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A Computational Investigation of Nucleation Processes in Organic Crystals

Gregg Tyler Beckham

Nucleation processes are ubiquitous in nature and technology. For instance, cloud formation in
the atmosphere, the casting of metals, protein crystallization, biomineralization, the production of
porous materials, and separation of pharmaceutical compounds from solution are a few examples
of relevant nucleation processes. One pathway for nucleation to occur is homogeneous
nucleation, in which an embryo of a more stable phase forms within an original metastable
medium. Homogeneous nucleation is an activated process, meaning that a free energy barrier
must be overcome for the transition to take place, and the height of the free energy barrier
determines the rate at which the process will occur. Despite considerable advances in both
theoretical and experimental techniques to date, determining nucleation mechanisms for real
systems remains a considerable technical challenge. The aim of this thesis is therefore to apply
molecular simulation techniques to elucidate nucleation mechanisms in organic crystals.
Specifically, the newly developed methods of aimless shooting and likelihood maximization are
applied for the first time to study nucleation processes in complex and technically relevant
systems.

The first portion of the thesis examines polymorphism, or the ability of a material to pack in
different crystal lattices whilst retaining the same chemical composition. Transformation to a
more stable polymorph can readily occur in the solid state, which has broad implications in
pharmaceutical processing. To date, over 160 mechanisms have been proposed for polymorph
transitions in the solid state, but none have been definitively verified. A model compound,
terephthalic acid, is chosen for computational studies because it is similar in size to a small
molecule therapeutic and exhibits a common bonding motif for organic crystals. Using aimless
shooting and likelihood maximization, the mechanism of the solid state polymorph
transformation in terephthalic acid is shown to be comer nucleation. The mechanism shows that
for a given nucleus size, the interfacial area between the crystalline domains is minimized, thus
reducing the unfavorable surface free energy penalty required for nucleation to occur.
Furthermore, based on the results presented, it is anticipated that corner nucleation may be a
common mechanism for many polymorph transformations in hydrogen bonded crystalline
materials.

The second portion of the thesis investigates the mechanism of freezing a subcooled liquid to
form a crystal. This phenomenon has widespread application across many technical domains.
Similar studies to date on freezing have been limited to model systems, such as Lennard-Jones
particles or hard spheres. Benzene is chosen as a model compound. A periodic system is
constructed and aimless shooting and likelihood maximization are applied to determine the
nature of the critical nucleus. Local order analysis is implemented to distinguish among solid
and liquid-like molecules. Preliminary results indicate that the critical nucleus is on the order of
200-300 molecules at 50 K subcooling.

This thesis demonstrates that the complementary molecular simulation techniques of aimless
shooting and likelihood maximization offer fundamental insight into nucleation mechanisms in
molecular crystals. Knowledge of the mechanism from likelihood maximization is essential for
accurate free energies and pathway optimization methods, and it should therefore be applied in
computational studies of rare events prior to free energy or rate constant calculations. Moreover,
these methods provide quantitative understanding of the important physical variables that
determine experimentally observable rates and can further aid in experimental design.

Thesis Supervisor: Bernhardt L. Trout, Associate Professor
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CHAPTER 1: A COMPUTATIONAL INVESTIGATION OF NUCLEATION

PROCESSES IN ORGANIC CRYSTALS

Nucleation processes are ubiquitous in nature and technology. For instance, cloud formation

in the atmosphere, the casting of metals, protein crystallization, the formation of inorganic

minerals in organisms, the production of porous materials for catalysis and gas absorption,

and the separation of high value pharmaceutical compounds from solution are all examples of

relevant nucleation processes1-4. One pathway by which these processes can occur is

homogeneous nucleation, in which an embryo of a more stable phase forms within an

original, metastable medium 2. This type of phase transformation is an activated process,

meaning that a free energy barrier must be overcome for the transition to take place, and the

height of the free energy barrier determines the rate at which the process will occur. After the

cluster is beyond some critical size, the growth of the new phase is spontaneous. In addition,

the free energy barrier in nucleation processes depends strongly on temperature, which in turn

means that experimental results can be astoundingly difficult to reproduce and theoretical

predictions of nucleation rates are rife with uncertainty. As Oxtoby declares "[n]ucleation

theory is one of the few areas of science in which agreement of predicted and measured rates

to within several orders of magnitude is considered a major success" 3. It is therefore evident

that quantitative understanding of the events leading to nucleation and crystallization is of

paramount significance in many areas of science. In light of the need for further

understanding of nucleation, this thesis primarily examines two nucleation processes, both in

real systems. The first case study elucidates the mechanism of a solid state polymorph

transformation in an organic crystal similar in size and motif to organic crystals found in the

pharmaceutical industry. The second portion of the thesis examines the mechanism of

homogeneous nucleation of an organic crystal from the melt.

To date, experimental approaches for observing random, localized events leading to

nucleation and crystallization are limited to relatively large monomeric units such as colloidal

particles 5 or to aggregated constituents like large protein nuclei 6, which exist in a range of

sizes between 100 nm to 1 pm. While experimental studies of nucleation are relevant for

larger length scale processes, current experimental methodologies cannot offer the desired

resolution and quantitative understanding for nucleation events that occur on atomic and

molecular length scales ranging in magnitude from 1 A to 10-100 nm. Computational



methods, however, are able to track particles in space and time and therefore are more readily

applicable in studying nucleation on a molecular level. Therefore, the approach taken in this

thesis is to develop and apply sophisticated computational techniques in order to investigate

nucleation events in molecular systems. This approach yields mechanistic information

describing the nucleation process in systems of interest. Also, the work described here

highlights the development of new computational techniques required to solve problems of

this complexity.

1.1 Methodology

A number of studies have proved fruitful in the elucidation of nucleation processes for simple

systems. Previous studies can be generally separated into three types of methodological

categories:

1) Using well-characterized systems for which the time scale for nucleation is

computationally tractable at intermediate to high degrees of subcooling7-12

2) Selecting a mechanism a priori to force the desired transformation 13-22, or

3) Collecting many unbiased pathways for the transformation23 -28

The first methodology is limited to obtaining a nucleation event in simple systems at

intermediate to large subcooling. For instance, the first publication describing the nucleation

of liquid water to hexagonal ice required several microseconds of simulation time to generate

a single trajectory at significant subcoolingo'. Figure 1-1 shows snapshots of the trajectory.

The "wall clock" time required to perform these microsecond simulations is on the year

timriescale, and the simulations are not guaranteed to yield useful results a priori. The brute

force nature of the first approach highlights the limitation of such a methodology for real

systems") . The second methodology, pioneered by van Duijneveldt and Frenkel'3, often

offers valuable insight for simple systems in which the choice of a reaction coordinate, the

single variable that quantifies progress along a reaction pathway, is straightforward.

However, in systems of increasing complexity, the choice of a reaction coordinate is typically

nol intuitive, and incorrect reaction coordinates lead to spurious results for quantities of

interest such as free energy changes, kinetic rate constants, and the mechanism itself.
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Figure 1-1. Snapshots along a trajectory from liquid water to hexagonal ice,
reproduced from Matsumoto et al.10 The trajectory shown was obtained from an MD
simulation on the timescale of hundreds of nanoseconds at 230 K. The circled region
shows the first sign of order in the system.

The third methodology listed above became readily available with the development of the

transition path sampling [TPS]. The TPS method, pioneered by Chandler and colleagues, is

an efficient method that allows one to study unbiased, rare events in systems with no previous

knowledge of the mechanisms or transition states29-34 . The method is an iterative, Monte

Carlo-like procedure in dynamic space. An initial trajectory connecting the reactant and

product basins is generated, which may or may not be physical at the conditions of interest.

TPS is initiated from this initial trajectory by perturbing the velocity at a randomly selected

point and shooting trajectories in the forward and reverse directions along the new velocity

vector. Trajectories are accepted if one end of the trajectory relaxes to the reactant basin and

the other reaches the product basin. Trajectories are rejected if both ends connect a single

basin. Repetition of the shooting procedure allows one to collect a set of reactive trajectories

efficiently by focusing the computational time on the dynamical bottleneck. Figure 1-2

illustrates the TPS shooting algorithm.



Figure 1-2. Illustration of trial moves in transition path sampling [TPS]. Trajectory 2
is generated by perturbing the momentum slightly at a randomly selected point along
trajectory 1, and propagating the forward and reverse directions along the new velocity
vector. Since trajectory 2 connects the basins A and B, it is accepted as a reactive
trajectory. Trajectory 3 is generated in the same manner as trajectory 2, and is an
example of a rejected trajectory in that it does not connect the basins.

In addition, a variation on the TPS algorithm was developed: aimless shooting27' 35. The

primary difference in TPS and aimless shooting is that the latter seeds random velocities at

the shooting points, rather than perturbing the velocities from the previous trajectory, hence

the term "aimless" shooting. This allows faster de-correlation of the transition paths. The

other primary difference is that aimless shooting selects only from two shooting points,

separated by a pre-specified time displacement whereas TPS randomly selects any point along

the previous trajectory. TPS has been applied in nucleation studies such as the freezing of

Lennard-Jones particles 23, 25, the formation of small NaCl clusters from solution24, and

nucleation in the Ising model27' 36. Other notable demonstrations of TPS across a wide variety

of phenomena include the autoionization of water37 , hydrophobic collapse of a polymer38,

cavity formation in boiling water39 , biomolecular isomerization4°, and protein folding41.

After TPS has been conducted, one can determine the mechanism, or reaction coordinate,

from the information contained in the transition path ensemble collected during TPS. Again,

the reaction coordinate is the single variable that quantifies progress along a reaction

pathway 27. A good reaction coordinate yields useful insight into the factors which affect

experimental reaction rates. From a computational perspective, an accurate reaction

coordinate is necessary for free energy or rate constant calculations. Previous TPS studies

utilize the committor probability histogram method to determine the reaction coordinate42-44

This method is a trial and error procedure that is at least as computationally expensive as TPS

itself for each possible reaction coordinate tested. A more efficient method has been

developed that uses an informatics approach, likelihood maximization, to extract the best
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reaction coordinate from a list of candidate order parameters [OPs]2 7, 35. This method is

applied after TPS has been conducted. Each OP, or combination of OPs, is assigned a

likelihood score, which is used to rank the reaction coordinate approximation. The

complementary methods of aimless shooting and likelihood maximization are applied in this

thesis to investigate two types of nucleation events in organic crystals.

1.2 Solid state Polymorph Transformation in Terephthalic Acid

A major issue concerning nucleation and crystallization in the pharmaceutical industry is

polymorphism, which is defined as the capability of a substance to crystallize into different,

but chemically identical, crystalline forms'. Polymorphs typically exhibit different physical

and chemical properties, which warrant specific design of processes to formulate particular

products. An example of widely varying physical properties of polymorphs is illustrated in

Figure 1-3, which shows six of the ten polymorphs of 5-methyl-2-[(2-nitrophenyl)amino]-3-

thiophenecarbonitrile, known in the literature as ROY45. In the pharmaceutical industry,

transformation to an undesired polymorph, for instance, can lead to different bioavailability in

the target organism, which could render the drug useless, or increase its potency to a

dangerous limit46. Oftentimes when compounds are discovered and a process is developed

for its production, a more stable, undesired polymorph may appear as in the case with Abbott

Laboratories' AIDS drug, Ritonavir. The occurrence of a late appearing polymorph caused

setbacks in Ritonavir production as scientists were forced to discover methods to reproduce

the desired, metastable polymorph47. Cases such as this arise from the exchange between

kinetic and thermodynamic stability and can potentially cause extensive and costly problems

in development, production, and patent rights.
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Figure 1-3. Six polymorphs of ROY 45 . The wide variety of physical properties illustrate
the diversity that arises from differences in crystal packing arrangements of the same
molecule.

Polymorph transformations often occur in the solid state. Mnyukh states that, as of 1998,

over 160 mechanisms are reported for solid state polymorph transitions48. At present,

however, gaining direct molecular level insight to the dynamical events occurring during solid

state polymorph transformations is outside of the scope of experimental capabilities, and thus

there is no definitive evidence for any particular mechanism. As remarked by Herbstein in an

excellent review: "[t]here are relatively few papers about the actual transition directly viewed

by microscopic techniques in order to infer the mechanism, and not many about changes in

crystal structure...as the system passes through the transition."49 Two of the most common

mechanisms proposed in the literature are 1) nucleation and growth48' 50-53 and 2) concerted,

or martensitic, transformations54' 55. As Tuble et al. point out, however, there is increasing

evidence that transformations thought to be martensitic in nature, actually occur via a

nucleation and growth mechanism 48' 49, 54. An accurate model which describes this process on

a molecular level would provide an improved understanding of the mechanism of solid state

polymorph transformations in molecular crystals, and could ultimately provide the necessary

knowledge for a priori selection of processing parameters to promote or prevent

transformation from one polymorph to another.

As mentioned previously, determining molecular level pathways in a polymorph

transformation is currently difficult from an experimental standpoint due to the inability to

directly view morphological changes in crystal structures as a function of time. Molecular

simulations, however, provide a convenient approach for the study of polymorph

transformations. The objective of the research in this portion of the thesis is to therefore
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apply aimless shooting and likelihood maximization 27, 35 to determine the mechanism for the

solid state polymorph transformation of a model compound that is of the same approximate

size as a small molecule therapeutic: terephthalic acid. Terephthalic acid is chosen as the

molecule of study because:

1) it is relatively small and rigid even when completely unconstrained in a dynamic

simulation at fully atomistic detail,

2) both of the polymorph crystal structures are known 56

3) the transformation exhibits interesting macroscopic behavior that remains unexplained in

the experimental literature57' 58, and

4) it represents a ubiquitous motif in organic crystallography with the hydrogen bonded

carboxylic acid dimer synthons 59.

1.3 Homogeneous Nucleation of Crystalline Benzene from the Melt

Nucleation of crystalline solids from the melt has been studied with both experimental and

computational techniques5' 10, 12-20, 23, 25, 28, 60 In a series of three papers, ten Wolde et al.

described the formation of Lennard-Jones crystals from the liquid state by applying an

umbrella potential with bond-orientational order parameters used to convert liquid to solid

particles in the Lennard-Jones system14-16 . This study showed that the crystals typically form

as body centered cubic [bcc] clusters and later convert to the more stable face centered cubic

[fcc] structure. Moroni, ten Wolde, and Bolhuis later applied TPS to the same system and

demonstrated that the critical nuclei can exist as large, more disordered bcc-like lattices as

previously found, or as smaller, compact fcc crystals. The earlier publications of ten Wolde

et al. were certainly pioneering work at the time of publication 14-16, and have been generally

applied to many different systems by other researchers 12' 17-21, 61. However, this later study

from Moroni et al., which illustrates that assuming a reaction coordinate yields a biased

mechanism, highlights the need for the use of unbiased methods in determining mechanisms

in nucleation problems, even for seemingly simple systems. Despite these considerable

advances, there still is not a comprehensive mechanistic understanding of nucleation,

especially for more complex systems in which the molecules are anisotropic, such as disk

shaped molecules like benzene. It is anticipated that the anisotropy of benzene molecules will

yield non-spherical critical nuclei. To investigate this, aimless shooting and likelihood



maximization are applied to determine the reaction coordinate for the mechanism of

nucleation in benzene. Benzene is chosen because:

1) it is a common model organic molecule and is fairly rigid and relatively small,

2) the OPLS potential describes the liquid and solid states adequately62 63,

3) the Form I crystal structure is known64 , and

4) considerable experimental work has been conducted investigate the liquid-solid phase

transition 65-7

1.4 Thesis Outline

Chapter 2 describes the first application of aimless shooting and likelihood maximization to

determine the mechanism for two crystal sizes in the solid state polymorph transformation in

terephthalic acid. Chapter 3 outlines a methodological alteration to the likelihood

maximization algorithm that improves the ability to determine the transition state along the

transformation. Chapter 4 discusses the application of these same methods to larger

tercphthalic acid crystals, and focuses on the importance of local order to the reaction

coordinate. Also, the critical nucleus size is examined at the transition state in light of

classical nucleation theory. Chapter 5 describes the application of aimless shooting and

likelihood maximization to study benzene nucleation from the melt. The preliminary results

for benzene nucleation are outlined. A summary of the research and recommendations for

futLure work are outlined in Chapter 6.
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CHAPTER 2: SURFACE-MEDIATED NUCLEATION IN THE SOLID STATE

POLYMORPH TRANSFORMATION OF TEREPHTHALIC ACID

Reproduced in part with permission from G.T. Beckham, B. Peters, C. Starbuck, N.
Variankaval, and B.L. Trout, "Surface-Mediated Nucleation in the Solid State Polymorph
Transformation of Terephthalic Acid", J. Amer. Chem. Soc., 129, 4714- 4723 (2007).

2.1 Introduction

As described in Chapter 1, polymorphism is the ability of a system to pack into different

crystal lattices while retaining the same chemical composition'. It is a well known

phenomenon with important technical and financial implications in a diverse range of areas in

which crystalline materials play a significant role, such as geophysics 2, energy storage3,

biominerals 4' 5, nonlinear optical materials 6, and pharmaceuticals 7-10 . Polymorphs typically

exhibit different physical and chemical properties, thus representing an excellent framework

for the study of structure-property relationships. The property differences between

polymorphs can affect process and product development. The transformation to an undesired

polymorph in the pharmaceutical industry, for instance, can lead to different bioavailability in

the target organism, which could render the drug ineffective or increase its potency to a

dangerous limit11. One prominent case is Abbott Laboratories' AIDS drug, Ritonavir: a more

stable polymorph appeared after a manufacturing process was developed for its production,

leading to significant production setbacks 2

Polymorph transformations often occur in the solid state. Mnyukh states that, as of 1998,

over 160 mechanisms are reported for solid state polymorph transitions 13. However,

presently there is no definitive, verified model of the molecular mechanism of solid state

polymorph transformations in molecular crystals. Two of the most common mechanisms

proposed in the literature are 1) nucleation and growth13-17 and 2) concerted, or martensitic,

transformations8, 9. As Tuble et al. point out, however, there is increasing evidence that

transformations thought to be martensitic in nature, actually occur via a nucleation and

growth mechanism 3' 18. An accurate model which describes this process on a molecular level

would provide an improved understanding of the potentially localized mechanism of solid

state polymorph transformations in molecular crystals, and could ultimately provide the

necessary knowledge for a priori selection of processing parameters to promote or prevent

transformation from one polymorph to another.



A specific molecular crystal that exhibits transformations between polymorphs is terephthalic

acid, [p-C 6H4-(COOH) 2], which has three known polymorphs, designated as forms I-III20, 21

Our work focuses on the transformation between forms I and II, both of which pack in

tric linic lattices. In a paper that for the first time demonstrated structural polymorph

stabilization via twinning, Davey et al.22' 23 experimentally showed that form II is the more

stable polymorph at room temperature and pressure. They also found that the transformation

from form I to form II occurs in a temperature range from room temperature to 90 'C. The

same authors noted that the transformation is often accompanied by a large release of

mechanical energy, sufficient to make the crystal jump during the phase transition. In

addition, from their microscopy studies, Davey et al.23 conclude that the overall process

appears martensitic in nature. Based on an examination of the crystal structures, the authors

propose a chain slide and rotation mechanism for the single crystal transformation. It should

be stressed, however, that the intent of the two studies by Davey et al. was not to determine

the mechanism of transformation, but rather to determine the most stable single-crystal form

and then to address the question of stabilization of the metastable form in industrial crystals.

Their work forms the basis and inspiration for this investigation.

Determining pathways of polymorph transformations at the molecular level is difficult from

an experimental standpoint, due to the difficulty in characterizing localized fluctuations in

crystal structures. As a result, the majority of studies concerned with molecular crystalline

systems typically characterize the equilibrium properties of polymorphs, rather than

definitively ascertaining the molecular level events leading to transformations. Sophisticated

molecular simulations, however, provide approaches that could potentially address these

processes. These approaches have successfully addressed simpler problems. For example,

nucleation has been studied for the freezing of a Lennard-Jones fluid 24 , NaCl nucleation from

solution 25, and the freezing of water2 6. The present study focuses on investigating the

molecular level events leading to the transformation in TPA from form I to form II.

2.2 Overview

To determine the transformation mechanism for any process, it is necessary to determine the

reaction coordinate, or the single variable that describes the system along the reaction

pathway 2°. Knowledge of the reaction coordinate, and hence the mechanism, can provide

essential molecular level insight for judicious engineering of complex systems.



To ascertain the reaction coordinate for any system, one must perform three steps:

1. Sample the configurations in the region in which the transformation of interest occurs.

2. Approximate the reaction coordinate as a function of physically relevant parameters.

3. Validate the reaction coordinate with committor probability analysis.

Standard molecular dynamics (MD) or Monte Carlo methods can readily sample regions of

stability. However, when studying transitions of interest, standard methods are not widely

applicable because the transition states are typically short lived and infrequently visited.

Instead one must utilize techniques designed to sample transition state regions in a more

efficient manner (Step 1). Transition path sampling [TPS], a trajectory space Monte Carlo

procedure, is a powerful method for sampling the ensemble of transition pathways in complex

systems27-31. A recent extension of TPS, aimless shooting32, is especially useful for obtaining

reaction coordinates with informatics approaches.

Once adequate sampling of the transition state region is completed, the reaction coordinate is

approximated as a function of physically relevant parameters (Step 2). These parameters are

termed order parameters (OP's), which describe properties of the system along reactive

trajectories. Types of OP's range from bond distances 33 to parameters that measure the

coordination numbers and orientations25, 34, 35. For a given system, many OP's will change

"adiabatically" along the reactive trajectories. A reaction coordinate, however, is one or more

OP's that completely quantify the dynamical progress of the system along the reaction

pathway31.

The typical method to determine the most appropriate reaction coordinate until recently was

trial and error. Several recently published methods now allow one to determine the reaction

coordinate in a more systematic manner 32, 36-38 In this study, likelihood maximization is

applied to screen candidate OP's to determine the OP or set of OP's that best approximates

the reaction coordinate32

To validate the approximate reaction coordinate, one determines the average probability of

reaching the product basin from the transition state region (Step 3). This method is known as

committor probability analysis 31, 39-41. If the true reaction coordinate is known, then firing



trajectories randomly from any configuration on the transition state isosurface should result in

an equal number of trajectories that reach the reactant and product basins.

We apply this scheme to the solid state polymorph transformation in terephthalic acid (TPA).

This chapter is organized into three sections: first, the details of the methodology are

described. This includes the development and screening of the potential, the molecular

simulation details, and the construction of the system sizes and shape. Details of the aimless

shooting and likelihood maximization algorithms are also provided. Next, results are

summarized for the harvesting of initial trajectories for two system sizes and from the

likelihood maximization algorithm. Qualitative verification for the models obtained from

likelihood maximization is given. Finally, a discussion and conclusions are provided

highlighting the physical insight gained into the TPA polymorph transformation.

2.3 Methodology

This section explains the construction of the TPA crystals, and the development and

validation of the CHARMM molecular force field. The order parameters that are screened as

approximations to the reaction coordinate are described, as well as the computational

methods of aimless shooting and likelihood maximization that are applied to the

transformation of the TPA crystals. A new method is introduced to harvest independent

configurations for verifying the reaction coordinate approximation, and the histogram method

is also detailed.

2.3.1 System Description

Adjacent molecules in TPA are connected via 1-dimensional hydrogen-bonded carboxylic

acid dimers, termed synthons42. This particular motif is ubiquitously found in molecular

organic crystals. These chains, or supramolecular synthons, pack in 2-dimensional sheets. As

discussed by Bailey and Brown20, neighboring chains in the form I crystal lie with benzene

rings adjacent to the carboxylic acid groups in the next chain; in form II, the carboxylic acid

groups from neighboring chains are adjacent to one another. The layers of chains in form I,

however, lie with the benzene rings in line, whereas for form II, the benzene rings pack

alternately with the carboxylic acid groups.

Two system sizes are studied in full detail: a 6x6x6 and a 7x7x7 geometry. These sizes

correspond to 216 and 343 molecules, respectively. Figures 2-1 and 2-2 illustrate the crystal



shapes for the 216 molecule system seen from the b and a axis views for forms I and II,

respectively. The crystal shapes and morphologies approximate the TPA crystals studied by

Davey et a123. It should be noted that 6x6x6 is counted by the number of molecules in the

supramolecular synthon, not the crystal unit cells: e.g., note that in Figure 2-1, the chains for

both forms are 6 molecules long and there are 6 sets of chains in both chain-perpendicular

dimensions. In addition, all molecules are hydrogen bonded through the carboxylic acid

group to at least one neighbor. The experimental lattice parameters for the crystals are given

in Table 2-1. The lattice vector a is equivalent for the two structures as it is the measure of

the supramolecular chain length.

The crystal configurations are adopted from structures reported by Bailey and Brown. In the

original crystal structure determination, the hydrogen positions are not reported for form II.

Hydrogen atoms are therefore added to the molecules with the corresponding bond lengths

and angles found in form I. As no constraints (such as SHAKE43) are used either in

minimization or molecular dynamics, any minor errors in the hydrogen positions leading to

unfavorable configurations are eliminated.

a- c

Figure 2-1. Form I of the 216 molecule (6x6x6) TPA crystallite from the b-axis view
(left) and a-axis views (right). Hydrogen bonds that form the supramolecular synthons
are shown in red-dotted lines between the carboxylic acid groups on each molecule.



a c

Figure 2-2. Form II of the 216 molecule (6x6x6) TPA crystallite from the b-axis view
(left) and a-axis views (right). Hydrogen bonds that form the supramolecular synthons
are shown in red-dotted lines between the carboxylic acid groups on each molecule.

Table 2-1. Lattice parameters from the experimental crystal structures.
Form I Form II

a 9.54 9.54

b 3.19 5.02

c 6.44 5.34

(a 87.25 86.95

03 126.27 104.9

y 107.36 134.65

2.3.2 Force Field Development

Empirical force fields may not be directly suitable for modeling molecular crystals, especially

if the parameters are fit using scenarios that are incongruous with crystal packing 8' 44, 45. A

modified CHARMM potential" is thus applied in the simulations. Bond, angle, dihedral, and

Lennard-Jones parameters (with the exception of one) are taken from the CHARMM 27 force

field library. Since original Lennard-Jones parameters for the phenyl hydrogens are fit to

hydration energy, which makes them unsuitable to model a packed crystal, a range of phenyl

hydrogen Lennard-Jones radii is tested. In addition, partial atomic charges are extracted from

single point energy calculations on a single gas phase TPA molecule with Gaussian 0347. The

B3PW91 density functional48 with 6-311G++** basis set is employed. Following the

approach of Tuble et al.18, partial atomic charges are calculated with both the Merz-Singh-

Kollman49, 50 (MSK) and ChelpG51 schemes. Since the intramolecular geometry does not

differ significantly between forms I and II, there is little difference in the partial charges

calculated between molecules corresponding to the two polymorphs.



As the simulations are performed in vacuum, the potential is screened for the ability to

reproduce the experimental form I and form II crystal structures in vacuum, as measured by

the root mean square deviation (RMSD) of the minimized crystal from the experimental

crystal structures. Figure 2-3 shows the RMSD as a function of the phenyl hydrogen

Lennard-Jones radius for the MSK partial charge set. Although the Lennard-Jones radius for

the phenyl hydrogens does not significantly affect the RMSD for form II up to 2.0 A, a value

of 1.0 A is selected as it yields the smallest RMSD for form I. The use of either MSK or

ChelpG does not result in significant differences in the RMSD at a fixed phenyl hydrogen

Lennard-Jones radius. The charges in the potential are those from the MSK method. Figure

2-4 shows the atom name assignments and Table 2-2 lists the charge for each molecule.

2.2
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Figure 2-3. RMSD as a function of the Lennard-Jones phenyl hydrogen radius for
Form I (m) and Form II (o). Calculated with the Merz-Singh-Kollman48' 49 partial
atomic charge set.



Table 2-2. Partial atomic charges from a single point energy calculation on a single gas
phase molecule. Partial atomic charges are extracted using the MSK scheme.

Atom name Partial atomic charge [e] Atom name Partial atomic charge [e]

C1 0.0701 C3A -0.1919

C2 -0.1515 C2A -0.1541

C3 -0.2009 C1A 0.0823

C4 0.6462 H3A 0.1704

H1 0.4391 H2A 0.1482

H2 0.1463 C4A 0.6307

H3 0.1764 01A -0.5582

01 -0.5568 02A -0.5665

02 -0.5722 HIA 0.4424

Figure 2-4. Single terephthalic acid molecule with atom labels

2.3.3 Order Parameters

Over 100 OP's are tested in the simulations. The selection of trial OP's is typically an ad

hoc procedure for which there is no known systematic approach. For a study of polymorph

transformations, perhaps the most obvious set of trial OP's is the lattice parameters, which

warrant discussion here.

The lattice vectors, a, b, and c, are measured by averaging over the distances of the molecules

at the crystal edges. For instance, from Figure 2-2, one measures the c lattice parameter by

measuring the distance from the molecule at the top left to the top right. This is done for each



molecule pair down the length of the chain. Therefore, for each horizontal layer (as shown in

Figure 2-2), one can collect 6 distances for the 216 molecule system and 7 for the 343

molecule system. This procedure is repeated for the second layer and so on until the bottom

layer is reached. The value for each lattice parameter is the average over the entire system.

Using the measurement method employed in this study, differences, if any exist, in the local

lattice parameters through the transformation will aid in the determination of the nature of the

transformation. For example, in the case of a nucleation mechanism, a change on one side of

the crystal will give rise to large non-uniformities in the local lattice parameter values, say for

the horizontal layers in Figure 2-2.

Other OP's are tested, such as the lattice angles, local twisting along the length of the

supramolecular chains, supramolecular chain twisting relative to other chains in the crystal,

and the variation in the directions of the supramolecular chains.

2.3.4 Aimless Shooting

The aimless shooting algorithm, described by Peters and Trout, is applied to harvest an

ensemble of independent reactive trajectories. As with the TPS method 27-31, aimless shooting

requires:

1) accurate definitions of the basins of stability and

2) an initial trajectory that connects the stable basins.

Quantitative definitions of the basins are constructed based on the fluctuations of lattice

parameters taken from equilibrated MD trajectories kinetically trapped in the respective

basins. All basin definitions are taken as the average value of the b and c lattice vectors ±

three standard deviations. The a lattice parameter is not included as it does not change

significantly between the two forms.

For the 216 molecule system, trajectories initiated in the form I basin are found to transform

on the order of 1 ns to either form II or to an intermediate basin "between" the two forms, as

measured by the lattice parameters. These trajectories are used for the selection of the initial

aimless shooting points. For the 343 molecule system, trajectories initiated in the form I

basin are not found to transform either to the intermediate form or to the form II polymorph

on the order of several ns. Therefore, MD umbrella sampling is applied following the method



of Kottalam and Case52 to obtain a set of configurations connecting the stable basins. The

ratio of the b to c lattice vectors is selected as the OP to sample from the form I basin (b/c =

1.5-1.7) to the form II basin (b/c = 1.0-1.1). A harmonic umbrella potential with a spring

constant of 500 kcal/mol is applied with 8 windows along the OP, starting with the form I

pol ymorph. The sampling time for each window is 1.05 ns starting from the endpoint of the

previous window and included 50 ps at the start of each new window prior to saving

configurations. As in the case of the 216 molecule system, the obtained trajectory is used for

the selection of the initial aimless shooting points.

Starting from the well characterized basins, the aimless shooting method is applied. The

algorithm contains only one adjustable parameter: time displacement, At, to shift along the

initial trajectory to generate the new shooting points. The time displacement is carefully

selected for optimal efficiency since if At is chosen too high, the algorithm will wander too

far away from the transition state region leading to a low acceptance rate; if chosen too small,

the aimless shooting algorithm will search a smaller amount of shooting point configuration

space requiring more trajectories to obtain a good approximation to the reaction coordinate.

A time displacement of 1% of the entire reactive trajectory length is found to be adequate to

sample the transition state region, giving an acceptance rate in general between 40 and 60%.

Dynamic trajectories are collected in vacuum using the CHARMM package4 6 at 300 K in the

NVE ensemble. For a system this large, temperature fluctuations in the NVE ensemble will be

on the order of 1% (kinetic energy fluctuations are proportional to 1/root(N), where N =

degrees of freedom) and will result in only a small perturbation from the NVT ensemble. A

timestep of 1 fs is used with a cutoff for non-bonded interactions of 14 A. The aimless

shooting algorithm originally described in Peters and Trout is amended slightly for this study.

The selection of shooting points was originally from 3 points: x-At, xo, xAt,. We found

selecting from two points, x-At, or x,+A is sufficient to sample the transition state ensemble and

we therefore used this two-point version of aimless shooting.

Trajectories are initiated from points thought to be close to the transition state region along

the initial trajectories. In the interest of efficiency, the trajectory length is set as short as

possible. For both the 216 and 343 molecule systems, a total length of 30 ps is sufficient to

maintain the level of inconclusive trajectories at or below 15%. A time displacement, At, of



300 fs is selected to obtain the desired acceptance rate. Approximately 4000 paths for the 216

molecule system and 3500 paths for the 343 molecule system are collected.

2.3.5 Likelihood Maximization

As described in Peters and Trout32, the reaction coordinate, r, is modeled as a linear

combination of candidate OP's, denoted as q, with ob through o0 as adjustable coefficients:

r(q) = ao + akq k  (2 1)
k=1

The reaction coordinate is related to the probability of being on a transition path at some

value of the reaction coordinate, r, through the following model 32:

p(TPI r) = po(1- tanh'[r]) (2-2)

As pointed out by Peters and Trout32, this model function exhibits a maximum at r equals

zero, which corresponds to the transition state, and decays to zero on either side of the peak.

Maximizing the likelihood function,

L(a, Po) = T lk ' rejL(a, po)= p TPjr<q )) (1- pPn rq ))) (2-3)

over all coefficients and all combinations of OP's determines the best reaction coordinate

according to the models of Equations 2-1 and 2-2. For the best approximate reaction

coordinate, the approximate transition state isosurface can be obtained by maximizing

p(TPIr). This occurs at r = 0, so setting r(q) = 0 defines the transition state isosurface.

2.3.6 Reaction Coordinate Validation

As mentioned in the Overview Section, one must determine if the reaction coordinate

approximation is correct. This can be done by approximating the probability of reaching the

reactant (pA) or product (PB) state from the predicted transition state region. This technique is

typically referred to in the literature as a committor distribution analysis31 . One can construct

a committor distribution of pB values (referred to as a ps histogram) by firing randomly

seeded trajectories from the predicted reaction coordinate isosurface, given by setting r(q) = 0

in Equation 2-131' 32



Constructing a PB histogram requires many configurations from which to shoot. The

generation of these configurations is inspired by the BOLAS method53. Several random,

aimless shooting points are selected close to the predicted transition state region, as defined

by r(q) = 0 in Equation 2-1. Very short trajectories are fired randomly from each initial

configuration and the endpoints are evaluated to determine if they are within a narrow

window on the transition state isosurface. If so, this configuration is accepted and becomes

the next shooting point. This process is repeated until an adequate number of configurations

is generated from which to shoot reactive trajectories to build a pB histogram. A collection of

points at r(q)=O is thus generated and these points are used to perform the committor

probability analysis. It should be noted that BOLAS samples the equilibrium distribution of

trajectories within an OP window regardless of the accuracy of the putative reaction

coordinate obtained from likelihood maximization. Therefore, the collected points will be

extracted from the equilibrium distribution, but if either or both the transition state isosurface

and the reaction coordinate are incorrect, the resulting histogram will not be peaked at V2.

To construct the histogram, trajectories are shot from each configuration with a length

corresponding to half the length of a reactive trajectory. The endpoints of the trajectories are

evaluated and a histogram is constructed of the probability of reaching basin B from the

predicted transition state isosurface. The basin definitions for constructing the PB histograms

correspond to the same basin definitions used for the reactant and product basins in the

aimless shooting simulations. An adequate approximation to the true reaction coordinate will

yield a histogram that is sharply peaked at PB = 0.531. Additionally, one can make a

quantitative comparison of the histogram to the binomial distribution, which will have a mean

value, pt = 0.50 with a standard deviation, a = 0.11.The trajectories for the generation of new

configurations are 100 fs long and the endpoint window width at r = 0 is constrained within a

range of ±1% of the total configuration space sampled, as measured by Ar. For each

histogram assembled in this study, approximately 250 shooting points are collected. From

each configuration collected, 20 trajectories are shot, corresponding to approximately 5000

trajectories for each histogram. The trajectory length for calculating PB values is 15 ps, which

is half the length of the reactive trajectories in the aimless shooting simulations, again

resulting in a low rate of inconclusive paths.



2.4 Results

This section describes the results obtained for the initial trajectories for the 216 and 343

molecule systems. In addition, details of the aimless shooting and likelihood maximization

scheme employed here are provided. The free energy curves are discussed in light of the

findings from the initial trajectories.

2.4.1 Initial Trajectories

As mentioned previously, for the 216 molecule system, trajectories initiated in the form I

basin transform on the order of 1 ns to either form II or to an intermediate basin as measured

by the lattice parameters. Figure 2-5 shows the average lattice parameters for a trajectory of

each type: one of which becomes kinetically trapped in the intermediate basin (Figure 2"5a)

and one of which does not (Figure 2-5b). For reference, the average lattice parameters for a

representative trajectory initiated in the form II basin are also shown on Figure 2=5.

Snapshots at germane points during these trajectories are shown in Figures 2-6 and 2-7,

respectively. As seen in Figures 2-5b (for the lattice parameters) and 2-7 (for the molecular

configurations), excellent agreement is found between the end state of the unbiased trajectory

and the form II crystal structure. The second and third snapshots of the kinetically trapped

trajectory, shown in Figure 2-6, exhibit characteristics of the form I and form II crystal as

most clearly seen in the a-axis view. The top left corner of the crystal is the location in which

nucleation occurs and the bottom right corner retains the form II orientation. The second

snapshot (at 0.60 ns) from Figure 2-7 also displays this type of interface between the

polymorphs, but quickly transforms completely to the form II polymorph.
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Figure 2-5. Crystal lattice parameters along a 2 ns trajectory for forms I and II of the
216 molecule system. (a) The change in the lattice parameters at approximately 1.0 ns
corresponds to the unbiased nucleation event along the edge of the TPA crystal. The
growth phase, however, is not seen in this trajectory as the system becomes kinetically
trapped between the nucleation and growth events. (b) The change in the lattice
parameters at approximately 0.6 ns corresponds to the unbiased form I to form II
polymorph transformation. Excellent agreement is seen between the original form II
crystal and the lattice vectors after 0.6 ns for the form I trajectory.

To confirm the behavior seen in the initial trajectories as illustrated by Figures 2-4 through 2-

6, MD umbrella sampling is applied to the transformation in the 216 molecule system. The b

lattice parameter is selected as the OP over which to sample. Figure 2-8 shows that the

potential of mean force (PMF) curve for this simulation. The free energy exhibits both a

barrier to nucleation and a barrier to growth, each approximately 3-4 kcal/mol, as explained

below,

20

0.0



Figure 2-6. Snapshots from the b-axis and a-axis view along the initial trajectory for the
216 molecule system. These configurations correspond to the lattice parameters shown
in Figure 4a, which becomes kinetically trapped after the nucleation event. From top to
bottom, the configurations are taken at 0.17 ns (pre-transformation), 0.96 ns (during
nucleation), and 1.8 ns (post-nucleation, when the crystal is kinetically trapped). Note
that the nucleation event takes place at the top left corner (as seen from the a-axis view)
and the molecules in the bottom right corner (again, on the a-axis view) retain their
original orientation characteristic of form I.
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Figure 2-7. Snapshots from the b-axis and a-axis views along the initial trajectory for
the 216 molecule system. These configurations correspond to the lattice parameters
shown in Figure 4b, which undergoes both nucleation and growth. From top to bottom,
the configurations are taken at 0.17 ns (pre-transformation), 0.60 ns (at the onset of
nucleation and growth), and at 1.8 ns (in the form II basin). Note that the nucleation
event takes place at the top left corner (as seen from the a-axis view) and propagates to
the bottom right corner (again, on the a-axis view).
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Figure 2-8. Potential of mean force for the 216 molecule TPA system calculated from 8
windows of MD umbrella sampling along the b lattice parameter.
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Figure 2-9. Potential of mean force for the 343 molecule TPA
windows of MD umbrella sampling along the b/c axis ratio.

system calculated from 8

As discussed in the Methodology section, MD umbrella sampling is used to obtain initial

configurations for the transformation in the 343 molecule system and is applied to both

system sizes to determine the free energy barrier to nucleation and growth. Figures 2-8 and

2-9 show the results for the potential of mean force (PMF) for the 216 and 343 molecule

systems, respectively. The PMF curve for the 343 molecule system confirms the behavior

observed in the 216 molecule system with a metastable intermediate between the two

polymorphs. Sampling from the form I polymorph to form II (i.e. from right to left on

Figures 2-8 and 2-9), the free energy barrier to nucleation is approximately 12-13 kcallmol
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and to growth is approximately 3-4 kcal/mol. Figure 2-10 displays several snapshots of the

system along the b/c coordinate. Similar behavior is seen in the larger system: a nucleation

event occurs at a corner, an interface is formed between sections that are characteristic of

either polymorph, and finally a growth phase occurs to complete the transformation. An

examination of the final state obtained from MD umbrella sampling exhibits excellent

agreement with the form II polymorph, as shown in the last snapshot in Figure 2-10. In both

cases, force constants and window centers are chosen to maximize overlap between windows.

For the 216 MD umbrella sampling, a force constant of 5 kcal/mol/A 2 is used with 1.05 ns per

window with 50 ps of equilibration, just as in the 343 MD umbrella sampling simulations. In

addition, PMF curves in the crystal basins corresponding to the experimental crystal

structures are collected without applying a bias.
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Figure 2-10. Snapshots from the b-axis and a-axis views along the initial trajectory for
the 343 molecule system obtained from MD umbrella sampling. These configurations
correspond to the PMF curve shown in Figure 8. From top to bottom, the
configurations are taken at b/c=1.60 (pre-transformation), b/c = 1.40 (at the onset of
nucleation), b/c = 1.40 (as nucleation is occurring at the peak of the PMF curve), b/c =
1.20 (as growth is occurring), and at b/c = 1.00 (in the form II basin). Note that the
nucleation event takes place at the top left corner (as seen from the c-axis view) and
propagates to the bottom right corner (again, on the c-axis view).
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2.4.2 Aimless Shooting

As previously stated, aimless shooting requires accurate definitions of the basins of stability,

or the reactant and product. It should be noted that stable intermediates along a proposed

reaction coordinate can give rise to a large amount of inconclusive trajectories, i.e. trajectories

that reach neither basin in the pre-specified trajectory length. In the case of TPA, the

harvesting of initial trajectories between the basins confirms the existence of a metastable

intermediate for both system sizes studied. From an examination of the configurations

corresponding to the intermediate form, characteristics of both crystal forms appear.

Visualization of the trajectories, as shown in Figures 2-6, 2-7 and 2-10, reveals that a

nucleation event occurs along the edge of the crystal. Trajectories that become kinetically

trapped in the intermediate basin are those in which the nucleation event is not directly

followed by propagation throughout the remainder of the crystal, but rather those in which

there exists an interface between the two forms. Since the primary interest for this study is to

determine the mechanism for nucleation, the intermediate basin is treated as the "product"

state, Aimless shooting is therefore conducted between the form I basin and the intermediate

state, with the form II basin lumped into the intermediate state. The selected aimless shooting

points from the initial trajectories are those that are at a configuration with a b/c axis ratio of

approximately 1.4. This value corresponds to the first peak in the free energy barrier from the

umbrella sampling simulations, which is most likely near the transition state region (in 1

dimension only) for the nucleation event.

2.4.3 Likelihood Maximization

Over 100 OP's are screened to determine the best fit to the reaction coordinate. As

mentioned previously, the reaction coordinate is approximated using Equation 2-2. The

likelihood maximization results for the 216 and 343 molecule systems are summarized in

Table 2-5 for a 1-dimensional model.

From Table 2-5, one can see that the global b lattice vector is the most important parameter in

the reaction coordinate approximation for the 216 molecule system. For the larger system

size studied, however, the ratio of the relevant global lattice vectors receives the highest

likelihood score. It should be noted that the two average lattice vectors, b and c, and the b/c

ratio are the best three single variable approximations to the reaction coordinate for both

system sizes.



Table 2-5. Likelihood maximization approximations to the 1-dimensional reaction
coordinate for 4000 aimless shooting paths for the 216 molecule TPA system and 3500
aimless shooting paths for the 343 molecule TPA systema.

System Size OPs po0 O a, Transition State Isosurface (r=0)

216 b 0.57 -0.99 2.06 b* = 30.195 A

343 b/c 0.73 -1.43 2.83 b/c* = 1.433

a The p(TPIr) model given in Equation 2-2 is used to calculate the likelihood function as
shown in Equation 3. The corresponding models for the 1-dimensional reaction coordinate
approximations are shown for both systems. The OPs in the expression for r are provided on
a normalized basis such that q, r [0, 1].

2.4.4 Reaction Coordinate Validation

For the 216 molecule system, a histogram is constructed from predicted transition state region

for 1 OP: b* = 30.195 A ± 0.014 A, which corresponds to a pB window centered at 0.5 with a

total width of 0.01. Figure 2-11a shows the pB histogram for this system. This histogram

indicates that the b lattice parameter is a good approximation of the reaction coordinate.

However, since the histogram is peaked at 0.629, the system is more likely to go to the

product basin at this value of b* denoting an error in the prediction of the transition state

isosurface. The value for b* is therefore shifted to 30.400 A to generate a second histogram

with an equivalent number of trajectories, shown in Figure 2-1 lb. This histogram is sharply

peaked near PB = 0.5, which denotes that it is a good approximation to the reaction coordinate

and that the value of the transition state isosurface is correct, as desired. The mean value for

this histogram is ^h = 0.490 with a standard deviation, oh = 0.144.
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Figure 2-11. (a) Committor probability histogram for 216 molecule system with b* =
30.195 A, as predicted from the p(TPIr) model with a 1-D reaction coordinate model. Ah
= 0.629, o•i = 0.182. (b) Committor probability histogram for 216 molecule system with
b" = 30.400 A. A = 0.490, oh = 0.144.

For the 343 molecule system, a histogram is also constructed from the 1-dimensional reaction

coordinate approximation: b/c* = 1.4327 ± 0.0006, as shown in Figure 2-12. This histogram

is broader than the histogram compiled for the smaller system, but nonetheless is peaked at

PB = 0,5, indicating that the 1-dimensional model is qualitatively a valid approximation to the

reaction coordinate for this system size. The mean value for this histogram is Uh = 0.520

with a standard deviation, 0 h = 0.208.
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Figure 2-12. Committor probability histogram for 343 molecule system with b/c* =
1.4333, as predicted from the p(TPIr) model with a 1-D reaction coordinate model. 4 =
0.520, oih = 0.208.
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2.5 Discussion

The unbiased trajectory, as shown in Figures 2-5b and 2-7, simulated with the adapted force

field, connects forms I and II for the 216 molecule system with excellent agreement in the

lattice parameters. The trajectory that becomes kinetically trapped, as highlighted in Figures

2-5a and 2-7 however, offers the desired snapshot solely of the edgewise nucleation event in

the TPA crystal. The fluctuations in the chains at the edge of the crystal, which have the

greatest freedom to move, drive the nucleation event for both system sizes studied. This

behavior is verified with the pB histograms shown in Figures 2-11 and 2-12 for both system

sizes studied. The second histogram for the 216 molecule system, shown in Figure 2-1 lb, is

constructed based on shifting the value of the transition state isosurface from the original

value of 30.195 A, predicted by likelihood maximization. The inaccuracy in the predicted

value may arise from an improper fitting function for likelihood maximization, as will be

investigated in the next chapter.

It should be noted that all the trajectories from aimless shooting exhibit a similar

transformation mechanism along the same crystal edge, which indicates that the ensemble of

trajectories is seemingly equilibrated. In a related matter, as the crystals are symmetric, there

is an equivalent crystal edge along which nucleation may occur. However, it was observed

from the aimless shooting trials that nucleation only occurs on the edge where nucleation

occurred in the initial trajectory. Therefore, the mechanisms, which are most likely identical,

are seemingly separated by several kT, making nucleation on the opposite crystal edge not

accessible during aimless shooting.

As mentioned in the Methodology Section, it is shown how the OP for the lattice parameters

is condensed into either a single global average lattice parameter or separated by layers of the

supramolecular synthons. Although the reaction coordinate is captured with the global

average lattice parameter (or the ratio of the global lattice parameters), in the case of a

nucleation mechanism, non-uniformity should be apparent in the local lattice parameters

measured on each supramolecular synthon layer. For example, Figure 2-13 shows this

behavior for the c lattice vector for the 216 molecule system. Figure 2-13 corresponds to the

trajectory that undergoes the full polymorph transformation as shown in Figures 2-5 and 2-7.

The outside layers (1 and 6) exhibit significant non-uniformity as do the next two layers (2

and 5), but to a lesser extent. This provides quantitative evidence that the mechanism in the



TPA system is nucleation and growth. It should be noted that if the crystal were significantly

larger, a global average lattice parameter that spans the entire crystal may not be the best

approximation to the reaction coordinate, as will be investigated in a subsequent chapter.

This is because the nucleation, even as seen in these system sizes, is a localized event in that

it occurs along a specific edge of the crystal. Because of the sizes used in this study, the

global lattice parameter is still able to capture the local changes on a single edge. However,

the aimless shooting and likelihood maximization technique can be applied to study the

polymorph transformations for any system size using any OP, as desired and deemed

computationally feasible.
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Figure 2-13. Change in the local c lattice parameter for each layer in the polymorph
transformation of TPA. The differences in the local OP denote that there is a localized
event occurring during the transition, namely edgewise nucleation. This corresponds to
the transformation seen in Figure 5b, in which both the nucleation and growth events
occur. The inset shows the local lattice parameter measurements from Layer 1 to Layer
6 along the crystal.

The shape of the nucleus, formed by synthons along the edge of the crystal for the TPA

system, is starkly different from the nucleus that behaves as a mean field as given by classical

nucleation theory54 . This prediction of elongated nuclei is qualitatively reasonable as the

hydrogen bonds formed in the direction of the supramolecular synthons are much stronger

than the van der Waals interactions in the other two directions.

Comparison of Figures 2-8 and 2-9 reveals that the free energy barrier depends on the length

of the supramolecular synthon. The 12-13 kcal/mol free energy barrier in the 343 molecule

system is an inaccessible barrier to surmount in a direct MD simulation, as is demonstrated.

The free energy barrier for this type of nucleation mechanism is expected to scale for a perfect
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crystal as the transformation for the 2 system sizes studied requires the deformation of the

entire edge of the crystal. If it were computationally feasible to simulate much larger TPA

crystals at present, such that the surface area to volume ratio more closely matches the

experimental value, there will most likely be a synthon length at which the hydrogen bonds

would be broken during the nucleation event. However, if this edgewise nucleation occurs

along a very long supramolecular chain and the barrier to the growth process remains small

(order of a few kcal/mol, as seen in both Figures 2-8 and 2-9), the growth process would

result in a large, sudden energy change, which can explain the "jumping" behavior seen in the

experiments conducted by Davey et al.. An order of magnitude analysis from the present

simulations is possible to bolster this hypothesis. For example, in the 216 molecule system,

the major lattice parameter expansion occurs over 0.5 nm in approximately 30 ps, which

corresponds to a transformation velocity of approximately 8 m/s. The total possible kinetic

energy for this system is therefore on the order of 0.3 kcal/mol. As shown in Figure 2-13, the

free energy barrier is on the order of 3-4 kcal/mol, which is greater than the estimated kinetic

energy, so if only a small fraction of the energy is released as kinetic energy, the jumping

should be observed. This order of magnitude estimate illustrates that the nucleation

mechanism along the predicted crystal edge with fast growth kinetics is sufficient to explain

the observed jumping behavior of the crystal.

It is also evident from both trajectories that an interface forms between the two polymorphs

during the nucleation event. This observation reaffirms that this transformation initiates via

localized, surface mediated nucleation. As previously mentioned, however, a distinct

interface is not observed in the crystal during the phase transition as reported by Davey et al.,

even though the simulations at this small scale clearly show a phase boundary. This absence

of a visible boundary between the two polymorphs forms as reported by Davey et al. could be

explained by the extremely fast growth process, which is not directly treated in this study. A

plausible explanation for the disparity between experiment and simulation is most likely that

this is a nucleation controlled process and the growth phase follows the nucleation rapidly as

confirmed by the free energy barriers measured in this work.

2.6 Summary and Conclusions

In this study, the initiation event leading to the transformation in the solid state polymorph

transformation of terephthalic acid is shown to be nucleation. Specifically, the polymorph



transformation from form I to form II proceeds via a surface mediated nucleation mechanism

due to the freedom of movement of the supramolecular chains on the surface. This

mechanism is confirmed for two system sizes: a 216 molecule system and a 343 molecule

system.

The technique of likelihood maximization reveals that the global average lattice parameters

can be used to approximate the reaction coordinate. This is qualitatively verified with

conmmittor distribution analyses. A trace of the localized lattice parameters on each layer of

the crystal along the transformation show significant non-uniformity, again, providing

evidence for a nucleation mechanism. Also, the free energy barrier is observed to scale with

the length of the edge of the crystal on which nucleation occurs. It is proposed that in a

nucleation-controlled event, that this mechanism could still exhibit the "jumping" behavior

observed by Davey et al.

To our knowledge, this study represents the first successful mechanistic investigation of solid

state polymorph transformations in molecular crystals, leading to an enhanced understanding

of nucleation processes in complex systems at the molecular level. Furthermore, the methods

employed in this study allow the unbiased distinction between transformation mechanisms in

molecular systems. This study also illustrates the applicability of aimless shooting and

likelihood maximization to efficiently and systematically hone in on the most important

collective variables needed to approximate the reaction coordinate.
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CHAPTER 3: EXTENSIONS TO THE LIKELIHOOD MAXIMIZATION

APPROACH APPLIED TO THE SOLID STATE POLYMORPH

TRANSFORMATION IN TEREPHTHALIC ACID

Reproduced in part with permission from:

1. G.T. Beckham, B. Peters, C. Starbuck, N. Variankaval, and B.L. Trout, "Surface-
Mediated Nucleation in the Solid State Polymorph Transformation of Terephthalic Acid",
J. Amer. Chem. Soc., 129, 4714- 4723 (2007)

2. B. Peters, G.T. Beckham, and B.L. Trout, "Extensions to the Likelihood Maximization
Approach for Finding Reaction Coordinates", J. Chem. Phys., 127, 034109 (2007).

3.1 Introduction

Chapter 2 outlined the initial work conducted on the solid state polymorph transformation in

terephthalic acid. The polymorph transformation is shown to proceed via fluctuations of

supramolecular chains at the surface of the crystal. The reaction coordinate is determined

with likelihood maximization and verified with the committor histogram method. The

research described in Chapter 2 represents the first application of aimless shooting and

likelihood maximization to a real system. This chapter briefly describes an extension to both

the aimless shooting and likelihood maximization routines that is motivated by the work

described in Chapter 2.

The aimless shooting briefly described in Chapter 2 does not follow the original algorithm

described by Peters and Trout1. It does, however, obey detailed balance and is simpler to

implement in prepackaged molecular simulation codes such as CHARMM 2 and NAMD3 .

The methodological change to the aimless shooting algorithm is described more fully in this

chapter.

As shown in Figure 2-11, the transition state isosurface as predicted by the p(TPIr) model is

not correct for the 6x6x6 terephthalic acid crystal (216 molecules). The histogram for the

reaction coordinate from the p(TPIr) model is shifted towards to the product basin with a

mean value gh = 0.63. Originally, the value for the transition state isosurface was arbitrarily

shifted from 30.195 A to 30.400 A, and the resulting histogram is sharply peaked at gh =

0.490. To amend the issue of locating the transition state isosurface with likelihood

maximization, a new half trajectory likelihood based on a new model function is developed



and applied to the original aimless shooting data for the 6x6x6 crystal. This chapter briefly

describes this new model and the application to the 6x6x6 terephthalic acid system.

3.2 Two Point Version of Aimless Shooting

Let the duration of a reactive trajectory be t and choose a small At << t. The application

described in Chapter 2, for instance, used At = 0.01t. Like other transition path sampling

algorithms, aimless shooting requires an initial reactive trajectory. However, it should be

noted that because aimless shooting reinitializes the velocity of the system at the shooting

point, velocities are not required. Many methods exist for the generation of an initial

trajectory4-9. Shift the initial trajectory in time so that the configuration along the trajectory at

t = 0, x0, has a committor probability near ½2, PB(xo) /2. In practice, a shift that gives the

starting configuration x0 with a finite probability of reaching both the product and reactant

states is acceptable for aimless shooting. Once an initial trajectory has been obtained, aimless

shooting is performed by iterating these three steps:

1) Select a shooting point on the old trajectory, x-_, or xA, with a probability V2 for each

position.

2) Draw new momenta from the Boltzmann distribution and dynamically propagate the

system from the position and the time at the selected shooting point to ±t/2.

3) Accept the new trajectory if it joins the reactant and product states, A and B.

Each shooting point should be saved with the forward and backward outcomes (A or B),

regardless of whether the shooting point results in a reactive or nonreactive trajectory. This

simple scheme samples the true transition path ensemble if the dynamics preserve the

equilibrium ensemble. Collective variables to be tested as reaction coordinates must be

computed at the shooting points from aimless shooting. Thus, the shooting points should be

saved with the trajectory outcomes, which allows additional collective variables to be tested

using the original aimless shooting data if the originally screened variables are insufficient.

3.3 Half Trajectory Likelihood

The aimless shooting and likelihood maximization scheme is widely applicable in

determining reaction coordinates as a function of one or several pertinent variables. The

original paper describing this methodology' describes two likelihood maximization routines



both of which use the forward and backward likelihood trajectories to compute the likelihood

score. The more general scheme described uses the probability of being on a transition path

at some point in configuration space, x, denoted p(TPIx).

p(TPlr) = p 0(1- tanh2[r]) (31)

The likelihood function for Equation 3-1 is then,

N Nre"

L,(a, po) = p(TP r(q k))(1- p(TP r(qy'))) (3-2)
k k

However, the originally described p(TPIr) model function to fit the reaction coordinate is

stationary at the transition state isosurface, given by r=O as shown in Figure 3-la. Therefore

the likelihood Lp is not sufficiently sensitive to the exact location of the transition state along

the reaction coordinate, r. The results described in the previous chapter suggest that

maximization of LTp tends to shift the reaction coordinate to fit the tails of p(TP x) at the

expense of the transition state region. To correct this, a scheme is proposed that is based on

forward-trajectory outcomes that directly models pB(x) regardless of whether the dynamics

are diffusive or ballistic, as given by Equation 3-3.

pB (r) = 3[1+ tanh(r)] (3-3)

This function is shown in Figure 3-lb. The committor probability can be directly

approximated by maximizing the likelihood:

L= II p ,PB xk)) (r(x)) (3-4)
k -- B xk -A

The notation Xk-- B (or A) indicates a product over all shooting points (Xk) that result in

trajectories that go to state B (or A) in forward time. Equation 3-4 discards half of each

trajectory, but when the dynamics are not purely diffusive, the forward and backward

outcomes are correlated. Therefore, Equation 3-4 discards an amount of information that is at

most half of the available information. Peters, Beckham, and Trout describe this in

significantly more detail and show the model functions as applied to the Muller potential'0



0.75

p(TPJi) pB(I

-2 -1 0 1 2 -2 -1 0 1 2

r r

Figure 3-1. Model functions for the likelihood maximization algorithm. (a) p(TPkr) as
given in Expression 3-1. The function is stationary at the transition state surface given
by r = 0. (b) pB(r) as given by Expression 3-3. This model function is used in the half
trajectory likelihood formulation of likelihood maximization.

3.4 Application of Half-Trajectory Likelihood Maximization to Terephthalic Acid

As described in Chapter 2, aimless shooting and likelihood maximization are applied to the

polymorph transformation in a 6x6x6 crystal of terephthalic acid. The original p(TPIr)

function given by Equation 3-1 is used as the model function for likelihood maximization.

The same aimless shooting data for the 6x6x6 system are used as input to the half-trajectory

likelihood maximization scheme using Expressions 3-3 and 3-4. The application of the half

trajectory likelihood maximization also identifies the lattice vector b as the best reaction

coordinate. The coefficients for the reaction coordinate from both models is given in Table 3-

1 for the form r = co + a•b. The values are reported as 1/al, the lattice parameter distance

over which the system changes from reactant to product, and -to/tal=b*, the value of the

lattice parameter at the predicted transition state isosurface.
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Table 3-1. Likelihood maximization results for the 1-dimensional reaction coordinate
for 4000 aimless shooting paths for the 6x6x6 terephthalic acid system for both the
p(TPIr) and pB(r) models.

Model Transition State Surface (r=-0) P0o 1/aI (A) -co/.a (A)

p(TPIr) b* = 30.195 A 0.57 -0.99 2.06

pB(r) b* = 30.240 A -- -1.43 2.83

Committor probability distributions are compiled for both model functions and shown in

Figure 3-211-14. Figure 3-2a shows that Expressions 3-1 and 3-2 yield a good reaction

coordinate in that it is peaked, but the transition state surface is shifted to the product side of

the true transition state surface. In Chapter 2, the location of the transition state surface was

arbitrarily shifted towards the product basin, which yields a histogram sharply peaked around

2 as shown in Figure 2-11. Figure 3-2b shows that maximizing the half-trajectory likelihood

given by Equations 3-3 and 3-4 more accurately predicts the transition state surface location

than the p(TPIr) model. Table 3-2 lists the mean and variance from the histograms and the

intrinsic mean and variance of the committor probability distributions from the two likelihood

scores' 4. As intended, the likelihood maximization scheme based on the PB(r) model shifts

the transition state towards the reactant basin and yields a histogram peaked near PB = '/2.
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Figure 3-2. (a) Committor probability histogram for 216 molecule system with b* =
30.195 A, as predicted from the p(TPIr) model with a 1-D reaction coordinate model. (b)
Committor probability histogram for 216 molecule system with b* = 30.240 A as
predicted from the pB(r) model with a 1-D reaction coordinate model.
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Table 3-2. Mean (a) and standard deviations (o) of the intrinsic committor probability
distribution for transition state surfaces from the two likelihood maximization schemes.
The half trajectory likelihood gives a transition state surface (b* = 30.240 A) that is
closer to the true transition state surface.

Histogram Intrinsic
Model Transition State Surface (r=-0)

puh h L oa

p(TPIr) b* = 30.195 A 0.629 0.182 0.629 0.148

PB(r) b* = 30.240 A 0.441 0.164 0.441 0.118

Figure 3-3 shows the p(TPIr) and pB(r) models and the aimless shooting data plotted as a

function of the reaction coordinate, r. Figure 3-3 is prepared by binning the data points

according to the respective reaction coordinates in increments of 1/12 t of the range of

reaction coordinates sampled. The error bars are binomial standard deviations from the

number of data points and the mean in each bin: [/u(1-l )/n]1/ 2 from the binomial standard

deviation.
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Figure 3-3. Aimless shooting data plotted as a function of the reaction coordinate r and
compared to (a) optimized p(TPlr) function and (b) optimized pB(r) function. Note that
the error bars appear on the model, not the data. The error bars show how far shooting
point data should deviate from the probabilities p(TPIr) and pB(r) for a perfect reaction
coordinate model.
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The pB(r) model shown in Figure 3-3b appears to capture the transition state region more

effectively than the p(TPIr) model. Confidence intervals on the reaction coordinate

parameters can be derived to compare the reliability of these two approaches. Figure 3-4

shows the distribution of bt estimates from bootstrapping with 4000 aimless shooting points

per bootstrap sample, which is the same size as the original data set. The distribution of b*

was created by generating 10,000 estimates. The half trajectory likelihood based on pB(r)

generates a narrower distribution of b* estimates than the likelihood function based on

p(TPIr). Interpolation of the data in Table 3-2 suggests that the surface b* = 30.22 A would

give a committor probability distribution centered to u = ½2. That value is indicated by the

arrow on the b-axis in Figure 3-4. The median b* estimate from the half trajectory likelihood

is only slightly close to 30.22 A,, but the typical deviation from 30.22 A is much smaller

because of the narrower distribution.

P(b*)

0
30.05 30.10 30.15 30.20 ' 30.25 30.30 30.35

b Lattice parameter [A]

Figure 3-4. Distributions of the maximum likelihood estimate from b* from 10000
bootstrap samples with 4000 trajectories in each sample. The red curve is from the half-
trajectory likelihood of Equation 3-4, and the black curve is from the likelihood
obtained via Equation 3-2. The value of b* indicated by the arrow is obtained by
interpolating the location of m = 1/2 from the histogram results at b* = 30.240 A and
30.195 A.

Figure 3-5 shows how the b* estimates from the two likelihood approaches vary with the

number of trajectories in the likelihood function. The likelihood based on pB(r) consistently

provides a narrower distribution of b* than the likelihood based on p(TPIr). Based on the



terephthalic acid example, the b* estimates from the likelihood based on pB(r) are also more

accurate. Interestingly, when many trajectories are included in the likelihood, the variance in

the distribution of b* estimates increases linearly with the inverse square root of the number

of trajectories even though the trajectories are interdependent parts of the likelihood function.
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Figure 3-5. Width of a 95% confidence interval from bootstrap sampling for the
transition state value of the reaction coordinate b (in A) as a function of the number of
aimless shooting trajectories used in the two likelihood functions, n. The width from
LTP from p(TPfr) is shown in black and the width from the half trajectory likelihood
from PB(r) is shown in red. The half trajectory likelihood consistently provides a
smaller interval that is also more accurate as evidenced by the histograms in Figure 3-2.

3.5 Summary

The half-trajectory likelihood scheme based on the commitment probability, PB(r), is shown

to predict the transition state isosurface more accurately than the transition path probability,

p(TPIr), when applied to the 6x6x6 terephthalic acid system. In addition, a simplified version

of aimless shooting is presented to facilitate real applications and more easily implement in

molecular simulation packages. See Peters et al. for more detaillo.
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CHAPTER 4: IDENTIFICATION OF A NON-INTUITIVE REACTION

COORDINATE IN THE POLYMORPH TRANSFORMATION OF TEREPHTHALIC

ACID VIA LIKELIHOOD MAXIMIZATION

Reproduced in part with permission from G.T. Beckham, B. Peters, and B.L. Trout,
"Identification of a Non-intuitive Reaction Coordinate in the Polymorph Transformation of
Terephthalic Acid via Likelihood Maximization", submitted, 2007.

4.1 Introduction

A technologically important case of nucleation is the inter-conversion between different

crystal forms, or polymorphs' 2. Polymorphic systems are an ideal framework for the study

of structure-function relationships as polymorphs typically exhibit different physical and

chemical properties. In the pharmaceutical industry, understanding and controlling

polymorphism is often of great importance as different crystal forms lead to variations in both

processing and in pharmacokinetics. A particularly high profile case of polymorphism in the

pharmaceutical industry was highlighted when Abbott Laboratories' AIDS drug, Ritonavir

converted to a more stable polymorph in the manufacturing phase, causing significant

production setbacks and financial losses3. Further interest in polymorphism has stemmed

from recent attempts to patent specific polymorphs4. Thus, understanding nucleation

mechanisms leading to transformation between polymorphs would be of substantial benefit to

controlling polymorphism, and would provide complementary kinetic information to the

thermodynamic problem of polymorph prediction5-9. Solid state polymorph transformations

in molecular crystals have received significant attention from the experimental community2'
10-18. To date, approximately 160 mechanisms have been proposed for solid state polymorph

transformations in molecular crystals1o. At present, however, gaining direct molecular level

insight to the dynamical events occurring during solid state polymorph transformations is

outside of the scope of experimental capabilities, and thus there is little definitive evidence

for any particular mechanism. As pointed out by Herbstein in an excellent review: "[t]here

are relatively few papers about the actual transition directly viewed by microscopic

techniques in order to infer the mechanism, and not many about changes in crystal

structure...as the system passes through the transition."18

Molecular simulation approaches alternatively offer the ability to track individual molecules

in space and time, and can be utilized to study crystallization processes such as solid state

polymorph transformations. To date, many computational approaches have proved fruitful for



investigating nucleation processes for a wide range of complexity from model systems 19-30 to

atomic and molecular crystals3 1-39. Several past studies either utilized biasing methods, which

assume a mechanism a priori and force the system from one state to another 29' 30, 32, 36, 40, or

alternatively, run many trajectories at conditions where the metastable state is highly unstable

so that the "rare" event occurs on accessible timescales20' 31, 37. While these methods provide

valuable insight, a more ideal methodology would examine nucleation without assuming a

mechanism a priori and simulate conditions comparable to experimental supersaturations and

subcooling. For rough, high dimensional free energy landscapes, which are inherent in

nucleation processes, transition path sampling [TPS] 41-44 enables the collection of unbiased

pathways that connect stable end states, such as two polymorphs, by efficiently focusing the

computational time on the dynamical bottleneck. Several research groups have successfully

utilized the TPS method to study crystal nucleation 23' 25-27, 34, 35, 39. In addition, recent

developments have led to methods that systematically determine the mechanism, or reaction

coordinate26, 45-47. The Genetic Neural Network approach of Ma and Dinner46 and the

subsequently developed likelihood maximization technique of Peters et al.26' 47, both use an

informatics approach to approximate the reaction coordinate as a function of physically

relevant variables. These two methods have recently been compared, and it was shown that

likelihood maximization requires less trajectory information to obtain an accurate reaction

coordinate47. Accurate reaction coordinates are important because they enable calculations of

kinetically meaningful free energy barriers48-54 and accurate rate constants55-61.

Chapter 2 presented a computational study that illustrated the likelihood maximization

approach by elucidating the mechanism of the solid-state polymorph transformation in

terephthalic acid39. Terephthalic acid was chosen as the model system for in-depth

computational studies because the crystal structures of the Form I and Form II polymorphs are

known 62, the polymorph transformation exhibits a reluctance to nucleate unless massively

subcooled or mechanically perturbed and extremely fast growth kinetics in an experimental

setting12, 63. Also, the molecules are relatively small and fairly rigid even when completely

unconstrained in a molecular dynamics (MD) simulation, and its structure represents an

ubiquitous motif in organic crystals such as those found in the pharmaceutical industry with a

carboxylic acid dimer synthon that forms long molecular chains64. In the previous study, two

system sizes were investigated: a 6x6x6 (216 molecules) and a 7x7x7 (343 molecules)

crystal, both with free boundaries. The system undergoes a nucleation step, and the free



energy barrier to nucleation increases as a function of system size. The mechanism as

determined with likelihood maximization shows that fluctuations of the supramolecular

synthon chains on the surface of the crystals, which have the most freedom to move in

vacuum, drive the polymorph transformation. This mechanism, or reaction coordinate, can be

approximated in these two small systems by changes in the global b lattice parameter and the

global b/c lattice parameter ratio, respectively. The term "global" in this sense denotes an

average over the entire crystal, which is measured on the nanometer length scale.

While global order parameters [OPs] serve as a viable approximation to the reaction

coordinate for the 6x6x6 and 7x7x7 crystals, one can imagine that on a substantially larger

length scale, an average lattice parameter measured over the entire crystal will not be able to

capture the fluctuations on a specific side or corner of the crystal. Therefore, we propose that

these same global OPs will not be sufficient reaction coordinates in larger systems 39. Instead,

we hypothesize that for larger crystals localized fluctuations will lead to nucleation events.

The goal of this study is to investigate whether local OPs become important for larger TPA

crystal sizes, and if so, to determine the nature of the important local OPs. Several types of

local coordinates, such as new, local b/c lattice parameters and the nucleus size of the Form 11I

polymorph are tested as possible reaction coordinates.

4.2 Methodology

The molecular force field developed and validated in Chapter 2 is used for this study. Two

system sizes are examined in this study: an 8x8x8 terephthalic acid crystal and a 1OxOxl0x0

crystal, which corresponds to 512 and 1000 molecules, respectively. For the 8x8x8 system,

the same scheme as described in Chapter 2 is employed here:

1) an initial trajectory is collected;

2) aimless shooting is used to harvest reactive trajectories between the reactant and product;

3) likelihood maximization is applied to determine the reaction coordinate;

4) a histogram test is used to validate the reaction coordinate approximation; and

5) the free energy barrier is determined using the correct reaction coordinate.



Only steps 1-3 are conducted for the 10x10x10 system due to the significant increase in

computational expense.

4.2.1 Obtaining Initial Trajectories

Initial trajectories for the 7x7x7 crystal (343 molecules) were previously obtained using MD

umbrella sampling over the global b/c lattice parameter ratio. The application of MD

umbrella sampling over the global b/c lattice parameter ratio, however, does not yield a set of

configurations connecting the Form I and Form II crystal structures for the 8x8x8 crystal.

This preliminary result suggests that the global b/c lattice parameter is not a viable reaction

coordinate for the 8x8x8 system. Therefore, MD umbrella sampling over a newly defined

local b/c lattice parameter ratio is applied between minimized crystals from Form I to Form II

with CHARMM 65. Figure 4-1 shows the outline of the new local b/c lattice parameter ratio

that is used for both the Form I and Form II crystals. This comer is chosen because it is

crystallographically equivalent to the corner that undergoes significant structural changes

during the nucleation step in the smaller systems.

Figure 4-1. Form I and Form II terephthalic acid crystals from the a-axis view with the
outline of the local b/c lattice parameter ratio used to obtain the initial trajectory for
input to the aimless shooting method. This particular local OP was chosen because the
same crystallographically equivalent corner in the 6x6x6 and 7x7x7 molecule systems
undergoes significant changes during the nucleation event.

The initial trajectory for the 10xl0x10 is generated using targeted molecular dynamics

(TMD) in CHARMM 66. These two different methods, umbrella sampling and TMD, are

applied to harvest initial trajectories for the 8x8x8 and 10x10x10 crystals, respectively, to

examine the effect of the biasing method on the reaction coordinate obtained with likelihood

maximization. To obtain an initial trajectory with TMD that retains some physical relevance,



the A(RMSD) per time step is set to 2.5x10 -6 A/fs. The total trajectory length is therefore 2.3

ns with the initial RMSD of approximately 5.8 A between the minimized end states.

4.2.2 Aimless Shooting

Aimless shooting pathways are collected with the two-point version of aimless shooting

described in detail in Chapter 3. All MD trajectories for aimless shooting are obtained using

the NAMD simulation package 67 in the NVE ensemble at 300 K. A time step of 1 fs is used

with a cutoff for nonbonded interactions of 14 A. The slight differences in the nonbonded

energy switching functions between CHARMM and NAMD do not cause noticeable

differences in the relevant quantities such as average lattice parameters, most likely because

of the generous nonbonded energy cutoff distance of 14 A. The total trajectory length for

aimless shooting is 60 ps, which maintains the fraction of inconclusive trajectories well below

1%. A time displacement, At, of 600 fs is applied to achieve the desired acceptance rate. The

first 100 aimless shooting trajectories are discarded to remove any effects from the initial,

biased trajectories. Following dynamic equilibration, 1500 paths are collected for the 8x8x8

system and 500 paths are collected for the 10x10x10 system for use in likelihood

maximization. The basin definitions are based on the global b/c lattice parameter. It should

be noted that basin definitions do not need to be representative of the reaction coordinate, but

must quantitatively distinguish the stable basins. An endpoint with b/c greater than 1.55 is

characterized as Form I and those with b/c less than 1.40 are assigned to the post nucleation

basin. These basin definitions are based on MD trajectories in the respective basins, as

shown in Figure 2-5.

4.2.3 Likelihood Maximization

The newly developed half-trajectory likelihood maximization algorithm 47 is applied to the

aimless shooting results to extract an approximation to the reaction coordinate. The reaction

coordinate, r, is modeled as a linear combination of candidate OPs denoted as q, with 0C)

through a. as adjustable coefficients given by:

r(q) = ao + I qk (4-1)
k=1

As described in Chapter 3, the half-trajectory likelihood method yields a more accurate

approximation to the transition state isosurface and applies whether the dynamics are ballistic



or diffusive. In this formulation of likelihood maximization, the reaction coordinate is related

to probability of committing to basin B as given by:

p 1(r) = [1l+ tanh(r)] (4-2)
2

The corresponding likelihood function is given as:

L= II PB(r(xk) H (1- p (r(xk)) (4-3)
xk -B xk -A

Expression 4-3 is maximized over all coefficients and possible combinations of candidate

OPs, yielding a likelihood score for each potential reaction coordinate. Each possible

reaction coordinate receives a likelihood score and the Bayesian information criterion (BIC)

is calculated to determine the statistical significance of different models.

Several hundred OPs are tested for the increased system sizes. All possible combinations of

the local b/c axis ratios are screened as candidate variables such as the one shown in Figure

4-1. Also, the global lattice vectors, local lattice angles, local twisting along supramolecular

chains, and directional variation of the supramolecular chains relative to one another are

screened.

Classical nucleation theory assumes that the nucleus size is the reaction coordinate68

Therefore, a cluster size analysis is performed to identify nuclei of the more stable Form II

crystal based on the unit cell environment around each molecule. To do this, the b and c

lattice parameters around each molecule are calculated. The b lattice parameter is calculated

by measuring the distance to the adjacent molecules along the b axis, and the c lattice

parameter is measured similarly. If the b/c ratio for a molecule is greater than 1.55, the

molecules are labeled as Form I, and if the b/c ratio is less than 1.15, it is labeled as Form II.

This local classification is referred to as a "unit cell OP". These unit cell OPs are then used to

quantify the cluster size for both polymorphs. Molecules with lattice parameters in between

those values are tagged as interface molecules.

4.2.4 Committor Probability Distribution

The histogram test is applied to quantify the error in the reaction coordinate from likelihood

maximization 69-72. The histogram should be centered at 1/2, implying that points on the r = 0



surface are transition states with PB = V2. For the 8x8x8 crystal, 20 trajectories of 30 ps each

are fired randomly from independent configurations generated by a method inspired by the

equilibrium path sampling method 53, as described in our previous study. The same

simulation package (NAMD) and conditions are used as for the aimless shooting trajectories.

The mean and standard deviation of the resulting committor distribution is calculated and

compared to the intrinsic standard deviation as described by Peters72. This approach yields a

quantitative measure of the reaction coordinate error.

4.2.5 Free Energy Calculations

After validating the reaction coordinate with the histogram test, the free energy is calculated

with MD umbrella sampling for the 8x8x8 crystal. Windows are 1.05 ns long with 50 ps of

equilibration at the start of each reaction coordinate window. The weighted histogram

analysis method is applied to construct the free energy curve 50' 73

4.3 Results

Figure 4-2 shows configurations along a reactive aimless shooting trajectory for the 8x8x8

crystal. The frame shown in Figure 4-2c is the shooting point. The snapshots appear

qualitatively similar to the mechanism previously obtained for the 6x6x6 and 7x7x7 crystals

shown in Chapter 2 as well as the 10xI0x10 crystal in this chapter. Figure 4-3 shows the

global b/c values at the endpoints of the aimless shooting trajectories for both the 8x8x8 and

10xl0x10 systems. The distributions of global b/c values are split into two regions in the

ranges of b/c < 1.4 and b/c > 1.55, indicating that the basin definitions are correct and that the

trajectory length is sufficient. In addition, there is a slightly bimodal distribution for the

product basin (b/c < 1.4), which is more pronounced in the 8x8x8 crystal. The majority of

the trajectories that commit to the Form II basin reach a global b/c value of 1.0. As found for

both the 6x6x6 and 7x7x7 crystals previously 39, some of the trajectories that end in the Form

II basin stop at values of b/c between 1.3 and 1.4 indicating that there may be a metastable

intermediate in the free energy landscape, as measured by this OP.
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Figure 4-2. Snapshots taken from a reactive trajectory from Form I to Form II. The
configuration shown in frame (c) is the shooting point in aimless shooting.
Configurations shown in frame (a) and (e) are in the Form I and Form II basin,
respectively.
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Figure 4-3. Endpoints of aimless shooting simulations as a function of the global b/c
axis ratio for the (a) 8x8x8 and (b) 10x10x10 crystal. The global b/c lattice parameter
ratio is used for the quantitative basin definitions in the aimless shooting procedure.

Several results from likelihood maximization are presented for comparison in Table 4-1. The

likelihood maximization results for a 1-dimensional reaction coordinate in the 8x8x8 system

are extracted from 1500 aimless shooting trajectories. The BIC for these data is 3.7. Three

OPs are shown for the 1-dimensional case: the nucleus size for the Form II cluster, the global

b/c lattice parameter for comparison to results in our previous study, and one of the local b/c

OPs for a specific corner of the crystal. Both the Form II nucleus size and the global b/c axis

ratio are inadequate 1-dimensional approximations to the reaction coordinate when compared

to the local OP. The molecules used to measure the local b/c OP are highlighted in Figure 4-

4 from two a-axis views for a configuration near the transition state isosurface. The reaction

coordinate is 6 layers in both the b and c dimensions, and is located in a different corner than

la\

".



the OP used to obtain an initial trajectory. The reason for this will be examined in the

Discussion.

Approximately 500 trajectories are collected for the 10xl0x10 crystal. The optimal reaction

coordinate for this system is also a local b/c lattice parameter ratio. In this case, it is 5 layers

in the b and c directions. The reaction coordinate is in a crystallographically equivalent

corner to the reaction coordinate found for the 8x8x8 system.

Likelihood maximization is also re-applied to 1000 aimless shooting trajectories for the

7x7x7 system from the previous study39. The Form II cluster size is screened as a potential

reaction coordinate. Table 4-1 shows that the global b/c axis ratio remains the optimal

reaction coordinate, and that the average Form II cluster size is approximately 105 molecules.

Table 4-1. Likelihood maximization results for the reaction coordinate in the 8x8x8 and
10x10x10 crystals. In addition, the likelihood scores are included for the 7x7x7 optimal
reaction coordinate from the previous study39 along with the Form II nucleus size for
comparison.

Likelihood Transition State
System Size OP Score Isosurface (r = 0)

Form II nucleus -751.35 84 molecules
size

8x8x8 [512 molecules] (a) Global b/c -714.73 1.50

b/c for comer 4, -685.55 1.39
depth = 6 layers
Form II nucleus -308.57 81 molecules

size

1010x 10 [1000 molecules] ( Global b/c -298.98 1.48

b/c for corner 4, -255.88 1.35
depth = 5 layers
Form II nucleus -570.41 105 molecules

7x7x7 [343 molecules] c) size

Global b/c3 9  -503.82 1.43

(a) BIC = 3.1
(b) BIC = 3.5
(c) BIC = 3.6



Figure 4-4. Snapshots from the a-axis view of the 8x8x8 system near the transition state.
The molecules in space-fill format outline the local b/c axis ratio that is the best reaction
coordinate approximation as determined by likelihood maximization.

The committor probability histogram for the local b/c OP for the 8x8x8 crystal is shown in

Figure 4-5. It is peaked at ph = 0.588 and the standard deviation is oh = 0.127 The intrinsic

mean and standard deviation are calculated as described by Peters72, and are u = 0.588 and cr

= 0.108, respectively. For reference, the distribution given by the intrinsic parameters is

plotted along with the histogram with the assumed functional form of the normal distribution.

The relative uncertainty in the intrinsic mean and standard deviation are A/lu = 0.0215 and

Act/o = 0.199, respectively 72. This quantitatively demonstrates that the local b/c OP is a

viable approximation to the reaction coordinate.

istnbution

ca

0.0 0.2 0.4 0.6 0.8 1.0

PB

Figure 4-5. Normalized committor probability histogram for the 8x8x8 system with a
local b/c * = 1.387, as predicted from the pB(r) model with a 1-dimensional reaction
coordinate. ,h = 0.588, oh = 0.127. The intrinsic distribution with p = 0.588 and ao =
0.108, is plotted for comparison.



Figure 4-6 shows the free energy along the local b/c OP in the 8x8x8 crystal found in

likelihood maximization. As the system transforms from the Form I polymorph to Form II,

the system overcomes a free energy barrier to nucleation, and passes through a metastable

intermediate prior to the growth phase. In addition, as in our previous study, the barrier to

nucleation scales with system size, whereas the barrier to growth remains relatively small at

2-3 kcal/mol. The nucleation barrier for the 6x6x6 crystal and for the 7x7x7 crystal is

approximately 4 kcal/mol and 12 kcal/mol, respectively39. For the 8x8x8 system, the free

energy barrier to nucleation is approximately 22 kcal/mol.
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Figure 4-6. Potential of mean force calculated from MD umbrella sampling as a
function of the local b/c reaction coordinate from likelihood maximization for the 8x8x8
system. The weighted histogram analysis method5 ', 73 is applied to combine the
umbrella sampling windows.

4.4 Discussion

The discussion section is divided into two sub-sections: the first sub-section highlights the

utility of likelihood maximization as an effective method to identify non-intuitive reaction

coordinates. It is stressed that this method or others with similar intentions46 should be

applied to systematically determine reaction coordinates in complex systems. Also, the

implications of the results are briefly discussed in the broader context of solid state

polymorph transformations in hydrogen bonded crystalline materials.
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4.4.1 Implications for Theory

Our results indicate that the global b/c lattice parameter is not a good approximation to the

reaction coordinate relative to the local b/c OPs for the larger systems, even though it is a

natural first choice for a reaction coordinate when studying this crystal transformation in

vacuum. In searching for an initial trajectory, for instance, MD umbrella sampling over this

global b/c axis ratio does not yield a viable pathway for the 8x8x8 crystal.

It is initially surprising that local b/c OP in the corner of the crystal, as shown in Figure 4-4, is

the reaction coordinate, rather than an OP similar to the one chosen to obtain an initial

trajectory. This reaction coordinate is surprising because the corner chosen to obtain the

initial trajectory appears to undergo significant structural changes near the transition state

region. To investigate this finding further, it is useful to label the Form II cluster according to

the unit cell OPs for configurations that the best reaction coordinate identified as transition

states. Figure 4-7 shows an a-axis view of the transition state configuration with the

molecules in blue for the Form II unit cell OP and in green for the Form I unit cell OP. The

red wireframe molecules have local environments that are not indicative of either the Form I

or Form II polymorph. This figure clearly shows that the Form II cluster exists in the corner of

the crystal identified by the local b/c reaction coordinate. Although the cluster size is not the

best reaction coordinate identified by likelihood maximization, it is still useful to illustrate

that the intuitive Form II cluster size parameter coincides with the local reaction coordinate

identified by likelihood maximization. To further verify that the Form II cluster size exhibits

correlation with the reaction coordinate, the nucleus size is shown in Figure 4-9 for the 8x8x8

system as a function of the best reaction coordinate according to likelihood maximization. As

expected, the Form II nucleus size increases with r, which is concomitant with the product

basin and the nucleus size decreases closer to the reactant basin. The discovery of a reaction

coordinate better than the intuitive nucleus size coordinate highlights the value of likelihood

maximization as a tool to extract non-intuitive reaction coordinates from trajectory data.



Figure 4-7. Snapshots from the a-axis view of the 8x8x8 system near the transition state.
The molecules in blue are the molecules in the Form II lattice, whereas the green
molecules are in the Form I lattice. The wireframe molecules in red are classified as
being in neither basin, and form the interface between the two polymorphs.
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Figure 4-8. Snapshot from the b-axis view of the 8x8x8 system near the transition state.
The molecules in blue are the molecules in the Form II lattice, whereas the green
molecules are in the Form I lattice. The wireframe molecules in red are classified as
neither crystal, and form the interface between the two polymorphs.

In addition, as shown in Table 4-1, the nucleus size for the transition states for the 7x7x7,

8x8x8, and 10x10x10 crystals are approximately equivalent. The values range from 81

molecules to 105 molecules. The observation of three crystal sizes with similar mechanisms

and critical nuclei of similar sizes suggests that simulations of larger TPA crystals may

continue to transform via comer nucleation.
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Figure 4-9. Form II nucleus size as a function of the local b/c reaction coordinate for
the 8x8x8 crystal. The product basin is associated with large, positive r and the reactant
basin corresponds to large, negative r. Therefore, as expected, the more stable Form II
nucleus decreases in size as the system approaches the reactant, or Form I crystal, and
increases as the system nears the product, or Form H crystal. This plot demonstrates
that even though the nucleus size is not the optimal reaction coordinate, it remains a
useful illustration to explain the location of the reaction coordinate determined from
likelihood maximization.

4.4.2 Significance for solid state polymorph transformations

For a given nucleus size, corner nucleation leads to the smallest possible interfacial area

between the two domains. In the interior of a perfect crystal, however, the interfacial area for

a nucleus of the Form II crystal would be much larger at an equivalent nucleus size, and

would therefore have a substantially higher free energy barrier to nucleation. Unless the

crystal is very large such that the probability of observing a bulk nucleation event is many

orders of magnitude higher, it is anticipated that corner nucleation will be a common

phenomenon in hydrogen bonded molecular crystals. In summary, corner nucleation is a

pathway by which the surface free energy penalty can be minimized in a nucleation event.

Although not directly addressed here, nucleation events may also initiate from internal defects

within the bulk of the crystal. The number of these internal defects will also scale with the

crystal size which may also favor other nucleation mechanisms for large crystals.

Investigation of these alternative nucleation mechanisms would be a valuable complement to
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this study. Additionally, simulations of larger system sizes are needed to fully characterize the

growth process.

4.5 Conclusions

This study explores size effects on the corner nucleation mechanism for the solid state

polymorph transformation in TPA from Form I to Form II. Likelihood maximization shows

that changes in local order rather than global order become more important as the system size

increases. Committor probability analysis verified these reaction coordinates. The free energy

curve along the reaction coordinate exhibits a large nucleation barrier and a negligible barrier

to growth. These results suggest an explanation for large subcooling or mechanical

perturbation required to initiate the transformation, as well as the almost instantaneous

growth kinetics seen in the experiments l2' 63

To verify that the mechanism is a comer nucleation process, it is demonstrated that a nucleus

of the more stable Form II polymorph forms at a corner of the crystal. A cluster analysis

shows that the average size of the Form II nucleus at the transition state is approximately 80

to 100 molecules, and that an interface exists between the two polymorphs. In addition, it is

shown that although the number of molecules in the Form II nucleus is not the best reaction

coordinate for the system sizes explored, a definite correlation exists between the actual

reaction coordinate and nucleus size.

The corner nucleation mechanism for the solid state polymorph transformation in TPA yields

the smallest possible interfacial area between the two polymorphs at a given nucleus size,

which reduces the surface free energy penalty required to form a new polymorphic domain.

Based on these results, corner nucleation may be a common polymorph transition mechanism

in crystals of hydrogen bonded materials.

This study also illustrates the value of likelihood maximization as an effective method for

mechanistic studies of rare events in complex systems. Likelihood maximization is

appropriate to any problem to which transition path sampling can be applied, which spans

many areas of scientific and technical interest. Specifically, likelihood maximization as

demonstrated here identifies a non-intuitive reaction coordinate, which etches out the corner

around the Form II nucleus, from over 500 candidate order parameters. The recognition of a

reaction coordinate that is not directly intuitive highlights the merits of likelihood



maximization. Because incorrect reaction coordinates can yield misleading results for

quantities of interest, aimless shooting and likelihood maximization are effective ways to

obtain correct reaction coordinates as input for free energy calculations48-54 and pathway

optimizations45, 74 that require a priori specification of the reaction coordinate or reaction

coordinates components.
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CHAPTER 5: HOMOGENEOUS NUCLEATION OF BENZENE FROM THE MELT

5.1 Introduction

Benzene is a ubiquitous functional group in many naturally occurring and industrially

important chemicals and has thus received considerable experimental and theoretical

attention 1-23 . Benzene exhibits multiple phases, and the phase diagram has recently been

evaluated with the metadynamics approach of Raiteri et al.15 as reproduced in Figure 5-1. It

undergoes multiple high pressure order-order phase transitions, polymerizes at high pressure

and temperature, and nucleates from the liquid to the Form I crystal from atmospheric

pressure up to approximately 2 GPa.
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Figure 5-1. Proposed phase diagram of benzene elucidated by metadynamics,
reproduced from Raiteri et al.15 The labeled points are from references 4 and 7.

This chapter examines the mechanism of homogeneous nucleation from liquid benzene to the

Form I crystal. Nucleation of crystalline solids from the melt is of general scientific and

technical interest24-28, and has been studied extensively with molecular simulation

techniques29-42. As discussed in Chapter 1, previous studies to date have focused on model

systems or small molecules such as, nitrogen 35' 37, carbon dioxide36, or water40' 41. Transition

path sampling [TPS] 43-4 8 allows for the collection of many unbiased reactive pathways, and

has been applied to melt nucleation in model systems38' 39. Application of the TPS method to

molecular systems should yield further insight into the liquid to solid phase transition in caes



when then molecules are anisotropic in both shape and intermolecular connectivity. It is

anticipated that the anisotropy of benzene will yield critical nuclei that are anisotropic in

shape, Benzene is chosen as the system of interest because:

1) it is a common model organic molecule and is fairly rigid and relatively small,

2) the OPLS potential describes the liquid and solid states adequately' 12

3) the Form I crystal structure is known 2, and

4) considerable experimental work has been conducted with regard to the liquid-solid phase

transition 1, 3' 7, 8'18, 20

This chapter is organized as follows: previous studies of homogeneous nucleation from the

melt are reviewed. The methodology, including the potential and the labeling of the solid and

liquid particles, is provided and order parameters [OPs] screened in likelihood maximization

are included. Preliminary results are presented as to the mechanism of the nucleation event.

5.2 Background

Classical nucleation theory [CNT] serves as a useful framework for understanding

homogeneous nucleation processes 49. The basis of CNT is that thermal fluctuations give rise

to the appearance of small nuclei of a more stable phase and occasionally produce a long

chain of favorable energetic fluctuations, thereby creating a nucleus exceeding the critical

size, Although this more stable phase has favorable lower free energy, there is a free energy

penalty associated with the creation of an interface. The free energy of the more stable phase

is therefore the sum of a favorable, negative volume term and an unfavorable, positive surface

term, For a spherical nucleus, the free energy change, AG, is given as:

AG = - R3 AGV + 4nR2y (5-1)
3

where R = radius of the nucleus, AGv = bulk free energy difference per unit volume between

the metastable and more stable phases, and y= surface free energy of the more stable phase

per unit area. The maximum of the free energy expression in Equation 5-1 corresponds to the

critical size of the nucleus, Rcritical:



2y
Rcritical (5 2)

Combining Equations 5-1 and 5-2 produces an expression for the maximum free energy

barrier of nucleation, AGcritical,

AGcritical = -y Re2itcal (5-3)

The assumed reaction coordinate in CNT is the size of a solid nucleus, which is assumed to

behave as a mean field and possess properties concomitant with that of the bulk solid.

However, CNT has been shown to fail in quantitatively describing both the mechanism and

rate of nucleation 24, 42, 50. 51. It is therefore desirable to apply methods to understand the

limitations of CNT and gain insight into homogeneous nucleation in real systems. As

mentioned in Chapter 1, experimental techniques still lack the ability to track random

molecular level events in a homogeneous medium except for systems where the elementary

particles range from hundreds of nanometers to micrometers in size, such as colloids52 or

aggregated proteins on a pre-designed nucleation surface53. Computational techniques,

however, have demonstrated that mechanistic studies are possible on nucleation processes

from the melt at intermediate to large subcooling29-3 ' 33-39, 42, 54, 55

An approach to study crystal nucleation was originally developed by van Duijneveldt and

Frenkel based on non-Boltzmann sampling over an a priori assumed reaction coordinate42 , in

a series of three papers, ten Wolde et al. applied the approach of van Duijneveldt and

Frenkel42 to describe the formation of Lennard-Jones crystals from the melt29-31 . The chosen

reaction coordinate is a set of bond-orientational OPs56 used to convert the liquid particles to

solid particles. The work of ten Wolde et al. demonstrated that the crystals typically form

first as body centered cubic [bcc] clusters and then convert to the more stable face centered

cubic [fcc] structure. In a later study, Moroni, ten Wolde, and Bolhuis applied transition path

sampling [TPS] to the same system and demonstrated that the critical nuclei can exist as

large, more disordered bcc-like nuclei as previously found, or as smaller, compact fce

nuclei 38. The three earlier publications of ten Wolde et al. were most certainly pioneering

investigations at the time of publication 29-3 1, and have been generally and successfully applied
to many systems by other groups 33-3 7 57, 58. However, this later study from Moroni et al.,

made possible by the development of TPS, highlights the point that assuming a reaction

80



coordinate a priori does not guarantee comprehensive and accurate results38 . The study from

Moroni et al. emphasizes the need for the use of unbiased methods in determining

mechanisms in nucleation problems, even for seemingly simple transformations such as the

freezing of Lennard-Jones particles.

To the knowledge of the author, TPS has not been applied to nucleation problems in complex

systems in which the molecules are anisotropic, such as disk shaped molecules like benzene.

It is anticipated that the anisotropy of benzene will yield critical nuclei that do not behave as a

sphere, as assumed in CNT. To investigate the nucleation mechanism, a similar approach as

Moroni et al. is taken 38. In this case, aimless shooting and likelihood maximization are

applied to determine the mechanism of nucleation in benzene from a subcooled liquid to the

Form I crystal.

5.3 Methodology

This section describes the simulation methods in detail. The overall approach and a

discussion of the physical conditions and system size are first provided. The force field is

introduced and validated with equilibrium MD simulations. A labeling system is described

in detail that enables discernment between liquid and crystalline molecules, based on previous

work of ten Wolde et al.29 31 The method used to obtain the initial trajectory is discussed and

quantitative basin definitions are given. A revised version of aimless shooting is described,

which is implemented for computational efficiency, and relevant parameters used in the

aimless shooting simulations are provided. The OPs screened in likelihood maximization are

introduced as well.

5.3.1 General Approach

The overall approach to determine the nucleation mechanism is similar to that described in

Chapters 2 and 4 for the solid state polymorph transformation in terephthalic acid. Because

the goal of this study is solely to examine nucleation, the reactant basin is classified as the

liquid state and the product basin is classified as the liquid state and a post-critical nucleus of

the Form I crystal. Because nucleation and growth are two different processes, the growth of

the crystal throughout the cell is not considered in aimless shooting. Additionally, as will be

shown, studying crystal growth with the entire simulation cell incurs significant

computational cost. The overall methodology is as follows:



1) An initial shooting point for aimless shooting is collected from a melting trajectory that

connects the reactant and product basins,

2) Aimless shooting is applied at a fixed temperature and density (i.e. the NVT ensemble) to

collect several hundred trajectories,

3) Likelihood maximization is utilized to extract the best reaction coordinate approximation

for the nucleation event.

The physical conditions and the system size for the simulation are intimately related, and

therefore merit comment. The temperature and pressure chosen for the simulation will

determine the size of the critical nucleus. At deeper subcooling for example, the critical

nucleus will be smaller. It is therefore in the interest of efficiency to choose a temperature at

some intermediate subcooling (AT >10 K for instance) rather than within several degrees K of

coexistence. For the selection of system size, it is conventional to simulate a system 10-50x

the size of the critical nucleus to avoid finite size effects39' 42. Selecting a size 10-50x the

critical nucleus requires having some a priori knowledge of the approximate size of the

critical nucleus. The critical nucleus size is therefore roughly approximated for the

temperature and density chosen in a manner similar to locating putative transition states and

quantifying basin definitions as described in Dellago et al.4 8 The chosen temperature is 250

K and an average density corresponding to 0.1 GPa is used. Experimentally, this temperature

corresponds to a subcooling of 50 K3. It will be shown that at 250 K, the critical nucleus size

is around several hundred molecules. Therefore, a system size of 6912 molecules is used for

all the simulations described.

5.3.2 Force Field

The OPLS force field is applied to benzene5. This potential, developed by Jorgensen et al.5.

is convenient for application in pre-packaged codes such as CHARMM 59 and NAMD"6

because it is fit to compatible functional forms. It should be noted that a more accurate

potential for benzene has been developed, but the non-conventional functional form used

severely limits widespread applicability' 2 . The OPLS potential is parameterized to reproduce

experimental quantities such as liquid density and heat of vaporization, and it has also been

shown to reasonably reproduce the Form I crystal phase 2. The intermolecular parameters for



the OPLS benzene force field are listed in Table 5-1. The intramolecular force field

parameters are taken from the CHARMM force field library59.

Table 5-1. Intermolecular force field parameters for benzene from the OPLS potential5

Atom o [A] e [kcallmol] q [e]

C 3.55 0.07 -0.115

H 2.42 0.03 0.115

5.3.3 Equilibration

To determine the average crystal density at various temperatures and pressures of interest,

equilibrium MD simulations are conducted in the NPT ensemble. NAMD is used to collect

all MD trajectories for this study with a 1.0 fs time step6°. The cutoff for nonbonded

interactions is 14 A, and the switching function is activated at 12 A. Partice mesh Ewald

summation is applied to account for long range electrostatic interactions with 6th order

interpolation6 1 . The simulations conducted in the NPT ensemble utilize Langevin

temperature control with a damping coefficient of 5 ps-1, and the Nose-Hoover barostat is

applied with a piston period of 200 fs and a damping time scale of 100 fs61

Three 400 ps equilibrium NPT trajectories are initiated in the crystal phase to equilibrate the

system volume and determine the effect of temperature and pressure on density. The

deviation from the experimental lattice parameters is monitored. Table 5-2 shows the average

values of the lattice parameters for the three cases in the NPT ensemble. As shown, the lattice

parameters deviate less than 8% for all cases. As mentioned previously, the crystallization

simulations for aimless shooting are conducted at 250 K and 0.1 GPa.



Table 5-2. Lattice parameters from the experimental crystal structure and NPT MD
simulations at various conditions

Lattice Crystal
250 K, 0.1 GPa 300 K, 0.1 GPa 250 K, 10-4 GPa

Parameter Structure2

a [A] 88.776 86.378 + 0.129 88.003 + 0.158 87.644 + 0.147

b [A] 113.22 115.748 + 0.092 116.724 + 0.113 116.641 + 0.096

c [A] 81.336 87.434 ± 0.142 87.715 ± 0.160 87.806 + 0.139

5.3.4 Obtaining an Initial Shooting Point for Aimless Shooting Simulations

To collect an initial trajectory connecting the Form I crystal and the liquid, the following

approach is taken:

1) A crystal cell is equilibrated in the NPT ensemble at 250 K and 0.1 GPa.

2) The volume is constrained at the average value and the system is heated to 400 K. The

trajectory is run at 400 K until the cell is a disordered liquid.

3) Randomly seeded trajectories are initiated from configurations along the melting

trajectory to locate a putative transition state.

These randomly seeded trajectories are shot from several points with different starting cluster

sizes. The cluster size is determined at the end of the 100 ps trajectories to find a putative

transition state. Figure 5-1 shows the results 10 trajectories shot from a point with 205 solid

molecules. The results are plotted as N,_ust with No = 205 molecules as shown by the dashed

line.
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Figure 5-1. Number of solid molecules in a cluster at the end of 12 randomly seeded 100
ps MD trajectories. These trajectories are collected from a point along the initial
melting trajectory to search for a putative transition state from which to initiate aimless
shooting. The starting configuration contains 205 molecules, as indicated by the dashed
line,

5.3.5 Mean Square Displacement

The mean square displacement is monitored in the disordered state to ensure that the

disordered state is a liquid rather than a glass-like state in which the molecules have no ability

to diffuse in a translational manner. Also the mean square displacement is monitored in the

solid state to ascertain if the crystal is stable at these temperatures. Four equilibrium

simulations are conducted at 250 K and 300 K, both at 0.1 GPa, for the liquid and solid states.

The liquid is prepared by superheating the crystal to 500 K and melting in a 1 ns simulation,

then cooled down to the temperature of interest. An equilibration period is conducted at the

subcooled temperature of interest of 100 ps. Figure 5-2 depicts the mean square displacement

for each of these simulations. As shown, the liquid systems exhibit translational diffusion at

both 300 and 250 K, and the crystals are stable over the timescale of the simulations.

I
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Figure 5-2. Mean square displacement results for the Form I benzene crystal and liquid
at 250K and 300 K and 0.1 GPa. These results indicate that benzene can remain in the
liquid state at 250 K (rather than a glassy state), and that the crystals are stable over a
long time scale at both 300 and 250 K at 0.1 GPa.

5.3.6 Molecule Labeling System

To properly examine the disorder-order transformation, which is hypothesized to occur via

nucleation on a local length scale, it is essential to discern between solid and liquid particles.

The approach of ten Wolde et al. is adopted here to label solid-like and liquid-like molecules

during the course of the simulation29 31. The bond-orientational order parameters of

Steinhardt et al. are used to monitor the crystallinity of individual molecules 56. These local

paramters are defined as:

- 1 Nb(i)
m (i) -- (i,) (5-1)Nb (i) =1

Where Yim(^. ) are the spherical harmonic functions, r,. is a unit vector in the direction of the

"bonds" between molecule i and its neighbor molecule j summed over all Nb(i) neighbors.

The 6" order bond orientational order parameter, which has been shown to be a viable OP in

other studies, is selected as the specific spherical harmonic function to apply. To each

molecule i, a local (2x6+1)-dimensional vector q6(i) with components calculated as:

A'3t%r

'"~~'~ ~"' · \



q 6,m (i)0= 6  -1/2 (5-2)

The dot product of the resulting q6 vectors for each molecule i and neighborj is defined as:

m=6

6(6i)'q6 (J) =Z6m(i)6(J) *  (5-3)
m=-6

Ordered molecules, which will vibrate around a lattice position, should have a non-zero value

for the dot product given in Equation 5-3, whereas liquid molecules should have a wide

distribution of values centered close to zero. Therefore, two molecules are considered to be

"connected" if q6(i)q 6(j) exceeds a specific value. As ten Wolde et al. mention in their

studies on Lennard-Jones nucleation, at any given instance, a liquid molecule can also be

labeled crystalline at any given instance because it can attain a coherent, but fleeting, bond

orientationally ordered state. Therefore, the second criterion of ten Wolde et al. is added in

this study as well: a molecule is considered crystalline if the number of connections exceeds

a certain value, i.e. if the dot product given in Equation 5-3 exceeds the threshold value for a

minimum number of neighbors.

Equilibrium trajectories are harvested for both the crystal and liquid to determine:

1) the proper cutoff distance to use for the bond orientational OPs;

2) the threshold values for the q6(i)'q6(j) expression; and

3) the necessary number of connections to label a particle as crystalline.

Figure 5-3 shows the center of mass radial distribution functions (RDF) for equilibrated Form

I benzene crystals and the liquid at 250 K and 300 K. The RDF for the crystalline systems is

identical and the liquid shows only slight deviation. Figure 5-4 shows the center of mass

locations of the nearest neighbors taken from a frame in the equilibrium simulation. From the

crystal RDFs, the cutoff distance to search for nearest neighbors is set to 8.5 A.
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Figure 5-3. Center of mass radial distribution functions for the Form I benzene crystal
and liquid at 250K and 300 K at 0.1 GPa. The first coordination shell for crystalline
benzene exists out to approximately 8.5 A and this distance is therefore used to search
for nearest neighbors when calculating the bond orientational OPs. The radial
distribution functions for the crystals at 250 and 300 K at 0.1 GPa are identical.

c01b

Figure 5-4. Center of mass positions for the 16 nearest neighbors of a single benzene
molecule. This snapshot is taken from an equilibrium simulation at 250 K and 0.1 GPa.
The neighbors are shown as small beads and the center molecule is shown in
transparent spacefill.

Once the cutoff distance for the q6(i)'q6(j) expression is set, the distributions for crystal and

liquid can be calculated. Figure 5-5 displays the distribution function for the q6(i)-q6(j)

results. These distributions are collected from 20 independent configurations from the crystal

and liquid simulations at 250 K, and the results from the 300 K simulation are



indistinguishable. The distributions suggest that the q6 (i)-q6(j) cutoff is 0.08, which is used in

the molecule labeling.

As mentioned, ten Wolde et al. also introduced a second criterion in the labeling process

related to the number of connections per particle29-3 1. Figure 5-6 shows the number of

connections per particle for both a crystal and a liquid simulation. These results are collected

from the same simulations used to generate the q6(i)'q6(j) distributions, shown in Figure 5-5.

The connection threshold is set to 5 connections. Therefore a molecule i with 5 nearest

neighbors having q6(i)-q 6(j)>=0.08 will be labeled as crystalline, and all other molecules will

be labeled as liquid.

In addition, a cluster analysis is performed to determine the cluster sizes for any

configuration. The algorithm determines which particles in the simulation cell are crystalline,

then searches over nearest neighbors to etch out the cluster size. This is prepared to

characterize the basins for aimless shooting, as will be discussed.

0.4
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Figure 5-5. Distribution of q6(i).q6(j) function given by Equation 5-3 for all neighboring
particles i and j in an equilibrated crystal and liquid at 250 K and 0.1 GPa. These
distributions are averaged over 20 independent frames.
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Figure 5-6. Distributions of the number of nearest neighbor connections per particle in
an equilibrated crystal and liquid at 250 K and 0.1 GPa. These distributions are
averaged over 20 independent frames.

5.3.7 Aimless Shooting

Aimless shooting requires basin definitions and an initial shooting point. The

the initial aimless shooting point is described previously. The basin definitions

the number of solid benzene molecules in the cluster. The reactant basin is

configuration with less than 150 molecules in the cluster, and the product is

configuration with greater than 450 molecules in the nucleus.

collection of

are based on

defined as a

defined as a

As shown in the Figure 5-1, the trajectory length required to commit to the basin is in some

cases greater than 100 ps. For example, points 5 and 9 do not commit to either basin in a 100

ps MD trajectory. Therefore, the total length of the aimless shooting trajectories is set to 600

ps to maintain the frequency of inconclusive trajectories below 10%. The trajectory length of

600 ps makes the aimless shooting simulations for benzene nucleation computationally very

expensive relative to the aimless shooting simulations described in Chapters 2 and 4.

5.3.8 Likelihood Maximization

Since the aimless shooting simulations are extremely computationally expensive, likelihood

maximization will be conducted after the collection of several hundred trajectories. To date,

0.6
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approximately 90 trajectories have been collected. As described in Chapter 3, the reaction

coordinate will be approximated with the half trajectory likelihood using Equations 3-3 and 3-

4. The OPs screened include

1) nucleus size,

2) nucleus surface area as measured by the solvent accessible surface area,

3) nucleus shape as measured by the principal moments of inertia,

4) cluster crystallinity as measured by the Steinhardt OPs56 (Q4, Q6, Q8, W4 , W6 , W8),

5) global crystallinity as measured by the Steinhardt OPs56 (Q4, Q6, Q8, W4, W6, W8),

6) nucleus shape as measured by the moments of inertia,

7) energetic OPs such as the potential energy of the cluster surface molecules.

The nucleus surface area is measured with the solvent accessible surface area algorithm in

CHARMM5 9. The nucleus shape is measured by the same method utilized by Pool and

Bolhuis 62 . The cluster crystallinity is measured by locating the nearest neighbor connections

between all of the molecules in the cluster, and the global crystallinity is measured by

applying the same method to the entire simulation cell29-31' 42, 56

5.4 Results

5.4.1 Initial Trajectory

Seven snapshots of the initial trajectory are shown in Figure 5-7. As described previously, the

trajectory goes from a crystal state equilibrated at 250 K and is superheated to 400 K until the

cell is a disordered liquid. The point used for aimless shooting is similar to the penultimate

snapshot shown in Figure 5-7 with a solid cluster with 320 molecules. The last configuration

shown in Figure 5-7 is composed entirely of liquid benzene molecules.
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Figure 5-7. Snapshots from the a-axis and c-axis views along the initial melting
trajectory at 400 K. The liquid molecules are red and the solid molecules are blue. The
respective views are shown in a 1:1 scale. The penultimate snapshot is similar to the
configurations used for input to aimless shooting. The last snapshot is completely
liquid,

5.4.2 Aimless Shooting and Likelihood Maximization

Aimless shooting simulations are ongoing. The nucleus size, as obtained from the 80 aimless

shooting trajectories obtained thus far is between 200 and 300 molecules in size. An example
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of a nucleus from a successful aimless shooting point is shown in Figure 5-8. As shown, the

nucleus, labeled with blue surface shading, is far from spherical.

I'

Figure 5-8. Form I crystal nucleus from a reactive aimless shooting trajectory. The
nucleus molecules are labeled with blue surface shading and the liquid molecules are
shown in red wireframe.

5.4.3 Characterization of Growth Time

The time for crystal growth throughout the entire cell is not studied in aimless shooting as the

trajectory length would make the simulations computationally intractable. However, to

characterize the growth time, several endpoints from aimless shooting trajectories that

nucleate are collected, and 2 ns trajectories are shot. This is done to characterize the time for

growth throughout the entire crystal cell. Figure 5-9 shows configurations from the b-axis

view of an example of a trajectory for which the entire crystal cell crystallizes in 2 ns. Again,

solid molecules are labeled in blue and liquid molecules in red.
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Figure 5-9. Snapshots from the b-axis views along the growth trajectory at 250 K. Solid
molecules are shown in blue and liquid molecules are labeled red.

5.5 Discussion

For very large systems in which the commitment time is long, TPS becomes incredibly

computationally expensive. A single aimless shooting trajectory for benzene is 1.2 ns with a

system size of 84000 atoms in periodic boundaries. For a statistically relevant collection of

trajectories, this amount to simulation times up to hundreds of ns. For very large systems

such as benzene in which the basin commitment time is long, TPS becomes incredibly

computationally expensive. This study therefore highlights the need for further

methodological developments to sample diffusive transition paths in a manner that allows the

extraction of reaction coordinates. The transition interface sampling [TIS] approach of van

Erp et al. is based on calculating fluxes through pre-defined interfaces along a transition to

extract rate constants 63, 64. TIS is based on similar principles as TPS and can therefore easily

be implemented in pre-packaged molecular simulation codes. However, unlike TPS (and

aimless shooting), TIS assumes a pre-defined reaction coordinate. It is speculated that the

choice of the reaction coordinate does not lead to large error64 , but this has yet to be verified.
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In addition, there is no systematic method to extract the reaction coordinate from TIS results.

Assuming that van Erp and Bolhuis are correct in stating that the choice of reaction

coordinate is not important in the interface definition, merging of likelihood maximization

and TIS could yield a methodology to simultaneously calculate rate constants and elucidate

mechanisms in diffusive systems.

5.6 Summary and Conclusions

This chapter describes the study of the homogeneous nucleation from the subcooled melt of

benzene to the Form I crystal. Aimless shooting is applied in the NVT ensemble to the liquid-

solid transition at approximately 50 K subcooling at a density corresponding to 0.1 GPa.

Preliminary results indicate that the critical nucleus size is approximately 200-300 molecules

at these physical conditions.

Likelihood maximization will be applied after several hundred aimless shooting trajectories

are collected. Nucleus size, shape, and surface area will be screened as approximations to the

reaction coordinate. To our knowledge, the liquid to solid phase transformation has only

been definitively elucidated for a model system38' 39 and for water in an a postieri manner .

Thus, the crystallization mechanism in benzene represents a nucleation process of

unprecedented molecular complexity. This study also demonstrates that aimless shooting and

likelihood maximization are effective methods to elucidate nucleation mechanisms in

complex systems.
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CHAPTER 6: SUMMARY AND FUTURE WORK

6.1 Summary

The primary objective of this thesis is to elucidate nucleation mechanisms in molecular

systems. Newly developed molecular simulation techniques are applied that allow one to

systematically identify mechanisms in an unbiased manner. This approach represents a

significant methodological improvement over using biased methods in which a mechanism is

assumed a priori' and using trial and error methods to obtain the reaction coordinate 2-5 . Two

specific problems were investigated: a solid state polymorph transformation in a hydrogen

bonded molecular crystal, terephthalic acid, and the nucleation of liquid benzene to the Form

I crystal.

Chapters 2-4 describe the mechanism of the solid state polymorph transformation in

terephthalic acid. This particular application is motivated by the occurrence of solid state

polymorph transformations in the pharmaceutical industry6, and therefore guided the selection

of the model compound. Terephthalic acid, which is bonded via a common supramolecular

synthon found in small molecule therapeutics 7, is shown to undergo a nucleation event

initiated at the corner of the crystal. For smaller system sizes, the global average lattice

parameters can be used to approximate the reaction coordinate8 . It is shown that the global

lattice parameters serve as the reaction coordinate because for very small crystals, the

fluctuations on the surface that drive the transformation give rise to large fluctuations in the

global lattice parameters.

As the system size is increased, the mechanism becomes more localized, as shown for the

8x8x8 and 10x10x10 systems in Chapter 4. In all cases, the barrier to nucleation scales with

the length of the supramolecular synthons, but the barrier to growth is negligible. This

suggests an explanation for the experimental observations: first for the significant reluctance

to undergo the transformation unless mechanically perturbed or massively subcooled, and

second for the extremely fast growth kinetics once the transformation begins9 10. The nucleus

of the more stable Form II polymorph is also identified. A cluster analysis shows that the

average size of the Form II nucleus at the transition state is approximately 80 molecules, and

a distinct interface exists between the two polymorphs. This comer nucleation event yields

the smallest possible interfacial area between the two polymorphs at a given nucleus size.



This observation provides evidence that solid state polymorph transformations will occur

where the free energy penalty associated with creating a surface is minimized. In light of

classical nucleation theory, undergoing the mechanism that minimizes the free energy penalty

associated with the creation of a surface justifies a corner nucleation event. To our

knowledge, this study represents the first successful mechanistic investigation of solid state

polymorph transformations in molecular crystals, leading to an enhanced understanding of

nucleation processes in complex systems at the molecular level. Further study is warranted to

examine other possible pathways of nucleation in solid state polymorph transformations,

which can eventually provide a comprehensive picture of nucleation in the solid state.

Chapter 5 examines the homogeneous nucleation event in a subcooled melt of benzene to the

Form I crystal. Aimless shooting is applied in the NVT ensemble to the liquid-solid

transition at approximately 50 K subcooling at a density corresponding to 0.1 GPa.

Preliminary results indicate that the critical nucleus size is approximately 200 to 300

molecules at these physical conditions. Likelihood maximization will be applied after several

hundred aimless shooting trajectories are collected. Nucleus size, shape, and surface area will

be screened as approximations to the reaction coordinate. To our knowledge, the liquid to

solid phase transformation has only been definitively elucidated for a model system 11' 12 and

for water in an a postieri manner13 . Thus, the crystallization mechanism in benzene

represents a nucleation process of unprecedented molecular complexity.

From a methodological standpoint, this thesis represents the first two applications of aimless

shooting and likelihood maximization as effective, complementary methods to identify the

reaction coordinate of rare events in complex systems. Knowledge of a good reaction

coordinate can highlight the factors that influence experimental reaction rates. These

methods should also be implemented prior to either free energy or rate constant calculations,

as spurious reaction coordinates will yield misleading results for quantities of interest' 4' 15

6.2 Future Work

As discussed in Chapter 1 and demonstrated in Chapters 2-5, computational approaches

provide valuable mechanistic insight into the nucleation process that experiments cannot

probe. Future computational work should be considered in two parts:

1) applications of the current methodology to different systems, and



2) methodological advances that are needed to expand the ability of simulations to probe

questions regarding nucleation.

Four applications are proposed that merit future study and two methodological needs for

computational nucleation studies are discussed.

6.2.1 Applications of Aimless Shooting and Likelihood Maximization to Nucleation
Processes

1. Solid state polymorph transformation in terephthalic acid: A natural extension of

Chapters 2 and 4 involve further study of terephthalic acid. One advantage of using this

system is that an effective potential has been developed, as described in Chapter 2. This

study could be two-fold: first, one can investigate the size of the critical nucleus in

systems much larger than those examined here. As mentioned in the conclusions of

Chapter 4, one should scale up by a factor of at least 5-10x or more to determine if the

mechanism remains the same and if so, if the corner nucleus size is stable at

approximately 80 to 100 molecules. As described in Chapter 4, it is anticipated that this

will be the case. The second portion of the study could examine the polymorph

transformation in full periodic boundary conditions [PBCs]. The mechanism in PBCs

would presumably be different than with free surfaces. Targeted molecular dynamics

could be applied to obtain a putative transition state for aimless shooting simulations.

Free energy calculations should be performed to directly compare the two mechanisms. It

is hypothesized that the free energy barrier would be much higher in a perfect bulk crystal,

and therefore this approach would provide a definitive comparison to the results obtained

with the systems in vacuum.

Further extension, both in free boundaries and in the bulk crystal, would involve the

introduction of defects and their influence on the mechanism and free energy barrier.

Although there are many types of defects possible in molecular crystals, this problem

would be of significant further interest to industry.

2. Solid state polymorph transformation in other systems: Another set of project involve the

application of similar methods to other systems of interest. One possible molecule to

investigate is DL-norleucine. Two studies have been published by Anwar et al.

concerning DL-norleucine that argue that solid state polymorph transformations are

martensitic, although the authors concede that there is still some debate surrounding this
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issue16, 17. To support their hypothesis, Anwar et al. developed a potential for crystalline

DL-norleucine 16 and presented MD simulations that show entire crystal layers displaced

simultaneously in PBCs' 7. The authors argue that their study represents interface

advancement in solid state polymorph transformations. However, "interface

advancement" seems to be crystal growth in this case. The two studies by Anwar et al.

compared to the work presented in this thesis highlight the need for further study of both

nucleation and growth processes for these types of transformations, and the need for a

clear delineation between nucleation and growth. Specifically, one portion of a future

project would involve investigating the nucleation event in DL-norleucine with free

boundaries or defects, while the second project would involve studying the growth

process of terephthalic acid in the hope of reconciling the views presented in the two

different approaches.

Another type of study could examine solid state polymorph transformations with different

packing motifs and transformations in which hydrogen bonds are broken and reformed.

The hydrogen bonded supramolecular chains in terephthalic acid are shown to remain

intact during the polymorph transformation. However, many crystals undergo

transformations in which the intermolecular connectivity is perturbed more significantly

based on the crystal structures. The ac-13 polymorph transformation in resorcinol, for

instance, requires that intermolecular hydrogen bonds be broken 18. It is expected that the

mechanism will involve both significant intermolecular and intramolecular

rearrangement. Other examples of molecules that exhibit this behavior and have received

significant attention in the literature are oxalic acid19 and ROY 20 . Herbstein outlines a

large set of molecular systems that exhibit polymorph transformations in the solid state,

and provides an excellent summary of current experimental knowledge for each system 21

3. Secondary and heterogeneous nucleation: It is common practice in the pharmaceutical

industry to use seeding techniques to induce secondary nucleation 22. Also, crystallization

induced by impurities or surfaces in vessels is a common pathway for nucleation to occur.

Frenkel et al. have reported two studies on heterogeneous nucleation in hard sphere

colloids23 , 24, but substantial questions still remain, especially in systems that exhibit

polymorphism. The recent work of Yu et al. demonstrates that cross nucleation can

readily occur in molecular systems 25-27. Determining the mechanism of cross nucleation
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or heterogeneous nucleation in a molecular system would yield insight on how to control

nucleation of specific polymorphs.

4. Pressure driven nucleation in molecular solids: Crystals in the pharmaceutical industry

are subjected to significant mechanical and thermal stress during processing22, 28. As

shown for single crystals at metastable conditions, mechanical perturbations can induce

transformation 9, 10, 29-32. Molecular simulation packages allow the application of pressure

in an anisotropic manner when PBCs are applied. This allows for the study of pressure

driven transformations in the bulk. However, recent advances by Dellago and coworkers

have enabled researchers to investigate the effect of pressure on systems with free

surfaces33, 34. The method is based on the use of an ideal gas pressure bath as a thermostat

and the pressure medium. The pressure of the ideal gas particles can be adjusted by

adjusting the number of particles. Implementation of this method into molecular

simulation packages will allow for the study of pressure induced transformations in

molecular crystals at surfaces and defects.

6.2.2 Methodological Improvements for Nucleation Studies

1. Potential development for crystallization simulations: The force field used to describe

energetic interactions is a key limitation in many crystal simulations 8' 16, 35. Tuble et al.

presented a method for developing force fields for crystal simulations 16. Their method

involves screening sets of partial charges derived from quantum calculations with a

dielectric continuum. For the Lennard-Jones intermolecular interactions, parameters are

screened from conventional force field libraries. This approach was slightly amended for

terephthalic acid in Chapter 2 and provided a viable force field. However, many organic

crystals have highly flexible intramolecular degrees of freedom, and would therefore

require another level of parameter screening. For instance, the a and 3 polymorphs of

malonic acid have significant torsion angle differences in the carboxylic acid groups.36' 7

Development of a general technique to screen force fields for crystal simulations would

be an incredibly valuable tool for researchers interested in solving problems related to

nucleation and crystallization. It is recommended that several case studies be included in

a study to highlight different problems that may arise in the potential development, such

as substantially dissimilar intramolecular conformations, different supramolecular

interconnectivity for the same molecule, etc.
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2. Implementation and development of methods to study diffusive crystal nucleation

problems: The nucleation of a solute from a supersaturated solution is an important

pathway by which products are separated from solvent in industry28. Experimental

approaches to study nucleation from solution suffer from similar disadvantages as melt

nucleation. However, a significant challenge to computational approaches also exists:

specifically, the diffusive nature of the transition incurs significant computational

expense, as shown in Chapter 5. For a transition path sampling [TPS] approach, this

makes the commitment time overly long and severely limits the number of trajectories

that can be collected.

Several methods have been developed to examine these types of transitions, with varying

success. The transition interface sampling [TIS] approach of van Erp et al. is based on

calculating fluxes through pre-defined interfaces along a transition to extract rate

constants38. TIS is based on similar principles as TPS and can therefore easily be

implemented in pre-packaged molecular simulation codes. However, unlike TPS (and

aimless shooting), TIS assumes some pre-defined reaction coordinate. It is speculated

that the choice of the reaction coordinate does not lead to large error38, but this has yet to

be verified. In addition, there is no systematic method to extract the reaction coordinate

from TIS results. Assuming that van Erp and Bolhuis are correct in stating that the choice

of reaction coordinate is not important in the interface definition38, merging of likelihood

maximizationl4, 15 and TIS could yield a methodology to simultaneously calculate rate

constants and elucidate mechanisms in diffusive systems.

The minimum free energy path [MFEP] method, developed by Vanden-Eijnden et al. is

an elegant method to determine the free energy in a complex process along a path of

maximum likelihood3 9' 4. The MFEP method differs from likelihood maximization in

that it uses all possible collective variables as the reaction coordinate rather than using the

transition state ensemble to extract the most important variables to approximate the

reaction coordinate. However, one advantage of the MFEP method over aimless shooting

for certain cases is that the implementation might be more computationally efficient.

Also, the transition state configurations at the top of the free energy barrier can be

characterized a postieri.
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