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Abstract

In this work, a system for recognizing activities in the home setting that uses a set
of small and simple state-change sensors, machine learning algorithms, and electronic
experience sampling is introduced. The sensors are designed to be “tape on and for-
get” devices that can be quickly and ubiquitously installed in home environments.
The proposed sensing system presents an alternative to sensors that are sometimes
perceived as invasive, such as cameras and microphones. Since temporal information
is an important component of activities, a new algorithm for recognizing activities
that extends the naive Bayes classifier to incorporate low-order temporal relationships
was created. Unlike prior work, the system was deployed in multiple residential envi-
ronments with non-researcher occupants. Preliminary results show that it is possible
to recognize activities of interest to medical professionals such as toileting, bathing,
and grooming with detection accuracies ranging from 25% to 89% depending on the
evaluation criteria used. Although these preliminary results were based on small
datasets collected over a two-week period of time, techniques have been developed
that could be applied in future studies and at special facilities to study human be-
havior such as the MIT Placelab. The system can be easily retrofitted in existing
home environments with no major modifications or damage and can be used to en-
able IT and health researchers to study behavior in the home. Activity recognition
is increasingly applied not only in home-based proactive and preventive healthcare
applications, but also in learning environments, security systems, and a variety of
human-computer interfaces.

KEYWORDS: Activity recognition, home, experience sampling, preventive health-
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Chapter 1

Introduction

1.1 Motivation

The U.S. health care system is under severe financial stress. As the first wave of baby
boomers reaches retirement age by 2010, the situation is expected to deteriorate
rapidly [6]. One partial solution to this problem involves the development of systems
that shift the emphasis from disease treatment in hospitals to health promotion and
quality of life conservation at home. Keeping people at home and out of the hospital
reduces the financial burden on the system. According to gerontologists, identifying
changes in everyday behavior such as sleeping, food preparation, housekeeping, en-
tertainment, and exercise is often more valuable than biometric information for the
early detection of emerging physical and mental health problems - particularly for the
elderly [58]. A fine grain recognition of activities of daily living will be essential to
implement many of the proposed strategies for encouraging healthy behavior related
to diet, exercise, and medication adherence. Unfortunately, health researchers cur-
rently do not have the means to collect the necessary sensor data to detect activities
and patterns of behavior in actual homes. Researchers do not know if it is possible to
recognize human activities using a set of simple, easy to install ubiquitous sensors nor
do they understand what modifications are necessary in conventional pattern recogni-
tion algorithms to achieve this. Two interesting questions are: What living patterns

can be detected using simple inexpensive sensors installed in homes? How can this
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information be utilized?

Medical professionals believe that one of the best ways to detect an emerging med-
ical condition before it becomes critical is to look for changes in the activities of daily
living (ADLs), instrumental ADLs (IADLs) [54], and enhanced ADLs (EADLs) [68].
These activities include eating, getting in and out of bed, using the toilet, bathing or
showering, dressing, using the telephone, shopping, preparing meals, housekeeping,
doing laundry, and managing medications. If it is possible to develop computational
systems that recognize such activities, researchers may be able to automatically de-
tect changes in patterns of behavior of people at home that indicate declines in health.
This early data could be available to the individual or designated caregiver, such as
a family member or a physician.

Preventive and proactive health care systems are not the only applications of ac-
tivity recognition systems. Systems that understand user activity patterns could be
used in new architectural design tools to identify and rank user needs and prefer-
ences over time. Activity recognition in real-time could also allow the development of
just-in-time learning environments that educate and inform people by presenting in-
formation at the right time as they move through the environment. Security systems
that are able to create a model of people’s activities and behavior over time could
predict intent and motive as people interact with the environment. Finally, knowing

people’s activities could enable more responsive systems to automate tasks such as

lighting and HVAC control.

1.2 Challenges of Activity Recognition

To create algorithms that detect activities, computational models that capture the
structure of activities must be developed. The behavior of an individual can be
characterized by the temporal distribution of his activities such as patterns in timing,
duration, frequency, sequential order, and other factors such as location, cultural
habits, and age [78]. Below are human behavior attributes that present challenges for

recognition:
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Figure 1-1: A typical median income American kitchen (from [77]). Every location
where a state-change sensor might be placed in this particular kitchen is marked.
Ideally, no damage would be done to the cabinets or furniture during the installation,
and all rooms of the home could have such measurement devices.

Multitasking. Individuals often perform several activities at the same time when

they do any kind of work that does not fully engage their attention.

Periodic variations. Everyday activities are subject to periodic daily, weekly, monthly,
annual, and even seasonal variations. For example, a person might typically pre-

pare breakfast in 15 minutes on weekdays and for one hour during weekends.

Time scale. Human activities also occur at different time scales. For example, cook-
ing lunch can take 25 minutes, while grooming may only take a couple of minutes

or even seconds.

Sequential order complexity. Sequential order, the position in time that an activ-
ity has in relation to those activities preceding and following it, is particularly
important. The choice of what to do next as well as how that activity is per-
formed is strongly influenced by what one has already done and what one will
do afterwards [78]. For example, preparing breakfast is very likely followed by

eating.

False starts. A person may start an activity, and then suddenly begin a new task be-

cause something more important has caught his attention or because he simply
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forgot about the original task.

Location. Human behavior is also affected by location. For example, cleaning the

kitchen involves a different sequence of actions than cleaning the bathroom.

Cultural habits. Some cultural habits may be expressed by individuals in typical
sequences of activities. For example, some cultures are used to taking a nap
after lunch while others are used to having a cup of tea before having breakfast,

lunch or dinner.

1.3 Activity Recognition System Goals

In this thesis, a system for recognizing activities in the home setting is presented.
The system combines electronic experience sampling, a set of small, easy-to-install,
and low-cost state-change sensors to monitor the interaction of people with the en-
vironment, and supervised pattern classification algorithms to recognize everyday
activities.

Figure 1-1 illustrates how simple sensors might be installed ubiquitously in the
home. Locations where a sensor could be placed to provide useful information in
this particular kitchen is marked. Ideally, the sensors are unintrusive and removable
without damage to the cabinets or furniture, and all rooms of the home may have
such measurement devices. The sensors are “tape on and forget” devices that can be
quickly and ubiquitously installed in home environments.

One of the goals of this work is to present an activity recognition system that
would use such sensors to recognize activities of daily living. The proposed sensors
require no major modifications to existing homes and can be easily retrofitted in
real home environments. A second goal is to illustrate how a sensing system that
does not use sensors that users typically perceive to be invasive such as cameras and
microphones can be used to recognize activities.

The structure of the thesis is as follows. Chapter 2 presents extended examples of

how the activity recognition system could be used in different applications domains.
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In Chapter 3, background in previous research on methods of recognizing activities is
introduced as well as some design considerations. Chapter 4 explains how the compo-
nents of the activity recognition system were designed and implemented. In Chapter
5, the two studies that were carried out to collect data from real home environments
and some preliminary results are presented. Finally, Chapter 6 summarizes the most
important conclusions, and offers some suggestions for the modification of the current

system in future work.
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Chapter 2

Extended Examples

2.1 Home-based Preventive and Proactive

Healthcare

In 2030, nearly one out of two households will include someone who needs help per-
forming basic activities of daily living [3]. Sensor-based technologies in the home, for
example, may help people proactively detect emerging medical problems before they
become crises [43, 1, 40]. Detection of everyday activities would enable systems to
monitor and recognize changes in patterns of behavior that might be indicators of de-
veloping physical or mental medical conditions. Similarly, it could help to determine
the level of independence of elderly people, to understand side effects of medication,
and to encourage medication adherence.

A sensor system that can detect changes in everyday activities in the home could
enable a new generation of home-based and institutionally-based services for the ag-
ing [4, 62]. Activities of interest fall into three categories: activities of daily living,
instrumental activities of daily living, and enhanced activities of daily living. Activ-
ities of daily living, or ADLs are the primary daily personal care activities that are
necessary for people to be able to live independently. Even though they are body-
centric activities, they often involve movement around a space and interactions with

other objects. For the elderly, this includes walking supports, tubs, beds and bed
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pans, etc. If the activities can be regularly detected, then changes in these activities
can also be monitored over time. Fundamentally, if there is a routine that involves

objects that are moved or shaken, then detection may be possible.

Instrumental activities of daily living, or IADLs, are more complex actions such
as using the telephone, preparing adequate meals, and doing housework [53]. Some
IADLs can be broken into sub-activities such as vacuuming, washing dishes, storing
dishes, etc. This work does not deal with detection of enhanced activities of daily
living, or EADLS, because they are activities that are unlikely to create routine sensor
firing patterns in the home. EADLs include actions such as accepting new challenges,
continuing education, part-time work, and volunteering [68]. For a complete list of
ADLs, IADLs and other activities important for medical applications, refer to table
Al

Once the activities important for medical applications are detected by the system,
the information could be available for: (1) the family to help them determine what
kind of support their elderly or impaired relative needs, particularly as a disease
progresses or as a recovering person becomes increasingly ready to cope with the
world, (2) the physician to help him determine the appropriate doses of medications
or the most effective therapy, and (3) to the individual so he/she can have a better
understanding of his/her condition or impairment and how to cope with it.

Preventive and proactive healthcare is not the only application of systems that
automatically detect activities. In the next section, other applications of home-based

activity recognition are introduced.

2.2 Other Applications of Home-Based Activity

Recognition

Changing Behavior at the Point of Decision Information about activity can also
be used to motivate a positive behavior change by showing information at the

point of decision [39]. Visualizing nutritional facts while shopping or preparing
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breakfast can strongly influence food choice [83]. Medication adherence could
be motivated by identifying the best time to remind the person to take his med-
ication. Determining when the individual is receptive to a reminder requires the

understanding of the occupant’s activities over time.

Learning Environments Activity recognition in real time could allow the develop-
ment of just-in-time learning environments that educate and inform people by
presenting information at the right time as they move through the environment.
Knowing what a person is doing will help determine the best time to interrupt
the occupant to present them with useful information or messages. Someone
preparing dinner represents a good opportunity for a teaching system to show

words in a foreign language related to cooking.

Architectural Design Tools Tools that understand activity patterns could be used
in an architectural design process to identify and rank user needs and preferences
over time. For example, information about mobility patterns and multitasking
while cooking in the kitchen can be used to help users make design decisions
while designing a new kitchen space. Knowing that a person moves from the
stove to the refrigerator two times on average while preparing meals could help

to arrange the furniture in a kitchen more efficiently [14].

Security and Surveillance Systems If a surveillance system can create a model
of behavior over time, it could be able to predict intent and motive as people
interact with the environment. Moreover, the system may be able to determine
people’s identity by observing activities and interactions with the environment

over time.

Automation Systems In order to effectively automate tasks such as lighting and
HVAC control, it is necessary to accurately predict activities, tasks and mobility

patterns over time.
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Chapter 3

Theory/Rationale

3.1 Approaches to Activity Recognition

There are at least four ways for a computer to automatically acquire data about peo-
ple’s activities using sensor systems: (1) ask the individual, as in experience sampling
[24], (2) remotely observe the scene using audio, visual, electromagnetic field, or other
sensors and interpret the signal readings, (3) attach sensors to the body and interpret
the signal readings, and (4) attach sensors to objects and devices in the environment
and interpret the sensor readings.

Directly asking questions is a powerful technique but one that must be used spar-
ingly. Frequent interruption will annoy people.

Although progress is being made on algorithms that monitor a scene and inter-
pret the sensors signals, the acquired sensor data is often highly unconstrained. For
example, audio is currently being used to detect activity transitions in a monitoring
system for domestic environments(ListenIn) [82]. The variety of sounds found in a
home environment is, however, considerable, and it could be particularly difficult to
differentiate sounds generated by multiple individuals.

More complex sensors such as cameras in computer vision have also been used for
recognizing activities. Computer vision sensing for tracking [42, 73, 36] and action
identification [26, 59, 76]) often works in the laboratory but fails in real home settings

due to clutter, variable lighting, and highly varied activities that take place in natural
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environments. Little of this work has been extensively tested in the field due to the
complexity of dealing with changes in the scene, such as lighting, multiple people,
clutter, etc. Finally, because sensors such as microphones and cameras are so general
and most commonly used as recording devices, they can also be perceived as invasive
by some people.

Attaching sensors to the body is a promising and relatively inexpensive technique
to acquire data about certain types of human movement [12]. In addition, they can
be easily deployed in actual environments. Posture, for example, can be detected
automatically from accelerometers [31, 57, 80|, as can some types of physical activity
such as walking, sitting, standing, lying down, and inclining [56, 10, 81, 45, 55, 12].
The following techniques have been used to detect various activities: A wearable
sensor jacket using stretch sensors [29] to detect walking and running; an audio pro-
cessing wearable computer to recognize social interaction in the workplace [18, 51];
a video processing wearable computer to identify some everyday patterns of activ-
ity [22, 21]; biometric wearable sensors to visualize exercise in everyday activities
[37], and a context-aware PDA with GPS to recognize activities such as “grocery
shopping”, “going to work”, “going to class” and “doing laundry” among others [19].

Many activities however, involve complex physical motion and more interaction
with the environment. Signals from highly variable arm and leg movements during
activities such as cooking and cleaning may not allow these activities to be differenti-
ated from other activities. Movement is dependent upon objects in the environment.
On the other hand, if sensors are embedded in the environment, activities such as
cooking may be indicated by a distinct set of sensor firings (e.g the stove, cabinetry)
with only minor day to day variations. Simple sensors can often provide powerful
clues about activity. For instance, a switch sensor in the bed can strongly suggest
sleeping, [2] and pressure mat sensors can be used for tracking the movement and
position of people [64, 5, 13].

Previous work where sensors have been placed on objects in the environment in-
clude an adaptive control of home environments(ACHE) system developed to control

the basic residential comfort systems (air, heating, lighting, ventilation and water
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heating) by observing the lifestyle and desires of the inhabitants [60]. Simple sensors
in a kitchen (temperature on stove, mat sensors, and cabinet door sensors) have also
been used to detect meal preparation activities in one specially-wired home kitchen
[13]. Managing an intelligent versatile home (MavHome) is a system that seeks to
maximize inhabitants comfort and minimize operation costs by predicting mobility
patterns and device usage [25]. A major difference between this prior work and this
thesis work is that these systems have not been deployed in multiple residential en-
vironments with actual occupants. They have typically been used in laboratories or
homes of the researchers themselves and their affiliates. Further, all of these sys-
tems have required careful (and usually painstaking) installation and maintenance by
research staff and students (e.g. [60, 2, 63, 17]).

Ultimately, systems that attach sensors to devices in the environment and to the
human body in combination with sensors that observe the scene using audio, visual,
or magnetic sensors, and ask the user for information will be most powerful for recog-
nizing human activities, because each method has shortcomings and complementary
strengths. In this work, the use of simple and small sensors distributed in devices

around the environment for recognizing activities is explored.

3.2 Algorithms for Recognizing Activities

There has been some previous research in algorithms for recognizing activities and
patterns of activities from sensor data on data collected from living environments.
Mixture models and hierarchical clustering have shown some promise with a small
set of sensors in a kitchen environment for clustering the low-level sensor readings
into cooking events using temporal information [13]. Clustering low level sensor data
by time and location is useful for recognizing activities happening at different times
and in different locations in the home environment. However, choosing the number
of clusters to use, and correlating the clusters of sensor readings to the activities
is difficult. Furthermore, since different people perform activities in different ways,

supervised learning with an explicit training phase offers a promising approach to the
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activity recognition problem.

Combination of neural nets(NNs) and lookup tables have been used to predict
occupancy-mobility patterns and expected usage of comfort systems such as heating,
lighting and ventilation in the Neural Network House [60]. However, since neural nets
are like “black boxes” that do not provide information about the underlying model
of the process, it is difficult to extend them to incorporate prior knowledge. Prior
knowledge and underlying information about the model are particularly important
in health related applications. Furthermore, it is not clear how NNs will scale to a
large number of features and deal with small training sets. Large number of features
might be required in order to encode time information, a primary feature of human

activities.

Dynamic Bayesian networks (DBNs) [61] are a specific type of Bayesian network
that graphically encode dependencies among sets of random variables which evolve in
time. Hierarchical hidden semi-Markov models (HHSMMs), specific types of DBNs,
have been used to track the daily activities of residents in an assisted living community
[50]. The algorithm can distinguish different activities solely based on their duration
and noisy information about the location of the residents. Even though DBNs have
proven to be one of the most powerful representations for temporal events and effi-
ciently fusion information from multiple sensors [35], the complexity of the networks
and learning algorithms make it difficult to apply them in problems involving hun-
dreds of low-level sensors. For example, the CPU time required to process one day
of data from a couple of sensors in [50] was one hour. This suggests that algorithms
that encode time in an effective but computationally efficient way need to be created.

Quantitative temporal Bayesian networks (QTBNs) have been used to monitor
if a person is following an action plan appropriately from sensors observations [23].
QTBNs extend temporal reasoning approaches such as time nets [48], DBNs, and
dynamic object oriented Bayesian networks [34] to model fluents and quantitative
temporal relationships. Since this representation is used to monitor plans of actions,
it requires manually encoding the relationship between different activities in the net-

work structure. Furthermore, each activity is assumed to occur only once and if the
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plan contains two instances of the same action, each instance is considered differ-
ent and modelled separately. This make it particularly difficult to capture recurrent
activities. In addition, this approach is computationally expensive for hundreds of
sensors since the time required for learning and inference increases with the number

of nodes (sensors or features).

Sequence matching approaches have also been applied to predict inhabitant’s ac-
tions in order to automate the routine and repetitive tasks of inhabitants. The Smart
Home Inhabitant Prediction (SHIP) algorithm [25] matches the most recent sequence
of events with collected histories of actions to predict inhabitant future actions. Since
the inhabitant commands are encapsulated in actions and the predicted actions cor-
respond to the matched sequence most frequent in the inhabitant history, it has
difficulties modelling ambiguous and noisy information from multiple sensors. Sen-
sors with noisy outputs would generate incorrect predictions due to incorrect sequence

matches.

Nearest neighbor and decision trees have been used to detect everyday activities
such as walking, watching TV, and vacuuming from accelerometers [12]. Nearest
neighbors [7] would result in a poor real-time performance and a large storage re-
quirements when detecting activities from hundreds of sensors over long periods of
time since all instances are required in the prediction stage. Unlike most other tech-
niques, decision trees [65] often generate understandable rules. One problem is that
they overfit data and may not combine probabilistic evidence as well as other meth-
ods. They are also not suitable for representing activities happening in at the same
time since the classes are assumed to be mutually exclusive. However, if high-level
information about activities is required to weight attributes, decision tree results may
be easier to adapt than other methods.

Naive Bayesian network structures have shown to be sufficient to recognize com-
plicated activity involving the actions of 11 coordinated people given noisy input
data [41]. Naive Bayesian classifiers make strong (and often clearly incorrect) inde-
pendence assumptions that each class attribute is independent given the class. They

also assume that all attributes that influence a classification decision are observable
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and represented. For these reasons, they are sometimes assumed to perform poorly
in real domains. On the contrary, experimental testing has demonstrated that naive
Bayes networks are surprisingly good classifiers on some problem domains, despite
their strict independence assumptions between attributes and the class. In fact, sim-
ple naive networks have proven comparable to much more complex algorithms, such
as the C4 decision tree algorithm [52, 20, 46, 27]. One theory is that the low vari-
ance of the classifier can offset the effect of the high bias that results from the strong
independence assumptions [32]. To apply naive Bayes classifiers to the activity recog-
nition problem, however, temporal dependencies must be considered. Therefore, one
approach would be to encode large numbers of low-order temporal relationships in
the networks [41].

One possible improvement over naive classifiers perhaps would be to encode key
dependencies by augmenting simple networks with a few key links using a technique
called tree-augmented Bayesian networks (TAN) [33].

TAN classifiers have recently been used to recognize activities such as “grocery
shopping”, “going to work”, “going to class”, and “doing laundry” among others from
GPS data [19]. One potential problem is that they sometimes perform poorly with
small training sets and that they do not capture sequences of events, so an extension
to weight features and encode temporal information must be considered.

In this work, the naive Bayes classifier is extended to incorporate temporal rela-
tionships among sensor firings and recognize activities in the home setting. The new

algorithm created is introduced in section 4.

3.3 Activity Labelling Techniques

While studying human activities and behavior, it is important to use reliable methods
for labelling people’s activities. Labels provide a way to validate the results of the
study. In this work, activity labels were used to train and test the accuracy of the
activity recognition algorithms. The following section presents some of the methods

that could be used to label subject’s activities. Figure 3.1 shows a summary of all
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Method Sub-method
-Direct observation

-person following subject
-continuous video
-image-based experience sampling
-Indirect observation
-via sensor activations
-via photo diaries
-via audio notes
-Self report
-time diaries
-recall surveys
-Experience sampling
-End of study interview

Table 3.1: Methods for labelling the subject’s activities

the labelling methods introduced.

Direct observation Direct observation, considered the “gold standard” for assess-
ment in medical and psychological research studying behavior in natural set-
tings, does not suffer from selective recall if performed by trained observers.
Even though direct field observation can provide helpful qualitative and quan-
titative measures, it is costly, time-consuming, and disruptive. This technique
raises privacy concerns since researchers need to invade private settings such as
the home in order to label the participants’ activities. Therefore, it is not prac-
tical for labelling the sensor data required for the activity recognition system

that are proposed in this work.

Indirect observation The researcher with or without the subject’s help could be

able to self-infer the activity labels by observing the sensor activation signals,
diary photographs of the sensors activated, or audio notes recorded during the

activities among others.

Self report: time diaries To minimize selective recall and selective reporting bias,
time diaries can be used. Participants write down what they do during the day
either as they do it or at regular, finely-spaced intervals [67]. Diaries provide

better data than recall surveys but are burdensome for the user.

Self report: recall surveys Despite the widespread use of self-report surveys for

assessment of behavior in naturalistic settings, these surveys are known to suffer
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from recall and selective reporting biases - users can often not remember what
they did and/or do not report what they actually did. Furthermore, they often
report what they did incorrectly [74].

ESM/EMA The experience sampling method (ESM), also known as ecological mo-
mentary assessment (EMA), involves using a timing device to trigger self-
reported diary entries. In electronic ESM, questions can be answered on a
survey on a portable computing device that “samples” (e.g. via a beep) for
information about the participant’s activities. Sampling can occur using fixed,
statistical, or self-report schedules. With a sufficient number of subjects and
samples, a statistical model of behavior can be generated. The ESM is less
susceptible to subject recall errors than other self-report feedback elicitation
methods [24, 74], but its high sampling rates interrupt activities of interest and
irritate subjects. There can be subject-selection bias (e.g. busy people feel they

are too busy for interruption) [24].

End of study Interviews At the conclusion of a study, the participant can be in-
terviewed by the researcher. Interviews have shown to be particularly effective
for critiquing ideas or gathering information about the participants’ tasks and
activities if performed properly. Often however, participants know more than
they say in a single or even several interviews [70], and will tend to have difficulty
understanding and recalling how context impacts their behavior (i.e. exhibiting

selective recall and selective reporting [74] biases).
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Chapter 4

Design and Implementation

4.1 Overview

The proposed system consists of three major components. (1) The environmental
state-change sensors used to collect information about use of objects in the envi-
ronment, (2) the contezt-aware experience sampling tool (ESM) used for labelling the
activities, and (3) the pattern recognition and classification algorithms for recognizing
activities.

Figure 4-1 shows the block diagram of the activity recognition system. During the
data collection stage, the state-change sensors are installed in the home environment
while the ESM is provided to the user to help train the system by making a detailed
record of his/her activities. After data has been collected for up to 14 days, the
sensor data and the activity labels are correlated in a data integration stage. Binary
features that capture temporal relationships can then be calculated over the sensor
activations. The activity classifier is now trained using the features and the activity
labels. During the learning stage, the activity classifier creates a model of the user’s
activities based on the features calculated over the sensor firings. At this point, the
activity classifier is able to predict activities based on new sensor firing observations.
Figure 4-2 shows a simplified version of the study design. The following sections

explain the different components of the activity recognition system in more detail.
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Figure 4-1: Block diagram of the activity recognition system.
4.2 Environmental State-Change Sensors

Although other low-cost wireless sensing systems have been developed, notably Berke-
ley Motes [38], Smart Dust [47], and Smart-ITS [49], their size, power, and cost points
are not appropriate for distributing hundreds of units in a single apartment-size space
to collect data reliably. They are not “tape on and forget” devices that can be de-
ployed at a low cost in real homes.

Therefore, a low-cost computing technology to study human activity in home en-
vironments was developed. These sensors passively collect data via the measurement
of objects in the environment. Each device consists of a small data collection board
and a sensor(reed magnet or piezo film). These components can be taped to objects
in the environment for studies lasting up to several weeks. For example, if a data
collection circuit board and sensor are taped to a cabinet door, they will store a
timestamp each time the cabinet is opened or closed. An example of the format of

the data stored by the state-change sensors is shown in Table 5.1.

4.2.1 Design Criteria

The design goals were as follows: to permit several hundred sensors to be installed
in an environment for at least two weeks, left unattended, and then to recover them

with synchronized data.
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Study Design

1. Design of data collection board and sensors
2. Development of methodology to collect and label the data
3. Collect data in real home environments for two-weeks
4. Label the data using ESM + indirect observation of sensor activations
5. Train the naive Bayes Classifiers
a) Determine the number of activity labels
b) Calculate the average duration of each activity Li (feature windows)
c) Calculate the features from the beginning to the end of each activity for each day
i) Sensors that fired for each activity
ii) Pairings: sensor A fires before sensor B
iii) Pairings: sensor in object type A fired before sensor in object type B
iv) Pairings: sensor in location A fires before sensor in location B
d) Train the multiclass and multiple naive Bayes classifiers with the training
examples
6. Predict activities
a) Divide the day into time intervals At (3 min. for studies, 5 sec. for real time)
b) At each time t, calculate the features from t-Li to t for each feature window
¢) Using the multiclass and multiple binary naive Bayes classifiers, calculate the
probability for each feature window (activity) for current time t.
7. Evaluate the results using three different criteria
a) Calculate percentage of time activity was detected
i) Divide each activity label into time intervals At
il) Predict activity label for each interval At
iii) Compare predicted label for interval At and activity label
iv) Fill confusion matrix according
b) Calculate if activity was detected at least once "around” the end of the
activity or with a delay (best interval of detection)
i) Create an interval at the right most edge (E) of each activity
[E-¢, E+¢] and divide it into time intervals At (¢ = time delay allowed )
ii) Predict activity label for each interval
iii) Compare predicted label with activity label and fill confusion matrix
iv) The activity is detected in best interval if at least for one interval At, the
predicted label is equal to the activity label
c) Calculate if activity is detected at least once for the duration of the
activity label
i) Divide each activity label in time intervals At
i) Predict activity label for each interval At
iii) Compare predicted label for each interval At with activity label and fill
confusion matrix
iv) The activity is detected at least once if for at least one interval At, the
predicted label is equal to the activity label

Figure 4-2: Simplified diagram containing the steps followed in the study design.
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Figure 4-3: The state-change sensors that can be installed ubiquitously throughout
an environment such as a home. Each device consists of a data collection board and
a small sensor. (a) Data collection board (b) Reed magnet sensor and data collection
board in protective case.

In order to achieve this goal, the data collection circuit boards need to have the
following characteristics: (1) relatively inexpensive so that it is affordable to install
hundreds of them in the home environment. (2) low power consumption, since they
are powered by a small coin battery and are left unattended for weeks. (3) small size
so that they are easy to install and hide,(4) adequate non-volatile memory size, so

that they can collect data over weeks and, finally (5) high reliability.

4.2.2 Implementation

Figure 5-1 shows the sensor device which consists of the sensor itself connected by
a thin wire to a 27mm x 38mm x 12mm data collection board. The devices are
robust and easy to work with. Each fits snugly in a small plastic case of dimensions
37mm x 44mm x 14mm. A small hole is drilled in the case through which a thin
wire is run out to the sensor. The boards can use either reed switches, which are
activated when brought into contact with a small magnet, or piezoelectric switches,
which detect movement of a small plastic strip. These sensors were chosen because
they are relatively inexpensive (under $2), small, and do not consume much power.
To achieve well-synchronized measurements, the most precise temperature com-
pensated crystal oscillator available on the market was used to drive the real time

clock of the data collection board: the DS32kHz from Dallas Semiconductor. This
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achieves a time accuracy of +/- 1 minute per year if operated from 0 to +-40C. To fur-
ther improve synchronization(prior to installation), all the boards are synchronized
in a single session with a single computer clock. When the data collection boards
are recovered, the signals from each board are linearly interpolated to better match
the reference clock. In boards installed in our laboratory, we have measured the
synchronization after this correction to be +/- 2 seconds over a two-week period of
time. The boards can record up to 3 activations per second and can record a total
of 2666 activations in non-volatile memory. The total cost for parts and fabrication
(in quantities of 150) for each data collection board as of February, 2003 was $24.66,
with an additional $2 required for each sensor (e.g. magnetic reed). The complete

hardware and software specifications for the devices are available upon request.

Figure 4-4 shows the schematic of the data collection board. The circuit con-
sists of a PIC16F628 microcontroller, a DS1302 real-time clock with a temperature-
compensated crystal oscillator DS32kHz to keep track of time, a 24L.C128 EEPROM
non-volatile memory chip for data storage, and circuitry for driving an external piezo
film sensor and magnetic reed switch. The circuit is powered by a CR2430 coin bat-
tery. In order to achieve a low power consumption, the microcontroller is typically in
the sleep mode and only wakes up when the external sensor is activated. The external
magnetic reed or piezo film switches are internally connected to the external interrup-
tion pin (RBO) of the microcontroller so that when they are activated, they wake up
the microcontroller from sleep mode. Once awakened, the microcontroller reads the
time and date from the real-time clock, and stores the information in the 24LC128
EEPROM memory. The microcontroller is able to distinguish between opening and
closing events since signals edges are different for closing (rising edge) and opening
(falling edges) events . The estimated battery life of the data collection board is one

year if the external sensor is activated an average of 10 times per day for 30 seconds.

1 This requires installation to be done consistently
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Figure 4-4: Schematic of the data collection board.
4.3 Context-Aware Experience Sampling

The context-aware experience sampling tool(ESM) is a robust data collection tool for
acquiring self-reported data from subjects in experiments developed by the Housen
research group at MIT [44]. It consists of a personal digital assistant (PDA) used as
a timing device to trigger self-reported diary entries. The PDA samples (via a beep
sound) for information by asking questions. Questions can be answered by the user on
the PDA by selecting from multiple choice menus and triggered using plug-in sensors.
Sampling can also occur using fixed, statistical, or self-report schedules. Researchers
can load a new protocol by modifying a comma-delimited text file. In this work,
only the (15 minute) basic fixed interval sampling functionality of the ESM tool was
used to help in the labelling process of the subject’s activities. Figure 4-5a shows a

screen shot from the sampling protocol used in the studies. The advantages of using
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ESM to label the data is that it eases the subject’s burden, improves the accuracy
of the time-stamps acquired, and reduces the data entry and coding burden of the
researcher. The protocol used to collect subject self report labels of activity in this

work is described in section 5.1.2.

Figure 4-5: (a) One screen from the sampling protocol used in the studies for collecting
training data on activities in the home setting and used to develop algorithms to
detect everyday activities from sensor data automatically. (b) The ESM being used
in a kitchen.

4.4 Activity Recognition Algorithms

The purpose of the state-change sensors and ESM was to provide the necessary data to
create machine learning algorithms that can identify routines in activities from sensor
activations alone. In order to accomplish this goal, new algorithms that correlate
the sensor firings and activity labels, and predict activities from new sensor firings
was required. In this section, the algorithm developed in this work for recognizing

activities is presented.

4.4.1 Algorithm Requirements

When designing algorithms for recognizing activities in real home environments, it is

important to consider factors such as the ease of setup and training the system, how
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privacy concerns are addressed, and real-time reliability performance. The following

design goals motivated the activity recognition algorithms developed in this work.

Supervised learning. Homes and their furnishings have highly variable layouts,
and individuals perform activities in many different ways. In one home a per-
son may store the toothbrush in a medicine cabinet. In another, the tooth-
brush may be stored in a drawer. Sensing systems must use supervised learning
because the same activity (e.g. brushing teeth) may result in a significantly
different sensor activation profile based upon the habits, or routines, of the
home occupant and the layout and organization of the particular home. An
elderly woman’s “preparing dinner” will cause different sensors to fire and with
a different temporal characteristic than a young urban professional’s “preparing
dinner.” One approach to handle such variability is to use supervised learning
with an explicit training phase. Supervised learning is similar to learning with
a teacher. The desired inputs (sensor firings) and outputs (activity labels) are
presented to the classifier and its internal model is updated during the training
step to produce the desired outputs. This allows activities to be represented by

different sensor firings for multiple individuals.

Probabilistic classification. Probabilistic reasoning offers a way to deal with am-
biguous and noisy information from multiple sensors. Further, it is an efficient
way to represent different activities happening at the same time (multitasking).
Rather than a binary “yes”/“no” determination for a lunch-preparation event,
the system could recognize that a person is preparing lunch with a likelihood
of 60% and washing the dishes with a likelihood of 40% at a given time. Such
probabilistic classification output can then be interpreted as needed by other

systems that use the activity information.

Model-based vs instance-based learning. There are different approaches to learn-
ing such as instance-based learning and model-based learning. Instance-based
learning algorithms store all the attribute examples (training examples) for each

class, thus postponing any generalization effort until a new instance needs to
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be classified. Model-based algorithms on the other hand, use the training ex-
amples to construct a global representation or model of the target classification
function. When a new classification is required, only the model previously gen-
erated is used. In a system that recognizes activities, this means that all the
raw sensor data could be eliminated as soon as the user model has been learned.

This could reduce users privacy concerns.

Sensor location and type independent. Table 4.1 shows the four levels of infor-
mation in the sensor data that could be used for developing activity recognition
algorithms. Each sensor installed has a unique ID assigned at time of assembly.
Ideally, it would not be necessary to record the position (e.g kitchen) and instal-
lation object type (e.g drawer) of each sensor in the home: a time-consuming
process. Ideally, robust activity recognition would not require this information.
Some sensors can record duration in the active state, but since information is
dependent on the type of sensor it is not always available. For example, du-
ration information is available for a reed magnet contact sensor attached to a
cabinet (time cabinet was open) but not for a vibration or acceleration sensor

attached to a TV remote control to monitor movement of the device.

Real-time performance. A system that recognizes activities in the home setting
is most useful if it performs in real-time. This may require a trade-off between

model, feature, and computational complexity to achieve.

Online learning. An additional feature of a system that recognizes activities is to
be able to adjust its internal model in real-time as new examples of activities
are available. This will allow the algorithm to adapt to changes in the user’s

routines over time.

In order to allow the activity recognition algorithms to produce probabilistic classi-
fication outputs, adapt to user’s variabilities using supervised learning, build a model
of the user’s activities, learn new examples and perform in real-time, the Naive Bayes
classifier (NB) was used in this work. The next section describes the naive Bayes

classifier in more detail.
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Information level | Description | Example

Level 1 Sensor ID sensor 66

Level 2 Duration activated for 9 Sec
Level 3 Type installed in a drawer
Level 4 Location located in the kitchen

Table 4.1: Different levels of information in the sensor data that can used to develop
activity recognition algorithms.

4.4.2 Naive Bayes Classifier

For its computational efficiency and low classification error rate on many datasets,
naive Bayes classifiers (NBs) are one of the most commonly used classifiers. The naive
Bayes classifier {28] shown in figure 4-6a is a Bayesian network in which the class node
is the parent to all attribute nodes, and its main assumption is that all the attribute
variables are conditionally independent given the class variable. As a classifier, it
calculates the most probable class given the data using Bayes rule. Among its most

important advantages are the following:

(a) (b)

Figure 4-6: (a) The generic naive Bayes classifier. (b) A simplified version of the naive
Bayes classifier used in the activity recognition algorithms. The activities to recognize
are represented by the class node and all the features calculated by the child nodes.
Each Sn node represents the exist feature for each sensor, and the Sn_Sn nodes
represent the low-level before(sensor ID, type or location) features calculated over
sensor pairs to incorporate temporal information.

Probabilistic hypothesis. The output is a probability distribution over the classes
rather than a simple classification. This also makes it easier to incorporate
utility functions to make optimal decisions. Probabilistic outputs are useful for

representing the likelihood of two activities happening at the same time.

Combines prior knowledge and observed data. It combines prior probabilities

P(h) and the probability of the hypothesis given the training data P(h|D)
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using Bayes rule. This could allow prior knowledge such as the prior likelihood

of occurrence of each activity to be easily incorporated.

Simple learning algorithms. The independency assumption greatly simplifies the
learning procedure, particularly when all variables are observed in the train-
ing data (frequency counting). Simple learning algorithms are important for

achieving real-time performance.

Online learning with fast update. The prior probability P(h) and likelihood P(D|h)
can be updated dynamically with each new observed example. This makes it
possible to build systems that learn and update its models in real-time. Online
learning offers a possibility for adapting to a person’s activity variations over

time.

Features/examples ratio. For its computational efficiency, naive Bayes is used in
applications in which there are many features compared to the number of ex-
amples. For example, in natural language processing and information retrieval.
The features/examples ratio is important in this work because of the number of

sensors involved and the features of sensors pairwise combinations considered.

Meta-classification. The output of several classifiers can be combined to produce

more accurate classifiers.

For those reasons, in this work the naive Bayes classifier is used for activity recog-
nition. The network represents a soft, probabilistic summary of a class (the action to
recognize). The class (activity) is detected via a set of attributes that are assumed to
be independent given the class. The network encodes P(attribute|class) and P(class).
The result of using a naive Bayes classifier is a computationally tractable system that

recognizes certain types of activities.

4.4.3 Feature Extraction

It is possible to calculate features over (1) single-sensors, (2) multiple-sensors, and

(3) multiple-sensor relationships. Multiple-sensor and multiple-sensor relationships
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Feature description Example

exist(sensorA, start, end) Sensor A fires within time interval

before(sensorA, sensorB, start, end) Sensor A fires before sensor B within time in-
terval

before(sensorTypeA, sensorTypeB, start, end) Sensor in a drawer fires before a sensor in the

fridge within time interval

before(sensorLocationA, sensorLocationB, start, end) | Sensor in kitchen fires before sensor in bath-
room within time interval

Table 4.2: Features calculated and evaluated

features were primarily used in this work to capture temporal relationships among
sensor firings. The discriminant power of the features shown in table 4.2 was explored

and evaluated over the dataset.

Incorporating Temporal Information

One of the challenges in recognizing activities as discussed in section 1.2 is to encode
or capture temporal information such as sequential order, periodic variations and
time scale. The main idea of this work is to encode large numbers of low-order binary
temporal relationships in the NB network classifier. Thus, two temporal features
have been used to recognize (1) whether a sensor activation ezists during some time
period and (2) whether sensor A fires before sensor B. These two feature nodes encode
the belief that a particular temporal ordering in the sensor firings has been observed
during a specific activity. Table 4.2 shows the binary features calculated over the
sensor data. The last two features in the table incorporate high level contextual
information about the type of object in which the sensor was installed (e.g cabinet)
and location of the sensor (e.g bathroom). The number of ezist features that will
become nodes in the NB networks is equal to the number of sensors present in the
system (77 and 84 for subject one and two respectively). The number features that
become nodes for the before sensorID, before type and before location features is
equal to the number of all pairs of sensors, object types, and locations existent in the
home environment. For example, for the first subject, the number of before sensorID
features is 77x77=>5929, 27x27="729 for the before type, and 6x6=36 for the before
location. In order to save memory and computation time, the pair of sensors that

were never activated in the dataset were not used in the training and prediction steps.
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Incorporating activity duration

Different activities have different lengths of time. Therefore, the duration of the ac-
tivities has to be considered while developing algorithms for recognizing activities. In
order to incorporate the activity duration, one feature window per activity to recog-
nize was used, and the length of each window corresponded to the activity duration as
carried out by the subject. Thus, if M is the number of activities to recognize, there
were M different feature windows with lengths L; - - - L,,. The duration or length L;
for each feature window was the average duration for each activity calculated from
all the activity labels generated by ESM + indirect observation. For example, the
feature window for toileting was 7 minutes and 27 seconds and for preparing lunch

was 37 minutes and 54 seconds for the first subject.

Generation of Training Examples

In the training stage, training examples are generated by calculating the features
from the start to the end time of each activity label. Figure 4-7a shows an example
of how training examples are generated. Examples for washing hands, toileting, and
grooming are generated whenever a label for washing hands, toileting, and grooming
is found in the dataset respectively.

Originally, there was no unknown activity, but examples of this class were created
by generating an example of it whenever no activity labels for other activities were
found in the dataset. Figure 4-7a also shows an example of how two examples for the

unknown class were generated.

Predicting the activity labels

In the prediction step, each feature window (of length L;) is positioned in the current
time to analyze . The features are then calculated from time t — L; to time t. Once
the features are calculated, the probability for the current activity is calculated using

the naive Bayes classifier.
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Figure 4-7: (a) Example of how training examples are created for “washing hands”,
“toileting”, “grooming” and two “unknown” activities. (b) Example of how features
are extracted from sensor firings using different feature window lengths for each ac-
tivity for time ¢ and the next time to analyze t+/A\¢ in the prediction step.
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Figure 4-8 shows an example of how the probability for each activity is generated
in the prediction step by shifting the feature window for each activity over the sensor
activations. Note that the probability is maximum when the feature window aligns
with the duration of the activity represented by sensor activations (activity label).

This indicates that the classifier is more likely to detect the activities when they are

ending.
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Figure 4-8: Example of how the probability for the “toileting” activity is generated
in the prediction step by shifting the feature window for “toileting” over the sensor
activations with increments of At (3 minutes for this study). Note that the proba-
bility is maximum when the feature window aligns with the duration of the activity
represented by the sensor activations.

Figure 4-7a shows an example of how the feature windows for each activity are
positioned in the current time to analyze ¢ and in the next time to analyze t+At
over simulated sensor data. The At increment in time used in the experiments was
three minutes, which was half of the duration of the quickest activity. In a real-time
application, however, the At can be chosen to be as small as required, for example 5
seconds. While predicting an activity label for new observed sensor firings, the activity
with the maximum likelihood at any given time is considered to be the classification

result.
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4.4.4 Implementation

Two versions of the activity recognition classifier were implemented: (1) a multi-
class naive classifier in which the class node represents all the activities to recognize
and (2) multiple binary naive Bayes classifiers, each of them representing an activity
to recognize. Both versions were implemented using the Java WEKA toolkit [34].
Matlab 6.0 was used to display the sensor activations and activity labels, to calculate

the features, generate the training examples and to test the accuracy of the algorithms.

Multi-class Naive Bayes Classifier

A simplified version of the multi-class naive classifier used in the system is shown in
Figure 4-6b. The class node represents all the activities to recognize and its child
nodes are the erist and before attributes. In this configuration, all the activities
are considered to be mutually-exclusive, which means that the probabilities for all
activities sum up to one at any given time. Since the multi-class NB classifier consists
only of one network, the training and prediction time are small compared to the time
required in the multiple binary classifiers approach. Another advantage is that the
evaluation is easier since there is only one answer at any given time (the class with

maximum likelihood given the evidence).

Multiple Binary Naive Bayes Classifiers

A multi-class classification problem can be decomposed into a set of binary classifica-
tion problems. Sometimes, it is easier to train algorithms to distinguish only between
two classes and algorithms such as C.45, CART, and support vector machines require
this decomposition in order to handle the multi-classfication problem [9]. In activity
recognition however, the main advantage of binary decomposition is that the repre-
sentation does not enforce mutual exclusivity. In this way, detection of listening to
music does not preclude detection of preparing breakfast.

In this approach, one binary naive Bayes classifier is used to represent each activity

to recognize. The structure of each classifier is the same as the one shown in Figure
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4-6b with the difference that the class node only represents two classes: activity
happening and activity not happening. The binary classifiers were trained using the
one-against-all procedure. In the one-against-all training procedure, each classifier
is trained using as positive examples the examples that belong to that class, and
as negative all the other training examples [9]. The time necessary for training and
prediction is longer compared to the multi-class NB approach, and the evaluation
becomes more difficult since multiple classes can have high likelihoods simultaneously.
This violates the assumption that there is only one answer at a time commonly used

while calculating confusion matrices and evaluating machine learning algorithms.

Prior Probabilities and Parameter Estimation

In this work, the prior probabilities for all the activities to classify were assumed
to be equal. This means that all the activities are considered to occur with the
same likelihood. Moreover, the maximum likelihood or maximum a posteriori (MAP)

approach was used to learn the parameters of the networks.
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Chapter 5

Evaluation

5.1 Study and Data Collection

Two studies were run in two homes of people not affiliated with our research group
to collect data in order to develop and test the activity recognition algorithms. Both
subjects granted informed consent and were compensated with $15.00 dollars per day
of participation in the study. The first subject was a professional 30-year-old woman
who spent free time at home, and the se