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Abstract
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separates the surface of the track from objects placed on top of it.

Thesis Supervisor:

Title:

Professor Andreas von Flotow

Assistant Professor of Aeronautics and Astronautics



Table of Contents

Subject Page #

Title Page .............................................................. 1.

Acknowledgements .............................................................. 2.

A bstract ............................................................... 3.

Table of contents ............................................................... 4.

List of Figures ........................................ 6.

I- Introduction ............................................................... 7.

II- Basic Principles ...................................... 10.

III- Design and Construction

Design Goals ....................................... 14.

Configuration Selection ...................................... 14.

Theoretical Considerations .................................... 18.

Equations of Motion ...................................... 19.

Straight Beam ...................................... 19.

Curved Beam ...................................... 22.

Scattering Analysis ...................................... 28.

Cross sectional Banking of Track ......................... 35.

Piezo Ceramic Layout .................................. 42.

Corrections due to Piezo Layer .......................... 45.

Design Iteration Procedure ...................................... 47.

Final Track Dimensions and Specifications ......................... 50.

Electric Circuit Design ...................................... 52.

Construction and Assembly ...................................... 53.

IV- Results and Analysis of Data ...................................... 57.

Experimental Procedure ...................................... 57.

Velocity Measurements .................................. 58.

Force Measurements ...................................... 59.

Electrical Measurements .................................... 60.

Surface Measurements ...................................... 60.

Results and Discussion

Resonant Behavior of motor .................................. 61.

Force Capabilities of Motor .................................. 64.

Power and Efficiency ..................................... 75.

Electrical Power .................................. 75.



Mechanical Power ................................ 79.

Thermal Dissipation ............................... 82.

Acoustic Dissipation ............................... 85.

Overall Efficiency ............................... 86.

Torsional coupling present in motor ......................... 87.

Other Observed Phenomena ................................ . 90.

Dynamics of Short Sliders ......................... 90.

Aerodynamic Effects .................................. 93.

V- Conclusions and Suggestions for Further Research .................. 96.

VI- Appendices

1- a- Electric Circuit Design ...................................... 98.

b- Circuit Diagram for Quadrature Generator .................. 100.

c- Circuit Diagram for Filtering Scheme ......................... 101.

d- Capacitance and Power Consumption Estimates for Track ........ 102.

2- Derivation of PDE's for Circular Beam ......................... 104.

3- a- Construction Diagram for track. ........................... 107.

b- Construction Diagram for flat slider. ......................... 108.

c- Construction Diagram for slotted slider. .................. 109.

4- Specification Sheet for G1195 Piezo Electric Ceramics. ......... 110.

5- Static Analysis of Beam with Piezo Actuators ................ 111.

6- Acoustic Power estimation Procedure ......................... 114.

7- Force Balance on Slider Resting on Track ......................... 116.

VII- References ................................................................. 117.

VIII- Annotated Bibliography ............................................ 119.



List of Figures

Figure 1- Essential Components of Travelling Wave Motor.
Figure 2- Trajectory of Points on the surface and along bending axis of beam.
Figure 3- Geometrical description of beam undergoing bending due to travelling wave
Figure 4- Conceptual Motor Sketch- Treadmill Configuration.
Figure 5- In plane Racetrack Motor Configuration.
Figure 6- Flat Racetrack Motor Configuration.
Figure 7- Axis and Variable Designation for Straight Beam Equations.
Figure 8- Axis and Variable Designation for Curved Beam Equations.
Figure 9- Non-Dimensional Dispersion Curves for Circular Beams.
Figure 10- Convention for Wavetrain Designation at Common Junction.
Figure 11- Wavefront Bending- Banking Analysis.
Figure 12- Beam Cross Sections and their Relative Center of Mass
Figure 13- Standing Wave Layout Configuration for Piezo Ceramics.
Figure 14- Rippling Effect Piezo Ceramic Layout Configuration.
Figure 15- Design Iteration Steps Block Diagram.
Figure 16- Dispersion Curves for Final Track Design
Figure 17- Electric Circuit - Functional Block Diagram
Figure 18- Slider Configurations.
Figure 19- Piezo Ceramic Wiring Schematic
Figure 20- Overall Schematic of Experimental Set-up
Figure 21- Strain Gauge placement along straight segment of track.
Figure 22- Frequency Response Plot of Motor.
Figure 23- Measured Velocity of Sliders versus the Normal Force On the Track.
Figure 24- Max. Side Force Exerted by Track versus Surface area of Sliders
Figure 25- Max. Side Force on Sliders versus Normal Force on Track.
Figure 26- Max. Side Force on Sliders versus Normal Force on Track.
Figure 27- Max. Side Force Exerted by Motor Versus Pressure Exerted by Slider
Figure 28- Conceptual Extension of the Operating Envelope of the Motor.
Figure 29- Force Coefficient of Motor versus Normal Force on Track.
Figure 30- Maximum Angle of Track Inclination versus Normal Force on Track.
Figure 31- Voltage and Current Levels of Driving Amplifier Signal
Figure 32- Current and Power Levels for Driving Amplifier Signal
Figure 33- Voltage and Current Levels of Driving Amplifier Signal (hanging track)
Figure 34- Current and Power Levels for Driving Amplifier Signal (hanging track)
Figure 35- Side Force Exerted by Motor as a Function of Slider Velocity.
Figure 36- Suggested Frictional Model based on Results
Figure 37- Side Force And Power Curves as Functions of Slider Velocity.
Figure 38- Measured Surface Temperature of the Track as a Function of Time
Figure 39- Surface Velocities of Track over a Wavelength.
Figure 40- Air Circulation About Track due to its Vibrational Motion.
Figure 41- Comparison of Frequency Responses between Vacuum and 1 Regular

Laboratory Conditions
Figure 42- Pinned-Pinned Beam with Piezoceramic Actuators



I-Introduction

The propagation of waves in elastic bodies is an area of structural dynamics that has

been extensively researched by Love [1], Graff [2] and many others since as far back as

the last century. Recently, some research has focused on the idea of harnessing the energy

transported by a travelling wave and using it to move objects in a controlled fashion.

Devices capable of doing this are commonly referred to as travelling wave motors, or also

as ultrasonic motors because of the frequency range in which they operate.

The basic principles behind the operation of travelling motors ( see Chapter II )

have been understood for several decades. Consider the propagation of a transverse wave

in a beam. As a crest passes, the upper surface of the beam is locally lifted and pushed

forward, then lowered and pulled backwards to its initial position, as the wave leaves. A

body set at a point of passage of the wave will be lifted and, by friction, will follow the

backward motion of the surface of the beam. Motion is therefore created. Unlike

conventional motors, a travelling wave motor does not use magnets, coils or brushes to

produce movement and do work. Instead, it relies on friction.

The absence of magnets makes travelling wave motors comparatively light.

Furthermore, travelling wave motors do not have gears and other moving parts. This

suppresses phenomena such as stiction and backlash between gears. The overall simplicity

of travelling wave motors suggests the possibility of scaling down these engines to

miniscule proportions. This possibility, in fact, is being explored by the Artificial

Intelligence Laboratory at MIT. Their goal is to etch a motor onto a silicon wafer thereby

providing locomotion to the mini-robots also being developed at that laboratory. [3]
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On the other side of the spectrum, the Technische Hochschule at Darmstadt in the

Federal German Republic, is attempting to scale up these engines for their possible use in

industrial applications. A rotary travelling wave motor, with a rotor measuring more than a

meter in diameter has been built in prototype. [personal communication with Dr. Wallachek

from the Technische Hochschule]

The largest body of work on travelling wave motors probably comes from The

Central Research Laboratory of Matsushita General Industrial Co. in Osaka, Japan. The

work of Kawasaki, Ise, Inaba, Takeda, Yoneno and others has led to the development of

several prototypes of ultrasonic motors. Most of them, such as the prototype produced by

National Panasonic [4], are rotary in type. These motors usually consist of a vibrating

metallic disk or ring, referred to as the stator, and a second disk, or rotor, which rests on

the stator and rotates once the motor is in operation. These prototypes have performed

successfully and have spurred further investigation in the area. Some variations on these

prototypes have actually found commercial applications in auto focus cameras [5] and

experimental high resolution X-Y Plotters [4]. ,/

Fewer attempts have been made to develop a linear ultrasonic motor. In contrast to

rotary motors, linear motors must replace circular stators for straight beams which serve as

waveguides for the travelling waves, and the rotors become small sliders which rest on

only part of the waveguide at any given moment in time. The stumbling block with linear

motor designs is the finite dimensions of the waveguide. The physical terminations of a

waveguide requires that energy be added at one end of it and removed at the other in order

to avoid internal reflections of the travelling waves and possible destriitive interference

patterns.

A linear travelling wave motor was built by Kuribayashi, Ueha and Mori [6] using

a straight beam and a pair of linear transducers. The overall efficiency (mechanical output to



electrical input) obtained was less than 1%. The author does not know of any other attempt

at building a linear travelling wave motor.

Linear ultrasonic motors are potentially useful in a wide range of applications. The

absence of moving parts renders the motor suitable for space applications such as serving

as a transport mechanism between sections of a large space station. Smaller versions of the

motor can be used as linear actuators for robots and tele-operators as well as optical

alignment systems or even toys. Large scale versions of the motor, if proven economical,

could replace forklifts for moving heavy containers in warehouses, and replace conveyor

belts as people movers in large airports and malls.

This thesis proposes to design and construct a linear travelling wave motor

consisting of two straight waveguides joined by two semicircular waveguides, and to

quantify the behavior and performance of the motor. This configuration represents a

compromise between traditional rotary travelling wave motors and a purely linear motor as

described above. By retaining mechanical closure, the racetrack configuration proposed in

this thesis takes advantage of resonant effects and avoids dealing with waveguide

termination problems. This configuration however, allows us to explore the behavior of

straight lengths of track and of localized sliders resting on only part of the travelling waves.

The remainder of this thesis is structured in the following way. The basic principles

behind the operation of a travelling wave motor are presented in Chapter 2. The theoretical

considerations behind the implementation of the motor and a description of the construction

and assembly processes can be found in Chapter 3. Chapter 4 elaborates on the testing

procedures used to assess the motor's performance, presents the results obtained and goes

into further analysis of phenomena not predicted at the onset of this project. Chapter 5

states the conclusions derived from the experiments and points out areas of research which

require further investigation.



II- Basic Principles

An ultrasonic travelling wave motor is a frictional motor driven by ultrasonic

vibrations. It consists of essentially two parts, an elastic body, which serves as a medium

for the travelling waves, and a moving body, which rests on the elastic body and gets

displaced in the direction opposite to that in which the waves travel (Figure 1) . The force

responsible for acting on the moving body originates from the physical interaction between

the elastic and the moving bodies. The magnitude of such a force is limited by the friction

between the bodies. If there is no friction, the travelling wave motor does not operate, i.e.-

the energy in the travelling waves does not get transferred to the moving body.

velocity

Firgure 1- Essential Components of Travelling Wave Motor

The process by which the oscillatory motion of the elastic body is transformed into

motion in the moving body is illustrated in Figure 2. A point located along the bending axis

of the beam will experience simple harmonic motion along a path that approximately

describes a straight line normal to the axis of the beam. A point, however, located on the

surface of a beam will experience an added axial component to its motion. If the shear

deformation is negligibly small, the axial motion will be proportional to the lateral

deflection and inversely proportional to wavelength. This side to side_motiona, combined

with the displacement in the vertical direction, results in an elliptical trajectory for the

surface particle. The apogee of the elliptical trajectory for a given point on the beam

corresponds to the time when the crest of the lateral deflection travelling wave coincides
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with that point. At any given instant, a moving body of length greater than the wavelength

of the travelling wave is in contact only with those points of the elastic body which are at

their apogees. The velocity imparted to the moving body by these contact points is opposite

in direction to the velocity of the travelling wave.

Resulting Motion
of Point on Surface

Direction of
Travelling Wave

neutral
axis

/ Resulting Motion of
Elastic Point on Bending Axis
body

Figure 2- Trajectory of points on the surface and along bending axis of beam

As the motor is turned on, an object placed on top of the surface of the elastic body

is subjected to a frictional force which accelerates the body to its final velocity. This final

velocity is attained once the speed of the moving body matches the speed of those points on

the elastic body which are at the apogee of their elliptical motion. Once these speeds are

matched, the elastic body no longer exerts a force on the moving body except that needed to

maintain its constant speed. The exact nature of this transient is not well understood. It is

safe to assume, however, that the surface properties of the two bodies in contact will affect

the performance of this type of motor. More elaborate models of this frictional force and

surface interaction are beyond the scope of this thesis.



By assuming that in steady state operation the velocity of the moving body matches

that of those points on the elastic body which are at the apogee of their trajectories, a

mathematical expression for the velocity of the moving body as a function of the frequency

and amplitude of the travelling waves can be derived using geometrical considerations.

Figure 3 shows a beam of thickness T undergoing a deflection yo. The distance ý

corresponds to the side motion of a point Po which gets displaced to P as a function of 0 as

the wave travels through the beam.

Figure 3- Geometrical description of beam undergoing bending due to Travelling Wave

The equation describing the vertical position, y of a point on the surface of the

elastic body is given by :

where:

y = y.sin(kx - cot) + -ý-cos(e)

k = wave number of the travelling wave

T = thickness of the beam or elastic body

wo = frequency of excitation

(1)

12



Similarly the axial motion, C, can be described by:

T sin 0
2 (2)

Now for 0 << 1 (1) can be written as (3) which then differentiated by x gives us (4).

y = Yosin(kx - oot) (3)

dy
0 dx yokcos(kx - (ot) (4)

As shown by Cremer, Heckel and Ungar [7], shear deformation is negligible if the

wavelength of a travelling wave is at least six times greater than the thickness of the beam.

This implies that for such wavelengths, Bernouilli-Euler theory applies and

dy
dx

Thus the axial deflection of a surface particle becomes :

=T Yokcos(kx -cot) (5)2 % (5)

The time derivative of (5) gives us an expression (6) which is equal to the lateral

velocity of a point on the top surface of the elastic body. This equation sets an upper limit

for the speed of the moving body as given by equation (7).

= velocity = o cos(kx- o t) (6)(6)

velocity (max) - X (7)

13



III- Design and Construction

Design Goals

The primary goal of this project was to build an ultrasonic travelling wave motor

capable of displacing an object along a straight line. The secondary goal was to maintain the

motor's design as simple and practical as possible. This was essential if entertaining the

possibility of finding commercial applications for the motor and for purposes of making a

laboratory prototype work. The only constraints placed upon the design were the

following:

* The motor had to be small and simple enough as to allow

its construction with the machine tools available, and in a

time frame of approximately 3 months.

* The motor had to operate in a stable fashion, without the

assistance of any feedback control system.

Overall Configuration Selection

While designing the motor, three different overall configurations were evaluated,

each one of them capable of producing linear motion. These configurations can be

described best as: treadmill-like motors, straight beam motors, and racetrack-like motors.

Treadmill-like Motors : This motor configuration achieves linear motion by

making use of existing rotary travelling wave motors and arranging them in a fashion

similar to the one depicted in Figure 4. From the figure, however, it is apparent that this

14



arrangement is a very inefficient way of producing rectilinear motion. Because of its

inherent inefficiency, this configuration was not pursued any further

Direction of
Rotation

top
'V

Direction of
Travel Moving Body

Circular Travelling
Wave Motors

side
view

Figure 4- Treadmill Configuration. Linear motion of a body is achieved by making it

interact with parts of rotary traveling wave motors.

Racetrack-like Motors: This configuration addresses the main problem of

generating travelling waves in a straight beam of finite length : the energy propagated by a

travelling wave must be generated at one end and dissipated at the other. This configuration

solves this problem, by avoiding it. By wrapping the track around itself the energy in the

travelling wave does not have to be dissipated or created, it simply has to be re-directed

around the circular portions of the track so that it can be harnessed again in the opposite

straight segment of the racetrack.

This configuration avoids the problem of creating or dissipating the energy at the

ends of the straight segments, by introducing the problem of creating a discontinuity in the

15



wave impedance of the track. This discontinuity appears at the transition from a straight to a

circular section of the track, and vice versa.

Several alternatives exist to designing a motor with a racetrack configuration.

Figure 5 illustrates a motor in which the travelling waves move along the outer surface of

what resembles the tread of an army tank. In fact, while in operation, the motor displaces

itself in a fashion similar to that of an army tank. The curve section introduces coupling

between bending and extensional wave types.

Duirction of
Travelling Wave

DisplacementDirection •. _________

m' {{t
wI it' II I

Ground

Figure 5- In plane racetrack configuration for travelling wave motor.

Another possible configuration is that of a flat racetrack similar to the one depicted

in Figure 6. The travelling waves move along the track and allow objects placed on its

surface to be displaced around the length of the track. The curved section introduces

coupling between bending and torsional wave types, which might be reduced or removed

by design of an asymmetric cross section.

16



Velocity of
Moving Body Racetrack

Traveling Wave

Base ofTravelling Wave
Plate

Figure 6- Flat track configuration. Piezo ceramics in the bottom of the track induce

transverse travelling waves. Moving body travels in opposite direction of travelling wave.

Straight Beam Motors : This motor configuration fully addresses the problem of

creating a travelling wave pattern in a straight beam of finite length: If the energy of a

travelling wave is not totally dissipated at the end of a beam, part of it is reflected back

thereby interfering with those waves that are still travelling towards the end of the beam.

This will complicate the dynamics of such a motor and may affect the performance as a

motor.

To solve this problem, one must attach to the ends of the beam systems that will

behave as semi-infinite beams, thus artificially changing the dynamics of the finite length

beam into that of an infinite medium. Kuribayashi, et al [6], implement this solution by

connecting piezoceramic transducers at the ends of the beams using a specific geometric

configuration and actuating the transducers so as to cancel reflections at one termination

while launching waves at the other end. This is inelegant and very inefficient since most of

the power injected into wave propagation is dissipated by wave absorption and does no

useful mechanical work.

17



The configuration selected was that of a flat racetrack, since it does not require any

sophisticated control system to implement it, as is the case with the straight beam

configuration, nor is its construction too elaborate as is the case of the tank-tread track

configuration. The flat racetrack consists of two straight beams interconnected by two

semicircular beams. ( See Figure 6 ) The track is made out of a single piece of aluminum

and its total length, when measured along its centerline, is equal to an integer number of

wavelengths in order to increase motor performance by taking advantage of resonant

effects. The bottom side of the racetrack is covered with a thin layer of piezo electric

ceramics. The piezo ceramics are driven electrically so as to generate and sustain transverse

travelling waves along the length of the track. Small objects, referred to in this paper as

"sliders", rest on the top surface of the track and get pushed around it by virtue of the

frictional effects described in section II.

Theoretical Considerations

The dynamic characteristics of the motor are entirely defined by the material

properties of the racetrack, its cross sectional dimensions, and the radius of curvature of its

circular segments. Therefore, the task of designing a motor that meets certain specifications

is limited to selecting the appropriate values for these dimensions. This selection, however,

requires a deeper understanding of the equations of motion governing the transmission of

waves along the racetrack.

The race track is modelled by straight and curved beams connected together. The

equations of motion for both straight and curved beams will be analyzed, as well as the

behavior of the waves at the junctions of these sections. The results of this analysis will

provide some insight about the size requirements for the track, its operational frequency

and the track's effectiveness in transmitting transverse waves around its length.

18



Equations of Motion

Straight beams: The straight portions of the motor were modelled as a one

dimensional Bernouilli-Euler beam. Analysis of the equations of motion lead to dispersion

relations which provide a functional relationship between the track's cross sectional

properties and the frequency and wavelength of the travelling waves that can be transmitted

by the track.

Figure 7 depicts a straight beam aligned along the x axis. Transverse deflections

along the z axis are denoted by w, while 3, denotes the twist angle of a cross section of the

beam about its twisting axis. Both w and 3 are functions of x.

z

|r
. -Y- L

L L  x

Figure 7- Axis and Variable designation for straight beam equations.

The governing differential equations for this beam are the following:

ElIw""+ pAw = 0 (8)
GJ1"- pJ = 0 (9)

where: E = Modulus of elasticity of the beam

I = Bending moment of inertia about the y axis.

G = Torsional stiffness of the beam

p = Density of the beam

'= shorthand notation for dO/dx i.e.- spatial derivative

19



= shorthand notation for d()/dt i.e.- derivative with respect to time.

These constants usually appear in certain groupings which have a physical

interpretation. The El group defines the bending stiffness of the beam while the GJ group

represents its torsional stiffness. The mass per unit length of the beam is represented by

pA while pJ represents the torsional inertia of the beam.

Equation (8) describes the transverse motion of the straight portions of the track

while equation (9) describes their torsional behavior. Its apparent from these equations that

the transverse and torsional modes of vibration are decoupled along the straight segments

of the motor.

Now by assuming a solution for the bending equation of the form:

W (xt)= woe+cot where y= c+ iK

the following dispersion relations are obtained :

pA ° 2  pA )2

= 4 El and Y=+4 El

These dispersion relations show the existence of four wave patterns occurring

simultaneously in the structure. These waves come in pairs which travel in opposing

directions along the beam. One pair, determined by the real value of y, is usually referred to

as the evanescent pair since the waves decay exponentially in space. Their influence is only

felt close to the point were the originating spatial disturbance occurs. The pair determined

by the imaginary value of y, is the travelling set of waves. Given that k is the wave number

of the travelling pair of waves, and that :

2k=2k and
h and

20



co = 2tf

where: = wavelength of the travelling waves

f = frequency of travelling waves in Hz

the following relations can be arrived at:

f pA (10)

f 27c /El
X2 pA

2 J(11)

Given the material properties of the beam (ie.- E, p ) as well as its dimensions (ie.-

I, A ), f becomes a simple function of X. Equations (10,11) remain valid as long as the

basic Bernouilli-Euler beam assumption applies, that is, the wavelength of the waves

carried by the beam has to be much greater than the beam's thickness. If the wavelength

becomes too short, shearing in the beam becomes a major factor and the Bernouilli Euler

model ceases to be valid. As shown by Cremer, Heckel and Ungar [7], the wavelength of

the travelling waves should be at least six times greater than the thickness of the track for

the hypothesis to hold. This lower limit on the wavelength, translates into an upper limit for

the frequency at which the beam can be driven.

Equation (11) shows that the operating frequency of the motor can be increased by

using a stiffer material, while maintaining the wavelength and cross sectional dimensions

constant. By substituting into equation (11) the expressions for the bending moment of

inertia, I, and the cross sectional surface area, A, it becomes apparent that :

S(12)
f 2 12p (12)

21



h = thickness of the beam (ie. track)

Equation (12) shows that the operating frequency of the motor is proportional only to the

thickness of the track and that it is independent of its width.

Curved Beams : The curved sections of the track were modelled as curved beams

with a rectangular cross section. Their dynamic behavior is described by a coupled pair of

differential equations which relate the transverse displacement of the beam to its rotation

about its twisting axis. As the radius of curvature of the beam approaches infinity, the

equations of motion describing its behavior decouple and simplify to the rectilinear model

of equations (8) and (9).

Figure 8 depicts a beam with a constant radius R, a transverse displacement v, and

a twisting angle of 0. The system of coordinates u,v,w is aligned such that u points at the

center of curvature of the beam while w remains tangent to the path length s. v remains

perpendicular to the path length s. Love [1] derived the equations of motion for a circular

rod of arbitrary curvature. These equations can be adapted specifically to the circular

portions of the racetrack. This derivation is given in Appendix 2.

22
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1 0 / R

//

center of
curvature

Figure 8- Axis and Variable designation for the derivation of the Equations of Motion for a

Curved Beam.

The equations of motion for the curved beam are the following:

where:

EIv''+ pA -1 (EI + GJ)P3 + -1GJv"
R

1 EIP
GJd"- pJ = (El + GJ)v"+ 2

R

v = transverse displacement of a particle

P = the angle of twist about the twisting axis

' = shorthand notation for spatial derivative do/ds

R = radius of the beam

(13)

(14)

23
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These equations state that, if the radius of curvature of a beam is finite, the out of

plane motion of a transverse wave will produce torsional waves. As the radius of curvature

becomes smaller, the magnitude of the coupling terms becomes larger. This implies that a

smaller radius of curvature hinders the performance of the racetrack because a greater

amount of energy is taken away from the transverse travelling waves in order to generate

the torsional waves.

Quantifying this effect is important for design purposes. A tradeoff between the

radius of the circular sections of the track and the amount of coupling between transverse

and torsional modes has to be evaluated. The dispersion curves for waves travelling in a

circular section of the beam offer valuable insight to this behavior. These can be obtained

by translating equations (13) and (14) into state-space form and forming a transition matrix.

The eigenvalues of this matrix reveal which wavetrains are evanescent (ie- real eigenvalues)

and which ones are travelling waveforms (ie.- purely imaginary eigenvalues ). The

dispersion curves, in this particular instance, were found to be most useful in their non-

dimensional form. Hence, we proceed to non-dimensionalize equations (13) and (14),

translate them into state-space form, and obtain the eigenvalues of the transition matrix.

The variable changes and groupings used were the following:

I = GJ + El and D = EIGJ

where I and (D are defined purely for convenience to simplify the written expressions.

Then there is:

coh 2 E
nd C where: P

where ond corresponds to a non-dimensional frequency expression. In this case, Co has

been non-dimensionalized by c, the velocity of longitudinal waves in the beam, and by h,
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the thickness of the beam. The bending moment of inertia and hence the wavespeed is most

sensitive to changes in h.

The last grouping used:

h
-- R

was defined as the ratio between the thickness of the beam, h, and the radius, R. The

theoretical performance of a given track design can now be evaluated as a function of the

non-dimensional curvature E. In the limit, a small value of E corresponds to a track that

behaves like a straight beam, with little or no coupling between the transverse and torsional

modes. A big value of E will result in a large amount of coupling between the torsional and

transverse modes of vibration.

Non-dimensionalization of equations (13) and (14) lead to equations (15) and (16)

respectively:

(h 3v'"') = (G)2- 2}(hv") + pA El + El- P C2

(15)

( 2  WOi 2 pJco 2_C2
(h2 , H E nd 1(hv, )

' GJ GJ ( +(h) +GJ (16)

These equations correspond to the non-dimensional equations of motion for the curved

sections of the motor. Rewriting them in state-space form, we obtain a matrix equation of

the form:

dhh- X = AX
ds
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where X is the state vector and A is the transition matrix. These matrices are the

following:

V

h
V'

hv"

2 Vfi

h I'

(GJ) 22)

0

GJ

0

0
0

,3 El - Wd 2

0

EIl 2  pjd) 2ndC 2

0
GJ GJ

Given this A matrix, it is now possible to determine its eigenvalues and plot their

imaginary component (ie- the wavenumber of the travelling waves) as a function of the

non-dimensional frequency. Figure 9 illustrates both the torsional (normal line) and the

transverse (dashed lines) travelling wave modes for different values of E (ie.- h/R).

As the radius of curvature of the track increases relative to its thickness, the cutoff

frequency of the transverse mode decreases. This cutoff frequency corresponds to the

frequency value below which, the circular beam cannot serve as a waveguide for transverse

waves. Furthermore, this cutoff frequency corresponds to a wavelength which is equal to

the radius of curvature of the track.
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Figure 9- Non-Dimensional Dispersion Curves for Circular Beams.
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From a design point of view, the operating frequency of the motor is bounded on

the lower side by the consideration that the wavelength of the travelling waves in the track

has to be smaller than the radius of curvature of the curved sections of the track. On the

other hand, the upper limit for the operating frequency of the motor is dictated by shearing

effects of the beam. Since the thickness of the track remains the same in both the curved

sections of the track as well as the straight ones, the upper limit of the operating frequency

of the motor was chosen to be the same as that for the straight sections: the frequency has

to be lower than the value that corresponds to a wavelength six times greater than the

thickness of the track.

Scattering Analysis

Dispersion curves provide an estimate on how a disturbance will travel through a

given section of the racetrack. The race track, however consists of four distinct sections:

two straight ones and two curved ones. The junction between a straight section and a

curved one can create problems because of impedance mismatch. This may cause unwanted

reflections.

If the impedance between two adjacent sections is perfectly matched, a wave

travelling along the first section will move onto the second section without noticing any

changes on the medium its traveling on. Two perfectly bonded straight beams of similar

cross sectional dimensions, would be an example of perfect impedance matching.

The dispersion relations for a straight beam and a curved beam are different, hence,

there is probably an impedance mismatch at their junction. As the radius of curvature of the

curved section gets smaller, this mismatch increases. Scattering analysis of the junction

provides a way to quantify the effect of this impedance mismatch.
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Figure 10 shows the notation convention used to designate wavetrains going into

and out of a junction. Notice that each section of the track has six different wavetrains

corresponding to it. Four of these wavetrains correspond to the transverse vibrational

modes and represent solutions to the fourth order beam equations of motion (equations 8

and 13). The other two, correspond to torsional modes of vibration and represent solutions

to the second order torsional equations of motion (equations 9 and 14).

a
es

unction

straight
beam

Sbtos

bes

curved
beam

Name Code for Wave Trains
(1 letter from each group)

a = into node

b = out of node

to = torsional wave
e = evanescent wave
t = travelling wave

s = straight section

c = curved section

Figure 10- Convention Used for Designating the Various Wavetrains Common to a

Junction

As a wavetrain enters a junction, part of it gets reflected, while part of it gets

transmitted through the junction. All wavetrains entering a junction are designated by a

letter a, while those wavetrains leaving a junction are designated by a b. A perfect
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transmission at a junction implies that a given wave mode entering a junction will leave it

with the same amount of energy it entered. If the transmission is not ideal, the energy of an

incoming wavemode will be distributed between the reflected wave modes and the

transmitted ones. If there is coupling between the various modes, a scattering effect will

occur at the junction by which a given wavemode will excite other wavemodes other than

its own. As a result, of this scattering, it is possible for example, that an incoming

transverse wave may result in both an outgoing transverse and torsional waves.

The following scattering analysis will result in a scattering matrix which relates the

outgoing wave modes at a junction as a function of the incoming wavemodes. This analysis

will use the the boundary conditions at the junction in their dimensional form.

At the junction between the straight beam and the curved beam, there are six

boundary conditions which must be satisfied. They are the following:

vc = s ----------- > equal displacements

S=V ----------- > equal slopes

s = ----------- > equal twist angles

Elsy "'= Ely"' ----------- > Shear balance

EIPc
Ely I"= ElIv C'"El R ----------- > Moment Balance

GJv '
GJds'= GJpc'+ -c

R ----------- > Torsional Balance

where the subscript "c" refers to a variable related to the curved beam, while a subscript "s"

refers to a variable related to the straight beam. (Note: w as defined in Figure 8, is equal to
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vs , and 3 as defined in Figure 9 is equal to Ps ). By defining state vectors Yc and Ys as

follows :

V

S

Vs

Elv •'

GJ ' i

Y Cc

vcVC

Elv c"

ElG C"

PC
GJp '

\ ' / \ ' /

the boundary conditions can be re-written in matrix form as follows :

I U U U U 0- U U U U U

0 1 0 0 0 0 0 -1 0 0 0 0

00 1000 0 0 -1 0 B 0
R

000 100 0 0 0 -1 0 0
0000 10 0 0 0 0 -1 0

- GJ
O O O O1 O OR

which can be also expressed as :

[BsB c] = 0

where Bs corresponds to the first 6 x 6 block and Bc corresponds to the second 6 x 6 block

matrix.

Now, using Yc and Ys as state vectors, Fourier Transformed equations (8),(9) and

(13),(14) can be re-written in state space form. These corresponding matrices are the

following:
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0 1 0
10 0 El

0 0

0 0

0 0 0 1 0 0

Ao2 0 0 0 0 0

0 000 0
GJ

0 0 0 0 - pJA 2  0

and

0

0 12 GJ
EIR

0 0

0 0

(El + GJ)
GJ

(EI+ GJ) IEl
0 GJR (R2

0

- (El + GJ)

EIR 2

El

R2

where As(co) corresponds to the straight beam and Ac(C) corresponds to the circular beam.

Let es be the matrix of eigenvectors of As(o) and ec be the matrix of eigenvectors of

Ac(O ). Then introduce the similarity transformations :

Ys = esWs and Yc= ecw

where ws and wc are columns of wave mode coordinates [8,9] travelling independently

along the straight and curved segments respectively. The Boundary conditions can then be

written as :

[Bses i Bce J w c =0

which can be rearranged into outgoing and incoming wave modes such that:
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[Ba:Bb b)= 0

B a + B b8 = 0 (17)

where i and b are the incoming and outgoing wavetrain vectors defined according

to the conventions in Figure 10, as follows:

Uec

bts

b toc

bes

b ts

bt

aes

ats

atos

aec

atc

a ...

By performing a partial inversion of equation (17), the outgoing wavetrains can be

expressed in terms of the incoming ones (18). The matrix that relates them is the scattering

matrix of the junction between the straight beams and the circular beams.

-1
bF=-Bb Ba-

-1
Scatter =- Bb Ba

S= (Scatter)'d

Given the way in which the vectors i and 6 are defined, the scattering matrix

provides information on how much of a given wave mode is reflected, and how much is
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transmitted at a junction. The scattering matrix is a 6x6 matrix which can be understood as

follows:

Scatter =

Transmission Reflection

Reflection Transmission

IJ

The elements along the main diagonal represent the extent to which a given wave

mode transmits through the junction. Perfect transmission would imply that the scattering

matrix is equal to identity. The presence of reflection at the junction and cross coupling

between wave modes, produces non-zero entries in the off diagonal terms. Since the

equations used for this analysis are in dimensional form, those elements along the main

diagonal of the scattering matrix represent a fraction of unity in which 1 is equal to perfect

transmission of that wave mode through the junction. Similarly, the elements along the

diagonals of the reflection block matrices represent a fraction of unity in which 1

corresponds to total reflection of a given wavemode.

Because of their mixed units, the other elements of the scattering matrix don't

provide much insight about the extent to which wavemodes are coupled, unless the

columns of the matrix are non-dimensionalized so that they represent the energy delivered

by each wavemode. This extra work becomes unnecessary however, if the values along the

main diagonal indicate that there is good transmission at the junction.

As the radius of curvature of the curved sections of the track increases, the

scattering matrix approaches the identity matrix. Conversely, as the radius of curvature of

the track decreases, coupling terms appear in the off diagonal positions of the scattering
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matrix while the elements along the main diagonal decrease in magnitude from their ideal

value of one.

From a design point of view, transmission at the junction would be optimized if the

radius of curvature of the circular portions of the motor was equal to infinity (ie.- there

would be no discontinuity). In practical terms the radius of curvature of the track should be

selected such that the diagonal terms of the scattering matrix approach unity within an error

that may be deemed acceptable.

Cross Sectional Banking of the Track

The primary concern of both the dispersion and scattering analysis was to evaluate,

the extent to which coupling between torsional and transverse modes occurred as a result of

the geometrical configuration of the race track. This section, however, investigates the

possibility of eliminating the coupling between bending and torsion in a curved beam by

varying the cross sectional properties of the curved beam.

A simple approach to the problem consists in taking a plate viewpoint; modelling

the curved segment of the track as a series of infinitesimally thin beams only capable of

deflecting transversely. Furthermore, it is convenient to assume that the beams are not

coupled to one another. Given this model, the problem of decoupling torsional and

transverse modes in the racetrack boils down to turning the wavefront so that it follows the

track. The wavefront is turned by forcing the waves travelling in the outside of the track to

go faster than the waves travelling in the inside of the track.

The speed of a travelling wave is given by equation (19):

c=X f (19)

where : c = speed of the travelling wave along the track
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After substituting in the following expressions:

27pA bh
- k El and 12

we arrive at equation (20) which shows that the velocity of a travelling wave is proportional

to the thickness of the track to the power of one half.

1 Eh2

c = 2 1 2 p (20)

Figure 11 illustrates a section of a curved beam. The centerline of the track is located at a

distance r, and the wavespeed at that radial location is c. During a given length of time t,

the wavefront displaces itself by a distance ds along the centerline. Waves travelling on the

outside of the track, need to travel the same angular distance in the same amount of time,

which means that co has to be greater than c. Conversely, ci, at the inside of the track, has

to be smaller than c.

Figure 11- Curved Section of Track. Subscript "i" refers to inner radius and the subscript

"o" refers to the outer radius.
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The change in speed of the waves throughout the width of the track can be

accomplished by varying the thickness of the track across a given cross section. Given that

the length of time t can be expressed as :

ds i  dso ds
C. C C. o (21)

Clearly the thickness should vary quadratically with the radial distance from the

center of curvature. This is difficult to machine, and we rather consider a thickness

distribution linear with radial distance.:

h ( 4 r2 - 4rb + b 2 )

i 4 r2  h ref (22)

h ·=(4r2+ 4rb+ b 2
0 4r2  href (23)

where: hi = thickness of the beam at a distance r-b from the center of curvature

ho = thickness of the beam at a distance r+b from the center of curvature

r = radius measured along the centerline of the track.

href = thickness of reference beam with plain rectangular cross section

Now, by substituting equations (22) and (23) into equation (24), which assumes that the

thickness of the track varies in a linear fashion:

h. + h
h =avg 2 (24)

we arrive at equation (25):

h avg 4 r2 ref (25)
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havg = average thickness of the track with variable cross section

This relationship implies that if the thickness of the track is varied linearly, the

wavefront will follow the shape of the track as long as the ratio of the width to the radius of

curvature of the track is small. If this ratio is not small, the linear approximation cannot be

used and the thickness of the track would have to vary quadratically. From a construction

point of view, varying of the cross sectional thickness of the track in a linear fashion would

be easier than varying it quadratically. For example, a curved beam with a rectangular cross

section, with a radius of 2.5 inches, a width of half an inch and a thickness of 80 milli-

inches along its centerline would have to be altered so that the thickness along the inside of

the track was 51 milli-inches thick and the thickness along the outer radius became 97 milli-

inches.

An alternative to varying the cross sectional thickness of the track is to vary its mass

distribution. Rewriting equation (20) as a function of t, the mass per unit length of the

beam, we obtain :

c= 2•Erco
(26)

which implies that the velocity of the traveling wave is inversely proportional to the fourth

root of g. After performing an analysis similar to to the one performed for the cross

sectional variation of thickness, we obtain the required values of gt, for the outer and inner

sections of the track in terms of the gt along the centerline of the track.

4

r (27)

2 (28)
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where: pto = mass per unit length along the outside of the track.

ti = mass per unit length along the inside of the track.

g = mass per unit length along the centerline of the track

Varying the density across the width of the track is in practice not feasible. Shifting

the center of mass of the beam by placing a lumped portion of mass of higher density on

the inside of the track, such that the resulting center of mass is similar to that achieved by a

functional variation of density, is feasible. Figure 12 indicates the position of the center of

mass of a rectangular beam with a constant density and the center of mass of a rectangular

beam whose density varies linearly between the values defined by equations (27) and (28).

Using a beam with similar dimensions as that of the previous example, we obtain through

equations (27) and (28), that the inside of the track has to have a density 1.5 times greater

than the density of the beam with a rectangular cross section. Similarly the outside of the

track has to have its density value decreased by a factor of 1.46 relative to the density of the

beam with a rectangular cross section.

.L. ... ..
i, II i

x=b x=0 shift shift

Simple Beam Variable Added Lump
Density

Figure 12- Side Shift of the Position of the Center of Mass across the Width of the Beam

due to Variational Distribution of p. and due to Addition of Lumped Mass to One Side.

(The center of Curvature is located to the Right hand Side of the Cross sections.)
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The center of mass of a rectangular beam is located along the middle of the beam. If

we assume that the the mass per unit length varies across the width of the track as shown in

Figure 12, then g can be written as a linear function :

g = cx + d (29)

where, for the example given, c = .1596 and d= -.1734.

The shift of the position of the center of mass in a beam with a density distribution

described in equation (29) is equal to:

shift = b

2
3( 0)

where: b = width of the track.

For the example at hand, a beam with a linearly varying gt, would have a center of

mass located 25 milli-inches away from the center of mass of a beam whose gt remained

constant. The direction of this shift is towards the center of curvature of the track.

A similar shift of the center of mass can be attained by adding a lumped mass, of

greater density than the rest of the track, to the inner radius of the curved beam. See Figure

12. The relative shift of the center of mass for this configuration is given by equation (31):

shift =
(1)

where: x = width of the cross section of the lumped mass

gI1 = mass per unit length of track

g2 = mass per unit length of lumped mass s.t. gi2 > gl
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By using this approach, the 25 milli-inch shift of the center of mass from the previous

example can be duplicated by adding a 13 milli-inch thick strip of lead to the inside of the

aluminum track.

Another approach of analyzing the torsion bending coupling along the curved

sections of the track with offset between the elastic axis and section center of mass, is to

add another term to the governing equations of motion, (13) and (14). It may be possible

that they decouple at the desired operating frequency of the motor. As shown by

Bisplinghoff [10], this additional term takes into account the separation between the center

of mass of the beam and its elastic axis. By incorporating this term to equations (13) and

(14), we obtain the following:

EIv""+ pAA= -(El + GJ)y"+ S,+ 1GJv"
R (32)

S1 EIP
GJ"- pJ =- R((El + GJ)v"- S +

RR (33)

where Sy = pAe and e is defined as the separation between the center of mass and

the elastic axis.

In order to decouple equations (32) and (33), the terms in 0 of equation (32) as well

as the terms in v of equation (33) have to vanish. This can be accomplished by setting:

(El + GJ)e=2
p ARf 2 (34)

By selecting an operating frequency of 27230 Hz and using the cross sectional

properties corresponding to the beam of the previous example, we obtain a value of e equal

to 31.7 mill-inches. This value is approximately 20 % larger than the value of the center of
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mass shifts obtained using the simplified beam models. This suggests that these simplified

beam models are relatively good and that the torsional extensional coupling along the

curved sections of the beam can be greatly reduced by simply placing a strip of lead along

the inside of these sections.

Piezo Ceramic Layout

In order to induce travelling waves along the racetrack, piezo electric ceramics are

glued to the bottom side of the track and excited so that they produce a moving wavetrain.

The disposition of the ceramics on the track is not unique. An approach commonly used in

the travelling wave motors developed by the Matsushita Research group [11,12] is to

generate a travelling wave by actually producing two standing waves and carefully phasing

them so that their resultant is travelling. This approach requires a symmetric disposition of

the piezo ceramics. Usually one side of the track is in charge of driving one of the standing

waves, while another set of piezos mounted on the opposite side of the track, drive the

second standing wave. The phasing between both sets of piezos is accomplished by

allowing a physical separation between both sets of piezos equivalent to a quarter of the

wavelength of the travelling wave. See Figure 13.

Another way of implementing two standing waves is to collocate the piezos

responsible for driving the different standing waves by mounting them one on top of the

other. The phasing between the standing waves is once again accomplished by physically

displacing one set of piezos by a quarter wavelength relative to the other. This

configuration, however, is impractical, since access to the lower layer of ceramics is

restricted once the top layer is mounted. Collocation can also be achieved by setting the two

banks of piezos side by side along the width of the track.
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Piezo Standing Wave A
Ceramics

SI +
1/2 X Standing Wave B

II
Resulting Travelling Wave

Figure 13- Piezo Layout Configuration which Drives Two Standing Waves Phased Which

Results in a Travelling Wave. Piezo ceramics labeled with an A drive one of the Standing

waves, while those ceramics labeled with a B drive the other standing wave.

A simpler way of driving the travelling waves along the motor is to cover the whole

bottom side of the track with piezo ceramics and to drive them in a sequential manner to

generate a rippling effect which thereby produces the travelling wave. The piezo ceramic

segments are a quarter wavelength in length and have the same width of the track. Each

segment is driven by a different electrical signal : a sine, a cosine, a negative sine, and a

negative cosine wave respectively. The electric signals are exactly in phase relative to each

other. This pattern is repeated throughout the length of the track an integer amount of times

such that there is an integer amount of wavelengths being generated by the track. Figure 14

illustrates schematically a portion of the track being excited by piezo ceramics. The letter

under the ceramics indicates which electrical signal is driving that portion of the track. An s

corresponds to a sine wave, a c to a cosine wave, a -s to a negative sine wave and a -c to a

43

Uncovereo
sections



negative cosine wave. Figure 13 also illustrates how the superposition of these four signals

leads to a rippling effect which corresponds to a travelling wave moving along the length of

the track.
Forward Displacement
of Travelling Wave Front

Time1/ +1-------------------------pi -1- ---- - - - - - - - - - - - - - - - - - -
Time = 0 -0

p -1 ------- ------- ---------

s c -s -C s c -s -c S C -s -c

+1 - -- ------- --- --------

Time =1/2 0

period -1----- ------- ----------
s c -s -c s c -s c s c -s -c

---------- ------- - - -Time =3/4 0- - - - -period -1- - -- -- - - - --- - --
S C -S -C S -S -C S C -S -C+1----- ------- ------- ---Time =3/4 0--- - -- - -- - -- - -- - --

period -1- -- - -- -- - -- - ----

S C -S -C S C -S -C S C -S -C+1 - -- --- -- -- --- - --- -Time =1 0 - --- --- --- --- --- - -
period -1 -- -- -- - - -- -- -- -- -- -- - -

PiezoCeramics

Figure 14- Schematic Representation of a Portion of the Track Undergoing Excitement by

Piezo Ceramics. In One Full Cycle, the Wave Pattern Displaces Itself by One Wavelength.
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This last piezo ceramic configuration was chosen since accurate alignment between

the piezos and the track is not required. Furthermore, this configuration also permits the

even distribution of piezos throughout the whole surface of the track. This eliminates the

problem of having cross sectional discontinuities along the track such as portions of the

track being made of aluminum and ceramics while other portions of the track are made

entirely of aluminum. Discontinuities along the track are to be avoided since they represent

junctions at which wavetrains can undergo scattering.

As the operating frequency of the motor is increased the length of the wavelength in

the track decreases. Since this ceramic layout configuration requires four piezo etchings per

wavelength and since there is a practical limit to the size of piezos that can be etched using

available technology, there is therefore a practical limitation to the operating frequency of

the motor. From a design perspective, the operating frequency of the motor has to be

selected such that the wavelength of the waves is at least six times the thickness of the track

as well as large enough to allow four piezo segments to be accurately etched.

Corrections due to Piezo Layer

The dynamic analysis of the various segments of the track has neglected to take into

account the presence of the piezoelectric ceramics attached to the track as well as the glue

layer bonding them together. In order to model more accurately the dynamic behavior of the

racetrack, the track's overall stiffness, torsional rigidity and mass per unit length values

were adjusted to take into account the presence of the piezo ceramics. The ceramics were

thin, not more than 10% of the total thickness of the aluminum track. The effects of the

glue layer between the aluminum track and the ceramics was neglected.
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Given the material properties of the G1195 piezo ceramics used ( see Appendix 5 ),

the mass per unit length of the composite (ie- aluminum and piezo) race track was evaluated

using an area weighted average of its mass densities as follows:

pA= Pabh+ ppbhp (35)

where: pA = mass per unit length of the composite track

Pa = density of aluminum

pp = density of G1195 piezo ceramics

h = thickness of the aluminum track

hp = thickness of the piezo ceramic layer

b = width of both the track and the piezo ceramic layer

Similarly, the overall moment of inertia, I, of the composite beam was reevaluated

about the composite centroidal axis using a modulus weighted formula. The shift in the

centroidal bending axis due to the presence of the piezo ceramic layer was estimated as

follows:

(rh p2 + 2hhp+h 2)
Z1 2(h + h r) (36)

where : zcl = shift of the centroidal bending axis

r = ratio of the modulus of elasticity of aluminum and the piezo ceramic

such as defined by :

E.
piezor= m

alu min um
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The bending moment of inertia of the composite beam about the N centroidal axis

was then evaluated by:

3 2

I= + b.z - (h, + )2 + +rbh - (37)

where : I = bending moment of inertia of composite track

The racetrack's polar moment of inertia was estimated by assuming that the ratio of

the modulus of elasticity between the composite beam and the aluminum beam was the

same as the ratio of their torsional stiffness. Hence the value for the polar moment of inertia

of the composite track was approximated by using the following expression:

(38)

where: J = polar moment of inertia of composite beam

J = polar moment of inertia of aluminum beam

The modified values of E, I, and J as derived in this section were used in all

calculations including the ones from preceding sections.

Design Iteration Procedure

Given the overall configuration of the motor and having selected Aluminum as the

material for its construction, the remainder of the design process consisted in selecting the

dimensions of the track and evaluating its performance according to the models developed

in the previous section. These last steps were performed in an iterative fashion until a motor

design feasible to be constructed at our labs was arrived at. Figure 15 shows a block

diagram of the steps involved in the design iteration process.
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h=? ]Select Beam Evaluate Beam
h=?1- .SCrossectionalb = ? Dimensions Properties

X=? Select Operating Evaluate Frequency
R = ? _ Wavelength and ImpedanceMatching

Radius of Curvature Dispersion Curves

=? Select Number

n = ? of Wavelenghts Final Sizes for
in Track machining

Figure 15- Block Diagram of Design Iteration Process

The first step involves choosing the cross sectional dimensions of the track. Once h

and b are selected, all other relevant cross sectional properties of the track can be evaluated.

Further analysis then demands that the cross sectional properties of the track be adjusted to

take into account the influence of the piezo ceramics glued on the bottom side of the track.

Having obtained estimates on the bending and torsional stiffness of the composite track it is

necessary to predict the maximum static deflection that can be achieved by a beam of the

prescribed dimensions. If the thickness of the piezo ceramics relative to the aluminum track

is too small, the piezos may not have the authority to command the necessary deflection

needed to attain a given operational speed. Since the dynamic amplification obtained by

operating the track at resonance is unknown, the static deflection alone should be capable of

attaining the selected operational speed of the motor. Hence, once in operation, the true

speed attained by the motor will be greater than the design speed. Appendix 7 contains a

description of the model used to describe the forces on the track due to the piezo actuators

and shows the procedure used to estimate its static deflection.
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The next step in the design process involves selecting a value for the operating

wavelength, X, the radius of curvature, R, and the number of wavelengths, n, contained in

the track as measured along the centerline.

The lower limit on the value of X was defined by our ability to accurately etch the

four piezo segments per wavelength necessary to drive the travelling wave in the motor,

and the thickness of the track. The higher limit on X was imposed by the results of the

dispersion curves, which suggested that X should be much smaller than the radius of

curvature, R, of the circular segments of the track. Selecting a value for the wavelength

given the cross sectional dimensions of the track implies, according to equation (11),

selecting the operating frequency of the motor.

The value of R, as stated above, is constrained to be larger than the value of X.

Once a value is selected, the dispersion curves for the circular sections can be plotted and

the operating frequency can be identified on the plots. Furthermore, a scattering matrix for

the junction, between the straight and curved sections of the track, can now be calculated

and the transmission properties of the junction can be quantified. As stated in the previous

sections, a larger value of R will reduce the impedance matching problems at the junction

between the straight and curved sections of the track, as well as diminish the amount of

scattering of the wave forms.

The value of n describes the number of complete wavelengths that fit along the

centerline of the racetrack. Therefore, n, has to be an integer so that the racetrack can

operate at resonance. Having selected h, b, hp, R and X, the lengths of the circular

portions of the track are known. By selecting n, the length of the straight beams connecting

the circular portions of the track becomes fixed. At this point, all dimensions needed to

construct the motor have been determined. If the predicted performance of the track is not

satisfactory, the previous steps can be repeated until a suitable configuration is attained.
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Final Dimensions and Sizing

Through the design iteration process described above, a final, linear travelling wave

motor configuration was arrived at:

The proposed travelling wave motor is designed in the shape of a racetrack: it consists of

two straight beams interconnected by two semicircular beams. The track is made out of a

single piece of Aluminum (2024) and has a total length of 29 inches when measured along

its centerline. The motor is designed to operate at a resonant frequency of 27300 Hz, and a

wavelength of 1.00 inch. The cross sectional dimensions of the track are the following:

Thickness of track (h)

Thickness of Piezos (hp)

Width of track (b)

Effective Stiffness (EI)

Effective Mass/Length (pA)

= 0.002 m

= 0.000191 m

= 0.0127 m

= 1.3006 N-m2

= 0.10643 Kg/m

= 0.08 inches

= 0.0075 inches

= 0.5 inches

Given these cross sectional dimensions, the (static) amplitude of the travelling

waves for an applied voltage of 31 volts, can be estimated at:

Static Deflection (Wmid) = 8.349 x 10-8 m

This amplitude corresponds, at the operating frequency, to a design speed of 0.16 inches

per second.

The selected values for R and n were the following:

Radius of Curvature (R) = .0570 m = 2.246 inches

Number of Wavelengths (X) = 29
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Dispersion Curves at h/R= 1/27.39
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Figure 16 - Dispersion Curves for the Circular Sections of the Motor. The Dotted Vertical

Line Corresponds to the Motor's Operating Frequency.

A scattering analysis of the junction between the straight and curved sections of the

motor, resulted in the following scattering matrix ( magnitudes only ):

0.9951
0.0030
0.0001
0.0025
0.0006
0.0001

0.0025
1.0032
0.0002
0.0025
0.0004
0.0000

10.7458
14.3514
0.9832
10.7741
13.5600
0.0120

0.0025
0.0030
0.0001
1.0049
0.0006
0.0001

0.0018
0.0044
0.0000
0.0019
0.9926
0.0002

10.7521
13.5971
0.0160
10.7820
14.3283
1.0126

The highlighted values along the main diagonal indicate that the junction's transmission

efficiency is very high, while the highlighted values along the secondary diagonals confirm

this finding by indicating that reflection rates among similar wave modes are very low. The
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Figure 16 shows the dispersion curves for the circular segments of the track, using the

selected design values. The vertical dotted lines correspond to the operating frequency of

27300 Hz. It is apparent from the figure that the operating frequency is sufficiently far

away from the cutoff frequency of the transverse mode of the curved track.
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fully populated matrix indicates that there is coupling between the transverse and torsional

modes, but given the values along the main diagonal, we expect this coupling to be small.

Both the dispersion curves and the scattering matrix analysis suggest that the

designed travelling wave motor will perform satisfactorily.

Note: There are some values along the main diagonal which are greater than one.

This is due to numerical round-up error. The values along the diagonal cannot be greater

than one since they represent transmission efficiencies.

Electric Circuit Design

The motor's driving circuitry is responsible for exciting the piezoelectric ceramics

attached to the aluminum track, thereby generating the travelling waves in it. Figure 17

illustrates a functional block diagram of the driving circuitry. The output of a variable

frequency signal generator is used as a timer for the quadrature circuit which produces four

sine waves shifted by 90 degrees in phase, relative to each other. These signals are

amplified and sent to the corresponding piezo ceramics on the track.

Figure 17- Functional Block Diagram of Driving Circuit

The circuit is designed to operate in an open loop configuration. The frequency of

the electrical signals driving the piezo ceramics is controlled by the signal generator. The

signal generator has to be adjusted manually until the racetrack achieves mechanical

resonance. Further details of the driving circuitry can be found in Appendix 1.
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Construction and Assembly

The construction and assembly of the various parts of the motor can be divided into

three stages: the machining of the track and of the sliders, the integration of the piezos onto

the track and finally, the wiring of the various electronic components together with the track

and their integration into a working ultrasonic motor.

Metallic Parts: The track was machined out of an aluminum 2024 plate to the

specified thickness of 80 milli-inches. In order to do this, a 1/8" aluminum plate was glued

onto the machine polished surface of a 1/2" aluminum plate using contact cement. The

assembly was then mounted onto a milling machine which machined the 1/8" aluminum

plate to the desired thickness. The size of the cut in each pass was kept small, so that the

cutting force on the tool bit as well as the machining stresses on the plate were minimized.

A small cut size also prevents the 1/8" plate from coming prematurely unglued from the

1/2' base plate.

The whole assembly was then removed and taken to a programmable milling

machine which carved out the racetrack to the dimensions specified in the construction

diagrams of Appendix 4. Once the track had been cut out, the whole assembly was

submerged in acetone so as to dissolve the contact cement and allow the track to come off

freely. Having completed this, the oval track was deburred and its surfaces were polished

with a 500 grade sandpaper.

The next parts to be machined were the sliders. These were made out of either

Aluminum 2024 or out of of Plexiglass, and they did not require of any special machining

procedures. The sliders were designed to offer a variety of surfaces to be tested on the

track. Figure 18 shows some of the different slider configurations used. "Flat Sliders" and

"Slotted Sliders" were built of varying length relative to the wavelength of the travelling
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waves The slotted sliders were identical to the flat ones except that they concentrated all

their weight on two rails.The construction diagrams for the sliders can be found in

Appendices 3-b and 3-c.

Varying Length

ing
truction
r-i~l

Figure 18- Various Slider Configurations Showing Their Lower Surface Geometries and

Their Varying Lengths

Piezo Ceramic Assembly: Once the track was completed, it was sent to Piezo

Systems Inc. to be covered with G1195 piezo electric ceramics. The G1195 ceramic has a

7.5 milli-inches thickness and is manufactured in 1.5" by 2.5" rectangular tiles. See

Appendix 5 for further piezo ceramic specifications.

The piezoceramics were cut out into smaller sections and placed on the track so as

to cover its whole surface. Ideally, the whole surface should be covered by a single piezo

crystal in order to avoid discontinuities along the track. However, since this is not possible

with available technology, we proceeded to minimize the effect of the discontinuities on the

travelling waves by ensuring that the joint between any two piezo ceramics was never

perpendicular to the centerline of the track.

The piezo ceramics were bonded individually to the the track using a 24 hour 60" C

curing process. Once the track was covered, the ceramics were sanded down flush with the
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aluminum track. Connectivity between the various piezos and the aluminum track was

verified.

The ceramics were then etched at quarter inch intervals. This amounts to 4 etchings

per wavelength or 116 etchings along the whole track. After completing the etching, the

plating of the piezos was polished and the ceramics were individually checked for cross

connectivity. The piezos were assumed to be electrically isolated from each other if the

resistance between neighboring etchings was in the order of 1000 MQ2.

Once the etching was completed, each piezo segment was to be wired to the fourth

piezo segment next to it. The wiring was done using 26 gauge magnet wire and solid core

solder. All 116 ceramics were thus electrically addressed by 4 concentric wire rings, each

one soldered to 29 piezo ceramics. Each wire ring was then connected to the lead wires

which provided the driving signals from the amplifiers. Figure 19 shows the track with the

position of the piezo etchings as well as the position of the solder points and the wire rings.

Figure 19 - Lower View of Recotrack. Etchings on the c

eramic layer, are marked as well as
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Having completed the soldering, the whole track was washed with water to remove

any excess flux from the plating of the piezos, and then dried out with alcohol.

Connectivity between the four lead wires and the surfaces of all the piezo ceramics was

verified.

Final Assembly and Integration: Having completed the wiring of the piezos, the

track was mounted onto an Aluminum base plate. In order to mechanically and electrically

isolate the track from its base, the base was covered with a 1/16" black rubber sheet, and

the track was then glued onto the rubber surface via a double sided foam tape.

The four leads of the track were connected to the four output stages of the Crown

amplifiers. In order to protect the amplifiers, 30 power resistors were connected in series

to the output of each amplifier. The inputs of the amplifiers were connected to the buffered

outputs of the protoboard circuit. A signal generator serves as a variable frequency clock

pulse for the quadrature circuit. The frequency of the signal generator is monitored by a

frequency meter and the output of the amplifiers is monitored by an oscilloscope. Figure 20

shows an schematic representation of the experimental setup as described above.

Quadrature
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IV- Experimentation and Results

The motor was subjected to a series of tests in order to quantify its performance,

and compare its behavior to that predicted by theory. The tests consisted in operating the

motor under a wide range of conditions and monitoring the changes in its performance in

response to these particular conditions. This section will present the results of such tests as

well as our findings on other phenomena encountered while performing the motor's

evaluation.

Experimental Procedure

At the start of each test run, five experimental parameters were selected: the

operating frequency of the motor, the peak to peak voltage of the driving signals leading to

the piezo ceramics, the length of the sliders placed on the track, the mass of the sliders and

the angle of inclination of the track. All parameters were varied throughout the testing

period except the peak to peak voltage level which was set to a constant value of 20 Volts

for all tests. The operating frequency of the motor could be varied by adjusting the

frequency of the signal generator. The mass of the sliders could be modified by simply

adding weights to the top surface of the sliders. Several sliders of different lengths were

machined out of both aluminum and Plexiglass. This enabled us verify the effects of slider

length and texture on the performance of the motor.

The tests were aimed specifically at characterizing the resonant effects of the

system, determining the force, power and efficiency curves of the motor, and establishing

whether or not the designed motor had successfully decoupled the transverse and torsional

vibrational modes of the track.

Data acquisition was limited to obtaining the following measurements:
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Velocity measurements of the various sliders.

Force measurements on the various sliders.

Electrical readings, and

Strain and temperature measurements of the top surface the track.

Velocity Measurements of Sliders :

The velocity of the various sliders and other objects placed on the track was

measured differently depending on the length and weight of the slider, and of the operating

frequency of the motor. The average velocity of the sliders at a given frequency, was

estimated by measuring the time needed to complete a lap around the track. The sliders

were allowed to travel several laps and their corresponding lap times were compared to

each other. If these times were consistent with each other, the measurements were deemed

satisfactory. Certain combinations of weight, length and operating frequency, however, did

not allow for this type of measurement. The sliders were occasionally unable to complete a

lap in a repeatable fashion. In these situations, the velocity of a slider was estimated by

measuring the time taken by the slider to travel between two markers of known separation,

along the straight portions of the motor.

Sliders that were longer than one inch encountered occasional difficulty in travelling

around the circular portions of the track. As a result of this, the slider would jam at an

arbitrary position for a given length of time and then resume its forward motion. Sliders

heavier than 0.3 Kg also showed the same erratic behavior along the circular sections of

the motor. The "excessive" weight seemed to hinder the slider's ability to move about the

width of the track and avoid getting stuck along the curves. Velocity measurements taken

under either of these circumstances were voided.
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In theory, the velocity of an object on a linear travelling wave motor depends only

on the operating frequency of the motor and the amplitude of the waves. The amplitude of

the waves is in part controlled by the voltage used to drive the piezo electric actuators on the

track. During the testing period, all signals actuating the piezo ceramics were kept at a 20

Volts (peak to peak ) level. The amplitude of the waves is also in part determined by the

operating frequency of the motor. Because of resonance, the amplitude of the waves

depends upon the driving frequency of the motor. At or near resonance, the amplitude of

the waves increases dramatically because of dynamic amplification. The velocity of a slider,

thereby, increases in the vicinity of resonance. The most consistent velocity measurements

were taken at frequencies close to resonance. As the operating frequency drifted away from

resonance, measurements became noisier and the sliders would once again jam along the

curved portions of the track and the measurements had to be annulled.

Force Measurements of Sliders:

The maximum (stalled) side force exerted by the motor on the sliders was estimated

by measuring the extension, due to this force, of a calibrated spring. The spring was

attached to the inertial frame of the base on which the racetrack rests, and to a slider resting

on top of the track. By varying the mass of the slider, the magnitude of the side force also

varied proportionally. These fluctuations were recorded as changes in length of the spring.

The side force exerted by the motor was also measured indirectly by tilting the base

plate, on which the racetrack is mounted, to various specified angles. A slider placed on the

track would be allowed to move along the straight segments of the track. The slope of the

track would then be increased until the slider was no longer capable of moving up and

would remain fixed in whatever position it was placed. Both the angle of inclination of the

track and the mass of the slider were recorded. This exercise was repeated with sliders of

different mass and length.
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Amplifier

Figure 21- Strain Gauge placement along straight segment of track.
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Electrical Readings:

Voltage readings were obtained directly from the output stage of the amplifier.

Current readings were obtained indirectly by measuring the voltage differential across a 10

precision resistor connected in series with the signals driving the motor.

Surface Measurements:

Both a strain gauge and a thermometer were placed on the upper surface of the

racetrack to provide information concerning the amplitude of the travelling waves and the

amount of energy being dissipated as heat into the racetrack.

A strain gauge was glued onto the upper surface of the racetrack as shown in Figure

21. The gauge aligned along the straight segment of the track measured the strain caused by

the passage of transverse travelling waves. The gauge aligned across the width of the track

allowed the detection of standing wave patterns occurring across the width of the track. The

third gauge aligned at a 45 degree angle from either of the previous gauges, allowed the

estimation of torsion deformation of the straight segments of the track.

Strain
Gauges



Figure 22 shows the frequency response of the motor over a bandwidth centered

about its resonant frequency. As shown in the figure, the motor resonates at a frequency of

27230 Hz. This figure is a quarter of a percent lower than that predicted by theory : 27300

Hz.
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Figure 22- Frequency Response Plot of Motor. The data points correspond to test runs

performed on a quarter inch long. Plexiglass slider of constant .mass.

As a comparison, the resonant frequency of the motor was also determined by measuring

the frequency at which the current drawn by the motor reached a maximum. This
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phenomenon occurred at 27130 Hz, which is 0.62% lower than the predicted value of

27300 Hz.

The experimental decrease in the track's resonant frequency is probably due to the

unmodelled increase in mass attributable to the 116 solder points and wires attached to the

lower side of the track. Their presence increases the track's effective overall density which

according to equation (11) will force the resonant frequency down. On the other hand, a

1% error on the estimate of a resonant mode is small enough to be attributed to

discrepancies between the reported values of the modulus of elasticity, and density of the

construction materials, and their actual values or simple measurement errors.

From Figure 22, it is apparent that dynamic amplification due to resonance greatly

enhances the performance of the motor. At frequencies below 26750 Hz and above 28750

Hz, the amplitude of the travelling waves had decreased to the point where the motor was

not capable of displacing any objects on its surface. Hence, no data was gathered at these

operating frequencies.

It is common to characterize the dynamic amplification achieved by a system

operating at resonance by the parameter Q, which is defined as follows:

CO 1Q_ n

Aw 2ý (39)

where: On = Natural frequency of the system

Ac = Width of the frequency response curve measured at an rms

value of the peak value.
= damping ratio as defined for a second order system

The parameter Q, meaning Quality, can also be described as the amplification factor

relating the output of a system when driven statically to its output when driven at

resonance. From the data available, three separate estimates of the Q of the motor can be
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obtained. The first estimate can be obtained using equation (39) and Figure 22. By reading

off the values for con and Aco from the figure, we obtain an estimate of Q = 40.34.

The other estimates of Q can be obtained by taking the ratio of the measured

amplitude of the travelling waves when the motor is operating at resonance, to the

amplitude of the waves when driven statically. Waves, however, cannot measured when

driven statically, but an estimate of the track's static deflection due to the piezo actuators

can be obtained using simple beam theory. Applying the method described in Appendix 5,

the static amplitude of the traveling waves was estimated at yo = 8.99 x 10-8 m.

The amplitude of the travelling waves at resonance can be inferred by measuring the

top velocity achieved by a slider on the track, or by by measuring the strain of the top

surface of the track while the motor is in operation. The top velocity of a slider was

measured from Figure 20 to be 0.048 m/s. Given this figure, equation (7) estimates the

amplitude of the travelling waves to be yo = 1.05 x 10-6 m, which implies a Q value of

11.65.

The maximum strain measured in the direction along the length of the track was 180

microstrain. Using similar assumptions to those used for the estimate of the static deflection

of the track ( see Appendix 5 ) we can show that :

E = - W"Z (40)

where:

w" =- k2 w sin(kx) (41)
(x) Wmid (41)



Hence by solving for Wmid, we obtain an expression which converts strain

information to amplitude information :

eX2
mid 22 2h 

(42)

Applying equation (42) to the strain data, we can estimate the amplitude of the

travelling waves: yo = 1.3625 x 10-6 m. This amplitude implies a value for Q equal to 15.1.

It was later discovered, after suspending the track in mid air and removing the foam

tape attached to it, that a large amount of power was being drained into the rubber base of

the track as well as the foam tape. It is possible that the foam and the rubber were adding

damping to the track, which would suggest that without them, the track would have a much

higher Q.

Force Capabilities of Motor

The side force exerted by the track on the sliders, causing them to move along the

length of the track, is proportional to the normal force of the sliders on the track. It was

discovered, however, that there were some practical limits to the normal forces and slider

geometries that could be tested on the track under regular laboratory conditions. If the mass

of the sliders exceeded 0.35 Kg, the surface of the track became marred with scratches and

irregularities. When using aluminum sliders on the aluminum track, cold welding between

them would cause further damage to the surface of the track. In order to preserve the

integrity of the track's surface, high normal forces on the track were avoided. All force

measurements were conducted while operating the motor at resonance.

As shown in Figure 23, the velocity of the sliders tends to decrease slightly as the

normal force on the track is increased. In the limit, as the mass of the sliders is increased,
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the waves supporting the sliders appear to get distorted to the point where the track is not

able to deflect against the weight of the sliders. At this point the sliders effectively "squash"

the waves underneath them. A decrease in the local amplitude of the waves due to this

"squashing" effect, could therefore explain the observed decrease in speed. On the other

hand, this decrease in speed could also be explained by the fact that as the mass of the

sliders was increased, their sideways motion was constrained, making it difficult for them

to go around the curved sections of the track. The maximum weight capable of being

displaced by the motor is yet unknown, since it would require damaging the surface of the

track as well as the driving piezoceramics attached to it.

Velocity of Sliders
VS

Normal Force on Track
u.u0

0.04 -

z

0.02-

0.00*
0 2 4 6 8

Normal Force on Track
(N)

Figure 23- Measured Velocity of Sliders versus Normal Force On the Track. Operating

Freouencv : 27.23 kHz
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The other practical limitation encountered while testing the track under regular

laboratory conditions was using sliders that were very light and that had a large contact

surface area. These "flat sliders", ( see Appendix 3-b for drawing ) would tend to hover at

a given position unless their mass was increased with extra weights, or the motor was

placed inside a vacuum chamber. Once their mass was increased they would move along

the track as the rest of the objects placed on it, but never quite efficiently as their slotted

counterparts. The "slotted sliders" ( see Appendix 3-c for drawing ), had similar

dimensions as the flat sliders, but their weight on the track was concentrated on two rails.

These sliders would move along the along the track with no need of additional mass. The

motor's observed behavior in a vacuum chamber will be addressed later in the discussion.

Figure 24 shows the maximum side force exerted by the track on the sliders as a

function of the surface area of the sliders that is in possible contact with the track. There

were three different sliders, which justifies the clustering of data along vertical lines. The

various values of side forces for a given slider correspond to variations in mass of the

slider and hence variations of the normal force exerted by the sliders on the track. As the

mass of the sliders is increased the magnitude of the side force increases proportionally.
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Figure 24- Maximum Side Force Exerted by Track on Sliders of Increasing Mass but

Constant Surface Area. OPerating: Freiu~encv :27,23 kcHz.

Figure 25 shows the dependency between the measured side and normal forces

exerted on the sliders by the track. A least square, straight line curve fit of the data,

approximates the slope of this curve to 0.0946 with a correlation factor of 0.589. The force

coefficient for the motor, defined as the ratio between the maximum side and normal forces

acting on the slider, is similar to a friction coefficient since it relates the normal component

of the weight of a slider on the track, to the maximum side force exerted by the track on the

slider.
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Figure 25- Maximum Side Force on Sliders versus Normal Force on Track. Operating

Frequency : 27.23 kHz.

Figure 26 shows the dependency between side and normal forces on the sliders. In

contrast to Figure 25, Figure 26 uses only those force measurements taken with the

calibrated spring. The slope of this curve was estimated at 0.124 and has a correlation

factor of 0.917. This suggests that the spring generates better data.
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Side Force vs Normal Force
( Static Force Data )
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Figure 26- Maximum Side Force on Sliders versus Normal Force on Track. ( force

measurements only ).

Figure 27 shows the relationship between the maximum side force acting on the

sliders and the pressure exerted by the sliders on the track. Figure 27 contains the same

data as Figure 25, except that the normal forces have been normalized by the surface areas

of the corresponding sliders. By plotting the maximum side force as a function of pressure,

Figure 27 appears less scattered than Figure 25. The correlation factor for the data in Figure

27 is 0.798.
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Figure 27- Maximum Side Force Exerted by Motor Versus Pressure Exerted by Slider

Figure 27 suggests that there is some correlation between the surface area of a given

slider and the maximum side force exerted upon it. The side force exerted upon the sliders

is frictional in nature, and hence according to simple (Coulomb) friction models, should be

independent of surface area. In more elaborate models, surface area has a second order

effect on friction. According to Rabinowicz, a doubling in surface area will lead to an

approximate 10% increase in frictional force. The observations however, indicate that

objects which exert a greater pressure ( ie- have a smaller surface area per unit mass ) on

the track perform better and behave in a more predictable fashion. A possible explanation

may be found in the effect of the air present in the interface between the track and the

sliders.
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Figures 25 through 27 suggest that the maximum side force exerted by the motor is

linearly proportional to the normal force applied on the track by the slider. This may be a

reasonable description of the operating range of normal forces to which the track was

subjected to during the test period. However, as the normal force on the track is increased

beyond the levels to which we tested it, the "squashing" effect on the waves would

probably cause the curve to flatten out as illustrated in Figure 28. If the normal force is then

increased further, the curve will intercept the x axis for a second time. At this limiting

value, the normal force exerted on the track would not allow the piezo actuators to

command a deflection in the track.

Suspected
Operating "Wave Squashing"

Maximum
Side Force

Range Effect

Limiting
Valuei~iiiiililiiliiiiii 4
Normal
Force

Figure 28- Conceptual Extension of the Operating Envelope of the Travelling Wave Motor.

The shaded are represents the suspected range of Normal Forces Applied to the track

during our testing procedures.

Figure 29 shows the force coefficient as a function of the normal force on the track.

The average value for the measured force coefficient is approximately 0.1, with high values

extending up to 0.33. Figure 30 shows the angle of inclination of the track at which the

slider achieves static equilibrium versus the normal force of the slider on the track. The

average value of this angle is approximately 0.1, with high values extending up to 1.8.
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Figure 29- Force Coefficient of Motor ( i.e- Ratio of Maximum Side Force to Normal

Force ) versus Normal Force on Track. Oneratine Freciuencv : 27.13 kHz,.
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Figure 30- Maximum Angle of Track Inclination versus Normal Force on Track.

As shown in Appendix 7, the force coefficient of the motor should be identical to

the tangent of the maximum angle of inclination of the track, yet by comparing Figures 29

and 30, we observe that some of the highest force coefficients values were achieved at

angles of inclination equal to zero degrees. These data points correspond to force

measurements obtained using the calibrated spring.

Similarly, it can be noted from Figure 30 that the maximum angle at which a slider

will remain at rest on the track, is approximately 0.18 radians. If the travelling wave motor

were turned off however, the track could be tilted to an angle in excess of 17 degrees ( 0.3

rads ) and a slider would still remain at rest because of the high static friction coefficient

between the aluminum surfaces of the track and the sliders.
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It appears, based on this behavior, that the operation of the travelling wave motor

somehow decreases the effective value of the friction coefficient between the track and the

slider. As presented by Rabinowicz [13], the frictional force between two bodies is the

result of the junctions formed between the two surfaces while they remain in contact with

each other. When two surfaces slide over each other, these junctions have to be sheared.

The frictional force is the force required to overcome the resistance of these junctions to

shear. The junctions between surfaces appear regardless of the relative sliding velocity

between them. The size of the junctions, however, increases proportionally to the amount

of time the surfaces remain fixed to each other. Hence, the static friction coefficient

between materials is larger than the dynamic friction coefficient.

According to Rabinowicz [13], the short contact time between the sliders and the

track can decrease the number of junctions formed between the surfaces and therefore

reduce the coefficient of friction between them. This effect, however can only be

responsible for decreasing the friction coefficient between the sliders and the track from its

static value of approximately 1.4 to its dynamic value of 1 or 0.9. The further reduction in

the effective value of the coefficient of friction encountered while operating the motor,

suggests that there is an effective drop in the normal force between the sliders and the track.

The normal force between the sliders and the track could decrease as a result of the

vibrations along the vertical direction that the slider is subjected to. If a slider finds itself in

free flight during certain intervals of the operation of the motor the average normal force

between the slider and the track will decrease. The normal force between the sliders and

the track will also decrease if there is a layer of air that is supporting part of the weight of

the slider and not allowing it to make contact with the track. This possibility is addressed at

greater length later in the discussion.
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Power and Efficiency

Electric Power : The electrical power delivered to the motor was calculated by

measuring simultaneously the voltage and current levels of one of the driving electrical

signals leaving the amplifiers. Figure 31 shows the voltage and current levels as measured

during one cycle of operation, while Figure 32 shows the relationship between the current

and the power delivered by the amplifier during that same interval of time.
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The power curve in Figure 32 is shown to go negative during certain

intervals of the operating cycle. This demonstrates that at resonance, the piezo ceramics in

the track are converting some of the energy stored in the deflection of the track back to

electrical power and doing work on the amplifier.

By numerically integrating the power data of Figure 32 as follows:

i=T
Pi Ati

i=0
Power =

i-=
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the electric power delivered by the amplifier was estimated at 2.97 watts per signal or a total

of 11.89 watts.

The electric power delivered to the track appeared to remain constant at a given

frequency, regardless of the amount of mechanical work extracted from it. Any fluctuations

in electrical power due to changes in mechanical loading were beyond the precision of the

measuring devices used.

The electric power delivered to the track, did vary however, depending on whether

the track was fixed to the aluminum base plate ( via the layers of foam and rubber ) or

whether the track was suspended in mid air (with the foam tape attached to it ). Figures 33

and 34 show the voltage, current and power curves of the signals going into the motor

while the track is suspended.
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The electrical power delivered to the motor when the track is suspended in mid air is

approximately 1.38 watts per signal. The total electrical power delivered to the motor is

5.536 watts. This figure is approximately 2.14 times smaller than the power delivered to

the track when the motor is mounted onto is base plate for regular operation. This

difference can be attributed theoretically to both mechanical and thermal energy dissipation

into the rubber and aluminum base plates. In practice, however, no vibrations were

detected on the surface of the aluminum base plate, which suggests that the dissipation of

energy onto the base was mainly thermal in nature. (See Thermal Dissipation)
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Mechanical Power : An estimate of the mechanical power output was obtained by

allowing the sliders to travel along an incline of a specified angle at a constant velocity. The

product of the measured velocity by the side force needed to maintain static equilibrium is

equal to the mechanical power extracted by the slider from the motor.

Figure 35 shows the side force exerted by the motor as a function of the velocity of

the sliders. The data points located along the y axis of the plot correspond to force

measurements taken when the slider was at rest, such as the force measurements taken with

the calibrated spring. The spread of these data points along the y axis corresponds to sliders

of different weight. The data points located along the x-axis correspond to speed

measurements taken while the sliders were moving at their top speed. The force exerted on

the sliders is zero since the sliders are not doing work against anything. The data points in

between the axis correspond to sliders which are extracting mechanical work from the track

and therefore have non-zero velocity as well as non-zero force.
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Figure 35- Side Force Exerted by Motor as a Function of Slider Velocity.

The data points shown in Figure 35 suggest a frictional model such as the one

illustrated in Figure 36. Points along the horizontal axis correspond to sliders who have the

greatest velocity relative to the inertial frame of the base of the motor, but which are at rest

relative to the points of the surface of the track with which they are in contact. The slip

velocity for these points is zero, hence, there is no force exerted on the sliders by the track.

When the velocity of the slider stops matching that of the top surface of the track, a slip

velocity between the sliders and the track appears and so does a frictional force. The

greatest slip velocity is encountered when the velocity of the sliders is zero relative to the

inertial frame of the base. As shown in Figure 35, the force on the slider is related to the

speed of the slider, and hence to the slip speed between the slider and the track. The
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frictional model in Figure 36 is one which allows for a dependency between slip velocity

and coefficient of friction.

coefficient
of friction

static

dynamic

slip
velocity

Figure 36- Suggested Frictional Model based on Results

Figure 37 shows both force data and power estimates as functions of velocity. The

curves shown in the figure are both fourth order polynomial approximations to the data

available. The largest amount of mechanical power extracted from the motor was measured

at 6 milliwatts. This amount of power was extracted by placing one slider on the surface of

the track an allowing it to go up the incline. More power could have been extracted from the

motor if the mass of the slider had been increased. This was not done in order not to

scratch the surface of the track.

The mechanical power extracted from the track could also be increased by placing

more sliders on the track. This was not done in general however, since it was not possible

to place enough sliders on the track and have them move freely without interfering with

each other. This was done successfully, however, with two sliders of equal mass. The

power extracted during this run was approximately 12 milliwatts.
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Thermal Dissipation : The rate at which the motor is converting electrical energy

into heat was estimated by measuring the temperature increase of the track while attached to

the hard rubber base via double sided sticky foam, and while the track was kept suspended

in the air ( with the foam tape attached to it ). Figure 38 shows the measured surface

temperature of the track as a function of time. The curve on the top, represents the

temperature increase of the track fixed to the base. The lower curve shows the temperature

rise of the track suspended in mid-air. During the first 400 seconds of operation the

increase in temperature of the tracks is close to linear, and can be approximated by straight

lines as the ones shown in Figure 38. After 400 seconds, the rate at which heat is

dissipated by the surface of the tracks onto its surroundings approximates the rate at which
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heat is being pumped into the track, and hence the temperature curves level off. The slope

of the straight lines approximating the tracks' initial increase in temperature is a good

indicator of the power used to raise the temperature of the track.

Surface temperature of Track
VS

Time

i-1rA

rz

0 500 1000
Time

(seconds)

Figure 38- Measured Surface TemDerature of the Track as a Function of Time

1500

The power used to increase the temperature of the track was calculated using the

following relationship :

mATCf
P heat - t (44)

where: m =

Cf=

mass of the composite track = 0.0673 Kg

Specific Heat of Aluminum = 895.37 J/Kg K
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AT/t = Slope of the straight line in Figure 34

= 0.01896 K/sec (for the rubber-mounted track)

= 0.01423 K/sec (for the suspended track)

The track mounted on the rubber base absorbs 1.14 watts of heat, while the track

suspended in mid air (with the foam tape attached to it ), absorbs 0.86 watts of heat. These

estimates equate the specific heat of the piezo ceramics to that of Aluminum and neglect to

take into account the mass of the rubber or the foam in thermal contact with the track. These

assumptions could be wrong by a factor of 3 or 4. When the track was suspended without

the foam tape attached to it, the track still absorbed 1.14 watts of heat.

Figure 38 indicates that the when the aluminum track is suspended, its temperature

does not increase as rapidly as when it is attached to its base plate. Furthermore, Figure 38

also indicates that the equilibrium temperature of the suspended track is lower than that of

the mounted track.

When the track is mounted onto the base plate, the piezo ceramics cause both the

aluminum track and the foam tape plus rubber substrate to strain. The heat produced by

these materials is proportional to the amount of strain they undergo. The amount of strain

that they undergo is inversely related to their modulus of elasticity. Rubber's modulus of

elasticity is anywhere between 700 to 70000 times smaller than that of Aluminum while

rubber's thermal conductivity is about 1000 times smaller than that of Aluminum*. Any

heat produced by the piezos, aluminum and foam tape will probably manifest itself in the

temperature increase of the track. Any heat produced by the rubber substrate will probably

dissipate through the Aluminum base plate which can acts as a good heat reservoir.

* Rubber has a thermal Conductivity Value of 0.15 watts/m K, while Aluminum
has a value of 164 watts/m K.
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The difference between the amount of power used to heat up the track when it is

suspended or mounted on the base is small compared to the difference between the

electrical power required to drive the motor when it is suspended in mid air or mounted

onto the base plate. This suggests that the amount of power dissipated as heat by the track,

piezos, and foam tape is in the vicinity of 1 watt while the extra power delivered by the

amplifier when the track is mounted onto the base plate is going into the base plate. This

implies that when the track is in operation approximately 6.4 watts of power get dissipated

into the base plate.

Acoustic Dissipation : While in operation, the travelling wave motor radiates

energy in the form of sound. Most of the sound radiated, probably occurs in the ultrasonic

range at the operating frequency of 27230 Hz. This hypothesis, however, was not

verifiable experimentally, since equipment capable of measuring sound pressure

disturbances at this frequency range was not available.

The traveling wave motor emitted sound waves at the audible frequencies of 3037

Hz and 13646.8 Hz. These signals were detectable by available sound level indicators, and

they were also found present, using a spectrum analyzer, in the signal read from the strain

gauge mounted on the track. These two frequencies correspond to the first and ninth

subharmonic of the motor's operating frequency of 27230 Hz.

When disconnected from the track, the driving circuitry produced a relatively clean

sinusoidal signal at 27230 Hz. The electrical signal contained strong higher harmonics at 54

kHz and 81 kHz, but these signals were attenuated relative to the main frequency signal of

27 kHz, by -45 dB and -30 dB respectively . The electrical signal also contained low

frequency noise and subharmonics of the resonant frequency, but these were attenuated by

more than -70 dB relative to the operating frequency.
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As shown above, the electric signal driving the motor appears to be clean, yet the

track radiates acoustic energy at subharmonics which are not being driven by the electric

input signal. This suggests that the motor has a detectable non-linear behavior. On the other

hand, if the audible acoustic energy is the result of an electric signal 70 dB lower than the

main operating frequency, then the power dissipated as sound at the operating frequency

should be approximately 70 dB greater than what was measured at the audible frequencies.

The sound pressure level emitted by the track in the frequency range between 20 Hz

to 20 kHz was measured ( using a flat weighting filter ) to be 102 dB. This sound pressure

level indicates that the motor is dissipating approximately 3.7 x 10-7 watts of audible

sound. (See Appendix 6 for acoustic power estimation procedure ). The amount of energy

being dissipated at frequencies above 20 kHz is unknown. However, if we assume that it

is about 70 dB greater than what is emitted in the audible range, we obtain an estimate of

1.17 x 10-3 watts.

Overall Efficiency : The overall efficiency of the motor was defined as the ratio

between the electrical power supplied by the amplifiers and the mechanical power extracted

from the motor. The best measured efficiency achieved by the motor was 0.1 %. based on

previous discussion it can be said that this estimate is a conservative one. Higher

efficiencies are attainable.

The energy balance for the motor is summarized in Table 1.
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Table 1- Energy Balance Summary for Motor

Mounted Suspended in Air
on Base Plate

Input Electric 11.89 W 5.53 WPower
Mechanical 12 mW NA

1.14 W (into track) 0.86 W (w/foam tape)
Thermal

6.4 W (into base) 1.14 W (w/o foam tape)
Output 7 7
Power Acoustic < 20kHz 3.7 x 10-7 W 3.7 x 10-7 W

Acoustic >20 kHz 1.17 x 10-3 W (estimated value)
Lost Power 3 W NA

Overall Efficiency = 0.1 %

The most accurate figures above, are those of the electric input

power. The thermal power consumption figures provided above represent conservative

values, since they are values which have been directly or indirectly measured. The amount

of power unaccounted for, is therefore probably much less than 3 watts, which makes

sense, since energy conservation demands that the lost power be equal to zero.

Torsional Coupling Present in Motor

While evaluating the performance of the motor, it became apparent that objects

placed on top of the track were subjected to a force which made them slide back and forth

across the width of the track. It was also observed that this motion was not arbitrary since

the changes in direction of the objects placed on the surface occurred at approximately equal

intervals, and always at the same location along the track.

The scratch patterns left by the various sliders on the surface of the track, revealed a

sinusoidal motion with an average wavelength of 0.0835 m, with a standard deviation of
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.0135 m. The whole wave pattern remain fixed relative to the track, suggesting that

together with the travelling wave, the piezo ceramics were also driving a torsional standing

wave.

Equation (9) represents the equation of motion describing the twisting behavior of a

straight beam.

GJY"- pJ3= 0 (9)

By assuming a solution of the form:

S(x,t) o= ei(kx+cot)

we obtain the following dispersion relation:

GJk2= pJw 2

which can be rewritten as equation (45) in terms of the wavelength and of the

operating frequency in Hz :

t (45)

Given that the density for the composite beam has been estimated at 3562 Kg/m3

and that the shear modulus of the track is approximately that of aluminum, ie- G = 2.688 x

1010 Pa, equation (45) predicts that the wavelength of the torsional waves along the

straight sections of the track, is approximately ) = 0.1062 m. This value is approximately

27 % larger than the average wavelength, yet within the range of measured values of Xt.

Comparing the wavelength of the measured sinusoidal movements on the track, to

the wavelength of the predicted torsional mode of vibration, suggests that these two
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phenomena are the same. The discrepancy between theory and practice could be the result

of a discrepancy concerning the value of the track's shear modulus.

It was further noticed that the separation between the nodes of the torsional standing

wave varied greatly and that the node pattern became diffuse along the curved sections of

the track. Furthermore, the node pattern was slightly shifted relative to the symmetry axis

of the track. All this seems to indicate that the standing wave pattern was very sensitive to

construction irregularities in the track.

During design, the dispersion curves for the racetrack predicted the presence of a

torsional mode at the operating frequency. The magnitude of such a presence or how it

would interact with the transverse mode of vibration was unknown and a detailed analysis

was not attempted. The chosen value for the radius of the track was meant to minimize the

effect of the torsional waves on the transverse waves. From an operational point of view,

this was achieved since the effect of the torsional waves is minimal and the track is capable

of performing satisfactorily.

One possible method of eliminating the undesired torsional waves is to increase the

radius of the circular portions of the track. Another method, which was suggested in the

theoretical section of this paper, is to change the cross section of the track in the circular

portions of the motor such that the thickness increases towards the outer edges, or the

section mass center is shifted slightly towards the inner edges. Neither of these options was

tested since we did not want to physically damage the surface of the track, and since we

were skeptical about the possible benefits of performing these alterations on a track whose

torsional behavior was somewhat erratic.
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Other Observed Phenomena

Dynamics of Short Sliders : As described in Section 2, objects that are longer than

the operating wavelength of the motor will essentially only be in contact with the crests of

the waves. The velocity of the surface, at the crest of the waves, is opposite in direction

than that of the velocity of the travelling waves. The sliders resting on the surface of the

track will try to match the speed of the crests, and therefore move in the direction of the

crest velocity.

Surprisingly, while testing the travelling wave motor, sliders of different lengths

were used. Their measured velocities at a given frequency were the same regardless of their

length. Among the sliders tested, one of them was a half a wavelength in length and the

other one was a quarter wavelength in length. Despite their size, these sliders moved in the

same direction as the longer ones, with the same speed. In theory, however, it would seem

possible for these smaller sliders to fall into the trough of a wave and gain contact with

those surfaces of the track whose velocity is in the same direction as that of the travelling

wave. Such an occurrence would cause the smaller sliders to move in the opposite direction

than those sliders whose length is greater than a wavelength.

This possibility is unique to linear travelling wave motors since, a circular motor

has a rotor which is resting at all times on the crests of all the waves of the stator. A linear

travelling wave motor, however, has a slider which rests on only some of the crests of the

track at any given time. In the case of a slider that is smaller than the wavelength of the

travelling waves, it is possible for the slider not to be in contact with any crests at all.

The fact that the smaller sliders behaved identically to the larger ones is due to the

particular operating conditions of the motor and can be explained as follows : Figure 39

shows the upper surface of a portion of the track and the velocity profile of the surface
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through a whole cycle. At the motor's operating conditions, the travelling wave is moving

at a velocity of 693.4 m/sec, while a point on the crest of a wave is moving in the opposite

direction at approximately 5 cm/sec. For a point mass to move in the same direction as that

of the travelling wave, it must make contact with the portions of the track's surface which

are below the centerline. An object smaller than the wavelength of the travelling waves does

not touch the surfaces below the centerline because it does not have time to reach them.

Figure 39 depicts a particle leaving the crest of a wave with zero vertical velocity

and free falling until it collides with the next wave. Because of the velocity at which the

waves are travelling, the particle has less than 36.7 g seconds of free fall time. During this

time, it can descend a distance h equal to 6.5 nanometers which is approximately 1/200th

of the amplitude of the traveling waves. If the particle does not bounce upwards

significantly after colliding with the incoming wave, it will simply be lifted up and pushed

sideways at the crest. This particle will therefore always be in contact with points on the

surface very close to the crest of the waves, and its velocity will always be in the direction

opposite to that of the travelling waves.

Figure 39 also depicts a mass particle falling from a certain height h2 and following

a trajectory ( in the wave frame of reference ) which allows it to go fast enough to reach the

bottom of the wave trough. This distance h2 corresponds to a height of 1 mm, which is

approximately half the thickness of the track.. Therefore, as long as the sliders on the track

do not vibrate up and down in a visible manner, there is no chance of a particle reaching the

trough of a travelling wave.
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Figure 39- a,.) Surface velocities of track over a wavelength. b.) Probable trajectory for

mass particle resting on track. c.) Improbable trajectory for mass particle on track.

The previous explanation, suggests that if the operating frequency of the motor was

smaller or if a particle was dropped onto the track from a height greater than one mm, such

a particle would have a chance traveling along the same direction of the waves. This

hypothesis was verified on a couple occasions when a small piece of plastic was dropped

onto the track and started travelling backwards. This event, however, was not verifiable in

a repeatable manner.
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Aerodynamic Effects : While evaluating the performance of the motor, several

observations could not be explained using the models developed to describe the functioning

of a travelling wave motor: Flat surfaced sliders, with large surface areas had been noted to

hover at a given position along the track while "slotted" sliders of equal weight and

dimensions would move along a given direction as expected; furthermore, measured force

data seemed to correlate better when normalized by pressure. This suggests that the side

force supplied by the track is somehow related to surface area.

The observations suggested that a layer of air trapped between the sliders and the

track was preventing these surfaces form establishing good contact. As mentioned before,

the track's local vibrational motion could be forcing air to circulate about it as shown in

Figure 40.

air
track k I movement
cross Vertical
section Displacement

Vertical
air Displacement
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Figure 40- Air Circulation About Track Due to its Vibrational Motion

By placing a flat slider on the surface of the track, air is forced underneath it thereby

creating a cushion which separates it from the track. Hence the flat sliders, hover at a given

position and do not make good contact with the crest of the waves. This prevents them

from feeling the side force exerted by the track. On the other hand, the slotted sliders allow

air to flow underneath them without preventing the slider from remaining in contact with

the track. Hence the slotted sliders feel the side force exerted by the track in a consistent

manner.
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The air circulation effect was crudely verified by placing the motor in a vacuum

chamber and reducing the pressure within the chamber to 0.0045 torrs. A flat slider was

placed on the track and the velocity of the slider was measured as a function of the

operating frequency of the motor. Figure 41 compares the data obtained in the vacuum

chamber to the data obtained under regular laboratory conditions. The slider used under

regular laboratory conditions was a slotted slider.

Frequency Response Comparison
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Fieure 41 - Comoarison of the Freauencv Resoonse Curves in Regular Laboratory

Conditions and in Vacuum

As shown in Figure 41, the performance of the flat slider in vacuum increased to a

level comparable to that of the slotted slider in air. No hovering behavior was displayed by
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the flat slider. This evidence suggests that an air cushion between the slider and the track

while operating the motor in air was affecting the performance of the motor.

Figure 41 also shows the resonant frequency of the motor shifting from 27230 Hz

to to a lower value of approximately 26700 Hz. This decrease in the resonant frequency

suggest that the effective stiffness of the track in the vacuum chamber is lower than that of

the track at standard atmospheric pressure or that the track is experiencing air loading

effects while operating in a vacuum. The air loading hypothesis would support an increase

of the resonant frequency when operating the track in vacuum. The data, however

displayed the opposite trend.

A decrease in the effective stiffness of the track can be attributed to a change in

behavior of the foam layer supporting the track. If the structure of the underlying foam is

porous, then the vacuum chamber would extract the air from the foam structure leaving

behind a less rigid mesh of material. Thus, the overall stiffness of the track decreases

causing the resonant frequency of the motor to shift as well.
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V- Conclusions & Suggestions

for Further Research

The primary and secondary goals of this project were accomplished. A working

prototype of a linear travelling wave motor was successfully constructed and tested within

the time span of 8 months. Careful analysis of the results obtained suggest the following:

* The models used in designing the track were able to accurately predict the resonant

frequency of the travelling wave motor. These models however were not able to properly

characterize the torsional behavior of the track.

* Torsional coupling in the track was detectable, yet insufficient to render the motor

ineffective. The torsional behavior of the track was found to be very sensitive to variations

in the construction of the track.

* The overall measured efficiency achieved by the motor was 0.1 %. Most of the

energy used by the motor was dissipated as heat by the rubber base it was mounted on. A

better track suspension design is required for future motors.

* At high operating frequencies objects will be displaced by travelling wave motors

at essentially the same speed regardless of their length.

* The performance of the motor was hindered by the presence of air at the interface

between the sliders and the track. In practice this meant that sliders operated better if the

surface in contact with the track was small or if the motor was placed in a vacuum chamber.

In order to improve the performance of travelling wave motors, further research is

needed in the following areas :
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* The dynamic behavior of small objects placed on travelling wave motors requires

better understanding. It would be interesting to verify whether the direction of travel of a

particle can changed by varying the operating frequency of the motor and not the direction

of the travelling waves.

* The aerodynamic effects encountered during the experiments need to be further

understood. It is possible that for certain operating conditions, these effects may hinder less

the performance of the motor. It is also evident that better sliders need to be designed.

* A feedback control system should be incorporated into the motor's configuration

in order to evaluate its potential use as a positioning actuator. This requires a better

understanding of the transient behavior of the motor.

* A motor with variable cross sectional properties should be constructed in order to

verify the predicted decoupling of the torsion bending modes of vibration.
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VI- Appendices

APPENDIX 1-A

Electric Circuit Design

The driving circuitry is composed of a quadrature generator which is responsible

for generating four square waves shifted 90 degrees in phase relative to each other and a

filtering circuit which filters out the higher frequency components of the square waves and

leaves four, similarly phased, sine waves. These signals are then amplified and sent to their

corresponding piezo ceramics.

Quadrature Generator and Filtering Circuit : These circuits were implemented

digitally using TTL logic components and assembled on a protoboard. Appendices 1-B and

1-C contain the circuit diagrams for both of these circuits.

Circuit Description: The quadrature generator uses the TTL output of a signal

generator as the main clock for the circuit. Two cascaded 4-bit counters (LS163's), divide

the frequency of the clock pulse by 19 and this signal is then divided by 2 as it is converted

into a square wave by a J-K flip-flop (LS76). This square wave is then split into two

signals, one of which is inverted and the other which is buffered. These two signals are

used to clock two more J-K flip-flops operating in toggle mode, thereby obtaining 4 square

wave signals, 1/76th of the original clock frequency and shifted by 90 degrees.

The dc component of these four signals is eliminated by an analog high pass filter.

The resulting ac signals are then fed to the digital filters which have a 75:1 clock to coner

frequency ratio. These filters require a +/-8 V voltage supply which is provided by two

regulators connected to the +15V power supply of the protoboard.
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Amplification and Connections to Piezoceramics : The output signals of the digital

filters are then buffered by "follower circuits" implemented using operational amplifiers

(3140's). These signals are then used to drive two dual channel Crown Amplifiers (DC-

150 and DC-300).

The signals from the amplifiers are finally used to drive the piezo ceramics on the

bottom side of the racetrack. The aluminum track serves as common ground for all four

signals. The track however, is electrically floating, since it is not connected directly to

ground. This is possible due to the complementary nature of the driving signals.

Besides serving as common electrical ground, the aluminum track behaves as a heat

sink for the piezo ceramics, to prevent them from overheating. Depolarization of the piezo

ceramics is avoided by using high frequencies. The G1195 ceramic looses it polarization at

about 30 Volts when driven at DC or at low frequencies. By operating in the 30 kHz range,

the voltage levels can be doubled or tripled without causing depolarization.

The amplifiers are responsible for driving a capacitive load of approximately 200

pF at 30000 Hz. This implies that each signal will require current levels in the order of 0.7

amperes and that the amplifiers will have to dissipate at their output stage approximately 30

watts per signal ( @ 20 volts p-p). Appendix 1-D elaborates on the power consumption

estimates of the circuitry.
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APPENDIX 1-C
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APPENDIX 1-D

Estimate of Total Capacitance and Power Consumption of Motor

Given the dimensions of the track, the total surface area of piezo electric ceramics

covering it, can be approximated to 14.5 in2. From Appendix 5, the value of Kt is known.

The overall capacitance of the piezo layer can be estimated using:

c rA ktA
4.448T 4.448T

where the area A is given in units of inches squared, and C is given in Farads. There are

116 piezo ceramics which effectively behave as four piezos, each with an equivalent area of

3.678 in2. The equivalent capacitance of each of these four piezos, as given by the above

formula is C = 200.69x10- 9 F

Now in order to estimate the current requirements per signal, the motor was

modelled as a simple capacitive circuit, where:

V (t)= Vosincot

dV
(t)i = C =t CooV sin cot

dt osinwt

This implies that the maximum current drawn by each signal is given by:

max(i)= VocoC

Using this relation and the following values :

V o = 20V(p - p)

co = 2n (27434Hz)
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the maximum current drawn by each signal is estimated at 0.6919 amps. This further

implies that each amplifier must be capable of delivering approximately 28 watts of power

103

I



DERIVATION OF PDE'S FOR CIRCULAR BEAM

7
7

/ z

center of
curvature

As copied from Love [1], force and moment equilibrium considerations, lead to the

following six equations:

Force Balance Equations:

6N 62u
+ T= mR

se t 2808t

N' 2
N' mR

80 6t 2

8T N5T-- N
68

2
5 w= mR
8t 2

Moment Balance Eauations:
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8G 1 2 83v+ H - N'R = -c m80 4 t280 (49)
28G' 1 2 8 6(8 ++ NR= --c m + w
S4 2 (50)

8H G = 2mR (51)
80 2(51)

where using Love's notation:

m = mass per unit length of beam
c = radius of the cross section of the beam

u = displacement in the radial direction
v = displacement in the transverse direction
w = axial compression or extension

S= twist about about the centerline

0 = angle distended by circular beam

N = shearing force on cross sectional face
T = tension

G = flexural couple defined in Love [1]

Now given the following constituent relations:

S c4  82
802 (52)

1 c4  2U (53)8W

as well as the expressions for the bending and polar moments of inertia as defined for a

beam of circular cross section:
S1 c4H=- Gi +R
1 44

J= 1 7C42
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the derivation of the equations for out of plane motion, can be completed: we set the rotary

inertia of (49) equal to zero, solve for N' and differentiate by 0. This result is then plugged

into (47) and used together with equations (52), (53), (54) and the coordinate

transformation :

6() 6()
- R

to obtain the coupled equations:

s2 ( 6v8t2 pA V

8t 2

s2

6t2

- 62( REP
8S.2 R )

El 62v
R gs 2

8 GJ s +
6s R2 S

GJ 8v
R 8s

EIP
+ (56)R2 (56)

If we assume that the material properties of the beam remain constant throughout the length

of the beam, then these equations become:

EIv"" + pAi = (EI

GJi"- pJi3= 1 (ER

+ GJ)3"+ -• GJv"
R (13)

EIP
+ GJ)v"+

(14)

where: ' = shorthand notation for the spatial derivative d()/dx

= shorthand notation for the time derivative d()/dt

It should be noted that as the value for the radius of curvature of the beam

approaches infinity, equations (13) and (14) decouple, and we obtain the equations of

motion for a straight beam.
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Construction Diagram for Track
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Construction diagram for Flat Sliders
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APPENDIX 3-C

Construction Diagram for sloti
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APPENDIX 4

Relevant Data of G1195 Piezo Electric Ceramics

Composition .....................................

Material Designation ............................

Thickness .........................................

Relative Dielectric Constant ...................

Piezo Electric Strain Coefficient ..............

Polarization Field ................................

Coercive Field- Static ...................

60 Hz ....................

D ensity ........................................

Elastic Modulus ................................

...........................................................

Lead Zirconate Titanate

G1195

hp = 0.0075 in

K3 = 1700

K 1 = 1700

d33 = 360 x 10-12 m/V

d31 = -166 x 10-12 m/V

Ep = 2 x 106 V/m

Ec = 5 x 105 V/m

Ec = 7.5 x 105 V/m

p = 7600 Kg/m3

YE 33 = 4.9 x 1010 N/m2

YE11 = 6.3 x 1010 N/m2
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Static Analysis Of Beam with Piezo Actuators

The amplitude of the waves in a motor which operates at resonance is equal to the

static deflection of the track times a dynamic amplification factor. This amplification factor

is inversely related to the damping ratio of the resonant mode of the track and needs to be

determined experimentally.

An estimate of the static amplitude of the travelling waves in the racetrack can be

derived as follows: Let us isolate a portion of the track equal in length to half the

wavelength of the travelling waves. Let the end points of this portion of the track

correspond to points of zero deflection. Let a pinned-pinned Euler beam of equal length and

cross sectional properties replace the selected portion of the track. Finally, lets define a

coordinate frame in which the origin is located half way between the end points of the

beam. Figure 42 illustrates the selected portion of the track in its undeflected state.

As shown by De Luis [14], piezo ceramic actuators attached to a structure can be

modelled as point moments located at the edge of the ceramics. The selected portion of the

track has two piezo ceramic segments attached to its lower side. Assuming that both piezos

are being excited equally, they each can be modelled as two moments. The moments

generated at x=O, being equal in magnitude and opposite in direction tend to cancel each

other out. The moments that remain are the moments applied at each end of the pinned-

pinned beam.

The problem of estimating the static amplitude of the track has been simplified to

calculating the deflection of a pinned-pinned beam due to two applied moments at the tips

of the beam.
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Figure 42- A Pinned-Pinned Beam with Two Piezo Ceramic Actuators can be Modelled as

a Pinned-Pinned Beam and Two Moments Located at the End Points

From simple Beam-theory we can recall that:

EIw" (X)= M (x) (57)

where w" is the second derivative with respect to x of the assumed deflection shape of the

beam. If w(x) is given by:

W (x) mid (

deflection at x=O

L2 (58)

( see Figure 40)
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By taking the second derivative with respect to x, solving for Wmid and substituting (57)

and (58) into the resulting expression we obtain (59):

8
W -- W

(x) 2 mid

L2W"
W mid 8

L2M
Wmid 8El (59)

From De Luis [14], we obtain an expression for M, the moment applied by the piezo

actuators at the tips of the beam, as a function of the thickness of the beam, h, the thickness

of the piezo ceramics, hp, the voltage applied to the piezo ceramics, Va, the piezo electric

strain coefficient d3 1 and the modulus of elasticity of the of the track and of the piezo

ceramics:

- Eh2b d 31V a
M-

Y+a hP (60)

where : = 6

Eh
'~Eh

By substituting equation (60) into equation (59) we obtain an expression which

provides an estimate for the static deflection of the track as a function of the applied

voltage, the dimensions of the track and the operating conditions of the motor:

L2  h2 b d31Va
mid - 8 (Y + a) h (61)
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APPENDIX 6

Acoustic Power Estimation Procedure.

A sound level meter measures the pressure variation due to a given a sound. The

sound Pressure Level, Lp, is defined as :

PL = 20 logl 0 pS= 20 log ref (62)

where Pref , for gases, is defined by convention to be 2 x 10-5 Pa and p

corresponds to pressure level of the disturbance being measured.

As shown by Beranek [15], Sound Intensity Levels can be approximated by Sound

Pressure Level measurements, if these are taken in a room at a temperature of

approximately 20 degrees Celsius and 1 atmosphere of pressure. Sound Intensity Level,

LI , is defined as:

L = 10 log10-I
ref (63)

where Iref is defined by convention as 10-12 watts/m 2 .

In order to obtain an estimate of the amount of power needed to produce a sound at

a given Sound Pressure Level, we must first define Sound Power Level and the relation

between the two of them. Sound Power Level, L,, is defined as :

WLw = 10 log 10 Wref (64)
ref (64)

where Wref is defined by convention as 10-12 watts, and W is the power of the

source producing the sound. If the intensity of the sound is constant over an area S, then

sound Power Level can be written in terms of the Sound Intensity Level as follows:
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Lw= Li + 10lIogS (65)

where S corresponds to the surface area in meters over which the measurement is

being taken.

In order to estimate the amount of power converted into audible sound by the

motor, the value of LI was assumed to be equal to the measured value of Lp. The value of

S was then calculated after measuring the diameter of the microphone used to measure the

sound pressure level. Through equation (65) we obtain a value for Lw , which can then be

used in equation (64) to obtain the estimate for power, W, in watts.
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Force Balance on Slider Resting on Inclined Track

Given the following force balance diagram:

Fn

ack

mg

Static equilibrium ( ie.- velocity of slider is constant ) requires that:

Fs = mgsin(8)

but since the Normal Force, F n , is also related to the angle 0 by :

F n = mgcos(O)

then it can be concluded that static equilibrium always requires that:

F
s = tan(0)

F

This implies that the force coefficient of the motor, which we have defined as the

ratio of the side force exerted on the sliders to the normal force on the track, is equal to the

tangent of the angle of the track at which a slider will reach static equilibrium.

F s =Force Coefficient of Motor = tan(0)
F
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