139

An Object-Oriented Signal Processing Environment: The
Knowledge-Based Signal Processing Package

Software authors:
Webster P. Dove and Cory Myers

Document author:
Evangelos E. Milios

Technical Report 502

October 1984

Massachusetts Institute of Technology
Research Laboratory of Electronics
Cambridge, Massachusetts 02139

This work has been supported in part by the Advanced Research Projects Agency monitored by
ONR under contract NO0O014-81-K-0742 NR-049-506, in part by Sanders Associates Inc., and in part
by an Amoco Foundation Fellowship.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION

1b. RESTRICTIVE MARKINGS

2. SECURITY CLASSIFICATION AUTHORITY

Approved for public

2b. DECLASSIFICATION/ODOWNGRADING SCHEDULE

unlimited

3. DISTRIBUTION/AVAILABILITY OF REPORT

release; distribution

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

8. MONITORING QORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMB0L
Research Laboratory of Electfotiergiicabie)

Massachusetts Institute of Te¢hnology

7s. NAME OF MONITORING ORGANI

Mathematical and Inf

Office of Naval Research

ZATION

ormation Scien. Div.

6¢c. ADDRESS (City. State and ZIP Code)
77 Massachusetts Avenue

7b. ADORESS (City, State and ZIP Code)

800 North Quincy Street

Cambridge, MA 02139 Arlington, Virginia 22217
8s. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 7
ORGANIZATION (If applicable)
Advanced Research Projects fAgency N00014-81-K-0742
8c. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.
1400 Wilson Boulevard PROGRAM PROJECT TASK WORK UNIT
Arlington, Virginia 22217 ELEMENT NO. NO. NO- NO.
NR
11. TITLE (Include Securtty Classification))\ 3 - t
Signal Processing Envégoggég%?KggbeBaEEage 049-506

12. PERSONAL AUTHORI(S)

W.P. Dove, C. Myers, E. E. Milios

FIELD GROUP SUB. GR.

13a. TYPE QF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT
Technical FROM To October 1984 732 J
16. SUPPLEMENTARY NOTATION
This is M.I.T., R.L.E. Technical Report No. 502
17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by biock number)

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

A LISP-based signal processing package for integrated numeric and symbolic
manipulation of discrete-time signals is described. Th
on the concept of '"signal abstraction" in which a signal is defined by
its non-zero domain and by a method for computing its samples. Most
common signal processing operations are defined in the package and the
package provides simple methods for the definition of new operators.

The package provides facilities for the manipulation of infinite duration
signals and periodic signals, for the efficient computation of signals
over intervals, and for the caching of signal values.
currently being expanded to provide for manipulation of continuous-time
signals and symbolic signal transformations, such as the Fourier trans-
form, to form the basis of knowledge-based signal processing systems.

e package is based

The package 1is

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED X SaME as RpT. U OTIC USERS O

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL

Kyra M. Hall
lRT E _Cantract Renorts

22b. TELEPHONE NUMBER
tinclude Area Code)

(617) 253-2569

22c. OFFICE SYMBOL

DD FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE.

SECURITY CLASSIFICATION OF THIS PAGE

INTRODUCTION

TABLE OF CONTENTS

--

1. AN EXAMPLE SESSION WITH THE KBSP SOFTWARE.cccccciiiiiiiiinnnnn.
2. LISP, ABSTRACTION AND OBJECT-ORIENTED PROGRAMMING.
2.1 THE ORIGINAL LISPcccoieimiuniiiinmennnieriennnsensasansesssnansssssesnssessanes
2.2 ABSTRACTION IN PROGRAMMINGccceuneirimnnnnnennennnnienerennsicasnnnes
2.3 OBJECT-ORIENTED ENVIRONMENTcccciiiiieimmnnieieninnecinnntenean,
2.4 LEVELS OF USER INTERACTION IN THE KBSP PACKAGE

3.2 BASIC FUNCTIONS FOR DEALING WITH SEQUENCES.ccc......
3.3 SIMPLE SEQUENCE OPERATIONScccoittumiiniiiiniiininenunenineniessenes
3.4 CONVOLUTION AND RELATED OPERATIONSc.cccovvtmrmmmniiieennnns
3.5 DISCRETE FOURIER TRANSFORM COMPUTATIONScccccoereenn.
3.6 FILE INPUT/OUTPUTcccoiiiiimiiiiiiinninniinini s tessaesessasseessnses
3.7 FILTERING ..ottt csneni s csernaseessssasssesanessssansns
3.8 FUNCTIONS OPERATING ON SEQUENCESccceeeeiiiiriininiinnninnennnns
3.9 NORMALIZING A SEQUENCEccccvciiiiimmniiiiiinnnineiieesmeincenissesenss
3.10 WINDOW OPERATIONScccoiuiiiiiiiiiiiiinniiiniiniieeesesesessaessesenes
4. THE KBSP IMPLEMENTATION.ccciiitiiiiiiiiiiniiiiiniiiiiinrireesessseensnanes
4.1 INTRODUCTIONociiiiiiiiiiimmiiiiiieiiiireraisseranisesessasessessssesssansss
4.2 SEQUENCES AS ABSTRACT DATA TYPESccovviiiiirmiiiiiinnnincannes
4.3 SYSTEM IMPLEMENTATIONcccocitmiiiiiiiiiiiininiiecnnanennesassssnnnes
4.4 ARRAY MEMORY MANAGEMENTccociiiiiimmiiiniinnnnieennnesssanees

..

ooo

O W e

10
11
16
18

28RBS

& &

39

41
41
42
47
54
61

63
64

INTRODUCTION

This document presents the philosophy and usage of the Knowledge-Based Signal Processing
Package (KBSP).

The purpose of the KBSP software is to provide a solid and easy-to-use signal processing
software facility on the M.L.T. Lisp machine, in the form of a very-high-level language for pro-
gramming signal processing operations. It was designed to support the Knowledge-based Signal
Processing projects at the M.L.T. Digital Signal Processing Group. This is the reason why its name
includes the words "knowledge-based”, in spite of the fact that the KBSP package is not a
Knowledge-based system in the usual sense of the term.

The KBSP package is a growing system. This document describes the system as of July 1984.
New signal processing operations for one-dimensional signals are being continuously added to the
system. Future expansions of the system will include multidimensional signal processing, treatment
of analog signals through a combination of numeric and symbolic processing and digital filter
design. These expansions may make it necessary to revise some of the original design decisions of
the KBSP package. Thus, this document may not completely apply to future versions of the KBSP
package.

The philosophy of the system is loosely based on [Kopec], which pioneered the use of the
concept of data abstraction as suitable for signal representation in programs. The advent of the

M.LT. Lisp machine made possible an efficient implementation of these ideas.

The experience from using the KBSP software on the Lisp machine so far has demonstrated
that the combination of data abstraction ideas in signal processing and the unique programming
environment of the Lisp machine can indeed give a powerful signal processing facility supporting
incremental programming and powerful graphics all in one and the same machine.

Chapter 1 entitled "An example session with the KBSP software”, attempts to give an idea of

the signal processing environment that KBSP offers. Chapter 1 serves as the motivation of the

-2-

reader for learning about the KBSP system. However, the best motivation would be a live demons-
tration, so users with access to a Lisp machine are urged to try the example session.

Chapter 2 entitled "Lisp, Abstraction and Object-oriented Programming” gives an overview
of the concepts in modern programming languages that are useful in giving an overall perspective
of the KBSP environment. The exposition is intended for people with programming experience,
but no previous contact with Lisp.

Chapter 3 entitled "The basic signal processing software” presents most of the available KBSP
operators that are provided with the KBSP system. A short explanation is given with each opera-
tor, which is enough to enable the reader to use it. Very few references to the underlying imple-
mentation are made in this chapter. The chapter serves as the user’s manual if used together with
the alphabetical index of the KBSP operators.

Chapter 4 entitled "The KBSP implementation” is an explanation of the basic design decisions
in the implementation of KBSP. This chapter is useful to the users who wish to extend or modify
KBSP for their own use.

Chapter 5 entitled "the KBSP Graphics” offers a brief explanation of the KBSP graphics win-
dow and screen frame. The reader with minimal background in the Lisp Machine Window system
should be able to make simple modifications to the Lisp code in order to generate different simple

configurations of KBSP windows.

-3-

1. AN EXAMPLE SESSION WITH THE KBSP SOFTWARE.

The following session is an example session in which the interaction with the KBSP package
is shown at the Lisp command level. A sequence corresponding to a Hamming window of length
32 is created, named, its values over an interval are computed and cither returned to the user or
placed into an array. The Hamming window is plotted over a specified interval and then its FFT
and cepstrum are computed and plotted. An example with a signal stored in a file is also shown. A
sequence is created from a file and plotted, and then a section of it is plotted together with the

log-magnitude of its FFT and its real cepstrum.
In reading through the session, the following points are important:

- A * denotes the most recently created object (an array, a sequence etc.). Thus the last

object is referred to with a * instead of the full command that created it.

- An indented comment is written above cach command that the user types, explaining the
command that follows. Whatever is between a command and the next comment is something

that was printed by the system as a response to the command.

- The message "mouse a window" is printed by the system as a response to a plot command and
prompts the user to place the mouse cursor inside a desired KBSP graphics window and click

left. Then the window is selected and the plot command plots the object in this window.

- The default KBSP screen configuration, which is used in this session, consists of 4 KBSP
graphics windows and a KBSP Lisp Listener, where the commands are typed. If a user wants
his own KBSP screen configuration, he can either use the Edit Screen facility of the Lisp
machine or define his configuration in a Lisp file, in the same way the default KBSP screen
was defined.

- #<something> is the Lisp object that is returned by the corresponding command. If "some-

thing" starts with ART, the object is an array. Anything else is the name of a flavor type.

4

- The screen copies that follow give an idea how the actual display looks like. Note that the
default KBSP display contains 4 KBSP graphics windows and a KBSP Lisp listener. Each
KBSP window contains three panes, the top label, the bottom label and the graphics pane.
The top label pane contains the range of the x-axis of the plot and the bottom label pane
contains the name of the window (KBSP-WINDOWO,1,2 or 3), the range of the y-axis of the
plot (minimum and maximum value) and the name of the plotted object (or the command
that generated it). If the object is a complex sequence, the graphics pane is split into two,

with a label pane in the middle and another one on the bottom.

The example session with KBSP
; take a hamming window of length 32
(hamming 32)
#<HAMMING 27732413>
; name it test
(seq-setq test *)
#<HAMMING 27732413>
; fetch its values over the interval [0 10]
(fetch-interval test [0 10])
#<ART-Q-10 27732542> ; result is an array of length 10
; list the values of the array
(listarray *)

(1.0 0.99058384 0.96272063 0.9175512 0.8569248 0.78332347 0.69976044
0.60965675 0.5167014 0.42469984)

; make an array of size 20 and name it “array”
(setq array (make-array 20))
#<ART-Q-20 27732653>
; fetch the values of test over [0 20] and place them into “array”

(fetch-interval test [0 20] array)

-5~

#<ART-Q-20 27732653>

; list the array
(listarray *)
(1.0 0.99058384 0.96272063 0.9175512 0.8569248 0.78332347 0.69976044
0.60965675 0.5167014 0.42469984 0.33741868 0.25843123 0.19097129 0.13780051
0.101095915 0.08236012 0. 0. 0. 0.)

; find the domain of test
(domain test)
(INTERVAL -16 16)

; find all KBSP functions containing the string “fft" in their names
(kbsp-apropos ’fft)
USER:SEQ-FFT-CONVOLVE - Function (X H), Flavor
USER:IFFT - Function (SEQUENCE &OPTIONAL (LENGTH (NEXT-POWER-OF-2

(SLENGTH SEQUENCE)))), Flavor
USER:FFT-COMPLEX - Function (SEQUENCE LENGTH), Flavor
USER:FFT-REAL - Function (SEQUENCE LENGTH), Flavor
USER:FFT - Function (SEQ & OPTIONAL
(LENGTH (NEXT-POWER-OF-2 (SLENGTH SEQ)))), Flavor

(FFT FFT-REAL FFT-COMPLEX IFFT SEQ-FFT-CONVOLVE)

; plot "test” over its domain (see screen copy 1, window 0)
(plot test nil)

mouse a window
<HAMMING 27732413>

; plot test over the interval [-30 30] (see screen copy 1, window 1)
(plot test nil [-30 30])

mouse a window
#<HAMMING 27732413>

; take the fft of test
(fft test)
#<FFT 27743544>
; plot it (see screen copy 1, window 2)

(plot * nil)

mouse a2 window
#<FFT 27743544>

; take the real cepstrum of test
(cepstrum test)
<CEPSTRUM 30031337>

; plot it (see screen copy 1, window 3)
(plot * nil)

mouse a window
#<CEPSTRUM 30031337>

; take the logarithm of the magnitude of the fit of test over the positive
frequencies.

(log-mag (fft test))
#<LOG-MAG 30201376>

; plot it. (see screen copy 2, window 2)
(plot * nil)

mouse a window
#<LOG-MAG 30201376>

; take the log-mag of the fft of size 512
(log-mag (fft test 512))
#<LOG-MAG 30201757>
; plot it (see screen copy 2, window 3)
(plot * nil)
mouse a window
#<LOG-MAG 30201757>
; define a sequence corresponding to the preemphasized version of
; a speech file stored on another computer
(seq-setq eyes (preemphasize (file "dspg://usr//lib//speech//dat//eyes.s02")))
Enter user name for host DSPG:

Password for logging in to DSPG as eem (or Escape to change user id):
#<PREEMPHASIZE 30211126>

7=

; plot the preemphasized speech file (see screen copy 3, window 0)
(plot eyes nil)

mouse a window
#<PREEMPHASIZE 30211126>

; plot eyes over [8500 10500] (sce screen copy 3, window 1)
(plot eyes nil [8500 10500])

mouse a window
#<PREEMPHASIZE 30211126>

; name the section over the interval [8500 10500]
(seq-setq piece (section eyes [8500 10500]))
#<SECTION 31164662>

; plot the log-mag of the fft of piece (see screen copy 3, window 2)
(plot (log-mag (fft piece)) nil)

mouse a window
#<LOG-MAG 31165021>

; plot the real cepstrum of piece with fft size 2048
; over the interval [-64 64] (see screen copy 3, window 3)

(plot (cepstrum piece 2048) nil [-64 64])

mouse a window
#<CEPSTRUM 31175243>

The reader should notice that the graphics windows are mouse-sensitive. Clicking on a par-
ticular point in the waveform pane gives a vertical line at this point, while the coordinates of the
intersection of corresponding point on the waveform are shown on the top label pane of the win-
dow. See screen copy 3.

The bottom pane of a kbsp graphics window is also mouse-sensitive. If one clicks left on it,
the history of computations that led to the waveform in the window is shown on the kbsp lisp win-

dow. The example on screen copy 3 shows the result of clicking left on kbsp windows 0, 2 and 3.

This example session reveals only a part of the uscfulness of the KBSP package. It shows

nothing abcut the ease with which new operators can be programmed, a topic which is explained

in Chapter 4 on the KBSP implementation.

I# XAd0J NIZ™OS

!
PQUede |y i Mo4= -y

T R T R T N e ToTAYEw ST

1 nopuN ds}7 dsq)

[R B R A L PR N

("pc@T 1S31 HO4ISHID) [B9T1°¢ T 2-] BuJd EMOONIN-4SH

*2€ 1531 144) [B-94°4- 8-34°4j9} [T98°T 1-3T1°6-]94 buJ gMOONIN-JSE

1€ 04

-t
-~

<+

-

1IG. AT]
1S31 193T1°T o-%p-g-] buJd JMOUNIN-dSH 1531 [@31°Y 2-39°G-] BuJ AMOGNIN-dSO4
62+ ac-Jg1 91

Ad0D NTTHOS

11
FQu=diy g feg o 4Gy sl

Tleodmanlado g

Toambtb U g g R e

((

<19 1931 1dd) OUN-907) TI98°Z 199°G-] Bud EMOGNIN-d3a3

((°¢g€ 153) 14d) IuW-90

\

RN g

" ALEW

T nopuiy ds}q dsqy

.NmWo

0497+

1831 [0971°Y 2-397c-1 ©uUd JTHOGONIN-gSH

1S3l [0°T°] 2-99°C-

‘TAd

9€-1QT+

91

€# Ad0JD NATHOS

)l
("8p02 ((°PASAT 'POSB THNNIINI) ((S6°0- 8°1 ¥I4) (1IN ,205°$343//310Pp/ /4233dS//q)Ls/748N,/:6dSPp . J714) 3ZISHHIWIIN) NOILD3IS) HNYISHID)

(('8v02
((*98SOT °90S8 TUNAILINI) ((S6°0- B°T 3Id) (TIN ,20S°'$3ka,s,31ep/rydaads,//qQllssasnyss:6dsp, 3714) JZISHHAWITAC) NOILO3S) 144) SUW-907)

l ((S6°0- B°T ¥Id) (NIN 208" S343,,30P//4323d8,/qL | sr748N,/7:6d8P, III4) 3ZISUHINITA)

(" 8v0z 3031d WNA1Sd39) 1196 7 992 9-1 Bud EHOUNIM-dSa (CBvoz 3031d 149) 9UH-901) 1291 1 B9€ 6-1 BuJ gNOQNIN-JGax

NN

(9454 $3-

6ba1s 6EORP @11~ PbS6+ 9058+186822+ £661° €91 BSIIL+ 0+

-9

2. LISP, ABSTRACTION AND
OBJECT-ORIENTED PROGRAMMING.

This section attempts to convey some of the concepts of modern programming languages as
they were incorporated in Zeta Lisp, the Lisp dialect running on the MIT Lisp machine [Wein-
reb], and used by the designers of the KBSP software. It does not attempt to be complete or

detailed in any sense. The interested reader is referred to the bibliography for further study.

Zeta Lisp historically evolved from the MIT Maclisp. It combines features of the original
Lisp of the 60’s, ideas about data abstraction in programming languages and characteristics of the
Smalltalk object-oriented programming environment. Familiarity with these concepts will prove
very helpful in the understanding and use of the signal processing software on the Lisp machine

and of the Lisp machine in general.

From a broad perspective, the Lisp Machine programming environment represents one effort
to improve software productivity by providing advanced facilities to support incremental and
interactive programming. The importance of such efforts derives from the fact that conventional
programming languages have shortcomings that make them inadequate for building and maintain-

ing large software systems [Barstow, Chapter 25]. John Backus states [Backus]:

Conventional Programming languages are growing ever more enormous, but not stronger.
Inherent defects at the most basic level cause them to be both fat and weak: their primitive
word-at-a-time style of programming inherited from their common ancestor, the Von Neumann
computer, their close coupling of semantics to state transitions, their division of programming
into a world of expressions and a world of statements, their inability to effectively use powerful
combining forms for building new programs from existing ones, and their lack of useful

mathematical properties for reasoning about programs.

Whether the Lisp machine environment in general and the KBSP package in particular are a

step in the right direction will be proven by experience. They certai.ly are a step away from some

-10-

of the problems that Backus attributes to conventional programming.
THE ORIGINAL LISP

The original Lisp, developed at M.L.T. by John McCarthy in the early 60°’s [McCarthy] is
best described by the term functional or applicative language [Backus]. Programming in a func-
tional language consists of writing procedures or functions which resemble the concept of
mathematical functions (mappings) more than that of programming language procedures (the term
mapping will be used for mathematical functions, because the term “function” means “procedure” in
certain programming languages. Under a mapping f over a domain D, the image of an element x in
D is denoted by (f x), using the Lisp prefix notation). Lisp functions can be viewed as mappings of
the domain of definition of their arguments. For specific values of their arguments, they return the
image of these values under the mapping they define. In general, for pure Lisp functions the
returned values (1) depend on the values of the arguments only (2) are new copies rother than
modified versions of the arguments and (3) more generally, Lisp functions are not supposed to

have side effects, i.c. they are not supposed to modify their arguments or other existing data.

In a functional language like Lisp, the programmer does not think in terms of variables and
their side-effects through execution of procedures but thinks in terms of mappings. A program in
Lisp is a mapping obtained from simpler mappings by using certain simple composition rules.

As an example of how operators are composed in a functional language consider the real cep-
strum operation. Assuming that we have already defined Lisp functions for computing the loga-
rithm of the magnitude of a complex sequence, the Discrete Fourier Transform of a sequence and
the real part of a complex sequence, we can write another Lisp function to compute the real cep-
strum of the sequence by applying the previous three Lisp functions on the input sequence in the
right order pretty much like the composition of mappings in mathematics.

Original Lisp was basically an interpreted programming language, in which the pr§grammer
interacts with a Lisp environment, as opposed to traditional compiled languages, in which the

-11-

programming activity consists of the Edit-Compile-Run-Debug loop. Lisp allowed incremental
programming, in which the programmer incrementally builds his programs as functions made of
simpler functions. Previously defined functions are "remembered” by the Lisp environment. The
programmer can cither apply them to arguments or combine them in order to create new Lisp
functions, which are in turn remembered by the Lisp environment. Because the programmer can
apply the intermediate functions easily, debugging is nicely integrated into the programming
activity, as opposed to the conventional Edit-Compile-Debug loop, where three very different pro-

grams must be used: the operating system interpreter, the compiler and the debugger.

An important feature that Lisp introduced is that of treating programs like data. This derives
from the interpreted nature of Lisp and allows Lisp programs to examine, generate or modify
other Lisp programs.

One may wonder of course why Lisp has not had much appeal to the programming commun-
ity at large. There are many reasons, onc being that the programming concept it introduced was
not easily implementable efficiently on conventional von Neumann architectures. Memory manage-
ment is implicit in the Lisp environment. Once an object is not accessible anymore, it is declared
garbage, and a special, complicated and costly program, called the garbage collector, is needed to

identify and free the storage garbage occupies [Steele].

ABSTRACTION IN PROGRAMMING

The motivation behind the work in very-high-level languages is to ease the programming task
by providing the programmer with a language containing primitives or abstractions suitable to his
problem area. The programmer is then able to spend his effort in the right place; he concentrates

on solving his problem, and the resulting program will be more reliable as a result [Liskov].
Functions in Lisp and procedures in conventional high-level languages are extremely helpful

in programming, because they allow the partitioning of the task into different levels of abstraction.

One builds the cepstrum Lisp function not out of additions and multiplications of numbers, but out

-12-

of higher level procedures, which are in turn implemented in terms of arithmetic operations. This
process is known as procedural abstraction. In the mid-70’s, however, it was realized that another
kind of abstraction, data abstraction, could improve the productivity of programmers by allowing
the partitioning of the complexity of programs in a direction orthogonal to that of procedural
abstraction. Pascal records and C structures are examples of attempts to assist in data abstraction:
Related pieces of data are packaged together and in many instances the package is treated as a
whole. As an example, consider a piece of digitized speech data. An array of numbers can be used
to hold the actual numerical values. However, additional information needs to be stored together
with the data, such as the sampling rate, the age and sex of the speaker, the duration of the seg-
ment, day, time and place of the recording. Thus one could imagine a data structure for speech
signals with the following components: a floating precision array for storing the data, an alphabetic

string for storing the age and sex of the speaker and so on.

A key issue with data structures as described above is whether the user is allowed to access
the components in any way he wants. For example, is he allowed to access the array storing the
data and take it apart using the ordinary array operations? Accessing the internal implementation
of a data structure may not be desirable, because the whole program must change if the implemen-
tation changes. Hence a discipline is useful according to which usage of the data structure is
separated from its internal implementation by means of a clean interface defined in terms of the
problem area. The next question is whether such disciplined use of data structures is left to the
good will of the programmer or whether is enforced by the programming language itseif. Pascal

and C, for example, encourage the disciplined use of data structures but they do not enforce it.
A language supports data abstraction if it has the following features:

1. It allows definition of data types by packaging together conceptually related pieces of data,

called elements of the data type.

2. It automatically provides a set of functions that allow certain primitive operations on the data

type without directly accessing the internal representation. Such functions are functions for

-13-

accessing the elements, modifying the clements and initializing the clements when the data
type is instantiated (for example, "real number” is a data type. Real variable x is an instance
of the data type “real number”. Defining the real variable x is equivalent to instantiating the
data type "real number” once. Of course, "real number” is a trivial data type with a single ele-

ment).

3. It provides two distinct views of a data type: the concrete (for implementing the data type as
a package of related pieces of data) and the abstract (for using the data type). The abstract
view oonsists of a class of objects (all possible instances of the data type) and a set of opera-
tions that can be performed on these objects.

4. It provides facilities for defining new operations on the objects as part of the abstract view of

the data type.

5. It provides facilities for building a new data type by combining old ones, where the abstract

view of the component types becomes part of the new data type automatically by inheritance.
Examples of abstract data types:

(1) A stack can be viewed as a data type on which two operations can be performed: push and
pop. This is the abstract view of the stack: push(x,y) pushes the value x onto the stack y.
Pop(y) returns the value last pushed into the stack and removes the value from the stack.

Pop(y) signals "error” if the stack is empty. A stack can be implemented in different ways:

a. As a pair of an array and an index variable, where the index variable contains the index of
the top of the stack, push(x,y) incrcases the index variable by 1 and stores x in the
corresponding array index and pop(y) returns the value of the array index equal to the index
variable and decreases the index variable by 1. If the index variable is 0, an error is sig-

nalled.

b. As a linked list, i.e. a set of cells with two entries, the first being the value stored in the
cell and the second being the pointer to the next cell. A pointer points to the cell containing

the top of the stack, while the pointer of the last cell points to "error”. Push(x,y) grabs a free

-14-

cell, sets its value to x and its pointer to the current top of the stack, and sets the pointer to

the stack to point to the newly allocated cell. Pop(x) returns the value of the top of the

stack, deallocates the corresponding cell and sets the pointer to the stack to point to the cell
pointed to by the cell just deallocated.

A higher level program that uses the stack data type is independent of which of the two

implementations is actually used and is written in terms of push and pop, which are meaning-

ful operations to the user, as opposed to operations on with indexes of arrays or pointers of
linked lists.

(2) A basic signal can be viewed as a data type with two operations: getting the domain of defin-
ition and fetching the value at a point of the domain [Kopec]. A speech signal can be viewed
as another data type with components other abstract data types: a basic signal, time and date
of recording, sampling rate and age and sex of the speaker. Notice that mechanisms for
defining new abstract data types by combining already defined abstract data types is a useful
feature of a programming language.

In an abstract data type, the operations of its abstract view are the only means of using the
data type and serve as the "contract” for its use. In the previous example, if the user wants to know
the sex of the speaker, he should not be able to directly access the string that stores this informa-
tion. He must use the operation that gets the sex of the speaker, which is part of the abstract view
of the data type. It is this operation that will access the string, not the user. Thus the top level
program and the implementation of the data structure are totally separated from each other. This
has several advantages: the top level program is more meaningful and independent of the data
structure implementation. The programmer of the top level only needs to look at the “contract”
and he will be able to write his program. If the implementor of the data structure wants to change
the data structure implementation, he can do so without the need for changes at the top level, as
long as his new contract is compatible with the old one (i.c. it provides at least the functions prom-

ised by the old one).

-15-

Zeta Lisp provides the necessary facilities for defining abstract data types and operations on
them. The concepts of abstract data types in Zeta Lisp are basically as explained above, but the
terminology is different. The term flavor is equivalent to the term "abstract data type”, the term
object denotes a flavor instance (the term “instance” is used in the same sense that a real variable x
is an instance of the type "real number”. A flavor corresponds to "real number”, a flavor instance
(object) corresponds to the memory cell holding the value of x, and the name of the object
corresponds to x) and an operation on a flavor is called merhod. The act of invoking a method on a
flavor instance (in general vith arguments like a Lisp function) is called sending or passing a mes-

sage to an object.

The concept of procedural and data abstraction is central to the signal processing software on
the Lisp machine. Procedural abstraction is achieved by extending the Lisp function mechanism to
include systems. Systems are a generalization of functions and deal with sequences, which is the
abstract data type for signals. The basic abstract operations on a sequence are finding the domain
of its definition and computing its numerical values over a specified interval which is a subset of its
domain. Sequences are implemented using flavors. Sequences are immuzable objects, i.e. no opera-
tion modifies its input sequences, but instead it returns a modified copy. Thus, systems implement
side-effect-frec operations. Each system has a flavor type associated with it and all objects that it
outputs are instances of this flavor type. The system/sequence mechanism is part of Lisp. Concep-
tually, systems can be treated just like Lisp functions, which accept sequences as inputs. They work
like Lisp functions, except for the extra bookkeeping they perform related to the output sequence.

A central design decision was the idea of delayed or lazy evaluation [Kopec]. Applying a sys-
tem to its arguments does not cause any computation to happen. The mechanism for the computa-
tion is set up (the output flavor is defined and instantiated and the functions that perform the com-
putation are set up - remember that Lisp can treat programs as data). Only when a request is
issued such as plotting the sequence or getting the numerical values over an interval does real com-

putation happen. Morcover, the minimum amount of computation occurs. For example, only the

-16-

values over the specified interval are computed, not the values over the full domain of the
sequence. An elaborate mechanism for achieving delayed evaluation exists as part of the underlying
signal processing language.

The idea of delayed evaluation reflects a shift of focus in signal representation: a signal is not
viewed as the collection of its numeric values, but as a symbolic entity, described by the sequence
of operations that were applied to generate it. The view of a signal as a symbolic entity has enor-
mous potential for operating on infinite-duration discrete signals and on analog signals and for rea-

soning about signals based on their symbolic description.

OBJECT-ORIENTED ENVIRONMENT

The concept of abstract data type as a programming language feature was introduced in the
previous section. Languages like Modula-2 or ADA support abstract data types in the context of a
strongly-typed programming language, which performs type checking at compile-time. In
knowledge-based programming, however, compile-time type checking is not always possible,
because of the existence of dynamic data types, whose type is determined at run time [Barstow].
An Object-oriented environment supports dynamic abstract data types [Barstow Ch. 8, Byte]. The
central theme in an Object-oriented environment is the concept of object as instance of an abstract
data type. According to this view, an object has operations which belong to its abstract view or its
interface, "private memory"” for storing information, which can only be manipulated by operations

in the object’s interface.

In a pure object-oriented environment, objects are the only structuring mechanism, around
which the software is built. The concept of procedure is replaced by the concept of message,
according to which an object carries out one of its operations when another object sends it a mes-
sage to do so. This is rhe only way that action can occur in an object-oriented environment and it is
called object communication through message passing. Thus the programming activity in an object-

oriented environment is centered around choosing the appropriate data abstractions and providing

-17-

them with suitable operations (messages). Program “execution” consists of message sending
between objects.

In Zcta Lisp, data abstraction and the existence of objects and message passing is viewed as
complementary to procedural abstraction, hence it is not the only structuring mechanism. Zeta
Lisp provides the facilities supporting a wide range of programming styles, including functional
programming, object-oriented programming and combinations of them in various ways.

-18-

LEVELS OF USER INTERACTION IN THE KBSP PACKAGE

The user can interact with the KBSP package at three different levels:

1. The top level, where the user does not define new operations that generate signals, but uses
only the existing oncs. The top level of the KBSP package is the same as that of Lisp. The
Lisp language has been enriched with one more abstract data type corresponding to a signal,
that of a sequence. The Lisp functions that have sequences as outputs are called systems. Sys-
tems are extended Lisp functions that take the burden of bookeeping associated with
sequences off the user. A mechanism is provided for abstractly combining existing systems to
define new systems (SYS-ALIAS). Chapter 3 presents the top level view of the KBSP pack-
age, namecly all signal operations (Lisp functions and systems) that constitute the core of the

KBSP package. Chapter 5 explains the KBSP graphics facilities at the top level.

2. the system definition level, where the user not only uses the existing systems at the top level
or combines them abstractly, but also uses them as building blocks for creating his own sys-
tems by operating on the internal representation of sequences. At the system definition level,
the user comes in touch with the undelying object-oriented philosophy of the package, which
has been used at the implementation level. A system definition expands into an abstract data
type definition and instantiation. The various forms in a system definition translate into
method definitions for the sequence type being defined. This viewpoint is explained in Sec-
tion 4.3.

3. the KBSP maintenance and modification level, where the user changes the undelying KBSP
language, namely the Lisp facilities that enable the definition of sequences and signals easily
at the top level. A user may want to change the internals of KBSP, if he finds that the
current KBSP is inadequate for his specialized needs. However, this requires a thorough
understanding of the implementation that can only be acquired through detailed study of the
code.

2.5 SUMMARY

The ideas mentioned in this chapter are an outcome of the research activity in the area of
programming languages and software methodologics during the 70’s. They are gradually becoming
accepted practice during our decade mainly because the concepts are now better understood and
also because advances in the VLSI technology and computer architectures have made possible effi-
cient implementations of the ideas. One such example is the M.I.T. Lisp machine [Weinreb],
which provides an integrated programming environment including facilities supporting the previous
ideas together with an integration of the programming language with the operating system (not
only is most of the Lisp machine operating system written in Lisp, but it is also part of Lisp).

The top level view that the KBSP package offers to the user is that of a functional program-
ming environment, in which systems are treated like mappings (functions) and sequences are primi-
tive objects. Systems can thus be considered as generalized Lisp functions and sequences as primi-
tive data types in the KBSP environment.

The lower level implementation view of the KBSP package approximates that of an object-
oriented implementation in that most operations are translated into messages that are passed
between objects. However, the top-level user is not required to use message sending, because most
message sending operations have been repackaged as Lisp function calls to provide a uniform
Lisp-function-oriented @lwel view (message sending in Zeta Lisp has different, and for some

people, confusing syntax).

-20-

3. THE BASIC SIGNAL PROCESSING SOFTWARE

3.1 SETS AND INTERVALS

Intervals are a simple and very important concept in the KBSP software and the user should
become familiar with the way intervals are represented and used. The notation [a b] denotes an
interval starting at "a" and ending at 'b". "a" is included in the interval but "b" is not, i.e. the inter-
val is closed on the left but open on the right (in fact, the notation [a b] is equivalent to a Lisp
function that creates an interval and it can be typed in instead of (INTERVAL a b)). A variety of
functions is provided for using intervals, such as constructing an interval from its bounds, finding
an interval’s start and end, testing whether an interval is empty and finding covers and intersec-
tions of intervals. In the context of the previous chapter, intervals can be viewed as an abstract

data type (although it has not been implemented as a flavor, but as a Lisp structure).

Supports are used to describe possibly noncontiguous regions of the number line. Each sup-
port contains one or more intervals. Each interval describes a contiguous region of the number line

closed on the left and open on the right.

This section presents generic operations on numbers introduced to accommodate infinite
values as well and basic operations on intervals and scts. The prefix "$” indicates a generic opera-
tor, i.c. an operator that applies to extended numbers, or, more generally, to objects of a variety
of types. Note that the Zeta Lisp notation for function arguments is being used throughout. The

notation is valid for systems, as well, and has the following form:

FOO (Al A2 ... An &OPTIONAL Ot O2 ... On &REST RESTARGLIST)

FOO is the name of the function or system. Al, A2, ..., An are the required arguments, O1,
02, ..., On are the optional arguments and RESTARGLIST is a list bound to the rest argu-
ments. See [Weinreb] for more explanation of this format.

Extended number system

21-

The extended number system contains the real numbers and * . The basic operations and
predicates on numbers are extended to take into account the case in which one of the arguments
may be + o,

INF, MINF constants

These constants have symbolic values *INFINITY® and *MINUS-INFINITY®, respectively
and their mathematical properties are taken into account when they appear in generic arith-
metic operations.

EXTENDED-NUMBERP (X)
Predicate for testing whether object X is an extended number.

$= (A &REST OTHERS)

Predicate for testing whether its arguments are all equal (eq if they are not real numbers) (In
Lisp, there are two kinds of equality: Two variables are equal if they are names for two
objects that look the same, but may occupy different pieces of storage. Two variables are eq
if they are two different names, i.e. aliases, for the same object).

$>,8<,8>=,$<= (AB)
Two-argument predicates for extended numbers

$MAX, SMIN (&REST ARGLIST)
Return the maximum or minimum of a list of extended numbers.

SMINUS (A)
Returns the negative of an extended number A.

$+,9% 8,8/ (AB)
Return the sum, product, difference, quotient of A and B, where A and B are extended
numbers.

$1+, $1- (X)
Increase or decrease the extended number X by 1.

Intervals

Intervals are implemented as Lisp structures. The interval has two components, START and
END. The functions that access the components are provided automatically by the Lisp structure
and they are INTERVAL-START and INTERVAL-END. They take an interval instance as an
argument and return the corresponding component. In addition, there are generic operations

$START and $END, that apply to intervals as well as to other objects with a start and an end

-22-

(such as signals). A predicate function is also provided, INTERVAL-P, for testing whether an arbi-

trary object is an interval. The constant NULL-INTERVAL is the undefined interval [nil, nil].

INTERVAL (START END)
INTERVAL (START END)

Create and return an interval from START up to, but not incduding, END. If START is
greater than or equal to END, NULL-INTERVAL is returned.

[START END]

Shorthand notation for (INTERVAL START END) which can be typed in instead of the
longer expression.

NULL-INTERVAL-P (INTERVAL)

NON-EMPTY-INTERVAL-P (INTERVAL)
Returns the start of the interval if the interval is nonempty, otherwise it returns nil.

INTERVAL-LENGTH (INTERVAL)
Returns the length covered by this interval.

FINITE-INTERVAL-P (INTERVAL)
Returns T if the length interval is greater than or equal to 0 and less than infinity.

INTERVAL-INTERSECT (&REST INTERVALS)

Returns the interval which is the intersection of INTERVALS. If INTERVALS do not
intersect, NULL-INTERVAL is returned.

INTERVAL-ADJOINING-P (&REST INTERVALS)
Predicate testing whether all the intervals are neighbors of at least one point. For example,

(interval-adjoining-p [0 3] [4 5]) —> nil
(interval-adjoining-p [0 3] [05]) —> T
(interval-adjoining-p [03] [35])) > T

INTERVAL-COVER (&REST INTERVALS)
Returns the smallest interval that completely covers INTERVALS. For example,

(interval-cover [0 2] [13]) -> [0 3]
(intervalcover [0 2] [34]) -—-> [0 4]

INTERVAL-COVERS-P (A B)
Predicate testing whether interval A completely covers B. B can be a number or an interval.

INTERVAL-EQ (A B)
Predicate testing whether intervals A and B are identical.

-23-

INTERVAL-INTERSECT-P (&REST INTERVALS)

Returns the intersection of the intervals. If INTERVALS do not intersect, it returns NIL.
Compare with INTERVAL-INTERSECT.

INTERVAL-DELAY (INTERVAL DELAY)
Returns INTERVAL shifted to the right by DELAY.

INTERVAL-SAMPLE (INTERVAL SAMPLING-RATE)
Return a new interval by sampling INTERVAL at the sampling rate. It basically divides
start and end of INTERVAL by the sampling rate and returns the resulting interval.

Generic operations involving intervals

SGET-INTERVAL, $START, $END, SLENGTH (OBJECT)

Returns the interval, the start, the end and the length of the interval associated with OB-
JECT. If no interval is associated, return NIL. These operations apply to many object types,
such as signals and intervals.

Supports

Supports are Lisp lists containing nonadjoining non-empty intervals in ascending order. The
first element of the list is the atom ’: support. NULL-SUPPORT is a list with only one clement,
the atom ’: support. Supports have not been used in the existing KBSP software, so the rest of this

section can be skipped at first reading without loss of continuity.

SUPPORT-P (OBJECT)
Predicate for testing whether OBJECT is a support.

SUPPORT (&REST ARGLIST)

The support which completely covers all elements of ARGLIST. ARGLIST is a list of inter-
vals and/or supports.

NULL-SUPPORT-P (SUPPORT)
Predicate testing whether SUPPORT is empty.

FINITE-SUPPORT-P, NON-EMPTY-SUPPORT (SUPPORT)
Predicate testing whether SUPPORT has at least one interval.

SUPPORT-COVERS-P (A B)

Predicate testing whether support A completely covers B. B is an interval, support or
number.

Generic set operations

$SNULL (OBJECT)
Predicate testing whether OBJECT is null. OBJECT is interval or support.

$SCOVERS-P (A B)
Predicate for testing whether A completely covers B. A and B are numbers, intervals or sup-
ports.

$INTERSECT (&REST ARGS)

Returns the support which is the intersection of the arguments (which are intervals or sup-
ports).

$COVER (&REST ARGLIST)

Returns the interval which completely covers ARGLIST. ARGLIST is a list of intervals, sup-
ports or numbers. Note that $COVER returns an interval, as opposed to SINTERSECT,
which returns a support.

$COMPLEMENT (SET UNIVERSE)

Returns the support which is the complement of SET (an interval) with respect to
UNIVERSE (an interval or support).

SINTERSECT-P (&REST ARGLIST)
If the intersection of arguments is non-empty, it is returned. Otherwise return NIL.

-25-

3.2 BASIC FUNCTIONS FOR DEALING WITH SEQUENCES.

3.2.1 FETCHING SEQUENCE INTERVALS

The following functions enable the user to fetch the values of a sequence over a given inter-
val. If the value of CACHED? is *:NO, the fetched values are just returned. Otherwise, the values
arc saved away in a buffer, which is part of the sequence data structure (a flavor instance). The
buffer is an array that uses space, unless steps are taken to prevent it. In the case of caching, if a
fetch operation is performed later, requesting some of these values, they will not be computed
again (this is the default behavior of the system). It should be noted that the FETCH operations
do causc computation to happen, in contrast to the application of a system to its arguments. For
more explanation of buffering (caching) of sequences the reader is referred to the chapter on the
underlying implementation mechanisms. The readier should be cavtioned that the caching philos-

phy just mentioned and more fully described in section 4.4 may change in future implementations.

FETCH-INTERVAL (SEQ INTERVAL &OPTIONAL OUTPUT-ARRAY CACHED?)

Fetch a sequence over an interval. Return an array, if OUTPUT-ARRAY is not provided,
or return the values into the OUTPUT-ARRAY. If CACHED? is given and it is equal to
:NO, then the resulting sequence values are not saved away and the buffer of SEQ does not
change. Otherwise, the resulting values are saved (in the buffer of SEQ).

FETCH-IMAGINARY-INTERVAL
(SEQ INTERVAL &OPTIONAL OUTPUT-ARRAY CACHED?)

Fetch the imaginary part of a sequence over an interval. Return an array, if OUTPUT-
ARRAY is not provided, or return the values into the OUTPUT-ARRAY.

FETCH-COMPLEX-INTERVAL
(SEQ INTERVAL &OPTIONAL OUTPUT-REAL-ARRAY OUTPUT-IMAG-ARRAY CACHED?)

See above.

FETCH (SEQ INDEX)

Fetch the value of SEQ corresponding to INDEX. A loop of FETCH operations can accom-
plish the same as a FETCH-INTERVAL operation, but it is much slower because of the
function call that occurs with every FETCH. This comment applies to FETCH-
IMAGINARY and FETCH-COMPLEX.

FETCH-IMAGINARY (SEQ INDEX)
Fetch the imaginary value of SEQ corresponding to INDEX.

-26-

FETCH-COMPLEX (SEQ INDEX)

Fetch a pair of real values of SEQ corresponding to INDEX. The pair is returned via the
multiple value mechanism.

FETCH-UNCACHED-INTERVAL (SEQ INTERVAL &OPTIONAL OUTPUT-ARRAY)

Same as FETCH-INTERVAL but uncached, meaning that the resulting sequence values are
not buffered and that the sequence buffers do not change as a result of FETCH-
UNCACHED-INTERVAL.

FETCH-UNCACHED-IMAGINARY-INTERVAL
(SEQ INTERVAL &OPTIONAL OUTPUT-ARRAY)

Same as FETCH-IMAGINARY-INTERVAL but uncached.

FETCH-UNCACHED-COMPLEX-INTERVAL
(SEQ INTERVAL &OPTIONAL OUTPUT-REAL-ARRAY OUTPUT-IMAG-ARRAY CACHED?)

Sec above.

FETCH-UNCACHED (SEQ SAMPLE)
Same as FETCH but uncached.

FETCH-UNCACHED-IMAGINARY (SEQ SAMPLE)
Same as FETCH-IMAGINARY but uncached.

FETCH-UNCACHED-COMPLEX (SEQ SAMPLE)
Same as FETCH-COMPLEX but uncached.

3.2.2 UTILITY FUNCTIONS FOR DEALING WITH SEQUENCES

These functions perform certain miscellancous operations on sequences, such as naming, un-
naming or finding the name of a sequence, showing the computations that led to a sequence and
flushing sequences. For more explanation of buffering (caching) of sequences the reader is re-
ferred to the chapter on the underlying implementation mechanisms.

SEQ-SETQ ("E &REST ARGS)

The version of the Lisp form “setq” that must be used for naming sequences. An even
number of arguments is needed. The second, fourth, ... are sequences (objects) while the
first, third, ... are the corresponding names. The keyword "E means that the argu-
ments are not evaluated (so it works like the Lisp SETQ).

UNNAME (SEQ)
Unnames SEQ.

«27-

SEQ-NAME (OBJECT)
Prints out the name of the OBJECT.

DOMAIN (SEQ)
Returns the domain of SEQ.

PERIOD (SEQ)
Returns the period of SEQ.

COMPUTE-DOMAIN (SEQ)
Returns the default compute-domain of SEQ.

SEQUENCEP (OBJ))
Predicate which tests whether OBJ is a sequence.

$DOMAIN (OBJECT)
Returns the domain of OBJECT, if it has one, else NIL.

SHOW (OBJECT)
Prints the last computation that led to OBJECT.

SHOWR (OBJECT)
Prints all computations that led to OBJECT.

ATOMIC-TYPE (SEQ &OPTIONAL TYPE)

Returns the type of the elements of SEQ, if TYPE is not provided. Otherwise, it acts as a
predicate, i.c. tests whether the type of SEQ is TYPE.

STRUCTURE (SEQ)

Returns the structure of the sequence. For a numeric sequence, the answer is that it is a se-
quence of atoms.

SEQ-TYPEP (SEQ &OPTIONAL TYPE)
Recursive checking for TYPE. Without a second argument, it returns the type of SEQ.

SEQ-GET (SEQ INDICATOR)
The property list GET operation for sequences.

KBSP-APROPOS (STRING)

Find any system whose name includes the given string. Same as the APROPOS function of
the Lisp Machine, but much faster because it confines search only to the KBSP-defined sys-
tems.

-28-

The following functions give the user some control over the buffering and unbuffering of se-
quences. The reader may want to read their description after reading section 4.4 on array memory
management. It should be mentioned here that each system remembers the sequence instances that

were created by its application.

SEQ-FLUSH (&REST SEQ-LIST)

Flush the sequences in the argument list from their system’s memory and flush their buffers,
that hold their numerical values.

SEQ-UNBUFFER (&REST SEQ-LIST)
Unchaches a list of sequences.

SYS-FLUSH ("E SYSTEM)
Remove all sequences from SYSTEM’s memory and uncache them.

-29-

3.3 SIMPLE SEQUENCE OPERATIONS

Operations on a single sequence.

SEQ-SHIFT (SEQUENCE SHIFT) system

Return the sequence obtained by shifting SEQUENCE to the left by SHIFT so that index
SHIFT of the input sequence corresponds to index 0 of the output sequence, i.c. if the input
sequence is x{n], the output sequence is x{n-SHIFT].

SEQ-SCALE (SEQUENCE SCALE &OPTIONAL REAL-OFFSET IMAG-OFFSET)
system
Return the sequence obtained by scaling SEQUENCE by a scale factor SCALE. Subtract the
offset first if it is given. The default offsets are zero.

SEQ-RECIPROCAL (SEQUENCE) system alias

Return the sequence obtained by taking the point by point reciprocal of SEQUENCE. It
calls SEQ-REAL-RECIPROCAL or SEQ-COMPLEX-RECIPROCAL according to the type
of the input sequence.

SEQ-NEGATE (SEQUENCE) system
Return the sequence obtained by taking the point by point negation of SEQUENCE.

SEQ-CONJUGATE (SEQUENCE) system
Return the sequence obtained by taking the point by point complex conjugate of a sequence.

Point-by-point operations on more than one sequence.

SEQ-ADD (&REST SEQUENCES) system
Return the point by point sum of the arguments.

SEQ-SUBTRACT (&REST SEQUENCES) system
Return the sequence obtained by subtracting all sequences except the first one from the first
sequence.

SEQ-MULTIPLY (&REST SEQUENCES) system alias

Return the point by point product of a set of sequences. This is a generic operation, i.e. it
accepts both real and complex sequences, by invoking SEQ-REAL-MULTIPLY or SEQ-
COMPLEX-MULTIPLY respectively.

SEQ-* (&REST SEQUENCES) system-alias
An alias for SEQ-MULTIPLY.

SEQ-DIVIDE (&REST SEQUENCES) system alias

-30-

Return the sequence obtained by dividing a set of sequences. Output is first sequence divided
by the rest. This is a generic operation and calls SEQ-REAL-DIVIDE or SEQ-COMPLEX-
DIVIDE.

Generate a sequence over a domain.

SEQ-CONSTANT (REAL-VALUE &OPTIONAL IMAG-VALUE) system
Return a constant sequence over some domain. Default of IMAG-VALUE is 0.

SEQ-FUNCTION (FUNCTION DOMAIN &REST OTHER-ARGS) system

Returns the sequence computed from the function FUNCTION over DOMAIN. The argu-
ment FUNCTION must evaluate to a lisp function spec (if the name of the function is used,
it must be quoted). OTHER-ARGS are passed to the FUNCTION as they are, so they can
serve as parameters of the output sequence. Example: (SEQ-FUNCTION "FOO [-10. +10.]
3.), with FOO being (DEFUN FOO (X A) (* X A)), computes the values of function 3x.

SEQ-COMPLEX-FUNCTION (FUNCTION DOMAIN &REST OTHER-ARGS)
system
Returns the complex sequence computed from the function FUNCTION. FUNCTION must
be a complex-valued function of a single real argument. OTHER-ARGS are passed to
FUNCTION.

SEQ-FROM-ARRAY (ARRAY) system

Returns a sequence from an array. The domain of the returned sequence starts at 0 and has
length equal to the array length.

Application of a given function to each point of a sequence.

SEQ-APPLY (FUNCTION SEQUENCE &REST OTHER-ARGS) system alias

Return the sequence whose values are obtained by applying a function to each point of a se-
quence. If SEQUENCE is real, then SEQ-REAL-APPLY is used and FUNCTION should
take one argument. Otherwise, SEQ-COMPLEX-APPLY is used. In the latter case, FUNC-
TION should take two arguments, the real part and the imaginary part. As an example,

SEQ-APPLY ('+ SEQ 15)
returns a sequence obtained from SEQ by adding 15 to each one of its points.

SEQ-MAP (FUNCTION &REST SEQUENCES) system

Returns the sequence whose values are obtained by applying FUNCTION to each point of
the N-dimensional sequence obtained as the Cartesian product of the N SEQUENCES.
FUNCTION should take N arguments. As an example,

SEQ-MAP (’+ SEQI1 SEQ2 SEQ3)
returns the sum of the three sequences.

Operations on complex sequences.

-31-

SEQ-REAL-PART (SEQUENCE) system
Returns the real part of a sequence.

SEQ-IMAG-PART (SEQUENCE) system
Returns the imaginary part of a sequence.

SEQ-COMPLEX (REAL-PART-SEQ IMAG-PART-SEQ) system
Returns a complex sequence built from two real sequences.

SEQ-POLAR (SEQUENCE) system alias

Returns the polar version of SEQUENCE. The “real part” of the output sequence is the mag-
nitude of SEQUENCE and the "imaginary part” is the phase.

SEQ-RECTANGULAR (SEQUENCE) system alias
Returns the sequence obtained if SEQUENCE is converted from polar to rectangular.

SEQ-MAG (SEQUENCE) system
Returns the point by point magnitude of a sequence.

SEQ-MAG-SQUARE (SEQUENCE) system
Returns the point by point magnitude squared of a sequence.

SEQ-PHASE (SEQUENCE) system
Returns the point by point phase of a sequence.

SEQ-LOG-POLAR (SEQUENCE) system alias

Returns the sequence obtained by converting SEQUENCE to polar but give mag in dbs.
"Real part” is 20log(mag) and "imaginary part” is phase.

SEQ-LOG-MAG (SEQUENCE) system
Return the point by point log magnitude of SEQUENCE in db.

LOG-MAG (SEQUENCE) syster alias

Return the point by point log magnitude of SEQUENCE over the first half of its domain.
This system is especially suited to plotting the log-magnitude of the Fourier transform of a
real sequence, which is an even function of frequency, and thus only the positive half needs
to be plotted.

Useful variables:

CLIP-OFFSET-IN-DBS variable
Maximum range in db. Default value is 200.

-32-

CLIP-OFFSET variable
Maximum range. Defau!t vatue is (LOG (EXPT 10 (// *CLIP-OFFSET-IN-DBS* 20))).

Utility functions:

LOG-10 (X) function
Log to the base 10 of X.
COMPLEX-MULTIPLY (REAL-Z-1 IMAG-Z-1 REAL-Z-2 IMAG-Z-2) function

Multiply two complex numbers z-1 and z-2.

COMPLEX-DIVIDE (REAL-Z-1 IMAG-Z-1 REAL-Z-2 IMAG-Z-2) function
Divide z-1 by z-2.

COMPLEX-RECIPROCAL (REAL-Z IMAG-Z) function
Take the reciprocal of z.

PHASE (Y X) function

Returns the angle, in radians, whose tangent is y/x. The returned value is always a number
between — 1 and . If x=y=0, the returned value is 0. This function is a smart version of
ATAN?2 of Zeta Lisp.

-33-

3.4 CONVOLUTION AND RELATED OPERATIONS

This section describes systems and functions useful in performing convolution of sequences
and related operations. From the user’s viewpoint, a system alias is no different from a system.
From the implementation viewpoint, a system alias is defined by composing systems as mappings,
whereas a system is defined by explicitly operating on the concrete representation of the input and
output sequence. A system alias is usually less space efficient than a corresponding system for the
same operation, because a system alias by default buffers all intermediate sequences. For more ex-
planation of the differences between a system and a system alias, the reader is referred to section

4.3.

SEQ-REVERSE (SEQUENCE) system alias

Time reverse a sequence. If the input sequence is x{n], the output sequence
is x{-n].

SEQ-FFT-CONVOLVE (X H) system alias
Perform linear convolution of two sequences X and H using the FFT.

OVCONV (SEQA SEQB) system

Overlap-add convolution of SEQ by FLTR. FLTR should be substantially shortcr compared
to SEQ. The system decides which one of SEQA and SEQB plays the role of FLTR based on
their length.

SEQ-CONVOLVE (X H) system alias

Convolve sequences X and H. This is a generic operation (i.c. deals with both real and com-
plex sequences) built upon SEQ-REAL-CONVOLVE and SEQUENCE-COMPLEX-

CONVOLVE.

SEQ-CORRELATE (X H) system alias
Find the correlation between sequences X and H, by convolving X with the time-reversed
version of H.

SEQ-AUTOCOR (X) system alias

Find the autocorrelation of sequence X, by convolving X with itself.

SEQ-ENERGY (SEQ &OPTIONAL WINDOW OFFSET-BETWEEN-SAMPLES)
system
The short-time energy in a sequence. If the input sequence has length L, the output se-
quence has length L/OFFSET-BETWEEN-SAMPLES. To compute the output sequence, the
input sequence is split into (possibly overlapping) blocks of length the same as the length of

-34-

the WINDOW, each block is individually windowed, the sum of the squares of its samples is
computed and the result becomes a single sample of the output sequence. The default values
for the optional parameters are: WINDOW is a hamming window of length 256 ‘and
OFFSET-BETWEEN-SAMPLES is 100.

Related utility functions:

INTERVAL-REVERSE (INTERVAL) function

Get the time reversed interval. If the input interval is [a, b}, then the output interval is |-
b+1, -a+1]. Remember that the convention about intervals is that the first point is included
int the interval, but the last point is not.

CONVOLUTION-SIZE (X H) function
Determine the appropriate FFT length to use for convolution, equal to the sum of the length
of the sequences X and H minus 1.

CONVOLUTION-DOMAIN (X H) function

Determine the domain over which the convolution of sequences X and H will be non-zero.

3.5 DISCRETE FOURIER TRANSFORM COMPUTATIONS

A number of systems and functions is provided for DFT and FFT computations. Their main

characteristics are the following:

Sine and cosine tables are used (they are implemented with the "resource” mechanism of
ZetaLisp). This ensures efficiency in time (sines and cosines are computed once when needed and

then looked up, if they are needed again), and in Lisp Machine storage.

The FFT and DFT operations are "generic”. This means that they accomodate real and com-

plex sequences and they branch using the specialized subordinate functions as necded.
The top-level systems/functions that a user would normally use are the following:

FFT (SEQ &OPTIONAL LENGTH) system

Return the (complex) FFT of a sequence. The input sequence can be real or complex. The
output sequence is always complex. The default value of LENGTH is the smallest power of 2
which is greater than or equal to the length of the sequence. In case the length of SEQ is
longer than LENGTH, no truncation takes place, but instead "aliasing” occurs, i.e. all the
clements of SEQ are taken into account, while the sequence of exponential coefficients re-
peats itself periodically. This implies that taking the inverse fft of the fft of a sequence may
not return the original sequence or a portion of it.

-35-

IFFT (SEQUENCE &OPTIONAL LENGTH) system

Return the complex inverse FFT of a sequence. If the input sequence is real, it is treated as
complex with zero imaginary part. The default value of LENGTH is the smallest power of 2
which is greater than or equal to the length of the sequence.

IFFT-REAL (SEQUENCE &OPTIONAL LENGTH) system

Return the inverse fft in the form of a real sequence. SEQUENCE should be a complex se-
quence corresponding to the fft of a real sequence.

DFT (SEQUENCE &OPTIONAL LENGTH) system

Return the DFT of a sequence. The default LENGTH is equal to the length of the sequence.
Notice that it doesn’t have to be a power of 2.

IDFT (SEQUENCE &OPTIONAL LENGTH) system
Return the inverse DFT of a sequence. The default LENGTH is equal to the length of the
sequence. Notice that it doesn’t have to be a power of 2.

Utility functions/systems:

SEQ-COS-SINGLE (PERIOD) system
Returns a cosine with the specified period. The compute-domain of the cosine is equal to a
single cycle.

SEQ-SIN-SINGLE (PERIOD) system
Returns a sine with the specified period. The compute-domain of the sine is equal to a single
cycle.

SEQ-COMPLEX-EXP-SINGLE (PERIOD) system alias

Returns a complex exponential with the specified period. The compute-domain of the signal
is equal to a single cycle.

SEQ-ROTATE (SEQUENCE AMOUNT) system alias

Rotate a sequence to the left by specified amount. Equivalently, shift the sequence to the left
as if it were periodic with period equal to its domain and then grab one period. The output
sequence has the same domain as that of SEQUENCE.

POWER-OF-2-P (NUM) function
Test if NUM is a power of 2

NEXT-POWER-OF-2 (NUM) function
Returns the next power of 2 >= NUM.

SEQ-ALIAS (SEQUENCE DOMAIN &OPTIONAL REPETITION-LENGTH) system

Return the aliased version of a sequence into a specified domain. (This function needs fixing
to check for invalid inputs. It is not likely to be useful to a ordinary user of the KBSP sys-

-36-

tem).

3.6 FILE INPUT/OUTPUT

The following facility has been designed to read from a variety of data file formats that have
existed (and still exist) on the Digital Signal Processing Group computers.
The old dat format consists of a UNIX binary file with an ASCII header, which is a block of
512 bytes with type and size information, as follows:
s02 (for 2-byte integers or r04 for 4-byte reals or c08 for 8-byte complex)

dim
12456 (or whatever the number of samples in the file is).

The new DSPG dat format uses a directory containing two files: one file contains the data in
binary form and the other is the descriptor file, containing type, size and miscallaneous informa-
tion in ASCII form (so that it can be viewed easily on the terminal). The 3600 dat format is very
similar.

FILE (FILENAME) system

This system creates and returns a sequence from a file. The file must be one of the following
kinds: DSPG old dat format, DSPG new dat format, 3600 dat format or ASCIl. FILENAME
must be a host/path specification conforming with the Lisp Machine’s conventions for path-
names for different operating systems. See [Weinreb] (section on Naming of Files).

SEQ-DUMP-TO-FILE (SEQ PATHNAME) function

Dump SEQ into a file specified by PATHNAME. Only works for real or complex sequences.
The format of the resulting file is the 3600 dat file format.

3.7 FILTERING

Functions/systems supporting filtering of signals are provided. Note that the filter coeffi-
cients must be provided by the user (i.c. no filter design is provided). Filter structures currently

supported are FIR and IIR filters. More general filters can be created by using the SYS-ALIAS fa-

-37-

cility and the provided systems as building blocks.

FIR (&REST COEFFICIENTS) system

Return a sequence whose value is the impulse response of an FIR filter. For example, if
COEFFICIENTS are 1 and 0.5, the output of FIR is a sequence with value 1 at time 0 and
0.5 at time 1.

IIR (&REST COEFFICIENTS) system

Return a sequence whose value is the impulse response of an IIR filter. For example: (IIR
.5) has an impulse response of 1.0, -.5, .25, -.125, ... In general, (IIR cl c2 ... cn) imple-
ments the impulse response of the filter

1

1+cz ez 2+ - - - ¢z ®

FIR-FILTER (INPUT FIR-SEQUENCE) system alias

Return the output of the specified FIR filter if INPUT is the input sequence to the filter.
The specified filter must be a sequence constructed using FIR.

IIR-FILTER (INPUT [IR-FILTER &OPTIONAL GAIN INITIAL-STATE-ARRAY)
_ system
Return the output of the specified IR filter (scaled by GAIN) if INPUT is the input se-
quence to the filter. The default GAIN is 1. The INITIAL-STATE-ARRAY, if provided,
becomes the initial condition for the IIR filter. Otherwise, the initial conditions are zero.

STATE-SHIFT (ARRAY NEW-FIRST-ELEMENT) function

Shift the array clements to right by one and put in a new first element in the first position.
This function works by side-effect, i.c. it actually changes its argument ARRAY, and should
be used with caution, if at all.

IIR-FILTER-FROM-ARRAY
(INPUT ARRAY &OPTIONAL GAIN INITIAL-STATE-ARRAY) system alias

Filter an input sequence with coefficients from the given array. In order to implement the
IR filter described in the documentation of IR, the array must be [c1, c2, ...,ca].

3.8 FUNCTIONS OPERATING ON SEQUENCES

MEAN-OF-SEQ (SEQUENCE &OPTIONAL INTERVAL)
Return the mean value of a sequence over some interval. The default value of INTERVAL is
the domain of the sequence. The function returns two values, the mean of the real and the
imaginary part of the sequence, using the Zeta Lisp multiple value mechanism.

-38-

SUM-OF-SEQ (SEQUENCE &OPTIONAL INTERVAL)
Return the sum of the real and imaginary values of a sequence over some interval.

MEAN-SQUARE-OF-SEQ (SEQUENCE &OPTIONAL INTERVAL)

Return the mean magnitude squared value of a sequence over some interval, i.c. the sum of
the squares of the values over the interval divided by the length of the interval. The default
value of INTERVAL is the domain of SEQUENCE.

VARIANCE-OF-SEQ (SEQUENCE &OPTIONAL INTERVAL)

Return the variance (E(|x|%)— |E(x)|?) of a sequence over some interval. The default
value of INTERVAL is the domain of the sequence.

INNER-PRODUCT (X Y)
Return the inner product of the vectors X and Y, represented by arrays.

-39-

3.9 NORMALIZING A SEQUENCE

Several systems are provided for normalizing a given sequence in different ways. All of these

systems return a normalized version of the input sequence.

SEQ-NORMALIZE (SEQUENCE) system
Return the normalized version of SEQUENCE with zero mean and unit variance.

PREEMPHASIZE (SEQ &OPTIONAL PREEMPHASIS-FILTER) system alias

Return the preemphasized version of SEQ. The default preemphasis-filter is the one specified
by variable *DEFAULT-PREEMPHASIS-FILTER®.

DEEMPHASIZE (SEQ &OPTIONAL DEEMPHASIS-FILTER) system alias

Return the deemphasized version of SEQ. The default deemphasis-filter is the one specified
by variable *DEFAULT-DEEMPHASIS-FILTER®.

SEQ-UNIT-ENERGY (SEQUENCE) system alias
Return the normalized version of SEQUENCE with sum of squares equal to 1.

SEQ-UNIT-AREA (SEQUENCE) system alias
Return the normalized version of SEQUENCE with unit area, i.c. the sum of values being
equal to 1.

Useful variables:

DEFAULT-PREEMPHASIS-FILTER variable

Default preemphasis filter. Its default value is (FIR 1.0 -.95). If a different default preem-
phasis filter is desired, this variable must be set to the desired filter obtained with FIR.

*DEFAULT-DEEMPHASIS-FILTER® variable
Default deemphasis filter. Its default value is (IR -.95).

3.10 WINDOW OPERATIONS

Windowing operations on sequences:

SEQ-WINDOW (SEQ WINDOW OFFSET) system alias
Grab portion of sequence overlapping with WINDOW when the zero index of the WINDOW
is aligned with index OFFSET of SEQ and window the portion using the specified window.
The domain of the resulting sequence is identical to the domain of the WINDOW.

SEQ-GATE (SEQUENCE DOMAIN) system
Grab a portion of a sequence. The domain of the resulting sequence is DOMAIN.

SEQ-SECTION (SEQUENCE SECTION-INTERVAL) system alias
Grab the portion of SEQUENCE specified by SECTION-INTERVAL and shift it to start at
the origin.

SECTION (SEQUENCE SECTION-INTERVAL) system alias
Alias for SEQ-SECTION.

Window generators:

RECTANGULAR (LENGTH &OPTIONAL CENTERED) system
A Rectangular window of the specified length. If CENTERED is T (the default), then the
window is centered around 0.

HAMMING (LENGTH &OPTIONAL CENTERED) system

A Hamming window of the specified length. If CENTERED is T, (the default), the Ham-
ming window is centered around zero.

IMPULSE () system alias
An impulse at 0.
UNIT-STEP () system

A step.

-41-

4. THE KBSP IMPLEMENTATION.

4.1 INTRODUCTION

The KBSP package introduced an extension to the Lisp language in order to represent sys-
tems and signals.
Systems arc generalized Lisp functions with arguments almost anything, but most typically signals
or parameters of signals, and outputs other signals.
Signals are represented by "sequences”. Sequences arc abstract data types (flavors) including vari-
ous pieces of information about the signal they represent, for example its name, where it came

from, how to compute its values and its domain.

The section on sequences as abstract data types explains the implementation of sequences as
flavor types. The components of a sequence are explained and a summary explanation of the main
methods that all sequences are equipped with is given. It will be helpful to the reader if he is fam-
iliar with the basic philosophy of flavors as described in the corresponding chapter of the Lisp
machine manual.

The section on system implementation explains the facilities that are provided so that the
rcader can define his own systems. Many examples are provided and explained in detail in order
for the reader to be able to read the definitions of the current systems and write his own. Some
familiarity with Lisp macros and flavors will be helpful.

The section on array memory management explains the techniques that enable KBSP to make
efficient use of the Lisp machine memory. A list of forms that allow the user to have control over
the amount of array memory his program consumes is given. Finally, an example of changing the
definition of a system to make it more memory cfficient without sacrificing the clarity of code is
given. Some familiarity with the concepts of memory management in Lisp, especially garbage col-

lection, and with the concept of hashing will be helpful.

-42-

4.2 SEQUENCES AS ABSTRACT DATA TYPES

The KBSP package provides facilities for the definition of sequences of arbitrary objects, in-
cluding sequences of sequences. The ability to mix flavors (sce [Weinreb]) is used to implement
abstract data types in a modular fashion. KBSP defines several flavor types for sequences, which
can be combined in different ways to implement types such as numeric sequences and sequences of
sequences. BASIC-SEQUENCE implements a sequence with a domain and a buffer for holding its
values. These values can be any Lisp objects. SEQUENCE is built on top of BASIC-SEQUENCE
and adds to it the ability to plot itsclf and the ability to have its own property list. BASIC-
NUMERIC-SEQUENCE is built on top of BASIC-SEQUENCE and includes extra slots to ac-
comodate complex sequences. NUMERIC-SEQUENCE is built on top of BASIC-NUMERIC-
SEQUENCE and SEQUENCE and includes operations appropriate to numerical sequences (e.g.
range).

The basic flavor out of which sequences are built is the BASIC-SEQUENCE flavor. Its in-

stance variables (i.e. the components of the corresponding abstract data type) are the following:

BUFFER-DOMAIN: This is the interval over which the sequence has previously been computed.

The corresponding values are stored in BUFFER.

BUFFER: This is normally an array containing the values of a part of the sequence (the part that

has previously been computed).
DOMAIN: The interval over which the sequence is nonzero (or non-constant).
PERIOD: The period of the sequence. It is equal to INF for a non-periodic sequence.

CACHED?: When this is T, the computed values of the sequence are cached, i.e. saved in
BUFFER so that they will not be recomputed when needed again in the future.

The SEQUENCE flavor is built from BASIC-SEQUENCE, OBJECT-PLOT-MIXIN (a mixin
that enables a sequence to plot itself) and SI:PROPERTY-LIST-MIXIN (a mixin flavor that imple-

ments the basic property list operations for the individual sequence instances). The reader is re-

43

ferred to chapter 2 for an explanation of the concept of building new abstract data types by com-
bining existing oncs. In the Zeta Lisp terminology this is called mixing of flavors and it is fully ex-
plained in [Weinreb].

The BASIC-NUMERIC-SEQUENCE flavor is built from BASIC-SEQUENCE. It has addi-
tional slots IMAGINARY-BUFFER-DOMAIN and IMAGINARY-BUFFER, to accommodate
complex-valued sequences.

The NUMERIC-SEQUENCE simply consists of BASIC-NUMERIC-SEQUENCE and SE-
QUENCE.

Sequences can be examined using the Lisp "describe” facility. The Lisp form (DESCRIBE
OBJ), where OBJ is the name of an object (or a sequence), prints a list of all instance variables of
OBJ together with their values. The reader may find it helpful to apply this facility at various
points of the example session and verify for himself the caching and uncaching of sequences. SEQ-

NAME and SHOWR are other ways to examine sequences.

The above flavors understand a wide varicty of messages via methods that are defined for
them: predicates for testing values, "fetch” messages that return portions of the data or domains,
"set” messages that change the values. When a system is defined, a new flavor type is defined on
top of a sequence flavor type (using the mixin facility) with new methods that are specialized for
the system. The user has the ability to define many methods, but DOMAIN and FETCH methods
are the minimal methods that must be provided so that the new flavor is compatible with the rest
of the KBSP package. For example, many KBSP functions and systems expect an object to be able
to fetch its values. A sequence is able to fetch its values only if some form of FETCH method has
been defined for it.

As explained in the next section, DEFINE-SYS and SYS-ALIAS are extensions to Lisp that
allow convenient definition of systems with their associated methods. DEFINE-SYS provides a
convenicnt syntax for defining a new sequence type by explicitly providing its basic methods. SYS-

ALIAS allows definition of a new sequence by abstractly combining existing systems, namely

-

without explicit definition of the new sequence’s methods, and by using a Lisp-like syntax. SYS-
ALIAS is casier to write than a DEFINE-SYS, but it can often be more inefficient in terms of
speed and memory consumption.

The following is a list of most methods associated with the sequence flavors. They are provid-
ed here for reference purposes only. In terms of the role methods play in the KBSP package, there
are three classes of methods:

Methods that depend on the particular sequence being defined, such as FETCH, COMPUTE and
DOMAIN. These must be defined separately for cach new sequence type. It is possible for COM-
PUTE (which works over an interval) to rely on FETCH or vice versa. The preferred implementa-
tion depends on efficiency considerations and is subject to change. The current conventions are

described in the next section.

Methods that are sequence dependent, but are not necessary for the proper use of the sequence,
such as PERIOD, STRUCTURE or ATOMIC-TYPE. Default method definitions provide reason-

able answers, but not always correct.

Methods that perform some function which is universally useful and does not depend on the partic-
ular sequence, such as FIND-COMPUTATION-INTERVALS or FETCH-INTERVAL. These
methods use the sequence-specific methods internally and hence they can have a universal defini-
tion, which should not be superseded. These methods could have been defined as top-level Lisp

functions.

Methods for BASIC-SEQUENCE:

HAS-NO-BUFFERS ()
Predicate for testing whether buffer is NIL.

DECACHE ()

It frees the array used by BUFFER for reuse. Sets BUFFER to NIL and BUFFER-
DOMAIN to the zero interval.

~45-

Methods for SEQUENCE:

DOMAIN ()
Returns the nonzero domain cf the sequence.

COMPUTE (INTERVAL ARRAY)
Computes the values of the sequence over the INTERVAL and places them into ARRAY.

FETCH (INDEX)
Fetches the value of the sequence at INDEX.

FIND-COMPUTATION-INTERVALS
(OLD-BUFFER-DOMAIN DESIRED-BUFFER-DOMAIN)

Returns the intervals over which the values of the sequence must be actually computed to
cover the DESIRED-BUFFER-DOMAIN, if the values over OLD-BUFFER-DOMAIN are
already known.

FETCH-INTERVAL (INTERVAL &OPTIONAL OUTPUT-ARRAY NEW-CACHED?)

Returns an array containing the values of the sequence over INTERVAL. If OUTPUT-
ARRAY is provided, the values are put into it.

PERIOD ()
Returns the period of the sequence.

MODIFY-CACHED? (NEW-VALUE)
Sets the value of instance variable CACHED? to the new value and returns the old value.

ATOMIC-TYPE ()
Returns the type of the elements of the sequence.

STRUCTURE ()

Returns the type of a sequence, for example whether it is a sequence of numeric sequences
or a sequence of numbers.

COPY-BUFFER (NEW-BUFFER NEW-BUFFER-DOMAIN)

Copies the contents of instance variable BUFFER into the given NEW-BUFFER over the
specified NEW-BUFFER-DOMAIN. Does a reasonable thing if NEW-BUFFER-DOMAIN
and the instance variable BUFFER-DOMAIN have a nonempty intersection.

SET-BUFFER (NEW-BUFFER NEW-BUFFER-DOMAIN)
Swaps the contents of instance variables BUFFER and BUFFER-DOMAIN with those of
NEW-BUFFER and NEW-BUFFER-DOMALIN respectively.

Methods for BASIC-NUMERIC-SEQUENCE:

HAS-NO-BUFFERS ()
Predicate for testing whether sequence has at least one buffer (real or imaginary)

DECACHE ()

It zeroes both the real and the imaginary part and returns the corresponding arrays to public
use.

Methods for NUMERIC-SEQUENCE:

COPY-IMAGINARY-BUFFER (NEW-BUFFER NEW-BUFFER-DOMAIN)

Does the same thing as COPY-BUFFER of SEQUENCE but for the imaginary part of a
numeric sequence.

COPY-COMPLEX-BUFFERS
(NEW-REAL-BUFFER NEW-IMAG-BUFFER NEW-BUFFER-DOMAIN)

Does the same thing as COPY-BUFFER of SEQUENCE but for both the real and the ima-
ginary part of a numeric sequence.

SET-IMAGINARY-BUFFER (NEW-BUFFER NEW-BUFFER-DOMAIN)

SET-COMPLEX-BUFFERS
(NEW-REAL-BUFFER NEW-IMAG-BUFFER NEW-BUFFER-DOMAIN)

FETCH-IMAGINARY-INTERVAL (INTERVAL &OPTIONAL OUTPUT-ARRAY NEW-CACHED?)
FETCH-COMPLEX-INTERVAL (INTERVAL &OPTIONAL OUTPUT-ARRAY NEW-CACHED?)
RANGE (&OPTIONAL INTERVAL)

Returns the range of the sequence over the specified interval. If no interval is specified, a de-
fault domain is used. For complex sequences, the limits of a square that represents the range
in the complex plane is returned.

IMAGINARY-RANGE (&OPTIONAL INTERVAL)

Returns the range of the imaginary part of the sequence over the specified interval. If no in-
terval is specified, a default domain is used.

COMPUTE-IMAGINARY (INTERVAL ARRAY)
The default compute method for the imaginary part of numeric sequences.

-47-

4.3 SYSTEM IMPLEMENTATION

Systems in the KBSP package implement mathematical systems, i.c. entities which generate
signals based on some input signals and/or parameters. Systems present a Lisp function interface to
the top-level user. They accept the lambda list keywords that Lisp functions accept (see [Weinreb]
and they generate an output sequence in a side-cffect-free manner (i.c. the system arguments are
not modified as a result of calling the system).

At the implementation level, a basic feature of systems is lazy or delayed evaluation: The ef-
fect of calling a system is not computation of values of the output sequence, but just creation of the
necessary machinery for doing so, namely generation of Lisp code that can produce the numeric

values of the output sequence.

Another basic feature is that a new flavor type is generated for each system. The new flavor
type is basically a numeric sequence with extra methods that are particular to the corresponding
system like the compute or domain methods, which implement the computation of values in a sys-
tem dependent manner. Calling a system gencrates Lisp code that defines this new flavor and
creates an instance of the flavor type which implements the output sequence according to the argu-
ments of the system call. All sequences generated as a result of the call of a system, i.c. all se-
quences that are instances of the flavor type associated with a system, are "remembered” by the sys-
tem in a hashing table in the system’s property list. Thus repeating the call (HAMMING 32) twice
does not create two objects, but one. Also an unnamed sequence is not inaccessible as an unnamed
general object. A property assigned to a sequence using the special PUTPROP version for se-
quences, called SEQ-PUTPROP, is not attached to the name of the object, but to the actual object
itself. The buffers of the output sequence that hold its numerical values are gencrally empty im-
mediately after its creation. They get filled with some of the sequence’s values as a result of a

fetch-interval or blot request.

(a) DEFINE-SYS

48-

DEFINE-SYS is a macro provided for the definition of new systems. In Lisp, the macro facil-
ity is an orderly way of generating lisp code. DEFINE-SYS provides a mechanism for defining new
systems in a concisc manner. A DEFINE-SYS expands to full lisp code performing a variety of

tasks related to the gencration and maintenance of the output sequence.

Let us first examine what the arguments of DEFINE-SYS are and how they expand into lisp

code in the context of an example:

DEFINE-SYS (SYSTEM-NAME PARAMETERS FLAVOR-TYPE-LIST FORMS)
The example that will be analyzed here is the definition of a system that generates a Ham-

ming window of specified length. The reader should attempt to understand this definition while

reading the explanation that follows.

(DEFINE-SYS HAMMING (LENGTH &OPTIONAL (CENTERED T))
(NUMERIC-SEQUENCE)
"A Hamming window"
(COMPUTE (INTERVAL OUTPUT-ARRAY)
(LOOP FOR SAMPLE-INDEX FROM ($START INTERVAL) BELOW ($END INTERVAL)

FOR ARRAY-INDEX FROM 0

WITH OFFSET = (IF CENTERED 0 (// LEN/3TH 2))

DO (SETF (AREF OUTPUT-ARRAY ARRAY-INDEX)

(+ 54(*46(COS(/(*20P1
(- SAMPLE-INDEX OFFSET))
(1- LENGTH))))))))

(DOMAIN ()

(IF CENTERED (INTERVAL (MINUS (// LENGTH 2))
(+ LENGTH (MINUS (// LENGTH 2))))
(INTERVAL 0 LENGTH))))

SYSTEM-NAME is the name of the system. In the context of the example, this corresponds
to HAMMING.

PARAMETERS are the arguments to the system, typically signal parameters, if the system
generates a signal from its parameters, or one or more sequences, if the system operates on se-
quences (like adding or multiplying two sequences). In the Hamming example, the arguments are
two: LENGTH, which is the length of the window, and an optional argument (note here that the
Zeta Lisp function keywords apply to DEFINE-SYS as well) CENTERED, which determines

whether the window will be centered around 0 or whether it will start at 0. The default value of

-49-

CENTERED is T, :i.e. the window is centered around 0.

The output sequence of a system is a flavor of a type particular to the system. The output fla-
vor type is obtained by a flavor definition, which is one of the things included in the expansion of
DEFINE-SYS. FLAVOR-TYPE-LIST is a list of flavor types to be combined into the output fla-
vor. In the Hamming example, there is only one flavor in the flavor-type-list, NUMERIC-
SEQUENCE. This is the flavor type of the window which the system generates.

FORMS is a list of forms which expand into method definitions for the output flavor. These
methods are particular to the defined system and typically specify how the output values should be
computed, and how the domain of the output sequence is found. These forms are required for the
sequence to be any useful. Compute forms may compute over an interval (COMPUTE) or at a
single index (FETCH). COMPUTE forms are faster, because they operate on blocks of data, but
they require the user to write a loop of array operations. FETCH forms are much slower, because

they perform a function call per index, but arc easier to write.

In the current implementation, the COMPUTE form is required, while the FETCH message
is reduced to a COMPUTE message over an interval of length one, unless it has been defined oth-

erwisc. This may change in future implementations.

The COMPUTE form by convention always takes two arguments, INTERVAL and
OUTPUT-ARRAY. INTERVAL is the interval over which the values are to be computed and
OUTPUT-ARRAY receives the computed values. LOOP is a Zeta Lisp iteration construct similar
to a DO or a FOR loop, but more general and powerful [Weinreb]. The compute form expands
into a COMPUTE method definition for the output flavor (refer to the section on sequences for
more cxplanation). The compute message will be sent to the output flavor when its values are re-
quested, typically by PLOT or FETCH-INTERVAL. The senders of the message will provide
values for the two arguments of the method. In the example, the compute form computes the
values over the interval by applying the mathematical formula for the Hamming window. The

domain form always takes no arguments and expands into a DOMAIN method definition. In the

-50-

example, the domain computation depends on whether the window is centered or not.

A form called INIT-FORMS with no arguments is the init form. The init form expands into
an after-init method definition. This means that the corresponding message is automatically sent
immediately after the creation of a flavor instance and performs initialization tasks. INIT-FORMS
are not required and in the example of Hamming window they have not been used.

In summary, the required compute forms are:
COMPUTE, if the output sequence is real,

COMPUTE and COMPUTE-IMAGINARY or
COMPUTE-COMPLELX, if the output sequence is complex.

DOMAIN, in all cases.
Some of the optional ones with default definitions (refer to the section on sequences for these) are:

RANGE (&OPTIONAL INTERVAL)
IMAGINARY-RANGE (&OPTIONAL INTERVAL)
ATOMIC-TYPE ()

PLOT-RANGE ()

FETCH (INDEX)

FETCH-IMAGINARY (INDEX)
FETCH-COMPLEX (INDEX)

PERIOD ()

INIT-FORMS () (default is nil)

As mentioned before, the format of the compute and domain forms is not arbitrary but
depends on the conventions that other parts of the KBSP system follow. For example, the compute
form takes two arguments because this is how the PLOT or FETCH-INTERVAL function will
send the corresponding message.

Another simple example is the definition of SEQ-SHIFT:

(DEFINE-SYS SEQ-SHIFT (SEQUENCE SHIFT)
(NUMERIC-SEQUENCE)
"Shift the input sequence to the left by SHIFT so that index SHIFT
of the input sequence corresponds to index 0 of the output sequence”
(COMPUTE (INTERVAL OUTPUT-ARRAY)
(FETCH-INTERVAL SEQUENCE
(INTERVAL-DELAY INTERVAL SHIFT) OUTPUT-ARRAY CACHED?))
(COMPUTE-IMAGINARY (INTERVAL OUTPUT-ARRAY)
(FETCH-IMAGINARY-INTERVAL SEQUENCE
(INTERVAL-DELAY INTERVAL SHIFT) OUTPUT-ARRAY CACHED?))

-81-

(PERIOD ()

(PERIOD SEQUENCE))
(DOMAIN ()

(INTERVAL-DELAY (DOMAIN SEQUENCE) ($MINUS SHIFT)))
(ATOMIC-TYPE ()

(ATOMIC-TYPE SEQUENCE)))

SEQ-SHIFT has two arguments, the input scquence and the shift. The output flavor is again
a numeric-sequence. The compute form does nothing more than place the values over the desired
interval into the output array. The function FETCH-INTERVAL does exactly that. The compute-
imaginary form does the same thing for the imaginary part. The period of the output sequence is
the same as that of the input sequence as indicated by the period form. The domain of the output
sequence is obtained from the domain of the input sequence by delaying it by the right amount.
Finally, the atomic type of the output sequence is the same as that of the input sequence, as indi-
cated by the atomic-type form. The reader is urged to study carcfully the definition of SEQ-
SCALE or any onec of the simple sequence systems to get extra practice.

Let us now sce how systems perform their role. A DEFINE-SYS expands into several lisp de-
finitions:
a function definition, whose name is SYSTEM-NAME, and whose purpose is to cause the creation
of an instance of the output flavor by calling the :CREATE-SEQ function, which is stored in the
property list of the symbol SYSTEM-NAME. (sce the Lisp machine manual section on Function
specs (Sec. 10.2)).
a :CREATE-SEQ function, which actually creates the output flavor instance and is stored in the
property list of SYSTEM-NAME under property name :CREATE-SEQ.
a flavor definition, whose name is SYSTEM-NAME, composed of flavor types in the FLAVOR-

TYPE-LIST and
one method definition for the above flavor per form in FORMS.

(b) SYS-ALIAS

-52-

The second major way of defining new systems is using SYS-ALIAS. This is another macro
that allows definition of a new system by combining existing systems in an abstract way, i.c.
without the need to access the internal representation of the input arguments.
SYS-ALIAS (SYSTEM-NAME PARAMETERS BODY)

BODY must be of the form (EQUIVALENT-EXPRESSION . METHODS). Equivalent-
expression is a lisp expression built on existing systems and/or Lisp. A simple example of the use
of SYS-ALIAS is the definition of SEQ-SECTION:

(SYS-ALIAS SEQ-SECTION (SEQUENCE SECTION-INTERVAL)
(SEQ-SHIFT
(SEQ-GATE SEQUENCE SECTION-INTERVAL) ($START SECTION-INTERVAL)))

In this definition, METHODS is equal to nil, i.c. no extra methods have been defined for its out-
put sequence on top of the default ones for its type. doesn’t exist. The equivalent expression grabs
a portion of the sequence corresponding to the section interval and shifts it so that it starts at the
origin. Notice that there was no need to think about the values of the input sequence in this defin-
ition. The input sequence was treated as an abstract entity and its internal representation was not
accessed at all. The definition (ignoring the Lisp syntax) reflects the abstract way of thinking
about this operation. SYS-ALIAS is the simplest way of writing new systems. It uses only the
abstract notion of a sequence, in contrast with DEFINE-SYS, which in general needs to access the
internal sequence representation through array operations. Most systems that the user might ever
need can be written (if inefficiently) as system aliases. In many cases, however, system aliases are
very inefficient in their usage of space (and time), and it is necessary to rewrite the system alias
definition using DEFINE-SYS. Consider another example of SYS-ALIAS, the system that com-
putes the periodogram of a sequence:
(SYS-ALIAS PERIODOGRAM (SEQ BLOCK-SIZE STARTING-POINT BLOCK-OFFSET
NUMBER-OF-BLOCKS &OPTIONAL (FFT-LENGTH 2048))

"Get the periodogram of a sequence. Return its log magnitude over

the positive frequencies only. Cached version - all intermediate

seqs are saved”

(LOOP FOR INDEX FROM 0 TO (- NUMBER-OF-BLOCKS 1)

COLLECT (SEQ-MAG-SQUARE

(FFT
(SEQ-WINDOW SEQ (HAMMING BLOCK-SIZE)

-53-

(+ STARTING-POINT (* BLOCK-OFFSET INDEX)))
(NEXT-POWER-OF-2 FFT-LENGTH)))
INTO SEQ-LIST
FINALLY (RETURN (LOG-MAG (APPLY "SEQ-ADD SEQ-LIST)
(INTERVAL 0 (1+ (/ (NEXT-POWER-OF-2 FFT-LENGTH) 2)))))))

In this definition, each intermediate FFT result, each windowed result and each magnitude
squared result is cached. If a large number of periodograms, cach with a large number of blocks is
taken, then considerable memory may be unnccessarily consumed. In this case it is possible to per-
form the same computations but uncached. This could mean that after each periodogram, all inter-
mediate results are flushed, so that the arrays they occupy are returned to the pool of free arrays
for reuse by the rest periodogram computations. One way to achieve this by systematically convert-

ing a SYS-ALIAS into a DEFINE-SYS is shown in the scction on array memory management.

-54-

4.4 ARRAY MEMORY MANAGEMENT

Signal processing consumes lots of memory space very quickly if the memory space is not
reuscd, especially when the processing involves long waveforms. In conventional computer environ-
ments, array storage is allocated by means of array declarations. If the array declarations require
more than the available computer (core) memory, then a compiler error is signalled. In this case,
the uscr must take care of the storage problem manually, meaning that he must configure his pro-
grams in such a way that only a small part of the data resides in core memory at any given instant,
while the rest is on a mass storage medium, and also in such a way that arrays are reusable. In
more advanced systems which have virtual memory management, array declarations that exceed the
available core memory are not errors because the operating system takes care so that only a small
part of the data is in core. If a request for a piece of data not in core is issued, the operating sys-
tem knows how to find it on mass storage and swaps it with another piece in core. Using a virtual
memory system is not without a price: programs that do not access data sequentially will cause the

computer to spend most of his time swapping data in and out of core.

Storage in the Lisp language is based on an entirely different concept of memory manage-
ment. Memory is not allocated explicitly, but implicitly by the Lisp system, and in a less structured
way than in conventional computer environments: memory is allocated automatically when needed
and it is freed when it is not accessible any more ("not accessible” means that there is no name or
pointer for a chunk of memory, in which case there is no way to reach it). For example, perform-
ing a side-cffect-frec operation on a data structure returns a nameless modified copy of the data
structure. If a name is assigned upon creation of the copy, then the name provides a way to access
the modified version. If the user does not want the old version any more, he will give its name to
the modified data structure. Then the storage the old version occupies is no longer accessible be-
cause it became unnamed and it will be garbage-collected sooner or later.

In fact, when one considers arrays on the Lisp machine, the scene becomes slightly more

complicated. The Lisp machine memory has distinct regions of prespecified sizes for storing arrays

-55-

and lists. These two regions are garbage collected separately.

The KBSP system cannot rely on the Lisp garbage collection, because arrays are consumed
and freed at a ratc much higher than what the garbage collector could accomodate. Thus the need
for some array management scheme was needed, which would provide a simple and easy-to-use
mechanism for alleviating the memory management problem on one hand and avoiding repeating
the same computation on the other.

The solution chosen is the following:

Sequences are going to be cached by default. This means that if a sequence is created and at
some point its values over some interval are needed and computed, these values will be saved in a
buffer (array) so that they are readily available if they are neceded again in the future. Moreover, if
the values over another interval with non-empty intersection with the first interval are needed, the
KBSP system will compute only the unknown values. Buffering is contiguous, i.c. asking for the
values over an interval which does not intersect with the interval already cached will cause compu-
tation and buffering of all values between the two intervals as well. This design decision may
change in the future. Buffering solves the problem of repeating the same computation if the values
are necessary. Since buffering happens by itsclf, the user docs not need to explicitly save away
computed values that he may need in the future.

However, uncontrolled buffering entails a danger, in cases when lots of intermediate se-
quences are generated. That this is not an exotic case can be scen by considering a periodogram
computation. Assumne that a single periodogram is to be computed, with FFT length equal to 2048
points (1 Hz resolution if the sampling rate is 2048 Hz) and with total number of blocks equal to
128 (a reasonable number if the signal-to-noise ratio is low but the signal fairly stationary). As-
sume that this computation is going to be repeated 10 times. With complete buffering, every inter-
mediate FFT will be cached, as well as every magnitude-squared operation. This means that the to-

tal memory consumed will be of the order of 25 Megabytes.

-56-

In DEFINE-SYS, the concept of 'local arrays” was applied: the COMPUTE forms provide
array(s), whose scope is local to the form and they are used for holding and/or returning results.
These arrays are distinct from the arrays which serve as buffers of sequence values and are per-
manently attached to the sequences themselves. The programmer of a DEFINE-SYS has the choice
to perform part of the computation abstractly, i.c. by combining systems, or concretely, i.c. by
fetching the values of the sequences into local arrays and then operating on the arrays. In contrast,

a SYS-ALIAS allows only abstract combinations of systems.

When systems are combined abstractly, memory usage may be excessive. One solution would
be to open all sequences up, put their values into local arrays and operate on them. This would
violate the abstraction principle and all the convenience, easc and safety of programming that it

offers.

Another solution that is offered by the KBSP package is to to allowing the user to control
the uncaching of buffer arrays. Freed buffer arrays do not go back to the Lisp region of memory
for arrays but they become permanent property of the KBSP system. The KBSP system saves all
freed crrays in a hashing table, in which free arrays are keyed by size. When a new buffer array is
requested, the KBSP system first looks at the hashing table to see if there are any free arrays of
this size. If there are, it grabs one of them and uses it. If not, a new array of the required size is
made, which means that this memory can never go back to the Lisp region for arrays again. If it
becomes part of a cached sequence, it will store its data, if it is freed, it goes into the hashing table

for reuse.

This storage discipline is fairly simple to implement and it can offer solution of the storage
management problems in most cases. In the periodogram example, if the computations inside a sin-
gle periodogram are cached, but after a periodogram is completed, all newly cached sequences are
flushed, the total storage consumed will be only one tenth of what it was before, and it will have
been reused nine times. After all 10 periodograms are completed, this memory will be part of the
hashing table of free arrays for further reuse. Cases in which this scheme would be inadequate

-57-

might be: (a). if the intermediate cached computations chew up all the available space or (b). if
the uscr allocates many large arrays of many odd sizes, in which case all array space will be parti-
tioned into many odd sizes and when a new odd size is needed, it will not be possible to allocate
it. Given that the array space is limited, but large, and given that in signal processing, the case of
many odd sizes is unusual, both of the above cases tend to be rather rare.

FORMS FOR ARRAY MEMORY MANAGEMENT

A number of facilitics has been provided to give the user control over the way his sequences
are cached and uncached. User-level facilities consist of LET-like macro forms that have certain ef-
fects on the buffering properties of the code they enclose (see [Weinreb] for the definition of
LET).

WITH-UNCACHING (BODY) mAacro
This form exccutes the body and before it terminates, it flushes all the sequences newly

cached inside the body. Flushing a sequence does not mean destroying it but simply frecing
the buffer containing its data. This of course means that if this data is needed again, it must
be recomputed. A minor disadvantage of using the WITH-UNCACHING form is that the
result must be passed out of it via an array. Passing the result out with a sequence is not pos-
sible, because all sequences arc flushed before exiting the body. This implies that WITH-
UNCACHING cannot be combined with a SYS-ALIAS definition. However, a SYS-ALIAS
can be trivially converted to a DEFINE-SYS with uncached intermediate results as it is ex-

plained in section 4.3.

SHOW-SEQUENCE-FLUSH variable
If T, a message is printed every time a sequence is flushed. Defaults to NIL.

SHOW-FREE-USER-ARRAYS variable
If T, a message is printed every time an array is freed and added to the hash table of free ar-
rays. Defaults to NIL.

FLUSH-NEWLY-CACHED-SEQUENCES () function

Flush all newly cached sequences in the current context. It flushes all sequences in the list
*NEWLY-CACHED-SEQUENCES®. This function is used inside other macro forms, such

-58-

as WITH-UNCACHING, which take care so that *“NEWLY-CACHED-SEQUENCES® con-
tains the right sequences.

USER-ARRAYS variable
The list of user arrays.
ALLOC-USER-ARRAY (LENGTH) function

Allocate an array and record it on *USER-ARRAYS®.

DEALLOC-USER-ARRAYS () function
Free all user &rrays, i.c. these that are members of the *USER-ARRAYS?® list.

LET-SEQ-ARRAY (LET-FORMS BODY) macro
Executes body with LET-FORMS bound as in a normal LET. Flush all user arrays after ter-
mination of BODY.

WITH-SEQ-ARRAY ((ARRAY-NAME SEQ INTERVAL) BODY) macro

Execute BODY with ARRAY-NAME bound to (FETCH-INTERVAL SEQ INTERVAL).
Flush all user arrays at the end.

WITH-IMAGINARY-SEQ-ARRAY ((ARRAY-NAME SEQ INTERVAL) BODY)
macro

Execute BODY with ARRAY-NAME bound to (FETCH-IMAGINARY-INTERVAL SEQ
INTERVAL). Flush all user arrays in the end.

WITH-COMPLEX-SEQ-ARRAY
((REAL-ARRAY-NAME IMAG-ARRAY-NAME SEQ INTERVAL) BODY)
macro
Execute BODY with REAL-ARRAY-NAME bound to (FETCH-INTERVAL SEQ INTER-
VAL) and IMAG-ARRAY-NAME bound to (FETCH-IMAGINARY-INTERVAL SEQ IN-
TERVAL). Free all user (local) arrays in the end.

WITH-UNCACHED-SEQ-ARRAY ((ARRAY-NAME SEQ INTERVAL) BODY)
MmMacro

Execute BODY with ARRAY-NAME bound to (FETCH-UNCACHED-INTERVAL SEQ
INTERVAL). Free all user (local) arrays in the end.

WITH-UNCACHED-IMAGINARY-SEQ-ARRAY
((ARRAY-NAME SEQ INTERVAL) BODY) macro

Execute BODY with ARRAY-NAME bound to (FETCH-UNCACHED-IMAGINARY-
INTERVAL SEQ INTERVAL). Free all uscr arrays in the end.

WITH-UNCACHED-COMPLEX-SEQ-ARRAY macro
((REAL-ARRAY-NAME IMAG-ARRAY-NAME SEQ INTERVAL) BODY)

Execute BODY with REAL-ARRAY-NAME bound to (FETCH-UNCACHED-
INTERVAL SEQ INTERVAL) and with IMAG-ARRAY-NAME bound to (FETCH-

-59-

UNCACHED-IMAGINARY-INTERVAL SEQ INTERVAL). Free all user arrays in the

end.

NEWLY-CACHED-SEQUENCES variable
List of newly cached sequences.

SHOW-ALLOC-ARRAY variable

If T, prints a message every time an array is allocated. Defaults to NIL.

SHOW-DEALLOC-ARRAY variable
If T, prints a message every time an array is freed. Defaults to NIL.

ARRAY-HASH-TABLE constant
The hash table for storing and retrieving all free arrays.

MAKE-INDIRECT-ARRAY (ARRAY ARRAY-INTERVAL DESIRED-INTERVAL)
function
Returns an indirect array which overlays the DESIRED-INTERVAL in ARRAY.

ALLOC-ARRAY (SIZE) function

Get an array of SIZE from the internal pool of free arrays, if there exists one, otherwise
make a new one.

DEALLOC-ARRAY (ARRAY) function

Put an array into the array hash table, the internal pool of free arrays, for reuse. If array is
indirect, put back the thing pointed to. (refer to the Lisp machine manual section on indirect
arrays).

BFR (SEQ) system

This form causes all fetch requests to SEQ to be cached and passes them on. The intended
use of this form is with sequences which are results of expensive computations inside a form
which causes computations to be uncached, like WITH-UNCACHING. If the results of these
expensive computations are passed through BFR, they become cached.

As mentioned in the scction on system implementation, a potential problem with SYS-
ALIAS is that its use may cause memory problems. The possibility of performing uncached compu-
tations was suggested. Using the forms described in this section, there are many ways to cause this
to happen. One systematic way, which converts a SYS-ALIAS into a DEFINE-SYS with minimal
changes is shown here by an example: the periodogram definition presented in the section on sys-
tem implementation is converted into one that flushes all intermediate results after completion of

the computation of the periodogram.

<60-

(DEFINE-SYS PERIODOGRAM-MAG (SEQ BLOCK-SIZE STARTING-POINT BLOCK-OFFSET
NUMBER-OF-BLOCKS &OPTIONAL (FFT-LENGTH 2048))
(NUMERIC-SEQUENCE)

"Get the periodogram of a sequence. Return its magnitude over
the positive frequencies only. Uncached version - all intermediate segs are flushed”

(COMPUTE (INTERVAL OUTPUT-ARRAY)
(WITH-UNCACHING
(LOOP FOR INDEX FROM 0 TO (- NUMBER-OF-BLOCKS 1)
COLLECT (SEQ-MAG-SQUARE

(FFT
(SEQ-WINDOW SEQ (HAMMING BLOCK-SIZE)

(+ STARTING-POINT (* BLOCK-OFFSET INDEX)))
(NEXT-POWER-OF-2 FFT-LENGTH)))

INTO SEQ-LIST

FINALLY (FETCH-INTERVAL (SEQ-GATE (APPLY SEQ-ADD SEQ-LIST)

(INTERVAL 0 (// (NEXT-POWER-OF-2 FFT-LENGTH) 2)))
INTERVAL OUTPUT-ARRAY))))
(DOMAIN ()
(INTERVAL 0 (// (NEXT-POWER-OF-2 FFT-LENGTH) 2))))

The changes made to the SYS-ALIAS periodogram definition are the following:
First, the whole computation was changed to a compute form and was enclosed within a WITH-

UNCACHING. This causes all sequences that are cached inside this form to be flushed in the end.

Second, since there is no way to pass a result out of the WITH-UNCACHING using a sequence
(i.e. the abstract notion), the result must be passed out by placing it into the OUTPUT-ARRAY.
So the RETURN form of the loop expression is changed into a FETCH-INTERVAL, which

places the numerical result into OUTPUT-ARRAY.

Third, the domain of the output sequence must be specified using the domain form and an explicit

calculation.

-61-

5. THE KBSP GRAPHICS FACILITIES

The KBSP graphics system is based on the Lisp machine window system. According to the
philosophy of the window system, windows are just flavor instances. By mixing together a sct of
basic window flavor definitions 8 wide range of capabilities can be obtained. Usually, the existing
basic windows are sufficient for most applications. The KBSP graphics window is one of the basic
windows and is defined by the KBSP package to have propertics that are suitable for plotting
waveforms. The KBSP graphics window is mouse sensitive. This means that clicking the mouse on

it can have interesting and useful effects.
At the user’s level two Lisp functions enable plotting of objects on KBSP graphics windows:

PLOT (OBJECT &OPTIONAL WINDOW DOMAIN RANGE)

OBJECT is the object to be plotted. WINDOW is the KBSP graphics window that will show
the plot. If the argument is not provided, the oldest KBSP exposed window will be used. If
WINDOW is nil, the system will prompt the user for a window to use by left dicking the
mouse on it. DOMAIN is the domain of the object to be plotted. If not given, a reasonable
default value will be used, depending on the kind of the object. RANGE is the vertical range
of the plot. If not given, it will be adjusted so that the plot fits in the graphics window with a
small margin. If OBJECT is a complex sequence, then the KBSP window is split into two
horizontal panes, one for the real and the other for the imaginary part of the complex se-
quence.

OVERLAY-PLOT (OBJECT &OPTIONAL WINDOW DOMAIN)
This is similar to plot except that it produces an overlay plot (it does not erase the window it
is plotting on and it uses the vertical range of the previous plot).
An interesting feature of the KBSP graphics window is its mouse sensitivity. According to
where the mouse points, two kinds of facilitics are available, and the documentation strip at the

bottom of the Lisp machine screen summarizes them.

If the mouse points at a KBSP graphics window label:
Clicking left once (L1) calls the function SHOWR on the plotted object and the result is plotted on
the KBSP Lisp Listener.

Clicking left twice (L2) gives a short description of the KBSP graphics window.

-62-

Clicking right once (R1) replots the object after an argument is provided (notice that the KBSP
Lisp Listener cursor blips much faster that before waiting for the argument to be typed). If the ar-
gument is a number, the object is replotted centered around this number. If the argument is an in-
terval, the object is plotted over the interval.

If the mouse points anywhere else inside a KBSP graphics window except at its label:
Clicking left once (L1) marks the current position of the mouse cursor and shows the coordinates
of the corresponding plot point in the upper label pane of the corresponding KBSP graphics win-
dow. This feature is uscful for reading values off a plot.

Clicking left twice (L2) clears the mark.
From the implementation viewpoint, the picture is as follows:

The PLOT function first finds an appropriate KBSP graphics window to use, cither by asking the
user or by grabbing the oldest exposed KBSP window. Then it checks its argument for acceptabili-
ty. In general, the object to be plotted must have its own plotting method or function, unless it is a
sequence. In the first case, the private plotting method or function is called. In the case of a se-
quence, the KBSP graphics window is configured appropriately (i.c. the previous plot is erased,
the labels are drawn mchxhng various pieces of information, such as the name of the sequence, its
plotted domain and its range of values) and finally the plotting is done and the window is exposed
(i.c. shown on the screen. An unexposed window does not appear on the screen). The work of
plotting consists of a lot of bookkeeping operations and is shared between the object and the KBSP
graphics window. The ability of a sequence to handie these bookeeping operations is derived from
a flavor mixin, called OBJECT-PLOT-MIXIN, which is included in the sequence flavor definition.

BIBLIOGRAPHY

Allen, Elizabeth: "YAPS: Yet Another Production System”, AAAT 1983, pp. 5-7.

Backus, John: “"Can Programming be Liberated from the von Neumann Style? A Functional Style
and Its Algebra of Programs®, Communications of the ACM, August 1978, Vol.
21-8.

Barstow, Shrobe and Sandewall: Inseractive Programming, McGraw-Hill, 1984 (chapters 1, 3 and
25).

Byte Magazine: Special issue on Smalltalk, August 1981.

Kopec, Gary: The Represeniation of Discrete-time Signals and Systems in Programs, Ph.D. Thesis,
M.L.T., May 1980.

Liskov, Soyder, Atkinson, Schaffert: "Abstraction Mechanisms in CLU”, Communications of the
ACM, August 1977, Vol. 20-8.

McCarthy and Levin: Lisp 1.5 Programmer’s Manual, MIT Press, 1965.
Oppenheim, A. V. and R. Schafer: Digital Signal Processing, Prentice Hall, 1975.

Ritchie and Thompson: “The UNIX Time Sharing System", Communications of the ACM, July
1974, Vol. 17-7.

Steele and Sussman: "Design of a LISP-based Microprocessor”, Communications of the ACM, No-
vember 1980, Vol. 23-11.

Weinreb, Moon and Stallman: Lisp Machine Manual, Fifth Edition, January 1983, M.1.T. A.L. Lab
Publication.

Winston and Horn: Lisp, Addison-Wesley 1981 (chapters 18 and 22).

-64-

INDEX

VARIABLES

2CLIP-OFFSETE ..icuierernreannoneareeacccacancocsnnacns
sCLIP-OFFSET-IN-DBS®ccniciiniannnnen Geeecanann .
3DEFAULT-DEEMPHASIS-FILTERS Ceerecnaeaane
sDEFAULT-PREEMPHASIS-FILTER®ivvuiniinenrannenenannnn
SNEWLY-CACHED-SEQUENCES?® ... conrrininicannnnonnannanans
3SHOW-ALLOC-ARRAYS Ceeneaen cecveceannenanaan ceean
$SHOW-DEALLOC-ARRAY® .. ciiecerereccncarocensacncacnas .o
3SHOW-FREE-USER-ARRAYSE ,...iccecerccnnnncncnnnanss aeen
2SHOW-SEQUENCE-FLUSHS ...iccucencincnrcncccnscsoancncnne
BUSER-ARRAYSE ...cecvenenccncctsnacsacnccssacsnansosnns
ARRAY-HASH-TABLE ..ccicueennecancccncssocscanancacnanas

INF fiieeeseeeesacccnoecaascscasssenncsasassesasassonese

MINF sieeeseeennnnotnccccsscnaccsanncacananne cecccavenes

$+, 8%, $-, 8// (AB) tesestnsecrescnacesscanen
$1+, $1- (X) «eoanenn. tetecttenctscccstcaasonenatnnane
$= i cessasieranecns cecectsetsacecasanan .
$>, 8, =, $<= (A B) teniieriiniieniiiatiiiinnnanen
SCOMPLEMENT (SET UNIVERSE) enseosnassrsennane
SCOVER (&REST ARGLIST) teecstnscsscncecns .
SCOVERS-P (A B) cevuiiininiiiniiieninnnnnnns vasesaanaan
SDOMAIN (OBUECT) cvvveennveccneneacnecsnsccanscnnnnnes
SGET-INTERVAL, $START, SEND, SLENGTH (OBJECT)
SINTERSECT (BREST ARGS) ..cvveevonncacns cecnsesennannas
SINTERSECT-P (&REST ARGLIST) ..cvevennccecnnanncacanss
SMAX, SMIN (&REST ARGLIST) .eccvncecnncnnacnccncncnnnns
SMINUS (A) +oevnnnrverrnneneceenencnacsncscsassoccnnes
SNULL (OBJECT) ccvverecennenccnnnccnceceanacanseassanans
ALLOC-ARRAY (SIZE) .vveenerenrosnanncnnnccnnnasnnnannn
ALLOC-USER-ARRAY (LENGTH)oneennennaas “ecemnnenan
ATOMIC-TYPE (SEQ &OPTIONAL TYPE) ceessnnnns ceeeann
COMPLEX-DIVIDE (REAL-Z-1 IMAG-Z-1 REAL-Z-2 IMAG-Z-2)

COMPLEX-MULTIPLY (REAL-Z-1 IMAG-Z-1 REAL-Z-2 IMAG-
)
COMPLEX-RECIPROCAL {REAL-Z IMAG-Z) tecevvncocnrccncnnns
COMPUTE-DOMAIN (SEQ) ceieeveececencnccnncncccnccncnnna
CONVOLUTION-DOMAIN (X H) vooveeereanecninnnonnnnnnncnnn
CONVOLUTION-SIZE (X H) civeeiveecnnencnrnncnnnnocnonnns
DEALLOC-ARRAY (ARRAY) Ceeesveaacane cneeccnnn
DEALLOC-USER-ARRAYS () ceceaccscsavesacsananne
DOMAIN (SEQ) cecseecnn teceeresessecssrnacanns
EXTENDED-NUMBERPcunenvneenneecarencacaacacancnnnen
FETCH (SEQ INDEX) Cereeneaeas “rsetsencarcsencns .
FETCH-COMPLEX (SEQ INDEX) Ceeeaiseneaaaean
FETCH-COMPLEX-INTERVAL (SEQ INTERVAL &OPTIONAL
OUTPUT-REAL-ARRAY OUTPUT-IMAG-ARRAY CACHED?)
FETCH-IMAGINARY (SEQ INDEX) ..eeivievuiianennaccnneanans
FETCH-IMAGINARY-INTERVAL (SEQ INTERVAL 3OPTIONAL
OUTPUT-ARRAY CACHED?) ... cieiiiiinninnnncnnannns

32
31
33
39
59
59
59
§7
57

59
21
21

21
21
21
21
24
24
24
27

24
24
21
21
24
59

27

-65-

FETCH-INTERVAL (SEQ INTERVAL &OPTIONAL OUTPUT-ARRAY
CACHED?) tevevrnnnervnnncernnnnennnsn Geecscenacana
FETCH-UNCACHED (SEQ SAMPLE) Cecaccasvacns ceasees
FETCH-UNCACHED-COMPLEX (SEQ SAMPLE)cenvecvensess
FETCH-UNCACHED-COMPLEX-INTERVAL (SEQ INTERVAL &0P-
TIONAL OUTPUT-REAL-ARRAY OUTPUT-IMAG-ARRAY

CACHED?) ©uevvcvniennnnnnncan cetesnccencecsnrananas
FETCH-UNCACHED~IMAGINARY (SEQ SAMPLE)
FETCH-UNCACHED~IMAGINARY-INTERVAL (SEQ INTERVAL &0P-

TIONAL OUTPUT-ARRAY) t.veeenvanvaavacnss cesesceann

FETCH-UNCACHED-INTERVAL (SEQ INTERVAL &OPTIONAL
OUTPUT-ARRAY) tcissesencncacscacsearcscenssasssans
FINITE-INTERVAL-P (INTERVAL) +ucuvncoceronccananananns
FINITE-SUPPORT-P, NON-EMPTY-SUPPORT (SUPPORT)
FLUSH-NEWLY-CACHED-SEQUENCES () cvecvnrerecannnenncanns
INNER-PRODUCT (X Y) teiencnnnernereneccnsencnsonncancss
INTERVAL-ADJOINING-P (&REST INTERVALS) v.eeecucen veeese
INTERVAL-COVER (&REST INTERVALS) cicevvevvcsococncnass
INTERVAL-COVERS-P (A B) cuieuerrinnnncnvancnsnsennsonnes
INTERVAL-DELAY (INTERVAL DELAY) ceieiveeverecsoscccsenn

INTERVAL-EQ (A B) vevvunnnnn
INTERVAL-INTERSECT (&REST INTERVALS) evevveevenecannns
INTERVAL~INTERSECT-P (&REST INTERVALS) veuvvevnennnnn.
INTERVAL-LENGTH (INTERVAL) ©uvvvvnrnnennnnnns
INTERVAL-REVERSE (INTERVAL) eueeennrncnnonscncassonses
INTERVAL-SAMPLE (INTERVAL SAMPLING-RATE)ce.w.. .
KBSP-APROPOS (STRING) .cccevvens escscseneccsasasnnanan .-
LOG=10 (X} weerevnennennennenonns creeaenn ereanenean.
MAKE ~-INDIRECT-ARRAY (ARRAY ARRAY-~INTERVAL DESIRED-
INTERVAL) vvuvrnnnn.. e eeeereenaanas eeeennaena.
MEAN-OF-SEQ (SEQUENCE &OPTIONAL INTERVAL)
MEAN-SQUARE-OF -SEQ (SEQUENCE &OPTIONAL INTERVAL)
NEXT-POWER-OF-2 (NUM) eeveanen. ceeeean
NULL-INTERVAL-P (INTERVAL) ..cevenvnnen.

NULL-SUPPORT-P (SUPPORT) .cuvvcvnvnnennnrnncnonnncnane
OVERLAY-PLOT (OBJUECT &OPTICNAL WINDOW DOMAIN)

PERIOD (SEQ) ..voeevvecnannnnn.n ceceecnansan cecsvneanan
PHASE (Y X) ctecscesnecncertecanncasanasnn coenns
PLOT (OBJECT &OPTIONAL WINDOW DOMAIN RANZE)cvn..s
POWER-OF-2-P (NUM) ..cveeevenrrevrcnnnannnnancacannnnns
SEQ-DUMP-TO-FILE (SEQ PATHNAME) .ecvevvceccnnencsannnen
SEQ-FLUSH (&REST SEQ-LIST) cesesnecanenans
SEQ-GET (SEQ INDICATOR) recernsecnncnen ceneenn
SEQ-NAME (OBUECT) covuvervcnnecceascncascsasncscnnnnss
SEQ-SETQ ("E &REST ARGS) ..cevnn... ceccnctcceanene
SEQ-TYPEP (SEQ SOPTIONAL TYPE) ..iuivinirvinininnnnnnns .
SEQ-UNBUFFER (&REST SEQ-LIST) ceteersctcnccane
SEQUENCEP (0BJ) cevrveveecenannns Geesersencecnnnacsanns
SHOW (OBUECT) .ovvuerunernnecnccccancnncoocaccaanaanan
SHOWR (OBJECT) cceevvennns ceeserersanns cecencesencnane
STATE-SHIFT (ARRAY NEW-FIRST-ELEMENT)ccneen.....
STRUCTURE (SEQ) .cvvevecevnccanccccncccoscasaceasnnann
SUM-OF -SEQ (SEQUENCE &OPTIONAL INTERVAL) teneans
SUPPORT (&REST ARGLIST) .vcvvnicvranerananeconnncncnns
SUPPORT-COVER: -P (A B) cvvenernnnnnannns tevessnaanaaen
SUPPORT-P (OBUECT) +.vvvcanucnccnsencsascacnscaananann

25
26
26

26
26

26

26
22
23
57
38
22
22
22
23
22
22
23
22
34
23
27
32

59
37
38
35
22
23
61
27
32
61
35
36
28
27
27
26
27
28
27
27
27
37
27
38
23
23
23

-66-

SYS-FLUSH (8QUOTE SYSTEM) veucerencccncncncans ceenenes 28
UNNAME (SEQ) weeevevevonces Ceteveeseeetesnesetanasncnn 26
VARIANCE-OF-SEQ (SEQUENCE S8OPTIONAL INTERVAL) 38
SYSTEMS

BFR (SEQ) weuvenernneennensneeneannasnseassessnesnanes 59
DEEMPHASIZE (SEQ 8OPTIONAL DEEMPHASIS-FILTER) 39
DFT (SEQUENCE &OPTIONAL LENGTH) «uevennenernnonncnnnnnns 35
FFT (SEQ SOPTIONAL LENGTH) 4uvvvnevnennecnsonnneannnnns 34
FILE (FILENAME) vuueueencencencnnencnncnssncanaesannnes 36
FIR (&REST COEFFICIENTS) truevenvrnerennesnocnncannnnes a7
FIR-FILTER (INPUT FIR-SEQUENCE) eeuvenenn. Cereenenaaes 37
HAMMING (LENGTH SOPTIONAL CENTERED) wuueeneennennnenns 40
IDFT (SEQUENCE &OPTIONAL LENGTH) +uueeveevnenvoenneenns 35
IFFT (SEQUENCE &OPTIONAL LENGTH) ceveveveenecnnnennans . 35
IFFT-REAL (SEQUENCE SOPTIONAL LENGTH) eeeeeevevenseeene 35
IIR (&REST COEFFICIENTS) vvevenvvecnsceccoovanns ceeneee ar
IIR-FILTER (INPUT IIR-FILTER &omomv_ GAIN

INITIAL-STATE-ARRAY) 1euuecnecnneencannacaerananen a7
IIR-FILTER-FROM-ARRAY (INPUT ARRAY &OPTIONAL GAIN

INITIAL-STATE-ARRAY) ©evueennnnnns Ceteeteneanennns a7
LOG-MAG (SEQUENCE) veveeevnnanennnns Ceereeeaeannann venes 31
OVCONV (SEQA SEQB) vevrevnneennennans teeeereaenenvenen a3
PREEMPHASIZE (SEQ &OPTIONAL PREEMPHASIS-FILTER) 39
RECTANGULAR (LENGTH &OPTIONAL CENTERED) ©evuevnennnenns 40
SECTION {SEQUENCE SECTION-INTERVAL) cerereeeeee. 4D
SEQ-% (&REST SEQUENCES) eruerevesneennsoncanenennoannns 29
SEQ-ADD (&REST SEQUENCES) +erunennesnncnnonnonenonnnnes 29
SEQ-ALIAS (SEQUENCE DOMAIN &OPTIONAL REPETITION- _
LENGTH) cevvenecnnnns e etetetrenetnentareannnnnane 35
SEQ-APPLY (FUNCTION SEQUENCE &REST OTHER-ARGS) 30
SEQ-AUTOOOR (X) +evuevnsenennsasssossasscnsnsnonasnnnns 33
SEQ-COMPLEX (REAL-PART-SEQ IMAG-PART-SEQ) ev..ceveeee.. 31
SEQ-COMPLEX-EXP-SINGLE (PERTOD) vevenn... Ceeeeernennas 35
SEQ-COMPLEX-FUNCTION (FUNCTION DOMAIN &REST OTHER-

ARGS) verenvesnanessonsasesenssssenssosncacacnanns 30
SEQ-CONJUGATE (SEQUENCE) evveeveveaconoasoncanseannaes 29
SEQ-CONSTANT (REAL-VALUE &OPTIONAL IMAG-VALUE) 30
SEQ-CONVOLVE (X H) «eueven.. - ¢ |
SEQ-CORRELATE (X H) veveennennencnnanns ceeeeaenne veeees 33
SEQ-COS-SINGLE (PERIOD) +...... cereeeenns ceteeenerenees 35
SEQ-DIVIDE (&REST SEQUENCES) ..ccveevecoceennnnnaanns .. At
SEQ-ENERGY (SEQ &OPTIONAL WINDOW OFFSET-BETWEEN-

SAMPLES) veeveeeennnns Ceieeenacennans ceerennnes ... 33
SEQ-FFT-CONVOLVE (X H) veueenunnnnn S -
SEQ-FROM-ARRAY (ARRAY) Cetteereeeenennenarnneens 30
SEQ-FUNCTION (FUNCTION DOMAIN 2REST OTHER-ARGS) 30
SEQ-GATE (SEQUENCE DOMAIN) «ueeunvenevecennnanecnns eeee 40
SEQ-IMAG-PART (SEQUENCE) ..veevnnnn.. cetenenas ceeneeees 31
SEQ-LOG-MAG (SEQUENCE) &ueuevnennenenncnecnnscnnonnanns 31
SEQ-LOG-POLAR (SEQUENCE) «revvennennenncnnonecesannnnns 31
SEQ-MAG (SEQUENCE) - tvrntrnnnennennncaneenneonasenaennnn 31

SEQ-MAG-SQUARE (SEQUENCE) ..icuivniniiniiinnennnennnnes 31

-67-

SEQ-MAP (FUNCTION &REST SEQUENCES) «e.eoecevanncnn.
SEQ-MULTIPLY (&REST SEGUENCES) veveeveevecrnccnnss
SEQ-NEGATE (SEQUENCE) +.euveereveneccensoonnnnnensennns
SEQ-NORMALIZE (SEQUENCE) +eevuveneonnns
SEQ-PHASE (SEQUENCE) ..ceuvenn.n. Cereeenenan
SEQ-POLAR {SEQUENCE) ...euvvuneennn Ceeereesiennes
SEQ-REAL-PART (SEQUENCE) .uevevenennns ceeeeens cereaees
SEQ-RECIPROCAL (SEQUENCE) vrvvvnennevanennnnonnnnenns
SEQ-RECTANGULAR (SEQUENCE) +uvveunrvnnnnrensenencnenns
SEQ-REVERSE (SEQUENCE) evvvvrvnennnnnannnns eeneeenaes
SEC-ROTATE (SEQUENCE AMOUNT) +evemcennennennannnenns
SEQ-SCALE (SEQUENCE SCALE &OPTIONAL REAL-OFFSET
IMAG-OFFSET) 4vvunvvncnerncncsnnrnnensonnenaeanse
SEQ-SECTION (SEQUENCE SECTION-INTERVAL) ©eeverevnnnnnn.
SEQ-SHIFT (SEQUENCE SHIFT) ..e...... Ceeeeneesnneanaa. .
SEQ-SIN-SINGLE (PERIOD) eveeveeesscnoceencsnconecncnans
SEQ-SUBTRACT (&REST SEQUENCES) v.veeveneenn ceereeaes
SEQ-UNIT-AREA (SEQUENCE) eeveenerecnoennannasconeonnans

SEQ-UNIT-ENERGY (SEQUENCE) «eevrevnenenrnnncnnnnnnenens
SEQ-WINDOW (SEQ WINDOW OFFSET) +uvvvneevenncunnennansns
UNIT-STEP () +evuvenrnens R

DEFINE-SYS (SYSTEM-NAME PARAMETERS FLAVOR-TYPE-LIST

LET-SEQ-ARRAY (LET-FORMS BODY) +veuvvenernnnnnnrnnnnnn.
SYS-ALIAS (SYSTEM-NAME PARAMETERS BODY) ..eeevvnnn....
WITH-COMPLEX-SEQ-ARRAY

((REAL-ARRAY-NAME IMAG-ARRAY-NAME SEQ IN-

TERVAL) BODY) 4evvvrernnunnnnnceennnnnecenansncnns
WITH-IMAGINARY-SEQ-ARRAY ((ARRAY-NAME SEQ INTERVAL)
WITH-SEQ-ARRAY ((ARRAY-NAME SEQ INTERVAL) BODY)
WITH-UNCACHED-COMPLEX-SEQ-ARRAY ((REAL-ARRAY-NAME

IMAG-ARRAY-NAME SEQ INTERVAL) BODY) ..evvverenanns
WITH-UNCACHED-IMAGINARY-SEQ-ARRAY ((ARRAY-NAME SEQ

INTERVAL) BODY) tuueveesonnnnnnnnnnenscssnascennss
WITH-UNCACHED-SEQ-ARRAY ((ARRAY-NAME SEQ INTERVAL)

BODY) 4ecececcccoccccsacescossccscsssccacccncnens .

WITH-UNCACHING (BODY) ...ccevveeas cessesssnscncns cesses

48

&

X8 &8 & 88

DISTRIBUTION LIST

DODAAD Code

Director HX1241 (1)
Advanced Research Project Agency

1400 Wilson Boulevard

Arlington, Virginia 22209

Attn: Program Management

Group Leader Information Sciences N00014 (1)
Associate Director for Engineering Sciences

Office of Naval Research

800 North Quincy Street

Arlington, Virginia 22217

Admié'xistrative Contracting Officer N66017 (1)
E19-628

Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

Director NO0173 (6)
Naval Research Laboratory

Attn: Code 2627

Washington, D.C. 20375

Defense Technical Information Center S47031 (12)
Bldg. 5, Cameron Station
Alexandria, Virginia 22314

