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Procedures for measuring power scattering and noise parameters of Galium-Arsenide
fieldeffect transistors in the X-band are presented. The variaions of the noise parameters and
of various gains a particular FET with frequency, the device's physical temperanre and DC
bias are reported. The physi parameters of the FEl's channel are determined.

Details of the design, construction and evaluation of two single stage amplifiers operating
at 8.45 GHz are presented. Both are tuned using micr ip boards. At 8.5 GHz and room
temperature, the first prototype exhibits a 6.8 dB gain and a noise temperature of 160 K at 8.5
GHz and room temperature. Deformations of the micrstip boards, when cooled, prevent the
operation of the ampfier at cryogenic tenperatures. The second prototype, when cooled at 77
K, exh a 7.2 dB gain and a noistemperature of 68 (an iprovement factor of 2.6 over
the noise performance at 293 K). This study is part of the development of low noise, cryogeni-
cally cooled X-band FET amplifiers for VLBI observations in space.
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A quatre heures du matin, l'dtd,
Le somme l d'amour dure encore.
Sous les bosquets l'aube dvapore
L'odeur du soir ft.

Mais bas das 'immense cantier
Vets le soi des Hesprides,
En bras de chemise, les charpeters
D*j safit'nt

Dans leur ddert de mousse, anquiles,
Ils prparent les lambris prdceux
O la riches de dla ve
Rira sous de faux cieux.

Ah! pour ces Ouvriers harmant
Sujes dun roi de Babylone,
V*nus! LaIse un peu les amants,
Dont l'ime es en couronne.

0 Reine des Bergers!
Porte aux travaeurs l'eau-de-ve,
Pour que leurs forces soient en paix
En andant le bain dans la mer, a midi.

Arthur Rimbaud
Bonne pense du matin.
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CHAPTER I: INTRODUCTION

1. Low noise receiver for Radio Astronomy

The purpose of a radio astronomy receiver is to detect and amplify signals

received by the antenna from celestial radio sources. The power received is very low,

varying from 10 - 20 Watt for a spectra line observation to 10- iS Watt [1 for a contn-

uum observation. In most cases, the emissions consist of incoherent radiations as is the

noise generated by the receiver itsef. The requisites for a radio astronomy receiver

are thus low noise and high stability. High stability is needed so that the input signal

can be integrated and variations in the radiated power detected. Another requirement

for an accurate reproduon of spectral observations is that the receiver be linear in

output

Most radio astronomy receivers operating under 15 GHz are superheterodyne.

The input signal is amplified by a low noise amplifier, then converted to a lower fre-

quency by. mixing it with a local oscillator. The noise characteristics of this type of

receiver are determined by the front end amplifier.



I

Although they are not as performant as cooled maser-upconverted systems, cooled

Gallium-Arsenide Field Effect tansistor amplifiers tend to be used with increasing fre-

quency. These amplifiers present several advantages as compeaion for their poorer

performances Input and output drcuits are less critical to design than that for a nega-

tive resistance amplifir. The power is supplied through low DC voltages and not

through power oscillators in the amplifier. Fnally, ming circuits are realized t the

operating freq ncy.

2. Objectives

Projects of VLBI observaions in space [2,3 ] reqire X band (8-12.4 GHz) low

noise amplifiers. In this frequency range, the properties of low noise GaAs FET's have

not been studied in detail, particulartly at low teperatures. After several attempts, an

FET (NEC 13783) was chosen for its performance at room temperature. The proper-

ties of the FET measured at both 77f and 300 and between 8 GHz and 10 GHz

are reorted. The power scattering and nois parameters of this transistor are calcu-

lated. A single stage amplifier is constucted. Using these data, attempts are made to

answer the following questions:

Can the FET's performance at 77 K be inferred from its performance at 300 K?

How do the noise parameters of the FET vary with temperature and frequency?

How does the FE1r DC bias influence its noise and scattering parameters?

Is the circit design for an amplifier operating at cryogenic temperature different

from that of an amplifier operating at room temperature?

What problems and limitations are inherent to operation at cryogenic temperature?
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3. The research

The work described herein was carried out at the M1T radio astronomy group

laboratory.

Chapter II contains a brief summary of the properties of Gallium Arsenide and of

GaAs Field Effect tanssos. Microwave behavior of the FET and the currently

admitted noise theory of the FET are presented. The i noise representations of

a twoport and how they relate to each other are also introduced.

Coapter m presents the measurement techniques and the measured scattering

parameters. From the experimental data, stability and gain are computed. The noise

parameters ar determined and their variations with frequency, temperature and DC'

bias examined. The tempratre dependence of the FETs DC characteristics and of

several internl parameters is studied.

Chapter IV presents the design and performances of two single stage amplifiers at

both room and cryogenic temperature. Conclusions are then drawn about microstrip

tuning networks.

Chapter V summarizes the research and suggests further work in the field.
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CHAPTER II: THE FIELD-EFFECT TRANSISTOR

1. Field Effect Transistor Structure

Field-effect trasistors offer many features for application in cryogenic microwave

amplifiers. They have a higher input impedance than bipolar transistors that allows

easier matching to microwave system. They are majority-carrier devices and conse-

quently can be operated at higher frequencies and lower temperatures [1 ]. A typical

stucture of FET is shown in Figure II.1.

A thin epitxial layer of thickness in the range 0.1-0.5 pmn is grown over a

semi-insulating Gallium-Arsenide substrate. The substrate has a resistivity greater than

107 fcm and the layer of typically 10- 2 fcm. Above the etaxial layer are located

three metal electrodes. This structure is approximately 300 m wide and is reasonably

modeled as two dimensionaL

Best noise results [ 2 ] of such FETs are achieved with a high doping level in the

a layer, typically 1017 cm 3 . This doping is usually realized with selenium impurities.

One is also required to have the smallest possible gate and source metal resistances.

_ �__
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FET Structure

This is realized by localized heavy doping (109 cm-3 ) under the electrodes. A short

gate length is also needed; recent improvements in the fabrication allow a gate length of

typcally 0.5 mn.

An important characteristic of Gallium-Arsenide is its non-ohmic behavior for

fields greater than 3 kV/cm. Let us consider a microwave FET of gate length 1 um.

A voltage drop of1 V acrs this gate correspond to an average field of 10 kV/cm.

One must take the field dependence of the electons' mobility into account in order to

understand the operation of the FET.

2. Electron mobility in Gallium-Arsenide

The conduction band of the GaAs as presented in Figure 11.2 has a central

minimum at 1.43 eV and a saiellite minimum at 1.79 eV; the two of them consist of
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valleys with local minima of potential energy [ 1 ].

E Energy

1.43

1111 I

Satellite
valley

1.79 eV

k [C00]
& vector

les

Figure 11. 2

Energy -Band Struczure of Gallium -Arsenide

Rees [ 3 has calculated the electron velocity versus the applied electric field for

the two valleys. These results are plotted in Figure 1I.3.

ley
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the central valley. This travel of electrons back and forth between the two valleys will

contribute to the noise of the FET. But, as the electic field increases, the time aver-.

age fraction of electrons in the satelli valley also increases. For a field of 15 kV/cm,

nearly 75 % of the conduction etrons are in the satellite valley. In the central valley,

the mobility of an electroi is about 8500 cm2/s and its effective mass 0.068 m0 ,

where m 0 is the mass of the free electron. Higher effective mass in the satellite valley

(1.2 mo) reduces its mobility to about 100 cm 2/Vs. Electrons of the satellite valley

essentially do not contribute to the conduction process. At low fields, the mobility is

approximately constant, the velocity and therefore the current are almost linear. As

the field increases, the current no longer obeys the linear relationship. At 3 kV/cm the

transfer of electrons becomes significant. The current reaches a maximum for a field

of 4 kV/cm. Higher fields up to 20 kV/cm cause the current to decrease and yield a

negative differential mobility.

The saturation in velocity for carriers (electrons) in the central valley for. fields

greater than E =4 kV/cm ca be explained as follows. For fields greater than E,

electrons have an energy comparable to the energy of an optical phonon; an increase in

the electric field causes energy to trander to the lattice and not to the carriers.

Rees also studied the way electrons respond to a transient field applied over the

DC value when a sudden change in the field is applied. That is, carriers in the satellite

valley reach equilibrium faster than the carriers in the central valley (0.1 picoseconds

versus 5 picoseconds). This is more visible if the transient field applied is higher than

4 kY/cm [ 4 ]. As the electric field is applied, a time period of approximately 

picoseconds passes before electrons are transferred from the central to the satellite val-
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ley. During that period, they remain in a igh mobility state and therefore acquire a

high velodity. This total drift exceds the steady state velocity they reach at equilibrium

by more than a factor of 2. This effect is nevertheless only noeable for FEI's with a

gate length less than 3 pam, which is the case for most recent FET's.

3. FET operation

During normal operation, the FE1 has a positive drain and a negative gate tension

with respect to the source. It priniple of operation is epained in Figure 11.4 [4 ].

A depletion region without carries is formed under the gate. This acts as an isolator

and the eletons are conswained to flow through the channel so created. The height

of the depletion region depends on both the applied gate to source and the drain to

source voltages. The fluctuation of the tension Vs that modulates the height of the

channel also modulate its resistance and the drain current. This is the amplification

mechanism of the FET.

Proceeding from the source to the drain, the depletion region becomes larger, the

channel narrower. To compensate for this decrease in the channel cross section, the

electric field and the velocity of the electrons increase. As the electric field increases,

the electrons tend to transfer to the satellite valley. Himworth showed [5 that the

velocity rises to a peak at x then falls to a saturated value under the gate. The height

of the conducing channel in this saturated region is approximately consrant. This rela-

tively slow movement of carriers under a high electric field, in order to maintain the

drain current, requires a heavy electron accumulation. Between x2 and x 3 (see Figure

II.4) exactly the opposite phenomenon occurs. That is, the channel widens and the

electrons move faster as they regain the central valley.

�-�11�-1111111_1____Il---·IXIIP 1111 II_
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Channel Cross -Section, Electric Field, Electron Drift Velocity

and Space Charge Distribuion of GaAs FET

This analysis does not take into account the non equilibrium phenomenon

described by Rees that allows the electrons to exceed the peak equilibrium velcdty, a

phenomenon that occurs for gates less than 3 rlm long. This effect increases the
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velocity at point xl by a facr lose to 2 and decreases the velocity at x3 by a factor of

1.5. Globally, it shortens the transit time of the electron within the "saturated' region.

This phenomenon is paricularly visible for a gate lengh less than 1 wn.

Although it has been shown that this model gives an approximate behavior for

small gate lengths, it does not permit an analtical treatment.

4. FET DC characteristics and small signal circuit

It is posible to desnibe the FET behavior using a lumped element network for

frequencies up to 12 GEz. Several authors have esamined this problem. Currenty,

the commonly accepted reference work is a paper by Pucel, Statz and Haus [6 ], which

also develops the noise characteristics of the Gallium-Arsenide Field Effect Transistor.

The simplified model Pucel et aL used is ilhustrated in Figure 11.5 and Figure II.6.
Source Gate Drain

L = Lo 1 3 L

Figure 11. 5

Idealized Geometry of a Field Effect Transistor

The FET is broken into two parts. The region I close to the source is of ohmic
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Figure 11. 6

Piece Linear Simpl4ed Velocity

versus Electric Field Relationship

conductivity and the carriers have a linear velocity with respect to the elecric field.

For applied voltages exceeding the so called "pinch-off value", the longitudinal electric

field will exceed the saturation field (taken to be 3 kV/cm) at point L 1. Beyond this

pinch-ff point, carriers drift at a constant veodty V, while the field due to the free

charges on the drain electode continues to increase, thus assuring that electrons

remain within a saturated drift. The position of the pinch-off point and the height of

the channel in the saturated region are functions of both gate to source and drain to

source voltages.

Using this model Pucel et aL obtained a DC characteristic for a Field-Effect

Transistor as presented in Figure I1.7. The dotted line marks the limit between DC

� _� __ �_ � __
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Figure I. 7

FET DC Characterisic

bias where the FET works only in ohmic conducivity (at the left of the line) and DC

bias where high fields create a velocity saturated region under the gate. The charac-

teristics Pce et aL derived from their model match well with DC characteristics of

aual FETs [7,8 ], [ section IV.3].

This model also provides an equivalent circuit for operation in the common source

configuration. Figure I.8 presents the racit while Figure I.9 shows the physical ori-

gin of the circuit elements. The intrinsic elements of the circuit are as follows:

__�_ ��--�----1111__11 ___
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gate

g=gmo e -

Figure II. 8

Small Signal Equivalent Circuit of the GaAs FET

Gate to Cannel Capacitance CGS

Drain to Gate Feedback Capactance CDG

Drain to Channel Internal Fedback Capacitance CDC

Channel ResstancR i

Output resistance R

Voltage Controlled Current Source ZiD

Transcnductance G

Phase Delay (Transit Time in Saturated Region) o

The ex=insic (parasitic) elements are as follows:
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Source Gate Drain

_ . _

-ds

Figure

Physical Origin of

11.9

Circuit Elements

Sutrate Capacitanc C

at metal and Spreading Resistance R

Drain to Source plus Contact R tance Rd

Source to Channel pnlus Cont Resistance R,

It is possible by using this model and the geometry of the FET to determine the

frequency limitations of such a device. Let r be the input to output resistance rato

r= R8 +Ri +R s
Rt

let r be the feedback gate time constant

= 2'Rg Cdg

I



fT the frequency at which the current gain is unity is given by

1 gm
fT 2-:r C2 c,

The unity gain frequency (also referred as the nmaimum lation frequency) is

fS=

Decreasing L the length of the gate decreases the gate to channel capacitance and

increases the transconductanct. One can also express the current unity gain frequency

as a function of the gate length, acording to [9]

ft.- 2zrL

where v is the effective velocity during the crosing of the gate, i.e average of the

drift velocity of the carrier over the gate length. For small gate length, va is approxi-

mately independent of and fr varies as 1L . To have a high fr and therefore a high

frequency f,, one needs a short gate and a high velodty carrier. In silicon and

Gallium-Arsenide, electrons have a higher mobility than holes; in GaAs, electrons have

a six time larger mobility and a two .time larger peak drift velocity than in the silicon.

This is why only n channel GaAs FETs are used for microwaves applications.

5. Noise theory of the FET

The complete description of the noise properties of the Gallium-Arsenide FET is

an intricate problem mainly due to the involvement of noise production. In general,

the phenomenon involved in the production of noise are both frequency and tempera-

ture dependent, dependences that are not always well understood.

I



As stated previously, an exhaustive but nonconclusive treatment of the noise pro-

duction problem was written by Pucel et aL [6 ]. Pucel et aL predict the correct

dependence of noise upon drain current but demonstrate poor agreement with the

experimentation at low frequencies and at low temperatres. More recent works

correct and improve the original approah [10,11 1.

Figure II. 10

Model of the Noisy FET

The first stage is to analyze the ideal transistor, postponing the computation of the

noise contribution due to the parastics elements. The equivalent circuit for the ideal

FET is shown inside the dotted line box in Figure I.8. The noisy transistor can be

represented by using two noise current sources, one at the input and one at the output

as shown in Figure L. 10.

Basically, the noise current of the input represents a Johnson type noise in the

channel region which is emphasized by hot electrons in the channel. This noise voltage

also causes noisy fluctuations in the depletion layer height. This results in the creation

of electric dipoles drifing through the saturated region. The output noise source

__���_�I�II_ L�IIIY--I--.III)I ---



represents these dipoles drifting to the drain contact.

The two noise currents id and i,, are caused by the same noise voltage in the

channel and are therefore correlated. The correlation coefficient is defined as

iC= 7

where j =/ - 1. The correlation jC is purely imanar cause noise sources in the

drain and in the gate circuits are capactively coupled. The theory of Pucel et aL per-

mits the lation of ,i an d C.

One has to consider separately the two regions of the channel labeled I and in

Figure H.S. In a previous work Baetchold showed [12 that in the Gallium-Arsenide,

the measured noise temperature electric field curve can be fitted by

TTO=1+ 8 (E, J, 
where T o is the physical temperature of the lattice, ES is the saturation field and 8 is

an empirical coefficient equal to 6. Using this relationship and the longitudinal depen-

dence of the electric field, Pucel et aL computed for each point of the unsaturated

region (region I) the Johnson noise contribution. Integrating over the whole region I,

one can compute the induced gate noise current i .

In the saturated region, we cannot describe the noise as a Johnson noise. The

noise current is interpreted as a distribution of spacialy uncorrelated impulses. Each of

these impulses results in a displacement of a charge and produces a dipole. The dipole

is created within a saturated velocity region and is thus unable to relax. The dipoles so

created then drift unchanged to the drain contact where the drain noise current i2 can



be calcated. Through capacitive coupling the noise production in region I will contri-

bute to the noise current on the drain and vice-versa. These contributions are summar-

ized in the overall correlation coeffient jC.

The mean square time average of i and of i can be ex d by [12 

4kT AfgP

i4:- 4kT Af w 2C2,RIg.

where k is the Boltm ann conStant T O the lattice temperature, Af the bandwidth, 

the angular frequency, C., the gate to source capacitance, g the magnitude of the

low frequency transcndutance, P and R both dimensionless factors dependent on the

device geometry and on the DC bias.

The cxrinsic resistances R, and R generate thermal noise themselves and

degrade the noise performance of the FET. The equivalent circuit model for the FET

which includes the noisy parasitics is shown in Figure 11..

One can express the minimum noise figure (see section 1.6) of the intrinsic FET

as a function of the parameters R, P and C. Under the assumption f<<fr ( This is

usually the case; a typical value of fT is 90 GHz ), we have

F,~n1+2 PR 1-C2)f.

We can have for short gate length a correlation coefficient close to one in magnitude

and a substantal noise cancellation, corresponding to a desucive interference of the

two noise currents.

The above expression predicts for low frequencies an almost linear dependence of

__II__IU·__ sl-L·b~CI- ~--
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Figure I. 11

Equivalent Circuit for Noise Calculations

the minimum noise figure with frequency. Such a decline was not observed. Recent

works at low temperatures [13,14 ] revealed a disagreement between Pucel et al.'s

results and the experiment.

Several explnnatons were advanced to agree with experimental results. Pucel et al

proposed a trap theory with traps at the epitaxial layer substate interface. But the

temperature dependence of the trap theory was found to differ from the experiment.

Another explanation was that of the intervalley scattering noise [15 ]. The intervalley

scattering noise is a weak function of the physical temperature of the lattice and thus

� __



can be a significant contribution at low temperatures.

A different approach of the problem is proposed by Graffeuil [16 ] who considers

the electron noise temperature to be both elecic field and frequency dependent.

Using this model, he succeeds to match theory and practice well More recently,

Brookes [ 11 ] reonsidered the Pucel et a's origina approac pplyapping it to a channel

whose thickness is not constant but modeled as a gaussan random variable. Even

when the variations of the channel height are small compared to its mean value, he

matches low frequency noise figure data.

6. FET Noise Representations

The noise figure of a twoport device is defined as the ratio of the noise of the out-

put of the two port driven by a noise source to the noise of the output of the same

twoport idealized (niseless) when driven by the same noise source.

The noise source used to compute the noise figure F is an impedance Z com-

bined with its associated equivalent thermal noise source as described in Figure IL .11.

Using the expression for the noise generators of the FET it is possible to show [17 ]

that the noise figure can be written as

F=1+ R [rn+gn Z,+z ]

where Z, =R, +jX is the source resistance and r. ,gn ,Z, three intermediate parameters

whose theoretical values can be derived from the Pucel theory [6 ]. Z is known as

the noise correlation impedance. F is a minimum when Z, is at an optimum, ie

ROW [e (Z.) gn |
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XOp-Im (Zc)

Expressed directly as a function of P, R, C and fr the value of F at the mininum is

Fm _ (l+2- f +2mRP(1 2

Another representation of the noise behavior of the device is its equivalent noise tem-

perature. This is related to the noise figure by the relation

T-To (F-I)

where T o is equal to 290 K

Any noisy two ports noise temperature can be represented by four parameters: the

minimum noise tmperature Ti, the optimum source impdance Zo = Ro +JX

and the noise conducance gn [17 ].

The noise temperature as a function of the source impedance Z =R +X is given

by

Tn=Tsin+TO R [(R-Ro) + ( -Xopt) 2]
The relation between the two representations is known as the Rothe-Dalke relations

R, =gn Z.,,,

Tain 1
R = T ' 2gn -R°

XC -- -Xopt

r,, gn (Rt -R )

The relations developed in this chapter form the basis for interpreting the experimental

results.
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CHAPTER II: FET PARAMETERS

1. Scattering parameters

At microwave frequenies, the only quantities directly measurable are the ampli-

tude and phase angle of propagating waves. If one considers an N port device [ 1 , at

each of its ports, part of the input wave is reflected and part is transitted (scattered)

to other ports. If we denote with a' the vector composed of the incident wave ampli-

tudes and b the vector composed of the emanating wave ampitudes, the relation

between a and b for a linear device is:

b=Sa

where S is the power scattering matrix. In the case of the FET, this S matrix is com-

posed of only four parameters. These parameters are in general complex and thus

require, for the phase term one or more reference planes for the phase term.

Manufacturers usually provide the value of the various scattering parameters without

indicating the plane they are referenced to. This causes a problem when using these

specifications at high frequencies where small physical distances can create large phase

shifts.

_____



Measurement Techniques

Two different FETs from different man ers (NECALPHA) were chosen

to be studied and used in a cryogenically cooled amplifier; table 11.1 presents the two

manufactrers' ncim [ 2,3 ].

at 8 GHz

Table fll. 1

The ALPHA MESFET was found to oscillate around 3.5 GHz for a large variety of

source impedances when biased with a drain current of 30 mA and was therefore disre-

garded for the use in the amplifier. Its scattering parameters were not even measured.

The scattering parameters of the NEC FET were measured using the rest fixture

described in Figure IL 1. The test fixture does not allow the biasing of the transistor,

thus avoiding the creation of parasitic elements due to DC bias networks. The task of

biasing the FET was performed by two bias Tee networks (HP 11590A). They were

found to be negligeably lossy over the frequency range of measurements. Two dif-

ferent kinds of connectors were used to connect the dilectric board to the network

analyzer used for the measurements. The APC-7 standard was used at room tempera-

ture to obtain a better accuracy and an overall lower VSWR; heat links were avoided

by using the OSM standard at cryogenic temperatures. The fixture's microsip has a

characteristic impedance of 50 and lies on a teflon fiberglass board.

FET F G

ALPHA 3003 1.5 dB 14 dB

NEC 13783 1.2 dB 11 dB

I
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Figure II. 1

Test Fixture Used for Scattering

Parameter measurements

A teflon cylinder was placed over the device and held firmly against the board

with a spring like piece of copper (see Figure IIL1). Between 8 and 10 GHz, the

teflon cylinder created a phase shift of less than 2 degrees and an amplitude change less

than .15 dB (<2 %). The gap between the input and the output boards was designed

to exactly fit the FET package, so as to reduce phase errors due to positioning. These

were limited to about 5 degrees at 8 GHz and 7 degrees at 10 GHz. The gap between

the two source pads was equalized to that of the experimental amplifier. In order to

__ _·^_X�_I I



limit parasitic capacitance between gate and source, the ground plane under the transis-

tor was milled down [4 ].

To set the reference in the measurement of dme S parameters, a 2 mils thick flex-

ible piece of copper was positioned at the edge of the board and folded over the source

pad. A small drop of solder provided the connection with the microstip. This set the

reference planes for the S, at the edges of the FET package. For the measurements of

the Sij parameters, a piece of copper with the width and thickne of the FET drain

pin was held over the gap with the teflon cylinder. The Sij parameters were therefore

referenced to the center of the package.

To correct for the phase shift over the FETs package, a careful measurement of

the electrical length of the copper pin was made. The phase of the reflexion for shorts

placed on both sides of the gap were measured and the electric length was determined (

see Figure 1m2).

LoJ
All the parameters were measured using a Hewlett-Packard network analyzer.

The different scattering parameters were measured for a VDS of 3 V and a drain

current of both 10 mA and 30 mA to compare with the mnnufactrer's sptLficatons.

Twenty one measurement points were taken over the frequency range of 8 to 10 GHz

in order to use the available computer routines. The Figures III. 3 a and 11. 3 b

present a typical scattering parameter measurement at room temperature.

The reflexion coefficient magitde agreed within 10% of the specifications of the

constructor, the phase was off by 25 degrees for S 11 and by a factor ranging from 30 to

�
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Figure 111. 2

Phase Measuremens

40 degrees for S2. A shift of 20 degrees corresponds (using an approximate theoreti-

cal description of the FET case) to the phase difference between the edge and the

center of the FET package. Stresses introduced as the result of the cryogenic cooling

displaced the microstrip off the board. This caused the dispersion in the phase shift of

S22. The remaining phase difference is most probably due to the measurement errors.

One can conclude from these results that the manufacturer takes the center of the

package as the reference plane for the scattering parameters.

Transmission coefficient magnitudes were found for different FET's varying

between 10% from the manufacturer specifications. This kind of dispersion was

predictable for the tansducer gain S21 but was not expected for S 2. The phase of S21

was found usually within 10 degrees of the claimed values. In addition S12 was found

to be off by a factor of 90 degrees for one FET and by 10 to 30 degrees for the others.
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Scattering Parameters at Room Temperature

Vs=3 V Id=lOmA

Different measurements for the same FE provided results within 10 degrees. One

possible explanation for this discrepancy is that the low level of the output signal does

not allow the network analyzer to phaselock it.

2. Gain and Stability

From the measured power scattering parameters, one can determine the oscillation

conditions and the different gains associated with the FET. The invariant stability fac-

tor k introduced first by Rollet [ 5 is the simplest way to uniquely describe the degree
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Scattering parameters at Room Temperature

VDS=3V Id= 3 0 A

of stability of the ansistor. Expressed as a function of the scattering parameters, k

can be written as

k (illS22-s2S~l 1 m I i1 i 5

212S21

If k is greater than one, the FEl will never oscillate for any value of passive

source and load impedances. Therefore matching the FET for maximum gain or

minimum noise can be done without restriction. The mamum available power gain
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Figure 111. 4

NEC 13783 Stabilizy Factor

Ga is obtained when the input and output are matched to their respective conjugates.

In terms of the stability factor

$ ' 21 2 (-

The greater k, the more stable the transistr.

If k is less than one, certain passive source or load impedances will create unstabil-

ity and cause the transistor to oscillate. In the input and output planes, these unstable

regions are inside circles [6 ] whose centers and radii are direct functions of the scatter-

ing parameters. The maximum stable power gain G., is obtained by padding the input

and output of the FET with lossy elements so that the overall twoport is unconditionally

stable [5 ]. In terms of the S parameters,

a Cs Aft

t .6 14 -

s:



GS = S211

The measurement of the scarin parameters at cryogenic temperature requires

the use of ong semi-rigid cables to hold the test fiture in liquid nyogen. These

cables present an ectr length of several tens of a wavelength whose exact value

depends on the shape of these cables. This lecical length problem prevents any accu-

rate measurement of the phase of the scattering parameters.

Because the phase of the scattering parameters was not measured at cryogenic

temperature, the computations of k, G, and/or G,, were performed only at room

temperature.
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Figure I. 5

NEC 13783 Maximum Available Gain

The Figure m.4 presents a typical plot of the variation of the stability factor k

*J, b
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with frequency for a drain current of both 10 mA and 30 mA. The stability factor is

lower for a bias of 30 mA, principally because of the increase in the magnitude of S 21.

Errors in the determination of the S parameters yield inaccuries in the computation

of the k factor. 52 and S2 are the two parameters most subject to measurement

errors (10%o) and this resuls in an error bound of ± 15% for k. Between 8 and 10

GHz, the NEC 13783 has a stability factor close to one and this 15% error bound puts

it at the threshold of being conditionally or unconditionally stable. Therefore, one has

to be very careful before drawing any conusion about the stability of this particular

tranistor in the 8 to 10 GHz band.

*9.e 

? .866

5 .08
8.866 8.400 8.8ee 9.2ee 9.600 10.086

Figure 1. 6

NEC 13783 Transducer gain

Figure m.5 presents the computed maximum available gain (or maximum stable

gain when k is less than one) as a function of frequency for the same bias currents as
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before. As for the k factor, the same restrictions apply toward the accuracy of the

computation of the gain of the FET.

The only directly me rable gain using the presented test fixnre is the ansducer

power gain GT of the FE when input and output are matched to 50 . In such a

case, GT is equal 21 At pialotof thevariationa f 21 with frequncy for

both room and cryogenic temperature is presented in Figure m.6.

3, Noise Parameters

Theory of measurement

A way of obtaining the optimal source impedance and the minimum noise tem-

perature of the FET is to look at the minimum while varying the source impedance.

The problem encountered in using this method is that it is tedious and empirical Since

at the optimum configuration the partial derivatives of the noise temperature with

respect to the sour ce are zero, it is inaccurate for the determination of Ropt

X,pt and T. A better way to measure the noise parameters of the device is to

employ the ana i ere n of noise temperature versus source impedance.

As seen in chapter II, the noise temperature as a function of the source

impedance of the FET can be expressed as

TR =Tmn+ [(R-Rt) + (-XOPt)]
If we maintain R constant and let X sweep through a range of reactance, T. can be

written

T.=a +b(X -XO'
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i.e a parabola whose minimum is located at X =Xop. Likewi, ifX is maintained con-

stant, the T, versus R curve will be asymmetric

(R-R )2

T a+b RT, =a +b R

whose minirmum gives Ro. Fitting the parabola gives the noise conductance gn. Tin,

is measured by setting R =Rop and X =Xp. One can deduce that the parameters of a

FET can be easily found if an ampifir that allows R and X to be varied independently

of each other is built This can be easily be done at frequencies up to 1-2 GHz with

lumped elements such as inducances in series with adjustable quarter wave tansform-

ers, but cannot be realized in the X-band. One can ponder the usage of commercial

tuners but the range of impedances they can provide is limited and they are lossy and

thus noisy. If one develops the ession giving T, [ 7 ] for the FET, one obtains

T =Tz T+ gn (R2+RO2 -2RRO +X 2 +X 2 -2 Opr)

R 2

Tn=Tmin+ R (R2+X2) -2gnTOR P +gn n T OR R

introducing the variables

Q=Tdn- 2gnT6ROp,

l2=8n

r 3 =gn(Ro2t +X P)

f 4 =gnXopt

we can express Tn, as

T = R2+X2 To 23
rnf, + TR1 t f + -n3 -2XTx R R

or

I
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In principle, four (non-singuar) easement of the noise temperatre will provide us

with a linear system of four equaions and four munknowns

such a system can be solved i.e

[n]=[S] [Tn ]
A program in BASIC was written for the HP-85 desktop computer to perform the

matrix inversion, to compue [SI] and to derive the noise parameters of the FET. This

program is listed in Appendix C1.

Theoretically, only four points of measurement are necessary. However, because

of experimentals errors both in the measurement of the noise temperature of the FET

and in the impedanc at which it occurs, one has to compile data and average the

results to realize a statistical smoothing of the measured parameters.

In order to find the intermediate parameters 1l, one has to determine both the

noise temperature of the device for a given impedance and the source impedance.

Because of the low gain of the experimental amplifier, one cannot measure directly its

equivalent noise temperature without introducing a large error. A receiver (necessarily

noisy itself) has to be incorporated in the measurement set-up as shown in Figure m.7.

The overall noise temperature of the system is given by the Friis' formula

Treceiwr
Toetm TFET + G

GFET
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Figure 1II. 7

Noise Figure Mesurement Test Set

where GFrT is the available power gain of the amplifier. GFT is relatively low and the

second stage contribution cannot be ignored. The problem is to evaluate both parame-

ters TFEr and GFu. Two methods were used for compimentary reasons. The first

one involves only noise temperatures

Even if the calibration of the receiver noise temperature is provided, one cannot

obtain TET directly without measuring the gain for a particular choice of input and

output impedances. The operation is delicate and subject to errors since one has to

disconnect the test board from the receiver. On the other hand, if two different

receivers are available we have a set of two equations with two unknowns (T.ET, GFET)

that we are thus able to solve. A single reciever that simulated the operation of two

different ones was built. This circumvented the problem of having to disconnect and

reconnect the amplifier for an additoinal set of measurements. The Figure .8 exam-

__ I_ __ I
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plifies the technique used.

HP 9680B sweep oscillator

fi Sftez

amp. amp. attenuator

Figure 111. 8

60 MHz Receiver

The variable attenuator changes the noise temperature of the receiver by adding a

series resistance to the rcuit, i.e a constant temperature increase. The attenuator was

set to achieve 0 or 1 dB attenuation in order to minimi7e the noise temperature of the

entire system. In this manner, the measurement errors are minmizd espeially at low

gain levels of the FET. The noise temperature of the receiver was found to vary

slightly with time, thus causing calibration problems. However, over a short period of

time (2-3 hours) the correlation coefficient between the receiver in position 0 and in

position 1 was found to be better than .995. The required measurements were per-

formed with a noise figure meter. Details of the procedure and of the associated

software are listed in Appendix C2.
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The second method used the output power of the receiver for different noise

sources. The noise level at the output power of the receiver is a function of four

parameters: TFEJ, GFET, T,... and G . By using a noise diode which provides

two levels of noise and by calibrating the receiver, one obtains a system of four equa-

tions. The algebra and the software assoated with this method are presented in

Appendix C.

oscilloscope

A cquisiti Systm . ise i r

Data Acquisition System noise figure miter

I -



The two methods were used simultanously for verification purposes as shown in

Figure I3L9.

At first, it was hoped that the use of microstrip formulae would simulate the

source impean of a given configuration. However, such non quan fle parame-

ters as the amount of solder on the stub, the length of the pin of a feedthrough capai-

tance, or more drastically the choice of bking capatance were causing variations in

the noise and the gain of the amplifier. The input half of the experimental amplifier

was repcated in order to measue the source imedance of a given configuration (see

Figure .10).
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Figure 111. 10

Case for the Measurement of Source Impedances

This board was also used to investigate losses due to the matching network, to cal-

culate the noise induced by these losses and to compute the necessary corrections. The
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complete derivation of these results is presented in Appendix C3.

All the noise tbmperatures were measured using the data acquisition system

descnbed in Fire Im.9. The amplifier used was the second prototype discussed in

section IV.4.

To minimize the receiver's contibution to the noise temperature of the system and

thus reduce the error' in the determination of the FE1 noise temperature, the gain of

the ampifier (first stage in the Frii's formula) had to be maximized. At first, this was

achieved by optimizing the output network of the amplifier. The load impedance

presented to the FET was made close to S22 conjugate. The output network of the

amplifier affects only the amplifier's gain and not its noise parameters.

Six different boards were used at room temperature, as input networks to pro-

vide the FET with a large variety of source impedances. Each of them could be easily

adjusted depending on the particular frequency the noise parameters are measured at.

The Figure .11 presents-some of the board's layouts. When cooled, the substrate

boards are subjected to mechanical stresses that tend to bind them. To prevent this,

the boards are held tightly against the amplifier case with screws and washers. Despite

these precautions, two substrate boards could not be used at cryogenic temperatures.

The receiver's noise temperature is fairly high (1000 K) and as a result, when

the source impedance is mismatched, the system's noise temperature can be relatively

important.

A complete study of the measuement errors is presented in Appendix C2.

1__��1 __ ___ _ _



III 

L JL 

.
L~~~~~~~~~~~~. ve _* .* 

Figure IIl. 11

Input Boards Layouts

In the computation of the FET noise parameters, the contribution of a particular

measurement point is weighted by a factor proportional to its measured noise tempera-

ture. Because erors are more important as the noise temperature of the FET

incrases, points with a FET noise temperature higher than 800 K were disregarded.

Measurements were perormed for a drain source voltage of 3 V and a drain

current of both 10 mA and 30 mA. The FE noise parameters of both room tempera-

ture (293 K) and cryogenic temperature (77 K) were calculated at 100 MHz intervais

between 8.1 and 9.6 GHz. the input board yielding the best results at 8.45 GHz, was

subjected to more measurements at other bias to study the latter's dependence on the

minimum noise temperature. Tables .2 a and m.2 b present the noise parameters at

8.45 GHz. (All the impedances are referenced to the source edge of the FET pack-
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Table I. 2 a

NEC 13783 Noise Parameters Id = 1 0 mA , Vos 3 V

Table . 2 b

NEC 13783 Noise Parameters 1,d=30 mA, VDS =3 V

Figures 3L 12a and ff.2b present the variations of the .mnmum noise temperature

with respect to frequency and temperature. As seen, the cooling to 77 K dramatically

improves the performance of the FET.

A power law fit for the noise temperature of the FET of the form

TNO!uE aTe fF

produces the following result: For a bias of 10 mA 3=.80, y1.58 and for a bias of

30 mA 3 =.86 and y=1.66.

Frequency 8.45 GHz

NEC 13783 Bias 10 mA , 3 V Errors

T (K) 293 77 +1
Tmi (K) 126 42 ±7
Rop () 37.2 17.6 -2.5
XOP () 5.0 -.2 +2.5
gn (mmhos) 15.7 7.8 +3.6

Frequency 8.45 GHz

NEC 13783 Bias 30 mA, 3 V Errors

T (K) 293 77 -11
Tmin (K) 150 47 ±7
R, () 45.9 22.3 +2.5
Xo0p (f) -3.3 -. 7 ±2.5
gn (mmhos) 21.0 10.7 +3.6
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Figure LI. 12 a

NEC 13783 Minimum Noise Temperature Id =10 mA, VDS =3 V

Although the value of the mnimum noise temperature is dependent on the FET

DC bias, i variations with frequency and tmptrare are found to be (given the

imprcdsions in fhe resllts) independent of the bias. The tempratre dependence of

Tm is comparable with published works performed at other frequencies and for other

FEIT's 18,9,10 ]. The theoretical expresson presented in the section I.6 expresses the

minimum noise figure as

F=l+b.L+c(~]2
fr fr

The minimum noise temperatre then varies as

As +stated before fr is very large and in the to 10 GHz band one appo

As stated before fr is very large and in the 8 to 10 GHz band one can approximate
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Figure 1. 12 b

NEC 13783 Minimum Noise Temperature Id =30 mA, VDS =3 V

T by bf/fr. This yields a theoretical factor y equal to 1. The experimental value

of y predicts a higher noise temperature for high frequencies than that of Pucel's

model A fit disregarding measurements performed over 9.2 GHz provides a value y

equal to 1.17 for 10 mA (1.16 for 30 mA). That is, with the exception of frequencies

greater than 9.3 GHz ( because of measurement errors), the experiment confirms the

variations of the minimum noise temperature (and therefore of the minimum noise fig-

ure) in accordance with Pucl's theory.

The value of the minimum noise temperature T=, was found to be larger that the

value predicted by Sierra [ 11 ] for the NEC 13783'. From the 15 GHz chip noise

Comparison of high frequency noise parameters has to be pformed carefully. This is
tue since the mount and surrounding of the transisor= affects the noise temperature of the
device by reacave feedback.



parameters measurements, Sierra computed the noise parameters at various frequencies

assuming the frequency variation of the Pucel et al. theory. At 8.45 GHz, he predicts

a noise temprature Tm of about 110 K. The measurements provide Tas equal 126

K (14% igher). The other calculatons performed by Sierra are for a physical tem-

perature of 15 K. No meas ments at this terature were performed in this study.

The Figures I 13a and b present the variations of the optimum noise impedance

at room temperature and at 77 K for bias of 10 mA and 30 mA. In both cases the real

part of the optimal noise impedance deceases notably when the amplifier is cooled.

From these plots one can conclude that if the input network of an amplifier realizes the

optimum noise temperature impedance at room tmperature, it will not achieve it once

the amplifier is cooled. The uning at cryogenic temperature will require a lowest real

part for the source impl ce, meaning the use of lower impedance transmission lines

than at room temperatre. The optimum noise ipedanc depends on the bias of the

FET but its variations in the reflexon plane remain small as the drain current varies

from 10 to 30 mA.

The variations of the noise conductance gn with frequency and temperature are

shown in Figure MI.14a for a DC bias of 10 mA and II.14b for a bias of 30 mA.

The measuremens at room temperature are particularty noisy for the lowest drain

current bias. As stated before, in order to reduce the number of high noise tempera-

ture measurement points, several input boards had to be used to cover the whole 8.1-

9.6 -GHz band. This results in discontinuities for the computed noise parameters.

Among these, the noise conductance gn is the most sensible to measurement errors.

At 8.45 GHz and room temperature, the measured gn is 16 4 mmhos which agrees
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Figure I. 13 a

NEC 13783 Optimum noise Impedance, VD = 3 V, Id = 10 mA

with the 12.5 mrnmhs value predicted by Sierra.

A power law fit of the form

gn aTffY

R=E

-
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Figure 111. 13 b

NEC 13783 Optimum noise Impedance, VDs =3 V, Id = 30 mA

provides the following results: For a bias of 10 mA =.43, y=2.17 and for a bias of 30

mA =.44 and y = 2.26. As for the minimum noise temperature, the variatons of gn

do not depend on the value of the DC bias of the FET. Theoretically, gn increases as
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Fig e III. 14 a

NEC 13783 Noise Conductance, VD =3 V, Id = 10 mA

the square of the operating frequency. Given the measurement imprecisions, the

experiment confirms the theory of Pucel et als'. Between 77 and 293 K the experi-

mental temperature dependence of gn is comparable to that found in previous work [10

A more complete investigation of the dependence of T, on the DC bias is

presented in Figure II15. The variations of the minimum noise temperature versus

the drain current are plotted for both room and cryogenic temperatre. In terms of

mrimiing Tmin, there is an optimal current whose value depends on the physical tem-

perature: 15 mA at 77 K, 17 mA at 300 K.

In conclusion, one can state that the measured noise parameters confirm all the

features of the Pucel's theory. A more complete study of the temperature dependence
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Figure II. 14 b
NEC 13783 Noise Conductance, VDS =3 V, j, =30 mA

of these three parameters should be undertaken (measurements at 4 and 20 K) to

determine bounds on their variations with mperature.

4. DC characteristics and internal parameters

FETs DC characeristic can be anayzed to determine internal parameters of the

FET such as tansconductance, channel thicknes, carrier doping density or saturation

velocity. Combined with measurements at low frequencies and measurements of

scattering parameters, it is possible to evaluate the values of the elements of the FET

small signal model which enter directly in the noise equation.

Figures 1II.16 a and b present the classic FET characteristics at 293 and 77 K.

The variation of the drain current is plotted versus the drain source voltage, for .2 V
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Figure ll. 15

Noise Temperature versus Drain Curretu
stps of gate voltage. The top curve in each plot is at 0 V gate source voltage. Cooling

severely affects the transconductance and the saturation current

The gate current as a function of the forward gate voltage was measured to pro-

vide the Schottky barrier potential V. Using the methods developed by Fukui [12 ]

the ET pinch-off voltage V (defined as the gate voltage for which the saturated

region occupies the whole channel) was measured. The channel width Z and the gate

length L were taken from the manufacturer's [3 ] published data (respectively 270 pnm

and .5 ,nm). The calculated values of the carrier density N, channel thickness a and

open channel saturation current I, are tabulated in table m11.3. The carrier density

shows little variation with temperature. The measured change of thickness a is most
All the formulae used for this derivation were taken from Fukui's paper [12 ].
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Figure III. 16 a

NEC 13783 Dt Characertics at Room Temperaure

probably due to measurement imprecsions on the Schottky barrier potential V2 and not

to a physical shrinking of the channel The increase of I, conirms the already

observed increase of the FET transondunce gm and of the FET RF gain at cryo-

genic temperatures.
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Figure III. 16 b

NEC 13783 DC Characteristics at Cryogenic Temperature

Table 111.3

a NEC 13783 Internal Paramerers
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CHAPTER IV: FET SINGLE STAGE AMPLIFIER

1. Purpose

There are several goals in desing and cosucting the FET single stage amplif-

ier. Flrst, the mplifier is purposely experimental in nature so that it can be easily

modified. Also, since several FELs are to be used, the rlacement of one FET by

another should not disturb the overall characterizations of the prototype.

One objective of this research was to determine various parameters describing the

microwave behavior of GaAs FET's. As explained in chapter , this required the

measurement of the characistcs of input and output networks. Thus, these networks

had to be easily removable.

Finally, the ampliier had to be used at cryogenic temperatures, thus desructve

stress that can develop at these temperatures was a concern. This is due to different

contraction coefficients of the various components which constitute the amplifier.

I -.



2. Design

linimiing the noise temperature of the ampfier or maximizing the gain requires

the production of the op.mum source and load impedances at the input and output of

the FET. Thes vales are, a priori, nknown and therefore matching networks have

the capty to produce a wid range of imedances.

At 8.44 GHz, the use of umped elements is intricate because any piece of straight

wire presents a very large reactive component. For instance, a wire with a diameter of

2 mis placed at 50 mils from a ground plane presents a reactance of 50 fl/mm. This

exemplifies the difficulties in using inductances.

The solution adopted used icrstip transmission lines. Microstrip line presents

both advantages and disadvantages. On the positive side, it is relatively inexpensive

and simple to use. Also, ultra-violet processing allows the design of any shape of cir-

cuit, any value of impedance. However, when cooled, boards usually shrink (1 % at

20 K), thus causing stress problems. In addition, for frequencies as high as 8 Gz,

radiation losses can be fairly high. Use of a substrate board with a high dielectric con-

stant (constring electric and magnetic fields within the substrate) minimizes these

ases. ut, a high dieleaie constant board sows down the EM wave, thereby reduc-

ing its wavelength. Thus, any obstacle present on the board (DC blocking capactor,

solder, FET) perrubes the propagation characteristics.

A compromise between the two defects is reached with a duroid teflon fiber glass

board whose substrate has a dielectric constant of 2.2 [1 . This substrate has a thick-

ness of 31 mils (.78 mm). The copper strip has a thickness of 1.34 mils (34 ,um).

Yet, another slight inconvenience in using a micrcstrip board is that it requires near



perfect grounding of the board to the case of the ampiiier. This is done to avoid

parasitic oscillations.

Extensive research has been aon microstrip methods and various papers

have been published on the bject [2,3 ]. To calculate the microstrip line width for

the main 50 fl line and other matcfing networks, quasi TEM approximation formulas

developed by Wheeler [2 ] were used. These formulas provide characteristic

impedance and phase velocity within 2 to 5 % of the measured value depending on the

values of the characteritic impedance. A 5 % error gives a VSWR of 1.1, a value

comparable to the VSWR of typical connectors

Different tuning and matching techniqus were tied for input and output net-

works. The use of a piece of dielectic moved across a microstrip discontinuity was

immediately rjected because of its lack of repeatability. The use of a movable ground

plane as suggested by Weinreb was eliminated since it did not allow easy measurements

of the impedances associated with a particular circuit. The best solution employed stubs

soldered to the main line as tning elements. Once a particular structure is adopted, a

carefu mapping of the stcrure is made and a mask is generated for a later version.

The stubs are realized by cutting a 2 mits (50 jsm) thick sheet of gold to the

desired dimensions. Because the thicness of the gold sheet is not 1.34 mIls, as the

stub generated from the mask, and because the stub cannot be held perfectly against

the substrate board, its dimensions have to be chosen cautiously. Using Wheeler's for-

mulas, it is possible to study the amount of error produced by a slight gap between the

substrate and the gold sheet stub. Figure IV.1 presents the plot of AZ/Z¢, where Z is

the characteristic impedance of the stub, AZ the difference in characteristic impedance



between the mask generated stub and the gold sheet stub as a function of Zc the

characteristc impeance of the stub.
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Effcct of Gap between Stub and Substrate Board on the

Characteristic Impedance of the Stub'

It is obvious from these plots that high impedanc stubs should be used. To hold

the stubs firmly against the substrate, a thin tape of teflon (e =2.2) is used. In order

to study how this affects the impedance added in parallel to the main line, the tansmis-

sion coefficients of a 50 line, with and without a piece of teflon tape, were measured

using a network analyzer. A piece of tape 4 mm wide changes the magnitude of the

transmistson coefficlent by less an the network analyzer resolution ( <.[}5 dB). It
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produces a phase shift of 5 degrees at 8.5 GHz. As can be seen, the tefon tape only

slightly affect the propagation of EM waves over the partiecuar microstrip structure

and therefore does not alter the ability o reproduce a given crcuit

SMA connectors were used for input and output In order to remove thermal

stress on the connector pn, when cooled at cryogenic temperatures, a flexible connec-

tion, construted with a gold stip was placed between the microstrip and the

contor's pin. To avoid creating a gap between this connecon and the board strip-

line, and later parasitic oscillations, a teflon cylinder pressed the gold strip against the

substrate metallization. Figure IV.2 illsrates how this was accomplished.

pressing cylinder

strip

.bstrate board

lplifier' s case

Figure IV. 2

Mounting Details for Connectors

Tw ar boratory power -mppiies provided the FET bias. In order to protect

the transstar aains transients and overvoltage, a zener diode in parallel with a capad-



tor were placed between the source and gate and between the source and drain. DC

bias was applied to the FET with i00 pF feedthrough capadtors inserted through the

case of the amplifier. 1 mil gold wires coctd the feedthroughs to triangular resona-

tors placed at X/4 from the microstip as shown in Figure IV.3 (all the wavelengths X

are referred to 8.45 GHz).

GATE DRAIN
4 +

Figure IV. 3

DC Bias Network

At 8.45 GHz the vertex of the triangle is a short drcuit, and therefore X/4 away the

microsip is an open rcuit.

At other frequencies, the bias network perturbes the propagation along the

ic .However, in the frequency range of interest (8-10 GHz) it does not cause

any serious perturbations. It should be noted that resonance modes of the triangular

shaped rsoas 4 were ot considered.
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The FET's were used in a package form. The tansistor package presents substan-

tial parasitic reactancs [5 ] and degrades gain and noise performances, however they

are more pracical to use. That is, they are ess septible to mishandling and gen-

erally more stae than chip. The FEI's were operated in a common source confi-

guration. The two source pads of the PET had to be carefully grounded to the case of

the amplifir to avoid creating any parasitic inductance which would degrade the gain

of the amplifir and the overall noise temperature. For this reason, the FET source

pads were soldered to two 31 mi/s high ridges as described in Figure IV.4.

Figure IV. 4

Transistor Mounting Details

Consider a simplified model of the FET, neglecting the feedback capacitance Cgd,

then an inductance L placed between source and ground will result in an effective con-

ductance gm

�II II_�_� 1IIDI_�_IU_*IYYII__�IIII^X .Il_-_ll-L

, _



gm=
1 + jLgm2rf

where gm is the FET conductance and f the frequency. Applying Wheeler's design

formula to the source pad yields L =350 nHm . Taking the low frequency conduc-

tance speified by the manufarer (ypicaly 50 mmho), gives a 8.45 GHz correction

term of 1+.929jI where I is the gap presented in Figure IV.4 expressed in mmn. A

gap of .5 mm causes a imimto n of the effective conductance of approximately .45

dB. This corresponds to a gain dimimion of .9 dB nce S 21 is proportonal to gmin.

The actual effect of this created inductance is less than the calculated value, but

nevertheless remain quite important

The FET post can greatly perturbe the characteristics of the amplifier. For the

same reasons as for the source pads, the drain and gate pins were made as short as

possible.

3. First prototype

The first single stage prototype is shown in Figure 5V.5. The amplifier case was

constrted in brass. The substate boards were soldered to the case using low tem-

perature indium solder to assure good grounding. The FE- was an ALPHA 3003 for

which the maufac turer claims a minimu noise temperature of 120 K at 8 GHz. The

two ridges necessary to ground the FETs source pads were constructed from copper,

whose low thermal resistivity dissipates the heat generated by the FET at cryogenic

temperatures. The two copper bars were soldered to the case with regular 60% lead

40% tin solder and -to the source. pads with indium. The difference between the melt-

ing points of the two solders made possible the removal of input and output boards as

�



.

2.3" - .3"

.I34

Figure IV. 5

Single Stage First Prototype

well as the FET from the.amplifier, all without removing the ridges.

The bypass blocking capacitors, necessary to avoid the shortening of the gate and

drain when the amplifier is connected to the sweep oscillator, were 18 pF UTC micros-

trip chip capacitors. The capacitors were found to be lossy, typically .3 dB at 8.5 GHz.

Neglecting the other losses induced by the input board, -this corresponds to a 20 degree

increase in the ampifier equivalent noise temperature at room temperature (8 degrees

at 77 c). Higher ominals values of capacitors were found to be lossier and thus were

rejected.
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This amplifier was optimized at room temperature to provide the best noise tem-

perature at 8.5 GHz. Figure IV.7 presents the gain of the optimized first prototype

and Fgure IV.8 presents the noise temperature.
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Figure IV. 7

Single Stage Amplifier Gain

The amplifier exhibits a maximum gain of 8.35 dB at 8.75 GHz and a minimum

nois temperature of 160 K at 8.5 GHz. The 3 dB gain bandwidth fG is value at

.8.75 GHz. The quality factor QG assocated with it is 10.4, thus the Bandwidth to

Central Frequency Ratio (BCFR) of 9.6 %. One can define the 1 dB noise bandwidth

as the bandwidth where the noise figure is 1 dB higher than the minimum noise figure.

In the case of the first protot,3pc, the bandwidth fN is 1.02 GHz wide which

corresponds to a Q, equal to 8.1 and a BCFR of 12 %.
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Figure IV. 8

Single Stage Amplifr Noise Temperature

The cooling of the amplifier to 77 K was performed by bolting the case of the

amplfier to a heavy copper bar, which was mounted insde a brass box. Then the box

was imerged slowly in a bath of liquid nitrogen inside a Dewar vase. After 10 minutes

the boiling rate of the liquid nitrogen slowed down as the temperature of the box, and

therefore the amplifer's case, reached 77 K. Liquid nitrogen was added at seady

intervals to maintain a constant level inside the Dewar vase.

The first time this ampifir was cooled down, the FET's gate pin broke, thereby

prohibiting any further operation of the ALPHA FET. When brought back to room

temperature, it appeared that the substrate board had curled and that its edges were no

longer grounded to the amplifiers case. All atempt to solder the orinal boards

back, failed. When operating with a new FET, the amplifier presented various reso-
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nances within the frequency band of interest, and was finally abandoned for a com-

pletely new design.

4. Second prototype

The second and final single stage ampfier protpe is described in Figure IV.9.
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Figure IV. 9

Second Prototype

This amplifier has a copper case. Although more difficult than brass to work with

mechanically, copper presents the advantage of a better thermal conductivity. To avoid

the board curling problem that affected the first prototype, input and output boards

were bolted tghtly against the amplifier's case. Nylon washers were used under each
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srew to more evenly dis ibue the pressure on the substrate board and assure a better

grounding. To achieve a better thermal contact between the FET and the amplifier's

ase, the source ridges were machined out of the copper case. The bias networks were

imilar to the first version.

Matching the FET to its optimal noise impedanc over a large range of frequency

is a diffilt task. This because any physical impedance exhibits a reactive component

whose variations are positive with frequency. That is

ax X {.) 0) {

Theoretical [6 and experimental [7 ], [section m1.3] resum show that the ansistor's

optimal noise impeance has a reactive component whose variations are negative with

frequency. that is the opposite way,

Zop () = R0 ( + opt (j)

dXopt( <

Nevertheless, the or can be fairly well matched to its optimal noise impedance

over a finite range of frequency. this is provided that the variations of X and X,pt

are small over the considered bandwidth.

In the case of the second prototype, the input was optimized for a match at 8.45

GHz. Figure IV.1Oa presents the single stage ampifier ain for a bias of V = 3 V and

I=10 mA at both room and cryogenic temperatures. Figure IV. lOb presents the
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Figure IV. 10 a

Second Prototype Gain Cwrve, V =3 V, Id = 10 mA

equivale noise temperature of the ampicr under the same conditons. Figures

IV. 11a and b display the same quantities for a FET bias of V, =3 V and Id = 3 0 mA.

The cooling to 77 K improves the performance of the amplifier in two ways. The

gain increases an average of 1.85 dB for a bias of 10 mA (1.8 dB for 30 mA). This

increase in gain results from the increase of the FET internal conductance gm as the

physical teperature of the lattice decreases. In addition, especially for frequencies

between 8.9 nd 9.3 GHz, it seems that the input board better matches the FET's

optimal gain impedance. Two explanations can be advanced to explain this effect: a

drastic change in the scattering parameters of the FET (especially S 11), or a somewhat

important deformation of the substrate board. The exact reason for this improvement

was not further investigated.
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Figure IV. 10 b

Second Prototype Noise Temperature Curve, Vd = 3 V, Id = 10 mA

When imerged in liquid nitrogen, for frequencies lower than 9 GHz, the noise

temperature of the amplifier decreases as expected. At 8.45 GHz the decrease is sigi-

ficant 64% for a bias of 10 mA, 61% for 30 mA. For higher frequencies where the

room temperatre noise figure was much greater, the noise figure increased when the

amplifier was cooled.This defect could be explained by parasitic oscillations developed

under the substrate board when cooled. This possibl explanation is consistant with the

fact that although low, the noise temperature of the prototype remain much higher

than the computed FET minimum noise temperature.

A better method of grouning is desirable. A proposed solution is to solder only

the center of the substrate board to the case of the amplifier and hold its edges to the

ampiifier with screws.
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Second Prototype Gain Curve, V, =3 V, Id = 30 mA

The gain bandwidth AfG of the second prototype is larger than that of the first

e=.For a bis f 10 A t 77 K the bandwidth is, at least, 1.5 GHz wide around

8.4 GHz. This corresponds to a quality factor QC of, at most, 5.6 and a BCFR of, at

least, 18%. The 1 dB noise bandwidth AfN is greater than .9 GHz which correspond

toaquai fac , toatrm 9.4 and a BCR of, atleast, 10.8%.

The variations of gain versus drain current was measured at 8.45 GHz and room

temperature, after regromnding the input board The result is shown in Figure IV.12.

Using the computed noise parameters of the FET and the source impedance of the

input board, the expected noise temperature of the prototype was calculated. At 8.45

Measurements for frequences lower than 8 GHz could not be performed because at the
time of the measrement no sweeping osclator was available in the 6-8 CHz band.
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Second Prototype Noise temperaare Crve, V, =3 V, Id = 30 mA

GHz, the calculations yield a noise temperature of 146 - 10 K at room temperature

and 528 K at 77 K. In both cases, the noise performance of the single stage amplif-

ier is worse (180 and 68 K) than the calculations indicate because of losses and

mismatches in the input network. The attenuation formulae derived in Appendix C3

allow the calculation of these differences. At room temperature, the attenuation a is

1.2 dB, and at 77 is 1.8 dB, out of which .3 dB is caused by the DC blocing capa-

itor More work need to be done to reduce these attenuations and further improve

the performance of the prototype.

It is possible to estimate the noise temperature and gain of a three stage amplifier

with the first FET biased at 10 mA and the two last ones at 30 mA . Provided that each

of the interstage networks create a .5 dB mismatch. a gain of 24 dB and a noise tern-
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Gain versus Drain Current

perature of 90 at 77 K can be expected.

.; o , - * r I I 

12.6cke

te.00.0

7 . Sj 

; . 0 id 

.2 S RI 

A 1. AA

I
I

I

II
...................................................... ................................................................ ... -.... -I...............

I

I-l l .....



References

1. Rogers Corp., Type D-5880 RTIDuroid.

2. H.A Wheeler, "Trnsmisaion-Lin Properdes of a Strip Line Between Parallel

planes," EEE Transactions on Microwave theory and techniques MTT-26, pp.866-

876 (November 1978).

3. S. March, "Microstrip Packaging: Look for the Last Step," Microwaves, pp.83-91

(December 1981).

4. A.K. Sharma and B. Bhat, "Analysis of Triangular Microstrip Resonators," IEEE

Transactions on Microwave Theory and Techniques MTT-30, pp.2029-2031

(November 1982).

5. R.J. Akello, B. Easter, and LM. Stephenson, "Experimental Measurement of

Microstrip Transistr-packag Parasitic Ractances," IEEE Transactions on

Microwave Theory and techniques MTT-2S, pp.36 7- 37 2 (May 1977).

6. H. Statz, H. Haus, and R. Pucel, "Noise Characteristics of Gallium Arsenide

Field Effect transistors," IEEE Transactions on Electron Devices ED-19, pp.674-

680 (May 1974).

7. G.D. Vendelin, "Feedback Effects on the Noise Performance of GaAs MES-

FETS," IEEE-MT.S Int. Microwave Symposium, pp.324-326 (1975).

__ _ _ _�



CHAPTER V: SUMMARY AND CONCLUSIONS

1. Results

In this thesis, a study was presented on the behavior of cryogenically cooled

Gallium-Arsenide field-effect ransistors. The research was carried out in two main

The first part of the work was concerned with the measurement of several of the

FET parameters in the X-band. The measurement of the power scattering parameters

provided an estimate of the stability factor k and of the various gains associated with a

particular FET and their variation with the DC bias of the FET. Because of insuffi-

cient accuracy in experimental measuremnt (especially those related to phase terms),

one could draw limited concerning the operation of single or multiple stage

FET amplifiers. The FET transconduance was found to increase when cooled, thus

causing an increase in the RF gain.

The noise parameters of the FET and their variation with frequency, physical tem-

perature and DC bias were extensively studied. Between 8 and 10 GHz, the frequency

_ __��



dependence of the minimum noese temperature Tmi was found to be almost linear and

the dependence of the noise conductance gn quadratic. To this extent, these results

confirm the theory of Pucel et aL

It has also been shown that the nois temperature improvement factor for cooling

from 293 to 77 K varies from 2.1 to 2.8 dependi g on the frequency and DC bias of

the FE1. These physical temperature dependences of the noise parameters and DC

bias were found to be comparable to results pertaining other FErs and other frequen-

cies.

Finally, FET channel physical parameters such as thickness, width and carrier

density were determined. Changes in pinch-off voltage and Schottky barrier potential

were found to be small in the 293-77 K range.

The second part of the work was concerned with the design and evaluation of a

single stage cryogenically cooled FET amplifier.

When cooled at 77 K and operated at 8.45 GHz, the amplifier exhibited a noise

temperature of 68 K and a gain of 7.2 dB. When biased with a larger FET drain

current (30 mA), the gain of the amplifier improved to 8.5 dB, while the noise perfor-

mance was degraded to a level of 100 . Although, they did not greatly affect the

gain bandwidth of the amplifier, grounding problems in the matching networks cor-

rupted the noise temperature of the amplifier, especially at high frequencies. Overall,

the reliability and feasibility of microstrip tuned X-band amplifiers was demonstrated.

The single stage prototype has been subjected to over twenty 293-77 K cycles with no

failure and little retuning.
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2. Suggestions for further research

A more complete characterizaon of the FET is possible. It requies low-

frequency measurement of the parasitic elements of the tansistor and the matching of

the small sinal equivalent circuit with the measured scattering and noise parameters.

Measurement of the noise parameters at lower temperatures are necessary to distin-

guish between thermal nise carried by parasitic restacs, and non thermal noise-

caused by high field diffusion noise and intervalley scattering. More accurate measure-

ments of the scattering parameter are necessary to study the variations of the stability

factor and available gains with temperature.

Although shown efficient, the use of microstip tning still presents questions that

need resoving. One must master the problem of radiation loss and that of charactri-

zation of the impedance presented by blocking capators, connectors and other non

perfect elements.

In order to test the measurements and results of the first stage amplifier and to

investigate interstage matching networks, a three stage version has to be constracted.
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APPENDIX Cl: NOISE PARAMETERS DETERMINATION

The program VANDA listed below accepts as input data a set of four triplets

Tm., R ,w, and Xgw, and derives the parametrs Ro , Xop, gn and To. It also

provides with the R, RZ , XI of the Rothe-Dalke rsen ion of noisy

twoports.

The inversion of the ma[ix1 ] J uses the Gauss pivot method.

10 DIn CD4,I5s(s.5M.Ik' T(4.5;:
Y(4>,R(4),Q(4),TI4).PX(4)

28 INTEGER (4).,J(4j.0(4)
38 CLEAR BSEEP 100.100
48 ON KEY* 1,'"RSTE' GOTO 1440
S0 ON KEY* 4,=PROG= GOTO 80
68 KEY LABEL
70 GOTO 78
80 FOR Kl TO 4
90 CLEAR
100 OISP USING 10 ; 
118 IMAGE resistance number:

O
129 INPUT R(K)
13e DISP USING 148 ; r
140 IMAGE reactance number: 

150 INPUT X(K)
168 OISP USING 178 9 ¢
179 IMAGE = input the value of T

number ",.O
IS0 INPUT TI(K)
190 NEXT K
290 CLEAR
210 OISP Tn R

X"
22 ODISP " +++++* ++

230 FOR U-I TO 4
24e OiSP USING 250 ; 12,TI(UN(.U

>,x IjU)

250 IMAGE *+ , 0," + .0000. +
' ,ODO0.00, * 'wOOo 00, " "

260 OIrP "*+.4.+.**_*e*+*..

270 NEXT U
280 OISP rIf it is o hit CEHO L

INE 3*"
290 INPUT WS
380 IF WS<>'" THEN 80
318 COPY
320 CLEAR
338 OISP that i it! It si work

ins"
340 FOR L1 TO 4
358 C(L,1)=l
360 C(L,2)-290/R(L)
370 C(L3)(R(L)2+. XL 2)2299'P

(Li
388 CCL, 4)-2zX(L~24e9L.
390 C(L,5)=Tl(L)
400 NEXT L
410 N=4
420 FOR 1-1 TO H
438 FOR Ja1 TO N+*
448 T(IJ)-C<I,J>
450 NEXT J
460 NEXT I
47 Mr-N 1
480 Ol1

---�-----·I I
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490 FOR K1 TO N
500 Kl-K-1
510 P-e
529 FOR Il1 TO N
530 FOR J TO N
540 IF Kl THEN 610
556 FOR 12'1 TO K1
560 FOR J2-1 TO KI
579 IF I-1(12) THEN 658
580 IF J-J(J2) THEN 650
590 NEXT J2
600 NEXT 12
610 IF ABS(T(IJ))<-B8S(P) THEN

658
628 P-T(I,J)
630 1(K)-I
640 J(K)-J
658 NEXT J
660 NEXT I
6780 131(K)
680 J3-J(K)
690 DOP
790 FOR Jt TO 
719 T(I3,J)-T(I3,J)/P
729 NEXT J
730 TI3,J3)-I/P
740 FOR I-1 TO N
750 TsT(I,J3)
768 IF 1-13 THEN 8180 ,
779 T(I,J3)--(T/P)
780 FOR Jl TO 
790 IF J<>J3 THEN TJ J)=T(IJ)-

T*TV!3,J)
see NEXT J
810 NEXT I
820 NEXT K
830 FOR I-1 TO 
840 14I(I)
856 J4-J(I)
86e D0(4)-J4
987 S(J4)-T(r4,M)
88s NEXT I
899 T=O
980 HNI"H-
910 FOR I-1 TO N1
920 Pt'-+i
938 FOR JP1 TO N
940 IF O(J)>-O(I) THEN 990
95e TI.O(J)
968 D(J)-O(I)
978 O(I)TI
990 T-T+.
990 NEXT J
100ee NEXT I
1610 IF INT(T/2)*2<:T THEN O--O
1828 FOR J TO N
1030 FOR I-I TO H
1840 14-1(1)
1050 J4-.J(I)
1060 Y(J4)uT(14,J)

1078 NEXT I
188 FOR rI1 TO N
1890 T(I,J)-Y(I)
1100 NEXT I
111 NEXT J
1129 FOR I-1 TO N
1130 FOR J TO N
1140 14-I(J)
1150 J4-J(J)
1160 Y(I4)-T(I,J4)
1178 NEXT J
1188 FOR Jt TO N
1196 T(I,J)-Y(J)
1290 NEXT J
1210 NEXT I
1228 GS(3)
1238 X-S(4)/G
1248 R-(S(2)/G-X^2)^.1
1250 T-S<t )+2CG**29e
1268 PRINT *t**#*e*e***##eesee *

1279 PRINT USING 1298 ; T,R
1286 IMAGE T in- '.000OOO. K'

,/,' ROpt ,t0OOO.0O," a'
1290 PRINT USING 1300 ; X,G
1388 ICAGE ' Xpt-w,00 .00, 0

*,/,* GCn- *,ODD.0E" o-

1310 R1mG*(R*2+X-2)
1329 PI-X/SQR(R2+X^2 
1338 P2-T/(2*(R1*G)-.32290)-~1-P

- 1 ^2) .5
1340 R2-P2*(R1/G)-.5
.135 X1-(P1<(R/0G).!)
1360 R3-Rlt(-(PI-2~P^2)'

1380 IMAGE Rn-"'.OOO.OO, 

00,1/,' rria-e,mo.
000 0 

t390 PRINT USING 140 ; R2,X1
1499 IrAGE ' Ocor-',MODO

00, ,/, ' Xcor-
",OOD.DO!, Q'

1410 PRINT USING 1428 ; R3
1429 rnAGE * -Puc,MOOtO

*.DOe Q',/e**re*#s*#' 5,
1430 ENO
1440 CHAIN RAutost

41�, �..,.��_ ��1Y� _���__�����____�



APPENDIX C2: NOISE TEMPERATURE MEASUREMENTS

As eplained earlier in section IV.2, two complementary methods were used to

measure noise temperature and FET amptifier gain. In both cases the noise source was

an H.P noise diode with an nominal excess noise of 15.2 dB in series with a 10 dB

attenuation pad. An excess noise of approximately 5.2 dB permits the usage of the

noise figure meter at its maimum sensitivity and also avoids any saturation of the

amplifier. A three point fit was made over the calibration values provided by the con-

structor at 8,. 9, 10 GHz. The attenuation was carefully measured using powermeter

and network analyser.

The first method makes use of the a noise figure meter (HP 340B) and of its ana-

log output to draw directly on an X-Y plotter or an osclloscpe the variations of the

noise figure (therefore of the noise temperature) with frequency. First, the noise fig-

ure meter sends a square wave 0-28 V to the noise diode and reads the power at the

output of the receiver when the diode is turned on' and off. Then, it deals with the Y-

factor of the system defined as

y= power at the ourput when diode is hot (on)
power at the output when diode is cold (off)
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and related to the different noise temperatres by

= Ts THot

Tjsw + TCold

where Ts, is the system noise temperatre, Tco the niseat of the cold

diode, Tsot the noise teperature of the hot diode (ie with the excess noise). One can

calculate the noise temperature of the system from its Y-fator through

AT
Tsg =y T -rCold= Y-1

where

AT THa -Tcd

AT =290.rcess Noise

The noise figure is reated to T by

F=1+
290

This operation is performed automatically by the noise figure meter assuming that the

excess noise is 5.2 dB. The program EVA written for the purpose of the computation

of TFE takes into account the fact that the effective excess noise applied to the system

is slightly different.

.z-5.2

TS =290.10 10 Fmeter-To

where Exc is the excess noise applied xprscsd in decbels and Fmeter the reading of

the noise figure meter. The calibration. of the receiver provides us with T, noise

temperature with the step attenuator in position i.We have

TRed
TSy, TET+ GFET

i-=0,1

- -- 11_1 11 I --------



The noise temperature of the FET is given by

TFfT =
TRc 0 T 1 - TRj lTsyo

Ts - Tss 1
The gain of the FEr amplifier is given byof e zk-l- Is givea

T o-T x.

'Tis computation is performed by the program sted below for 21 points equally spaced

between 8 and 10 GHz.

10
20
30
48

68
?Oe

I USES THE HP X-' PLOTTEP

' 'JERSION OF ODC 9.1982/

80 !
90 DIM A(21),B(21),C21),0121',

E(2), F;21iC,(21 *(21 ',wI (
).,J.21).K(21),L(2: ).M(21)

810 CLERRli CLEAR
129 DISP ' what is t date aire

130 oIM BSC583
140 INPUT B$
15 CLEAR
168 OISP 'uhat is n eqree cals

%us the temeraire of the
nois, diode P1.lseg'

1t7 IHPUT 
189 8-B+273
190 IF 8*299 THEN BEE 30e,1 e e

BEEP 90208
208 IF B#298 THEN OIPS 'will nee

d a orrection for the sco
nd tave noise,

210 IF #290 THEN WAIT 1see
220 CLEAR
23e D0SP USING 240
24e IMAGE 7/,* WORKI

NG"
258 OISP USING 260
268 IMAGE 7/
270 FOR P TO 21
28e (P).-(.e8975SP^~' .G08P*I5

.208275
29 READO M(P)
380 ODTR .A2.83.3.8.

.81,.83.83, 81.. .8,.81, 8

319 M(P)u-MP)+9
328 ! A(P) REPRESENTS THE EXCESS

NOISE OF THE HP OISE DIODE
USING 3 POINTS FITTINCG CUR
VE OF

33 ! THE HP CALIBRATiON REPORT
340 M(P) IS THE TTENUATrON OF

THE t d PO CMPOSITE WIT
H THE RPC7 HP

359 R(P)-A(P)-M(P)
368 ! NOW R(P) IS THE REAL EXCES

S NOISE PPLIED AT THE SYSTE

379 NEXT P
388 DORT 9.84,9.7899.il,9 .a4,9.8

5,9.83,9 9,9 85,9 899 88,9.
83.994 , a 9.9 ,. 83,9.?,9
8 9. 68

390 DATA 9 .773.55,9 .
488 ! DATA rM<P) EASUED THE th

OF OCTOBER 1982 FOQ THE 1 d
B NOMINAL OI SPECTRR PRO

410 ! THE INPUTS RE THE ELONGAT
IONS ERSURED IN CENTIMETER
OH THE X-Y PLOTTEP WITH THE
RELATION

429 ! THAT 1. c (--x dB OF H
OISE FCTOR

438 ! FIRST CHECK IF HE LAST CA
LIBRRTION WRS ALRFQOY READ

448 GC(l)
458 IF G-e THEN GOSUS 1738
468 ! C(P) IS THE ELONGATION EXP

RESSED IN CENTIME7ER OF THE
PLOTON THE X-Y PLOTTER WHEN
THE

479 ! RECEIVER IS IN POSITION 8
480 D(P) IS THE NOISE TEMPERPT

URE OERIVED FROM T 4E EXPRESS
ION PRESENTED IN THE INTRODU
CTIOH

490 ! E(P) IS THE ELONGATION EXP
RESSED IN CENTIMEsRp OF THE
PLOTON THE X-Y P'OTTER WHEN
THE

500 i RECEIVER IS IN OSITIONH 
518 ! F(P) IS THE HOISE TEMPEART

URE DERIVED FROM 7HE EXPRESS
ION PRESENTED IN THE INTRODU
CTION

52e
530 CLEAR
548e 
558 OISP first ser-e of m*asu

remn t^
568 OISP Reciv*r in Positio

n 8"
578 WRIT 2509
58 CLEAR
590 FOR P1t TO 21
689 Fs .9P*. l
610 DISP USING 629 ; ;
620 IMAGE ' for a friu*ncx of"

,OO 0 ' GHz'
638 INPUT G(P)
649 H(P)*i7.57?910'((i SR(P .'C:

P' './S)-G
650 CLEAR
660 NEXT P
670
688 ! ENTRY OF THE EOGRTIONS G

<P) FOR THE RECEIuJEP IN POSI
TION 

69s8 HrP) IS THE'A RR OF' NOISE
TEMPERATURE

790 
710 FOR P TO 21
7Ze OISP USING 738 .

P:

----�--�--- II



738 IMAGE " C F-",OD. 'CGH: 3C
L=', OO.00, ' cm 3

740 NEXT P
750 OISP USING 768
768 IMAGE 'if it is 0 K hit CEN

O LINE3'
778 INPUT AS
780 IF AS<>. ' THEN 58
790 CLEAR
see OISP ' second seri o 

sureMernts
81 OISP ' Rceiv*- in positi

on 1
82e AIT 2588
838 CLERR
840 FO PI TO 21
850 F-7.9*P*.1
86 DOISP USING 628; 
878 INPUT IrP)
880 J(P)-87.579*19^8C( .SA(P)*t(

P))/15)-e
898 CLEAR
98800 NEXT P
918
928 ! l(PN ELONGRTIONS IN C FOR

THE RECEIVER IN OSITION 1
938 ! J(P) IS THE ARRAY OF NOISE

TEMPERATURE
940 
950 FOR P-I TO 21
960 DISP USING 738 ; 7 9.P .1;I(

P)
978 NEXT P
988 OISP USING 768
990 INPUT AS
1888 IF RAS)" THEN 830
18198 M8 TS8eee
1828 FOR P-I TO 21
1830 K(P)O(D(P)-F(P))/(H(P)-J(P)

)
1840 L(P)-J(P)-F(P)/K(P)
15Se IF KP)>> THEN M-r(P) e N-P
1860 IF L(P)T THEN T(P) 0O-P
1879 NEXT P
18e CLEAR
189 FOR P-1 TO 21
s100 DISP USING 1110 .9. 1ZP,

18tLGT(K(P)),L(P'-
I116 IMAGE 'F-',OD.OO. 'NCz G(dB

)O,MD.Do T ,OOo0
1129 NEXT P
1138 PRINT
1148 PRINT USING 1158 ; 18*LGT(

) ,7.9+. 1N
1158 IMAGE 'Gain max-',M0OO , 

our F',OD.DD,' GH:',//
1168 PRINT USING 1178 ; T,7.9 t

sO
1178 IRMAGE ' T in-'.00DO5' p

our F-',D00.0,' GCH=.6/

1728 RETURN
1730 ! THE COMPUTER GOOES NOT KO

W C(1) THUS E NEED OR TO E
HTER ORTO READ A CALIBRATIO
N

1740 CLEAR
1758 OISP 'do ou want to nter

a nw calibratio- (N) or us
* the old on.(O,'

1768 INPUT RAS
1789 CLEAR
1788 IF R$**-OZ)AR$RSN)- THEN

1750
1798 ASSIGN 1 TO CALIBS
18088 FOR P-I TO 21
1816 IF ARS'O' THEN REAO* ; C(

P),E(P)

1188 INPUT As
1190 GCLEAR
1280 SCALE 7.85,16.1,-10,150
1210 XAXIS , .2,8, 1e.
1228 YAXIS 8,16880,818
1238 FOR X TO 18 STEP .4
1248 LDIR 
1250 MOVE X-. 935,-106
1260 LABEL VALS(X)
1278 NEXT X
1280 FOR Y-0 TO 188 TEP 10e
1298 LDIR 8
1389 MOVE 7.85.Y-28
1318 LABEL VLS(Y19e8
1328 NEXT Y
1338 FOR P-1 TO 21
1340 MOVE 7.9+P2.l,l6ZeLGT K(P)

1350 GOSU8 1660
13608 OVE 7.9+P.1,L*P)
1378 GOSUB 1798
1380 NEXT P
1398 PEHUP
1409 PLOT 8,1600LGTK(I))
1418 FOR P2 TO 21
1428.ORAM 7.9+. 1*P, 1d6ZLGT(K(P 

1430 NEXT P
1440 LDIR 
145 LRABEL G"
1460 PENUP
1478 PLOT 8,-L)1)
1488 FOR P2 TO 21
1490 DRAR 7.9+.ItP,LkP'
1500 NEXT P
1510 LABEL T
1520 MOVE .e85,-1e0
1538 INPUT S
1548 IF AS<>)' THEN 10
15e0 COPY
1568 FOR P-1 TO 21
1579 PRINT USING 1580 ; 7.9+ 1*P

,10*LGT<K(PP),L(P)
1588 IMAGE 'F'00OO.DO.' G G=",

MDO.D,'dO T-',00DOD,' K
1599 NEXT P
1680 PRINT
1618 PRINT measures of the "&8

1628 PRINT
1638 PRINT
1640 GOTO 18
165e ENDO
1668 IrOVE -. 8875,5
1670 IORR .851,8 e RRW 9,-10
1680 IDRR -. 815,8 e rORAR 8,1;
1690 RETURN
1790 IMOVE 8,7.5 IOoAU 8,-15
1710 IMOVE .12,7.5 IOPRAW -. 2

3,0

1829 IF AS-O' THEN OISP USING 1
838 7.9+.lP,CfP)-,E<P)

1830 IMAGE 'F-',OO.O,'Ghz POSe",
0D.DO, POS1',D DO

1840 IF RS-0'' THEN 1918
1850 F7.9+.IP
1860 CLEAR
1879 OISP USING 629 , F
1888 OISP ' e1onsations in POSe,

POS1
1896 INPUT CP),ECP)
1989 PRINT I ; C(P),=(PN
1918 oDP)-87.579:l'(1 . 5*R(P)+C

(P) )/15)-8
1929 F<P)87. 57919ei'1.r. ZAP)+E

(P))/S1)-e
1930 NEXT P
1940 ASSIGN 1 TO 
1958 RETURN
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The second method uses the power at the output of the receiver when the diode is

off and aon. Because the variations of the power at the output of the receiver are rapid

with frequency (althoug the variations of the Y-factor are smoother), one needs to

carefully set the frequency of the local oclator. For this purpose, the oscillator was

contolled using an HP-85 desk computer and a D/A converter.

Calling B the bandwidth of the reever, G i gain and T i noise tmperatur,

one can express the outut power when the diode is applied to the receiver alone

PI=kGRB (T +T )
Pa =kGB (TA +T, )

where k is the an constant equal to 1.38 10- 23 I. Solving the system of

euaions yields

'TR t . TC
Pis -1

Pco ld

kBGR = 
R

If we now place the amplifier in front of the receiver we obtain at the output

PCod =kRBGFEI (TEr + TeO ) + WBT

P'w= kRGFEr (T Er+ThO) +kRBTR

We can easily caulate GFE and TE

Pho -POM
GFE= hc

(T-TO4J)kGRB

Tht -T I TR
TT = Told

Pho-r GET

cold
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Because of the rapid variations with frequency (and as stated for the first method

sightly with time) of the output of the reciver, rcalibration had to be undertaken reg-

ularly. The two pogas listed below rspectivey completed the caibraon of the

receiver and the measurement of the FET gain and noise temperature. A typical out-

put plot of resul is also presed.

1e ENAbLE K 32
20 ON KEY* 8,'" GOTO 110e
308 ROOREC
48 ! A<(P FREQUENCY TO PPLY
58 ! (P) VOLTAGE TO qPPLY
60 ! C'.P) EXCESS NOtiE DIOOE
70 i O(P) RTTENUATION 10 08 PO
81 DI 23)
98 OINF(21)1,8<21),C(?IC),<10:,

E(21),F(21>),G(21,H<21,) 21
-J(21),K<21 ) vLi!),N ),N<H(

21:.
180 ! T T COLD
110 T.29?
129 CLE£Rf 0 DISP INIrTALIZATION

t13 ASSICGN 1 TO REEfR'
140 FOP Pl TO 16
15s8 AP)-8+.1*P
16 8(P)r- 48322.8Z45*P
178 C(P)=15.22+.9l65.P- .0075*P

180 RERO O(P)
198 C(P'wC'P)-OP)
288 ! NON C(P) EXCESS NOISE PPL

IED IN 08
210 I E(P)- T HOT -T COLD
220 EtP)290180^-.l*Ce(m)
238 IMAGE F0,OO.O, "Ghz POC-'

,MOD 000, POHm' *Oo0.00
248 NEXT P
2508 ##eee#e# #~#eee##e*
268 DRTR 18.38,18.251 *, 1 0 1e

. 86 18.23. 1 18. I 29, 18 3,1
8.35,10.31,10 3? 9.36, 1e.36

18 .38
278 DATA 10.13
288 DISP INITIALIZATION DONE*
298 BEEP 180,1800 BEEP see,20 e

BEEP 1e, 18ee
380 DISP SETTING THE GPIO INTER

FACE'
318 CONTROL 4.0e ; 
328 ! TURN OFF THE PRPTTY CHECKS

241 i ######~e##*#4#####
*#*

338 CONTROL 4.1 ; 
340 ! NO INTERRUPT COH!NG FRO P

ERrPNERRL
35s CONTROL 4,2 64
368 ! INVERSES THE LOGTC ON THE

FLAG LINE.THIS ONE IS CONNEC
TED TO THE GROUND

370 CONTROL 4,4 .; 1 9
380 ! TURN OFF HNOSHRKE PROCEDU

RE.
398 CONTROL 4,5 8*4
48e ! NO TRIGGER. PORt C IS OUTP

UT
418 CONTROL 4;6 
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420 ! STROBE PULSATIO0-WO
430 CONTROL 4,9 ; 
440 ! 00 NOT OUTPUT JHIB4IT
458 BEEP 150e
460 DISP 'MEASUREMENTS'
478 FOR P-I TO 16
488 CLEAR
498 ! SWITHCHES OIOOE OFF
500 ASSERT 4;0
510 Vu-(P)
520 V-(V+12.5/512)/1 S
5398 IINT(V2255)
540 C$-OTBS(I)
550 oISP USING 588 ; P)
568 OISP USING 598 ; 1t12.5
578 oISP USING 6 ; CC93
588 IMAGE 'Oporatin Freuency-0

,00.0.* Ghz'
590 IMAGE ' Control oltaqe-,00

.00,' V'
600 IMAGE 'Transmission Pattern-

618 OUTPUT 44 USING *.B' ; 
62e ! SWEEPER AT THE P!GHT FREQU

ENCY
630 WRIT 180
640 GOSUB 1800
650 ! READO POWER COL5
660 J(P) POWER COLO IN O
670 J(P)-Z(1)
680 ! SWITCH IOGE ON
690 ASSERT 4;2
788 WRIT 10088
7le GOSUB ee
728 ! REAO POWER HOT
738 ! K(P) POWER NOT 4 08
740 K(P)-Z(I)
750 ! SWITCH OIODE OF
76e ASSERT 4;6
778 PRINT USING 238 A<P),J(P),

K(P)
78e PRINT* I J(P),J,'P)
7908 POWERS IN WARTT
808 NEXT P
818 PRINT
820 PRINT
830 ASSIGN# 1 TO 
840 FOR P-I TO 16
858 ! POWERS IN WATTS
868 J(P)-lR-<.lZJ(P)1
876 K(P)-1 <(.IZK(P)'
880 H(P)-E(P)/(K(P)/J(P)-I)-T
89e I(P)-J(P)/<T+H(P')
9688 PRINT USING 918 ; A(P),(P),

I<P)*1eeeee
910 IMPIGE F-',OO.O . T-=D0000,

'K Gr-,OOD.OO
928 NEXT P
9308 SWEEP BACK TO Cd
948 OUTPUT 484 USING '",B ; 0

950 RSSIGN# 3 TO PARMRE'
960 RERO 3 ; RS, B$,T.T2,T4
979 RSSIGN 3 TO 
988 IF RS-'RUTO' THEi CHRAIN 'RN

-PR "
990 ENO
1e0e XS-90pR
1810 FOR s-1 TO 3
1828 OUTPUT 713 ;XS
1838 ENTER 713 ; VS
1840 Z(I)-VRL(VSC4]3
1850 IF 1(3 THEN WRIT ees
1e6e NEXT I
1878 IF (R<SCZ(C)-Z2')<.82)Z(RB

S(Z(1)-Z(3) ><.2'-e THEN 18

1888 Z(<)-(Z(1 )+Z(2)-e3))/3
189 RETURN'
11ee ENO
1110 ENABLE KBO 255
1120 ! SWITCHES IOOE OFF
113S ASSERT 4;8
1148 ! SWEEPER AT CW
1158 OUTPUT 484 USING *,,B " ; 
1168 DISP *' UTHORIZED INTERRU

PT'
1170 STOP
118 END

I�__



10 ENABLE K 32
29 ON KEY* 8,"" OTO 1818
30 ROOFET
4e ! A(P) FREQUENCY 0 APPLY
9 ! S,(P) VOLTAGE TO APPLY
66 ! C(P) EXCESS NOISE OIODE
79e o(P) RTTENUATION 19 DB PRO
.89 O0t Z(3)
96 OIM R(2),B(29),. 2),0(29),

E(2),F(2),G2(2e .(29), I(2
),J(2),K() 28),L(0),M(26),Nt
29)

10e ! T T COLD
116 T2Z93
129 ASSIGN* 1 TO RE'EIR
136 ; RECEI POW C AND POH OF TH

E RECEIVER
140 CLEAR OISP 'INTTALIZATION

150 FOR Pt TO 16
160 A(P)+8..1*P
179 8(P)>--.4322.94A5*P
186 C(P)tS.Z2+.69165zP- 66e75P*

P
199 REAO (P)
299 C(P)-C(P)-O(P)
210 ' NOW C(P) EXCESi NOISE PPL

IED IN 08
229 ! E(P)- T HOT -T COLD
236 E(P)u296$1^(.1*C, P))
240 ' F(P) POWER C I 08
250 G CP) POWER H IN 08
269 REAO* t i F<P),GPN
279 OISP USING 289 ;i rP).F(P),G

(P;
286 IMIAGE Fw,OO .0, 'z POC* t

ROO.D0,' POH-',Ot 00O
290 F(P)-10e(. *F(P).
3ee G(Ptg-1(<.lXG(P)
319 i POWER IN WATTS
328 H(P) NOISE TEPEDORTURE OFF

THE RECEIVER
330 H(P)mE(P)/(VCP)/9*)-l)- T
340 ! I(P) IS THE PRf)OUCT k.B.Gr
356 I(P)-F(P)/(T+H(P)-
360 NEXT P
379 !
386 DATA 16.3816.25.11e.613,1e

.06,10.23,19.619, 29,10.3,1
6.35,10.31,16.37,10 36,10.36

396 DATA 1.13
4e0 ASSIGN* I TO 
410 DISP INITIRLIZATION DONE'
429 BEEP 1tee0,1e BEEP 5e,29 

BEEP leel ee
430 OISP SETTING THE GPIO INTER

FACE"
440 CONTROL 4, ; 
459 ! TURN OFF THE PITY CHECKS

466 CONTROL 41 
479 ! NO INTERRUPT COPING FRO P

ERIPHERAL
480 CONTROL 4,2 ; 64
49 !1 INVERSES THE LOGIC ON THE

FLAG LINE.THIS OE IS CONNEC
TED TO THE GROUND

566 CONTROL 4,4 ; 192
519 ! TURN OFF RNHOSH0E POCEDU

RE.
529 CONTROL 4,5 ;i +4
538 ! NO TRIGGER. POR C IS CUTP

UT
546 CONTROL 4,6 ; 8
355 ! STROBE PULSATIO-0
566 CONTROL 4,9 ; 
357 ! 00 NOT OUTPUT INHIBIT
586 BEEP 1,589
590 OISP 'EASUREMENTS'
609 FOR PF- TO 16
619 CLEAR
629 ! SWITHCHES OIOOE OFF
638 ASSERT 4; .
646 V.6(P)
658 Vm(V+12.5/512)l. 5
668 I=INT(V*25)
679 CS-OTBS(1)
689 DISP USING 71 ; P¢P)
699 DISP USING 729 ; V*12.5
79ee ISP USING 73 ; CSC93
71e IMAGE 'Op rattin fre+tunc-'

,00.0,' Ghz I

729 INAGE ' Control oltae+-",00
.O0,' V'

736 IMAGE 'Transmission Pttorn-

746 OUTPUT 44 USING '*,8' ; I
75e I SWEEPER AT THE P#GHT FREQU

ENCY
768 WAIT 109
779 GOSUB i719
78 ! REAO POWER COLD
79 ! J(P) POWER COLD IN 0B
se J(P)-Z(I)
818 ! SWITCH OE Ot
829 ASSERT 42
839 WAIT 199
846 GOSUB 1719
850 ! RERO POWER HOT
960 ! K(P) POWER HOT IN 0B
879 K(P)-Z(<)
888 ! SWITCH DIODE O;F
890 ASSERT 4;6
960 PRINT USING 28 ; p~J,P.

K(P)
910 ! POWERS IN WATTS
929 J(P)19-(.1ZJ(P)
936 K(P)=le(. 1ZK(P),
946'! LP) T FET
950 ! P(P) G FET
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960 ! N(P) G FET IN DP
978 rcP)-K(P)-J(P)) . E<P)z Z'P?)
980 L(P)-E(P)/(K(P)/.J)-I)-T-N(

P)/R<P)
998 H(P)tO*LGT(<RS(<(P)))
10ee NEXT P
191 OUTPUT 404 USING "',B' ; 0
1892 ! SWEEPER RT C FEQUENCY
1838 BEEP Ie0S.18
18480 CLEAR DSP '*DAt REDUCTIO

N
1805 PRINT
1868 NI=-INF
1070 L1-INF
1888 ! SEARCH FOR GX TIN
1898 FOR P TO 16
1100 PRINT USING li ; (P),N(P

),L(P)
1118 IlAGE 'F-,00.O43. Ghz G(dB

)-6M"O.D,' T-,000
1128 IF N(P)>N1 THEN It1N(P) N

2-P
1138 IF L<P><L1 THEN LI.tLP) L

2-P.
1140 NEXT P
1158 PRINT
1160 PRINT
1178 PRINT USING 1194 ; N(N2),R(

N2 '
1188 PRINT USING 128 ; LcL2),R(

L2)
1198 IPAGE 'Gain n*x-'.rOO.O,' 

or FO.D00 ,' -z'
12ee IMAGE = T min- ,000O, f

or F--,OD. DO, G-
1210 PRINT
1228 ! PLOT
1238 PEN 
1240 GCLEAR
1250 SCALE 7.8 ,10.1.-1O8, 10s
1268 XAXIS 8.2,8.18
1279 YAXIS 8,18,0,1'50
1289 FOR X-8 TO 1 STEP .4
1298 LDIR 
13e88 MOE -. 93..-108
1318 LABEL VALS(X)
1320 NEXT X
1338 FOR Y-e TO 1900 ;TEP 10
1348 LOIR 
1358 MOVE 7.SSY-29
1368 LABEL VRL<SY/109
1378 NEXT Y
1388 FOR P TO 16
1390 MOVE R(P),<P)%tO
1400 GOSUB 1640
1418 MOVE (P-),L(P)
1428 GOSUB 1680
1438 NEXT P
1440 PENUP
1450 PLOT RA(1>.1eeN t)

1468 FOR P2 TO 16
1478 DRAW R(P),1e9rNv.)
1480 NEXT P
1490 LODR 
15088 LABEL CGain'
1518 PENUP
1528 PLOT R(1),L(1)
1538 FOR P-2 TO 16
1548 DRAW R(P),L(P)
1558 NEXT P
1568 LABEL Temp'
15 78 COPY
1588 ASSIGN I TO PqRPE"
1598 REARO 1 ; ASBs,T..T2 T4
1688 ASSICGN I TO 
1618 IF AR-'RUTO' THEW C4AIN RU

N-PR
1629 BEEP
1638 END
1640 IROVE -. 8875.5
1650 IORRW .815, 0 IOOAW 0-10
1668 IDRAW -.8150,8 a ORAW 0.10
1678 RETURN
1689 ItOVE 9,7.5 IW 0.,-15
1690 IMOVE .012,7.5 IDRRW - .02

38
1788 RETURN
1710 XS-90+R
1729 FOR I-1 TO 
17380 OUTPUT 713 ;XS
1740 ENTER 713 ; VS
1759 Z <I)VRL<(VC43)
1760 IF 1<3 THEN WAIT 1e
1779 NEXT 
1780 IF <RBs<Z<1, -<2.-.O2,z)9

S(Z(1)-Z())<.82-e THEN 17
88

1790 Z(1)> .zC> + Z(2+:(3 : / "
1800 RETURN
1818 ENABLE K80 255
1829 ! SWITCHES ODIOOE OFF
1830 ASSERT 4;0
1840 ! SWEEPER AT CW
1850 OUTPUT 44 USING *, 8" ; 0
1868 OISP A RUTHORIZED INTERPU

Pt'
187e STOP
1888 ENO
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398

TI;ME IS OW 16-38-8e

Fs 8 tGh: POCm
Fs 8.2Gh- POCs
F- 8.3Ghz POCm
Fs 8 .Gh- POCO
Fs :3. 56Gh: POC
Fs . 7Gh POCm
Fs 8. Gh: POC'
F. 8. 9Ghz POC'
F- 9 GhZ POC'
Fs 9.1Ghz POCs
Fs 9.2Gh POCO
F 94 .hz POC=
Fs 9.4Ghz POC
Fs 9 5Ghz POC=
F- 9.6Gh= POCm

Fs 8 1 T1e89K.
F 8.2 T=le61K
Fs 8 3 T=111K
cs 8.4 T=re35K
Fs 8.5 Tm 981K
Fs 8.6 Tm 388K
Fs 8.7 T= 853K
Fs 8 8 Ts 849K
F- 8 9 T= 826K
Fs 9.0 Ts 788K
Fs 9.1 Tm 757K
Fs 9.2 Ts 777K
F- 9.3 Tm 885K
Fs 4 Ts 831K
F- 9.5 Ts 868K
Fs 9 6 Ts 997K

.83 ?0H-
-. 13 POw1
- 4 POH-
-. 52 PON=
-. 66 POH-
-. 71 POm"
-. 82 POHm
- 68 POHM
-. 73 POH
-. 81 POH-
-. 86 PO4-
-. 72 PO=
- 78 PON=
-. 72 POM.
-. 70 PO'
-. 64 POH=

2 23
2. 12
1 88
1. 82
1 79
1 79
1 79
1 .89
1. 87
1 84
I .97
1 94
1 83
1 85

1. 76

Gr- 76 28
Gr- 71 76
G r- 64 85
Gr- 66 87
Gr- 67 43
Gr- 71 81
Gr- 72 31
Gr- 74 89

Grr- 76 79

Gr- 79 15
Gr- 76 11
Gr- 75 47
Gr- 73 34
Gr-i 66 94

FI 8. 1Ghz
F. 8 .2Ghz
Fs 8.3Ghz
F' 8 4Ghz
F= 8.5Ghz
F. 8 .6Chz
F. 8. 7Ghz
Fs. 8Ghz
Fs 8.9Chz
F. 9. Ghz
Fs 9 Gh=
FI' 9 2Ghz

FIs 9 Ghz
Fs 9 5Ghz
F- 9 6Ghz

POC"
POCU
POCS
POCS

POC=POCm
POC"
POC=

POC-
POCm

POCPOCt
POCU
P03Cm

6.18 POnF
6.37 POH
6.52 POH
6.84 POH
7 84 DON=
6. 77 POH
6 SI POH
5.89 POHe
3 92 POn8
2.96 PO81
2.34 POHI
1.95 POwH
1 .4 POH
I 1 POW"

.87 POu

.73 PON,

Fs 8.1-8 Ghz G(dB)- 8.9
F 8 .28 Ghz G(d8) 91 
Fs 8.38 Ghz G(dB) 9 '
Fs 8.40 Ghz G(dB)- 9.7
F 8 50 Ghz GCdB) 9. 7
Fs 8 68 Ghz G(dS)- 9 
F' 8.78 Ghz G(dB)t 8.8
Fs 8.86 Ghz G(dB)= 6.6
Fs 8.98 Ghz GCd8) 4.9 
F 9 .88 Ghz G(dBm) 3.2
Fs 9.18 Ghz G(dB)= I 
Fs 9.28 GCh G(d8T) 4
Fs 9 38 Ghz G(dB)= - 1.
Fs 9 48 Ghz G(d8) -2.4
F- 9 58 Ghz G(d8)> -7.6
Fs 9'. 6 Ghz G(dB)- -4.7

- 9 69
* 9.86

- 18.32
* 10 43
i 06

9 1?

1 5 34
4.48

* 3.70
- 2.8:
! 2 29

1 .
1.46

To 297
Tm 319
Ts 368
T" 366
Tr 416
T 419
T 458
Tm 467
Ts 511
T 573
T- 781
Tm 813
T-1011
T 1291
T 1559
T-2861

GaCn max. 9.7 for F 48 Gh:
T .in- 287 for F 8.18 Gh:

.S . . @:hQD

"O

,.

4
.'I

1
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There are three main sources of error in this measurement system: error due to

the system sensitivity, error in the measurement of power at the output of the receiver

and error in the ecess noise applied by the diode either to the receiver or to the

amplifier.

The system sensitivit is determined by its standard deviation T.,

ATMU =T, ,V5
where r is the time over whic the powermeter averages the output signal This error

is very small (because of the large bandwidth of the receiver) of the order of 10--

10- 2 K.

Error in the measurement of the power occurs because the power level at the

detector (power sensor) is not a constant and is thus distorted by the non linearities of

the detector. The manu rer caims that the output power is measured within

±.02 dB of its true value. This corresponds to an error of ± 4.6 ~W.

The most imporant error in the system is the determination of the applied excess

noise ratio. The effective cold temperature To, is the temperature of the room and is

known within 1 K. The hot temperature Thwt is computed as

Ew. -An.

T,,r =Te +290.10 10

where Exc. is the calibrated excess noise of the diode and Att. the attenuation of the

10 dB placed in series with both expressed in decibels.

The manufacturer guaranties its calibration within +-.1 dB of the true ENR. This

yields a noise uncertainty of about 9.5 K. The variations of the diode source

impedance when switched on and off, produce an error e -1-(rn, -r ) 2 equal to

�



± .012 dB (or ± 2.7 K). Finally, the calibration of the attenuator is performed with a

finite prcision of .02 dB (4.5 K). Overall the hot temperature is known within

±11K.

At each frequency, three idependent power measurements are performed to

reduce random errors. This reduces the errors on TA and kGRB to ATR = -15 K and

A/RB = 4.5.10-6 WK - 1 .

The error in the determination of GFEr and TFET depends on the method used,

on the noise temperatre of the FET, and for a great part on its gain.

Method 1

gain>3 dB

20K

.07 dB

Method 2

gain>3 dB

14 K

.07 dB

gain>7 dB

14 K

.07 dB

gain>7 dB

11 K

.06 dB

&TFET

AGFET

AGFAT
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APPENDIX C3: LOSSES IN MATCHING NETWORK

Both input and output matching networks present losses which must be taken into

account determinating the FET noise parameters.

The tansdur gain of te FET (Si) is large enough at the operating frequencies

so that we disregard the effect of the second stage (ie, in that case of the output match-

ing network) in determinating the FET noise tmperare. Of course, there is no

correction to be done to compute the noise temperature of the amplifier.

Let us consider the gain a o the input matching network. a is less than one since

this network is purely passive. Expressed as a function of its scattering parameters and

of the generator reflcxion coefficient r in the 50 system (see figure C3.1), one has

1 -2rJ.ri
The case of the perfectly matched generator yields

a= rg=o

______�____________III I



load

Figure C3.1

Geomevy

Although it is impsible to have a rigorous equal to 0, the inclusion of the

amplifier's input connector in the matching network results in the application of the

above formula without the introduction of a signficant error.

Let us now consider the noise power at the output of the input network (point A

in the figure C3.1). The noise power available at the output of the input network is

the sum of two terms: The noise power of the generator impedance (or of the noise

diode when one measures the Y-factor) multiplied by the gain of the network and the

noise generated by the network itself. Let us call T, the network physical tempera-

ture, T the noise temperature of the generator impedance and T the resulting input

noise temperature. The noise generator by the the network itself is proportonal to T,.

Let us find the propordonality constant. We have

_ __



T. *" * T 5T

Figure C3.2

Equivalent Noise temperature

T=a (r,)Ts+PT.

If both source and network are at the same physical temperature, we are in equili-

brium. In such a case, we have T = (a + )T. . Since we are at equilibrium, the

available noise power is of the form kT,pB and is therefore independent of the varia-

tion of at with the value of the generator iedance. This gives us the value of 3

13=1-a
thus

T =aTs+ (1-a)T,

If we note with a bar the effective noise temperature we drive the IET with, we have

TCod =Tco + (-a )T,

THor =aTHOZ+ (1-a)T.

i
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The Y-factor we measure is in fact

THot + TFET

Tc a + TF

and

TFF.r =oLTF+ (1-a)To al

The measurements of S 21 and S necssary for this corecon were performed using

the experimental board desribed in section IV 2.1.
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