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ABSTRACT

The extracellular matrix (ECM) has been shown to be a significant source of hindrance to
the transport of macromolecules in solid tumors. This thesis shows that by limiting their
interstitial transport, the tumor ECM can reduce the efficacy of cancer therapeutics.
Furthermore, techniques for overcoming this transport barrier and improving the
effectiveness of existing cancer therapetuics are developed. Mathematical modeling was
utilized to characterize the distribution of a therapeutic herpes simplex virus (HSV)
vector in solid tumors. The model showed that the spread of virus following intratumoral
injection is severely limited by rapid binding and limited diffusion. Importantly, the
model demonstrates that an improvement in virus diffusion can enhance its distribution
significantly. In vivo multiphoton imaging of fibrillar collagen type I and injected HSV
vectors largely supported the model predictions. Injected viral particles could not
penetrate dense networks of fibrillar collagen. Both the initial distribution and subsequent
propagation of these replication-competent vectors were limited by collagen. Degradation
of tumor collagen with bacterial collagenase enhanced the distribution and efficacy of the
virus. To develop a technique that is clinically applicable, human collagenases were
screened for similar activity. Matrix metalloproteinase (MMP) -1 and -8 were identified
as viable candidates and tested for their ability to degrade collagen and enhance diffusion
in tumors. When overexpressed in tumors, neither MMP significantly altered collagen
content or diffusive transport. However, these MMPs have multiple matrix substrates and
were found to deplete the tumor of sulfated glycosaminoglycans (GAGs). This, in turn,
increased the hydraulic conductivity of these tumors, enhancing the distribution and
efficacy of infused oncolytic HSV. Genetic mutations were employed to enhance the
activity of these enzymes, but impaired intracellular processing and inactivating
autoproteolytic degradation reduced overall activity. Thus, our work demonstrates the
importance of the tumor extracellular matrix in regulating the distribution and efficacy of
cancer therapeutics. Methods to modulate both tumor collagen and sulfated GAGs are
developed to enhance interstitial transport and improve the treatment of solid tumors.
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Chapter 1: Background and Specific Aims



Introduction

Cancer is the second leading cause of death in the U.S., accounting for nearly a quarter of

all deaths in 2004. The American Cancer Society estimates that 559,650 Americans will

die from cancer this year and over 1.4 million new cases will be diagnosed (1). More than

85% of cancer patients have solid tumors. Traditionally, chemotherapeutics have been

used in combination with surgery and radiation to treat solid tumors. However, systemic

treatment with these non-specific chemical agents frequently causes considerable

morbidity. Novel therapeutics such as antibodies and viral vectors have recently been

developed to provide more targeted treatment. However, these therapeutics face transport

barriers not experienced by small molecule chemotherapeutics due to their larger size and

unique physicochemical properties.

In order for a cancer therapeutic to be effective, sufficient amounts must be delivered to

its target, often the cancer cells. There are various mass transfer barriers associated with

delivery of targeted therapeutics to tumor cells (2, 3). A therapeutic agent injected

intravenously first must distribute throughout the tumor microvascular space and

extravasate across the microvessel wall. Alternatively, these steps can be overcome by

direct injection into the tumor. However, the transport of intratumorally infused

therapeutics can be limited by extracellular matrix components. Fibrillar collagens may

impede uniform distribution by acting as structural barriers and glycosaminoglycans can

hinder fluid flow during infusion (4, 5).

Therapeutics delivered both locally and systemically then face barriers to transport in the

interstitial space of the tumor. Except in the tumor margin, interstitial transport is



meditated mainly by diffusion and not convection, a consequence of the uniformly high

interstitial fluid pressure within tumors (6, 7). While diffusion is relatively rapid for small

molecule chemotherapeutics, it can be a slow process for novel targeted therapeutics

which can be orders of magnitude larger. Hindered diffusion may limit the distribution

and thus effectiveness of these therapeutics. Fibrillar collagen I is one of the primary

constituents of the tumor extracellular matrix (ECM) and collagen I content and structure

have been correlated with limited diffusion (8-12). Modulating the tumor extracellular

matrix to improve the transport of therapeutics during and after intratumoral infusion is

the focus of this thesis.

Specific Aims

Hypothesis: Delivery of a matrix-modulating enzyme to the tumor interstitium can

improve the interstitial transport, distribution and efficacy of a macromolecular

cancer therapeutic.

Specific Aim 1: Develop a mathematical model to characterize the relative effect of

binding and diffusion on the distribution of a herpes simplex virus (HSV) vector in solid

tumors.

A mathematical model has yet to be developed to describe the relative role of binding and

diffusion on the distribution of HSV vectors in a solid tumor. Such a model will provide

us with a greater understanding of the physical underpinnings governing the distribution

of therapeutic viruses in tumors. Furthermore, it would provide us with an estimate of the



effect that improvements in diffusion would have on intratumor virus distribution, as well

as provide other targets for improving viral delivery.

Specific Aim la: Perform in vitro experiments to determine rate constants for binding

and degradation.

The rate constant for HSV binding to its cell surface receptor will be determined in vitro

for human cancer cells. Virus will be incubated with cells and the concentration of virus

remaining in the supernatant will be monitored over time. To determine the rate of

degradation, virus will be incubated with tumor cell conditioned media and the

concentration monitored over time.

Specific Aim lb: Develop a 1D model incorporating virus binding, diffusion and

degradation and analyze their relative roles in virus distribution.

Parameters obtained in Aim 1 a and from the literature will be used to generate a 1 D

model of virus distribution in a solid tumor. The scenario of direct intratumor injection of

the virus into the center of the tumor will be modeled to reflect experimental conditions.

The relative effects of binding, diffusion and degradation on virus distribution will be

assessed. A sensitivity analysis will be performed to determine how changes in tumor and

virus parameters affect the distribution of virus in the tumor.



Specific Aim 2: Determine the effect of bacterial collagenase on the distribution and

efficacy of an oncolytic HSV vector.

Fibrillar collagen has been shown to be the cause of severe diffusional hindrance of tracer

molecules in tumors and bacterial collagenase has been used to degrade collagen and

increase the diffusion coefficient of these tracers. This study intends to show that these

findings have relevance to cancer therapy by providing evidence that (1) fibrillar collagen

limits the effectiveness of a macromolecular cancer therapeutic by hindering its

interstitial transport and (2) bacterial collagenase can be used to enhance therapeutic

efficacy.

Specific Aim 2a: Determine how fibrillar collagen affects the distribution and efficacy of

intratumorally injected HSV vectors.

Human tumors will be grown in the dorsal skinfold chamber of mice and EGFP-labeled

HSV vectors will be injected intratumorally. Fibrillar collagen (second harmonic

generation (SHG)) and virus (EGFP) will be imaged simultaneously multiphoton

microscopy following injection. The effect of fibrillar collagen on virus distribution will

be quantified by image analysis. Fluorescently-labeled tracer molecules of different sizes

will be injected for comparison. For oncolytic viruses, imaging will be performed up to

two weeks following injection to observe virus replication and spread.



Specific Aim 2b: Assess the effect of bacterial collagenase on the distribution of

intratumorally injected HSV vectors.

Tumors will be injected with virus in combination with bacterial collagenase and imaged

as before. The effect of bacterial collagenase on initial virus distribution and subsequent

spread throughout the tumor will be assessed by image analysis.

Specific Aim 2c: Determine if bacterial collagenase can enhance the efficacy of

intratumorally injected oncolytic HSV vectors.

Tumors will be grown subcutaneously in the flank of mice. They will be treated with two

injections of either PBS, bacterial collagenase, oncolytic virus or oncolytic virus in

combination with bacterial collagenase. Tumor size will be measured following treatment

and the delay in tumor growth compared for different treatments. The effect of bacterial

collagenase on metastasis will also be assessed.

Specific Aim 3: Determine the effect of acute delivery of recombinant human

collagenases on tumor collagen, interstitial diffusion and the efficacy of oncolytic HSV

therapy.

In order to apply the matrix modifying technique clinically, human collagenases must

ultimately be used. Here we screen various human collagenases for their ability to

degrade collagen in vivo and improve the transport and efficacy of a therapeutic. As in

Aim 2, recombinant collagenases will be applied directly to tumors.



Specific Aim 3a: Screen human collagenases for the ability to degrade collagen in vitro

and in vivo.

Various human collagenases will be screened for their ability to degrade fibrillar type I

collagen in an in vitro assay. Promising candidates will be tested in vivo. Recombinant

human collagenase will be superfused onto the surface of tumors grown in the dorsal

chamber. SHG imaging will be performed at various time points after superfusion and the

total collagen content quantified by image analysis.

Specific Aim 3b: Determine the effect of recombinant human collagenases on interstitial

diffusion.

Recombinant human collagenase will be superfused onto the surface of tumors grown in

the dorsal chamber. At an appropriate time point following treatment (determined in Aim

3a), a fluorescently-labeled tracer molecule will be intratumorally injected. The diffusion

coefficient of the tracer will be measured with fluorescence recovery after

photobleaching (FRAP) and compared for different treatments.

Specific Aim 3c: Determine the effect of recombinant human collagenases on the efficacy

of oncolytic HSV therapy.

Tumors will be grown subcutaneously in the leg of mice. At a given size, tumors will be

treated with an intratumor injection of either PBS, oncolytic virus alone or virus in

combination with a recombinant human collagenase. Tumor volume will be measured

every several days following treatment and the tumor growth delay compared.



Specific Aim 4: Determine the effect of chronic delivery ofMMP-1 and -8 on the tumor

extracellular matrix, interstitial transport and the efficacy of oncolytic HSV therapy.

An alternative approach to delivering a collagenase to the tumor as a recombinant protein

is to express it in tumor cells. In practice, this can be achieved either by expressing

collagenase in tumor cells by stable transfection or by incorporating the collagenase gene

in the viral genome of the oncolytic vector. One advantage to this method is that the

collagenase is delivered chronically to the tumor, increasing the effective dose. We will

develop tumors and oncolytic viruses which express MMP-1 and MMP-8 (both found in

Aim 3a to be suitable enzymes). As these enzymes can degrade multiple ECM substrates,

the effect on collagen and other matrix components will be determined. Since chronic

expression of these enzymes may have profound effects on the structure and composition

of the tumor matrix, the effect on both diffusive and convective transport will be assessed

Specific Aim 4a: Generate tumors overexpressing MMP-1 and -8.

Tumor cells will be stably transfected with each MMP. MMP-expressing tumors will be

grown subcutaneously in the flank of mice. Tumors will be harvested and western blot

performed to confirm collagenase expression in vivo.

Specific Aim 4b: Determine the effect ofMMP-1 and -8 overexpression on tumor

extracellular matrix content.

MMP-expressing tumors will be grown in the dorsal chamber. When the tumors reach a

given size, SHG imaging will be performed and total collagen content will be quantified

by image analysis. Additionally, collagen and hyaluronic acid (HA) content will be



assessed with immunohistochemistry. MMP-expressing tumors will be grown

subcutaneously in the flank of mice. Tumors will be harvested, fixed and immunostained

for type I collagen and HA. Stained sections will be imaged and analysis performed to

determine the total collagen and HA content. The sulfated glycosaminoglycan (GAG)

content will be determined with a biochemical assay.

Specific Aim 4c: Determine the effect ofMMP-1 and -8 overexpression on tumor

interstitial transport.

MMP-expressing tumors will be grown in the dorsal chamber. When the tumors reach a

given size, a fluorescently-labeled tracer molecule will be intratumorally injected. The

diffusion coefficient of the tracer will be measured with FRAP and compared for

different collagenases. Hydraulic conductivity will be determined in each tumor type by

measuring the rate of fluid flow through tissue sections under an applied pressure

gradient.

Specific Aim 4d: Determine the effect of MMP-1 and -8 overexpression on the efficacy of

oncolytic HSV therapy.

MMP-expressing tumors will be grown subcutaneously in the leg of mice. For each

MMP-expressing and control tumor, the following growth delay assay will be performed.

At a given size, tumors will be treated with an intratumor injection of either PBS or

oncolytic virus. Tumor volume will be measured every several days following treatment.

The growth delay induced by oncolytic HSV treatment will be compared between MMP-



expressing and control tumors. If appropriate, histological analysis will performed to

determine the distribution of HSV particles in each tumor type.

Specific Aim 4e: Generate recombinant oncolytic HSV vectors which express MMP-1 and

-8 and determine the effect on therapeutic efficacy.

MMP-expressing oncolytic HSV vectors will be generated using homologous

recombination. The MMP-1 and -8 expression cassettes will be inserted in the ICP6 locus

of the HSV genome. MMP expression will be confirmed by western blot of tumor cells

infected in culture. Wild type tumors will be grown subcutaneously in the flank of mice

and will be treated with intratumor injections of each recombinant oncolytic HSV vector.

Tumor volume will be measured and the effect of MMP expression on growth delay

assessed.

Specific Aim 5: Generate constitutively active forms ofMMPs to enhance ECM

modulation in vivo.

Human collagenases of the MMP family are secreted as inactive zymogens that require

cleavage of their propeptide domains to become activate. Thus, insufficient activation in

the interstitial space (due to lack of appropriate proteases) may limit the collagen

degradation achieved. In this aim, truncated forms of MMPs are developed to bypass this

activation step and augment collagen degradation in tumors.



Specific Aim 5a: Generate truncated forms of each MMP which lack the propeptide

domain and test the ability of these truncated proteins to degrade fibrillar collagen.

Truncated forms of each MMP will be generated by PCR and subcloned into an

appropriate expression vector. 293ET cells will be transiently transfected and western

blots performed on the conditioned media to confirm expression and secretion of the

truncated MMP. An in vitro collagenase assay will be used to assess the activity relative

to the wild type enzymes.

Specific Aim 5b: Generate forms of each truncated MMP which contain stabilizing

mutations in the hinge region and test for the ability of these mutants to degrade fibrillar

collagen.

Active forms of MMPs may go through inactivating autoproteolytic degradation. The site

of intramolecular cleavage in is the hinge domain. Site-directed mutagenesis will be

performed on the truncated forms of each MMP (generated in Aim 5a) to stabilize the

recombinant enzymes. Mutations will be generated by PCR. 293ET cells will be

transiently transfected and western blots performed on the conditioned media to confirm

expression and secretion of the mutated MMPs. An in vitro collagenase assay will be

used to assess the activity relative to the truncated and wild type enzymes.



Background

Composition of tumor extracellular matrix

Solid tumors consist of two interconnected compartments: the malignant cells and the

stroma in which they are dispersed. Stroma is induced by tumor-host interactions and is

required for tumor growth and survival (13). It consists mainly of interstitial connective

tissue but also includes the blood vessels that provide the tumor cells with nutrients and

allow for gas exchange and waste disposal. The major components include leaked

plasma; proteoglycans (PGs) and glycosaminoglycans (GAGs); interstitial collagens

(types I, III, and V); fibrin; fibronectin; connective tissue cells such as fibroblasts; and

inflammatory cells (13).

Tumor stroma generation is attributed to the hyperpermeability of the tumor vasculature

(14). Plasma proteins, particularly fibrinogen and other clotting factors, extravasate and

rapidly clot, forming a gel of crosslinked fibrin (15). This provisional matrix entraps

extravasated plasma proteins and water. Furthermore, it stimulates the inward invasion of

endothelial cells and fibroblasts (16, 17), which results in the transformation of the

provisional matrix into a more highly cellular and vascular matrix (15). Structural

proteins such as interstitial collagens are synthesized, resulting in the mature collagenous

stroma.

Collagen type I is the major fibrous protein in the interstitial matrix and is produced by

host stromal cells in most tumors (15, 18). The type I collagen monomer is a 300 nm

long, 1.5 nm diameter protein consisting of three subunits, two aI chains and one all



chain, associated in a right-handed triple helix. Procollagen is discharged vectorially into

extracellular compartments to promote fibril formation in a desired location (19). N- and

C- proteinases cleave the propeptide segments forming tropocollagen (also called

collagen); this process leads to the formation of stable fibrils (20). Fibril diameters range

from 50-200 nm and lengths are up to several micrometers. Fibril assembly occurs in

fibril forming compartments and fusion of these narrow compartments can lead to the

formation of fibers (21, 22).

The tumor interstitial matrix contains several other components besides collagen. The

other major components of the tumor interstitial matrix include: hyaluronic acid (HA);

sulfated GAGs, which bind to PG core proteins; and fibronectin, which allows cells to

bind collagen via cell surface integrins (23). The hydrated gel of HA, together with

collagen, provides structural integrity to the matrix and resistance to compressive forces

(24, 25). PGs such as decorin and versican function to organize the matrix by binding to

collagen and HA, respectively (26). The interstitial matrix can be quite variable from one

tumor to another: while some have very little matrix material, others, such as

desmoplastic carcinomas of the breast and colon, generate excessive amounts of fibrillar

collagen and elastin that separate the tumor nodules (27, 28). In general, tumors contain

higher levels of GAGs and PGs than normal tissues (29, 30) and the PGs tend to be larger

and have longer GAG side chains (31, 32).

Tumor interstitial transport

This thesis focuses on the last mass transfer barrier for therapeutics targeted for cancer

cells: transport through the interstitial space. Therapeutics that have either transported



across the microvascular wall or have been injected directly into the tumor distribute in

the interstitium via convection and diffusion. However, it has been found that molecular

therapeutics do not distribute uniformly in tumors, with low concentrations reaching

tumor cells distant from the vasculature (33-37). There are two major reasons for this.

First, interstitial fluid pressure (IFP) is uniformly elevated in solid tumors, dropping to

lower levels only in the tumor periphery and surrounding tissue (38). This is caused by

both the increased permeability of blood vessels (39) and the lack of functional

intratumor lymphatics (6, 7), which lead to an accumulation of fluid in the tumor

interstitium. As a result there are almost no pressure gradients between the vasculature

and surrounding tissue and convection is negligible except at the tumor periphery (38, 40,

41). Interstitial transport of molecular therapeutics is therefore governed mainly by

diffusion. This is a much slower process, especially for large therapeutics such as

liposomes, viral vectors and proteins (Fig. 1.1).

Conventional Liposomes
Chemothe rapeutic s

Antibodies Virus

I . . . . .1 1I .1 1 .. ..I . . . . . . I I .. .1I
0.1 1.0 10.0 100 1000

Hydrodynamic diameter (nm)

Figure 1.1. Size distribution of cancer therapeutic agents. While conventional

chemotherapeutics are generally less than a nanometer in diameter, antibodies are an

order of magnitude larger and viruses and liposomes are two to three orders of

magnitude larger.



The second factor contributing to poor interstitial transport is the ECM - composed of

collagen, proteoglycans and glycoproteins - which provides resistance to fluid and solute

movement (42-44). The diffusion of solutes is considerably slower through connective

tissue than water (45). Fluid flow has also been shown to be hindered by GAGs in tissue

(4, 5). Measurements of the hydraulic conductivity of a variety of tissues has established

a negative monotonic relationship with total GAG content (43, 46). Degradation of the

non-sulfated GAG HA with hyaluronidase has been shown to increase hydraulic

conductivity in several tissues (4, 47). The sulfated GAGs have been implicated, as well.

The application of trypsin to deplete corneal stroma of sulfated GAGs resulted in a

greater increase in hydraulic conductivity than with hyaluronidase (47).

Based on these findings, resistance to fluid flow and diffusion has been traditionally

linked to GAGs. It was thought that fibrillar components such as collagen and elastin

have little influence since they form large pore networks. However, this interpretation

was challenged by the observation that tissue permeability is significantly lower than

measurements made in vitro with GAG networks of similar concentration. Subsequent

studies have shown that, indeed, matrix factors other than GAGs cannot be ignored in the

analysis of interstitial transport (43, 44, 48). Levick observed that fibrillar components

such as collagen may significantly influence transport in tissue because of hydrodynamic

drag and the tortuous nature of the flow path, as well as by affecting the distribution and

effective concentration of GAGs (43).

Tumor tissue may exhibit distinctive interstitial transport characteristics since tumor

progression involves a wound healing-like stage with extensive synthesis of ECM



constituents (14, 18, 30). The composition of the tumor interstitial matrix differs in both

composition and structure from that of the host and varies from one type to another (30,

49). The unique nature of the tumor interstitial matrix merits a specific study of tumor

tissue to determine the relative roles of various ECM components as barriers to diffusive

transport. The method used to measure diffusion coefficients has been fluorescence

recovery after photobleaching (FRAP) (50, 51). In this method, the effective diffusion

coefficient of a fluorescently-labeled tracer is measured by creating a photobleached

pattern with a laser and performing image analysis on the diffusion-mediated recovery of

the photobleached area. FRAP has been used to study diffusive transport in gels (12),

spheroids (9) and in vivo tumor tissue (10, 11, 51).

Netti et al. (10) measured the diffusion coefficient ofIgG in several tumors in vivo and

found that it correlated with collagen, but not GAG or HA, content. Histological data

showed that tumors with a low IgG diffusion coefficient had a well organized collagen

network compared to other tumors. Pluen et al. (11) subsequently measured the diffusion

coefficient of various probes in two tumor models (host sites): the dorsal chamber and

cranial window. As expected, they found that the effective diffusion coefficient varied

inversely with molecular hydrodynamic radius. Furthermore, they observed that the large

macromolecules (IgG, IgM, dextran 2,000,000 MW) diffused much faster in tumors

grown in the cranial window compared to the dorsal chamber for the same tumor type. In

agreement with the study of Netti et al., immunohistochemistry showed that dorsal

chamber tumors exhibit abundant fibrillar collagen type I while cranial window tumors

showed only sparse collagen. These studies suggested that tumor collagen composition

and organization significantly affect the penetration of macromolecules.



Further evidence that implicated tumor fibrillar collagen in diffusive hindrance was

obtained from an in vitro collagen gel study (12). Collagen gels were prepared at

concentrations similar to that found in various solid tumors and the diffusion coefficient

of a range of tracers was measured by photobleaching. When the diffusion coefficients

were adjusted to account for the tortuosity of the tumor interstitial space, they closely

matched the diffusion coefficients in tumors of comparable collagen content. This study

suggested that collagen can account for most of the diffusional hindrance in tumors. In

total, these interstitial diffusion studies provide evidence that collagen content and

structure play a significant role in regulating tumor interstitial diffusion and show that

collagen fibers are excellent targets for matrix modification for improved transport.

Matrix modification to improve interstitial diffusion

To validate that collagen plays a key role in diffusive hindrance and to provide proof of

principle that its modification can be used to improve interstitial transport, the diffusion

coefficient of tracer molecules has been measured following application of various ECM

degrading factors. First, dorsal chamber tumors were treated with either bacterial

collagenase or hyaluronidase to assess their ability to alter interstitial diffusion (10).

While bacterial collagenase treatment increased the diffusion coefficient ofIgG by

approximately two-fold in two tumor types, hyaluronidase had no effect.

Alexandrakis et al. (52) developed a method for measuring diffusion coefficients in vivo

using fluorescence correlation spectroscopy (FCS) with a multiphoton microscope. This

method has further shed light on the effect of matrix modification on interstitial diffusion.

In the FCS experiment, the fluctuations in fluorescence intensity detected in the two-



photon focal volume - a result of the random movement of fluorescent particles in and

out of the volume - are used to extract information about the diffusion of the molecules

(53, 54). FCS measurements revealed both fast and slow diffusing components for a

tracer injected into tumors, although this tracer exhibited only a single diffusion

coefficient in free solution. This result provided evidence of the two-phase nature of

diffusion in the tumor interstitium. Application ofhyaluronidase to tumors decreased the

fraction of rapidly diffusing molecules and decreased the diffusion coefficient of the slow

diffusing molecules. Bacterial collagenase treatment increased the proportion of the fast

diffusion component while not altering the diffusion coefficient of either component.

Recently, Brown et al. developed the novel technique of second harmonic generation

(SHG) imaging to dynamically image and quantify fibrillar collagen in vivo (8). They

used it to characterize changes in collagen induced by the treatment of tumors with the

peptide relaxin and correlated these changes in collagen to interstitial diffusion. SHG is a

scattering phenomenon exhibited by various anisotropic materials and has been shown to

be induced by collagen (55-57). Relaxin is a peptide hormone produced mainly in tissues

of the reproductive system and has been shown to have the ability to remodel the ECM

(58-60). Relaxin can modify the matrix through several processes. Relaxin decreases the

synthesis and secretion of collagen I molecules in various in vitro models (61, 62) and

has also shown to have the ability to increase the expression of various matrix degrading

molecules (61, 63-66). Brown et al. found that chronic treatment of a fibrous sarcoma

with relaxin increased collagen turnover: while total SHG signal did not change over

time, the length of existing fibers decreased. These changes led to -50% and 100%



increases in the diffusion coefficients of IgG and 2x10 6 molecular weight dextran,

respectively.

These studies further support the hypothesis that interstitial fibrillar collagen is

responsible for the limited diffusion of large macromolecules in fibrous tumors.

Furthermore, they demonstrate that collagen degradation can be used as a technique to

improve diffusive transport in tumors. This thesis aims to expand on these findings in two

respects: (1) show that improved diffusion can be extended to therapeutics and will lead

to improved efficacy of cancer treatment; (2) develop clinically relevant methods to

degrade tumor fibrillar collagen by testing various human collagenases.

Matrix metalloproteinases (MMPs)

The human matrix metalloproteinases (MMPs) are a family of endopeptidases that can

cleave nearly all ECM components, as well as other non-matrix proteins and cell surface

molecules (67-69). They are involved in both normal tissue remodeling during

development and maintenance, as well as in various diseases involving fibrosis or

excessive tissue destruction. The MMP family includes both membrane-bound and free

enzymes, and all bind Zn2+ at the catalytic site. Three of the secreted MMPs are capable

of cleaving collagen type I: MMP-1 (interstitial collagenase, collagenase-1) (70, 71),

MMP-8 (neutrophil collagenase, collagenase-2) (72) and MMP-13 (collagenase-3) (73).

The collagenases share a similar domain structure, consisting of an N-terminal signal

peptide, propeptide domain, catalytic domain, hinge region and C-terminal hemopexin-

like domain. The propeptide domain functions to keep the MMP in a latent zymogen



form: a cysteine sulfhydryl group in this domain acts as a fourth ligand for the catalytic

site zinc and must be removed to allow a water molecule to bind and cleave peptide

bonds of MMP substrates (74, 75). Activation occurs extracellularly and begins with

truncation of the propeptide domain, either autoproteolytically or by other MMPs and

proteases, followed by removal of the remaining propeptide fragment by the truncated

zymogen, itself, to form the mature enzyme (76). The collagenases all cleave the

individual chains of the triple-helical collagen I molecule at a specific peptide location,

Gly775-Leu/Ile776 (77-79), and appear to cleave all three chains together, with no

preference for individual chains (76). The collagenase activity of these MMPs is inhibited

by the secreted proteins tissue inhibitors of MMP (TIMPs) 1-4 in a stoichiometric fashion

(79-84). It should be noted that while these MMPs are primarily characterized as type I

collagenases, they are also able to cleave other extracellular matrix components including

proteoglycans, glycoproteins and other fibrillar collagens (69).

With their ability to degrade nearly all ECM components and many cell surface proteins

the MMPs have been implicated in various processes of cancer progression. Notably,

certain MMPs have been found at elevated levels in various cancers and have been linked

to the increased invasiveness and metastatic potential of cancer cells (85). They are

involved in several processes of metastasis, including migration through the tumor

stroma, invasion across the basement membrane and entrance into and extravasation from

blood vessels or lymphatics. Important to this work, MMP-1, -8 and -13 show elevated

expression in various cancers relative to surrounding non-neoplastic tissue (86-91) and

have been correlated with increased invasiveness and metastatic potential (87, 89, 92-94).

However, little evidence exists that these collagenases are directly involved in the



metastatic process. In fact, there is emerging evidence that MMP-8 may play an anti-

metastatic role (95, 96).

Oncolytic viruses

Oncolytic viral therapy is the use of a replication competent virus to selectively kill

cancer cells (Fig. 1.2). Antitumor efficacy is generally mediated by cell lysis or

cytotoxicity of viral proteins, but can also arise from the induction of an immune

response or expression of a cytotoxic transgene (97). The are generally two methods to

generate tumor cell selectivity: selective infection and selective replication (98). To

achieve tumor-selective infection, the surface of viral particles can be engineered to

display proteins which bind specifically to receptors on the surface of tumor cells. Tumor

cell selective replication is generally attained by either placing essential viral genes under

the control of a tumor-specific promoter or by mutating or deleting viral genes that are

are essential to viral replication in normal cells, but non-essential in neoplastic cells. The

two most extensively investigated viruses for oncolytic therapy are adenovirus and HSV

(98-100).



HSV is an enveloped, double stranded DNA virus which is non-integrating. Oncolytic

HSV vectors have been developed both by incorporating tissue-specific promoters (101)

and through the use of deletion mutations to inactivate proteins required for viral

replication in normal cells (102). First generation deletion mutants focused on enzymes

involved in nucleotide metabolism (such as ribonucleotide reductase (103, 104) and

thymidine kinase (102, 105)) or the neurovirulence factor y34.5 (106, 107). These vectors

provided proof of principle that safe and effective replication-competent HSV-1 vectors

could be developed. Second generation vectors have focused on incorporating multiple
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Figure 1.2. Oncolytic virus mechanism of action. The schematic shows the life cycle

of a recombinant, oncolytic vector which has been mutated such that it selectively

replicates in tumor cells but not normal cells. An oncolytic virus can infect a normal

cell (blue) but will not be able to produce progeny virus. Conversely, when an

oncolytic virus infects a tumor cell (purple), productive replication of progeny virus

will occur. Infected cells will be lysed and progeny virus can go on to infect

neighboring cells, continuing the cycle.
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mutations to balance safety and efficacy. The multimutated vector G207 (MGH1)

incorporates deletions of both copies of y34.5 and the inactivating insertion of the E. coli

LacZ gene into the ribonucleotide reductase gene ICP6 (108, 109). Recently, other HSV-

1 vectors have been developed based on the same strategy. MGH2 is identical to MGH1

except that the LacZ insertion is replaced by the insertion of a transcription cassette

containing the gene for enhanced green fluorescent protein (EGFP) and the prodrug

activating genes CYP2B1 and secreted human intestinal carboxylesterase (110). Terada et

al. developed a method to generate HSV-1 vectors similar to G207/MGH1 but with the

insertion of EGFP and any gene of interest (instead of LacZ) in ICP6 (111).

G207 has been shown to be quite potent and safe in preclinical studies (109, 112-114).

While developed for brain tumors, it has also been effective for other solid tumors

including melanoma, breast and liver (115). The combined treatment of G207 and the

chemotherapeutic cisplatin was effective for the treatment of head and neck squamous

cell carcinoma in an animal model (116). Based on these encouraging preclinical

findings, a phase I clinical trial was conducted with 21 glioma patients (117). All of the

patients tolerated the treatment and showed no serious adverse effects. Eight patients

showed reduction in tumor volume from 4 days to 1 month after treatment. G207 is

currently in a phase I clinical trial of malignant brain tumors.

Although recent clinical trials have demonstrated the potential of adenovirus and HSV as

oncolytic vectors in cancer therapy (118), the issue of poor distribution throughout the

tumor remains (35, 119). As evidence of this, multiple injections with fractionation of the

dose is often used to improve intratumor delivery, albeit with limited gains (120). While



vector distribution is often acknowledged as a significant factor in determining overall

treatment efficacy, few studies specifically address this issue. This thesis examines the

possibility of improving the transport and effectiveness of such vectors through

modulation of the tumor extracellular matrix.
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Chapter 2: Modeling of Herpes Simplex Virus Distribution in a

Solid Tumor

Portions of the chapter have been taken from:

W. Mok and R.K. Jain, "Modeling of Herpes Simplex Virus Distribution in Solid Tumors:
Implications for Cancer Therapy." In submission



Introduction

Viral vectors offer a promising approach to cancer treatment. Methods of antitumor

efficacy can include cell lysis, cytotoxicity of viral proteins, induction of an immune

response and expression of a cytotoxic transgene (1, 2). Oncolytic viral therapy -

treatment with viruses that have been genetically modified to selectively replicate in

cancer cells but not non-neoplastic cells - is a rapidly developing cancer gene therapy

platform that can exhibit each of these anti-tumor properties (3, 4). Two of the most

actively investigated viruses, adenovirus and herpes simplex virus (HSV), have

demonstrated systemic safety and efficacy in various clinical applications (5, 6).

While viral gene therapy vectors show remarkable biological specificity and activity for

the treatment of solid tumors, they suffer in comparison to conventional

chemotherapeutics in one main respect: intratumor distribution. Viruses are orders of

magnitude larger than small molecule chemotherapeutics (< 1 nm vs 50-200 nm) and

encounter severe transport limitations in the tumor interstitium. The limited penetration

of large vectors from the injection site or the vasculature has been well documented (7-9).

The tumor extracellular matrix most likely plays an important role in the distribution of

viral vectors within tumors (10, 11). In order to properly assess the therapeutic potential

of a viral cancer gene therapy vector - as well as devise optimal delivery methods - a

detailed understanding of the root causes of limited vector distribution is needed.

Mathematical modeling offers a useful method to explore this issue and guide

experimental strategies to improve viral vector distribution and thus efficacy. Several

models of oncolytic viral therapy exist in the literature (12-14). While highly informative,



these models focus on the role of various biological processes such as the immune

response and the cytotoxicity, infectivity and burst size of the virus. In addition, they

compare how different treatment/delivery schemes - manifested as initial intratumor viral

distribution - affect the ability to control tumor growth with oncolytic viral therapy. The

present investigation aims to address the more fundamental questions of how these initial

distributions arise and what physicochemical characteristics of the virus are responsible.

We consider the role of viral binding, diffusion and degradation and explore the potential

improvements in distribution with various modifications to both the virus and tumor.

Furthermore, while the previous models describe the behavior of adenoviral vectors, this

study focuses on HSV, which also shows great potential in tumor treatment.

Experiments are performed in this study to determine the rate constants for viral

degradation (via hydrolysis) and cell surface binding and the concentration of heparan

sulfate on the surface of tumor cells. Values for the volume and concentration of virus

following intratumor infusion and the effective diffusion coefficient of viral particles in

the tumor are estimated from our previous work (10, 15) and work described in Chapter

3. Other parameters have been estimated from the literature. The model shows that

intratumorally infused virus will spread minimally from the site of injection, a

consequence of rapid cell surface binding and limited diffusion. However, various

modifications to the tumor and virus can markedly improve the distribution of virus in the

tumor.



Model Development

The tumor is modeled as a sphere of radius R. Diffusion-reaction equations describe the

interstitial concentration of virus as a function of time and radial position. Diffusion in

the interstitial compartment, binding of HSV particles to cells and degradation of both

free and bound viral particles via hydrolysis are the processes described (Fig 2.1). Two

species are considered: free interstitial virus and virus bound to cell surfaces.

binding

diffusion

degradation

~iCI

Figure 2.1. Schematic diagram of model. The tumor is modeled as a sphere. Initially

virus is uniformly distributed in a spherical volume at the center of the tumor. Over

time, virus spreads into the adjacent space. Three processes are considered: (1)

association and dissociation of virus and cell surface heparan sulfate; (2) degradation of

free and bound virus; (3) diffusion of free virus. At baseline conditions, HSV particles

spread minimally from the initial injection volume due to rapid binding and slow

diffusion. However, the spread of virus into the adjacent space can be enhanced by

--- -- o



HSV binding to the cell surfaces and subsequent internalization is not mediated by a

simple single ligand-single receptor interaction. Rather it is a multi-step process which

involves several viral envelope glycoproteins (16). Thus assumptions were made to

facilitate mathematical modeling. Cell surface binding has been found to be primarily

mediated by the interaction of the viral glycoproteins gB and gC with heparan sulfate

(17-19). A comparison of binding affinities (20, 21) and separate mutant virion analyses

(22, 23) suggest that gC binding to heparan sulfate is the primary mechanism for cell

surface attachment of HSV. Thus we have modeled the binding of HSV to cells as an

interaction between the glycoprotein gC and cell surface heparan sulfate. A second

ligand-receptor interaction (gD-HVEM) facilitates internalization. Because the details of

internalization are not well-understood, the internalization process was not included in

the present model.

The concentration profile for free (interstitial) virus and bound virus are given by

ac, _ D r (r2 aC, _ konC,(CH -aCB) kC -kdC I  (1)
at r2 ar or )

aCB koC, (CH - aC,)Sk C,-dB (2)8t

either decreasing the binding affinity of HSV for heparan sulfate (e.g. via modifications

to viral surface glycoproteins) or increasing diffusive transport (e.g. via modulation of

the extracellular matrix). Furthermore, a high enough dose of virus can saturate

receptors at the center of the tumor and promote diffusion outward.



where C, and CB are the concentrations of free virus and bound virus, respectively (M); t

is the time (s); r is the radial distance (cm); D is the effective diffusion coefficient of

virus in the interstitial space (cm2s-); kc,, is the second order rate constant for binding of

free virus (MlS-1'); koyf is the first order rate constant for dissociation of bound virus from

the cell surface (s-'); 4 is the volume fraction available to virus in the tumor; CHS is the

concentration of cell surface receptors (M); a is the number of receptors sterically

blocked by the binding of each viral particle; and kd is the rate constant for degradation of

the virus (s-'), assumed to be the same for both bound and free virus.

The boundary conditions are specified by spherical symmetry at the center of the tumor

and a virus sink at the edge of the tumor:

CI 0 at r=O
ar

CI =O at r=R.

The initial conditions are

C, = Co for r < p

C, =O for r > p

with no bound virus throughout the tumor. These conditions reflect a uniform initial

concentration of virus in the center of the tumor following direct intratumor injection, a

common approach in the treatment of solid tumors (24). The injection volume is spherical

with a radius ofp.



The differential equations were non-dimensionalized by incorporating the following

variables

r
R=
R

Dt
S=

R
2

CI
I-0

OB = CB

Co
0O

Terms were then grouped into three Damkohler numbers relating the rates of reaction and

diffusion:

koR 2CHsDa =
" 0

kR 2
Daff -

D
kdR2Dad =

D

Equations (1) and (2) were thus recast as

s, I 2a 72 a -D"a -n"O-a'O9)+ DaoffoB(-Da
as ?7 2 a,7 o7 - 0

aOB =DaoO (1 -a'9OB )- DaofB -Dad OBas

where a'-- a C

CHS

The differential equations (3) and (4) were solved simultaneously using a numerical finite

difference method in Matlab.



Parameter Estimation

Choice of Tumor and Initial Viral Distribution

The baseline parameter values for the model are given in Table 2.1. As we are interested

in determining the transport limitations specifically in high collagen tumors, we used as

our model tumor HSTS26T, a human soft tissue sarcoma which we have previously

shown has elevated levels of collagen (11). The tumor radius was obtained from our

previous studies (25, 26). The radius of initial viral distribution into a fibrous tumor was

measured in our previous work (10). In that study the area of initial viral distribution was

quantified by multi-photon imaging of fluorescently-labeled HSV vectors at the injection

site.

Table 2.1: Baseline model parameters

Symbol Definition
D Diffusion coefficient
kon Association rate constant
koff Dissociation rate constant
kd Degradation rate constant
Co Initial virus concentration in injection volume
R Radius of tumor
p Radius of initial viral injection
<; Volume fraction of tumor accessible to virus
CHS Heparan sulfate concentration
a Heparan sulfate molecules per bound virus

Value
5E-10 cm s
5E3 M -'s-1
8E-3 s-1

4.8E-5 s-'
1.27E-9 M
5E-2 cm
2.5E-2 cm
0.05
1.74E-5 M
1E3

I



Estimation of Transport Parameters

The effective diffusion coefficients of particles the size of HSV have not been measured

in high collagen tumors. However, we previously measured the diffusion coefficient of

particles up to -40 nm diameter in fibrous melanoma xenografts and of-150 nm

diameter liposomes in tumors with relatively little collagen (15). By extrapolation, the

effective diffusion coefficient of HSV particles in tumors with high collagen content is

5x1 0- 10 cm2s-1. For validation we also estimated the diffusion coefficient based on the

effective medium model for hindered diffusion of a solid sphere (27, 28). In separate

studies we have previously found the Darcy permeability (K) of HSTS26T tumors to be 3

nm2 (11) and 50 nm2 (29). We should note that the Darcy permeability of collagen gels

with similar collagen content to HSTS26T tumors (30 mg/ml interstitial matrix) was

found to be 40 nm2 after correction for the effect of cells (30). Assuming the diffusion

coefficient of HSV particles in solution is equivalent to that of similarly sized liposomes,

this leads to calculated diffusion coefficients of 2xl0 -9 cm2s-1 (K = 50 nm2) and 2x10 -l0

cm2 s (K = 3 nm2). Thus, our extrapolated value from the in vivo data seems reasonable.

Estimation of Kinetic Parameters

We estimated the rate constant for degradation of HSV particles in the tumor interstitium

by measuring the rate of degradation in HSTS26T conditioned media and fitting to a first

order kinetic model (Fig. 2.2). Briefly, replication competent HSV (MGH2) particles

were incubated with 24 hour conditioned media from HSTS26T cells at several

concentrations at 370 C and pH 7.4. At various time points the media was frozen in a dry

ice/ethanol bath. The concentration of viable viral particles at each time point was



determined by titrating each sample with HSTS26T cells. The rate constant for

degradation was estimated by fitting the data to a first order rate equation. Incubation was

performed in duplicate and titration of both samples in triplicate, and the average values

were used in the analysis. It appears that proteins secreted by tumor cells can degrade

HSV since the half-time for degradation is -4.25 hrs when incubated with conditioned

media, as compared to -24 hrs when incubated with PBS.

The cell surface heparan sulfate concentration was determined experimentally for

HSTS26T cells using a DMMB dye assay according to the manufacturer's protocol

(Biocolor, Newtownabbey, Ireland). To determine the number ofheparan sulfate



molecules blocked by the binding of a single viral particle to the cell surface, we first

needed to determine the number of viral particles that can bind to a single cell. We

modeled viral particles and cells as spheres of 150 nm and 10 /#m diameter, respectively,

and assumed simple cubic packing of virus on the cell surface. This analysis showed that

that virus, rather than receptor, is limiting for HSV binding to cells (2.25x1 04 viruses/cell

vs. 1.0x107 heparan sulfate molecules/cell). While simple cubic packing most likely

cannot be achieved due to steric effects and the presence of other proteins on the cell

surface, virus internalization occurs very rapidly (tl/2 minutes) (31) and frees space on

the cell surface for other HSV particles to bind. As a conservative estimate, the calculated

value for the number of viral particles that can bind a single cell was reduced by a factor

of 2. The number of heparan sulfate molecules blocked by a single binding event was

then estimated based on the total amount of heparan sulfate per cell.

The rate constant for dissociation of bound virus from cell surface heparan sulfate was

estimated from a kinetic analysis of the binding of soluble gC to immobilized heparan

sulfate using surface plasmon resonance (20). The kinetic data fit well with a 1:1 model

(one molecule of gC binding to one molecule of heparan sulfate). The dissociation rate

constant for this process was measured at 250C. In order to adjust to the physiological

temperature of 370C, we estimated the effect of temperature on the binding rate constant

using published kinetic analyses of a variety of other proteins (32-35). From these data

we assumed an increase of-1.0 in ln(koff/T) for the temperature change of interest. While

Rux et al. measured the kinetic rate constant for individual gC molecules, we applied

them to HSV particles. Based on the spherical nature of the HSV particle, we assumed



that its attachment to the cell surface occurs at the pole, due to the interaction of a single

gC molecule with heparan sulfate.

While Rux et al. also measured the association rate constant for binding of soluble gC to

heparan sulfate (20), it was difficult to convert this value to a rate constant for HSV

particles. It is not clear whether the affinity of viral particles scales with the number of

gC molecules on its surface. To more accurately estimate the association rate constant we

experimentally assessed the binding of HSV particles to HSTS26T cells in solution (Fig.

2.3). Briefly, replication competent HSV particles were incubated with HSTS26T cells in

suspension with gentle agitation. At various time points, cells were pelleted by

centrifugation and the supernatant immediately collected and frozen in a dry ice/ethanol

bath. The concentration of viral particles at each time point was determined by titrating

with HSTS26T cells. The rate constant for degradation was estimated by fitting the data

to a second order rate equation.
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Estimation of Volume Fraction and Viral Concentration

There exists no measurement of the volume fraction of HSV particles or other similarly

sized particles in tumors. However, Krol et al. developed an ex vivo method to measure

the volume fraction in tumors and determined the value for dextrans of various sizes (36).

We estimated the volume fraction by using the value they measured for the largest

dextran (2x1 06 MW) in subcutaneous MCA-R fibrosarcomas.

The initial intratumor viral concentration is taken from our experiments performed with

direct injections of the oncolytic HSV vector MGH2 to treat a fibrous melanoma (10).

The concentration of virus in the tumor can be estimated since both the viral dose, 1x10 6

pfu (plaque forming units), and the volume of virus distribution - as determined by

imaging of the fluorescently-labeled viral particles directly after injection - are known

(see Chapter 3). It is important to note that pfu is not a direct measure of total number of

viral particles. In the assay for determining pfu, plaque formation depends on multiple

steps beyond simply binding and internalization of the viral particle. Thus, not every

viable HSV particle (as defined in this model) will lead to plaque formation. The total

Figure 2.3. Estimation of association rate constant. HSV particles were incubated with

HSTS26T cells in suspension with gentle agitation. The concentration of unbound

virus was determined at various time points. The data was fit to a second order kinetic

rate equation to estimate the rate constant for association. Viral degradation and

dissociation were ignored in this model. In the fit equations, the exponential factor is

given by the product of the association rate constant and the concentration of receptors.



number of HSV particles can range from 3 to 100 times the pfu, as determined by PCR

and PicoGreen staining analysis of wild type HSV (P. Grandi, personal communication).

Clearly, this will be dependent on the experiment, cell line and virus preparation. As an

approximation, we have estimated the total viral concentration from the pfu by using a

factor of 50.

Baseline Simulation

Using the baseline values, the Damkohler numbers for association (Daon), dissociation

(Daoff) and degradation (Dad) were calculated. These numbers provide a ratio of the time

scale for diffusion relative to each of these three processes. All three Damkohler numbers

are much greater than 1 (Da,, = 5.6 x 106, Daff = 2.6 x 104, Dad = 1.5 x 102), signifying

that the processes of binding and degradation occur much more rapidly than diffusion.

The dimensionless free and bound virus concentration profiles shown in Figs. 2.4A,B

reflect this. The concentrations have been normalized to the initial concentration of virus

in the injection site and the radial dimension is normalized to the overall tumor radius

(with 0 being the tumor center, 0.5 being the edge of the initial injection volume and 1

being the tumor edge). Overwhelmingly the virus remains bound to cell surfaces rather

than free in the interstitial space, with nearly three orders of magnitude more virus bound

than free at any time. Over time, the virus degrades (Fig. 2.5) and by 12 hours only -~13%

of the initial amount is left in the tumor. Very little diffusion into the adjacent tumor

space is observed, with only 4% of the remaining virus beyond the initial injection

volume at 24 hrs. To confirm that the distinctive profile is a consequence of rapid binding

and gradual degradation, the model simulation was also performed without degradation



(Fig. 2.4C) and without both degradation and binding (Fig. 2.4D). These concentration

profiles are consistent with this understanding of the viral dynamics.

Bound Virus Spatial Profile

Dimensionless Radial Position

Dimensionless Radial Position

Dimensionless Radial Position

Free Virus Spatial Profile

0 0.2 0.4 0.6 0.8
Dimensionless Radial Position

Figure 2.4. Spatial profiles for free and bound virus using baseline parameter values.

Virus concentrations have been normalized to the initial free viral concentration

throughout the injection site. The radial position has been normalized to the tumor radius.

(A) Bound virus spatial profile. (B) Free virus spatial profile. (C) Free virus spatial

profile from simulation without degradation term. (D) Free virus spatial profile from

simulation without both degradation and binding terms.
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Total Dose - Bound Virus Inside

Sensitivity Analysis

Next, we performed a sensitivity analysis to determine the relative importance of each

parameter and to gauge the ability of various virus and tumor modifications to improve

intratumor distribution and therapeutic efficacy (Table 2.2). To compare different

simulations, various indices were considered 12 hours following the initial "injection".

The total number of free and bound viral particles in both the initial distribution volume

("virus inside") as well as the adjacent, initially uninfected region ("virus outside") was

calculated. The values normalized to the baseline simulation for each of the four species

are also given, serving as a better measure of the relative change induced by each

modification. We assessed the amount of viral spread from the initial injection site by

calculating the volume of adjacent space which contains bound virus ("volume spread").

We chose as our threshold bound virus concentration 1% of the initial injection

concentration (1.27x1 0-11M). This concentration corresponds to ~500 bound viral

Time (Hrs)

Figure 2.5. Total dose of bound virus in the initial injection volume over time. The

dose has been normalized to the initial concentration in the injection volume.



particles per cell, a number which likely leads to successful infection. The volume spread

was calculated at each time point and the maximum value was chosen to best reflect the

volume of the tumor that is infected with virus. A description of each of the simulations

follows.



Table 2.2. Sensitivity analysis"

Virus Inside Virus Outside Virus Inside Virus Outside Spread
(# viral particles) (# viral particles) (Normalized) (Normalized) Volume

(Norm.)
Free Bound Free Bound Free Bound Free Bound

Baseline 2.8E+04 6.1E+06 7.2E+02 1.6E+05 1.00 1.00 1.00 1.00 1.00

Dao, x 10 2.9E+03 6.3E+06 3.OE+01 6.5E+04 0.10 1.02 0.04 0.42 0.42
Da,, / 10 2.6E+05 5.6E+06 1.9E+04 4.2E+05 9.15 0.92 27.09 2.71 3.01
Da,, / 100 1.6E+06 3.6E+06 3.6E+05 7.8E+05 57.62 0.58 497.68 4.98 7.44
Dad x 4 5.6E+01 1.2E+04 1.4E+00 3.1E+02 0.00 0.00 0.00 0.00 0.56
Dad / 3 1.2E+05 2.4E+07 2.9E+03 6.3E+05 4.09 3.98 4.06 4.02 1.75
D x 10 2.7E+04 5.8E+06 2.1E+03 4.5E+05 0.95 0.95 2.88 2.88 3.17
Co x 10 3.1E+05 6.1E+07 8.9E+03 1.9E+06 10.83 9.95 12.31 11.97 1.90
Co x 100 9.5E+06 4.8E+08 1.1E+06 1.4E+08 331.94 78.32 1493.53 906.18 8.63

x 3 8.3E+04 6.OE+06 3.5E+03 2.5E+05 2.92 0.98 4.84 1.61 1.75
/ 3 9.6E+03 6.2E+06 1.5E+02 9.9E+04 0.34 1.01 0.21 0.64 0.71

D x 10 and Da,, / 10 2.2E+05 4.8E+06 5.9E+04 1.3E+06 7.75 0.78 82.24 8.23 10.28
D x 10 and Da,, / 100 9.5E+05 2.1E+06 1.OE+06 2.3E+06 33.47 0.34 1449.71 14.53 26.87
* Values shown are for time = 12 hours following the beginning of the simulation, except for spread volume
# Values for changes in Dao,f are nearly equivalent to values for opposite and proportional changes in Dao



Binding Kinetics

We first examined the effect that changes in virus binding characteristics would have on

its distribution. Since virus binding dominates in the baseline simulation, we analyzed the

extent to which a decrease in affinity to heparan sulfate would improve distribution. A

ten-fold decrease in the affinity increases both the amount of bound virus in the adjacent

space and the spread volume by nearly 3-fold (Fig. 2.6A). This change in the affinity

constant was chosen to reflect possible changes to the virus, itself. Rux et al. found that

deletion of residues 33-123 of gC results in an order of magnitude increase in its KD (20).

Furthermore, it has been shown that the gB-heparan sulfate interaction is the second

strongest between HSV and cells, with a binding affinity that is an order of magnitude

lower than for gC (20, 21). Thus a 10-fold decrease in the affinity constant approximates

the change that would occur if gC is modified or deleted.

Beyond gC and gB, the interaction of other viral envelope glycoproteins with cell

surfaces is less well studied. It has been found that the binding affinity of gD with its cell

surface receptor is an order of magnitude lower than for gB-heparan sulfate, and two

orders of magnitude lower than for gC-heparan sulfate (37). Thus we examined the effect

of a two orders of magnitude decrease in the affinity, which would reflect changes to both

gC and gB. This leads to a greater than 7-fold increase in the spread volume (Fig. 2.6A).

As expected the amount of bound virus in the initial injection volume decreases as a

greater fraction of virus is free and diffuses out of this volume. However, there is still

-102 bound viral particles per cell in this region, suggesting that we are not at the point of

diminishing returns for overall cell infection.



Next we assessed the effect of a ten-fold increase in affinity. The spread volume

decreased by more than a half, with a greater than two-fold decrease in the amount of

bound virus in the adjacent region (Fig. 2.6A). When changes to the dissociation constant

(i.e. Daoff) were analyzed, we found proportional and opposite effects when compared to

changes in the association constant (i.e. Da,,). Thus, to avoid repetition these results are

not displayed in Table 2.2. We should also note that a change in Da,, can reflect a change

in either k,, or CHS. Thus, binding affinity can be reduced by changing the virus, as

mentioned above, or by finding tumors that contain less heparan sulfate receptors for cell

surface binding.
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Figure 2.6. Effect of parameter modifications on bound virus concentration and spread

volume. The values for the total concentration of bound virus outside the initial

distribution volume and the spread volume are shown, normalized to the values in the

baseline simulation. Values are for 12 hours after the beginning of the simulation for the

amount of bound virus outside and are maximum values for volume spread. (A) Effect of

changes in the binding kinetics on virus distribution. (B) Effect of changes in the

degradation rate constant and diffusion coefficient on viral distribution.

Degradation

Our experiments showed that the t/ 2 for degradation of HSV particles at 370C in tumor

cell conditioned media is -4 hrs, while t/12 - 24 hrs in PBS. However, these in vitro

experiments may not completely capture the conditions in vivo, where the concentration

of extracellular factors may be different. It is therefore important to analyze the

I

I I



sensitivity of the model to this parameter. As this model does not take into account viral

internalization - a process that occurs on the order of minutes - few insights can be

drawn from changes in total bound virus induced by altering Dad. Rather it is more useful

to assess changes in the spread volume, which is affected by degradation since diffusion

of free virus is a slow process. When the virus half life is decreased to 1 hr, nearly all free

virus is degraded by 12 hrs. The maximum spread volume is only several microns from

the injection volume, and the spread volume is half of the baseline value (Fig. 2.6B).

Conversely, increasing the virus half-life by a factor of 3 led to a 4-fold increase in the

amount of virus in each compartment. Interestingly, the distribution was increased less

than 2-fold (Fig. 2.6B), suggesting that while degradation occurs quickly, the limited

spread of the virus is mainly a consequence of rapid binding.

Diffusion

Altering the diffusion coefficient can have an effect on the distribution of virus in the

tumor. Our previous work has shown that the effective diffusion coefficient in a tumor

correlates negatively with collagen content (11). In this model, we have chosen our

effective diffusion coefficient to reflect transport in a collagen-rich fibrosarcoma. Thus

we have chosen a particularly low value. Based on a comparison of the diffusion

coefficient of various tracer molecules in tumors with high and low levels of collagen

(15), we believe that a 10-fold increase in D more accurately reflects the conditions in

less fibrous solid tumors. Furthermore, based on previous work we estimate that this

increase in diffusion coefficient is possible for large particles such as HSV in high

collagen tumors with the addition of collagen-modulating factors (11, 38). An order of



magnitude increase in the diffusion coefficient results in a 3-fold increase in both the

amount of virus outside the initial injection volume and the spread volume (Fig. 2.6B).

Thus, the model predicts that an oncolytic HSV vector would be more effective in

treating a low collagen tumor than a high collagen one. It also suggests that matrix

modification may be a useful method to improve viral vector distribution in those tumors

with a significant amount of collagen and hindered diffusion.

Volume Fraction

The volume fraction of tumor accessible to virus has the potential to affect therapeutic

response since it influences virus accumulation and distribution in the tumor. The

variation in volume fraction for particles the size of HSV has not been determined in

different tumors. However, the interstitial volume of tumors - which plays an important

role in determining the available volume fraction - has been measured in various tumors

and found to range from 10-60% (39-41). In a fibrosarcoma with an interstitial fluid

space of -50%, the accessible volume fraction for large macromolecules (molecular

weight > 105) was found to be less than 0.1. Based on these data, to approximate various

tumors we decided to run the simulation with a 3-fold increase (0 = 0.15) and 3-fold

decrease (4 = 0.017) in the volume fraction. A 3-fold increase in the volume fraction

results in a -60% increase in the amount of bound virus outside the initial injection

volume and the distance spread. In contrast, a 3-fold decrease reduces the spread volume

by nearly a third (Table 2.2). These results show that variations in volume fraction

between tumors may have an effect, but it may not be overwhelming. Relative to other

parameters, viral distribution appears insensitive to this parameter.



Initial Dose

We analyzed the effect of input viral dose. A 10-fold increase in initial viral

concentration resulted in nearly equivalent increases in viral concentrations in each of the

compartments, and only a two-fold increase in the spread volume (Table 2.2). A slightly

greater than proportional increase in the amount of virus outside the initial distribution

volume was observed, suggesting that we are approaching the viral concentration

necessary to saturate receptors. Indeed, for a 100-fold increase in the viral concentration,

nearly 90% of the virus inside the injection site is unbound (Fig. 2.6A). The virus

behaves like a moving front of bound virus, with degradation occurring over time. The

amount of virus outside the initial injection volume has increased by three orders of

magnitude compared to the baseline simulation and the volume spread has increased by

more than 8-fold.

These results suggest that one simple way to improve viral distribution and perhaps

efficacy is to increase the dose to saturate receptors and promote diffusion from the

injection site. However, the model does not take into account loss of virus into the

systemic circulation during infusion. Based on studies with adenoviral vectors, this may

reduce the actual dose within the tumor by as much as an order of magnitude (42).

Furthermore, in this work we have modeled relatively small tumors found in certain pre-

clinical experimental models (1 mm diameter). Scaling up to human tumors would

require an increase in dose of at least an order of magnitude. Taking these into

consideration, at least a four orders of magnitude increase in dose would be necessary to

achieve the improvements in distribution shown in Fig. 2.7A. This dose would be orders



of magnitude beyond what has been used in human clinical trials (6). Such a high dose

would likely compromise the safety of an oncolytic HSV vector and would most certainly

be impractical to obtain, given the relative difficulty of purifying HSV at high titers.
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Figure 2.7. Spatial profiles for bound virus using adjusted parameter values. (A) Model

simulation with the initial dose increased 100-fold, while all other parameters are kept at

their baseline value. (B) Model simulation with the diffusion coefficient increased by a

factor of 10, and Da,, decreased by a factor of 100, with all other parameters kept at their

baseline value.

Implications and Limitations

Several limitations remain in the present model: (a) it does not take into account binding

of the virus to extracellular matrix components (including heparan sulfate not on the cell

surface) or other cell surface molecules and receptors; (b) it lacks a complete description

of virus clearance, particularly via the systemic circulation, which has been found to be



quite significant for intratumorally injected virus; (c) it ignored downstream events such

as bound virus internalization and replication; (d) it assumes a uniform distribution of

virus in the center of the tumor following intratumor injection, ignoring the effects that

matrix structures and infusion conditions can have on convective delivery during this

process.

Nevertheless, the model has exposed some important characteristics of intratumor vius

transport. The simulations show that rapid binding and impaired diffusion limit the

distribution of virus in the tumor. After injection into the interstitial space, virus will

quickly bind to cells. Even in the absence of binding, diffusion is a relatively slow

process due to the large size of the virus. It has been observed experimentally that the

spread of virus from the injection site can be quite limited (10). This model offers one

possible explanation for this phenomenon for HSV. This finding has significant

implications for the treatment of tumors with replication-competent HSV vectors, such as

oncolytic vectors. Progeny virus that are released into the extracellular space following

cell lysis will be subject to the same limited interstitial transport and will be able to infect

cells only in close proximity. Using multiphoton imaging we have observed the

propagation ofoncolytic HSV in individual tumor xenografts and found that progeny

virus typically infects only neighboring cells (10). The model results are consistent with

this observation, although direct spread from cell to cell through junctions likely

contributes, as well (43).

Since the initial virus distribution in the tumor is critical for an oncolytic virus to control

tumor growth, this also points to the importance of the method of viral delivery. For a



direct intratumor injection, the rate and volume of infusion, tumor permeability and

hydraulic conductivity and the number of injection sites will all be key parameters. Any

choice of parameter values which improves the initial distribution may enhance treatment

outcome. Indeed, a study has already shown that fractionated injection of an oncolytic

HSV in multiple sites is advantageous to a single injection (44). Bobo et al. showed that

the distribution of large molecules in the brain could be improved by prolonged infusion

(45). They also showed that the volume of distribution increased linearly with the

infusion volume. However, enhancing the distribution of therapeutics by optimizing

infusion parameters may not be a viable option for many tumors. Boucher et al. found

that even at low flow rates, albumin infused in the center ofa fibrosarcoma distributed

asymmetrically from the source (46). Fluid accumulated in necrotic regions and at the

surface of the tumor, with channels of fluid connecting these regions. The extreme

stiffness of these tumors - likely due to the composition and structure of the extracellular

matrix - appeared to contribute to the difficulty in obtaining uniform and widespread

delivery. Given this observation, an alternative method to enhance intratumoral infusion

may be to increase the permeability and hydraulic conductivity of the tumor. In Chapter 5

we use the matrix degrading proteases matrix metalloproteinase-1 and -8 to modify the

tumor extracellular matrix, increase hydraulic conductivity and enhance the distribution

and efficacy of intratumorally injected oncolytic HSV vectors.

The model suggests that certain tumors may be more responsive to oncolytic HSV

therapy than others, based on such factors as the concentration of heparan sulfate and the

composition of the extracellular matrix (which determines the effective diffusion

coefficient and accessible volume fraction). It also points to various methods of virus and



tumor modification which can enhance the efficacy of oncolytic HSV. Two such

modifications are (a) a decrease in the binding affinity via alteration of the viral envelope

and (b) an increase in the effective diffusion coefficient of virus through degradation of

tumor collagen. A model simulation with both of these modifications shows significantly

improved virus distribution (Fig. 2.7B). While modified HSV vectors with mutations in

gC and gB have been developed (22, 23, 47), these changes have yet to be incorporated

into oncolytic vectors. Whether these changes can improve viral spread and enhance

efficacy is an exciting question that we hope will be answered shortly. A second

approach to overcome rapid binding and enhance diffusion is to pre-block virus binding

sites in the tissue, similar to the approach previously developed for antibodies (48). In

theory, virus particles would diffuse farther but then compete for binding sites and

eventually infect cells distant from the injection site. This method has the advantage of

not altering the intrinsic affinity of the virus, which may have unforeseen consequences

and decrease infection efficiency. As for modulation of tumor fibrillar collagen, we

validate our predictions experimentally using bacterial collagenase in Chapter 3 (10). The

challenge with this technique is finding clinically relevant ways to degrade the matrix

while limiting the negative effects these changes may have on tumor cell invasion and

metastasis.
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Chapter 3: Enhancement of Viral Vector Delivery with Bacterial

Collagenase
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Introduction

Oncolytic vectors, mutant viruses that replicate preferentially in tumor cells, have shown

promise in various preclinical tumor models (1, 2). Oncolytic viral therapy employs a

novel method of tumor destruction mediated by viral replication and selective lysis of

cancer cells (3, 4). The creation of more virus by infected tumor cells and resultant

infectious spread improves over passive forms of therapeutic delivery (5, 6). Early phase

human trials of G207, an oncolytic herpes simplex virus (HSV) vector, for treatment of

recurrent malignant glioblastomas have demonstrated both safety and efficacy (7).

However, the inability to efficiently propagate and infect cells distant from the injection

site limits the capacity of oncolytic viruses to achieve consistent therapeutic responses

(8). In this study, we show that fibrillar collagen, the major barrier to macromolecular

transport in the tumor interstitium (9-11), also limits viral distribution within tumors.

Direct degradation of the fibrillar collagen network improves viral distribution, leading to

improved oncolytic viral therapy.

Materials and Methods

Viral vectors

The HSV-1 recombinant viruses used in this study were the replication defective mutant

Gal4 (ICP4-, lacZt; from Neal DeLuca, University of Pittsburgh (12)) and MGH2 (ICP6,

y34.5-, eGFP+; from E. Antonio Chiocca and Yoshi Saeki, The Ohio State University

(13)). MGH2 is a replication conditional virus attenuated by the deletion of two



nonessential viral gene, ICP6 and y34.5 (14). Virus replication is impaired in non-

dividing cells but not tumor cells.

Gal4 and MGH2 stocks were propagated in E5 and E26 cells (from Neal DeLuca (15)),

respectively, which supply the HSV-1 ICP4 protein (E5) or HSV ICP4 and ICP27

proteins (E26) in trans. To obtain GFP-labelled HSV particles, E5 and E26 cells were

transfected with a plasmid encoding the fusion protein VP16-GFP (pVPl6-GFP (16)) and

infected with Gal4 and MGH2, respectively. After purification and concentration the titer

of each virus preparation was quantified by counting lacZ-positive cells for Gal4 and

GFP-positive cells for MGH2.

Dorsal skinfold window preparation

Human melanoma Mu89 cells were grown in dorsal skinfold chambers in SCID mice as

described previously (9). All animal experiments were done with the approval of the

Institutional Animal Care and Use Committee.

Injection and imaging of labeled vectors and tracers

For dorsal chamber tumor studies, HSV vectors labeled with VP 16-GFP were mixed with

either 0.2 tg/gtl bacterial collagenase (Sigma, C0773, St Louis, MO) or PBS, to a final

titer of lxl06 t.u./#l. For microsphere experiments, quantum dot (QD)-encoded silica

microspheres were synthesized according to a previously developed procedure (17). For

all injections, 1 il of solution was infused into the tumor at constant pressure (-1 01/10

min) using a glass micropipette connected to a syringe pump. Images were obtained using

a custom-built multiphoton laser scanning microscope (18) using a 20X/0.5NA objective



lens. Excitation was at 880 nm, with simultaneous detection of SHG (9) via a 435DF30

emission filter, and GFP via a high-pass 475 dichroic and a 525DF100 emission filter.

Cascade Blue dextran was visualized by exciting at 780 nm and imaging the same region

(for Cascade Blue dextran and GFP), followed by image registration. Microspheres

(containing 642 nm maximum emission QDs) were imaged with a 610DF70 emission

filter. Three dimensional image stacks containing 20 images of 5 gm thickness were

obtained wherever fluorescence intensity from the injected particles was detected. A

maximum intensity z-projection of each colored stack generated a 2D image. Images of

consecutive adjacent regions in the x and y directions were combined into a montage,

generating a single image of the entire injection site.

Image analysis

The pixel intensities of collagen (red pixels) and injected particles (viral vectors, green

pixels; dextran, blue pixels) were spatially compared along lines drawn perpendicular to

the periphery of virus containing regions. Analysis was performed in 5 distinct image

stacks and at different depths, for a total of 20 lines measured within each tumor. The

mean pixel intensities were plotted as a function of the relative distance from the

observed interface with fibrillar collagen. All lines were registered such that the largest

change in SHG intensity was maintained at the origin of the graph.

For quantification of viral vector distribution following injection, the entire area of viral

distribution was outlined on the images. The border of the viral focus was determined as

the location at which the intensity dropped to 10% of the mean intensity at the center of



injection. The calculation of the area was performed with imaging software (ImageJ, U.

S. National Institutes of Health, Bethesda, MD, http://rsb.info.nih.gov/ij/).

Flank tumor growth delay

Mu89 cells were implanted subcutaneously in the flank of SCID mice and allowed to

reach 100 mm3 average volume. Mice were then randomized into 4 groups (6-7 animals

per group) and given 10 ld intratumoral injections of either PBS; 1.0 pg collagenase;

1x106 t.u. MGH2; or a mixture l x106 t.u. MGH2 and 1.0 gg collagenase. A second

injection was performed two days later. Tumor volume was measured every 2-3 days and

calculated as volume = 7rAB 2/6, where A and B are maximum and minimum diameters,

respectively. Mice died from natural progression of disease or were euthanized when (a)

tumor mass exceeded a size of 2,000 mm 3 or (b) premorbid behavior was noted. For

tumors failing to reach ten times initial volume due to morbidity, the time to last

measurement substituted as a conservative approximation of growth.

Metastasis assay

Tumors were grown subcutaneously in the leg of SCID mice. At a size of -100 mm3 they

were treated with an intratumor injection with either 10 il of PBS or 10 gil of PBS with

1.0 gg collagenase, followed by a similar injection two days later. Tumors were allowed

to grow to 500 mm 3, at which point the tumor-bearing leg was amputated. Any bleeding

was controlled and the wound closed with wound clips. Six weeks following primary

tumor resection, the mice was euthanized by an intraperitoneal injection of sodium



pentobarbital (200 mg/kg). A full gross autopsy was performed to locate visible

metastatic nodules and the lungs were examined histologically for micrometastases.

Immunohistochemistry protocolfor herpes simplex virus

1. Dry slides overnight at RT

2. Incubate in ice cold acetone at -200 C for 10 minutes

3. Wash with PBS 3x for 3 minutes

4. Block for 1 hr at RT with 10% normal goat serums, 1% BSA, 0.1% triton solution

5. Incubate with primary antibody (polyclonal rabbit anti-HSV type I, Dako, Glostrup,

Denmark) at a dilution of 1:100 overnight at 40C

6. Wash with PBS 3x for 3 minutes

7. Incubate with secondary antibody (Cy3 anti-rabbit) at a dilution of 1:200, 30 min RT

8. Wash with PBS 3x for 3 minutes

9. Mount sections with Vectashield mounting media with DAPI (Vector Laboratories,

Burlingame, CA)

Statistical analysis

Data are expressed as mean ± SEM. Statistical significance between groups was

determined by an unpaired Student t-test. Statistical analysis was performed using

StatView 4.51 software (SAS Institute, Inc., Cary, NC). Differences were considered

statistically significant for P < 0.05.



Results

Distribution of virion particles is hindered by collagen rich regions

To quantify virus distribution, one microliter containing lx106 viral transducing units

(t.u.) of VP16-GFP labeled non-replicative HSV-1 virions (Gal4) was directly injected

into Mu89 human melanomas grown in dorsal skin windows in SCID mice. In vivo

multiphoton imaging of viral particles was performed approximately 30 minutes

following injection with simultaneous second harmonic generation (SHG) imaging of

fibrillar collagen. Viral particles distributed primarily within collagen-free areas of the

tumor, with limited penetration into collagen-rich regions (Fig. 3.1A). To quantify viral

penetration, pixel counts of collagen (SHG) and virus (GFP) were measured along lines

perpendicular to the periphery of virus containing regions (one example line is shown in

Fig. 3.1A). Averaging over 20 lines per injection revealed an inverse correlation between

collagen and viral particles, such that an increase in the amount of fibrillar collagen

present corresponded to a sharp decrease in virus signal (Fig. 3.1B). While collagen is

known to hinder macromolecular transport (10, 11), nearly complete exclusion to this

extent has not been previously observed. To directly compare viral distribution with

another macromolecular tracer, Cascade Blue-conjugated 2x106 molecular weight

dextran tracer molecules (RH - 20 nm) were co-injected with HSV vectors. Whereas the

dextran penetrated into collagen rich regions, viral particles were excluded (Fig. 3.1A,B).

In the collagen containing regions, the mean dextran intensity is significantly greater than

the mean virus intensity when both are normalized to the maximum signal from each

channel (P < 0.001). To further clarify the role of particle size in collagen exclusion,



quantum dot-loaded microspheres similar in size to HSV particles (- 150 nm diameter)

were directly injected into Mu89 tumors. As with HSV particles, these microspheres were

excluded from collagen rich tumor areas (Fig. 3.1E). The microsphere distribution area

was similar to that of HSV vectors (Fig. 3.1D).
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Figure 3.1. Viral vector distribution following intratumoral injection. (A) Multiphoton

images of Mu89 melanomas 30 minutes after intratumoral injection of VPl6-GFP

labeled Gal4 vectors (green), either alone (upper image) or with Cascade blue-

conjugated dextran (blue, lower image). Second harmonic generation (SHG) signal

denotes fibrillar collagen (red pseudocolor). HSV vectors localized in extracellular

spaces around individual tumor cells and were excluded by areas of intense SHG

signal. In contrast, the smaller dextran tracer penetrated regions rich in fibrillar

collagen. (B) Relative localization of collagen and injected particles determined by

pixel analysis. Spatial comparison of pixel intensities was performed for collagen (red

pixels) and either viral particles (green pixels; upper plot) or dextran (blue pixels;

lower plot). Analysis was performed along lines drawn perpendicular to the border of

SHG signal, and mean values plotted. A representative image and line are shown for

each case (A, yellow lines). Collagen and viral localization in the tumor are anti-

correlative. (C) Multiphoton images of viral vector distribution following co-injection

with collagenase (left) compared with injection of virus alone (right). Each image is a

montage of several multiphoton images. The area of distribution is outlined in blue in



Disruption of the collagen network improves virus distribution and gene expression

To test whether disruption of collagen could improve viral penetration into tumors, viral

vectors were co-injected with bacterial collagenase (0.2 tg/gtl). Collagenase increased the

area of viral distribution by nearly 3-fold compared to control injections (Fig. 3.1D).

Rather than distributing into restricted regions bounded by fibrillar collagen, vectors

spread more uniformly from the injection site upon collagenase treatment (Fig. 3.1C).

Collagenase enhances the efficacy of oncolytic viral therapy

The oncolytic virus MGH2 has the same backbone as G207 (14), but carries the GFP

reporter gene instead of lacZ. MGH2 replicates in Mu89 melanoma cells in culture,

resulting in GFP expression and cell lysis within 24-48 hours. lxl06 t.u. of MGH2 were

injected into Mu89 tumors as before. Low resolution fluorescence microscopy one day

following injection showed that the area of infection was localized to only a small

proportion (-15%) of the entire tumor mass, corresponding to the site of injection (Fig.

each case. (D) Comparison of the area of viral vector and microsphere distribution

following intratumoral injection. Areas measured from a maximum intensity projection

of 10 images taken -30 minutes following injection. Collagenase and virus co-injection

resulted in a nearly 3-fold increase in the area of viral distribution compared with

microspheres and HSV particles alone (P < 0.05). (E) Multiphoton images of

microsphere distribution following intratumor injection. Microspheres shown in green

and SHG in red pseudocolor.



3.2A middle). Even 11 days following the initial injection of MGH2, viral vectors could

not penetrate sufficiently to infect the entire tumor mass (Fig. 3.2A bottom). No

significant treatment response was observed in any of the tumors injected with MGH2

alone or with bacterial collagenase alone (Fig. 3.2A,C bottom).

To confirm that collagen was the cause of this limited tumor cell infection, high

resolution multiphoton imaging of viral vectors, transduced cells and fibrillar collagen

was also performed (Fig. 3.3). Imaging of the GFP-labeled MGH2 particles immediately

after injection showed that, as before, virus spread is limited by fibrillar collagen (Fig. 3.3

left). Imaging of infected tumors cells (which express large amounts of GFP) three days

later shows that the area of infection corresponds to the initial area of virus distribution

and is surrounded by fibrillar collagen (Fig. 3.3 middle). It appears that virus was not able

to diffuse and infect cells beyond the initial injection volume. At 8 days post-injection,

GFP expression is severely diminished as the initially infected cells have died and

neighboring cells beyond the collagen have not been infected (Fig. 3.3 right).



MGH2 alone

Day 0

Day 1

Day 11

MGH2 and
Collagenase

Collagenase
alone

Figure 3.2. Effect of collagenase on oncolytic viral therapy. Low resolution microscopic

images of dorsal chamber Mu89 melanomas treated with the oncolytic vector MGH2 in

combination with PBS (A) or MGH2 in combination with collagenase (B). Collagenase

treatment alone is shown for comparison (C). N=4 for all three treatment groups.

Representative brightfield images of tumors prior to injection (tumors outlined in black,

top panels). Representative fluorescent microscopic images of tumors 1 day (middle

panels) and 11 days (bottom panels) after injection. Infection of tumor cells was

detected by expression of the reporter gene GFP (encoded by the virus). Co-injection of

MGH2 and collagenase resulted in a greater distribution of infected cells (B, middle

panel), relative to injection of MGH2 alone (A, middle panel). At 11 days, regression of



Day 0 - Injection Day 3 Day 8

Figure 3.3. Viral distribution and tumor cell transduction following intratumor injection

of oncolytic virus MGH2. Representative high resolution multiphoton images of

injected MGH2 and infected tumor cells (both green) and second harmonic generation

(red pseudocolor). Left: images taken of GFP-labeled MGH2 30 minutes following

intratumor injection. Middle and Right: images taken of MGH2-infected cells

(expressing GFP) 3 and 8 days following injection in the same tumor. Fibrillar collagen

surrounds the injected virus and infected cells. Scale bar is 250 Itm.

the tumor (as evidenced by absence of tumor vasculature) was achieved with MGH2 and

collagenase co-injection (B, bottom panel), while no significant change in volume was

observed with MGH2 treatment alone (A, bottom panel). Collagenase treated tumors

recover from any induced hemorrhage by day 11 (C, lower panel).



In contrast, when the same amount of oncolytic virus was co-injected with collagenase

(0.2 gg/tl), the initial viral distribution was greater relative to virus alone, translating into

an improved area of tumor cell infection (Fig. 3.2B middle). Therapeutic response was

observed in all four collagenase co-treated tumors, with a significant decrease in tumor

size in two cases (Fig. 2B bottom).

We then tested if the co-injection of collagenase and MGH2 would increase the

therapeutic efficacy of MGH2 over longer time intervals. When Mu89 tumors growing in

the flank of SCID mice reached 100 mm 3, they were injected intratumorally with either 1

gg collagenase, 1x10 6 t.u. of MGH2, or both collagenase and MGH2, followed by

similar injections two days later. Control tumors were injected with PBS alone. The time

for the tumor to reach ten times the initial volume (mean + SEM) was compared for each

group (Fig. 4). Both collagenase treatment alone (19 + 1 days) and MGH2 injection alone

(27 + 3 days) had no significant effect on tumor growth compared to PBS control (24 + 3

days) (P > 0.05, both cases). With MGH2 treatment alone, one tumor showed marked

regression, but recurred after 10 days. Co-injection of MGH2 with collagenase (50 + 9

days) significantly delayed the growth of tumors compared to all other treatment groups

(P < 0.05 for all cases). Two out of seven tumors failed to grow to 200 mm3 even 60 days

after treatment; a third experienced apparently complete regression, although it recurred

20 days later.
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Figure 3.4. Effect of collagenase on MGH2-induced tumor growth delay. Tumors were

grown subcutaneously in the hind flank of SCID mice. When tumors reached -100 mm3 ,

animals were divided into four groups (n = 6-7) and treated twice (day 0 and day 2) with

10 tll of PBS (green), collagenase (0.1 pg/pl) (black), MGH2 (lxI06 t.u.) in PBS (blue),

or MGH2 (lxI06 t.u.) and collagenase (0.1 pg/pl) in PBS (red). (A) Tumor volumes were

measured every 2-3 days and the time to reach a given volume was expressed as mean ±

SEM for each group. (B) The time to reach ten times the initial volume was compared.

There was no significant difference between PBS (23 ± 3 days) and either collagenase

treatment alone (19 + 1 days) or MGH2 alone (27 + 3 days) (P > 0.05 for both cases).

However, MGH2 and collagenase co-treatment induced a significant tumor growth delay

(50 + 8 days) relative to all other groups (P < 0.05 for all cases).

Improved efficacy is due to initial improved distribution of viral particles

To investigate the mechanism of improved efficacy, tumors were treated as before with

MGH2, either alone or with collagenase, and analyzed two days after the second



injection. Tissue sections were stained for structural virion proteins, counterstained for

nuclei (DAPI), and imaged for GFP expression using confocal microscopy to determine

viral distribution. As expected, HSV antigen was present within and surrounding cells

expressing GFP. In MGH2-treated tumors, virion particles and infected cells distributed

in a localized fashion reminiscient of the needle track (Fig. 5A). In contrast, for MGH2

and collagenase treatment, a diffuse distribution of infected cells was observed

throughout the entire tumor section, spanning an area of up to 3 x 7 mm (Fig. 5B). Later

timepoints showed continued viral spread, but only within collagen free areas.

50 pm

Figure 3.5. Immunohistochemical analysis of the effect of bacterial collagenase on viral

infection. Representative tissue sections of subcutaneous Mu89 tumors two days

following injection with either (A) MGH2 alone or (B) MGH2 and collagenase were

labeled with anti-HSV antibodies. GFP expression from MGH2-infected cells (green),

HSV proteins detected with Cy3-conjugated secondary antibodies (red) and nuclear stain

DAPI (blue) are shown.

I
50 pm



Bacterial collagenase does not affect metastatic behavior

Matrix modification has long been linked to tumor cell invasion and metastasis. Thus, in

order to assess if improving the efficacy of oncolytic viruses by collagen degradation is a

viable technique for the treatment of patients, we performed a metastasis assay. Mu89

tumors were grown subcutaneously in the leg of SCID mice and treated with collagenase

as before. Following tumor growth to 5 times the initial size, the primary tumor was

resected. An autopsy was performed 6 weeks later to identify metastatic nodules. There

was no increase in metastasis observed with collagenase treatment (Table 3.1). Due to the

low incidence of metastasis in this study, the assay was repeated for two other tumors:

human soft tissue sarcoma HSTS26T and spontaneous murine osteosarcoma P0107. In

both cases no lymph node and lung metastasis was observed in either treatment group.

Thus, it appears that bacterial collagenase treatment at this concentration does not

enhance metastatic behavior.

Table 3.1. Effect of bacterial collagenase on lymph node and lung metastasis

Treatment No. of mice0  No. of animals with No. of animals with Jung
lymph node metastasisb metastasis

PBS 4 1/4 0/4

Bacterial Collagenase 4 1/4 0/4

a in both treatment groups, primary tumor regrowth was occurred in one animal
b in both treatment groups, lymph node metastasis was observed in the animal in which primary tumor
regrowth occurred



Discussion

The development of strategies to improve both the initial vector distribution within

tumors and the ability of these vectors to propagate through the entire tumor mass is

critical to the success of oncolytic viral therapy (2). Previous reports show that protease

pretreatment can increase the therapeutic efficacy of a non-replicative viral vector (19).

However, the mechanism of improved efficacy was undefined due to the use of

nonspecific digestive enzymes - normally used to dissociate tissues - which degrade

multiple extracellular matrix components. Thus, we wished to determine whether fibrillar

collagen - previously shown to be a major barrier to macromolecular diffusion in tumors

(10, 11) - is the matrix component which limits viral distribution in certain tumors.

Our results demonstrate the important role that fibrillar collagen can play in regulating

the initial distribution of viral vectors in certain fibrous tumors. Whereas the smaller

tracer particles distributed relatively uniformly within the tumor, the vast majority of

larger HSV virions were located only in collagen-poor areas. Furthermore, silica

microspheres similar in size to viral particles - but lacking their ability to bind to cell and

matrix proteins - were excluded from collagen. This suggests that the effective pore size

cutoff of the collagen network is smaller than the size of these viral particles. This may

have a significant impact since many tumors in humans show extensive stromal

infiltration with extracellular matrix and collagen deposition (20).

Fibrillar collagen is also important in the propagation ofoncolytic viral vectors through

the tumor. Oncolytic vectors are thought to overcome some of the delivery issues faced

by non-replicating viral vectors through their ability to propagate on site in tumors



(thereby amplifying the input dose) and spread from tumor cell to tumor cell. We found

that the collagen network, in addition to restricting the initial distribution, limited the

maximal spread of MGH2 infection within the tumor. Tumor cell infection remained

confined to a small area and the tumor continued to grow. Co-injection of MGH2 with

collagenase resulted in a broad, uniform distribution of viral particles and infected cells,

with substantial tumor regression and enhanced efficacy. This dispersed distribution of

virus can improve therapeutic outcome in several ways: 1) the broad initial virion

distribution improves the chance that viral vectors can penetrate all regions of the tumor;

2) the occurrence of multiple infections of the same tumor cell decreases, while the

number of distinct tumor cell infections increases; and 3) once the virus replicates and

lyses the cell it has infected, it has access to a greater number of previously uninfected

neighboring cells. All together, these processes can lead to increased oncolytic activity,

as shown schematically in Fig. 3.6.
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Researchers have developed other methods to try to overcome the limited distribution of

oncolytic vectors in tumors (21). Some use multiple injections, either on successive days

or with fractionation of the dose at multiple sites (22). However, in the absence of

extracellular matrix modification, viral distribution at each individual injection site would

still be limited by collagen. Indeed, a phase II trial with an oncolytic adenoviral vector

showed limited improvement in efficacy even with daily injections that included

fractionation (23). Alternatively, combination therapy with either radiation or

chemotherapy is often employed to improve oncolytic activity (24). Collagenase

treatment is compatible with combination therapy and could further improve efficacy.

This may be a complementary therapy for combination with radiation, which can induce

fibrosis and lead to an increase in interstitial collagen content (25).

Figure 3.6. Schematic model of improvement in oncolytic viral distribution and tumor

cell infection with collagenase treatment. Following direct intratumor injection, viral

spread (pink area) is limited by fibrillar collagen (red lines) and results in a cluster of

infected cells (light green). The collagen network also restricts the distribution of

subsequent viral progeny and tumor cell infection beyond the initial injection site is not

achieved. In contrast, co-injection of virus with collagenase results in a more diffuse

distribution of viral particles and a greater number of initially infected cells (light

green). Viral particles released by these cells have greater access to neighboring

uninfected cells. This process results in more widespread secondary infection (dark

green) and ultimately greater therapeutic efficacy.



We noted that intratumoral haemorrhage occurred in many tumors treated with

collagenase. While bleeding from collagenase treatment alone did not affect tumor

growth, this phenomenon demonstrates the complex interactions between the

extracellular matrix and cells within the tumor, including both tumor and host endothelial

cells. We observed no increase in metastasis when tumors were treated with bacterial

collagenase (Table 3.1) and a previous study has shown that direct injections of

collagenase/dispase and trypsin did not affect metastasis (19). Despite these encouraging

results, it is still possible that collagenases may have a negative effect on tumor cell

invasion and metastasis, perhaps at different doses. The development of this matrix-

modulating technique for clinical applications may require the use of specific matrix

proteases, such as MMP-8, which degrades collagen and has been shown to decrease

metastasis (26).

In conclusion, we determined that even with the on-site generation of viral particles

provided by the replication-competent nature of an oncolytic HSV vector, fibrillar

collagen still prevents viral spread throughout the tumor in a melanoma model. Collagen

network disruption increases initial vector distribution and subsequent propagation

through the tumor mass, significantly improving therapeutic outcome. This result has

implications for other viral particles, gene delivery strategies and nano-technology based

delivery systems, as all face the problem of insufficient delivery to the target cells.

Furthermore, any method decreasing tumor collagen content may have similar effects.

These findings suggest ways to increase the potency of gene therapy in certain types of

cancer and other diseases.
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Chapter 4: Degradation of Tumor Collagen with Recombinant

Human Enzymes



Introduction

While the application of bacterial collagenase to degrade tumor collagen and improve the

transport of therapeutics has been advanced as a proof of principle concept (1), moving

this technique into the clinic will require the use of a human enzyme or an agent which

can upregulate the expression of a such an enzyme in tumors. Our lab has previously

worked with the peptide hormone relaxin, which is primarily produced during pregnancy

to stimulate collagen remodeling in the reproductive tract, but has recently been found to

have pleiotropic effects (2-4). We found that chronic relaxin treatment accelerated

collagen turnover and increased diffusive transport (5). The mechanism by which relaxin

modifies collagen is still unclear. It has been found in different systems to affect both

collagen production (6-8) and degradation (9, 10). Relaxin most likely initiates a

signaling cascade which reduces collagen deposition by fibroblast and upregulates

collagenase expression or induces their activation. However, recent reports suggest that

relaxin may enhance tumor cell invasiveness and metastasis (9, 11, 12), which would

clearly limit its therapeutic potential. Alternative to this approach is to treat tumors with a

human collagenase. This is the most direct extension of the matrix degradation method

used in the bacterial collagenase study.

Catabolism of extracellular matrix components is generally carried out by members of the

matrix metalloproteinase (MMP) family of enzymes. These endopeptidases cleave nearly

all extracellular matrix components and are thought to be important in matrix remodeling

during development as well as homeostasis (13, 14). Unsurprisingly, these enzymes have

also been found to play a role in various diseases involving matrix modification, such as
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arthritis, fibrosis and cancer metastasis (15, 16). Three soluble MMPs have been found to

have the ability to cleave type I collagen: MMP-1, -8 and -13 (17-19). While all three

enzymes cleave collagen at a single site into approximately ¼ and 34-length fragments,

their collagenase activity is most likely not identical. The activity of these three MMPs

against fibrillar collagen type I has not been directly compared; however, although each

enzyme exhibits activity against collagen types I, II and III, they vary in their relative

rates of activity for these substrates (20-23). In addition to these three MMPs, one other

enzyme has been found to be able to cleave collagen type I: cathepsin K. This enzyme is

responsible for collagen degradation in osteoclasts during bone resorption (24, 25). In

contrast to the MMPs, cathepsin K degrades collagen type I at multiple sites (26). In this

study we directly compare these four collagenases using an in vitro collagen fiber

degradation assay. We assess the ability of the most promising candidates to degrade

collagen in tumors, enhance interstitial transport and improve the efficacy of a

macromolecular therapeutic.

Materials and Methods

Dorsal skinfold chamber

All animal experiments were done with the approval of the Institutional Animal Care and

Use Committee (MGH SRAC protocol 2004N000063). Human soft tissue sarcoma

HSTS26T cells were grown in dorsal skinfold chambers in SCID mice as described

previously (27). The entire preparation was done under anesthesia (100 mg ketamine

hydrochloride/10 mg of xylazine per kg body weight intramuscularly) in aseptic

conditions inside the animal colony. Briefly, the back of the mouse was shaved and hair
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removed using hair removal cream. Two symmetrical titanium frames were stitched on to

fix the extended double layer of dorsal skin between the frames. Roughly 15 mm

diameter of skin was removed from one side, leaving the opposite side of the skin,

striated muscle and subcutaneous tissue intact. The fascia was carefully removed and a

cover glass was mounted into the frame. The animals were allowed to recover for at least

one day prior to tumor implantation. Tumors were allowed to grow for at least two weeks

prior to experimentation.

Enzymes

MMP-1 cDNA was purchased from ATCC. MMP-8 cDNA was a kind gift from David

Tarin (University of California, San Diego). MMP-13 cDNA was a kind gift from Carlos

Lopez Otin (University of Oviedo). Cathepsin K cDNA was purchased from Invitrogen

(Carlsbad, CA). The cDNA for all full length enzymes were subcloned into the

mammalian expression vector peakl 3 (kind gift from Brian Seed, Massachusetts General

Hospital). HSTS26T cells were transiently transfected with each collagenase expression

vector using Lipofectamine 2000 (Invitrogen, Carlsbad, CA) according to the

manufacturer's protocol. Twelve hours following transfection, the cells were washed and

incubated with serum free media. Twenty-four hour conditioned media was collected for

the collagenase activity assay. Recombinant bacterial collagenase was purchased from

Sigma (St. Louis, MO). Recombinant MMP-1 and -8 were purchased from Millipore

(Billerica, MA).
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Activation of enzymes

Conditioned media containing MMP-1, -8 and -13 expressed from HSTS26T cells were

activated with p-aminophenylmercuric acetate (APMA, Sigma, St. Louis, MO). APMA

was dissolved in DMSO at a stock concentration of 20 mM and used to activate MMPs at

a final concentration of 2 mM. Samples were incubated at 370 C for 1 hr and western blot

analysis proceeded immediately afterward.

Recombinant MMPs used for in vivo tumor superfusion were activated with trypsin. A

1:10 volume of 1 mg/ml trypsin (Worthington, Lakewood, NJ) was added to the sample

and incubated at 37°C for 7 minutes. A 1:10 volume of 5 mg/ml soybean trypsin inhibitor

(Worthington, Lakewood, NJ) was then added to the sample to inactivate the trypsin.

Samples were used immediately in experiments. Bacterial collagenase did not require

activation.

Collagenase activity assay

MMP activity was determined using an in vitro collagenolytic activity assay modified

from the method of Johnson-Wint (28, 29). Briefly, type I collagen was purified from rat

tail by solubilization with acetic acid and subsequently acetylated with [14C] acetic

anhydride. Fibrils were allowed to form from the radiolabeled collagen and were dried

onto wells of a 96-well plate, forming a thin film. Conditioned media samples were added

to wells and incubated at 370 C for 2.5 hours. The supernatants containing soluble

radiolabeled collagen (from cleavage) were transferred to scintillation vials and counted

in a Beckman model LS-3801 scintillation counter. Bacterial collagenase was used as a
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control to cleave all the radiolabeled collagen in select wells. One unit of activity

corresponds to degradation of 10% of the collagen in 2.5 hrs at 370C.

Second harmonic generation imaging

Imaging of second harmonic generation (SHG) in dorsal chamber tumors was performed

with a custom-built multiphoton laser scanning microscope (30) using a 20X/0.5NA

objective lens. Excitation was at 880 nm and SHG was detected via a 435DF30 emission

filter with a high pass 475 dichroic. Three dimensional image stacks were obtained of the

top 130 gm from the surface of the tumor (27 images of 5 gtm thickness). Six to ten

image stacks were obtained to create a montage covering the entire tumor or a significant

portion of it. The total SHG signal intensity in each stack was measured by image

analysis (ImageJ) and the mean intensity for each individual tumor calculated.

Multiphoton fluorescence recovery after photobleaching

The diffusion coefficient of2x10 6 molecular weight dextran was measured in dorsal

chamber tumors using multiphoton fluorescence recover after photobleaching

(MPFRAP). A custom-built multiphoton microscope (30) was adapted for MPFRAP

based on a previous design (31). One half microliter of FITC-labeled dextran (Sigma, St.

Louis, MO) was injected at a concentration of 2 mg/ml at a depth of 200 gtm below the

surface of the tumor. Injections were performed using glass micropipettes that were

pulled to obtain a 20 glm inner diameter tip (27). Injections were performed at nearly

constant flow rate over 2-3 minutes.
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MPFRAP was performed approximately 30 minutes after injection. The laser was set at

800 nm and a 40X/0.75 NA objective lens was used with a 525/100 filter between 405

and 605 high pass dichroics. The multiphoton laser was focused on locations in the

extracellular space 40-70 gtm below the surface of the tumor. During each

bleach/recovery cycle, the sample was bleached with a 160 gts pulse train of light,

followed by an -40 ms recovery monitored in 40 gts time bins. The length of the bleach

and the time bins for monitoring recovery were chosen to avoid significant error due to

diffusion during these two time periods. Based on the analysis of Brown et al. (31), the

systematic error in the detected fluorescence intensity due to diffusion during the bleach

pulse and over the course of recovery is -1.05(At/TD) where At is the length of the bleach

pulse or monitoring time bin and rD is the time constant for diffusive recovery. The

characteristic fluorescence recovery time of2x10 6 molecular weight dextran in vivo was

found to be -10 ms. Thus, a bleaching pulse length of 160 is is short enough to avoid

significant diffusion during the bleach pulse (error of--1.68%) and a monitoring time bin

of 40 ts is short enough to accurately monitor the recovery (error of -0.42%).

The monitoring power was chosen such that photobleaching did not occur. The bleaching

power was chosen such that excitation saturation did not occur. Each bleach/recovery

cycle was repeated 500 to 1000 times for a given spot/measurement. Approximately 10 to

20 measurements were taken for each individual tumor. Data acquisition typically lasted

2 hrs. The recovery curves were fit to the following equation, derived in Brown et al.

(31), which gives the time-dependent detected fluorescence signal due to diffusion into

the focal volume:
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F(t) is the time-dependent fluorescence signal, Fo is the prebleach equilibrium

fluorescence signal, m is the number of photons required to generate a fluorescence

photon, 3 is the bleach depth parameter, b is the number of photons absorbed in a

bleaching event, t is the time, R is the square ratio of the 1/e2 beam dimensions (wz2/w 2)

and 7TD is the characteristic radial diffusion time of the fluorophore, defined as wf/8D,

where D is the diffusion coefficient. The beam dimensions for for the objective lens at a

wavelength of 840 nm was calculated theoretically, with wz = 1.837 x 10- m and wr =

3.221 x 10-7 m.

Oncolytic virus

The oncolytic HSV-1 vector MGH2 (ICP6-, y34.5-, eGFP+) was obtained from E.

Antonio Chiocca and Yoshi Saeki (The Ohio State University). MGH2 stocks were

propagated in E 11 cells (gift from Yoshi Saeki). Infected cells were pelleted, resuspended

in 1 ml of HBSS and subjected to 3 freeze/thaw cycles in a dry ice/ethanol bath with 1

minute of vortexing in between. Lysed cells were spun down at 3500 rpm for 15 minutes.

The supernatants were filtered through a cell strainer and a 0.45 Im syringe filter. The

filtered supernatant was layered over 5 ml of 25% sucrose (in PBS) in a 38.5 ml

centrifuge tube. This was topped off with HBSS and spun down at 20,000 rpm for 3

hours at 40C. The supernatant was aspirated and the viral pellet was covered with 200 1il

HBSS and incubated overnight at 40C. The virus was resuspended the following day and

stored at -800 C. The virus was titered using HSTS26T cells.
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Flank tumor growth delay

HSTS26T tumors were implanted subcutaneously in the leg of SCID mice and allowed to

reach 60 mm3 average volume. Mice were then randomized into 3 groups (6-7 animals

per group) and given 10 il intratumoral injections of either 2.5 x 105 t.u. of MGH2 in

trypsin/trypsin inhibitor solution; 2.5 x 105 t.u. of MGH2 with 1.0 jtg activated

recombinant MMP-1; or 2.5 x 105 t.u. of MGH2 with 1.0 gtg activated recombinant

MMP-8. A second similar injection was performed two days later. All injections were 15

jtl total volume. Tumor volume was measured every 3-4 days and calculated as volume =

7rAB 2/6, where A and B are maximum and minimum diameters, respectively.

Results

Screening human collagenases

Several human enzymes have been identified in the literature as having the ability to

cleave collagen type I based on in vitro assays: MMP-1, MMP-8, MMP-13 and cathepsin

K. In order to assess which would be most promising for our specific application -

degradation of fibrillar collagen in a solid tumor - we first directly compared each

enzyme in an in vitro assay. Each enzyme was expressed in human soft tissue sarcoma

HSTS26T cells and collected in the conditioned media. Expression was confirmed by

western blot. Each enzyme was activated and then incubated with reconstituted collagen

fibrils that had been [14 C] radiolabeled. The amount of degradation was assessed by

measuring the amount of cleaved collagen in the supernatant after 2.5 hrs at 370 C. MMP-

1 and MMP-8 showed significant collagenase activity relative to the control (Fig. 4.1). In
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contrast, MMP-13 and cathepsin K showed no collagenase activity. Previous studies have

shown that the collagenase activity of cathepsin K is highly pH-dependent, with maximal

activity in slightly acidic conditions (25). Other studies have shown that the activity of

cathepsin K is enhanced by the formation of a complex with chondroitin sulfate (32, 33).

Therefore, the collagenase activity assays for cathepsin K were repeated at a range of pH

(4.0 - 8.0), in the presence and absence of chondroiton sulfate and with various methods

of activation. However, significant activity was not observed in any sample. Based on

these findings, we moved forward with MMP-1 and -8 as potential collagen-degrading

enzymes.
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Figure 4.1. Collagenase activity of various human enzymes. Human collagenases were

expressed in HSTS26T cells and collected in the conditioned media. Samples were

activated with the appropriate agent and incubated with radiolabeled collagen fibrils. The

amount of collagenase activity was assessed by measurement of cleaved molecules in the
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Collagen degradation in vivo with MMP-1 and MMP-8

Next we sought to determine the extent of collagen degradation in vivo. Purified

recombinant MMP-1 and MMP-8 were activated with trypsin and superfused on the

surface of HSTS26T tumors grown orthotopically in the dorsal chamber of SCID mice.

Fibrillar collagen I was monitored with multiphoton imaging of second harmonic

generation (SHG). SHG signal emanates from a highly fibrillar subfraction of collagen

has been found to correlate with total collagen content in vivo (5). Total SHG intensity in

tumors was measured before treatment and 12, 36 and 84 hours after superfusion of

MMPs (Fig. 4.2). Over a period of- 4 days, the fibrillar collagen content in untreated

tumors did not significantly change. SHG intensity decreased significantly by 12 hours

following MMP-1 superfusion but not MMP-8. The change in collagen content with

MMP-1 was maintained at 84 hrs post-treatment.
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Figure 4.2. Effect of human collagenase superfusion on second harmonic generation

intensity over a long time period. 10 itl of activated MMP-1 and -8 (0.1 Ig/Ipl) were

superfused on HSTS26T tumors grown in the dorsal skinfold chamber of SCID mice.

SHG throughout the tumor was imaged at various time points before and after

superfusion. Mean normalized intensities and standard errors are shown. At 12, 36 and 84

hours, MMP-1, but not MMP-8, induces a significant decrease relative to control tumors

(P < 0.05).

Since the degradation of collagen with MMP-1 treatment has already occurred by 12

hours, we sought to examine the kinetics of this degradation by measuring collagen

content during the first several hours following superfusion. Since the half life of MMPs

in tumors is most likely on the order of hours, this is a relevant time scale for observation.

The previous experiment was repeated, but SHG imaging was performed over the first 2
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14 * 0.1 uglul MMP.

hours following MMP superfusion. The same region of the tumor was imaged every 5

minutes (Fig. 4.3). As expected, no change in collagen was observed in control tumors

and with recombinant MMP-8 application. MMP-1 superfusion caused a small but

significant change in collagen.
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Figure 4.3. Effect of human collagenase superfusion on tumor second harmonic

generation intensity over a short time period. 10 #l of active MMPs was superfused on

HSTS26T tumors grown in the dorsal skinfold chamber of SCID mice. A 250 im x 200

Im x 130 /im area of the tumor was imaged every 5 minutes for ~100 minutes and the

SHG intensity in a maximum intensity z-projection was measured. The normalized mean

intensities and standard errors are shown. At 100 minutes, MMP- 1 results in a small but

significant decrease in collagen relative to control (P < 0.05) while MMP-8 does not.
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Bacterial collagenase had previously been shown to degrade collagen, improve diffusion

and enhance the distribution and efficacy of an intratumorally injected therapeutic (5, 34-

36). Thus, it serves as a reference for gauging the extent of collagen degradation

necessary to improve the transport and efficacy of therapeutics. With this in mind we

assessed the ability of bacterial collagenase to degrade collagen in an identical assay. A

nearly equimolar amount of bacterial collagenase led to a significant decrease in collagen

within 100 minutes (Fig. 4.4). The effect was significantly more dramatic than with

MMP-1 and was dose dependent. We should note that while purified bacterial

collagenase is relatively easy to obtain in large quantities, recombinant MMPs are much

more difficult. For this reason testing the dose response of MMP-l and -8 was not

feasible.
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Effect of recombinant MMPs on interstitial diffusion

While theses result show that the effect of MMP-l and MMP-8 on tumor collagen at this

dose are subtle at best, the possibility exists that such subtle changes may lead to

significant improvements in interstitial transport. Indeed, chronic relaxin treatment of

tumors did not alter total SHG signal, but did alter the length of collagen fibers and

consequently the diffusion of tracer particles (5). To determine what effect these

recombinant MMPs have on tumor interstitial transport we measured the diffusion

coefficient of 1x106 molecular weight dextran with multiphoton fluorescence recovery

after photobleaching (MPFRAP). These dextran tracer particles have an estimated

hydrodynamic diameter of -40 nm, making them relevant for the study of the transport of

macromolecules such as antibodies (12 nm diameter) and viral vectors (20-150 nm

diameter). We found that the diffusion coefficient is unchanged in MMP-1 and MMP-8

treated tumors (Fig. 4.5). As expected from the dramatic effects on tumor collagen,

treatment with bacterial collagenase leads to a significant increase in the diffusion

coefficient (P < 0.05). Thus, it appears that while application of 0.1 #g/p/l recombinant
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Figure 4.4. Effect of bacterial collagenase superfusion on tumor SHG intensity over a

short time period. 10 l of bacterial collagenase was superfused on HSTS26T tumors

grown in the dorsal skinfold chamber of SCID mice. SHG signal was imaged as before.

The normalized mean intensities and standard errors are shown. At 100 minutes, both

concentrations of bacterial collagenase resulted in a significant decrease in collagen

relative to control (P < 0.05 in both cases).



MMP-1 to tumors can modify the tumor collagen, the effect is not dramatic enough to

significantly alter diffusive transport.
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Effect of MMPs on oncolytic HSV treatment of tumors

Finally, we also checked if co-injection of MMP-l or MMP-8 can enhance the efficacy of

the oncolytic HSV vector MGH2 as bacterial collagenase can. While collagen content

was not dramatically decreased and the diffusion of tracer particles was not affected,

perhaps some other alteration occurred that could improve viral distribution. Ultimately

we are interested in developing methods to improve oncolytic viral therapy. To that end,

HSTS26T tumors were grown subcutaneously in the leg of SCID mice. At -60 mm3 they

were treated with an injection of either 2.5x106 t.u. of MGH2 alone, MGH2 with 1.0 tg

MMP-1 or MGH2 with 1.0 Ig MMP-8. A similar injection was repeated two days later.

The tumor volume was monitored over several weeks. MMP-1 and MMP-8 co-injection

did not enhance the efficacy of MGH2 therapy (Fig. 4.6).
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Figure 4.5. Effect of collagenase superfusion on diffusion. The effective diffusion

coefficient of lx106 molecular weight dextran in HSTS26T tumors grown in the dorsal

chamber was measured by MPFRAP. (A) Mean diffusion coefficients with standard

errors. N = 5-6 for each treatment. Bacterial collagenase treatment causes a significant

increase in the diffusion coefficient relative to control (P < 0.05). MMP-1 and MMP-8

application does not alter the effective diffusion coefficient. (B) Individual diffusion

coefficient measurements for each tumor (black dots), mean for each tumor (red lines and

dots) and mean for each treatment (blue lines).
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Figure 4.6. Effect of recombinant MMP-1 and MMP-8 on oncolytic HSV treatment.

HSTS26T tumors were grown subcutaneously in the leg of SCID mice and treated with

two intratumor injections of either 2.5x10 6 t.u. of MGH2 alone or in combination with

1.0 pg recombinant MMP-1 or MMP-8. (A) Mean tumor volume of treated and control

tumors with standard errors. (B) Growth delay induced by oncolytic HSV treatment,
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Discussion

We have found that while all four human enzymes we screened are reported to have

activity against collagen type I, only MMP-1 and -8 showed significant activity in our

fibril assay. It is still uncertain why MMP-13 exhibited almost no collagenase activity

relative to the other MMPs. MMP-13 is enzymatically similar to the other two enzymes:

it has a similar domain structure and cleaves collagen type I at the same peptide bond

(Gly775-Ile776). While MMP-13 does not share much sequence homology to MMP-1 (18),

neither does MMP-8 (19). One possibility for why no activity was observed is that the

true substrate for MMP-13 in vivo is type II collagen, rather than type I. MMP-13 has

significantly greater activity against collagen type II relative to type I (21) and is better at

degrading collagen type II than either MMP-1 or MMP-8 (37, 38). Furthermore, MMP-

13 has been found to play a role in collagen II degradation in osteoarthritis and

rheumatoid arthritis (39-41). A second possibility is that the mechanism of MMP-13

activation differs from its counterparts. Indeed it has been shown that MMP-13 can be

activated by a proteolytic cascade that includes MMP-14 and MMP-2 (42), while MMP-1

and -8 have not been found to be activated in such a manner. APMA was chosen as the in

vitro activating agent for all three enzymes since it has been used in numerous
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biochemical assays for each. Perhaps this agent is sufficient for activating MMP-1 and -8

but does not maximally activate MMP-13.

The low activity of cathepsin K is less surprising. While it has been found that cathepsin

K is a very potent collagenase - on par with bacterial collagenase - these activity assays

were performed at pH 5.5, the pH in osteoclasts where cathepsin K degrades collagen in

physiological settings (26). As discussed above, the collagenase activity of cathepsin K

varies with pH and is optimal in acidic conditions (25). This can be partially explained by

the fact that autolysis occurs readily and the stability of cathepsin K at 370 C is low at

neutral pH: in one half hour nearly 90% of activity is lost. Thus, while we adjusted the

pH of samples to 6.0 and below in our activity assays - and found no activity - the

enzyme may have autodegraded while in the media, which can be neutral or slightly

basic. Indeed, our western blots of the conditioned media samples showed multiple

bands, suggesting that some of the enzyme had gone through autodegradation. In

addition, studies have shown that while chondroiton sulfate and keratin sulfate can

enhance collagenase activity by forming a complex with cathepsin K, the other GAGs

such as dermatin sulfate and heparan sulfate can effectively inhibit activity by binding

and preventing the interaction of the enzyme with the "productive" GAGs (33). We may

have observed no activity in the presence of chondroiton sulfate in our assays due to the

binding of cathepsin K to other GAGs while in the media. In total, this suggests that it

may still be possible to use cathepsin K to degrade collagen in tumors even while little

activity was observed in our assays with conditioned media. Tumors can be slightly

acidic and contain various soluble GAGs. Purified, recombinant cathepsin K can even be

complexed with chondroiton sulfate before being applied to tumors. However, the
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intricate nature of activation, inhibition and degradation of this enzyme suggests that their

use as collagenases in vivo may require substantial optimization.

In our in vivo assays, MMP-1 and MMP-8 were not able to replicate our previous

findings with bacterial collagenase. Total collagen levels in tumors - as assessed by SHG

signal - decreased only slightly with recombinant MMP-1 application and not at all with

MMP-8. Neither MMP affected diffusion or the efficacy of an oncolytic HSV vector.

One possible reason may be the nature of collagen cleavage for each type of enzyme.

Bacterial collagenase is not a single enzyme, but rather a collection of seven distinct

enzymes (43-45). It is believed that there are two main gene products - the true

collagenases - and that the lower molecular weight enzymes are proteolytic cleavage

products of these full length enzymes (46). Importantly, these lower molecular weight

enzymes have gelatinase activity and bacterial collagenase can cleave collagen at

multiple sites into small peptides. When we have degraded collagen molecules with

bacterial collagenase, we find that collagen is converted into peptide fragments that are

all smaller than 10 kDa. In contrast, MMP-1 and -8 cleaves collagen at a single site into

two relatively large fragments (47, 48). While both MMPs contain some gelatinase

activity, it is one to two orders of magnitude less than the collagenase activity (21). Thus

in and of itself, MMP-l and -8 may not be able to solubilize fibrillar collagen as bacterial

collagenase does. Perhaps the breakdown of collagen into small peptides facilitates its

clearance from the interstitium and is key to the improvements in transport seen with

bacterial collagenase.
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An alternative hypothesis is that the dose used in these studies is insufficient to effect the

changes in collagen needed to improve interstitial diffusion. In our in vitro collagenase

activity assay, the activity of MMPs is less than that of bacterial collagenase on a per

molar basis. This suggests that increasing the dose may be necessary to see an equivalent

improvement in collagen degradation and diffusive transport in vivo. Due to the difficulty

in producing and purifying human proteins, increasing the dose of recombinant proteins

from that used in this study is prohibitively expensive. Expression of these collagenases

in the tumor cells, themselves, by stable transfection offers another option that would

effectively increase the dose and have several other advantages. First, this would provide

chronic rather than acute delivery of the enzymes to the tumor; collagenase would be

delivered throughout the course of tumor progression. Second, this ensures that the

collagenase is delivered to all parts of the tumor, since it will be expressed by all tumor

cells. Finally, this would provide proof of principle for genetic delivery of a human

collagenase in a therapeutic setting, such as with an oncolytic viral vector.
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Chapter 5: Effect of MMP-1 and MMP-8 Expression in Tumors

Portions of the chapter have been taken from:

W. Mok, Y. Boucher and R.K. Jain, "Matrix Metalloproteinase-1 and -8 Improve the Distribution
and Efficacy of an Oncolytic Virus." In press, Cancer Research
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Introduction

There are several methods by which collagenases can be delivered to the tumor to

achieve matrix degradation and improve interstitial transport. In the previous two

chapters, purified, recombinant collagenases have been directly applied to, or injected

into, tumors. While this has been a successful strategy with bacterial collagenase (1), our

work with human collagenases in the preceding chapter highlights one of the limitations

of this method: recombinant enzymes can be difficult and expensive to purify in large

amounts. This drawback prevented us from testing higher doses of MMP-1 and -8 - both

of which are less potent collagenases than bacterial collagenase - and perhaps realizing

more dramatic effects on tumor collagen and improvement in transport.

An alternative strategy to delivering the protein is to deliver its genetic precursor, the

cDNA. Delivery of genetic material via non-viral vectors such as liposomes is well suited

for cancer therapy since its large scale production is cost-effective and it has shown

biological success both in vitro and in vivo (2). The other main class of genetic delivery

vehicles includes viral vectors. This thesis focuses on improving the transport of

oncolytic viral vectors. These viral vectors are unique in that they can serve as both

genetic delivery vectors and as therapeutics, themselves, since they lyse cancer cells (3).

Recombinant oncolytic viruses can be developed which contain an expression cassette for

a human collagenase. In theory, tumor cells infected by such an oncolytic vector will

produce the collagenase, as well as viral proteins. This collagenase will be secreted from

the infected cell and released upon cell lysis. The enzymes can diffuse throughout the

interstitium and degrade collagen, potentially improving the spread of the progeny virus.
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One main advantage of this approach over the use of recombinant enzymes is that tumor

cells infected by progeny virus continue to express the transgene. Thus, this method

provides chronic, rather than acute, delivery of collagenase to the tumor.

In order to provide proof of principle that genetic delivery of human collagenases to

tumors is a suitable method to alter their interstitial matrix, an experimental model is

developed whereby tumor cells are stably transfected with either MMP-1 or MMP-8 and

tumors are grown in mice. This model represents the best case scenario for gene transfer

of MMPs, as all tumor cells will be expressing the enzyme throughout the entire course

of tumor development.

MMP-1 and -8 have the ability to degrade multiple fibrillar collagens - not just type I

collagen - as well as various glycoproteins and proteoglycans (4). Thus, they have the

potential to significantly alter the composition and structure of the tumor extracellular

matrix, especially when delivered chronically such as via overexpression in cells.

Therefore, in the present chapter we characterize the effect of MMP expression on the

main structural components of the extracellular matrix (i.e. collagen I, hyaluronic acid

and sulfated GAGs). Since these matrix components are known to regulate both diffusive

and convective transport in tissue, we measure both the effective diffusion coefficient of

tracer particles and the hydraulic conductivity of these tumors. Both diffusion and

convection can limit the transport and distribution of cancer therapeutics. As described

earlier, our lab has shown that the tumor ECM can significantly hinder the interstitial

diffusion of macromolecules (5, 6). In Chapter 3, we provided evidence that ECM

structures can impede the convection of viral particles into the tumor during infusion (1).
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Here we characterize the effect of MMP-1 and -8 expression on the tumor ECM

composition, diffusive and convective transport and the efficacy of oncolytic viral

therapy.

Materials and Methods

Dorsal skinfold chamber

All animal experiments were done with the approval of the Institutional Animal Care and

Use Committee (MGH SRAC protocol 2004N000063). Human soft tissue sarcoma

HSTS26T cells and transfected clones were grown in dorsal skinfold chambers in SCID

mice as described previously (7). The entire preparation was done under anesthesia (100

mg ketamine hydrochloride/10 mg of xylazine per kg body weight intramuscularly) in

aseptic conditions inside the animal colony. Briefly, the back of the mouse was shaved

and hair removed using hair removal cream. Two symmetrical titanium frames were

stitched on to fix the extended double layer of dorsal skin between the frames. Roughly

15 mm diameter of skin was removed from one side, leaving the opposite side of the skin,

striated muscle and subcutaneous tissue intact. The fascia was carefully removed and a

cover glass was mounted into the frame. The animals were allowed to recover for at least

one day prior to tumor implantation. Tumors were allowed to grow for at least two weeks

prior to experimentation.

Plasmid construction and stable transfections

A retroviral transfection system was used to generate stable MMP-1 and MMP-8

transfectants. The cDNA coding for human MMP-1 was purchased from ATCC and the
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cDNA coding for human MMP-8 was a gift from David Tarin (University of California,

San Diego). The full length cDNAs were subcloned into the retroviral vector pBMN-I-

GFP (Garry Nolan, Stanford University). The vector contains an IRES allowing for

expression of enhanced green fluorescence protein (EGFP).

Retroviral vectors for the stable transfections were packaged according to the following

protocol, described previously (8). 80-90% confluent T75 flasks of 293ET packaging

cells were transiently transfected with each BMN vector (15 pg) in combination with

plasmids expressing vesicular stomatitis virus glycoprotein (VSVG, 5 Ag) and gag/pol (7

pig). After overnight incubation, the 293ET cells were washed three times with PBS and

then 10 mL of fresh media was added. The following day the conditioned media

containing retrovirus was collected and fresh media added to the flask. The conditioned

media was spun down to remove any cell debris and passed through a 0.45 AM filter

(Whatman, Brentford, UK). Subconfluent HSTS26T cells were incubated with the

conditioned media containing retrovirus. The conditioned media from the 293ET

packaging cells were collected the following two days and transduction repeated. Clones

with stable transduction were isolated using fluorescence activated cell sorting.

Expression of MMPs was confirmed with western blot.

Protein isolation

Tumors were grown subcutaneously in the leg of SCID mice. At an appropriate size,

tumors were harvested and immediately snap frozen in liquid nitrogen and stored at -

800C. Tissue was homogenized in 100 AL RIPA buffer. Samples were kept on ice for 30

minutes and then spun down at 14,000 g for 20 minutes to pellet the cell debris. The
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supernatant containing tissue protein was collected. Protein concentration was measured

using the Bradford assay (BioRad Laboratories, Hercules, CA) according to the

manufacturer's instructions. Pre-diluted BSA (Pierce Biotechnology, Rockford, IL) was

used as a protein standard. Protein samples were stored at -800C prior to use in activity

assays and western blots.

Western blot

Loading buffer containing fl-mercaptoethanol was added to the protein samples and they

were boiled at 1000C for 5 minutes. Samples were loaded into a 10% Bis-Tris gel

(Invitrogen, Carlsbad, CA) and run at 150V for - 1 hr. The proteins were transferred to a

nitrocellulose membrane. The transfer was performed at 30V for 1 hr at room

temperature. The membrane was washed with TBST for 10 minutes. The membrane was

placed in 20 mL of blocking buffer (TBST with 5% milk) and incubated at room

temperature for 3 hrs with gently shaking. The membrane was incubated with primary

antibody at 40C overnight with gentle shaking. Polyclonal antibodies AB806 and AB8115

(Millipore, Billerica, MA) were used at a dilution of 1:2,500 for detection of MMP-1 and

MMP-8, respectively. Polyclonal antibody EL 2900 (for cleaved collagen I) was a gift

from Eunice Lee (Shriners Hospital for Children, Canada) and was used at a

concentration of 4 #tg/ml (1:500). The following day, the membrane was washed 3x for

10 minutes with TBST with vigorous shaking. The membrane was then incubated for 1 hr

at room temperature with an HRP-conjugated secondary antibody (Amersham,

Buckinghamshire, UK). The membrane was washed again with TBST with vigorous

shaking and proteins detected using the ECL or ECL Plus kit (Amersham,
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Buckinghamshire, UK). Membranes were stripped by incubating with stripping buffer

(Pierce Biotechnology, Rockford, IL) at 370C and beta actin detected with a polyclonal

antibody (Santa Cruz Biotechnology, Santa Cruz, CA).

Collagenase activity assay

MMP activity was determined using an in vitro collagenolytic activity assay modified

from the method of Johnson-Wint (9, 10). Briefly, type I collagen was purified from rat

tail by solubilization with acetic acid and subsequently acetylated with [14C] acetic

anhydride. Fibrils were allowed to form from the radiolabeled collagen and were dried

onto wells of a 96-well plate, forming a thin film. Tumor lysate samples were added to

wells and incubated at 37°C for 2.5 hours. To activate the MMPs, a 1:10 volume of 1

mg/ml trypsin (Worthington, Lakewood, NJ) was added to the sample and incubated at

37°C for 7 minutes. A 1:10 volume of 5 mg/ml soybean trypsin inhibitor (Worthington,

Lakewood, NJ) was then added to the sample to inactivate the trypsin. Samples were

immediately added to wells containing collagen. The supernatants containing soluble

radiolabeled collagen (from cleavage) were transferred to scintillation vials and counted

in a Beckman model LS-3801 scintillation counter. Bacterial collagense was used as a

control to cleave all the radiolabeled collagen in select wells. Bovine corneal collagense

was used as the enzyme control in inhibitor assays. One unit of activity corresponds to

degradation of 10% of the collagen in 2.5 hrs at 370C.
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SHG imaging and quantification

Imaging of second harmonic generation (SHG) in dorsal chamber tumors was performed

with a custom-built multiphoton laser scanning microscope (11) using a 20X/0.5NA

objective lens. Excitation was at 880 nm and SHG was detected via a 435DF30 emission

filter with a high pass 475 dichroic. Three dimensional image stacks were obtained of the

top 130 jim from the surface of the tumor (27 images of 5 gm thickness). Six to ten

image stacks were obtained to create a montage covering the entire tumor or a significant

portion of it. The total SHG signal intensity in each stack was measured by image

analysis (ImageJ) and the mean intensity for each individual tumor calculated.

Histology

Tumor tissue was harvested, fixed in 4% paraformaldehyde for 3 hrs and incubated in

PBS overnight. Tissue was embedded in either paraffin or optimal cutting temperature

compound (Tissue-Tek). 20 tm thickness sections were cut.

Collagen I staining of frozen sections and quantification was performed as described

previously (6). Rabbit polyclonal antibody against collagen I (LF-67) was obtained from

Larry Fisher (National Institute of Dental Research) and used at a dilution of 1:200. A

Cy3-conjugated secondary antibody (Jackson Immunoresearch, West Grove, PA) was

used. Cell nuclei were stained with DAPI. For quantification of the fraction of tissue

occupied by collagen I staining, images were taken with a multiphoton microscope (11).

Using 800 nm light with a 20X/0.5 numerical aperture lens, image stacks (10 images)

were obtained of the stained sections. A 625/75 filter was used for Cy3 imaging and
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435/40 for DAPI, with a 570 dichroic. A maximum intensity projection of the image

stacks was taken to generate a single image, thereby ensuring that each pixel value

represents the best colocalization of the excitation volume with the slice. Ten images

were taken per section in random locations and 7 sections were analyzed for each group.

Using a series of threshold pixel values the fraction of tissue section containing nuclear,

non-specific and specific collagen staining was determined.

HSV-1 and HA binding protein (HABP) staining was performed on paraffin sections.

Tissue sections were deparaffinized and hydrated. Sections were permeabilized with 3%

hydrogen peroxide for 5 minutes, washed three times in PBS with 3% BSA and blocked

for 1 hr with 3% BSA/PBS. The tissue was incubated with a polyclonal anti-HSV-1

antibody (Dako, Glostrup, Denmark) at a dilution of 1:8000 for 30 minutes at room

temperature. For HA staining tissues were incubated with biotinylated HA binding

protein (EMD Chemical, Madison, WI) at a dilution of 1:150. Sections were incubated

with peroxidase-conjugated streptavidin and DAB chromogen was used as substrate

(Dako, Glostrup, Denmark). For quantification of HA staining, 8 random images were

taken per section with a 20X objective lens with an inverted microscope (Olympus,

Center Valley, PA). Image analysis was performed using a macro developed in Adobe

Photoshop. The brown pseudocolor was selected and thresholded using the color

selection function and the mean brown pixel count for each section was measured. For

HSV staining, individual images were taken with a 10X objective lens to create a

montage of the entire tumor. The contrast was insufficient for image analysis using the

macro. Instead, a square grid with 100 /m length grid boxes was overlayed on the images
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and grid boxes containing brown staining were counted. In both cases, 6-7 tissues

sections were analyzed per tumor type.

Construction of recombinant HSV vectors

Recombinant oncolytic HSV-1 vectors expressing MMP-1 and MMP-8 were generated

using the HSVQuik system (12) (Fig. 5.1). A brief description of the protocol follows,

while a more detailed version can be found in the manuscript. The MMP-1 and MMP-8

cDNA were subcloned into the pcDNA3.1 mammalian expression vector (Invitrogen,

Carlsbad, CA). The expression cassette containing the CMV promoter, MMP cDNA and

polyA was amplified by PCR and subcloned into the pTransfer shuttle plasmid. The

pTransfer multiple cloning site is flanked by FRT and loxP sites to mediate homologous

recombination. pTransfer-MMP-x plasmids were electroporated together with an FLP-

expressing helper plasmid into bacteria carrying fflSVQuik-1 BAC plasmid. The

fHSVQuik-1 BAC was cloned from the MGH1 genome, which contains deletions in both

copies of the y34.5 gene and a lacZ insertion at the UL39 locus. It contains two

recombination sequences: FRT sites to facilitate insertion of transgene cassettes into the

UL39 locus and loxP sites for later removal ofprokaryotic plasmid sequences from the

vector genome. It also contains the EGFP coding sequence to visualize infected cells and

an RFP expression cassette in the middle of the BAC backbone to monitor the presence

of the BAC sequences in the vector genome. Approximately 100 ng of each pTransfer

plasmid and the FLP-expressing helper plasmid were used. An electrical pulse was

applied using the Gene Pulser II device with a setting of 1.8 kV, 200 (9, 25 #F.

Cointegrants of the pTransfer-MMP-x and fflsvQuik-1 fused at the FRT sites (fflsvQ1-
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MMP-x) were obtained by selection with chloramphenicaol and ampicillin (both 15

Ag/ml). BAC DNA was prepared by conventional alkaline method and candidate clones

were screened with HindIII restriction digest patterns.

The ffIsvQ1-MMP-x has the transgene cassette inserted at the UL39 locus and two

unidirectional loxP sites now flanking all of the prokaryotic plasmid backbones and the

RFP marker gene. ffIsvQ1-MMP-x (2 jg) and a Cre-expressing helper plasmid (0.5 jg)

were cotransfected into Vero cells using LipfectAMINE reagent (Invitrogen, Carlsbad,

CA). Transfected cells were harvested and freeze/thawed to recover packaged

recombinant virus. Vero cells were infected with serially diluted samples of the vector

supernatant and individual recombinant HSV vectors were propagated. The expression of

GFP but not RFP was confirmed. MMP expression by infected Vero cells was confirmed

by western blot.
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Figure 5.1. Schematic strategy for generation of recombinant oncolytic HSV vectors.

fHsvQuik-1 is a BAC plasmid developed from the genome of MGH1, an oncolytic HSV

vector containing deletions in both copies of the y34. 5 gene and a lacZ insertion at the

UL39 locus. Co-electroporation of fHsvQuik-l with pTransfer vectors containing the

gene of interest and an FLP-expressing plasmid result in insertion of the gene of interest

in the UL39 locus, generating fH-IsvQl-x. Co-transfection of Vero cells with fHsvQ1-x

and a Cre-expressing plasmid results in removal of the prokaryotic plasmid backbones

and packaging of recombinant virus (rHsvQ1 -x).
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Tumor growth delay

HSTS26T tumors (or transfected variants) were implanted subcutaneously in the leg of

SCID mice and allowed to reach 60 mm3 average volume. Mice were then randomized

into separate groups (6-7 animals per group) and given 10 ýil intratumoral injections of

either 2.5 x 106 t.u. of oncotyic HSV in PBS or PBS alone. A second similar injection

was performed two days later. Tumor volume was measured every 3-4 days and

calculated as volume = 7tAB 2/6, where A and B are the maximum and minimum

diameters, respectively. The time to reach 10 times the volume at treatment was

calculated for each tumor.

Multiphoton fluorescence recovery after photobleaching

The diffusion coefficient of 2x10 6 molecular weight dextran was measured in dorsal

chamber tumors using multiphoton fluorescence recover after photobleaching

(MPFRAP). A custom-built multiphoton microscope (11) was adapted for MPFRAP

based on a previous design (13). One half microliter of tetramethylrhodamine-labeled

dextran (Invitrogen, Carlsbad, CA) was injected at a concentration of 2 mg/ml at a depth

of 200 [tm below the surface of the tumor. Injections were performed using glass

micropipettes that were pulled to obtain a 20 gpm inner diameter tip (6). Injections were

performed at nearly constant flow rate over 2-3 minutes.

MPFRAP was performed approximately 30 minutes after injection. The laser was set at

800 nm and a 40X/0.75 NA objective lens was used with a 525/100 filter between 405

and 605 high pass dichroics. The multiphoton laser was focused on locations in the
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extracellular space 40-70 gLm below the surface of the tumor. During each

bleach/recovery cycle, the sample was bleached with a 160 jts pulse train of light,

followed by an -40 ms recovery monitored in 40 gs time bins. The length of the bleach

and the time bins for monitoring recovery were chosen to avoid significant error due to

diffusion during these two time periods. Based on the analysis of Brown et al. (13), the

systematic error in the detected fluorescence intensity due to diffusion during the bleach

pulse and over the course of recovery is -1.05(At/zD) where At is the length of the bleach

pulse or monitoring time bin and TD is the time constant for diffusive recovery. The

characteristic fluorescence recovery time of2x106 molecular weight dextran in vivo was

found to be -10 ms. Thus, a bleaching pulse length of 160 gts is short enough to avoid

significant diffusion during the bleach pulse (error of-1.68%) and a monitoring time bin

of 40 jis is short enough to accurately monitor the recovery (error of 0.42%).

The monitoring power was chosen such that photobleaching did not occur. The bleaching

power was chosen such that excitation saturation did not occur. Each bleach/recovery

cycle was repeated 500 to 1000 times for a given spot/measurement. Approximately 10 to

20 measurements were taken for each individual tumor. Data acquisition typically lasted

2 hrs. The recovery curves were fit to the following equation, derived in Brown et al.,

which gives the time-dependent detected fluorescence signal due to diffusion into the

focal volume:

Sm 3/ 2 (-fl)" 1 1
F(t) n=O n! (m+bn + (bnmt/rD) m+bn+(bnmt/RTD)
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F(t) is the time-dependent fluorescence signal, Fo is the prebleach equilibrium

fluorescence signal, m is the number of photons required to generate a fluorescence

photon, f is the bleach depth parameter, b is the number of photons absorbed in a

bleaching event, t is the time, R is the square ratio of the 1/e2 beam dimensions (wz2/i2)

and rD is the characteristic radial diffusion time of the fluorophore, defined as w 2/8D,

where D is the diffusion coefficient. The beam dimensions for for the objective lens at a

wavelength of 840 nm was calculated theoretically, with w, = 1.929 x 10-6 m and w =

3.382 x 10-7 m.

Hydraulic conductivity

Measurements were performed using an apparatus based on one designed previously by

Swabb et al. (14). Discs of 3 mm diameter and 1 mm thickness were cut from tumor

tissue. The tissue was ensured grossly free of necrosis and hemorrhage. The tissue was

placed in a tissue clamp and secured in place on both sides with a 3mm disc of polyester

mesh (90 Am thickness, 80 /m mesh opening, 39% open area, Spectrum Laboratories,

Rancho Dominguez, CA). Both sides of the tissue in the clamp were filled with fetal

bovine serum. An o-ring sealed the interior of the clamp to prevent leakage of fluid. The

inlet and outlet of the clamps were connected to polyethylene tubing with an inner

diameter of 0.58 mm. The tubing leads to head tanks, which were filled with water. A

pressure drop was established by adjusting the height of the inlet and outlet head tanks,

and the flow rate of an air bubble in the inlet tubing was measured. The measurement was

taken for two pressures (range 5-10 cm water) to ensure a linear increase in hydraulic

conductivity with pressure. Measurements were completed in - 2 hours. The hydraulic

138



conductivity was calculated by using Darcy's law for one-dimensional flow through

porous media with the following equation:

K = vA c•p At s

AP/ Ax

Where K is the hydraulic conductivity, v is the velocity of the bubble, Acap is the cross-

sectional area of the capillary tube, Atiss is the cross-sectional area of the tissue in the

clamp, AP is the applied pressure drop and Ax is the thickness of the tissue. Experiments

were performed at room temperature.

Cell proliferation assay

1 x 104 mock and MMP-transfected HSTS26T cells were seeded in 96 well plates in

quadruplicate with 100 /l media (DMEM with 10% FBS). After a 48 hr incubation, the

media was replaced with 10 Itl of WST-1 reagent (Roche, Basel, Switzerland) in 90 #l1

serum free DMEM. The cells were incubated for 2 hours at 370C, 5% CO2. The plate was

shaken for 1 minute and the absorbance at 450 nm was measured.

Viral titer

4 x 105 mock and MMP-transfected HSTS26T cells were seeded in 12 well plates. 24

hours later, cells were infected with the oncolytic HSV vector MGH2 at an MOI of 0.1.

After 48 hour incubation, cells and supernatant were collected, subjected to three rounds

of freeze/thaw in a dry ice/ethanol bath and the cell debris pelleted by centrifugation.

Confluent HSTS26T cells in a 96 well plate were infected with serial dilutions of this
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virus prep to titer the virus. EGFP-expressing cells were counted 48 hours after infections

and the viral titer expressed as transducing units.

Sulfated GAG content

Sulfated glycosaminoglycans (GAGs) was measured using the Blyscan assay (Biocolor,

Newtownabbey, Ireland) based on the binding of the cationic dye 1,9-dimethylmethylene

blue (15). Briefly, tumor tissue was harvested and snap frozen in liquid nitrogen and

stored at -800 C. Tissue was solubilized in digest buffer containing 125 pg/ml papain, 0.1

M sodium phosphate, 5 mM Na2EDTA and 5 mM cysteine-HC1, pH 6.0. One milliliter of

buffer was used for 50 mg of tissue. Tissue was incubated in digest buffer for 18 hrs at

60'C. 25 il of solubilized sample was added to 1 ml dye reagent and mixed for 30

minutes at room temperature. The samples were centrifuged at 14,000 x g for 10 minutes

to pellet the precipitated polysaccharide-bound dye. The pellet was solubilized in 1 ml of

dissociation reagent and absorbance of the dye measured at 656 nm. Chondroiton 4-

sulphate was used as a standard.

Results

Development of MMP-1 and MMP-8 expressing tumors

Human soft tissue sarcoma HSTS26T cells were stably transfected with full length

human MMP-1 and MMP-8 via retroviral transduction and tumors were grown

subcutaneously in the flank of SCID mice. A western blot of the tumor lysate showed that

while each MMP is expressed, the majority is in the latent, inactive form (Fig. 5.2A). For

both MMPs, the zymogen retains the propeptide domain and is thus -10 kDa larger than
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the active form and runs higher on the gel. An in vitro collagenase activity assay was

performed on tissue lysate from mock and MMP-transfected tumors (Fig. 5.2B). The

collagenase activity in both MMP-expressing tumors was not significantly different than

mock-transfected tumors. When the MMP-activating agent trypsin was added, the

activity in the lysates from MMP-expressing tumors increased significantly compared to

both lysate without trypsin and the mock transfected tumor lysate (P < 0.05 for all cases).

These results are consistent with the western blot analysis; they suggest that the MMP-

expressing tumors contain latent collagenases that are not activated in the interstitial

space and that maximal collagenase activity has not been achieved.

One other mechanism that may reduce collagenase activity is the presence of MMP

inhibitors in the tumor. Activity assays were performed to assess the presence of

inhibitors in both the mock and MMP-transfected tumors (Fig. 5.2C). The activity of

corneal collagenase was measured in the presence and absence of 100 /tg of tumor lysate.

Collagenase activity was not reduced significantly compared to the collagenase control

for any of the tumors, with no apparent effect of dose. While this does not rule out that

inhibitors are present, it does suggest that any inhibitors present are already bound to

collagenases in these tumors. In total, these activity assays suggest that activation - rather

than inhibition - limits overall collagenase activity. Interestingly, MMP-1 and -8

expression does not appear to trigger an increase in the expression of inhibitors in these

tumors.
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Effect of MMP expression on interstitial collagen

Next we assessed the effect of MMP-l and -8 expression on tumor collagen. While the

activity assays and western blot showed that the majority of the MMPs were not in the

active state, even a small active fraction may have an effect on tumor collagen, especially

with chronic expression throughout the course of tumor development. Several assays

were performed to assess tumor collagen. First, a western blot was performed to

determine the presence of cleaved collagen I in the tumor (Fig. 5.3). A polyclonal
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194 -
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14 -

antibody targeted to the N-terminus of the ¼ al fragment of MMP-cleaved collagen type

I was obtained from Eunice Lee (Shriners Hospital for Children, Montreal, Canada). The

specificity of the antibody to MMP-1 and -8 cleaved collagen type I was confirmed by

comparing SDS/PAGE and western blots of MMP-cleaved collagen (Fig. 5.3A). The

antibody is clearly specific for the N-terminal neoepitope of the ¼/4 a chain of collagen I.

Western blot analysis of tumor lysates detected no difference in the presence of this

cleavage fragment between mock and MMP-transfected tumors (Fig. 5.3B).

A

SDS PAGE Immunoblot

194

112

60

31
cleaved
collagen

beta
i-

Mock MMP-1 MMP-8

- MMP-1 MW-8 - MMP-I FP-8

Figure 5.3. Analysis of collagen I cleavage in MMP-expressing tumors. (A) Validation

of a polyclonal antibody targeted to the N-terminal neoepitope of the MMP-cleaved ral

chain of collagen type I. SDS/PAGE stained with Coomassie blue (left) and western blots

(right) of intact and MMP-1 and MMP-8 cleaved collagen I. The ac and all chains are

slightly higher than the 112 kDa band of the ladder, while the 3/4 cleavage fragments are

slightly below it. The ¼ cleavage fragments are -30 kDa in size. The antibody appears

specific to the ca ¼ fragment of cleaved collagen I. (B) Western blots of tumor lysate
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In a second assay to assess changes in collagen induced by MMP-1 and MMP-8

expression, tumor sections were immunostained for collagen type I. Analysis was

performed on images of stained tissue sections and the fraction of tissue that was stained

for collagen was compared between tumor types. There was no significant difference in

the fraction between each tumor type (Fig. 5.4A). Finally, in vivo multiphoton imaging of

second harmonic generation (SHG) was performed to determine the amount of collagen

in living tumors. Consistent with the previous results, there was no significant difference

in the total SHG signal between the tumor types (Fig. 5.4B). In total, these results show

that MMP-1 and MMP-8 expression in HSTS26T tumors does not significantly affect

interstitial fibrillar collagen.

A
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from mock and MMP-1 and -8 transfected HSTS26T tumors. A western blot of beta actin

is also shown. There is no major difference in the amount of cleaved collagen between

tumor types.
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Effect of MMP expression on tumor GAG content

While MMP-1 and -8 expression had no major effect on collagen, this does not rule out

that changes occurred in other ECM components. We next measured the effect of MMP

expression on both nonsulfated GAGs (HA) and sulfated GAGs. HA content was

measured by quantification of tumor tissue staining. Sulfated GAG content was assessed
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Figure 5.4. Interstitial collagen I level in MMP-expressing HSTS26T tumors. (A)

Comparison of the fraction of area containing collagen I immunostaining for mock and

MMP-1 and -8 transfected tumors. Image analysis was performed on maximum intensity

projections of multiphoton image stacks taken for each tumor section. There is no

statistically significant difference between tumor types. (B) Comparison of the average

SHG signal from dorsal chamber tumors. Image stacks 130 #m deep were taken of each

tumor and total SHG signal was quantified. There is no statistically significant difference

between tumor types. Mean values and standard errors shown in both cases.
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biochemically using a 1,9-dimethylmethylene blue dye-binding assay. We found that

there was no difference in HA content between mock and MMP-expressing tumors (Fig.

5.5B). However, MMP-1 and MMP-8 expression caused a significant reduction in

sulfated GAG content (Fig. 5.5A). This is an unexpected result since MMP-1 and -8 have

been traditionally identified as type I collagenases and we found that the overexpressing

tumors showed little collagenase activity. However, it is not entirely surprising since

these MMPs also have various other matrix substrates, the catabolism of which is not

well studied or understood.
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Effect of MMP expression on interstitial transport

Next we assessed the effect of this change in the tumor matix induced by MMP-1 and -8

expression on interstitial transport. The diffusion coefficient of 1x106 molecular weight

dextran was measured with multiphoton fluorescence recovery after photobleaching for

each tumor type (Fig. 5.6). No difference in the diffusion coefficient was observed

between mock and MMP-transfected tumors. This result is expected, as our labs has

previously shown that there is a strong correlation between diffusion and collagen

content, but not GAG content (5, 6). On the other hand, it has been shown that convective

transport is strongly regulated by the tissue GAG content (16, 17). Thus we also

measured the hydraulic conductivity of these tumors. Indeed, we found that in MMP-1

and -8 expressing tumors, the hydraulic conductivity was more than two-fold greater than

the mock-transfected (Fig. 5.7). It appears that MMP expression can enhance convective

transport in tumors by depletion of sulfated GAGs.
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Effect of MMP expression on oncolytic HSV

Based on these encouraging - albeit unexpected - findings, we next sought to determine

ifMMP-1 and -8 expression could enhance the efficacy ofoncolytic HSV therapy. In

theory, an increase in hydraulic conductivity could enhance the flow of intratumorally

injected HSV particles into the tumor tissue, improving distribution and efficacy. To test

this hypothesis, mock and MMP-expressing HSTS26T tumors were grown

subcutaneously in the leg of SCID mice. For all three groups, tumors were treated with

two intratumor injections of either 2.5 x 106 t.u. of the oncolytic HSV vector MGH2 or

PBS control. Tumor growth in each of the six groups was monitored following treatment

and the time for tumors to grow to ten times the size at treatment was compared (Fig.

5.8). Tumor growth was significantly delayed in the treatment group compared to control

in only MMP-1 and MMP-8 expressing tumors and not in the mock-transfected tumors.
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Figure 5.7. Hydraulic conductivity of MMP-expressing tumors. Mock-transfected and

MMP-expressing HSTS26T tumors were grown subcutaneously and the hydraulic

conductivity of tissue sections measured. Mean values and standard errors shown. MMP-

1 and MMP-8 tumors exhibit a significantly greater hydraulic conductivity compared to

mock (P < 0.05).
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To gain insight into the differential response to MGH2 treatment and to determine if this

effect is indeed transport-related, HSV immunostaining was performed on tumors 7 days

following treatment with a single injection of MGH2. In mock-transfected HSTS26T

cells, HSV particles were present only in the periphery of the tumor. In contrast, for

MMP-1 and MMP-8 expressing tumors, HSV particles were located in both the periphery

and center of the tumor (Fig. 5.9A). The fraction of tumor area containing HSV staining

was quantified (Fig. 5.9B). As expected from the growth delay results, MMP-expressing

tumors had significantly more HSV staining than mock. When the tissue HSV staining

was subdivided into "periphery" and "middle" subfractions, we found that the majority of

the difference was due to the increase in HSV staining in the middle of the MMP-

expressing tumor sections. The lack of HSV staining in the center of the mock-

transfected tumor sections is interesting since MGH2 was injected directly into the center

of the tumors. It appears that in mock-transfected tumors, virus found preferential

pathways through the tumor and distributed outside of the tumor, rather than in the
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Figure 5.8. Effect of MMP expression in HSTS26T tumors on oncolytic HSV-induced

growth delay. (A-C) Mean tumor volume of treated (green) and non-treated (red) mock

transfected (A), MMP-1 expressing (B) and MMP-8 expressing (C) HSTS26T tumors.

(D) Comparison of time for tumors to reach ten times the initial size at treatment. Mean

and standard errors shown. Mock transfected tumors show no significant growth delay

for MGH2-treated tumors. MMP-1 and MMP-8 expressing tumors showed a significant

growth delay between control and MGH2-treated tumors (P < 0.05). Mean values and

standard errors shown in all cases.



center. Thus infection is only observed at the edge of the tissue section. This could occur

with HSTS26T, which has been found to be a very stiff tumor, with high resistance to

fluid flow leading to highly non-uniform distributions of infused agents (18). By reducing

the resistance to fluid flow, MMP-1 and -8 expression has allowed for greater distribution

of injected virus in the center of these tumors around the needle tip.
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Figure 5.9. HSV staining of MGH2-treated tumors. (A) Representative images of HSV-1

(brown) and nuclei (blue) staining 7 days following intratumor injection of MGH2. Mock
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Effect of MMP expression on cell proliferation and HSV infectivity

Since MMPs can have pleiotropic effects - sometimes playing a role in cell signaling as

well as matrix catabolism - it is important to determine if MMP-l and -8 expression

induced any biological response in these tumors. First we tested whether MMP-1 and

MMP-8 expression affected cell proliferation and tumor growth. Analysis of the rate of

tumor growth for control treated tumors showed that MMP expression did not have a

significant effect (Fig. 5.8A). A WST-1 assay showed that cell proliferation and viability

in vitro are also not affected by MMP-1 or -8 expression (Fig. 5.10A). Next we tested if

the MMP-transfected cells differ from the mock-transfected in either HSV infectivity or

burst size. The viral titer of the three cell lines 48 hours following infection at an MOI of

0.1 was compared. There was no significant difference between mock and MMP-

transfected cells (Fig. 5.10B). These results show that the enhanced response of MMP-l
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and -8 expressing tumors to oncolytic HSV is not due to a modulation in cell viability or

the infectivity of HSV. Rather it appears that MMP expression enhances the therapeutic

effect of oncoltyic HSV by increasing the hydraulic conductivity and improving the

distribution of virus in the tumor.
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MMP-expressing oncolytic HSV vectors

Finally, in order to apply the matrix-modifying approach in a clinically-relevant manner,

we generated novel oncolytic HSV vectors which express either MMP-l or MMP-8.

While the MMP-expressing tumors are valuable experimental tools, stable transfection of

tumor cells in this manner is obviously not a feasible approach in the clinic. The

alternative is to generate oncolytic HSV vectors which contain expression cassettes for

these MMPs. When tumors are treated with these vectors, MMP-1 or MMP-8 will be

expressed and secreted from infected tumor cells prior to their lysis. We applied the

HSVQuik system developed by Terada et al. (12) to generate these oncolytic vectors. The

three vectors generated (HsvQ1 expressing no transgene, HsvQ1-MMP-1 expressing

MMP-1 and HsvQ1-MMP-8 expressing MMP-8) are similar to MGH2 in that they

contain deletions in both copies of the y34.5 gene and transgene insertion at the UL39

locus. First, we confirmed expression of MMP-l and MMP-8 in cells infected with these

recombinant vectors (Fig. 5.11A). Then we treated wild type HSTS26T tumors with each
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Figure 5.10. Effect of MMP-1 and -8 expression on HSTS26T cell proliferation and

response to MGH2 infection. (A) WST-1 cell proliferation assay performed on mock,

MMP-1 and MMP-8 transfected cells. Cells were allowed to grow for 48 hours following

seeding and the absorbance of 450 nm light was measured following application of WST-

1. There is no significant difference between cell lines. (B) Comparison of the viral titer

48 hours following infection at an MOI of 0.1. There is no significant difference between

cell lines. Mean values and standard errors shown in both cases.



of these three vectors to assess if MMP-expression from infected cells could enhance the

transport of the viral vectors and overall treatment effectiveness. We found that there was

no significant difference in tumor growth between treatment groups (Fig. 5.11B,C).
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Figure 5.11. Treatment of HSTS26T tumors with MMP-expressing oncolytic HSV

vectors. (A) Confirmation of MMP expression in infected cells. Vero cells were infected

with either recombinant oncolytic HSV vector HsvQ1 or HsvQ1 variants which express

MMP-1 (HsvQ1-MMP-1) and MMP-8 (HsvQ1-MMP-8). MMP-1 (left) and MMP-8

(right) western blots were performed. Significant amounts of MMP-l and MMP-8 were

observed in HsvQl-MMP-1 and HsvQl-MMP-8 infected cells, respectively, compared to

control. (B-C) Wild type HSTS26T tumors were grown subcutaneously in the leg of

SCID mice and treated with two intratumor injections of either PBS, HsvQ1, HsvQ1-

MMP-1 or HsvQ1-MMP-8. (B) Mean tumor volume of treated and control tumors. (C)

Growth delay induced by oncolytic HSV treatment, given as the time for the tumor to

grow to ten times the size at treatment. There is no significant difference in the growth

delay between HsvQ1 and HsvQ1-MMP-1 or HsvQ1-MMP-8 treated tumors. Mean

values and standard errors shown.
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Discussion

Enzyme activity in MMP-expressing tumors

Using multiple methods we have shown that MMP-1 and -8 expression in HSTS26T

tumors does not lead to significant changes in tumor collagen. Inhibition of collagenase

activity by TIMPs has been ruled out as the cause since our activity assay showed no

inhibition of corneal collagenase activity by any of the three tumor lysates. Western blot

analysis shows that only a small proportion of the enzyme is in the active state. When an

activating agent was added to tumor lysates, the activity in these samples increased

significantly. These data suggest that the likely reason why changes in tumor collagen

were not observed is because the secreted enzymes are insufficiently activated. However,

one other possibility is that MMP-1 and -8 are being activated but simply are not

particularly potent collagenases in vivo, at least with respect to the amount of degradation

desired for our application. These MMPs exists in three main structural states: zymogen,

active form and intramolecularly degraded inactive form (19, 20). It may be that the

steady state concentration of active enzyme is low even in the presence of copious

amounts of activating agents, resulting in a faint active enzyme band on western blots and

low "instantaneous" activity in our collagenase assays. Then why did we not observe

changes in tumor collagen? Well, we have been using as a standard for significant

changes in collagen the amount of degradation induced by bacterial collagenase

treatment. However, we have found that bacterial collagenase is a significantly more

effective collagenase than either MMP-1 or MMP-8 both in vitro and in vivo when they

are delivered as recombinant proteins. Bacterial collagenase differs in its collagenolytic
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activity than MMP-1 and -8: it cleaves at multiple sites rather than one and possesses

potent gelatinase activity (21-24). Thus, it is possible that MMP-1 and -8, by themselves,

may not be able to induce similar dramatic changes in tumor fibrillar collagen.

Regardless of whether insufficient activation or lack of potency is the main cause of

limited collagen degradation, collagenolysis can likely be improved by increasing the

proportion of MMP-l and -8 found in the active state. There are several approaches to

accomplish this. An indirect method is to grow MMP-expressing tumors in host tissues

which are more likely to contain proteases which can activate the latent enzymes. Both

MMP-1 and -8 have been successfully used to treat liver fibrosis (25, 26). In these

studies, latent MMP-1 and -8 delivered via adenoviral vectors were activated in the liver

and led to a significant reduction in collagen. This suggests that tumors grown in the liver

may be amenable to treatment with collagenases. A more direct application of this

approach is to combine MMP expression with application of an activating agent. In vitro

studies have identified a host of enzymes and chemicals which can activate MMP-1 and -

8 (27-32). The difficulty with this approach is that these agents can be toxic (e.g.

APMA), require proteolytic activation themselves (e.g. MMP-3) or have ECM substrates,

themselves (e.g. trypsin), which can lead to confounding and unwanted effects. The most

promising approach may be to modify these MMPs genetically. These MMPs have a

unique domain structure which lends them to genetic manipulation to attain constitutively

active forms. The generation of such mutant forms of MMP-1 and -8 is the focus of the

following chapter.
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HSV distribution in MMP-expressing tumors

The observation that HSV vectors showed minimal distribution around the site of

injection in the center of the tumor is not entirely surprising given the low hydraulic

conductivity in these tumors. Netti et al. measured the elastic modulus and hydraulic

conductivity in four tumors and found that HSTS26T was the hardest and had the greatest

resistance to flow (5). Our measurement of the hydraulic conductivity of HSTS26T using

the tissue clamp method concurs with the measurement in that study from confined

compression tests. The extreme stiffness of this tumor likely causes the unique

distribution of injected agents. Boucher et al. found that when they infused Evans blue-

labeled albumin into the center of HSTS26T tumors at a flow rate of 0.05 dl/min, it

distributed asymmetrically from the source and often in necrotic regions (18). Fluid

accumulation was found away from the infusion site - including at the surface of tumors

- with channels of fluid connecting regions of accumulation. Limited necrosis was

observed in the tumors studied in this work, likely because in vitro measurements were

performed on relatively small tumors (100-200 mm3) to match the size at treatment with

oncolytic HSV. However, the pattern of flow of fluid through preferential pathways

rather than bulk flow to the surrounding tissue is consistent with their findings. When the

authors of this study performed similar injections in the colon adenocarcinoma LS 174T,

which has a 5-fold greater hydraulic conductivity than HSTS26T, they found that dye

distributed symmetrically around the infusion needle in the center of the tumor. Thus, our

results suggest that an increase in hydraulic conductivity in this tumor - which is

particularly stiff and resistant to fluid flow - can significantly enhance the delivery of

injected viral vectors.
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What causes this change in hydraulic conductivity? Fluid flow is believed to be regulated

chiefly by the GAG content of the tissue (16, 17). Both Swabb et al. and Levick showed a

strong negative correlation between tissue GAG concentration and hydraulic conductivity

(14, 33). In particular, the non-sulfated GAG HA has been found to be a significant

source of hindrance to fluid flow (34, 35). However, Levick's analysis shows that GAGs

alone - or even GAGs and collagen alone - cannot account for all of the resistivity to

fluid flow in most tissues. When corneal stroma was treated with both trypsin and

hyaluronidase, trypsin caused a greater depletion of sulfated GAGs and greater increase

in hydraulic conductivity (34). Unlike hyaluronidase, trypsin is a protease with broad

substrate specificity that can act on proteoglycan core proteins as well as glycoproteins.

Thus, this study suggests that perhaps GAGs other than HA - the sulfated GAGs - and

other glycoproteins may affect tissue hydraulic conductivity. It is possible that MMP

expression increased hydraulic conductivity by modifying one of these components.

While both MMP-1 and MMP-8 are commonly known as type I collagenases, they have

multiple other ECM substrates (4). Degradation of an alternative substrate - perhaps even

one yet to be identified - may be responsible for the change in hydraulic conductivity that

was observed with the MMP-overexpressing tumors. Both MMP-1 and MMP-8 have

been shown to be able to degrade the proteoglycan aggrecan (36). Aggrecan contains

both chondroiton sulfate and keratin sulfate chains and up to 100 monomers interact with

hyaluronic acid via an N-terminal globular domain (37-39). Cleavage occurs in the

interglobular domain near the HA binding site, releasing the portion of the core protein

that is GAG-bound. Aggrecan is found mainly in cartilage, where its complex with HA

creates a hydrated, space-filling gel that plays a role in cyclical load bearing. While
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aggrecan is not typically found in neoplastic tissue, tumors are often found to have

elevated levels of other chondroiton sulfate proteoglycans (40-42). The likely

proteoglycan found in tumors is versican, which is in the same family of proteoglycans as

aggrecan, has a similar domain structure and binds HA to form aggregates (43). While

versican has yet to be explored as a substrate for MMP-1 or -8, link protein - which

stabilizes the interaction of both aggrecan and versican with HA - has been found to be

cleaved by MMP-1 (44). Furthermore, aggrecanases of the ADAMTS (a disintegrin and

metalloprotease with thrombospondin type 1 motifs) family of proteases have been found

to be able to cleave versican, as well (45-48). These results suggest that degradation of

proteoglycans in the MMP-1 and -8 expressing tumors is possible. However, there are a

host of other candidate ECM proteins whose degradation may lead to alteration of tumor

hydraulic conductivity, since these MMPs have been found to cleave various other

fibrillar collagens (49-52) and glycoproteins (53-56).

The finding that convective transport was enhanced by MMP-l and -8 expression but not

diffusive transport is consistent with the change observed in tumor GAG but not collagen.

We have previously shown that there is a positive correlation between tumor collagen

content and both diffusive hindrance (57, 58) and resistance to flow (59). However,

disruption of tumor GAG with hyaluronidase has been shown to increase hydraulic

conductivity in various tissue (16, 34, 60), but has been found to only slightly affect

diffusive transport, and in the opposite direction (Trevor McKee, personal

communication). Furthermore, Netti et al. measured hydraulic conductivity and the

diffusion coefficient of tracer molecules in a panel of tumors and found that there was no

strong correlation between diffusive and convective transport in a given tumor (5). It is
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becoming increasingly clear that collagen and GAGs play an interconnected role in

regulating interstitial transport and that there are no simple relationships connecting

collagen with diffusion and GAGs with convection.

Implications for tumor therapy

While the novel MMP-expressing oncolytic HSV vectors developed in this study showed

no improvement over the wild type vector, this result is not entirely discouraging and in

fact supports the other findings about the effect of MMP expression on tumor interstitial

transport. Our results suggest that chronic MMP-1 and -8 expression improves the initial

delivery of virus - by enhancing convection into the tissue during intratumor injection -

but would not significantly enhance subsequent propagation, which is affected by

diffusion rather than convection. With the recombinant vectors, MMPs are not expressed

until after the initial infection of tumor cells. Thus, the initial distribution would be

expected to be similar to that of virus injected into the mock-transfected tumors. The

subsequent distribution of progeny virus and therapeutic efficacy would not be enhanced

since MMP expression does not significantly affect diffusion and also because the poor

initial distribution into the periphery of the tumor limits the number of initially infected

cells.

These results point to the importance of initial virus distribution in determining overall

treatment outcome, a phenomenon we and others have previously observed (1, 61).

Therefore, optimizing intratumoral infusion parameters is a promising method to improve

the distribution and efficacy of therapeutics. Bobo et al. have shown that the use of

prolonged infusion can enhance the delivery of macromolecules to the brain, and that the

164



distribution can be further improved by increasing the volume of infusion (62). However,

this may not be a viable method for all tumors. For example, this work as well as the

study of Boucher et al. (18) show that certain tumors have a matrix composition and

structure which makes it difficult to achieve adequate convection during infusion. The

findings in this chapter establish a novel technique which may substantially improve the

treatment of such tumors. By modifying the tumor, itself, with matrix degrading

proteases such as MMPs, the distribution of therapeutic agents during infusion may be

enhanced.

Despite this encouraging result, our findings also suggest that there is much room for

improvement. The collagenase activity assays showed that the MMPs expressed in these

tumors were predominantly in the inactive state. Overcoming this activation barrier may

have two positive effects: (1) an increase in collagenase activity which could improve

diffusive transport in the interstitium; (2) enhancement of sulfated GAG depletion which

could further augment convective transport during intratumor infusion. If such techniques

to activate MMPs can be developed, the concept of incorporating matrix proteases into

oncolytic viruses to improve the spread of progeny virus may find greater success than

achieved here. Using genetic modifications to enhance the ability of MMP-1 and -8 to

degrade ECM components and improve diffusive and convective transport is the focus of

the next chapter.
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Chapter 6: Genetic Modifications to Enhance MMP Activity
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Introduction

In the previous chapter we found that MMP-l and MMP-8 are not extensively activated

by proteases in the extracellular space of HSTS26T tumor xenografts. Thus, they have

not reached their full potential as enzymes which can degrade interstitial fibrillar collagen

type I and improve the transport characteristics of tumors. Reaching this potential may

require modification of these proteins to tip the balance between active and latent

enzymes in the tumor.

Both MMP-1 and MMP-8 fall into the "simple hemopexin domain" structural class of

MMPs (1). They contain a signal peptide, followed by a propeptide domain, catalytic

domain, hinge region and hemopexin domain. The signal peptide directs the protein to

the enodoplasmic reticulum and allows for secretion into the extracellular space. The

catalytic domain contains the catalytic zinc, which is bound by three His residues (2-4).

The hinge region - whose role is still uncertain - links the catalytic domain to the

hemopexin domain. The C-terminal hemopexin domain is involved in the recognition of

and binding to collagen. Forms of MMP-1 and MMP-8 which lack the hemopexin

domain can cleave gelatin (denatured collagen molecules) and short synthetic peptides

that correspond to the cleavage site in collagen I, but are not active against collagen itself

(5-7). The propeptide domain - which extends from the N-terminus created by the

deletion of the signal peptide to the catalytic domain - has been found to interact with the

catalytic site and keep the full length enzyme latent. A propeptide cysteine residue in the

conserved sequence PRCGVPD is coordinated to the zinc atom in the active site through
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the -SH group (8, 9). Collagenase activity is observed only when the propeptide domain-

catalytic domain interaction is disrupted or the propeptide domain is cleaved off.

Based on the domain structure of MMP-l and MMP-8 and the roles each domain plays,

one obvious method to develop a constitutively active collagenase is to delete the

propeptide domain. This truncated protein would not require activation in the

extracellular space. Here we describe our efforts to create such modified MMPs.

Materials and Methods

Construction of expression vectors and MMP mutants

The cDNA coding for human MMP-1 was purchased from ATCC. The cDNA coding for

human MMP-8 was a gift from David Tarin (University of California, San Diego). To

create an expression vector for the full length enzymes, both MMPs were subcloned into

the vector pEAK13 (Brian Seed, Massachusetts General Hospital). For MMP-1 the

forward primer 5'-CAGCTGGCTAGCTTCCCAGCGACTCTA-3' and reverse primer

5'GTCGACGCTAGCGACTCACACCATGTG-3' were used with SpeI/BglII restriction

digest of the PCR insert and NheI/ BamHI digest of pEAK13. For MMP-8 the forward

primer 5'-CAGCTGGGATCCTTTCCTGTATCTTCT-3' and reverse primer 5'-

TCTAGAGGATCCTCAGCCATATCTACA-3' were used with NheI/BamHI digest of

both the PCR insert and pEAKl3. Both MMP-1 and MMP-8 were inserted in frame with

the signal sequence in the pEAK13 expression vector.

To generate a truncated version of MMP-1, PCR was performed with the new forward

primer 5'-CAGCTGGCTAGCTTTGTCCTCACTGAG-3' and the same reverse primer
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used for full length MMP-1 subcloning. The amplified insert was subcloned into

pEAK13 in frame with the signal sequence. Similarly, to generate a truncated version of

MMP-8, the new forward primer 5'-CAGCTGGGATCCATGTTAACCCCAGGA-3'

was used with the same reverse primer for full length MMP-8 subcloning.

To generate the truncated MMP-1 hinge mutant, a strategy adapted from O'Hare et al

was used (10). The cDNA was modified by PCR in two steps. The forward primer 5'-

GACGATCGCAAAATCCTGTCCAGCCCAGCG'3 was paired with the full length

enzyme reverse primer to generate the C-terminal half of MMP-1 containing the

Ile270OSer mutation. The reverse primer 5'-TTGCGATCGTCCATATAGGGCTTGGAT-

3' was paired with the truncated MMP- forward primer to generate the N-terminal half

of MMP-l containing the Ile259Leu mutation. In both PCR products, two silent

mutations were also introduced in order to generate PvuI restriction enzyme cleavage

sites. The two PCR products were inserted into pEAK13 in a three-way ligation with

SpeI/PvuI and BgllI/PvuI digests of the inserts and NheI/BamHI digest of the vector.

To generate the truncated MMP-8 hinge mutant, the strategy of overlap extension

mutagenesis was employed (11, 12). The forward primer 5'-

GGAGCTTCAAGCAACCCTGCCCAA-3' was paired with the full length enzyme

reverse primer to generate the C-terminal half of MMP-8. The reverse primer 5'-

TTGGGCAGGGTTGCTTGAAGCTCC-3' was paired with the truncated MMP-8

forward primer to generate the N-terminal half Both PCR products contain the

Leu243Ala and Ile248Ala mutations. PCR was performed on these two fragments (which

contain overlapping sequences) to recover the full length product. This PCR product was
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subsequently subcloned into pEAK13 with SpeI/BgllI digest of the insert and

NheI/BamHI digest of the vector.

Transient and stable cell transfections

293ET and HSTS26T cells were cultured in 6-well plates under standard conditions.

Transient transfections were performed with Lipofectamine 2000 (Invitrogen, Carlsbad,

CA) according to the manufacturer's instructions. To generate stable HSTS26T

transfectants, cells were transfected in 60-mm dishes and passaged at a 1:20 dilution into

fresh growth medium 24 hours after transfection. Twenty four hours after passaging the

media was replaced with fresh media containing 0.5 Ag/mL puromycin. Media with

puromycin was changed every 5 to 6 days. Individual colonies were selected, expanded

and screened.

A retroviral transfection system was also used to generate stable transfectants. The

protocol was adapted from one previously described (13). Briefly, the full length,

truncated and mutated-truncated forms of MMP-1 and MMP-8 were subcloned into

pMSVCneo (Clontech Laboratories, Mountain View, CA) using the pEAK13 vectors as

templates. 80-90% confluent T75 flasks of 293ET packaging cells were transiently

transfected with each MSCV vector (15 Lg) in combination with plasmids expressing

vesicular stomatitis virus glycoprotein (VSVG, 5 jig) and gag/pol (7 jig). After overnight

incubation, the 293ET cells were washed three times with PBS and then 10 mL of fresh

media was added. The following day the conditioned media containing retrovirus was

collected and fresh media added to the flask. The conditioned media was spun down to

remove any cell debris and passed through a 0.45 /M filter (Whatman, Middlesex, UK).
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Subconfluent HSTS26T cells were incubated with the conditioned media containing

retrovirus. The conditioned media from the 293ET packaging cells were collected the

following two days and transduction repeated. Transfected cells were selected by

culturing with media containing neomycin.

Protein isolation

Cells were pelleted by centrifugation and resuspended in 100 /L RIPA buffer. Samples

were kept on ice for 30 minutes and then spun down at 14,000 g for 20 minutes to pellet

the cell debris. The supernatant containing cellular proteins was collected. Protein

concentration was measured using the Bradford assay (BioRad Laboratories, Hercules,

CA) according to the manufacturer's instructions. Pre-diluted BSA (Pierce

Biotechnology, Rockford, IL) was used as a protein standard. Protein samples were either

used immediately in activity assays or western blots, or were frozen down at -800 C.

Activation and inhibition of MMPs

To activate latent MMPs, samples were incubated with p-aminophenylmercuric acetate

(APMA, Sigma, St. Louis, MO). APMA was dissolved in DMSO at a stock concentration

of 20 mM and used to activate MMPs at a final concentration of 2 mM. Samples were

incubated at 37'C for 1 hr and western blot analysis proceeded immediately afterward.

For samples in which activity was assessed, APMA was removed with a centricon filter.

GM6001 (Ryss Lab, Union City, CA) was used to inhibit MMP autoproteolysis in certain

transfections. It was prepared by dissolving in DMSO at a stock concentration of 50 mM.

293ET cells were transfected in 6 well plates. 2.5 hrs after transfection, the media was
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replaced with 2 mL of fresh media containing either 1:1000 DMSO or 1:1000 50 mM

GM6001 (50 /M final concentration). Conditioned media and cells were collected 6

hours later for western blot analysis.

Western blot

Loading buffer containing 0-mercaptoethanol was added to the protein samples and they

were boiled at 1000 C for 5 minutes. Samples were loaded into a 10% Bis-Tris gel

(Invitrogen, Carlsbad, CA) and run at 150V for - 1 hr. The proteins were transferred to a

nitrocellulose membrane in an Invitrogen gel box. The transfer was performed at 30V for

1 hr at room temperature. The membrane was washed with TBST for 10 minutes. The

membrane was placed in 20 mL blocking buffer (TBST with 5% milk) and incubated at

room temperature for 3 hrs with gently shaking. The membrane was incubated with

primary antibody at 40C overnight with gentle shaking. Polyclonal antibodies AB806 and

AB8115 (Millipore, Billerica, MA) were used at a dilution of 1:2,500 for detection of

MMP-1 and MMP-8, respectively. The following day, the membrane was washed 3x for

10 minutes with TBST with vigorous shaking. The membrane was then incubated for 1 hr

at room temperature with an HRP-conjugated secondary antibody (Amersham). The

membrane was washed again with TBST with vigorous shaking and proteins detected

using the ECL or ECL Plus kit (Amersham, Buckinghamshire, UK). For cell lysate

samples, membranes were stripped by incubating with stripping buffer (Pierce

Biotechnology, Rockford, IL) at 370 C and beta actin detected with a polyclonal antibody

(Santa Cruz Biotechnology, Santa Cruz, CA).
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Collagenolytic activity assay

MMP activity was determined using an in vitro collagenolytic activity assay modified

from the method of Johnson-Wint et al. (14, 15). Briefly, type I collagen was purified

from rat tail by solubilization with acetic acid and subsequently acetylated with ['4C]

acetic anhydride. Fibrils were allowed to form from the radiolabeled collagen and were

dried onto wells of a 96-well plate, forming a thin film. Conditioned media samples were

added to wells and incubated at 37oC for 2.5 hours. The supernatants containing soluble

radiolabeled collagen (from cleavage) were transferred to scintillation vials and counted

in a Beckman model LS-3801 scintillation counter. Bacterial collagenase was used as a

control to cleave all the radiolabeled collagen in select wells. One unit of activity

corresponds to degradation of 10% of the collagen in 2.5 hrs at 370 C.

Results

Generation of truncated MMPs

Truncated versions of both MMP-1 and MMP-8 lacking the propeptide domain were

generated as described in Materials and Methods. A schematic diagram of the domain

structure of the wild type enzyme and the truncated mutant is shown in Fig. 6.1. Transient

transfections were performed to generate the enzyme in 293 cells. Cells were also

transfected with the empty vector and with the wild type/full length enzymes as controls.

The 12 hour serum-free conditioned media was collected and western blot performed to

detect the presence of the protein (Fig. 6.2). The truncated forms are expected to be -10

kDa smaller than their full length counterparts (57 vs 47 kDa for MMP-1 and 75 vs 64
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kDa for MMP-8). No active form of the enzyme appears in the truncated MMP

transfection samples. Rather, ~25 kDa proteins were observed. These were believed to be

likely products of autoproteolytic degradation.

SH H HemopexlnI

178

,Wild Type/Full Length

H HemopOYwt
S Truncated

Figure 6.1. The protein structure of wild type and truncated forms of MMP-1 and -8.

Both MMP-1 and -8 exhibit the MMP domain structure classified as simple hemopexin

domain. The amino-terminal signal sequence (Pre) directs the protein to the endoplasmic

reticulum for secretion into the extracellular space. A propeptide domain (Pro) contains a

thiol group which can interact with the catalytic site Zn, maintaining the enzyme in the

inactive state. A hinge domain (H) connects the catalytic domain with the hemopexin

domain, which is believed to be involved in substrate recognition and binding. In the

truncated form, the propeptide domain has been deleted.
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Figure 6.2. Development of truncated MMP-1 and MMP-8. Western blots of 12 hr

conditioned media from 293 cells transiently transfected with empty vector, vector

expressing full length MMP and vector expressing truncated MMP, for MMP-1 (A) and

MMP-8 (B). The arrows refer to the expected location of the full length zymogen,

truncated/active enzyme and putative autoproteolytic degradation product. In both cases,

the truncated protein is in the degraded form in the conditioned media.

To confirm that these small proteins are indeed degradation products and that this process

is not simply a phenomenon of these truncated proteins, the full length enzymes were

activated with p-aminophenylmercuric acetate (APMA) and the resultant protein

fragments analyzed by western blot. APMA is commonly used to activate MMPs in vitro

(16). This organomercurial disrupts the interaction between the propeptide and catalytic

domains and activation is achieved via autoproteolytic removal of the propeptide domain.

A 1-hr incubation with 2 mM APMA at 370 C resulted in partial activation of both the

MMP-1 and MMP-8 zymogens (Fig. 6.3). Rapid autoproteolytic degradation also occurs,
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as the presence of significant amounts of the degraded protein fragments are detected.

Thus, the small proteins found with the truncated mutants are indeed degradation

products of the active enzymes, and the process of autoproteolytic degradation appears to

occur quite rapidly for both MMP-1 and MMP-8.

&P nqc
.(< R\

6,4

Figure 6.3. Autoproteolysis of activated MMP-1 and MMP-8. (A) MMP-l and (B)

MMP-8 western blots of 12 hr conditioned media of transiently transfected 293 cells. The

right lane is conditioned media from full length MMP transfectants following 1-hr

incubation with the activating agent APMA. The arrows refer to the expected location of

the full length zymogen (top), truncated/active enzyme (middle) and autoproteolytic

degradation product (bottom). In both cases, 1-hr activation yields both active and

degraded forms.
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Published reports have suggested that the degraded forms of both MMP-1 and MMP-8

lack activity against collagen molecules, although the isolated catalytic domains are still

able to cleave the small peptides mimicking the collagen I cleavage site (5-7). Since these

mutant enzymes are being developed as tools to degrade fibrillar collagen type I in

tumors, we assessed the ability of the various fragments to cleave reconstituted collagen

fibrils. The samples shown in Figs. 6.2 and 6.3 were tested in this collagenolytic activity

assay (Fig. 6.4). As expected, both the truncated and full length samples showed no

activity. Only the full length form incubated with the activating agent APMA could

cleave the collagen fibers.

LkAAJ
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Figure 6.4. Collagenase activity of truncated and full length MMP-1. 12-hr conditioned

media of 293 cells transfected with empty vector, truncated MMP-1 and full length

MMP-1 were collected and assayed for collagenolytic activity. The full length MMP-1

sample was also activated by incubation with 2 mM APMA for 1 hr at 37oC. One unit of

activity is defined as the degradation of 10% of the total collagen in each well with 2.5

hrs incubation at 370C. Mean values and standard errors shown. Negligible activity is

T_ `I



observed except in the APMA-activated full length MMP-1 sample.

Inhibition of autoproteolytic degradation with cleavage site mutations

In order to overcome this issue of autodegradation and develop forms of MMP-1 and

MMP-8 that are truly constitutively active, we sought to develop forms of each enzyme

that would be more resistant to autoproteolysis. Previous research had identified the

amino acid sequence in both MMP-1 and MMP-8 that appeared to be the sites of

autodegradation. The putative cleavage site is located in the hinge region of each protein,

which connects the catalytic and hemopexin domains. In these studies site-directed

mutagenesis was used to identify amino acids which affect the rate of autoproteolytic

cleavage. Based on these findings, we chose mutations that appeared to stabilize each

MMP the most and incorporated them into the truncated versions of each protein. The

specific point mutations for each "mutated-truncated" MMP are shown in Fig. 6.5.

Mutated-truncated MMP-1 appeared to be more stable than the truncated form, while

mutated-truncated MMP-8 showed no improvement (Fig. 6.6).
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254 DGIQAIYGRSQNPIGPQTP Wild type MMP-I

DGIQALYGRSQNPSGPQTP MMP-I hinge mutant

240 AIYGLSSNPIQPTGSTPKP Wild type MMP-8

AIYGASSNPAQPTGSTPKP MMP-8 hinge mutant

Figure 6.5. Sequences of wild type and mutant MMP-1 and MMP-8. The sequence



A
Conditioned media Cell Ivsate

B
Conditioned media Cell lysate

Figure 6.6. Development of mutated-truncated MMP-1 and MMP-8. (A) MMP-1 and (B)

MMP-8 western blots of 12 hr conditioned media of transiently transfected 293 cells.

Conditioned media is shown on the left side and cell lysate on the right. Detection of beta

actin in the cell lysates is shown at the bottom. Arrows show the expected location of

bands for full length (high), active (middle) and degraded (low) forms. Mutated-truncated

MMP-1 appears to be more stable than the truncated form. Mutated-truncated MMP-8

shows no improvement in stability compared to full length MMP-8. Wild type enzymes

are secreted in significantly greater amounts that truncated forms. Substantially more

truncated forms are found intracellulary than wild type.
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Beyond autoproteolytic degradation, we noted another issue that could have negative

consequences for the use of these altered MMPs in vivo. For identical experimental

conditions (i.e. same expression vector/promoter and transfection conditions)

significantly more wild type enzyme was secreted than truncated and mutated-truncated

forms (Fig. 6.6). Furthermore, much more of the truncated forms of the MMPs were

found in the cell lysate compared to the full length, wild type form. We hypothesized that

intracellular autoproteolytic degradation could reduce the amount of enzyme secreted

from the cell. To test this we transiently transfected 293 cells with both the full length

and truncated MMP-1 constructs in the presence and absence of the MMP inhibitor

GM6001 (17), which can diffuse into cells. Conditioned media and cells were collected

after 6 hours of incubation, a duration that was experimentally determined to be short

enough that secretion of truncated enzyme into the media was not substantial. This early

time point ensures that any change in the level of non-degraded truncated MMP-1 in the

conditioned media will arise from increased secretion of this form, rather than reduced

degradation in the media. We found that in the presence of the inhibitor, the amount of

"active" truncated MMP-1 in both the cell lysate and conditioned media increased (Fig.

6.7). This indicates that intracellular degradation of the protein occurs and contributes to

the reduction in the amount of active protein secreted. However, even in the presence of

the inhibitor, the amount of secreted protein was less than that of the wild type protein in

both the extracellular and intracellular fractions. This suggests that intracellular

degradation is not the only reason for the significantly reduced secretion. Most likely

diminished expression and/or impaired intracellular processing are responsible.
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Figure 6.7. Transfection of 293 cells with full length and truncated forms of MMP-l in

the absence and presence of an MMP inhibitor. The inhibitor reduces intracellular

degradation of the truncated mutant (lane 8 vs lane 6) and increases the amount of active

enzyme secreted into the conditioned media (lane 4 vs lane 2). Significantly less

truncated protein is secreted compared to full length (lane 4 vs lane 3). Significantly more

truncated MMP-1 remains in the cell compared to full length (lane 8 vs lane 7).

Since the kinetics of autoproteolytic degradation and the amount of secreted protein in

these in vitro assays may not accurately reflect what happens in a tumor, the next goal

was to study the effect of these modified MMPs on fibrillar collagen and interstitial

transport in vivo. To do so, HSTS26T human soft tissue sarcoma cells were transfected

with the wild type, truncated and mutated-truncated versions of MMP-l and MMP-8.
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Two separate expression vectors were used: a retroviral vector with a murine stem cell

PCMV LTR promoter and a plasmid expression vector with a CMV promoter. In both

cases negligible amounts of the truncated MMPs relative to wild type were detected by

western blot in all of the clones screened. A representative sample of the clones from

transfection with the plasmid expression vector is shown in Fig. 6.8. The autodegradation

and impaired processing of these mutated forms appear to prevent the secretion of

appreciable amounts of active enzyme in cancer cells. Thus, the generation of

constitutively active forms of MMP-1 and MMP-8 for in vivo work via genetic mutations

was not successful.
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Figure 6.8. Stable transfection of HSTS26T tumor cells with full length and mutated

forms of MMP-1 and MMP-8. MMP-1 and -8 western blots of conditioned media from

representative clones transfected with either empty vector (con), full length MMP (FL),

truncated MMP (T) or mutated-truncated MMP (MT).While the full length forms are

expressed and secreted, very little truncated and mutated-truncated enzyme is secreted.



Future Directions: Furin-activatable MMPs

One final genetic approach to creating a constitutively active MMP is to enhance its

activation by inserting a furin consensus sequence between the propeptide and catalytic

domains. Furin is a ubiquitously expressed enzyme involved in the secretory pathway of

cells (18). It cleaves proteins containing the consensus sequence at the trans-Golgi. It

plays a role in processing certain cell surface-bound enzymes and has been found to

activate other MMPs (e.g. MMP-11 and MMP-14) (19, 20). We believe that this version

will have advantages over the truncated version for several reasons. First, furin-mediated

activation is a naturally occurring process for several other MMPs, both membrane-

bound and soluble. Second, the insertion of the 10 amino acid consensus sequence will

likely disrupt proper protein folding and processing less than complete removal of the

propeptide domain. And finally, activation by furin cleavage occurs in the trans-Golgi,

providing less time for intracellular autoproteolytic degradation.

A form of MMP-l containing the inserted furin consensus sequence has already been

developed (19). The secretion of what appeared to be the active form was verified, but

detailed analysis of its activity relative to the wild type enzyme had not been performed.

At our urging, the creators of this recombinant enzyme recently performed this analysis

in order to determine the suitability of this mutant construct for degradation of tumor

collagen in vivo. Strangely, the secreted enzyme was dramatically less active against

collagen I than wild type MMP-1. The mechanism of this reduced activity is not yet

known. It is believed that perhaps structural changes induced by the peptide insertion

caused the furin-cleaved propeptide to remain attached to the catalytic domain,
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preserving the enzyme in the inactive state (S. Weiss, personal communication). Thus,

development of furin-activatable forms of MMP-1 and MMP-8 has not been successful

and requires more extensive research.

Discussion

Based on their domain organization, the creation of constitutively active forms of MMP-1

and -8 seemed like a straightforward exercise. In practice, however, it is quite

problematic and our findings highlight the complexity involved in the balance between

active and inactive forms of these enzymes. We found that the truncated forms of each

protein were secreted in much smaller quantities than the wild type enzymes, with greater

amounts remaining inside the cell. This may be due to improper protein folding or some

other type of impaired processing. While these truncated forms were not overtly harmful

to cells (i.e. no massive cell death of transfected cells was observed in culture), their

toxicity has not been ruled out. In addition, the truncated mutants were also found to go

through rapid inactivating autoproteolysis both extracellularly and intracellularly.

These observations support the idea that the steady state concentration of active MMPs -

and by extension the level of collagenase activity -is tightly regulated in tumors. We

have documented in the previous chapter that even when copious amounts of MMP-l and

-8 are expressed in a tumor, limited amounts are converted to the active form. It has been

shown in vitro that activation of these MMPs can be a multi-step process and that various

serine proteases and MMPs (MMP-2, -3, -7, -10, -11) may be part of the process (21-28).

That each of these MMPs requires activation, itself, suggests that MMP-1 and -8

activation is a highly controlled event that occurs only when collagenase activity is
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needed. Once activated, MMP-1 and -8 can rapidly break down into smaller forms. In

contrast to the activation process, this autoproteolysis is not well studied beyond several

papers that have identified the putative cleavage sites for each MMP (6, 10, 12). While

for our purposes this autoproteolysis can be considered an inactivating cleavage (since

type I collagenase activity is lost), this may not be the only, or true, role in vivo. Isolated

catalytic domains have been found to retain their activity against certain substrates (5-7),

so removal of the hemopexin domain may serve a specific biological role. Alternatively,

autoproteolysis may be a built-in regulatory mechanism to prevent an overabundance of

collagenase activity, which may be harmful in many tissues. In any event, maintaining

high levels of active (i.e. propeptide-free) MMP-1 and -8 in the tumor may be difficult to

achieve.

So what does this mean for engineering constitutively active forms of these collagenases?

There are several possible routes going forward. First, a greater understanding of the

activation processes of these two collagenases is needed, particularly if a rational

approach to protein engineering is taken. While much research has gone into

understanding the activation process of MMP-l and -8 in vitro, the actual method of

activation in vivo is still unknown. Identifying the proteases responsible for activation in

vivo and elucidating the mechanism would help us understand how best to approach the

engineering of these MMPs. Perhaps even co-transfecting MMP-1 or -8 with such an

activating agent may be an effective approach.

A second method to improve activation is to use targeted mutation of the propeptide

domain to disrupt the inactivating interaction it has with the catalytic site Zn. Studies
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which have identified the amino acids in the propeptide domain responsible for the

interaction provide preliminary targets for such mutations (9). These mutations would

likely disrupt proper protein folding and intracellular processing less than truncation of

the enzyme, and thus may hold greater potential. Finally, the method of proteolytic

activation via furin-mediated cleavage of the propeptide domain still holds hope. Further

research should provide insight into why limited activity was observed and how this can

be improved. We should also note that the recovery of full collagenase activity relative to

the activated wild type enzyme is not a requirement. Collagenase activity is a function of

both the inherent activity of the enzyme and also its concentration. Thus, an engineered

form of MMP-1 or -8 that has reduced activity may still be advantageous if greater

amounts are present in the tumor compared with the wild type enzyme, which is activated

in low proportions.

Regardless of how activation of these MMPs is improved, one limiting factor may be

autoproteolytic inactivation. Targeted mutations still provide the best approach to limit

this process. As mentioned previously, autoproteolysis has not been extensively studied.

The stabilizing mutations made in this work were motivated by this existing work and are

likely suboptimal. Further research should identify the proper sets of mutations that

reduce autodegradation while maintaining collagenase activity.

Lastly, an alternative to protein engineering by rational design is the method of directed

evolution. In this approach, a protein is altered at the genetic level and screened for

advantageous characteristics (29). Essentially the process of Darwinian evolution is

carried out in the test tube with the selective pressure applied by the scientist. Directed

190



evolution has been used in such applications as enhancing the activity of enzymes (30)

and altering the binding characteristics of proteins (31). The ability to develop robust,

high-throughput screens is critical and will be the limiting step with MMP engineering. If

screens can be developed for both enzyme stability and collagenase activity, this may be

the most effective way to engineer a constitutively active collagenase.
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Chapter 7: Conclusion
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Interstitial collagen type I has previously been shown to be the primary source of

diffusive hindrance in tumors (1-4). Interestingly, Pluen et al. found that this hindered

diffusion became increasingly more dramatic as the size of the macromolecule being

probed rose (4). Based on this result, we hypothesized that the effectiveness of most

novel cancer therapeutics - such as antibodies and liposomal and viral vectors - could be

significantly impaired due to limited distribution in tumors resulting from their large size.

The first goal of this thesis was to confirm this theory. The second goal was to answer the

following question: can we do anything about this in a clinical setting?

We first addressed the issue of impaired therapeutic efficacy with a mathematical model.

A ID reaction-diffusion model was developed to determine the distribution of a specific

therapeutic, an HSV vector, in a solid tumor. While the model did not explicitly consider

collagen, its effect was incorporated in the diffusion of the viral particles. The model

predicted that HSV vectors would spread only minimally from the injection site

following intratumor infusion. Hindered diffusion and rapid binding were responsible for

this. Importantly, the model predicted that an improvement in diffusion from modulation

of tumor collagen could enhance vector distribution several fold.

These intriguing findings were supported by our experimental results. In vivo imaging of

intratumorally injected HSV vectors showed that their distribution was limited by the

collagen in tumors. The effect appeared to be size dependent, as smaller macromolecules

distributed more uniformly in the tumors. Furthermore, the collagen network limited the

propagation, and thus efficacy, ofoncolytic HSV vectors. These images showed, for the

first time, the direct effect tumor collagen can have in limiting the distribution and

196



efficacy of a cancer therapeutic. The second main finding from this study was that

collagen degradation with bacterial collagenase could be used to enhance vector transport

and efficacy. Thus, these results provided proof of principle that the technique of tumor

collagen degradation for enhanced interstitial transport could be used to positively

influence treatment outcome.

However, in order for this concept to advance to the clinic, a human, rather than bacterial,

enzyme needs to be used. MMP-1 and MMP-8 were identified as two potential human

enzymes that could be used in replacement of bacterial collagenase. Unfortunately, our

studies with recombinant MMPs showed that these enzymes are significantly less potent

than their bacterial counterpart. The enhancement of interstitial transport and efficacy of

oncolytic HSV found with bacterial collagenase was not duplicated by either MMP. It

was concluded that in order for these enzymes to effect the changes in collagen and

diffusion necessary to enhance therapeutic efficacy, the dose needed to be increased

substantially.

Genetic delivery of MMPs offered a potential solution to this problem: tumor cells would

be converted to factories producing and secreting these human collagenases. However,

while copious amount of these MMPs were generated and secreted, another problem

arose. These enzymes were insufficiently activated in the extracellular space and thus no

changes in collagen and diffusion were observed. The mechanism of activation of these

MMPs in physiological settings is still unknown. However, in vitro studies suggest that

the mechanism may be quite complex and tightly regulated, as many other MMPs, which

themselves require activation, can cleave MMP-1 and -8 in the propeptide domain (5).
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Thus, the observation that only a small proportion of the MMPs were activated is not

entirely surprising, especially considering the large amount of protein being secreted in

this overexpression model. On the other hand, this result could hardly have been

predicted. In their only other use as enzymes to degrade collagen in vivo, both MMP-1

and MMP-8 were found to be activated in the tissue to which they were delivered (6, 7).

Based on the domain organization of these two enzymes, we proposed a genetic method

of bypassing this activation barrier: deletion of the inactivating propeptide domain.

However, this method of generating constitutively active MMPs was hampered by two

phenomena. First, the truncated/active form of both enzymes went through inactivating

autoproteolysis, both intracellularly and extracellularly. Second, impaired intracellular

processing - possibly from improper protein folding - significantly reduced the amount

of enzyme secreted. In combination, these two effects limited the gains we sought from

deleting the propeptide. Our attempts to reduce autoproteolytic degradation with

stabilizing mutations were unsuccessful. It appears that our understanding of the

autoproteolytic cleavage of MMPs is still in the nascent stages and more research is

needed to effectively block this process.

One intruiging and unexpected result came from our analysis of the MMP-expressing

tumors. While collagen and diffusion were not affected, MMP-l and -8 expression

reduced the sulfated GAG content in tumors and increased tumor hydraulic conductivity.

This led to a significant improvement in the efficacy of an oncolytic HSV vector. This

finding has several important implications. First, it highlights the significance of initial

intratumoral distribution in regulating the overall efficacy ofoncolytic HSV therapy. It
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echoes the findings from our modeling work (Chapter 2) and the bacterial collagenase

study (Chapter 3). This thesis has clearly shown that the physicochemical properties of

HSV and the tumor extracellular matrix combine to severely limit the intratumor

distribution of infused particles. Second, this finding has identified a novel approach to

improve the efficacy of oncolytic viral treatment: enhancing convection during

intratumoral infusion by modifying the tumor matrix with MMPs. By using both bacterial

collagenase to degrade fibrillar collagen and MMPs to deplete tumor sulfated GAGs, this

thesis has highlighted the significant impact that an improved initial viral distribution can

have on the therapeutic outcome of oncolytic viral therapy. However, this work also

emphasizes the pleiotropic nature and complexity of the MMP family of enzymes. Since

they have a host of matrix substrates, it may be difficult to use MMPs to specifically

degrade a single matrix component. Care must be taken in their use since it is likely that

unintended effects will arise.

The use of MMP-1 and -8 to modulate sulfated GAGs and hydraulic conductivity is an

exciting new approach which has the potential to improve the treatment of tumors.

However, oncolytic viral therapy would be further enhanced if this approach could be

combined with a method which improves diffusive transport in tumors. Enhanced

convection would improve the initial viral distribution, while increased diffusion would

allow progeny virus to spread more broadly throughout the tumor. While our efforts to

improve diffusion through collagen degradation were not entirely successful, they

provide valuable lessons and delineate several options going forward. First, our results

have identified several limiting steps in achieving sustained collagenase activity with

MMPs and points to several steps necessary to engineer more efficient enzymes. Clearly,
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a greater understanding is needed in two key areas: the activation and degradation of

MMPs. Knowledge of which proteases activate these two MMPs in physiological settings

would open up the possibility of co-delivery of a set of enzymes to overcome the hurdle

of extracellular activation. While we showed that simple deletion of the propeptide

domain leads to problems in intracellular processing, mutations in the propeptide domain

(to make it more susceptible to cleavage or less prone to interaction with the catalytic

site) or the insertion of a different cleavage site (such as one that leads to intracellular

activation by furin) are still viable options. As for autoproteolytic degradation, a more

thorough analysis of the hinge region would allow us to better stabilize these enzymes

with mutations. A second option is to apply these MMPs to the treatment of different -

more responsive - tumors, rather than modify them to improve their activity in all

tumors. Both MMPs have been shown to be activated in the liver (6, 7). Thus, perhaps

only certain tumors - those growing in a host site that contains the proper factors for

MMP activation - can be treated with this approach. Recently, Cheng et al. incorporated

MMP-8 into a non-replicating adenoviral vector (8). Infection of human lung cancer cells

led to the production of the active form of the protein and the treatment of lung

xenografts reduced the amount of tumor collagen and enhanced the efficacy ofoncolytic

adenoviral therpay. This further suggests that MMP activation is dependent on the tumor

type. Third, our findings may suggest that MMP-1 and -8 are more effective as

modulators of tumor sulfate GAGs and that other agents must be identified to modulate

collagen. Within the MMP family, MMP-14 - which has unique properties like an

intracellular activation mechanism and potential resistance to inhibitors as a membrane-

bound protein (9, 10) - may be better suited as a tumor collagenase. Outside of the MMP
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family of enzymes, cathepsin K may also be an ideal candidate since its acidic pH

activity dependence makes it "targeted" to tumors (which generally have low pH) and it

has not been linked to tumor cell invasion or metastasis. While it was not a potent

collagenase in our in vitro assays, these studies were performed with conditioned media

samples which may have promoted degradation and inhibition. More success may be

found by applying recombinant cathepsin K directly to tumors. In addition, there are

alternative methods to modulate tumor collagen that do not involve the direct use of

collagenases at all. Upstream effectors may be identified which can initiate the entire

expression and processing cascade that is needed to degrade collagen in vivo. This would

bypass the need to develop methods to activate and stabilize the enzymes. Another

approach is to focus on inhibiting collagen deposition, perhaps by blocking TGF-0,

which has been associated with collagen production in tumor fibroblasts (11, 12).

Regardless of which path is taken, this thesis serves as a necessary first attempt to

develop clinically relevant techniques to overcome the barrier to interstitial transport

posed by collagen and sulfated GAGs. It has exposed the difficulties and limitations in

this technique and has identified critical processes that need to be addressed in future

attempts. The negative effect of the tumor ECM on therapeutic delivery and efficacy has

garnered very little attention despite its substantial potency and its broad applicability

among both tumors and therapeutics. We hope that in some small measure this work

shines light on this problem and provides insight into how to overcome it.
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Appendix: Treatment of Liver Tumors

Previous studies have shown that MMP-1 and MMP-8 can be used to treat liver fibrosis

(1, 2). Replication deficient adenoviral vectors were used to genetically deliver the full

length enzymes. While neither MMP was activated in vitro when expressed in liver cells,

both were activated in the extracellular space of the liver in vivo. In both cases, the

amount of collagen in the liver was markedly reduced. These findings led us to

hypothesize that perhaps the activation of these MMPs is dependent on the tumor host

site, with the liver being particularly amenable. In support of this hypothesis, various

proteases have shown the ability to activate (or partially activate) these MMPs in vitro,

and the presence and amount of these proteases - as with many proteins - likely varies by

organ site. To test this hypothesis we performed the following preliminary experiments.

We first tested whether MMPs expressed in tumors would be differentially activated

depending on the site of tumor implantation. MMP-1 and MMP-8 overexpressing

HSTS26T cells (developed in Chapter 5) were implanted in the liver of SCID mice by

direct injection of-5x1l 05 cells into a single lobe. Tumors were also grown

subcutaneously in the leg, a site in which we previously observed limited MMP

activation (Chapter 5, Fig. 5.2A). Mock-transfected tumors were grown in both sites as a

control. After 3-4 weeks, tumors were harvested and western blot performed on the tumor

lysate to determine the levels of active and latent MMPs. For MMP-1, the western blot

shows that for tumors grown in both the liver and subcutaneously, enzyme is primarily in

the latent form (Appendix Fig. 1A). In contrast, MMP-8 was found to be primarily in the

active form in the liver, but in the latent form in subcutaneous tumors (Appendix Fig.
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IB). For both tumor sites, low background expression of each MMP was observed. Thus,

it appears that the activation of MMPs - at least MMP-8 - is tumor host site dependent.
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Appendix Figure 1. Expression of MMP-1 and MMP-8 in subcutaneous and liver

tumors. (A) MMP-1 and (B) MMP-8 overexpressing HSTS26T cells were implanted in

the subcutaneous space or in the liver of SCID mice. Western blot was performed on

tumor lysates. The location of bands corresponding to the latent and active forms is

denoted by arrows. Beta actin western blots are shown at the bottom for control. There

is low background expression of both MMPs in mock-transfected tumors in both sites.

While MMP-1 is found predominantly in the latent form in both sites, MMP-8 is found

in the latent form in subcutaneous tumors but in the active form in liver tumors.

Based on these encouraging findings, we decided to test whether tumors grown in the

liver would respond better to treatment with MMP-expressing oncolytic HSV vectors.
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We hypothesized that virus expressing MMP-8 would better spread through the tumor

and control its growth. We performed a tumor treatment experiment similar to that

performed with subcutaneous tumors (Chapter 5, Fig. 5.12). In that previous experiment

we observed no difference in the response to MMP-expressing oncolytic viruses. Here,

wild type HSTS26T cells were first stably transfected with Gaussia luciferase via

lentiviral vectors (gift from Bakhos Tannous, Massachusetts General Hospital). Tumors

were grown in the liver as before. Tumor load was monitored by obtaining 5 tl of blood

from each mouse, adding the luciferase substrate coelenterazine and measuring the

bioluminescence signal. This bioluminescence signal has been found to correlate well

with the tumor load (Xandra Breakefield, personal communication), and provided us with

a method to monitor tumor growth without performing invasive surgery multiple times.

At an appropriate size, tumors were treated with a single intratumor injection of PBS or

2.5 x 106 t.u. of HsvQ-1, HsvQ1-MMP-1 or HsvQ1-MMP-8. Tumor load was monitored

after treatment.

We found that there was no difference in the mean tumor growth rate between treatment

groups (Appendix Fig. 2). There was also no difference between any of the treatment

groups and the control. This latter result suggests that tumors need to be treated with a

higher dose, multiple doses or at a smaller size in order to see a response to the oncolytic

virus. We also observed that tumors grew quite heterogeneously. In some cases, tumors

grew in the middle of the lobe of the liver. In other cases, tumors grew at the edge and

often spread to the abdominal cavity. There were also instances of tumors growing in

both the liver and abdominal cavity in the same mouse. Leakage of tumor cells from the

liver during implantation was observed and likely contributed to this pattern of growth.
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Approximately 1/3 of tumors had significant regions of necrotic tissue at the time of

treatment, although tumors were still relatively small in size. Furthermore, nearly ¼ of

the mice became sick, a condition that did not correlate with tumor size or treatment with

virus. The causes of the unusual behavior are not known. However, to obtain more

consistent tumors, it may be necessary to inject less tumor cells at a lower flow rate into

the liver.
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Appendix Figure 2. Treatment of liver tumors with MMP-expressing oncolytic HSV

vectors. Tumors were grown in the liver and treated with a single injection of PBS

control or 2.5 x 106 t.u. of HsvQ-1, HsvQ1-MMP-1 or HsvQ1-MMP-8. Tumor size was

monitored by addition of luciferase substrate and measurement of bioluminescence.

Tumor size is given as bioluminescence signal in arbitrary units. (A-D) Individual

growth curves for control (A), HsvQ1 treated (B), HsvQ1-MMP-1 treated (C) and

HsvQ1-MMP-8 treated (D) tumors. (E) Mean tumor size and standard errors for each

treatment group. Tumors were treated at a bioluminescence signal of 430 ± 216 (mean ±

SD). No significant difference in tumor growth was observed.

In conclusion, no difference was observed in the efficacy ofoncolytic HSV treatment of

liver tumors with MMP-1 or MMP-8 expression. Substantial improvements to both the

experimental model and treatment parameters are needed to definitively assess the
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relative effectiveness of the oncolytic vectors in liver tumors. Furthermore, the

preliminary results with MMP-1 and MMP-8 expression in liver tumors (Fig. 1) should

be confirmed by both western blot and collagenase activity assays and the effect on tumor

collagen should be determined.
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