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ABSTRACT

This study presents a feedforward control scheme to retrieve a Tethered Sub-satellite

System (TSS) consisting of the space shuttle and a tethered sub-satellite. An optimal retrieval

trajectory is computed by determining the length acceleration history which minimizes final

pitch angle, pitch rate at docking and total retrieval time. The minimization of such a cost leads

to a bang-bang control which respects the positive tension constraint. A sub-optimal retrieval

strategy is then developed in order to retrieve the tethered sub-satellite for all initial conditions.

The retrieval dynamics of the TSS are unstable and open loop retrieval by itself is not

reasonably practical. Consequently, an LQG loop structure is designed which combines

feedforward information with thruster augmented feedback stabilization. The thrusters mounted

on the sub-satellite are used to stabilize the in-plane and out-of-plane dynamics along the

optimal trajectory instead of along some arbitrary retrieval path. An extended Kalman filter is

implemented in the loop in order to retain the non-linear nature of the dynamics in the
estimation of the pitch rate and the filtering of sensor noise and thruster granularity effects.

This whole design ensures a total retrieval time included in the interval [.57 .91] orbits and
a minimization of the fuel consumption compared with the previous methods, while the final
docking conditions and tension constraints are met.

Thesis Supervisor: Andreas H. von Flotow
Associate Professor, Department of Aeronautics and Astronautics
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INTRODUCTION

The concept of tether in space has been a subject of investigations and studies in the

international scientific community for the past thirty years. Ivan Beley from the Office of Space

Flight at NASA Headquarters in Washington, traces back the first published application before

1960. The Russian engineer Artsutanov suggested to deploy a tether from a geostationary

satellite to the Earth surface in order to use it as a funicular between the ground and the outer

space. It was only in fact the reversal of a no less "Jules Verne" idea known as the Tsiolkovskii

tower. This Russian father of the propergol proposed in 1895 an equatorial tower reaching

beyond geostationary altitude.

But in one decade, the critical issues which obstructed the way to real implementations of

tethers in space were pointed out by the scientific community. In 1969, Collar and Flower

suggested a very long tether connecting a satellite located beyond the geostationary distance

with another satellite positioned at a relatively low altitude such that the center of gravity would

be located at the geostationary distance. The lower satellite would involve large reduced power

compared with existing geo-synchronous Intelsat satellite to transmit communication signals.

However, the authors assessed that that a 0.2 mm tether of 50,000 km would be severed by

micro-meteorites in about an hour. In addition, the reduction of temperature due to the passage

of the system through the Earth's shadow would result in a tether length variation of about 40

km. In 1975, Pearson was among the first to analyse some of the tether dynamics and calculate

that the implementation of Artsutanov's idea would require 24,000 flights of a shuttle with 30

times the payload of the present orbiter.



The first and so far unique space experiments of tether in space was performed in

September and November of 1966 when Gemini XI and XII capsules were linked to an Atlas-

Agena D stage. The effect on this system of gravity gradient and of an initial angular velocity

were studied. The results of these experiments were consistent with the predictions of the

analytical modelization. But it was not until the early 1970's that NASA decided to seriously

investigate the feasibility of tether in space applications under the management of George von

Tiesenhausen from the NASA Marshall Space Flight Center.

The outcome of this investigation is the Tethered Sub-satellite System (TSS) concept. The

Tiesenhausen team shares the paternity of this system with Giuseppe Colombo who co-

invented the Tethered Sub-satellite concept for the Italians in 1974-75. The TSS now is an

official program of NASA and PSN, the Italian National Space Plan, which involves the

deployment of a 20 to 130 km tether. Martin Marietta, Denver, is the prime contractor to

perform the US part of the project whereas Aeritalia in Torino, Italy, is in charge of the

manufacturing of the satellite module. It is this joined US/Italian project [9] which serves as a

basis for this investigation of a feedforward/feedback approach to retrieval of a tethered sub-

satellite.



CHAPTER 1:
THE RETRIEVAL OF THE TSS

PROBLEM STATEMENT

1.1. The Tethered Sub-satellite System, (TSS).

1.1.1. The Mission.

The TSS consists of a shuttle and a sub-satellite connected together with a tether. The joint

Memorandum of Understanding signed between the United-Sates and the Italian governments

plans two types of missions which will illustrate, in fact, the two main applications of this

system.

The first application involves the deployment of a sub-satellite 20 km above the orbiter with

an electrically conductive tether (fig 1.1). This tether, intersecting the Earth's magnetic field at

orbital velocity, generates an electrical voltage in the range of 0.2 to 0.4 V.m -1. Electrons can

be generated from the orbiter with an electron gun in order to close the current loop and convert

orbital energy to electrical energy . Inversely, if a current produced on the orbiter travels

through this same tether, an electromagnetic force is produced which could be used for attitude

keeping or maneuvering, or to boost the orbit of the shuttle. For instance, both ways could be

used as an emergency system. In any case, this system opens the way to a variety of

electromagnetic experiments in the space plasma. In particular, a 20 km tether would lead to a

voltage of 2,000 to 4,000 V. The Shuttle instrumentation isolation and the interaction of such a

differential of potential with the surrounding plasma are two issues which remain to be

addressed.



fig 1.1: Tethered electrodynamic satellite system.

fig 1.2: Downward tethered satellite system.



If the first application is aimed at taking advantage of the tether properties, the second

application uses the tether as a mean to deploy a measurement platform in the upper atmosphere

and to recover it (fig 1.2). It is a unique way of gathering data on the upper atmosphere above

an altitude of 60 km, the upper limit of probe-balloons, and below an altitude of 150 km, the

lower limit of low orbit satellites. The applications of such a system range from upper

atmosphere data collection to aerodynamic studies for reentry vehicles like orbital planes. The

measurement platform must be aerodynamically stable and capable of standing high

aerodynamic heating since it will fly in the upper atmosphere at hypersonic velocity. This

application involves the deployment of a 130 km tether from the 200 km altitude shuttle orbit.

1.1.2. Description of the System.

The tethered sub-satellite is carried in the cargo bay of the orbiter along with the

deployment and retrieval system. The tether is initially wrapped around a reel. The tether

control mechanism includes a reel drive, a tensiometer, a length measurement wheel and a

tachymeter.

The critical issue of the tether control is to keep the tension of the tether positive. If the

tether becomes slack, the whole system is uncontrollable. This inherent property of tether

dynamics imposes some constraints on the velocity of retrieval. The rate of deceleration of

reeling in the tether is limited by the hard constraint: the tension must remain positive, or in

other words, one cannot push with a tether. The natural force which keeps the shuttle and the

sub-satellite apart is the gravity gradient. However, its intensity decreases with the length

between the two spacecrafts. Consequently, the danger of having an uncontrollable system is

more acute close to the orbiter. Two safeguards to this problem are planned. A tether-aligned

thruster is mounted on the sub-satellite and fired at 2 N along the final two kilometers of



retrieval. However, no firing of any jet close to the shuttle is allowed by NASA. Therefore, the

sub-satellite is deployed and docked at the end of a 10 m boom (front page picture).

A typical mission scenario from a control engineer point of view would be divided in three

parts:

- control the deployment of the sub-satellite along an efficient trajectory,

- regulate the sub-satellite about the desired orbit for experimentations,

- retrieve the sub-satellite along a stable trajectory, keeping the tension positive.

Of the three parts of the mission, the retrieval phase is the most critical since the retrieval of

a tethered sub-satellite is an inherent unstable process leading to large oscillations when the

length of the tether decreases.

The first mission of the TSS was scheduled for 1987. Since then, it has constantly been

postponed. The main reason is that the TSS has received a low priority in the reschedule of

shuttle missions following the Challenger accident and various technical problems. But it also

seems that the retrieval aspect of the tether sub-satellite has not been definitely finalized yet.

nications to Satellite
Tracking of Satellite

)rbiter Such That the Cargo ay Is Facing
ltitude 230 knm)
lite and Deply Oute•nad king the

S CBoomits ad Control Downward Trtm ory Using
I the Tther Real Motr. (Deployment 100 km to A 130 km
Altitude Requires Approximately 64 homs).

Deptoved 4. "Stationkeep" the Satellit At the Desired Atitude and
Ammuim the Scientific Data (10.20 hours Typical).

5. Retrieve Satellite Using the Tther Reel Motor. Dock At
the Boom. and Restow Satellite in the Orbiter Cargo Bay.64 hours).

fig 1.3: The TSS system.



1.2. An Overview of Previous Work.

Since the TSS became an official NASA project, the dynamics and control of a sub-satellite

suspended to the shuttle has received a considerable amount of attention from the scientific

community. A survey and a compilation of the past publications on this subject was performed

by Misra and Modi in 1986 [17].

The same Misra and Modi have presented a very general dynamic model which takes into

account the tether vibrations and the rotational motion of both end-bodies [18],[16]. But many

authors have studied the dynamics of tethers in space, including the deformation of the tether in

three dimensions [12],[19],[20].

Von Flotow and Williamson have investigated the deployment aspect [13], and Lemke and

Powell, the attitude control of a tethered spacecraft [15]. But it obviously is the retrieval phase

which has been the subject of most control studies because of its inherent unstable dynamics.

First, the stabilization of the retrieval was attempted using the tether reel-in rate as the

control. Such approaches rely on the gravity gradient torque to remove the excess angular

momentum. But since the gravity gradient weakens when the tether length is reduced, this

leads to very slow retrieval under 2 km. Rupp presents a tether tension linear feedback law

which controls the tether swinging motion in the orbital plane and the tether stretching motion

[25]. Bainum and Kumar implement an LQR regulator, exploiting the tether reel control [2]. In

his PhD thesis, Boschitsch also applies linear quadratic feedback theory in order to stabilize the

in-plane and out-of-plane motions, retaining the time-varying nature of the linearized equations.

He observes, in particular, that the feedback gains vary significantly during the retrieval. Xu,

Misra and Modi propose a non linear feedback law to control the rigid body motion of the

tethered sub-satellite in the in-plane and out-of-plane motion [29]. However the tether does not

seem to reach the final desired length for rapid retrievals.

The introduction of tether normal thrusters results in a significant improvement of the

performances of the retrieval in terms of time and versatility. This improvement is done at the



expenses of an increase of the mass of the sub-satellite and a fuel consumption. Banerjee and

Kane [3], are the firsts with Xu, Misra and Modi [28], to investigate this new approach. The

latter use tether normal thrusters assumed to be proportional and a quasi-linear control law to

stabilize the tethered sub-satellite during retrieval. Vadali and Kim use a combination of tension

control with out-of-plane thrusting to derive a non-linear feedback control law based on the

second method of Liapunov [27]. This approach leads to some very convincing results.

Pines, von Flotow and Redding [23] propose both an ad-hoc phase plane control scheme

and a more rigorous sliding mode control methodology. They show that on-off firing of the

orbiter thrusters in the first approach leads to a stable limit cycle for both pitch and roll

dynamics, whereas the sliding mode method achieves remarkable performance for continuous

thruster firing. However,since spacecraft thrusters are on-off devices, continuous thrust levels

must be approximated by fast pulsing with pulse width and frequency modulation which will

destroy most of the smoothness of the closed loop trajectory. The stabilization is performed

along some arbitrary retrieval trajectory resulting in a non optimal fuel use.

In order to reduce the fuel consumption, the previous authors as well as Banerjee and Kane

[3] recommend that thruster control be used in conjunction with tether reel-in rate control.

At last, Beletsky and Levin have gathered together most of their previous work in tether

dynamics in a book now available in English [4].

All the presented control schemes so far regulate the retrieval about some arbitrary nominal

path without taking into consideration the time of retrieval or the minimization of the fuel

consumption. Even if they can be approximated by a second order linear oscillator for some

variations, as it will be shown in the next chapter, the TSS dynamics are non linear. It seems of

interest to know what the optimal path of the retrieval which minimizes the total retrieval time

is, with reasonable final pitch angle and pitch rate, and to derive the non-linear length history

required to follow this trajectory. Then this optimal trajectory could be tracked with a loop

combining feedforward information with thruster augmented feedback. Bendinksen and



Boschitch [6] derive a non-linear length history, but in order to track a pre-defined trajectory.

The cost they intend to minimize is composed of the variations of each state with respect to the

states along a nominal trajectory, so that no consideration is given to the final time of retrieval.

Boschitch has also designed a time varying regulator [7] which tracks a desired trajectory, but

does not use thruster augmented feedback.

Therefore, it seems that it exists here a real opportunity for a new approach to the problem

of retrieving a tethered sub-satellite.

1.3. A New Approach: a Feedforward/Feedback Scheme.

The addition of thrusters on the sub-satellite brings better control authority to stabilize the

in-plane and out-of-plane motions of the tethered system. However, to intend to retrieve it

along some arbitrary trajectories leads to an important fuel consumption [23]. On the other

hand, the use of tether reel-in rate as the control is an attractive solution since it relies on the

natural gravity gradient to remove excess angular momentum. A new approach would be to

stabilize the retrieval with thrusters along a trajectory which would exploit the natural dynamics

of the system.

This new approach requires first investigation of the possibility of computing an optimal

retrieval trajectory, by minimizing a cost function, a combination of total retrieval time and final

pitch angle and pitch rate. Open loop retrieval being obviously unpractical, a closed loop

regulator needs then to be designed. In this feedforward scheme, the length rate history or

length acceleration, depending on the control used in the cost minimization, is fed forward in

the loop. The regulator commanded by the pre-computed nominal pitch angle, pitch rate and

length, computes the necessary corrections to track the optimal trajectory in presence of

external disturbances and modeling error (fig 1.4).



Feedforward Length-

fig 1.4

This report presents a study of feasibility of this concept. Since pitch dynamics are directly

driven by length changes, while roll dynamics are not, this study focuses upon length and pitch

dynamics. Roll perturbations must be regulated with an independent feedback loop.

In the following chapter, the equations driving the pitch and length dynamics are derived.

Then an Hamiltonian analysis is performed in order to deduce the structure of the optimal

control minimizing the cost function. A study performed in the phase plan enables to deduce

some inherent properties of the retrieval dynamics. These properties are used to initialize a

numerical search of the optimal solution. Then a sub-optimal scheme is derived in order to

retrieve the sub-satellite for any initial conditions.

A feedforward/feedback loop is designed in the third chapter to stabilize the system about

the nominal retrieval trajectory computed in chapter 2. For this purpose, the system is first

linearized at each step. A compensator based on a decoupling of the controls is first derived.

Then an LQR regulator is designed in order to take advantage of the multicontrol nature of the

system. A final non-linear simulation of the tracking of the nominal trajectory in presence of

sensor noise, thruster granularity is performed with a one percent initial error. This simulation

implements an extended Kalman filter in order to estimate the pitch rate and filter the sensor and

plant noises.



CHAPTER 2:
OPTIMAL RETRIEVAL TRAJECTORY DESIGN

2.1. Formulation of the Optimal Control Problem.

2.1.1 Pitch Dynamics.

Simplified dynamics are used to numerically solve this optimization problem. In this entire

study, the following assumptions and approximations are made: the roll angle is driven to zero

by an appropriate feedback control; the Earth frame is supposed Galilean; the mass of the

orbiter is assumed to be much higher than that of the sub-satellite so that the retrieval dynamics

have no effect on the orbit of the shuttle. This last approximation is discussed by Bergmann

[5]. The purpose of the shuttle attitude control system is to keep a specified orbit. However, its

limit cycle nature may excite some tether responses.

Only the rigid body motion is retained in this model. With this assumption, it may be

considered that the system is composed of a mass m, the sub-satellite, subject to the earth

gravitational force f and connected to a point 0' by an unstretchable tether of length L, unable

to transmit bending modes. 0' orbits about the center of the Earth O at a rotational velocity co.



Orbit
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Fig 2.0

If R = OO' and r = OM, (Rk may be approximated by 1+ 3 L cos0sin and L may be--- - -- --r fr~--~- r-------- R R
considered very small compared with one. At the first order in L

R9

cosa= Lsine and sina•= R(1- Lcos).R r( R

The gravitational force applied to the tethered sub-satellite is equal to:

= mg = m r.
r3

Still to first order in L, the course of the orbiter can be approximated by a circular orbit. SinceR
the mass of the sub-satellite is very small compared with that of the orbiter (with a factor of

103), the orbital rate co is rewritten as:

(02 = - = 2R3.
R
3

Consequently, to first order in L, the gravitational torque applied on the sub-satellite with
Rrespect to O'

respect to O' is equal to:



M = - mL R402 sin 8 z
r3  (2.1)

On the other hand, the angular momentum of the sub-satellite with respect to O' is given by:

o' =m[L 2(0 + 0)- R)L cos 01 (2.2)

O' being in motion about the Earth frame, the Newton's law implies:

H10' + O0' x mVM = M o, (2.3)

Thus, the in-plane rigid body motion is governed by:

0 + 2 L( + o)+ 3 o2 sin 0 cos O = 0L (2.4)

which is a second order non linear differential equation.

This simple model gives several insights into the dynamics of the system. First of all, if the

sub-satellite is being retrieved, L is negative. The damping coefficient is negative and the

dynamics of the pitch angle are described by an unstable, non-linear, second order oscillator.

The effect can be illustrated by pulling a string between two fingers. The smaller the remaining

length of the string to pull is, the larger the oscillations at the tip of the string are. Secondly, if

the length of the tether is constant, the equation (2.4) describes the classical dynamics of a

pendulum subject to the gravitational torque without damping. However, if L < 0, two

competing effects on the tethered sub-satellite can be observed. First, the gravitational torque

proportional to 3 o2 sin 0 cos 0 tends to restore the configuration to the local vertical. But
secondly, the Coriolis acceleration proportional to 2 oL o drives the sub-satellite away from the

local vertical. For 4 - < 1, an equilibrium angle can be reached given by:

sin 2 8eq 2L 1
2 L 3 c (2.5)



Consequently, the sub-satellite may be retrieved at constant but unstable equilibrium pitch

angle with constant (exponential retrieval). But it does not necessarily lead to the fastest

retrieval scheme. In addition, if the Coriolis acceleration overcomes the gravity gradient, then

no equilibrium is achieved and e(t) diverges exponentially. Fig 2.2.1 and 2.2.2 show an

example of divergent retrieval in the LVLH plane and phase plane. The sub-satellite ends up, in

fact, wrapped about the shuttle.

In this analysis, tether deflections and deformations are not considered but only its

libration. The tether is supposed to be unstretchable. The tether length is directly controlled

with the reel, making the assumption that the control mechanism overpowers any friction.

Either the length rate or length acceleration can be used as the command. However the retrieval

is subject to the uncircumventable constraint that the tension must remain positive. If the

tension is driven to zero, the tether becomes slack and the system is uncontrollable. Therefore,

a tether-aligned thruster will be fired at 2N during all the retrieval as a safeguard in order to

guarantee the controllability of the system.

If a is the acceleration of the assumed point mass sub-satellite, T the tension and f the

gravitational force applied on the sub-satellite, then the first Newton law implies:

a=I+f

In the orbital plane, fmay be approximated at the first order in L as follow:
R

Ssine 1
W r(1) -L cose

Thus the tension is given by:

m "=L[( + 3 2+2COS2 (2.6)

If ) is driven to 0 and 0 is kept small, the positive tension constraint may be approximated
by:

L - 3 0 2 L < 0 (2.7)



In order to prevent the boom from being damaged at the impact, the final impact velocity

should not be lower than -.5 m.s-1, ie: - .5 < L(tf) < 0 .This final constraint is also a safeguard

in the case the sub-satellite would miss the docking point.

At this point, it appears that taking the length rate as the control will not ensure that the no-

pushing constraint will be met, since the derivative of the length rate appears in the expression

of equation (2.7). Therefore, it seems necessary to increase the order of the system so as to

take the length acceleration as the control.

2000
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0

-300

In-plane Trajectory for ts=3.5
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fig 2.1: Example of divergent retrieval trajectory in the LVLH plane.
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fig 2.2: Example of divergent retrieval trajectory in the phase plane.

2.1.2 Formulation of the Optimization Problem.

The goal is to retrieve the sub-satellite quickly along a reasonable retrieval trajectory. As

demonstrated in § 2.1.1, the pitch angle may diverge before docking for certain conditions.

Therefore, the derived non-linear control law must also minimize the final pitch angle and pitch

rate in addition to the final time. This can be done by formulating a quadratic cost of the

following form:

J = 0 2(tf + +(+ 2 + (2.8)

In this cost, it is assumed that a deviation of one radian of the pitch angle is as bad as a

deviation of one orbital rate of the pitch rate and as bad as an increase of the total time of

5



retrieval of one orbit. The roll angle 4 is still assumed to be driven to zero. Consequently, this

trajectory optimization problem can be stated as follow:

"given some initial conditions 0(0), 0(0), L(O) and L(0) = 0, find the control law u(t)= L(t)

which minimizes the cost J given by equation (2.8) subject to the following constraints:

0 + 2 L (0 + o) + 3 02 sin 0 cos 8 = 0
L

L- 3 o 2 L <0

-. 5 < L(tf) < 0

L(tf) = Lf = 10 m , (length of the boom) ".

2.2 Hamiltonian Analysis

To assure that the impact velocity constraint be respected, it may be necessary to include the

final length rate into the cost:

J = x12(tf)+ ()(tf) + +2 a x42  (2.9)

a > 0 is a penalty used to ensure that the docking velocity is inside the limits stated in § 2.1.2.

The tension constraint is:

C(x,u) = L - 3 02 L.

Choosing a state-space representation for the system dynamics with the state vector x

defined as:

xT= [x x2x3 X41T[= e OL L
the optimal retrieval problem can be formulated according to the maximum principal in terms of
the Hamiltonian:



"find the control law u(t) which maximizes:

H = •T f(x,u) + p. C(x,u)

subject to: x = f(x,u) ,

(2.10)

S- Hx ,

, i t xi(tf)

and with j. = 0 if C(x,u) < 0 and g > 0 if C(x,u) = 0. g. is a Kune-Tucker coefficient ".

The system is given by:

x1 = x2

i2 = - 2 X4 (x2 + 0)-)302 sin 2x1x3 2

X3 = X4

X4 = U (2.11)

Consequently, the Hamiltonian becomes:

H = 1 X2 - X2 1 2 (2 2+ sin 2x 1] + k3 X4 + k4 u + (u - 3 0co2 3) (2.12)

The costates are given by:

X1 = 3 Co2 X2 cos 2x1

=2 =- X1 + 2 X2 X4

x33X4 = - 23 + 2 2 
X 2 + )+ 302

X3X3

and the transversality conditions give:

xi(tf) free X •1(tf) + 2 xl(tf) = 0

x2(tf) free A (tf) + 2 X2(tf) = 0
03 2

X3(tf) fixed j x3(tf) - 10 = 0

x4(tf) free =* X4(tf) + 2 a x4(tf) = 0

tf free = H(tf) - 2 Q 2 tf = 02 i

(2.13)

(2.14)

)xi- a tJ + H(tf ) ft=



To the five unknowns, the four initial values of the costates and the final time, correspond

five terminal equalities. So this two boundary value problem is well posed.

According to the maximum principle, the control u is given by the maximization of the

Hamiltonian. Hu = X4 +t does not depend on u. The Hamiltonian is linearly dependent on the

control and therefore, the structure of the control u is bang-bang as long as the constraint is not

reached. On the optimal solution, the constraint is always respected. If the case tension strictly

equal to zero is rejected, gt = 0 and the control u = umax if A4 > 0 or u = umin if 4 < 0.

This open loop optimization problem is one of the most difficult to solve. It combines a non

linear unstable dynamic with an inequality constraint and an Hamiltonian linearly dependent on

the control. The solution might be a blend of bang-bang control with analytical control when

the constraint is reached. The method of resolution can only be numerical and only a sub-

optimal solution might be implementable in real time. The goal of this study is not to

academically find the optimal trajectory but to find a reasonable family of trajectories which can

be implemented in real time on orbit, even if knowing the true optimal trajectory would be of

interest in the TSS program.

2.3 Analysis of the Retrieval Dynamics, Limitations.

2.3.1 Phase Plane Analysis.

In this entire study, a numerical integrator based on Bulirsh, Gragg and Stoer [24] is used.

The dynamics of 0 are given by a second order differential equation. (2.4) may be rewritten

as:



0+ 2L + 3 02 COS sin =- 2 o (2.15)
L L (2.15)

For small angle, the previous equation may be identified with:

0+28o4n+300n= 0(02neq (2.16)

whereo = •o, 8 = L  and eq = -2
L 3co L300

Since L < 0 during the retrieval, 8 is negative, characteristic of an unstable dynamic.

To understand which kind of retrieval path is physically realizable, it is interesting to plot

the phase plane for different values of 8. At the beginning of the retrieval L = 0 =- 8= 0. It is

the classical case of a pendulum subject to gravity gradient, cf § 2.1.1. [14].

0 + 3 02 cos 0 sin 8 = 0 (2.17)

The phase trajectories are given by:

.2

3 02 Sin2 0 + -( = constant
2 2

If [00o , 00] is the initial point in the phase plane,

sin2 o + o0  < 13 00 2 (2.17.1)

must be verified to have a contained pitch angle. On the other hand, for initial conditions

outside this area, the tether wraps itself about the shuttle with an increasing pitch rate since the

length decreases. Thus, if such a configuration is detected, the length must be increased

appropriately, or the pitch thruster will have to be fired so as to come back inside the limits

defined by (2.17.1) and stabilize the oscillations. Such spinning initial conditions are not

anticipated in the TSS system.



The sub-satellite oscillates with a decreasing period which converges to 2C = 3627.6 s =

.5774 orbits when 0o diminishes. Fig 2.3 shows the period of oscillation vs mrax, maximum

angle of oscillations.

Omax (rad) T (orbit)

.92

.8

.6

.4

.2

-40

.7635

.6688

.6184

.5989

.5916

.5774

Fig 2.3

Making the approximation 0 small, which would give T = , leads to some important

error. However, such an approximation may be used later to get some insights in the physics

of the dynamics.

When L is different from zero, the phase trajectories are divided into two parts. For 8 >

- = - .433, a pitch equilibrium 8eq exists. The phase trajectories become divergent spirals
4

centered on 08 given by (2.5), (fig 2.4.3). There is a "splitting line" which divides the spirals

between those diverging towards positive pitch angles and those diverging towards negative

pitch angles. For the latest, they originate from 0eq's higher than I. If 8 < - , eq2 * 4 eq

disappears. The "splitting line" becomes the generator of divergent trajectories, one part

diverging towards O's > 0 and the others towards O's < 0. As 8 decreases, the splitting line

flattens. Cf fig 2.4.6. Obviously, since 8 is not constant in the retrieval, the true phase plane

will be a blend of these phase trajectories, as L and L decrease.



These plots reveal some very important points about what is reachable. A good trajectory

would end as close as possible to the point (0,0) = (0,0). This point can only be reached with a

negative pitch rate. e will decrease from approximately 1 rad to zero. In this part, the pitch rate

will lie in the interval [-1.74e-3 0]. So in one way or another, a divergent branch of spiral will

have to end in the lower part of the phase plane. Then the retrieval path will follow the

"splitting line" and leave it on a divergent branch which goes through (0,0). If the "splitting

line" is crossed, the retrieval path will irreversibly diverge towards negative 0. It means that

instead of docking on the boom, the tether with the sub-satellite will end up wrapped around

the orbiter. But in any case, because the dynamic is unstable, the optimal path will be very

sensitive to disturbances. Therefore an open loop retrieval is unrealistic.

To sum up, the trajectory of the retrieval is very likely to follow first an expanding spiral

which might lead to several periods of oscillation, depending on the initial conditions. Then, it

will join the "splitting line" at about 1 rad. After having followed this line, it will leave it on a

divergent path going through (0,0), ultimately reaching this point or some point around it.

All these results could also have been obtained through some hand waving, as Professor

von Flotow points out in [22]. If the pitch dynamics are linearized, then:

3 oL f . (2. 18)

The switch from spiral phase trajectory to divergent one occurs at 8 = -1 in this model. At this

point, 0eq is joined to the point where the "splitting line" crosses the line 0 = 0. This point is
4-3-equal to 2 - 1.15 rad = 66.160. Since the retrieval path can only get to this "splitting line"

from above (fig 2.4.3), 0 will go around 1.15 rad. Fig 2.4.3 also shows that all the previous

approximations almost cancelled each other since on this plot, the "splitting line" appears at

66.20.
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2.3.2 Investigation of the cost function.

Most numerical algorithms of optimization suppose that the cost is convex on the domain of

possible solutions. This is due to the fact that they are unable to discern local extrema from

absolute one when they converge. For this reason, Darryll Pines [22] scanned the cost function

for the two parameter optimization problem, ie for constant acceleration retrieval with Li and Lf

as parameters, in order to investigate the shape of the function.

The constraints remain: L - 302L < 0 and Lf > -.5 m.s-1. With the constant acceleration

assumption, the no-pushing condition becomes:

.2-22Li - = 6 O 2Lf
Lf- Li (2.18)

Fig 2.5.1 shows the feasible region defined by these constraints in the parameter plane

(Li,Lf). The shape of the cost function in this region with the initial conditions 0(0) = .3 rad

and 0(0) = .1 co rad.s-1 is given by fig 2.5. This three D plot of the cost function shows that

peaks and valleys alternate. The valleys decrease as QL decreases and almost follows the

direction of constant retrieval time. A one parameter scanning, fig 2.6, ie constant velocity

retrieval, gives the same shape of cost function. In fact, each valley corresponds to the number

of encirclement the path does in the phase plane in the spiral region. A minimum time recovery

corresponds to a minimum number of tours which is one. Some retrieval trajectories in the

LVLH plane are given by fig 2.7 for different valleys.
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2.4 Numerical Solution.

2.4.1 Investigation of the Optimization Problem under Inequality

Constraint.

The fact that the Hamiltonian is linearly dependent on the control introduces an additional

difficulty to the classical maximum principal. This problem has seven unknowns: the four

initial costates, the final time, the control and g. if the constraint is reached. The transversality

conditions give five equations (2.14) for the four states and the final time. If the constraint is

not reached, g = 0 and u(t) is given by the sign of X4. The difficulty occurs when the constraint

is reached. The value of g. is required to compute the costates. If the Hamiltonian is not linearly

dependent on the control, the two unknowns correspond to the two following equations:

C(x,u) = 0

Hu =) T fu +g Cu =0

However, in the case of a linear optimization problem, this second equation does not hold

any more. The problem becomes ill-posed unless each time the constraint is reached, the

control switches from an extremum to another. Then a parameter optimization algorithm based

on the Hamiltonian formulation may still be used. The parameters of optimization are the four

initial costates and the final time. pt is always equal to zero and the control switches, depending

on the sign of 14 and on the sign of C(x,u). But there is no guarantee that such an algorithm

will converge since nothing proves that switching the control at t- when the constraint starts to

be violated actually prevents it from being violated at t+.

To get the general solution, the algorithm must allow the control to drive the system on the

constraint for a certain period of time. During this time, it > 0 and the control is given by

C(x,u) = 0. For this latest solution, all the effective numerical algorithm like BNDSCO from



Oberle [21], require one to make an initial guess on the structure of the control, ie the number

of times the constraint is reached.

One way to approach this initial guessing problem is to try to minimize the violation of the

constraint instead of attempting to respect it. For this purpose, the cost is rewritten in:

J* = J + g C2(x,u) 1(C) dt

where 1(C) = 0 if C < 0 and 1(C) = 1 if C > 0 as suggested in [8] § 7.9.

g. is adjusted so as to respect the constraint C(x,u) < O0, increased if the constraint is

violated in the numerical solution, decreased to improved the retrieval time if C is not violated.

A one order gradient algorithm can be used to numerically solve this problem like in [11].

As Bryson points out in [8], this method only gives an approximate solution to the original

optimization problem since the algorithm might more focus more on respecting the constraint

than on actually minimizing the original cost J. However, it will give an initial guess in the

structure of the optimal path, ie how many times the constraint is reached.

From then, the original optimization problem can be solved. If n is the number of times the

constraint is reached, the problem becomes a 5+2n parameter optimization problem where the

2n additional parameters are the times t- when the constraint is reached and the t's when the

constraint is left. The additional conditions to make the problem well posed are at ti's, C(x,u) =

0 and at ti's, g = 0.

The program BNDSCO developed by Oberle from the Institute for Applied Mathematics,

University of Hamburg and Grimm from the DFVLR, [21] can be used to numerically solve

this parametric optimization problem. This numerical code is used by Well and Hoffman
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(Virginia Tech.), Calise (Georgia Tech.), Shinar (Technion)... The inputs are the first order

differential equations driving the states and costates, and the equality conditions at to, ti, tý and

tf. A solution by steepest ascent is also given by Denham and Bryson [10]. In both cases, g± is

given in the interval [ti , tf ] by Hu = T fu + g Cu = 0 . So all these solutions are excluded in the

case of a linear optimization problem.

Consequently, to keep the freedom of retrieving the sub-satellite at the fringe of the

constraint, the cost must be changed so as to avoid a linear optimization problem.

Theoretically, for C(x,u)--0, the tether is slack and the system is uncontrollable. However C

only is an approximation of the tension constraint and in addition, a thruster is planned to be

fired all along the retrieval at 2N to ensure a positive tension.

2.4.2 The Bang-Bang Solution.

2.4.2.1 Choice of the Limits of the Control.

This part addresses two questions: how to deal with the tension constraint in the case of a

linear optimization problem, and how many times the control switches in a bang-bang pattern.

The difficulties of solving a linear optimization problem with inequality constraints were

previously discussed. Since the control is bang-bang, u = umin or u = umax, the constraint can

only be reached when u = uma, which corresponds to a maximum deceleration. A program can

be envisioned which would look for the maximum allowed umax in the interval where A4 > 0. It

would automatically reduce umax if the constraint was violated. Would such a program

converge? The maximum principal does not prove it since it supposes that umax remains

constant on the whole trajectory.



However C(x,u) = 1 -3 0)2 L < 0 - u < 3 0c2 L and V t, L(t) > Lf. So, if we take the

extremely conservative approach of limiting the deceleration by the gravity gradient tension at

the final length, um, = 3 02 Lf = V t e [to, tf[, u(t) < umax < 3 o2 L(t) and the constraint

will never be violated except at tf which is the docking time. If the maximum allowed

deceleration is increased, there is a risk that the final pitch angle and pith rate values will be

unacceptably large since they are only constrained by the minimization of the cost. A study of

time of retrieval versus the maximum allowed deceleration here needs to be carried out.

The natural limitations for umin are the tension and the acceleration the tether and the sub-

satellite can stand. A reasonable number is umin = -.lm.s-2. But the author here acknowledges

a lack of numerical data on the system.

For Lf= 10 m and o = .001 rad.s-1, umn = 3.10-5 m.s-2 and umin = -.1 m.s-2. (2.19)

At this point, the structure of the bang-bang control still needs to be defined. A two

parameter search gave the optimal solution for a constant acceleration retrieval [22]. However,

it is not necessarily the optimal solution when the acceleration is left free. To answer to this

question, the approach described in § 2.4.1 is used. The control is decomposed in 30

parameters over the interval of retrieval and we try to minimize the cost J using a first order

gradient algorithm like the one developed in [ 11].

2.4.2.2 A First Order Gradient Algorithm.

This algorithm is stated in §7.4 of Bryson and Ho, [8]. The advantage of it is that it does

not initially fix the structure of the control. It starts with an initial guess of the control over the

30 intervals and the algorithm updates each of the steps of the parameterized control in order to

converge towards the solution.



If J = [x(tf) , td is the cost to be optimized with the final constraint V [x(tf)] = 0, let's

consider the first variation of
jtf

J = Ox(tf), tf] + Vx[x(tf)] + JXT [f(x,u) -i] dt

where v is a Kune-Tucker parameter used to enforce the solution to meet the final conditions.

With Su = - f= -f and X(tf)

R•= -fT R, R(tf) = Vx(tr) and V t, R(t) = (xT(t(t,t),

f
dJ = [O(t) T + VT(t)]dtf + [ + VTxT(t,)]fu8u dt

i~f~k V w( to I

By taking tf = - Kf [T(tf~)(tf) + vT4'(t*(tff) and Su = - Ku fT [X(t) + R(t)v] with Kf and

Ku positive definite matrices,

dJ = Kf 4x(t4) + vT (ty2 + Ku I fT [X(t) + R(t)vj 2 dt - 0

So J decreases until Btf = 8u = 0, ie dJ = 0.

The final constraint must also be met. A 8tf and 8u lead to a dy given by:

dNI = x,4(tR)xdtf + fJ WVNitPtrftyW,8u dt

To meet the constraint V [x(tf)] = 0, di is taken proportional to the residue of N. By

reporting Stf and 8u in the previous equation, we may write:

v=A-1 B

with A = Kfx (t,}u(tf)(tf) x(tr) + Kuf RT(t)fu fR(t)dt

B = di - Kf 1.f( }i(tf)J(ttf)ox(tf) - Ku
to RT(t)fu fT X(t)dt.



2.4.3 Numerical Results.

The algorithm is run with the following initial conditions:

0(0) = .3 rad,

8(0) = .1 co rad.s-1,

L(0) = 2000 m,

L(0) = 0 m.s-1. (2.20)

and the terminal condition is L(tf) = Lf = 10 m. (2.21)

Using the results of § 2.3.2, the algorithm is initialized in the valley of the cost function

corresponding to one tour in the phase plane. The initial guess on the control is taken consistent

with the no pushing condition. The length rate is taken as the command in order to reduce the

amount of computation by decreasing the order of the system. The true control, L, will be the

derivative of the computed length rate. The tension constraint will have to be verified a

posteriori.

The true retrieval starts with L(0) = 0. However, in the numerical solution where L is the

control, the initial length rate Li is let free so as not to change the nature of the optimization

problem. Li will give in fact the time of the first switch tl. If Li turns out to be positive, it will

mean that:

L(t) dt = Li= umax t or = umin tl if Li < 0.

Obviously, the larger jumirJ or Iumad are, the smaller tl is.

The algorithm converges with a final cost J = 1.36 and a docking time tf = 1.15 orbits, for

Li = -3.84 10-1. The final pitch angle and pitch rate are -0.19 rad and 1.31 10-5 rad.s-1

respectively, and the final length rate is equal to -1.67 10-1.

41



Fig 2.7 shows that the acceleration is almost constant approximately equal to 3.10 -5 m.s-2.

The variations are likely due to numerical noise. Consequently, for these initial conditions, the

structure of the control is composed of one initial acceleration at umin followed by a constant

deceleration at umax. Fig 2.8 shows as expected that the costate X4 remains positive as u =

Umax.

The results of this numerical solution confirms the previous assumptions. Fig 2.9 shows

that the phase trajectory actually starts with an expanding spiral and then goes to the

neighborhood of (0,0) = (1,0). Then it seems to follow the "splitting line"before diverging to

come close to (0,0). The target point is actually missed on this example since the final condition

is the final length.

This numerical study gives us a confirmation that the control is bang-bang. By adjusting

umax at 3 02 Lf, the constraint is taken into account in a simple and effective way. It may be

also deduced that for some initial conditions, the control will be an initial acceleration followed

by a constant deceleration. However, further studies are necessary to deduce the structure of

the control depending on the initial conditions in pitch angle and pitch rate.
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2.4.4 The Reduced Optimal Problem.

2.4.4.1 One Parameter Optimization.

The Hamiltonian analysis revealed that the optimal control is bang-bang. A numerical

search of the optimal solution with free initial length velocity was performed, § 2.3.3. The

result of which was a constant acceleration retrieval. In the real problem, it is assumed that the

initial length velocity is null. The initial length velocity found in the the numerical search could

be physically produced by an initial impulse of acceleration, the area of which being equal to

Li. The time of acceleration would be inversely proportional to the maximum acceleration the

system can stand. Consequently, it may be infered that the structure of the control is a constant

initial acceleration at umin followed by a constant deceleration at umax, fig (2.10). The

constraints are those stated in § 2.4.3. The optimization parameter becomes the time of initial

acceleration, ts.

LI

umUmax

Umin

t

ts t

Fig 2.10

This acceleration must be large enough to enable the sub-satellite to reach a distance to the

orbiter of Lf = 10 m. However, the final length rate must be higher than -.5 m.s-1.

rri·



Thus tsmin < ts < tsmax with:

I2max-+ ...m__ (Lo"- L) )(Lo - Ld)
tsmin max max and tsmax = Uma-L

=(Umin Umin Umin 2 Umin
u max Umax \ Uax) Umax (2.22)

The stopping condition is L(t) = Lf = 10 m. For an optimal ts, the total time of retrieval tf, is

given by: tf = ts Umaxin t (uamin2 Umin] s 2 (L- Lf), (2.23)
Umax LtUmax Umax Umax

"[Umin 2  UminI_ 2and the impact velocity: Lf = - Umax m•U2max) x U t2 Um (Lo - L).(2.24)

For the considered system:

Umin = -.1 m.s- 2,

Umax = 3.10-5 m.s-2 so as to respect the tension constraint,

Li = 2000 m,

Lf= 10 m. (2.24.1)

Thus, 3.5 s 5 ts -6.1 s and 3,600 s 5 tf 5 11,500 s or .57 orb 5 tf 1.83 orb.

For 0(0) = .3 rad and 0(0) = .1 o) rad.s-1, the minimum cost J is equal to 1.36 for an

optimal time of acceleration ts = 3.8367 s. The final retrieval time tf = 7,300 s = 1.15 orb.

These results are identical to those of the numerical solution of § 2.4.3 as expected. The

optimal solution in different coordinates is given by fig 2.11. Fig 2.11.1 and 2.11.2 show that

the sub-satellite does one period of oscillation before following the final retrieval path starting

at 0 = 1 rad. This final retrieval path has the same characteristics as in § 2.4.1.

The final path leaves the "splitting line" too late to be able to reach the point (0,0) in the

phase plane. In this case, Of = -.20 rad and Of = -4.44 10-5 rad.s-1 with Lf = -1.67 10-1 s-1. It

turns out that the optimal problem as stated does not enable us to reach our target point (0,0).
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2.4.4.2 Sensitivity Issue.

The unstable nature of the system results in a high sensitivity of the cost to parameter

variations. The plot of the cost function versus the time of acceleration fig 2.12 appears to be

similar to that of fig 2.5. However, it only shows the first valley since the maximum

deceleration was directly taken high enough. Fig 2.13 gives a zoom of fig 2.12 in the minimum
4

region. In 100 s the cost is multiplied by a factor of 1000. Consequently, the tolerance interval

of ts is unrealistically small. In fact, fig 2.13 shows the presence of two local minima. For ts =

3.808 s, the retrieval path leaves the splitting line too late fig 2.14, whereas between the two

local minima, ts = 3.825 s fig 2.15, the retrieval trajectory diverges towards negative pitch rate.

To have a reasonable margin of tolerated error on ts, it would be attractive to be able to

flatten the cost function in the area of small cost. Very high cost, over 104, corresponds to

divergent retrieval path. In this case, the path follows an expanding spiral in the phase plane

(fig 2.2), which directly diverges instead of going through the premisses of the point (1, 0).

Near the two minima, the cost depends on where the path actually leaves the splitting line

before following a quickly divergent path in terms of pitch rate, (fig 15). If the splitting line is

left too early, 0 will diverge before the final length is reached. On the other hand, if the

splitting line is left too late, the final point will eventually be far from the target point so that the

cost will be also high.

The cost function might be flattened by stopping the retrieval algorithm before the path gets

onto the splitting line in order to avoid the effect of the final divergence. Then the sub-satellite

will be retrieve up to docking along an arbitrary nominal trajectory, like an exponential one,

using a proper feedback to stabilize the system about this nominal trajectory. In this approach,

the retrieval is only partially optimized.

Keeping the second order system analogy, the stopping condition becomes:



L(t)
-to L(t) (2.25)

In order to have the necessary initial energy to reach the state 8 = -1, ts must meet the

following condition:
2 Lo 1

Umax 3 02
(Uminm2 Umin
Umax / Umax

Fig 2.16.2 shows that the cost is actually flattened in the region of the minima leading to a
tolerance interval of~ s for a cost variation of 3.3.

To summarize, an optimal trajectory for a one parameter optimization problem meeting the

specified initial conditions and constraints was found. The resulting final retrieval time is equal

to 1.15 orbits for the initial conditions (2.20) and the values (2.24.1) of the maximum allowed

controls The pitch rate and pitch angle do not diverge during the retrieval and reach reasonable

final values equal to Of = -.23 rad and Of = -.6 10-4 rad.s -1.

By stopping the optimized retrieval scheme before the end (8 = -1), the sensitivity of the

optimal solution is reduced. This second solution relies on the existence of an appropriate

feedback to complete the retrieval up to docking, the same feedback as the one used to stabilize

the sub-satellite about the optimal retrieval trajectory.
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fig 2.12: Cost function vs switching time ts for initial conditions (0,O)i = (.3,.10o).
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fig 2.14: Phase plane trajectory corresponding to the second minimum.
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fig 2.15: Phase plane trajectory between the two minima of the cost function.
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fig 2.16.1: Cost function vs switching time with final condition 8 = -1.
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2.5 A Proposed Sub-optimal Retrieval Scheme.

2.5.1 Analysis.

The structure of the cost function J leads to a trade-off between minimizing the total

retrieval time tf and minimizing the final pitch angle and pitch rate. It would be interesting to

reach at tf the point (0,0) in the phase plane. One solution would be to state Of = 0 and Of = 0 as

additional constraints. But in this case, does our problem have a solution for constant

deceleration retrieval after an initial acceleration?

The variation of ts corresponds in fact to a variation of the final impact velocity. The actual

initial and final conditions are fairly strict since on one state variable, the length, both final and

initial conditions are fixed. It may be interesting to determine the area of permissible initial

conditions 00 and 00 versus Lf for all constant acceleration retrieval trajectories with final

conditions (0,8)f = (0,0). Fig 2.17.1. Since it is one parameter scanning, this area is a line of

points in the phase plane. Therefore, if the initial conditions in the phase plane are not on this

line, the new optimal problem with (0,O)f = (0,0) and the specified structure of the control, has

no solution.

The minimum retrieval time corresponds to a maximum impact velocity. This maximum

allowed impact velocity is, in fact, the hardest constraint on the minimization of the time of

retrieval. With the experience acquired so far, it is reasonable to think that the final switch for

the bang-bang control will be a switch from a constant acceleration to constant deceleration.

The line on fig 2.17 splits the phase plane into two regions. To get to the final point (0,0), this

line must be reached at L = 2000 m. So if the initial conditions are inside the line in the phase

plane, the retrieval path will have to expand to reach a point on the line at L = 2000m. It is a

natural behavior since § 2.3.1 shows that as long as 0q4 exists, the phase trajectory is a kind of

expanding spiral. On the other hand, if the initial conditions are outside the line, the system will



have to loose energy. So the control will switch several times since without using any

thrusters, the remaining way to loose energy is pumping. In both cases, to get to the required

position in the phase plane is time consuming.

The new idea would be to use the thrusters at the beginning to reach the necessary entry

point of the trajectory which ends at the point (0,0) in the phase plane, before starting to

retrieve. The necessary fire time would be very small and the advantage would be a high

reduction of the total retrieval time.
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fig 2.17: Initial points in the phase plane vs final impact velocity for retrieval trajectories with
L, = 2000m and final pitch angle and pitch rate equal to zero.
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2.5.2 Retrieval Scheme Statement.

The thrusters can be on and off, giving an impulse of acceleration. The resulting trajectories

in the phase plane are a set of very steep parabola, almost vertical. Consequently, the following

retrieval scheme may be envisioned: first, fire the tether-normal thrusters and coast at constant

length to get to the entry point. Then retrieve with a constant acceleration followed by a

constant deceleration. It is still a one parameter optimization problem since Lf is free, which

corresponds to a free ts and also to a free point on the previous set of starting point. This

scheme may vary depending on the initial conditions in the phase plane. The period of the

coasting part decreases with the diameter of the coasting path in the phase plane ( cf § 2.3.1)

and the retrieval time increases when iNl decreases. However the retrieval time increases faster

than the period of coasting. Fig 2.18 shows the total retrieval time, ie firing, coasting and

retrieval, versus the optimization parameter Lf for the initial conditions 0(0) = .3 rad, 0(0) = .1

co rad.s-1, L(0) = 2000 m and L(0) = 0 m.s-1.

The minimum time retrieval scheme is fire first, then coast with constant length and finally

retrieve with a maximum final impact speed. The "entry point" for starting retrieval for all initial

conditions is 00 = .9 rad and 00 = 4.5 rad.s-1. There is a firing trajectory going through this

point in the phase plane, called line A. The complete retrieval scheme is the following: for 00 E

[-.9945 .9228] rad, fire thrusters to get to the coasting trajectory going through the entry point,

coast and then retrieve. For 00 < -.9945 rad, coast until 00 = -.9945 rad, then fire thruster to

get to the coasting trajectory, coast and then retrieve. For 00 > .9928 rad, coast up to line A,

fire thruster along line A and then retrieve. Consequently, this scheme enables us to retrieve the

satellite whatever the initial conditions are. For 00 [-.9945 .9228], the total retrieval time is

included in the interval [.5723 .9572] orbits. Fig 2.19.
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fig 2.18: Total retrieval time, thrusting, coasting and retrieving, vs final impact velocity.
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2.5.3 Example of Retrieval.

To reach the coasting trajectory which gets to the entry point, two thruster systems are

available. An on-satellite thruster system delivers a thrust level resulting in a maximum angular

acceleration of 4.10 -3 rad.s-2 when the primary attitude control system of the orbiter leads to a

maximum angular acceleration of 77.10 -3 rad.s-2.

Fig 2.20 shows an example of retrieval for (0,0/co) = (.3,.1) with Li = 2000 m and Li = 0

m.s-1. Using on-satellite thrusters, the firing time is equal to 884s for a coasting time equal to

256 s. The reel-in part takes .57 orbits and the whole retrieval takes .75 orbits. On the other

hand, with on orbiter thrusters, the firing time is reduced to 33 s and the coasting time to 650 s

leading to a total retrieval time equal to .68 orbits. In the on-satellite thruster solution, the

gravity gradient is non-negligeable with respect to the angular acceleration given by the

thrusters and therefore slows down the satellite motion. The fuel consumption in m.s-1 is given

by:

C = fL(t) u(t) dr

With on-satellite thrusters, the consumption is Cs = 3.54 m.s-1 whereas the consumption

with orbiter thrusters is Cs = 2.54 m.s-1. Consequently, the orbiter thrusters seem to be more

appropriate for this part of the mission.

Overall, this sub-optimal retrieval scheme leads to a significant improvement of the time of

retrieval of .47 orbits with respect to the solution of § 2.4, at the expense of a fuel consumption

of 2.54 m.s-1.
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2.6 Conclusion and Future Work.

The sub-optimal algorithm described in § 2.5.2 enables to retrieve the sub-satellite in less

than one orbit at the expenses of a small fuel consumption. It proposes to fire the in plane

thruster and to coast at a constant length in order to position the sub-satellite at a specific point

in the phase plane. Then reel-in part of the retrieval can start with an initial acceleration on the

length followed by a constant deceleration. This last part of the retrieval takes 0.57 orbits. The

coasting part takes a maximum of .33 orbits and the firing part a maximum of 38 s.

Consequently, the whole retrieval time is included in the interval [0.57 0.91] orbits.

Formally, the sub-satellite can be retrieved without using the thrusters. Cf § 2.4.2 and

[22]. However, the solution is very sensitive to the parameter of optimization. So far, only an

open loop analysis was performed without taking into account model error and natural

disturbances. But in any case, we cannot avoid using the thrusters since a realistic

implementation requires the use of a feedback loop, using thrusters as actuators, in order to

keep the system on the optimal or sub-optimal trajectory we designed. Consequently using the

thrusters to design a retrieval trajectory is a very realistic approach. But if the decision is made

to use them, a good design still implies to minimize the consumption of fuel. Therefore, the

optimization problem may be restated by aiming at minimizing a new cost:

J= 1 +1 u dt

where u0 is the thruster and il a pondering factor. Such a cost leads to a trade-off between

minimizing the retrieval time and the fuel consumption, a trade-off which can be adjusted with

1. However it has the advantages of getting rid of the bang-bang solution since it is no more a

linear optimization problem. This new constrained problem can be solved using the algorithm

described in § 2.4.1 since on the constraint, the two necessary equations are available:



C(x,u)=O and H. = 0 to determine u and gt. This is a very interesting new direction of

investigation for future work, using both pitch and roll dynamics for a complete study.



CHAPTER 3:
A FEEDFORWARD/FEEDBACK DESIGN

3.1. The Feedforward/feedback Loop Structure.

3.1.1. Introduction.

In the preceding chapter, a nominal trajectory was computed and the resulting necessary

length acceleration history was derived. Using directly this length acceleration as the control

would mean to command the TSS in open loop, which is unrealistic. The control would be

unable to recover any disturbance and model errors would certainly drive the sub-satellite on a

divergent trajectory. Therefore, the possibility of designing a feedback control stabilizing this

naturally unstable system about the nominal trajectory is investigated.

The closed loop structure must be fast enough to be able to drive the sub-satellite back to

the nominal trajectory in a reasonable period of time, lower than one third of the total retrieval

time, after the occurrence of a disturbance. Otherwise, the benefit of performing the retrieval

along this nominal trajectory would be lost. The critical is the pitch. To remove excess angular

momentum, the open loop structure only relies on the gravity gradient which becomes weak

after 2000m. This observation justifies the use of thrusters installed either on the sub-satellite

or on the orbiter, in order to have better control authority. Since these additional controls were

not included in the design of the nominal trajectory, they will be fired only if the system is

driven away from its nominal path. Otherwise, the system is left under the control of the tether

control system. This approach should result in a minimum fuel consumption unless the

modeling error are too important. In this worst case, the thruster would be required to be fired

all along the retrieval.



3.1.2. The Actuators.

Two systems of thrust are available. Gas jets can be directly installed on the sub-satellite

with the disadvantage of increasing its total mass. Another possibility is to use the primary

control system of the orbiter (PRCS).

Gas jets on the sub-satellite give a constant thrust of 2 N. For a total mass m = 500 kg, the

resulting acceleration is 4.10-3 m.s-2. The time granularity of this on-off system is 80 ms

leading to a thrust granularity of 3.2 10-4 m.s-1. On the other hand, the two primary jets of the

orbiter give a thrust of 7700 N. For a total mass of 105 kg, the resulting acceleration is .077

m.s-2 with the same firing time error of 80 ms. Thus, the thrust granularity is 6.2 10-3 m.s -1.

Both solutions are attractive. Using the orbiter PRCS would give more control and also

would avoid having to fire a thruster from another spacecraft close to the shuttle. However,

because of the inertia of the orbiter, this solution would lead to a greater fuel consumption. The

discomfort of the crew submitted to these on-off accelerations can also be imagined. On the

other hand, a sub-satellite thruster configuration requires the implementation of a yaw control

system in order to keep the thrust in the in-plane direction. But this solution is more fuel

efficient compared with thrusting from the orbiter and therefore is retained.

For the purpose of the regulator design, it would be convenient to be able to order a

continuously varying level of thrust. The available thrusters for the TSS are on-off devices.

But continuous thrust level may be approximated by fast pulsing with pulse width modulation.

The pulsing period AT must be short compared with the system characteristic time constant so

as to reasonably approximate the effect of continuous thrusting. If Te(t) is the continuous thrust



level commanded by the regulator and Ts, the constant thrust level available, the time of firing

At on a pulsing period is given by:

(AT AT

At- = Te(t) dt = T, AT where Treq T(t) dtTsTs AT J (3.1)

In other words, the integrals of thrusting with constant thrust level and with continuous

level must be equivalent. Since At is lower than AT, the average value of requested thrusting

Treq must always be lower than the available constant thrust level.

For a time incertitude of 80 ms on the on-off system and a pulsing period of 1 s,

Treal = Treq ± Ts x 80.10-2 (3.2)

The second actuator is the reel-in acceleration which directly controls the length dynamics.

Some variations about the nominal acceleration are necessary in order to recover any

disturbance. With a no-pushing constraint at 3.10 -5 m.s-2, the control authority is very small.

If an amplitude of control 8uL is allowed, the nominal trajectory will have to be recomputed

with a maximum deceleration of 3.10-5 m.s-2 - SUL, increasing the nominal time of retrieval.

Therefore, there will be a trade-off between good control authority and optimized time of

retrieval. The tethered-aligned thruster fired at 2N avoids this trade-off. For a total mass of the

sub-satellite equal to 500 kg, it moves the tension constraint back to 4.10-3 m.s-2 which results

in an acceptable control authority on the length dynamics.

3.1.3. The Sensors.

The best closed loop performances are usually given by full state feedback. The pitch angle

is measured from the orbiter with a Ku band radar, the measurement of which is then added to

the attitude of the orbiter given by its Inertial Navigation System (INS). The resolution of the

radar is ± 20 and that of the INS, ± 20 arcsec, resulting in a pitch resolution of ± 2.00560.
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A tether is not a rigid body and therefore, the sub-satellite can rotate on itself at the end of

the tether. In such a configuration, the pitch rate can not be measured by a rate gyro. The

simplest alternative would be to estimate it with an observer which would also filter the noisy

measurement of the pitch angle. Because of the non-linear nature of the dynamics involved, the

solution of an extended Kalman filter is retained.

The length is measured with a measurement wheel and the length rate with a tachometer.

3.1.4. The Specifications.

The goal of the closed loop structure is to bring good rejection properties of model error

and external disturbances, to the control mechanism. Only the rigid body motion was included

in the model. Vibrations [19] propagated along the tether may drive the system away from the

nominal trajectory. Some modes of the tether may also be excited by the vibrations resulting

from the limit cycle nature of the PRCS [5]. In addition, the coupling between roll and pitch

dynamics was also ignored although it exists when the roll angle and roll rate are being driven

to zero by the out-of-plane control mechanism.

Several disturbances are expected to act on the TSS, ranging from thermal effects to

gravitational anomalies and interactions with the surrounding space plasma for conductive

tether. For a sub-satellite deployed downward, an important external force is applied on the

TSS in addition to gravity gradient. It is the atmospheric drag which contains an oscillatory

component for polar orbits. The atmospheric force fa is given by:

1 1
fa=faastat (1 +sin 2(t 2) with fastat =pu 2 CDAL (3.3)

The orbiter velocity u is approximately equal to 7.10 3 m.s- 1, the atmospheric density p to

10-9 kg.m-3, the aerodynamic coefficient and the surface of the sub-satellite orthogonal to the



orbital plane respectively to 2 and 2 m2. fa stat = 9.8.10-2 L N resulting in a static atmospheric
1.96.10-4

torque equal to L which is not negligible compared with a maximum thrust of 4.10 -3

m.s-2, and must be taken into account in the loop structure. The equilibrium pitch angle for

constant length is given by

sin 2eq = 2 a stat (3.4)
3 02 m L2

resulting in a 0eq = 10.86 for a length of 2000 m. This atmospheric bias torque becomes

significant only for small length.

The sub-satellite is also submitted to the self-gravity of the orbiter approximately equal to fg
3.10-3

*-L2 N. Self-gravity overpowers gravity gradient for L lower than 1.31 m. Thus its effect

during the retrieval is negligible.

Because of the thruster granularity and sensor noise, an initial error on the states at the

entry point of the reel-in part of the retrieval is expected. The closed-loop system should be

able to correct a one percent error of the maximum value of every state on the retrieval path in a

period of time not exceeding one-third of the total retrieval time (= 1000 s) without thruster

saturation. The bandwidth of the system is mainly fixed by the maximum level of actuators,

which is 4.10-3 m.s-2 for the in-plane thrusters and 4.10 -3 m.s-2 for the length acceleration.

However, to prevent the tether from being excited by the shuttle attitude control system, the

bandwidth of the closed loop should not exceed 1/10 Hz. In accordance with this specification,

the bandwidth of the observer should be one decade above, ie 1 Hz.

3.1.5. The Closed Loop Structure.

The whole closed loop structure is the following: the measurements Y of the Ku band

radar, the length measurement wheel and the tachometer are filtered by the observer, and the



pitch rate is reconstructed from the three previous measurements. Thus, the output of the

observer is a vector X of the four state estimates. These estimates are compared to the nominal

states Xo steming from the optimal trajectory previously stored in the digital computer. The

state error 8X is fed into the regulator which then computes a correction control term Su to be

added to the nominal control uo. This nominal control is reconstructed from the optimal length

acceleration history stored with the nominal states, taking into account the constant

disturbances and the length dynamics. Then the required control, addition of the nominal

control uo and the correction term 8u is applied on the plant (fig 3.1).

feedforward thruster granularity disturbance measurment noise
. I. .

fig 3.1 : a feedforward /feedback scheme

The whole design consists in finding the appropriate feedback gain G and observer gain H.

For this purpose, linear theories are used by linearizing the system at each step about the

estimated position in the state space. In this case, this tracking system is brought back to the

classical problem of regulating the new states 8X = X - Xo to zero. Finding the appropriate

gains G and H is the purpose of the next study.



3.2. The System Analysis.

3.2.1. Linearization.

In the optimal trajectory design, the assumption was made that the length acceleration was

directly controllable. Here, the effect of the gravity gradient and the Coriolis acceleration are

included. The in-plane rigid body dynamics are described by the two following equations

resulting from (2.4) and (2.6):

S+ ' + )+ 3 W2 sin0 cos + T +a
L L L

L=LL[(0+o +3cO 02COS20_(2] +ULe (3.5)

where To corresponds to the acceleration due to the thrusters and uU, the length acceleration

due to the length control effort. fa will now be ignored since the true control can be directly

reconstituted by adding fa to the computed control.

The tension T is given by:

T=L +o02 + 3 +o2coS2-t2 +2N .- 2NuLc>0m m m (3.6)

So the new upper limit of the control uLma for a sub-satellite mass equal to 500 kg is 4.10-3

m.s-2.

At each step, the system can be linearized either about the nominal trajectory or about the

real estimated states where the system is. But the position of the system needs to be estimated

on its real trajectory. Therefore, in order to keep the property of separation between the

dynamics of the observer and that of the closed loop feedback, the system is linearized about its

estimated position to compute both the feedback and the observer gains. From a regulator point

of view, both linearization are equivalent at the first order.



f(x,u) = f(xo,uo)

=~ (i-io) = f(x,u) -

f(xo,uo) = f(x,u)

+ grad fxo.uo (x-xo) + x.o(u-uo) + o(E2)auxo.uo
af

f(xo,uo) = grad fxouo (x-xo) + (u-uo)allx0,uo
af

- grad fx,u (x-xo) (U-UO) + o(-E2)

=- (i-xo) = f(x,u) - f(xo,uo) = grad fx,u (x-xo)

The following non-dimentionalization is performed:

Z=Tx X with Tx =

1 0 0 0

0
Co

0 0

Li

0 0 0

uT=[uOUL]T=[ To ULC ]TTu with Tu=

0
1

umax (3.7)

The state representation becomes:

il =0 Z2

i2 =- 204 (z2 + 1) 3-0 sin 2z + T  u
Z3 2 CoLiz 3

z3 = 0) Z4
i4 = Cz3 [(z2 + 1)2 + 3 COS2 Z1- 1+ Umax UL

CoLi

The resulting time variant system is 5Z = A(Z) 8Z + B(Z) 8u with 8Z = Z-Zo and

A(Z) =
-3cos2zl z3 2ao (z2 + 1)

4(z2 + 1)2 + 3 Cos 2 zl - 1]

(u-uo)

0

coLi

(3.8)

z2 + 1)
23

I

-3o0z3sin2z, 2c(ozi z2 + 1)



B(Z) =

0 0

a o0
Z3

0 0

0 20

1 000
andy=CZ with C= 0 0 1 0 (3.9)

Fig 3.2 through 3.4 give the variations of each coefficient of matrix A along the retrieval

path. On the first 90% of the retrieval, these coefficients remain in the range of 10-3. The

coefficients reflecting the coupling of the pitch with the length, a41 and a42, decrease with L.

On the other hand, those reflecting the coupling of the length with the pitch dynamics,a 23 and

a24, remain fairly constant. Both sets of coupling coefficients are in the same range as the other
1 1

coefficients. In the last 10% of the retrieval, a22 and a24 which depend on L and a23 in E

start to diverge. When the coupling of the pitch with the length disappears, the coupling of the

length with the pitch dynamics sharply increases. Consequently, a constant feedback which

does not retain the time varying nature of the system is unlikely to be satisfactory. There is a

risk that the system becomes unstable during the last 10% of the retrieval, even if the same

gains would give good results in the first 90%. The divergence of the coefficients of the A

matrix during the final 10% of the retrieval could be a matter of concern with respect to the

ability of the feedback to track this final part of the trajectory. However, in any case, the

available amount of control does not make the system fast enough to recover any disturbances

even in the range of a 1% error, in the remaining period of time before docking. One must only

make sure that the system remains stable up to the final docking.
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fig 3.2: Variations of the coefficients a2i of A along the nominal retrieval trajectory for L>10%.
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fig 3.4: Variations of the coefficients a4i of A along the nominal retrieval trajectory

3.2.2. The Open Loop Dynamics.

3.2.2.1. Open Loop Poles.

The pole structure of the system significantly changes along the retrieval path. Two poles

X, and X2 are oscillatory during 90% of the trajectory, becoming unstable after 50% of the

retrieval. X3 always is unstable and diverges in the last 10% of the retrieval whereas A4 remains

stable, being close to an integrator in the first 30% of the retrieval fig 3.5 through 3.7.

The eigen structure is computed at two characteristic points L = 90% and L = 5 % which

corresponds to the beginning of the divergence.

L = 90%

1 = .95 10-3 v1 = .95
.33

L .31 J

x10-3 a4l : if-i a42 : IV--If a43 =

F
.



X2 = -.04 10-3

X3,4 = -.12 10-3 + i 1.98 10-3

.57
2 -.02

1
-.04

.50 e±

v3,4 =

.50 e±-

.99 e -

i1 = 9.79 10-3

X2 = -1.39 10-3

X3 = 1.37 10-3

X4 = .30 10-3

Because of the non negligible coupling terms, the two dynamics are mixed together at the

beginning of the retrieval. When the length decreases, the pitch is decoupled from the length

dynamics so that the remaining coupling terms does not impair the eigen structure.

The length dynamics are given by equation (3.5). The Coriolis acceleration and the pitch

rate increase the tension and the acceleration of the length, like for a pendulum. This effect is

given by the term (0 + (o)2. On the other hand, the gravity gradient, the magnitude of which

increases with the pitch, has a stabilizing effect. This effect is reflected by the term - Co2 (1 -

L=5%

1.63 i
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1.13 i

v1 =

V2 =[

·-
V3 =

V4 =[
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1
0
0

.18
-.25
-.72

1

.65

.90

.73
11

1
.31
.02
.01 (3.10)



3cos2O). The length dynamics are oscillatory stable if the contribution of the gravity gradient to

the tension overpowers that of the Coriolis acceleration; otherwise, they are exponentially

unstable. Since the tracked trajectory is the result of a minimum time optimization, the retrieval

is fast and then, the contribution of the gravity gradient is always overpowered by that of the

Coriolis acceleration. Therefore, the length dynamics are unstable. This is given by X3 for L =

5%. This same balance between gravity gradient and Coriolis acceleration also applies on the

pitch dynamics, § 2.1, as shown by V3 and also V4 when the two dynamics are coupled. For L

= 90%, the coupling effect transforms this exponentially divergent mode into an oscillatory one

and even stabilizes it at the beginning of the retrieval. X2 is the corresponding eigen value of X3

in the left half plane for the length dynamics. It does not concern the pitch as shown by V2.

The coupling effect moves this eigen value close to a pure integrator, mainly reflecting the

integral of the length rate, but also that of the pitch angle, as shown by V2.

X1 and A4 both correspond to the pitch dynamics, cf V1 and V4 for L = 5%. Since the

length rate is negative during the retrieval, the pitch dynamics are unstable. this is reflected by

X1. This eigen value always is real, therefore the pitch never is in the spiral mode, cf § 2.3.1.

Because of the coupling coefficients, the other eigen value becomes oscillatory. Even without

the coupling effect, the gravity gradient may drive the second pole of the pitch dynamics into

the left half plane. Without coupling, the pitch eigen values are given by X2 + 20Z4 X +

302cos 2z, = 0. If 2 < 3cos 2zI and < <3n which is the case for 75% of the4

retrieval, the gravity torque which increases with the pitch, overpowers the destabilizing

Coriolis momentum, and stabilize one of the modes of the pitch dynamics. That is why X3 and

A4 are stable on 55% of the retrieval, fig 3.7. The coupling effect destabilizes this mode earlier

than without coupling.

The variation of the eigen structure enlightens the time varying nature of the TSS. It

reinforces the need for a gain scheduling solution.



Locus of lAmnhTM 1 & l amMh 2 rn thP r•1 •- .w

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

L
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fig 3.7: Real part of X3 and X4 along the nominal retrieval trajectory

3.2.2.2. Observability, Controllability, Modal Decomposition.

Because the system is time varying, a rigorous way of verifying the controllability and

observability is to compute the two grammians. However, this tracking problem may be

decomposed into a set of regulation problems where at each step, a regulator for the LTI

system must be designed to drive the error states back to zero. Therefore, at each step, the

controllability and observability properties of the TSS can be evaluated by computing the rank

of the Kalman matrices [B AB A2B A3B] and [CT ATCT AT2CT AT3CT]. The rank of both

matrices are equal to four all along the retrieval trajectory; thus the TSS is controllable and

observable with the two controls us and UL and the three measurements.



With the coupling terms, the pitch and length dynamics are controllable from the two

controls. A feedback based on a decoupling of both dynamics would not take advantage of this

coupling. A modal decomposition performed at the two characteristics steps of the retrieval

enables to evaluate the degree of controllability of the modes by each control. In the steady

state,

4 2 bk
X(t) = Vi W bkw ei(t-')Uk(t) dt

= k=1 Jo (3.11)

where Vi and Wi are the right and left eigen vectors respectively of the open loop system

associated with the ith eigen value Xi , and bk, the kth column of the B matrix associated with

the kth control.

L = 90%

t 1

X(t) = - .95 e.95 10-3(tr) 10-3 (.21 u0(t) + 1.44 uL() ) ) d
.33

S .31

.57

*+ -.02 e..04 10'-(t-) 10-3 ( 1.39 uO(t) + .7 3uL(T) ) ) d

0 -.04 J

.50 cos[1.98 10-3(t-t)-1.63-.38]

2 103 e12 1 3(t) ( 1.32 1 cos[1.98 10 3(t-T)-.38]
+ 2 103 e-.12 to ( 1.32

.50 cos[1.98 10-3(t-t)-2.77-.38]

.99 cos[1.98 10-3(t-t)-1.13-.38]

.50 cos[1.98 10-3(t-t)- 1.63-.99]

1 cos[1.98 10-3(t-T)-.99]
+ 1.26 ut(Z)) d6

.50 cos[1.98 10-3(t-t)-2.77-.99]

.99 cos[1.98 10-3(t-t)-1.13-.99]



L=5%

X(t) = 01 e9 79 10'(t-) 10-3 ( .1 ue(t) + 1.01 UL(T) ) dr
0

0 -0

.18

-.72
S1 

) ( .054 u 
() ).65

-.73

S .E 1 e.30 '(i-) 10-3 (41.12 u9(t) + .41 uL(t)) )i d
SL .01 J (3.12)

The coupling of the two dynamics introduces some interesting "cross-control" effects

which predicts the structure of an optimal feedback gain using multivariable techniques like

linear quadratic regulators. For instance, the first mode is part of the pitch dynamics, as shown

by V1. However, because of the important value of a23 in the A matrix, this mode is more

controllable with the length control than with the pitch control. This comparison can be done

since the controls also have been non-dimentionalized. Consequently, it is very likely that the

gains g21 and g22 of the LQR gain matrix will be non negligible, in opposition to a decoupled

feedback where they would be equal to zero. In addition, because of the important value of a23,

an error on the length will induce a non negligible error on the pitch. To prevent this, the

feedback will certainly anticipate the error on the pitch by ordering the firing of the in-plane

thruster. Therefore gl3 will certainly also be non negligible in an LQR solution.

,34 is equally controllable by ue and uL, as predicted by V34. For L = 5%, the second

mode of the pitch dynamics X4 is predominantly controllable with ue, and X2, the second

mode of the length dynamics mainly is controllable with UL.



The computation of WTB gives the controllability of each mode with the different controls.

Unless the modes are fully decoupled with respect to the states, it does not directly give the

controllability of each states by the controls. However, except for the first mode because of the

divergence of a34, it seems that the controllability of each mode by ue or UL is proportional to

the contribution of this same mode to the pitch or length dynamics respectively. This could

suggest that from the states point of view, the controls are decoupled. Such an information can

be deduced from the singular value decomposition.

3.2.2.3. Frequency Domain, Singular Value Decomposition.

A singular value decomposition of (sI-A)-IB is performed at L = 90% and L = 5% for o =

10-2 rad.s -1. Since the open loop dynamics are in the range of 10-3 rad.s-1, it seems reasonable

to expect a closed loop system performing one decade faster.

If vki = Vk' ei 9i' is the component of the ith right singular value vector corresponding to

the kth control uk, and uli = juil e i Wki is the component of the ith left singular value vector

corresponding to the Ith output xl, then for Uki(t) = IVki sin(wt+cpki), xli(t) = lUlW Gi sin(cot+Vfli)

where oi is the ith singular value.

For L = 90%, Gmax = .34 and Gmin = .19,

Vmax .92 Vmin -.38

L .38 ei -1.54 .92 e'i -1.54

.09 e i 3.08

.93 e i -1.63

.03 e i 1.61

_ .34 e -3.11

Umin =

.03 ei-.06

.93 ei 1.63

.03 ei 1.60

- .34 ei-3.11

Umax =



For L = 5%, ;max = 2.86 and amin = .2,

Vma = 1 Vmin= 0
0 1 e i -1.1

.10 e i 2.34

.99 e i -2.37
Umax = Umin =

0

0

0

0

.10 e i 2.04

- .99 e i -2.68 _

The two remaining U vectors correspond to the integration of the pitch and length rate. The

maximum amplification mainly occurs in the pitch rate and is obtained almost with ue only for

L = 90%. The minimum amplification is obtained with uL and mainly occurs in the length rate.

For L = 5% where the length dynamics are nearly decoupled from the pitch one, the conttols

are orthogonal and ue only controls the pitch and ue the length. Therefore, a feedback design

based on the decoupling of the pitch and the length dynamics is likely to give good results.

Fig 3.8 shows that the difference of amplification between the two controls decreases for

high frequencies. The peak corresponds to the oscillatory mode. For small length, this

difference remains after the roll-off because of the decoupling, fig 3.9. The amplification for

the length remains constant with L and sharply decreases when L is very small whereas the

maximum singular value, amplification gain for the pitch steadily increases,fig 3.10.

These results seem consistent with the frequency representation.

L = 90%

2.21 10-6(s-1.18 10-3)(s+1.18 10-3)ue- 5.67 10- 9(s+.33 10-3)uL
= (s+.12 10-3±1.98 10- 3i)(s-.95 10-3)(s+.04 10-3)

2.21 10- 3s(s-1.18 10-3)(s+1.18 10- 3)ue- 5.67 10-6s(s+.33 10- 3)uL
(s+.12 10-3+1.98 10-3i)(s-.95 10-3)(s+.04 10-3)

(3A13'



5.11 10- 9(s-1.02 10- 3)ue+ 2 10-6(s+.92 10- 3)(s-1.59 10-3)uL
(s+.12 10-3+1.98 10-3i)(s-.95 10- 3)(s+.04 10- 3)

5.11 10- 6s(s-1.02 10- 3)ue+ 2 10- 3s(s+.92 10- 3)(s-1.59 10- 3)UL
Z4 = (s+.12 10-3+1.98 10- 3i)(s-.95 10-3)(s+.04 10-3)

L=5%

4 10-5(s-1.39 10- 3)(s+1.39 10- 3)ue- 2.55 10-9(s+5.04 10- 3)ULZ - (s+1.39 10-3)(s-.31 10-3)(s-1.37 10- 3)(s-9.79 10- 3)

4 10- 2s(s-1.39 10-3)(s+1.39 10- 3)ue- 2.55 10- 6s(s+5.04 10- 3)UL
Z2 (s+1.39 10- 3)(s-.31 10-3)(s-1.37 10-3)(s-9.79 10- 3)

1.28 10-10(s-14.76 10-3)ue+ 2 10-6(s-9.79 10-3)(s-.29 10- 3)UL
(s+1.39 10-3)(s-.31 10- 3)(s-1.37 10-3)(s-9.79 10- 3)

1.28 10- 7s(s-14.76 10-3)uo+ 2 10-3s(s-9.79 10-3)(s-.29 10- 3)UL
(s+1.39 10- 3)(s-.31 10- 3)(s-1.37 10-3)(s-9.79 10- 3)

The system is non-square. To have a transmission zero, there should be a direction of

control and a frequency for which all the output channels would be equal to zero, which is not

the case for the TSS. Since there is no integrator in the pole structure, the pitch and length rate

are the derivative of the length and pitch angle.

The gain values for each channel confirm the results of the singular value decomposition.

Therefore, it seems reasonable to try to design a feedback based on a decoupling of controls.
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fig 3.10: Singular value decomposition vs length for co=.1 rad.s-1

3.3. The Feedback Design.

3.3.1. A Decoupling of Controls: Pole Placement.

All the modes of the system approximately have the same velocity with a time constant in

the range of 103 s.rad-1. Therefore, the pitch and the length loops must be closed together.

However, because of the characteristics enlightened by the singular value decomposition, it can

be considered that ue only controls the pitch and uL, the length. If G is the feedback gain

matrix, g13, g14, g21 and g22 are set to zero.



3.3.1.1. The Pitch Dynamics

The pitch dynamics may be expressed in a state-space representation as follow:

-3
-3mcos2z,

.2CZ 8z,2
-2 Z [ 8z2

O
000 u1 + Ae2z3o
Z3 J

-= 82i = Ae• Ze + Be8u0 + AOL8ZL (3.15)

z3 and z4 are here considered as disturbances. If Sue = - Ge8Ze with Go = [gop ged], then

the closed loop dynamics are given by:

8Ze = (Ae-BeGe)8Ze + AOLGZL

The characteristic equation is given by:

De() = X2 + 20( z4 + gOd ) + 2(3cos 2z + 2 )
Z3 Z3 z3

(3.16)

(3.17)

which is identified with X2 + 2&,, X + O2.

For a critical damping, 8 is set to .7 .The cross-over frequency is given by

Coc = O 1-282+ 2-482+484)1/2 = 1.01.

and is adjusted so as to be able to recover a 1% initial error without saturation.

g~= c•3o012 1- 3cos2z]
g 2 1.012

ed = 8 1 •Z
dz 1.0=1 0 (3.18)

The feedback gains will decrease with the length. cove = 10-2 rad.s-1 is used as an initial

guess.

&i2

8i1 1
8z3
8z4



3.3.1.2. The Length Dynamics.

In the same way, the state space representation of the pitch dynamics may be rewritten as

follow:

8 4 (z2 z1)+3coz1] 0 z2

&Z4 - . (z2+1ý+3cos2zl-1] 0 8Z4 2m 6-z

=>82L = ALZL + BOUL + AL9B5 (3.19)

zl and z2 are here considered as disturbances. If 8UL = - GL8 ZL with GL = [gLp gul], then

the closed loop dynamics are described by:

8 ZL = (AL-BLGL)8ZL + ALo8Ze (3.20)

The characteristic equation is given by :

DL(W) = X2 + 2c.gLAd + 20 2gLp - 0 2[(z1+1)2+3cos2z-8O2] (3.21)

The damping coefficient is still set to .7.

gLp = 2cL )2 +[(z2+l)2+3cos2z,.1]]
2L mo )1.012

gLd=OcL I
( 1.01 (3.22)

The cross-over frequency is adjusted in order to be able to recover an initial 1% error on the

states without thruster saturation.

3.3.1.3. LTI Simulation.

owe and acL are adjusted by performing a time simulation using the whole linearized

dynamics at the entry point of the retrieval trajectory with a 1% error on every state.



8Z = A(Z)8Z + B(Z)8u with 8u = - GZ and G = [ GO  0 1[ 0 GL J (3.23)

oeo and tOcL are adjusted to 10-2 rad.s-1 and 1.3 10-2 rad.s-1 respectively.

G= [50 7 0 0]1-0 0 849

Since the integral of a state usually is slower than the state itself, the gains on the pitch

angle and on the length are higher in order to have the same time of recovery for the states and

their integral. The variations of the gains along the nominal trajectory are given by fig 3.11.

Since the linearized state space representation depends on the four states, the feedback gains

also depend on the same four states at the point of linearization. However this plot suggests

that the gains could be approximated by a gain scheduling law depending only on L, which

would simplify the computation.

G(z3) [ 49.5z3+.46 6.95z3+.35 0 0
0 0 83.5 9.01

An LTI simulation for the system linearized at the entry point is given by fig 3.12 and 3.13.

The state histories are given in the non-dimentionalized representation. The recovery is

performed in approximately 1000s to be compared with 3596 s of the total retrieval time.

The loop transfer function is G(sI-A)-'B. A plot of the singular value decomposition vs the

frequency co is given by fig 3.14. The maximum singular value crosses over at Ogcax = 2.12

10-2 rad.s-1 whereas the minimum one crosses over at oemin = 1.43 10-2 rad.s- 1. According to

the singular value analysis, § 3.2.2.3, it approximately gives the cross-over frequency of the

closed loop pitch dynamics and that of the length dynamics respectively. A sensitivity plot is

given by fig 3.15. It shows in particular, that the amplitude of a disturbance, the frequency of

which would be equal to two times the orbital rate like the atmospheric torque, would be

divided by ten. Fig 3.16 shows a small amplification in closed loop for frequency in the range

of 10-2 rad.s-1.

For L = 5%, the recovery is performed in 800 s, fig 3.18, so the bandwidth of the closed

loop system is increased but not enough to drive the system back on the nominal path in the

86



180 remaining seconds. Fig 3.17 also shows that the bandwidth of the pitch dynamics could be

improved since the maximum level of control is far from being reached. Since for small length,

the pitch and length dynamics are decoupled, the crossover frequency of both dynamics can

directly be reached on the Bode plot of the maximum and minimum singular values, cf §

3.2.2.3. It shows that ocmax = 2.13 10-2 rad.s-1 and oCcmin = 1.99 10-2 rad.s -1. The difference

between the two singular value is reduced, which was expected fig 3.30. The poles are placed

by specifying approximately the same crossover frequency, making the assumption that both

dynamics are decoupled, which becomes almost the case at this length.

The pole locations are given by fig 3.19 along the retrieval path. This plot enlightens the

time varying nature of the system.

Overall, the feedback gain makes the system ten times faster.

100 Pole plct gains: gll "-" lO*g12 "--" g23 ":" I0"g24 "-."
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fig 3.11: Variations of the feedback gains vs nominal length, pole placement solution.

601



11--"lUO : "-" uL :

0 100 200 300 400 500 600

t

700 800 900 1000

fig 3.12: Control history for a 1% error recovery. Pole placement Solution, L=0%

Pole Placement 8: 11-"1
"--"11 L1 "1i dL: i-0i

0 100 200 300 400 500 600 700 800 900 1000

t

fig 3.13: Response to a 1%. Pole placement Solution, L=O%

0.5

0

-0.5

-1

0.02

-0.02

-0.04

-0.06

-0.08

/

\

"/'
K \ I

I ~ i t i i |

Pole Placeffent.



10-3 10-2 10-1 i0o

w

fig 3.14: Singular value decomposition of the loop transfer function, pole placement
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fig 3.15: Singular value decomposition of the sensitivity transfer function, pole placement
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fig 3.16: Singular value decomposition of the closed loop transfer function, pole placement
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fig 3.17: Control history for a 1% error recovery, pole placement L=5%
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fig 3.18: Response to a 1% error, pole placement L=5%
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3.3.2. LQR compensator, a Multivariable Feedback Design.

LQR compensators are known to give smoother results than pole placement. In addition,

the LQR solution takes advantage of the multicontrol nature of the system. The most difficult

part of this design is to find the proper weighting matrices Q and R in the cost function J:

J= f 5ZTQ8Z + 8uTRu dt
Jo (3.24)

An initial guess is given by the Bryson's rule. The purpose of the design is to be able to

recover a one percent error Azi on every state with the maximum level of control available:

J = + + 2 kxdt
i=1 AZi i=k max

0 (3.25)

The weights on the integral of states usually are higher than those on the same states. After

several adjustments, a good design is given by:

7.09 0 0 0

Q 0 1.03 10-2 0 0 and R = 4 10
0Qj and R=410-3I

0 0 40 0

L 0 0 0 .6 (3.26)

For L = 0%,

G=[ 42.25 6.84 12.46 .71 ]

-6.71 .71 100.32 15.74

g21 and g22 converge toward zero as the length decreases since the pitch decouples from the

length dynamics, fig 3.20. On the other hand, g13 and gl4 tend toward zero and then diverge

because of the cross term a23 in the A matrix.

Like for the pole placement design, fig 3.20 and 3.21 suggest that the gains could be

approximated with a polynomial extrapolation vs the length. The final divergence of g13 and



g14 can be neglected since in any case, the closed loop is not fast enough to recover a

disturbance occurring at this final point of the retrieval, providing this approximation does not

drive the system unstable.

The pole location, fig 3.22, clearly enlightens the time varying nature of the TSS. The open

loop unstable poles are matched in the left half plane by stable closed loop poles. The open

loop structure is kept: two oscillatory poles ending on the real axis and two poles always

remaining on the real axis. The oscillatory poles split, one diverging towards -co and one

converging to -.026. Of the two remaining poles, one remains steady at -.0088 whereas the last

one approximately remains about -.02.

The response of the system to a one percent error is given by fig 3.23 through 3.24. The

LQR solution makes a much better use of the controls compared with the previous solution,

resulting in a smoother and faster recovery. The crossover frequency of the maximum and

minimum singular value are respectively cma.x = 3.27 10-2 rad.s-1 and o~cmin = 1.45 10-2

rad.s-1, fig 3.25 through 3.27.

The advantage of the LQR algorithm is demonstrated by the results of the time simulation at

L = 5% fig 3.28 and 3.29. Only the weighting matrices are fixed in this design and therefore,

the bandwidth of the system is optimized at each step. Therefore, full use of the available

control is made resulting in a faster closed loop system than the previous solution, fig 3.30,

with better disturbance rejection properties, fig 3.31. Ctcmax = 8.54 10-2 rad.s -1 and ocmi =

3.25 10-2 rad.s-1.

Because of its inherent qualities, this LQR design is retained over the previous one.
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fig 3.20: Variations of the LQR feedback gains of the pitch control along the nominal retrieval
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fig 3.23: LQR control history for a 1% error recovery L=O%
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fig 3.24: LQR response of the system to a 1% error, L=O%
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fig 3.25: Singular value decomposition of the LQR loop transfer function
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fig 3.26: Singular value decomposition of the LQR sensitivity transfer function
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fig 3.27: Singular value decomposition of the LQR closed loop transfer function
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fig 3.28: LQR control history for a 1% error recovery, L=5%
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fig 3.29: LQR response of the system to a 1% error, L=5%
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fig 3.30: Singular value decomposition of the loop transfer function, LQR & pole plct, L=5%
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fig 3.32: Singular value decomposition of the closed loop transfer function, LQR & pole plct,
L=5%

3.4. The Estimator Design.

The estimator must meet two objectives: estimate the pitch rate which can not be directly

measured because of the many degrees of freedom introduced by the flexible tether, and

estimate the pitch angle, the length and the length rate by filtering the noisy measurements

resulting from sensor noises. The true states can already be considered as random processes

because of thruster granularity and modeling error.

Because of these random processes involved, the retained estimator is an extended Kalman

filter which takes into account the non-linear nature of the process in the propagation of the

estimate. At each step during the retrieval, the state representation Z = f(Z,u) is linearized at the
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first order about the estimated state in order to compute the Kalman filter gain. The additional

precision obtained with a second order gaussian Kalman filter would not really justify the

amount of computation required, considering the purpose of the mission.

The available specification on the Ku band radar is a precision of ±20. For the purpose of

the Kalman filter design, this precision must be converted into a white gaussian noise. for such

a gaussian noise y of standard deviation y, the probability P that the variation of y from its

mean Y be lower than 2.58a is equal to 99%.

P(y - < 2.58o) = .99

Therefore a precision of Ayi on the measurement yi is approximated with a white gaussian

noise, the standard deviation of which is given by ai - 2.58Y

To the precision of the Ku band radar must be added the precision of 20 arcsec of the.

estimate of the orbiter attitude. The length and length rate measurements are arbitrary

considered to have a precision of 1%, in the absence of reliable technical data. Therefore,

2.0056 x 1 20 6.08 10-3
o0- 2.58 180 - 1.36 10-2, L- 2.58Li 3.88 10-3 and - 2.58oLi 1.18

10-3

and the covariance matrix V of the sensor noises is equal to:

2 1

V = E[vT] = 0 o with y = CZ + v
L ooL (3.27)

The plant noise w represents modeling errors like the different modes of vibration of the

tether or the modes introduced by the orbiter control system, which were not taken into

account. In a first simplification, only the plant noise introduced by the thruster granularity will

be taken into account. This thruster granularity introduces a precision of 8 10-2 rad.s-1, §

3.1.2., on the non dimensionalized requested level of thrust us. Therefore, the linearized

dynamics can be represented as follow:
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8Z = A(Z)8Z + B(Z)8u + L(Z)w

with L(Z) = [00 0]T and W = E[wwT] = 2. (3.28)
Z3 2.58

An approximated optimal estimate of the states is given by:

Z= f(Z,u) + H(Y - CZ) with H = ICTV 1  (3.29)

where I is solution of AL + EAT + LWLT - XCTV-ICZ = 0.

The estimator is supposed to be run for a while before starting the retrieval. Thus only the

steady state solution of the Kalman filter algorithm is retained.

For L = 0%,

1.98 -.16 4.85
H = 10-3  2.05 -.37 49.21

-.01 .30 1.00
.04 .09 16.32 1

These gains remain fairly constant in the range of .1 10-3 to finally diverge at the end of the

retrieval in order to follow the final increase of velocity of the system, fig 3.35 to 3.37. The

high gains on the measurement of the length rate are due to the fact that this measurement is

less noisy than the others. The low gains on the measurements of the pitch reflect the low

quality of these measurements.

The singular value decomposition of the loop transfer function C(sI-A)-1 reveals this same

difference of quality between the measurements with an important gap between the maximum

and the minimum singular value fig 3.33.

For L = 0%, the poles are:

,12 = -8.66 10-3 + i 9.00 10-3

X3 = -.98 10-3

X4 = -.31 10-3
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The dynamics of this estimator are in the range of that of the pole placement feedback and

slower than that of the LQR feedback, fig 3.19, 3.22 and 3.34. It means that the estimator

almost only relies on the prediction of the estimates to reconstruct the states. This is due to the

fact that plant noises are small compared with sensor noises. However, because of a lack of

information, only thruster granularity was retained in the plant noise model. This model

ignores non-rigid body motion, out-of-plane coupling, orbiter-tether coupling.

The pole locations along the nominal trajectory are given by fig 3.34. Two poles, starting

oscillatory at -8.66 10-3 ± 9.00 10-3 split into one diverging towards -c* and the other one

converging to -.01. The two others, starting from -.98 10-3 and -.31 10- 3 , remains real to

eventually converge to -1.65 10-3 + i .25 10-3.

A good design should lead to an estimator crossover frequency one decade above that of

the feedback. The estimator would rely less on the approximated model to build the estimates

of the states, using the measurements to update the prediction. Such a bandwidth can be

adjusted by making guesses on the value of the plant noise covariance matrix W. z1 and z3

being only the integral of the non-dimentionalized states z2 and z4, W may be written as:

W=0iI(2) with L=[ 0 1 0 0ý000 1

For a = 10-3, the estimator closed-loop poles are:

,12 = -2.16 10-1 ± i 2.16 10-1

X3 = -.98 10-3

X4 = -.31 10-3

Another approach would be to use the covariance matrix of the plant noise and that of the

sensor noise to adjust the bandwidth of the estimator, using singular value matching theory. If

V = I I , W = I and L = CT(CCT)-1, then the bandwidth of the estimator can be directly

adjusted to 10-1 rad.s-1 by taking g. equal to 102 fig 3.38. This approach gives a fast estimator;
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however, because of the singular value matching, it supposes that all the measurements are

equally noisy. Therefore, such a design would give good results in the transient but would

very badly filter the sensor noises in the steady state.
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fig 3.33: Singular value decomposition of the estimator loop transfer function, L=0%
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fig 3.35: Variation of the estimator gains on the pitch measurement along the nominal retrieval
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fig 3.38: Estimator singular value matching design.

3.5. LQG Simulation of the Linearized System.

In order to assess the quality of the whole design, an LQG simulation of the system

linearized at the entry point is performed. The results of the LQG response for a one percent

error on every state are compared with the response of the system driven by the LQR

compensator with the same noises.

The linearized system is given by:

8Z = A8Z + B8u + Lw

The estimates of the states are given by:

8Z= A8Z + Bu +H(SY- C82) with 8Y = C8Z+v
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and the control 8u = - GZ.

Therefore,

8 A -BG ]2 [L 0]w
^ HC A-BG-HC A 0 H v88Z- _8ZL (3.32)

In the case of an LQR regulator, 8u = - G(8X + v). There is a direct transmission of the

measurement noises whereas with an LQG scheme, the estimator filters them. For the purpose

of the LQG/LQR comparison, the pitch rate is supposed to be measured with a 1% precision.

Fig 3.39 shows the random oscillations of the pitch control resulting from the thruster

granularity and from the random nature of the states. The length and length rate responses are

hardly impaired by the presence of noisy measurements fig 3.43 and 3.44. On the other hand,

the pitch rate randomly oscillates about the reference response without noise fig 3.42, with a

maximum amplitude of oscillation equal to 3 10-3 fig 3.45. The error on the pitch angle

included in the interval ±7 10-4 whereas its measurement has a precision of ±3 10-3 in the non-

dimentionalized representation. However this error is the addition of the error resulting from

the noisy measurements and the integration of the error on the pitch rate by the system fig 3.45.

Therefore, this error increases. This suggests the implementation of a feedback including the

integral of the pitch. Such a structure would detect the increase of the error on the pitch angle in

the steady state and correct it.

Fig 3.46 shows that the error in the length rate and length with respect to the reference

response without noise is included in the interval ± 5 10-3 and ± 10-4 respectively on two-third

of the total time of the retrieval. The error on the length also increases because of the integration

of the error on the length rate by the system. A feedback gain on the integral of the length error

would also remedy this inconvenience.

A degradation of the performances of the estimator can be observed for L = 5% at the

beginning of the final divergence. When at L = 0%, the conjunction of thruster granularity and

108



noisy measurements resulted in a random oscillation of the pitch control of a maximum

amplitude equal to .1, for L = 5%, the amplitude of these oscillations are equal to .2 in the non-

dimentionalized representation, fig 3.47. Fig 3.48 and 3.49 shows the degradation of the pitch

angle and the pitch rate. In particular, fig 3.48 demonstrates that an integral feedback on the

pitch angle is necessary. The advantage of such a structure would be clearly seen during the

final part of the retrieval. The length rate and length responses are not significantly impaired by

the degradation of the estimator fig 3.50 and 3.51. This suggests that only the estimate of the

pitch is degraded at the end of the retrieval.

The error on the pitch angle with respect to the reference response without noise is included

in the interval ± 6 10-3 and the pitch rate in ± .14, fig 3.52.1. For the length and length rate, the

error is included in the interval ± 7 10-5 and ± 3 10-3 respectively, fig 3.52.2. Thus, only the

estimates of the pitch and pitch rate are degraded in the final part of the retrieval.

The recovery to a 1% initial error with the fast estimator where the plant covariance matrix

is equal to 10-3 1(2), is given by fig 3.53.1 and 3.53.2 for the pitch angle and pitch rate

respectively. It shows that the random oscillations are higher than the initial error amplitude, .8

rad or 3.40 for the pitch and .8Ao rad.s-1 for the pitch rate. Therefore, a 1% initial error cannot

be recovered since it is included in the dead-band of the estimator. In addition, the random

pitch oscillations have an amplitude higher than the pitch sensor precision. Thus, the

performances of this estimator are very poor.

There is here a fundamental nonsense in the specifications of the system. To benefit from

the optimization trajectory design, it seemed reasonable to aim at retrieving an initial error in

one-third of the total retrieval time. However, the available level of thrust limits the amplitude

of initial error the feedback loop can retrieve without thruster saturation, to 1% of the maximum

amplitude of the states along the nominal retrieval trajectory. For the pitch angle, it limits the

initial error to .60. Therefore, the Ku band radar having a precision of 20, the sensors can not

detect such an error.
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fig 3.39: LQG pitch control history for a 1% initial error recovery, L--0%
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fig 3.40: LQG length control history for a 1% initial error recovery, L=--0%
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fig 3.41: LQG pitch response to a 1% initial error, L--0%
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fig 3.42: LQG pitch rate response to a 1% initial error, L=--O%
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fig 3.43: LQG length response to a 1% initial error, L=0%
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fig 3.44: LQG length rate response to a 1% initial error, L=--O%
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fig 3.45: Pitch angle and pitch rate error evolution with respect to the LQR reference response
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fig 3.46: length and length rate error evolution with respect to the LQR reference response
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fig 3.47: LQG pitch control history for a 1% initial error recovery, L=5%
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fig 3.48: LQG pitch response to a 1% initial error, L=5%
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fig 3.49: LQG pitch rate response to a 1% initial error, L=5%
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fig 3.50: LQG length response to a 1% initial error, L=5%
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fig 3.51: LQG length rate response to a 1% initial error, L=5%

0 200 400 600 800 1000 1200 1400 1600 1800 2000

fig 3.52.1: Pitch angle and pitch rate error evolution with respect to the LQR reference response
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fig 3.52.2: Length and length rate error evolution with respect to the LQR reference response
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fig 3.53.1: LQG pitch response to a 1% initial error with fast estimator
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fig 3.53.2: LQG pitch rate response to a 1% initial error with fast estimator

3.6. Non-Linear Numerical Simulation.

3.6.1. The Algorithm.

The structure described by fig 3.1 § 3.1.5 is implemented. Th real feedback and estimator

gains are given by:

G(X) = Tu-IG(Z)T and H(X) = T-1G(Z)T 3  (3.33)

where T3 is the reduction of T to the pitch, the length and length rate. Both gains are computed

at each step with the estimates of the states.

The nominal control history was designed assuming the the length acceleration was directly

controllable. In order to take into account the length dynamics,
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u -= L.-(0 0 + W)2P + 3 2coS2 0 - 2 (3.34)

The nominal pitch control is equal to zero in the nominal trajectory design. Taking into

account the atmospheric torque, the nominal control becomes:

ueo = - fa (3.35)

The plant dynamics are described by equation (3.5) equivalent to X = f(X,u). The whole

system is described by the following representation:

X = f(X,u)

X = f(X,uo + 8u) + H(X) (Y -CX)

Y = CX + v

8u = - G(X) (X - Xo)

u = uo + 8u + nu (3.36)

where nu represents the thruster granularity.

This simulation is performed for an initial length of 2000m with initial conditions equal to

Xo + dXo with

Xo = [.92 4.5 10-4 2000 0]

dXo = [.141 9.71 10-6 20 6.03 10-3]

For L higher that 4000 m, the maximum real part of the eigen values of the system is lower

than 2 10-3 resulting in a time constant higher than 500 s. The step size of integration must be

lower than 50s. For the first 6 s of the initial acceleration, the step size is taken equal to 1 s and

during the deceleration for length higher than 400 m, to 10 s. For L lower than 400 m, the real

part of the eigen values is lower than .1 resulting in a time constant higher than 10 s. Thus the

step size of integration is taken equal to 1 s.
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3.6.2. Results.

The LQR and Pole Placement feedback loop both recover and track the nominal trajectory

appropriately, fig 3.54 to 3.61. As stated in § 3.2.1, the last 10% of the retrieval are critical

because of the divergence of one of the unstable pole of the plant. Despite sensor and plant

noises, the extended LQG feedback loop keeps the sub-satellite on the nominal trajectory up to

the end, fig 3.63. The variations of the states with respect to the nominal reference are ten times

lower than the prediction given by the linear simulation of § 3.5., fig 3.66 to 3.69. The effect

of the final divergence of one of the unstable pole of the plant can be observed on fig 3.67. The

relative error of the pitch rate with respect to the nominal rate increases from an average lower

than .010 to .03( rad.s-1, but remains acceptable.
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fig 3.54: In-plane trajectory for a
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1% initial error, pole placement solution.
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fig 3.55: Phase plane trajectory for a 1% initial error, pole placement solution.
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fig 3.56: In-plane trajectory for a 1% initial error, LQR solution.
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fig 3.57: Phase plane trajectory for a 1% initial error, LQR solution.
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fig 3.58: Pitch control history along the retrieval, LQR & Pole Placement solution.
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fig 3.59: Length control history along the retrieval, LQR & Pole Placement solution.
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fig 3.60: Length error with respect to the nominal trajectory, LQR & Pole Placement solution.
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fig 3.61: Length rate history along the retrieval, LQR & Pole Placement solution.
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fig 3.62: In-plane trajectory for a 1% initial error, LQG solution.
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fig 3.63: Phase plane trajectory for a 1% initial error, LQG solution.
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fig 3.64: Pitch control history along the retrieval, LQG solution.
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fig 3.66: Pitch error with respect to the nominal trajectory, LQG solution.
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fig 3.67: Pitch rate error with respect to the nominal trajectory, LQG solution.
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fig 3.68: Length error with respect to the nominal trajectory, LQG solution.
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fig 3.69: Length rate error with respect to the nominal trajectory, LQG solution.
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CHAPTER 4:
CONCLUSION AND FUTURE WORK

4.1. Trajectory Design and Feedforward.

This study showed that for reasonable initial pitch angle and pitch rate, there exists a

retrieval trajectory which enables to retrieve the sub-satellite in about 1.15 orbits with

reasonable final pitch angle and pitch rate, § 2.4.3. This solution only relies on the gravity

gradient to remove excess angular momentum. The control, ie the length acceleration, is bang-

bang and, for initial conditions (00,00/co) in the range of (.3,.1), its structure can be simplified

by one initial acceleration followed by a constant deceleration, § 2.4.4.

In the formulation of § 2.2.1 of this optimization problem, the tension constraint may

appear as a limiting factor to the optimization of the total retrieval time, by limiting the final

deceleration. This constraint can be eased by installing a tether-aligned thruster fired at 2N on

the sub-satellite, resulting in a maximum deceleration of 4 10-3 m.s-2. A full investigation of

the variations of the optimal solution with respect to the maximum deceleration remains to be

done in order to get quantitative data. However, from the results of § 2.3.1, we know that to

reach the origin in the phase plane, the retrieval path has to remain on the splitting line, which

is an unstable equilibrium. If use of tether-normal thrusters are excluded, only the gravity

gradient removes the excess angular momentum to keep the retrieval trajectory on the splitting

line, and therefore limits the velocity of retrieval. Consequently, an increase of the maximum

deceleration is unlikely to significantly improve the time of retrieval. However, it will certainly

result in an increase of the number of switches of the bang-bang length control.

The final pitch angle and pitch rate were only constrained by being included in the cost

function. Such a formulation leads to a trade-off between the minimization of the time of
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retrieval and that of the final pitch angle and pitch rate. An increase of the maximum

deceleration will undoubtedly result in a degradation of these final states. Therefore the

optimization problem should be reformulated, considering final pitch angle and pitch rate equal

to zero as final conditions, so as to only focus on the minimization of the time of retrieval.

For a given maximum deceleration and a structure of bang-bang control of one switch, the

final impact velocity also appears to be a limiting factor. From this observation, a sub-optimal

retrieval scheme was derived, § 2.5.2, which enables to retrieve the sub-satellite in a maximum

of .9 orbits, with the final pitch angle and pitch rate equal to zero. However, it implies to fire

thrusters for a maximum time of .37 s in order to reach the entry point of this trajectory,

whatever the initial pitch conditions are.

The results of this chapter 2 should be used as initial guesses for solving a revised

optimization problem where final pitch angle and pitch rate equal to zero would be imposed as

final conditions. The positive tension constraint being eased thanks to the tether-aligned

thruster, the variations of the optimal solution with respect to the maximum deceleration should

be derived, enabling retrieval of the sub-satellite for all initial conditions without turning to in-

plane thrusters. After an oscillatory part in the spiral region depending on the initial conditions,

all retrieval paths will join the splitting line in the neighborhood of the point (0,8) = (1,0) in the

phase plane. A small variation from this splitting line will lead to a trajectory exponentially

divergent, § 2.3.1. Staying on this splitting line appears to be the critical part of the retrieval,

even if most of the length is retrieved before, fig 2.20. The system becomes highly unstable,

one of the unstable poles starting to diverge toward +oo. Therefore any feedback system aiming

at stabilizing the system about the retrieval trajectory must have accurate sensors to detect any

variations away from the splitting line, and high bandwidh with respect to that of the open-loop

system along the retrieval path in order to recover any disturbance without loosing the benefit

of the optimized trajectory.
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4.2. Feedback Control.

The design of a feedback loop with pitch rate estimator was investigated in chapter 3. From

a control point of view, pitch and length dynamics are nearly decoupled. Therefore a feedback

based on this decoupling gives a good approximation of an LQR design, § 3.3.1 and § 3.3.2.

However, the bandwidth of the closed loop system is limited by the maximum thrust level

available, if the constraint is imposed that the control should not saturate with an initial

condition error of 1%. With on satellite thrusters, the bandwidth of the closed loop system is

thus limited to the range of 10-2 rad.s- 1 if a one percent initial error is imposed to be recovered

without thruster saturation.

This recovery is also limited by the ability of the estimator to give accurate estimates of the

states. A sensible design would lead to an estimator ten times faster than that of the feedback

loop. The Kalman filter state estimator designed in chapter 3, however, is based upon our best

estimates of sensor noise and plant noise. The pitch sensor, a Ku band radar measuring line of

sight from the orbiter, drives the design most strongly. Our information is that this pitch sensor

has a resolution of two degrees. This specification was converted into an equivalent noise

intensity, leading to the low estimator bandwidth. The estimation is thus practically open loop,

ignoring the sensor almost completely. Therefore the estimator masks any state error under the

range of the state oscillations. Moreover, these noisy estimates would lead to a high fuel

consumption since the thrusters would be required to be fired continuously. The resulting

oscillations lead to a total fuel consumption of 680 m.s-1. A remedy might be to implement a

dead-band in the algorithm of control.

In chapter 3, plant and sensor noises were approximated by white noises. However, high

frequency modes are not retained in the rigid body description. Therefore, the plant noise

should be approximated by a white noise through a high pass shaping filter with a cross over

frequency before the first mode of libration of the system, tab 1 [12]. The continuous Kalman

filter should also be replaced by discrete updating of the estimate.
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Therefore, the critical issue for the implementation of the proposed feedforward/feedback

scheme is the precision of the sensors. Given the Ku band radar of a precision of 20, the

estimator is unable to detect errors which are in the range of what the feedback loop is able to

recover with the available maximum thrust level. Moreover, the lack of precision on the states

leads to a high fuel consumption which voids the benefits of the optimization trajectory design.

Consequently, if an optimal retrieval strategy is retained, new sensors should be implemented.

The purpose of this study was to investigate the possibility of retrieving a tethered sub-

satellite while attempting to minimize both total retrieval time and fuel consumption. This

investigation revealed that precise sensors is the key issue in the fuel consumption

minimization. The possibility of using precise linear thrusters instead of constant thrust level

pulsing would also contribute to the optimization of fuel use as well as adjusting the bandwidth

of the feedback loop. High bandwidth leads to fast initial error and disturbance recovery but

requires a large maximum constant thrust level. On the other hand, a low bandwidth would

result in a long recovery leading to an important time of thrusting. Therefore a minimum fuel

use versus bandwidth should exist. A quantification of this minimum remains to be done.
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