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Abstract

Current techniques for characterizing the power consumption of adders rely on as-
suming that the inputs are completely random. However, the inputs generated by
realistic applications are not random, and in fact include a great deal of structure.
Input bits are more likely to remain in the same logical states from addition to addi-
tion than would be expected by chance and bits, especially the most significant bits,
are very likely to be in the same state as their neighbors.

Taking this data, I look at ways that it can be used to improve the design of
adders. The first method I look at involves looking at how different adder architectures
respond to the different characteristics of input data from the more significant and
less significant bits of the adder, and trying to use these responses to create a hybrid
adder. Unfortunately the differences are not sufficient for this approach to be effective.
I next look at the implications of the data I collected for the optimization of Kogge-
Stone adder trees, and find that in certain circumstances the use of experimentally
derived activity maps rather than ones based on simple assumptions can increase
adder performance by as much as 30%.

Thesis Supervisor: Vladimir Stojanovic
Title: Assistant Professor
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Chapter 1

Introduction

1.1 Importance

Managing power consumption is an aspect of microprocessor design that is important

and growing increasingly more so. In mobile electronics reducing power consumption

is a key factor in increasing battery life, and even in servers and desktop computers

power dissipation is an important design constraint.

In any form of engineering there are inevitably tradeoffs to be made, and one of

the primary tradeoffs facing designers is that of trying to balance performance against

power dissipation. Through choices in such factors as voltage levels, microarchitec-

ture, logic style, or gate sizing a designer can make tradeoffs between the two, and

seek to find the balance that will best fit the designer's goals.

To make these choices designers require information about the consequences of

their decisions, and circuit designers use models of varying accuracy and speed to

help them forsee the consequences of their choices. An accurate understanding of the

causes and severity of the power dissipation within a chip might influence a designer

to make certain tradeoffs between speed and power, but a less accurate understanding

might lead to tradeoffs that are worse for overall performance. Clearly an accurate

representation of how a microchip dissipates power is instrumental to good design.

Circuit activity is generally one of the most important factors in energy dissipation.

In this thesis I will be looking at adders specifically, and experimentally determine

13



activity factors. From there, I examine how these vary from standard models and

how this variance effects design choices.

1.2 Existing Techniques

1.2.1 Constant Activity Factor

The most common means of determining the power dissipation of a circuit is to assume

some constant switching activity factor for all the gates in the circuit, and then use

that to determine the overall power use of that section of the circuit. The formula

following formula is commonly used.

Ptotal = Pt(CL - V Vdd - flk) + ISC - Vdd + 'leakage - Vdd

Here the first term represents the power consumed by switching activity and the

second represents the short circuit power loss and the third represents the power lost

due to leakage. In the first term pt represents the activity factor, CL represents the

loading capacitance, V is the swing voltage, Vdd is the supply voltage, and fclk is

the clock frequency. In the second term Isc represents the short-circuit current that

occurs when the adder is in an intermediate state and in the third Ileakage represents

the leakage current.

The value for pt is generally found by using rules of thumb, such as assuming a

15% activity factor for gates in static adders and a 50% activity factor for gates in

dynamic adders [101, while the other variables can be determined more precisely.

1.2.2 Simulation

A more sophisticated approach to power estimation involves simulating the circuit

block in question for some set of inputs. It is ordinarily quite time consuming to

run enough input vectors to be sure that the results are sufficiently accurate, but

there are many ways to speed up or approximate the process that can be used if the

experimenter assumes that the inputs to the adder are statistically independent of

14



each other, and more that can be used if the additional assumption that the inputs

are are Bernoulli processes is also used [3].

These assumptions and approximations are generally used, and with adders it is

generally assumed by designers that each input is a Bernoulli Process with each input

having an equal chance of being either a one or a zero independent of its neighbors

or of previous samples [7] [9].

Once the activity factors of the various gates have been determined, the same

equation as in the constant activity factor method can be used to estimate power

consumption.

1.3 Thesis Plan

1.3.1 Experimentation and Observation

It is clear that the structure of the inputs to an adder is more complicated than either

of these two methods can represent. When a program is run some types of inputs to

the adder such as memory addresses approximate Bernoulli inputs. However, more

often one or both of the inputs will be considerably smaller than the 32 or 64 bit

width of the adder input. Sometimes, as with basic control loops, both of the inputs

to the adder will be much less than the the entire adder width and sometimes, as

with memory addressing in an array, only one of the two inputs will be small. Even

when one of the inputs fills the entire width of the adder there will be cases in which

it will tend to remain the same or change very little from addition to addition causing

another sort of statistical structure in the activity factors.

To quantify the distributions and correlations of the various inputs I used a pro-

gram called PIN [5] that allows me to look at the values of numbers being added

together while a program is being executed. In Chapter 2 I discuss how PIN works

and how I used it to gether my data, while in Chapter 3 I discuss the results of my

observations.

15



1.3.2 Design and Testing

After gathering my data, I pursued two approaches in how to use this data for im-

proving adder designs.

The first approach, discussed in Chapter 4, is to look at the possibility of using

different architectures to exploit the statistical differences between the most significant

bits of the input and the least significant. Unfortunately this method did not lead to

any significant improvements.

The second approach, discussed in Chapter 5, is to look at how more accurate

activity models can be used to improve previous optimizations [2] [8] for a Han Carlson

adder. I look at optimizations based upon the data I collected and optimizations based

upon Bernoulli inputs, and compare them. This method is more fruitful, and does

seem to yield useful results though more research is necessary.

16



Chapter 2

PIN

2.1 How PIN Works

Pin is a tool that takes programs and dynamically instruments it, essentially taking

an executable and inserting arbitrary code at any point. Pin runs under Linux on

Intel Xscale, IA-32, IA-32E, and Itanium processors.

When a program begins running under Pin, Pin starts by taking a sequence of

instructions bounded by branches and rewrites them adding new code according to

the specifications of the user. When the branch is reached, Pin rewrites the next

sequence from the branch target and the original program continues. So that the

behavior of the original program won't be unintentionally changed Pin restores any

registers that have been overwritten by the injected code after that code has finished

executing. All the generated code is kept in memory so that it can be reused.

Pintools written by the user to govern the behavior of PIN. They contain the code

which PIN inserts into the target program and specify the conditions under which it is

inserted. These pintools are written in C++ and compiled using libraries distributed

along with Pin.
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2.2 Using PIN

2.2.1 Sample Choice

In order to make sure that any patterns discovered are not the artifacts of a single

program but rather patterns that tend to appear in most normal processor opera-

tion I used a cross-section of five programs to collect data from. The five were a

simple program to list the contents of a directory (Is), an mp3 player (mpg123), a

PDF viewer (GPdf), a math processing program (MATLAB), and a web browser

(Mozilla).

2.2.2 Extracting Additions

The two pintools used for analysis and for data collection inspect the use of the adder

in the same way. Whenever PIN sees that an instruction using the adder is about

to be executed, it injects a piece of code to read the operands of the addition. The

instructions that make use of the adder are as follows:

ADD The values of the two operands are simply added together and the result is

saved.

ADC The values of the two operands are added together, as well as the carry flag,

and the result is saved.

XADD Exchanges the locations of the two operands, then adds them.

INC Adds 1 to the operand and saves the result.

SUB Adds one operand and the two's complement of the other, and then saves the

result.

SBB Adds one operand and the two's complement of the other as well as the carry

bit, and then saves the result.

CMP Adds one operand to the two's complement of the other, but does not save

the result and merely sets status flags.

18



DEC Adds the two's complement of 1 to the operand and saves the result.

When the pintool finds one of these instructions, it checks whether the operands

are stored as constants in the instruction, in registers, or in memory. Before the

instruction is executed, the pintool reads the values of the operands, applies two's

complement as necessary, and sends the results to the analysis function. In the case

of an INC or DEC a 1 or two's complement -1 is fed to the analysis function as the

second operand.

2.2.3 Analysis

The analysis pintool I used works by taking each set of adder inputs and making

a series of comparisons both within the inputs themselves and between them and

the previous set of inputs. The results of these will later be used to determine the

correlations between various aspects of the inputs. However, the pintool also runs a

simulation to determine, for a ripple carry adder with these inputs, what percentage

of the time each bit would be in a generate or propagate state, as well as what the

carry activity looks like.

2.2.4 Data

The data collection pintools record the actual sequence of inputs to the adder so that

the optimizations in sections 4 and 5 can be tested. Both optimizations are tested

with 10,000 sample additions from each of the five sample programs. Each set of

inputs is broken up into 100 equally sized regions and blocks of 100 additions are

randomly selected from within each region.

Different pintools were used depending on the program being sampled. Because Is

and mpg123 use a relatively small number of additions in their operation the pintool

that extracts the data from them records every input. Since the number of additions

preformed by each sample program is known after it has finished running they can

be broken into regions and the block selected when the pintool output is converted

to a form that can be used by other programs.
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Since GPdf, MATLAB, and Mozilla all use a relatively large number of addi-

tions, the time and storage space required to save every adder input for the entire

run would be prohibitive. Because of this I created a second pintool that assumed

100,000,000 overall additions and region sizes of 1,000,000, and only saved the ran-

domly selected block from each region. Since all three of the programs could be run

for variable lengths of time, each could be run to 100,000,000 additions and then

terminated.
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Chapter 3

Characteristics of Adder Inputs

3.1 Number Size

Among the properties of the adder inputs that I examined, the first I looked at was the

distribution of number sizes entering the adder. Under a two's complement system

such as is used by most microprocessors today, finding the size of a number is a matter

of finding the most significant bit in the number which doesn't match the sign bit.

Many of the additions were clustered into two spikes at the upper end of the range.

It was a property of the computer used to run the sample programs that many of the

memory addresses used by it began with either 10111 or 00001, resulting in two large

spikes indicating those two numbers.

Benford's Law [1] tells us that in many real world situations we can expect the

frequency with which a number occurs to be proportional to the inverse of the size of

the number or in other words that numbers are distributed evenly on a logarithmic

scale. The data from PIN seem to roughly match this distribution, though again

idiosyncracies in various programs prevent the distribution from matching Benford's

distribution precisely.
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Figure 3-1: Number of occurences of different sized adder inputs

3.2 Auto-Correlation

The second property of the adder inputs that I looked at was their autocorrelation,

or in other words their tendency to remain the same from one addition to the next.

One important ramification of this property is that in systems using static logic a

high autocorrelation leads to a lower switching frequency and lower power use.

Figure 3-2, made from an aggregate of all five test programs, displays the auto-

correlation of the inputs from one use of the adder to the next. The bits of the first of

the two inputs, called here the A input, to the adder tended to flip states less frequency

than those of the second or B input, because the presence of subtraction instructions

means that the B input tends to flip between positive and negative numbers frequently,

while the first input tends to receive mostly positive inputs or memory addresses.

One unusual characteristic of the data I looked at was that the memory addresses

22
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Figure 3-2: Auto-Correlation of inputs between subsequent additions

accessed by the programs disproportionally tended to begin with 1011. This resulted

in a large spike in the auto-correlation at bit 31 as the test program transitioned from

adding a small positive number at that input, to a memory address, and back to a

small positive number.

The autocorrelation for the state of the ith bit of the adder between subsequent

additions over the n additions that were recorded is given mathematically as:

cOV(xi,kxi,k+1) _ n Zk=(xi,kxi,k+1) - (E'=o i,k 2

' i,k~i,k+1 =i~ -2~ + k=X i=k iEksl kXsilik+ nik~ k=-0 2z - k_ Xi,k) 2
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3.3 Input Activity Factors

The same data that provides the autocorrelation allows the activity factors of the

inputs to be computed directly as well and the results are shown in Figure 3-3. The

activity factor is a direct measurement of how frequently a signal flips from one state

to another, and these along with the activity factors of the internal nodes of the adder

are an important factor in finding out how much energy is being dissipated.

0.5

0.45

0.4

0.35 F

0.31-

0.25 F

0.2 F

0.15 k

0.1 L

0 8 16 24 32
Bit

Figure 3-3: Activity factor for the inputs

3.4 Neighbor Correlation

The correlation between neighboring bits is an important factor in working out how

quickly activity falls off in the higher levels of tree based adders like the Han-Carlson or

Kogge-Stone adders. If one assumes that there is no correlation between neighboring

24
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bits both being in a propagate state then one can also assume a rapid exponential

falloff in the activity of propagate nodes for the higher levels of the tree. But if there

is a strong tendency for adjacent nodes to be propagating at the same time then the

falloff in activity will be much less rapid.

Figure 3-4 shows the frequency with which each pair of bits is in the same state.

Since the chance that both are above the size of the operand increases with the higher

order bits, these bits are also more likely to be in the same state as their neighbors and

thus be strongly correlated. Since the B input to the adder tends to be given smaller

numbers to add, the correlation between bits increases more rapidly and remains

higher than the correlation in the A input. One can also clearly see the frequency of

10111 and 000010 inputs in the sudden drops in correlation surrounding those pairs

of odd bits in the A input which tends to contain more memory addresses.

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.11
0 8 16 24

Figure 3-4: Cross-Correlation Between Neighboring Bits

The correlation between neighboring bits i and i+ 1 over the n samples recorded

25
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is calculated with the following equation:

cov(xikx+1,k) n k=o(Xi,kXi+1,k) _ Zn=O Xi,k Ek-O Xi+1,k
k +1 ,k (i,k Xi+1,k ) 0 = 0 i, k 1,

26



3.5 Relative Frequency of Ones and Zeros

8 16 24 32

Figure 3-5: % of additions where a given bit is a one

As one would expect working with mostly positive numbers, the ration of ones to

zeros in the various bits of the two inputs is noticeably skewed towards zeros. The A

input shows its usual mixture of small positive numbers and addresses. The B input

is much closer to an even mix of ones and zeros in its higher order bits, as we would

exect from a mix of mostly small positive and small negative numbers.
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3.6 Generate Frequency
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Figure 3-6: % of additions where a given bit is in the generate state

When both of the inputs to a one bit section of an adder are ones we know that

the carry out from that section will be a one regardless of whether the carry into that

section is a one or a zero. In this case we can say that this section of the adder is in

a generate state.

As we would expect given the lower than even ratio of ones to zeros, the observed

frequency with which sections of the adder are in the generate state is lower than the

25 % that would be caused by a set of ideal Bernoulli inputs.
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3.7 Propagate Frequency
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Figure 3-7: % of additions where a given bit is in the propagate state

When exactly one of the inputs to a section of an adder is a one the carry out of

that section will be the same as the carry into that section, and we can say that that

one bit section of the adder is in a propagate state.

Since it is mostly input A that is receiving less ones than might be expected,

the lower number of generate states is generally compensated by a higher number of

propagate states. This, and the high cross correlation in the values of adjacent bits

will tend to lead to more transient switching in ripple type adders.
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8 16 24 32

Figure 3-8: % of additions where a given bit has a carry out

In accordance with the low number of generate states but contrasting with the

high number of carry states, the frequency of full adders producing a carry out is less

than we would see with Bernoulli inputs.

P(g) .25 .
1 c )(=) -. 5C]1 - P(p) 1 --. 5 (3.1)

However the probability of full adders having a carry out derived from the data

collected averages around only .35.
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Chapter 4

Hybrid Architectures

4.1 Goals

My work in Chapter 3 revealed substantial differences in statistical behavior between

bits in the upper and lower reaches of the adder. In this chapter I look first at

the effect of these differences on the energy use of different sections of an adder for

different architectures. Then I use that information to try to create a hybrid adder

using different architectures in the sections of the adder that are best suited to them

in order to improve overall efficiency.

For example, assume adder A used three quarters of its energy in bits 0-15 while

adder B used equal amounts of energy in bits 0-15 and bits 16-31. If adders A and

B both have the same energy-delay product and if they can be combined so that the

delay of a hybrid adder is the mean of the delays of each individually, then replacing

the first 16 bits of adder A with the logic from adder B will yield an adder with

an energy-delay product 25 % smaller than that of its component adders. If the

distribution of energy use within two adders differs sharply enough it would even

be useful to combine two adders with different energy-delay products, or two adders

whose delays don't add linearly.
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4.2 Adders

I examined five different types of adders, a pass logic based ripple adder, a mirror

ripple adder, a carry-skip adder, a carry-select adder, and a Han-Carlson tree adder.

I simulated each in Spice with BSIM3 V3.1 [6] using the data collected from PIN as

inputs and record the energy used by each type. So as not to allow different levels of

optimization skew the results the widths of the gates are kept small for each design

except in cases of large fanout, and they were all built using 250nm technology at

2.5V.

4.2.1 Pass Ripple

This adder uses elements that are a combination of NMOS pass logic and standard

CMOS logic. Not shown in Figure 4-1 are the CMOS inverters required to create the

inverted inputs to the Xor gates. The 32 bit adder that was simulated was made by

stringing together 32 of these elements as shown in Figure 4-2.
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4.2.2 Mirror Ripple

This adder employs only CMOS logic in its elements, with the pullup logic matching

the pulldown logic as shown in Figure 4-3. As with the pass ripple adder, 32 of these

elements were chained together to form the 32 bit mirror ripple adder.
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Figure 4-4: Carry Bypass Architecture

4.2.3 Carry Bypass

This adder uses the same full adder elements as the pass ripple adder, but adds logic

to let the carry signal route around blocks if the carry in signal to a block would

propagate all the way through to the carry out. The architecture is shown in Figure

4-4.
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Figure 4-5: Carry Select Architecture

4.2.4 Carry Select

A Carry Select Adder, shown in Figure 4-5, consists of a number of blocks each of

which run a pair of ripple adder chains in parallel. One chain is fed a '1' as its first

carry-in, and the other is fed a '0'. The carry output of the previous block is then

used to select the set of outputs from one of the two chains.
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Figure 4-6: Han-Carlson Architecture

4.2.5 Han-Carlson

The Han-Carlson adder is a member of the tree adder family of adders. Using sev-

eral layers of logic, it computes the carry states across blocks that increase in size

exponentially as the signal travels up the layers. Shown below in Figure 4-6 is a 16

bit variant of this class of adder. The actual adder used in simulations was 32 bits

wide and had one extra layer. There are three different of circuit elements used in

the architecture which are shown in Figure 4-7.
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Figure 4-7: Han-Carlson Architecture

4.3 Comparison

Table 4.1 shows the results of the spice simulation. The energy figures are the result

of feeding the adders the input vectors gathered through PIN at one set every 10

ns, while the speed figures were determined by simulating the response of each adder

to a pessimal input vector and measuring how long it took for the last output to

transition. There are quite substantial differences in speed and energy use between

these adders, and even the energy-delay products differ by a factor of up to 3.3 in the

Table 4.1: Adder Performance Comparison

Name Energy (nJ) I Delay (ns) [Product

Pass Ripple 82.5 7.6 627
Mirror Ripple 103 8.0 824

Carry Skip 103 3.0 309
Carry Select 201 2.3 462.3
Han-Carlson 156 1.6 249.6

38

Signal Generation Dot Product Sum Generation

G Px

t t
G ,P G P G

G

G-,n

A- B-c4 G'-

P P

A x GI P-G

Bx

P7

A P" A P

0 ~P1-d PYg|



Table 4.2: Adder Energy Use by Segment

Name Energy in Bits 0-15 Energy in Bits 16-31 Ratio

Pass Ripple 40.81 39.82 1.025
Mirror Ripple 52.62 50.08 1.051
Carry Skip 52.08 50.62 1.029
Carry Select 99.56 101.32 .9826
Han-Carlson 75.87 78.56 .9658

case of the mirror ripple adder compared to the Han-Carlson adder.

Any succesful hybrid would have to be made from two adders that use different

amounts of energy in their high and low order bits. Looking at energy use for different

sectors of the adders, from least significant to most.

As can be seen, the differences between the different halves of the adders are

relatively small. These differences in the distribution of energy use are small enough

that the gains achieved by any hybrid making use of them would be drowned out

by differences in energy-delay product and by situations where the delays cannot be

averaged together linearly.
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Chapter 5

Improvements in Kogge-Stone

Gate Sizing

5.1 Previous Work

This method of optimization draws heavily from and uses tools developed for the true

power optimization work of Markovic, Stojanovic, Nikolic, Horowitz, and Brodersen[2] [8].

The section of their work adapted in this thesis was their analysis of ways to trade

off the supply voltage (Vdd), threshold voltage (Vtt), and sizing (W) to create more

energy efficient designs.

Using a Kogge-Stone adder, similar to the Han-Carlson and depicted in Figure

5-1, they first designed one with gate sizes optimized for speed and using the nominal

supply voltages and threshold voltages for the technology. Relevant to this thesis,

they looked at two things.

For a baseline, they took the timing figure for the optimized adder, relaxed it to

some extent, and then developed methods to optimize for minimum energy while still

meeting that timing by altering the supply, threshold, or sizing. For Vdd and W even

relatively small relaxations in timing could cause large drops in energy.

Additionally, they used a similar technique to optimize for minimum energy while

trading off two, or all three of the variables. Because the supply and threshold voltages

had not been previously optimized for the situation, substantial energy savings could
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Figure 5-2: Results of Power Optimizations with Bernoulli Inputs
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Figure 5-3: Changes in P Activity

be achieved even without any timing relaxation at all.

5.2 Changes and New Work

However, all this work was done assuming that each input to the adder was a p=.5

Bernoulli process independent from the other inputs.

Many aspects of the activity factors remain broadly similar between the original

activity map and the new revised map created with experimental data, but there are

several important differences. The first is the activity of the propagate nodes. While

in the original these began at fairly high activity factors but fell off rapidly as they

reached deeper into the Kogge-Stone tree, in the revised map they fall off much more

slowly due to the high correlation between neighboring bits.

By contrast the map of the generate activity is similar in shape overall, but reveals

the difference in activity factors much more strongly and shows clearly a difference

between the activity in the lower and higher bits.

Despite these substantial differences between the idealized inputs used above and

those observed using Pin, Figure 5-5 shows similar levels of optimization can be

achieved with the collected data to those that were achieved with the Bernoulli data.
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5.3 Results

Comparing Figures 5-2 and 5-5 the new optimizations preformed with the activity

maps derived from the Pin data seem to be much more power efficient, but a consid-

erable portion of that difference in power is in fact due to the activity map used for

testing rather than the optimizations themselves. In Figure 5-6 are the energy figures

for the old optimization using the Bernoulli data and the new optimization using the

Pin data, but with both evaluated with each set of data.

It appears that most of the roughly 25% more energy that the old optimization

uses is due to the properties of the map itself. There are differences in the performance

of the two optimizations - for the new data the old optimization uses between 3% and
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Figure 5-7: Energy Use Differences for Vd, Vt, and W optimization

3.5% more energy while for the old data the new optimization uses between 2.5% and

3% more energy. The differences between the maps themselves explain the majority

of the difference, however.

Using the correct activity map may have a relatively small effect on the optimiza-

tion itself but if a designer finds themselves facing a hard limit in terms of average

power dissipation the use of the Pin derived activity maps might still result in signif-

icant performance gains.

For a given power target the difference between the delay required by the old data

and the delay allowed by the new can vary from 10% to 30%, a far more significant

difference.
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