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Abstract

The Central Nervous System (CNS) uses sensory afferences to calculate an estimate of the

orientation of the body in space. Considering that the process of spatial orientation tries to

minimize the variance of the estimation error, with the assumption of knowing the dynamics of

the internal sensors, it can be seen as an optimal observer (Kalman Filter).

An internal model of the spatial orientation is developed, using only vestibular cues. The
angular velocities and linear acceleration are supposed to be the output of first order systems
driven by white noise. The angular orientation is derived from the integration of a quaternion
vector, which is part of the internal model. Since the system is nonlinear, the gain of the
observer is calculated using suboptimal techniques (Extended Kalman Filter), under
assumptions on the noise statistics.

The model predictions are compared with previous studies. The work in this thesis gives more
accurate results and extends the range of applicability of the model. Sensitivity of the filter with
respect to various parameters (frequency bandwith of the expected signals, noise covariances)
is studied. Finally the model is tested on real centrifuge cases.

Thesis Supervisor: Dr. Lena Valavani
Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 General Considerations On Spatial Orientation

During the early ages of aviation, piloting a plane was nearly like riding a bicycle or

sailing a boat, in the sense that there were very few instruments, and the control of stability and

navigation in the air was left to the pilot's perception of orientation. In other words, piloting

was accomplished with the view of the exterior word, the earing of the wind and the engine

regime, and the basic sensations of movement that are provided by the whole body and,

particularly, by the vestibular system.

When man wanted to fly in the clouds or at night or, in general, in "all weather"

conditions, he had to invent a variety of instruments which allowed him to figure out the

position in three dimensions of the aircraft by interpreting several measures. The modem pilot

must now deal with a high workload environment and a complex instrument panel, without the

possibility of hearing and, at times, without seeing the outside. He is, therefore, liable to

introduce conflict between his internal feeling of orientation and the true orientation; this can

result in "spatial disorientation".

Spatial disorientation has been recognized as a "silent killer" by the United States Air

Force, being the cause of a noticeable number of crashes [1]. For example, if a pilot is

distracted in total darkness by a warning signal or a radio problem, he is left to rely only on his

senses to determine his orientation in space. A "cross check" of his instrumentation can correct

the situation but, if it is misinterpreted or if the pilot doesn't do it for too long a time, and if the

situation is critical (low altitude flight or very high speed), this can lead to a crash. Actually

according to Freeman [1], spatial disorientation as a crash cause has been attributed to more
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than 70 Class A mishaps in the Air Force since 1981. A Class A mishap is defined when the

damage is over half a million dollars or if the pilot is killed.

According to Marlowe [2], we can classify spatial disorientation into three types. Type I,

or "Unrecognized Spatial Disorientation", is when the pilot is not aware that he is disoriented.

This is particularly dangerous when flying in difficult situations and at very low altitudes. Type

II is called "classic vertigo". The pilot knows that he is disoriented and is able, in most of the

cases, to cope with this sensory conflict and to manage the situation.Type III, or what is called

"vestibulo-occular disorganization", occurs when the pilot is conscious of his disorientation but

is totally unable to obtain correct orientation information. Because of the violence of the

maneuver, the vision is blurred by counterproductive reflexes generated by the vestibular

system. This kind of spatial disorientation is, however, quite rare.

In a study by Kirkham et al in 1978 [3], spatial disorientation represents 2.5% in the

general aviation accidents in the U.S., and 7.11% and 6.75% for the Air Force and the Navy

respectively. More recently [4,5], it has been shown that spatial disorientation was responsible

for 14% of the USAF Class A mishaps, costing around $ 1,000,000 and 5 to 10 fatalities per

year.For 1988, 8 out of 57 accidents in the Air Force were actually due to spatial

disorientation, and all of those but one were classified as Type I and occured at night or in IMC

(Instrument Condition).Those figures are not negligible at all and explain the interest that is

given to a better understanding of the mechanism of the spatial orientation.

If we want to introduce, in a few words, what is the mechanism of the orientation in

space, we will first focus on the role played by vision. When the pilot has a clear view of the

horizon, ambient vision provides all the orientation information. But when the exterior vision is

compromised, say by the clouds or the night, then the same motion that was well managed in

clear weather can introduce disorientation, and the pilot then has to interpret and to trust his

instrument panel in order to recover to a normal situation. We then see that the "vision

dominance" of the orientation process falls into two types. Gillingham [6] calls them the

"congenital type", basically the orientation in clear weather, and the "acquired type" in which
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the vision is focused on the instruments, and the information that is read is decoded through a

procedure that has been learned by previous training. Vision is then able to dominate all other

orientation cues like vestibular or proprioceptive sensations (vision dominance). However, the

"acquired type" of vision dominance is not natural and, in absence of real orientation

references,- and by real we mean related to our natural environment - the orientation system

tends to give priority to other natural orientation cues. In other words, "artificial orientation"

can be provided by diligent attention to the instrumentation, but the conflict can easily turn in

favor of the vestibular information and introduce disorientation.

The orientation process can, therefore, be seen as the estimation of a state vector, in

which included, among others, are the orientation angles and velocities [10]. The Central

Nervous System then, uses the knowledge of the dynamics of the body and the sensors

(model) as well as the values of the outputs of the different sensors (measurements) and their

preferences, to minimize a kind of mean square error criterion and to find the best orientation

vector that is consistent with the measurements. Such an optimal estimation process, in the

linear case, is known as the Kalman Filter [11], which can be extended to nonlinear cases as

well, under appropriate problem assumptions.

The general process of the orientation of a pilot can be described in terms of a block

diagram by a model referred to as Oman's model [12,13], as shown in Figure 1.1. We give

here the general form of that kind of processing, where the pilot reactions are included in the

global loop of the motion. What we call "Body and Exterior Dynamics" represents the

movement in the inertial space, given a set of exterior conditions (airplane dynamics, pilot

dynamics,. control commands and so on). The output of that block is the actual value of a state

vector containing all the information required to describe the spatial orientation. A measurement

of that state vector is then used to calculate an orientation estimate, using a classic form of

observer theory (the input to the observer being the difference between the actual measurement

and the reconstruction of the measurement from the estimated value). Finally, the control

strategy is calculated from the value of the estimate.
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Figure 1.1: Oman's Model for the Orientation Process

The model set up by Borah et al [10] is essentially Oman's model, without the control

part. In other words, they considered, for instance, the case of a passenger in an aircraft, or the

case of a human who is not responsible for his movement in space. They also simplified the

internal model of the CNS, using linearization about an upright position of the head in a 1 g

environment, and employed a steady state optimal estimator (steady state Kalman filter).

In his PhD thesis, Dan Merfeld [16] also developed a model for the spatial orientation of

the squirrel monkey, and ended up with the same kind of observer, with a constant gain

chosen to best match experimental results. However, one of the main issues of Dan Merfeld's

work was to introduce nonlinearity in the internal model in order to demonstrate that the CNS

was trying to keep track of the orientation of the gravity vector. What we want to do here is to

generalize theses approaches, in order to come up with a more general model, which need not
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be linear and which uses suboptimal filtering techniques in order to calculate a time varying

gain. This generalization would lead to a wider coverage of the phenomena and expanded

model applicability.

1.2 Thesis Organization

In Chapter 2, "Sensors of the Orientation Process", we describe in detail the mechanism

of the principal sensors of the orientation process, which are the visual and the vestibular

systems. We also list other orientation sensors such as the proprioceptive and the auditory

systems which appear to have some importance.

In Chapter 3, "Modeling of the Sensors", we describe the quantification, in terms of

transfer functions and nonlinear functions, of the input-output relationships in the different

sensors.

In Chapter 4, "Internal Model Optimal Estimation Process", we give the structure of the

central process in terms of optimal estimation and the time-varying Kalman Filter.

Before concluding, we give in Chapter 5, "Implementation Consideration and Simulation

Results", the prediction of our model in basic simulations corresponding to experimental cases

such as rotations and linear accelerations in the light or in the dark. The simulations were done

using Borah et al [10] data, in order to compare the two approaches.
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Chapter 2

Sensors of the Orientation Process

2.1 Vision

Vision is by far the most important sensor of spatial orientation and, for the most part, its

function is obvious. One sees where one is and how one is moving and, therefore, knows

where one was and where one is going to be. However, as we mentioned before, we can

separate the visual orientation process into two distinct categories with two distinct functions:

The focal vision that can be relied upon for object recognition and information interpretation,

and the ambient vision or general spatial orientation.

2.1.1 Focal Vision

Following the description of Liebowitz and Dichgans [7], the focal vision is concerned

with object recognition and identification, involving very fine details or high frequency signals.

In other words, the focal vision gives material to the central processor in order to answer the

"what" question.

Although focal vision is not directly related to orientation, it is the way information is

read from the instruments and, therefore, provided one has instrument flying skills, those

readings can be transformed into orientation information.

Also, in a visual flight environment, focal vision provides the basic cues from which

appreciation of distance and depth are made. Actually, interpreting the change in the shape of

the objects that appear in the visual field, or interpreting the motion parallax (the relative speed

of the different objects that are seen) provides useful orientation information. Other cues, such

as perspective or accommodation of the eye lens are also used but are of less importance.
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2.1.2 Ambient Vision

Liebowitz and Dichgans [7] describe it as the way of subservient spatial orientation and

answering the "where" question. Unlike focal vision, it is not systematically related to optical

image quality and uses somewhat low frequency visual information. The fact that this ambient

vision can be completely uncorrelated from the focal vision is experienced everyday by each of

us when reading,while walking or driving for example. The vision is focused on the book or

the newspaper, but we can still walk or drive properly.

The function of the ambient vision in the orientation process is double, providing both

motion cues and position cues. Whether it is angular or linear, the perception of a moving

background results in a perception of self-motion called vection (angular vection or linear

vection). Again, almost everybody has experienced the strong sensation of movement when

looking at a moving train while being seated in another train parked next to it. Also, the wide

screen motion pictures are using this effect to give a sensation of motion that can really be

amazing. The position cues are used for the stabilization of the posture. They are also the cause

of height vertigo, which is nothing more than a sensory conflict between the visual system and

the vestibular system, due to erroneous information given by the ambient vision.

Another way of perceiving the distinction between ambient and focal vision is to say that

focal vision serves to orient an object relative to oneself, whereas ambient vision serves to

orient oneself relative to the perceived environment. As their functions are complementary,

both focal and ambient vision are necessary to give adequate information of orientation in

space.

Finally, to conclude this small section on the description of visual orientation, let us say a

word about the eye movements. Actually, and this is particularly true in the case of the focal

vision, the image of the perceived object needs to be stabilized in the retinal plane which is

done by combined movements of the eyes and the head. These actions can either have the form

of a slow pursuit (basically for a target going less than 60 deg/s) or some rapid and saccadic

movements triggered voluntarily or reflexively, involving both the head and the eyes.
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2.2 The Vestibular Function

The vestibular system is the second most important sensor of the spatial orientation

process. This is for three reasons. First, it gives the substrate for the reflexes that serve to

stabilize the vision when the head or the body are moving. Second, it provides some

orientation information which is processed by the central nervous system in order to activate

both skilled and reflexive motor activities. Third, in absence of vision, the vestibular system

provides an accurate perception of motion as long as the maneuvers are in the range of what is

naturally occuring.

We will not describe here the anatomy of the vestibular system; the interested reader is

referred for that to Gillingham and Wolfe (6). However, Figure 2.1 presents its basic anatomy.

Figure 2.1 The Vestibular System ( from Gillingham and Wolfe, 1987)
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This small organ measures no more than 1.5 cm (0.6 inches) across, and it fits in the

petrous portion of the temporal bone. The bony semicircular canals and vestibule contain the

membranous semicircular ducts and otolith organs. What we are more interested in here is, of

course, the function of that vestibular system and how the information is processed by its two

major components, which are the semicircular canals and the otolith organs.

Figure 22: (from Gillingham & Wolfe, 1987)

2.2.1 The Semicircular Canals

The semicircular canals are fluid-filled rings that respond to angular acceleration

providing a component of the three-dimensional rotation vector, normal to the plane of the ring,

acting, therefore, as approximate integrators. As a result of their arrangement, the three planes

of the three canals are almost orthogonal, and can detect an angular acceleration around any

axis in space.
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2.2.2 The Otolith Organs

The otolith organs act like linear accelerometers. Like the semicircular canals, they are

able to detect an acceleration in three dimensions and, therefore, are the principal nonvisual

determinants of the local vertical. However, due to the indetermination principle (which is one

of the results of General Relativity), no instrument is able to distinguish between the

gravitational acceleration and the total acceleration. Therefore, the otolith organs give only a

value of the specific force (basically the gravity minus the total acceleration) that is applied to

the body.

The functions of the vestibular system are basically the vestibular reflexes, the voluntary

movements and the perception of orientation that we are going to describe in the next

subsection of this chapter.

2.2.3 The Vestibular Reflexes

As we stated before, the retinal image is mainly stabilized by reflexes having vestibular

origin, or Vestibulo-Ocular Reflexes (VOR). Basically, as shown in Figure 2.3, an angular

acceleration is detected by the semicircular canals which trigger the activation of the muscles of

the eyes in the opposite direction. Other VOR's are originated by the otolith organs, the

movement of the eyes responding to a linear acceleration.

Those reflexes are very important in understanding the input-output relationship of the

vestibular system. Actually, as the movement of the eyes is quite easily measurable, whether

by implanting sensor devices by surgery on animals [16] or simply by using video images of

the eye during the experiment, the VOR reflects the response of the vestibular system to a

determined input. Most of the experiments done on the subject use that fact to determine the

mathematical models that describe the vestibular function, which we are going to use

throughout this study.
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Figure 2.3 Vestibulo Occular Reflex

Reflexes such as vestibulocollic reflexes (movement of the neck and the head in response

to vestibular stimulation), or vestibulospinal reflexes (rapid activation of various muscles in

response to a falling sensation, or in the maintenance of the upright posture for example), are

other expressions of the vestibular function, but our understanding is less developed because

of experimental difficulty in studying them.

2.2.4 Voluntary Movement and Orientation Information

The vestibular information not only serves to stabilize the body and the retinal image, but

also provides data for the proper execution of voluntary movements. The skilled movements

that we execute every day, when writing, riding a bicycle or playing an instrument for

example, are most of the time done in "open loop", in the sense that we don't necessarily need

some feedback information to execute them properly. The violinist doesn't have to look at his

or her fingers while playing, or we can write a signature without looking at it. But the correct

execution of such an automatic sequence in a specific environment necessitates a spatial

orientation notion, provided by the process of all the outputs of the different sensors of our
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body. In other words, when doing a skilled movement, whatever the position in space, we

decide what we want the output to be, and initiate the command to do it and let the sequence

run. Our body takes care of the details, using stored programs and the current preconscious

orientation perception.

2.2.5 Thresholds of Vestibular Perception

One must be aware that orientation illusions can appear from the fact that thresholds are

present in all those natural sensors. Even if they are difficult to measure, due to the fact that

when the motions are close to the thresholds values the subject is more willing to say "maybe"

than "yes" or "no", a great deal of work has been done on that subject, providing usable

results.

Reasonable values for the perception of angular velocity by the vestibular system are

1.58 deg/s, 2.04 deg/s and 2.07 deg/s for yaw, roll and pitch motions respectively [8].

For the otolith organs, a 1.5 deg. change in the direction of g is perceived under ideal

conditions. The minimum perceived linear acceleration was reported to be between 0.001g and

0.03g, but values of 0.01g for az and 0.006g for ax and ay seem to be appropriate [6].

tion

Figure 2.4 Input-output relationship of a threshold
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2.3 Other Senses of Spatial Orientation

Although visual and vestibular cues are the main information used by the central

processor in order to determine the spatial orientation, it turns out that other senses are not to be

ignored. Especially important are the nonvestibular proprioceptors (muscles, tendon and joint

receptors) and the cutaneous exteroceptors. However, it has been shown that, if a person is

lacking one of the main orientation sensors, vision or vestibular system, he is able to maintain

equilibrium and to move properly using the remaining sensor. But if both vestibular and visual

systems are lost, then the postural stability and the natural locomotion are not possible any

more.

2.3.1 Non Vestibular Proprioceptor

Muscles and tendons contain complex sensory end organs, which are the basis for some

basic reflexes of the natural position and locomotion. By that fact, the reaction of such organs

to the exterior environment, as for example the control of the position of the head during

maneuvers involving linear accelerations, gives to the central processor information about the

total acceleration of the body.

The joints which are present in our articulations are also recognized to be sensory

perceptors. The perception of the motion by those joints reaches consciousness, with

sometimes a low threshold, as low as 0.5 deg when moved at greater speed than 1.0 deg/s (6).

By being able to perceive touch, pressure, heat and cold, the cutaneous exteroceptors can

also be used to contribute to spatial orientation.

Finally, last but not least, are the auditory cues. By allowing us to determine at the

surface of the earth the direction of a sound source, auditory information can play a major role

in our orientation process. Also, even if the noise level is very high in an aircraft, a pilot can

use his auditory sensors to recognize an engine regime or the frequency of the air passing by

the cockpit and transform that into orientation information, such as incidence or airspeed.

-18-



Very recently [9], experiments have been conducted to measure the efficiency of

providing additional auditory cues to a pilot, in order to improve recovering from spatial

disorientation. It turned out that the results were good for at least small and medium angles.

After describing the different sensors of the spatial orientation, we are now going to

show their mechanism in term of transfer functions and nonlinear functions (such as

thresholds) relating the input, or the exterior stimulations, and the output, or which information

is received by the central processor. This is done in the next chapter.
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Chapter 3

Modeling of the Sensors

3.1 Coordinates Systems

The Earth is considered to be inertially stable, which is justified by the small amplitude of

the dynamics that we are considering in space-time. Therefore let us consider an (XYZ)

coordinate system related to the Earth, and an (x,y,z) related to the vehicle in which the pilot is

flying, Figure 3.1.

y

V
x

z

X

Figure 3.1 Coordinate systems

We can then define (xhd,Yhd,zhd) related to the head of the pilot, (Xc,Yc,zc)

characterizing the input axes of the semicircular canals, and (xo,Yo,zo) for the otoliths as

shown in Figure 3.2. Note that, for modeling purposes, we are considering a cyclopian set of

canals and otoliths situated at the center of the head.
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An input to our sensors model can therefore be characterized by a function of time

describing the movement of (V,x,y,z) in the inertial space. The orientation process then,

consists of knowing at each time the transformation matrix between (x,y,z) and (X,Y,Z), or

B(t).

Figure 3.2 Cyclopian Sensor Coordinates

3.2 Dynamics of the Sensors

In the following paragraphs we are going to give the transfer functions that represent the

input-output relationships of the different sensors previously described. The numerical values

have been found experimentally and usually differ from one author to another. The data used in

Borah et al [10] seem to be quite far from what is believed to be acceptable values for the time

constants of the different dynamics. Our main reference is then going to be Dan Merfeld's PhD
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Thesis [16] for the semicircular canals and the paper by Grant and Best [21] for the otoliths.

However, we have to be aware that while the modelization of the semicircular canals is quite

well accepted, the same is not true for the otolith organs.

3.2.1 The Semicircular Canals

angular velociy Canal Mechanical afferent
stimulus & Afferent Dynamics Threshold firing rate

Y

Figure 3.3: Semicircular Canal Model

Figure 3.3 shows the dynamics represented by a second order filter with two time

constants at 6 and 80 seconds, followed by a threshold function. The stimulus is, of course,

three-dimentional and each component of the acceleration is processed in the same way, with

only a change in the value of TH (the threshold value). The components of the vectors 7 and y

are given in the coordinate system related to the canals.

3.2.2 The Otolith Organs

As said previously, the modeling of the otolith organ dynamics is not as well

investigated. A mathematical model of a small mass which responds to linear acceleration

would lead to a second order dynamics with two time constants. A 10 second value for the

slow time constant seems to be appropriate. The short time constant, on the other hand, is

subject to disagreements among different authors. Recently, in a paper on that topic, Grant and

Best [21] came up with a value of .0002 seconds for the short time constant. However, for

implementation considerations, because of the nonlinearities that we are going to consider and,

-22-
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in order to make numerical simulations possible with a reasonable time-step, we will use here a

value of .01 for the fast dynamics.

specific force Otoliths Threshold Afferent
stimulus dynamics ftir, , t-.

sf
yllllA~b ALLLr

Y

Figure 3.4: Otolith Model

As we did for the canals model, the components of the specific force vector and the

corresponding afferent response are given in the coordinate system related to the otoliths.

3.3.3 The Vision

We saw that the vision was giving a very good estimate of the general orientation of the

body, by what we called either "ambient vision" or "focal vision". Also, due to vection

phenomena, whether linear or angular, a moving visual field induces a sensation of self-

movement roughly proportional to the velocity of the background field up to a saturation level

of about 60 deg/s and 5m/s respectively [15]. The dynamics of the visual sensor can, therefore,

be modeled by unity. However, in the case of the focal vision, the pilot is interpreting the

orientation vector from the reading of the instruments, and this can take a certain amount of

time when trying to recover from a spatial disorientation situation. We can, therefore, separate

the vision in two branches: The ambient vision with unity dynamics and a saturation level for

the measurements of the velocities, and the focal vision with an exp(-ts) (delay of r) dynamics.
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Figure 35: Vision Model

3.3.4 Tactile and Proprioceptive Models

Obviously, the body is able to perceive information about the direction and the intensity

of the specific force when it is subjected to acceleration by the feeling of pressure exerted by

the seat. Although it is not well documented in the literature, Borah et al [10] use a simple lead-

lag transfer function to represent the characteristics of the major mechano-receptors.

Specific force
normal to body seat
contact surl

sf .Signal to CNS

Figure 3.6: Tactile Model

The value used by Borah et al are 1/b=10 msec and a/b=1/10.

3.3.5 Proprioception Model

Although the main part of the body is buckled in the seat, the head-neck system is almost

free (at least on a lateral axis) and can be thought of as an inverted pendulum whose position is
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maintained by the action of several muscles of the neck. Therefore, the reaction of those

muscles to certain specific forces provides very strong information about the exterior

environment and spatial orientation. Gum [17] modeled that system as a classic inverted

pendulum compensated by first order compensators.

Figure 3.7: Proprioceptive model

However, the addition of tactile and proprioceptive cues as modeled in Borah et al. [10]

had turned out to give very limited results while it increased the complexity of the model by

adding four states to the state vector. Hence, it didn't seem necessary to include those in our

model.
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Chapter 4

Internal Model and Sub-optimal Estimator

4.1 Background

Since the early fifties, scientists started to become interested in setting up mathematical

models to represent the mechanism of the CNS. In Dan Merfeld's thesis [16], an entire

paragraph refers to the history of those models, which are often referred to as Von Holst's,

Held's, Reason's or Robinson's models.

As mentioned previously, the bottom line of that study is the use of optimal estimation

techniques, developed since the late sixties, by people like Young [18], Borah [10] or

Oman[12].

In 1970, L. Young [18] came up with the idea that spatial orientation might be expressed

as an optimal estimation problem, the CNS using the output of the natural sensor to update an

estimate of a state vector of the spatial orientation, as in Figure 4.1.

The model used by Borah, Young and Curry [10] in their investigation of spatial

orientation was exactly the same as that in Figure 4.1. This model can be divided into two

parts. First, a "time history generation", or the calculation of the output of the different sensors

for a specific motion. Second, the optimal "mixing" itself, with the calculation of the gain and

the estimate update.

The "true state" of the model is a vector containing the major "spatial orientation"

information such as the angular velocity, the orientation angles, the linear velocities and

accelerations, and all the internal states coming from the representation in state-space of the

transfer functions of the different sensors. The different dynamics of the internal sensors

provide then a measurement of that "true state", or "measured state".
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If we represent the evolution of the "true state" by a differential equation of the form:

i=f(x,u,t)

where f is a regular function, and if the measurement is represented by:

z=h(x)+O

where h, has the same regularity as f and where 0 is a measurement noise, then the mechanism

of the orientation process can be written as:

X=f(,u,t)+K(z-h(x,t))

where the hatted expressions represent the internal estimation of the state vector, and the

internal representation of the dynamic function and the measurement function (or the internal

model). In other words, the CNS has an internal representation of the dynamics involved, and

uses it to calculate the gain of the estimator.

Borah et al [10] consider the case of a passive subject, having no a-priori information

about the angular velocities and linear acceleration that are going to be applied. However, they

do consider that the subject is expecting those signals in a certain frequency bandwith, as

shown in Figure 4.2.

Using a linearization about an upright head position, the angular velocity is integrated to

give the orientation angles. The specific force is then calculated as the difference between the

rotated gravity and the linear acceleration. The angular acceleration and the specific force are

then the inputs of the transfer functions of the eye-vestibular system sensors, to create an

expected measurement. It is also assumed that the CNS has perfect knowledge of the different

dynamics and measurement functions.

This linearized internal model can therefore be written as:

i=Ax+4

z=Cx+O

x being a (25X1) state vector and z a (12X1) measurement vector, with 0 and 4 white

noises with predetermined intensity (covariance matrices R and Q respectively).
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The internal estimate is calculated by a classic Kalman Filter, assuming initial condition

on the estimate and on the estimation error.

-=A^+K(z-C-)

K=PHTR -1

P=AP+PAT+Q-PHTR-1HP

For simplicity, Borah et al are using a steady state version of the Kalman Filter, taking

the steady state value of the covariance of the estimation error from the solution of the Filter

Algebraic Ricatti Equation:

O=AP+PAT+Q-PHTR-lHP

According to Borah et al, the predictions of their model were matching experimental

results from several authors pretty well. They were also able to represent some of the

phenomena experienced in motion, such as vection or tilt perception during linear accelerations.

However, the linearization around the upright head position implies that the orientation

angles must remain very small in the internal model. This point must now be reconsidered in

light of recent studies. Actually, one of the issues in Dan Merfeld' s thesis was to prove, at least

in the case of the squirrel monkey, that the CNS was keeping track of the orientation angles

and of the "down" direction in particular. In other words, a model for spatial orientation, that is

not to be restricted to small amplitude movements, must include that fact.

Dan Merfeld developed the model of Figure 4.3 to confirm his hypotheses, on the basis

of centrifuge experiments.

The variables Scc and Soto represent the dynamics of the semicircular canals and otoliths

respectively. The block "Rotate g" contains the calculation of the components of the

gravitational vector in the head coordinates. Mathematically, knowing the angular velocity as a

function of time, co(t), allows us to calculate the transformation matrix B, between the earth and

the head coordinate systems.{ ) 0 -03(02
SC3 0 -CO1

03W2 ()1 0
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B=flB

However, since B is a (3X3) matrix, this last equation is a set of 9 simultaneous

differential equations.

A nicer way of calculating B was developed by mathematicians in the spirit of finding an

equivalent in three dimensions of what the complex numbers are in two dimensions. They

defined the "quaternions" as expressions of the form:

q=qo+qli+q2j+q3k

with i2=j2=k2= -1

i.j=-j.i=k

j.k=-k.j=i

k.i=-i.k=j

Our goal here is not to explain the algebra of the quaternion field, which is done in all

advanced algebra textbooks ([25] has a good chapter on it, albeit in French!). Let us just say

that a rotation of angle 0 about an axis u can be represented by a quaternion

q=cos(8/2)+sin(0/2)(uli+uzj+u3k)

Note that the dimension of a quaternion is four, which is the dimension of a rotation (1

for the angle and three for the axes). The equivalent of our 9 simultaneous differential

equations is then going to be reduced to four in quaternion space. It can be shown that B is the

solution of the following system:

(1 ol 0 W3 -02 q q q
2 2 -0)3 0 o1  q2

(03 W2 -01 0 q3

[qJ+q2l-qJ-q 2(qlq2-qoq3) 2(qlq3+qoq2)1

B= 2(qlq2+qoq3) q 2+q2-q2-q2 2(q3q2-qoql)

L 2(qlq3-qoq2) 2(q2q3+qoql) q +qj-ql-q22
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Another properpy of the quaternion vector, which turns out to be very useful in filtering

problems, is that its norm is 1. In other words:

q++q+qj+qý+= 1

Those equations were implemented in Merfeld's internal model in the block "rotate g".

But the gain used in [16] is not the solution of an optimization as in Borah et al. It is rather a

matrix of chosen numbers that turn out to give adequate matching with the experiments. As the

two approaches were very similar, we have tried in this thesis to link them via a new model that

would incorporate a quaternion integration and an optimization of the gain under a minimum

variance criterion. As the internal model is not going to be linear, the approach chosen is a

suboptimal estimation technique in the form of the Extended Kalman Filter.

4.2 New Internal Model for the Central Nervous System

The main hypothesis in Borah's work is that the subject is expecting a certain frequency

bandwith in angular velocity and linear acceleration.We will assume the same in this work.

Only we will consider here a first order shaping filter for the angular velocity instead of a

second order as in Borah's model. The reason is that they needed a second order to create a

differential equation for the angular acceleration that appeared as the input of the semicircular

canals dynamics. Since we have chosen the angular velocity as an input (by adding an "s" to

the numerator of the transfer function), there was no need for a second order filter which

increases by three the dimension of the state vector.

The role of the vision in the orientation process is expressed in terms of vection (circular

and linear), or direct measurement of the angular and linear velocity. However, the pilot who is

looking outside or at the instrument panel, is able to obtain a direct measurement of the

orientation angles themselves. Expressed in terms of our model, the orientation angles, or

Euler angles, are obtained via an algebra which is given in Appendix A.
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This kind of measurement equations were implemented in Borah's model, and turned out

to add little improvement (as the orientation angles were directly in the state vector, the

implementation was rather easy). We decided not to consider those terms in this work.

4.2.1 State Vector Propagation

The block diagram of Figure 4.4 can be written in a state-space differential equation of

the form:

x=f(x)+t

x is a state vector of dimension 25, expressed in the head referential and partitioned as

follows:

(xl,x2,x3,x4)

(x5,x6,x7)

(x8,x9,xl0)

(x 11,x12,x13)

(x14,x15,x16,x17,x18,x19)

(x20,x21,x22,x23,x24,x25)

quaternion vector

angular velocity

linear velocity

linear acceleration

semicircular canal afferent firing rates

otolith afferent firing rates

Rewritting the quaternion integration in terms of the state vector gives:

x1=4-(-x5x2-x6x3-x 7x 4)

x2=(xsx1 +x7x3-X6x 4 )2

i3=2•(6x 1-X7X2+X5X4)

x4=7-(X7X1+X6X2-X 5X3)2

If the subject expects a certain bandwith of frequency in angular velocity [3r, this signal

is represented in the internal model by the output of a first order shaping filter, or:
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X5=-TrlX5+ 1

X6=-jr2X6+42

7=- Pr3X7+43

The values of the three frequency bandwiths need not be the same for the three axes. 4 is

a white noise vector of zero mean, and covariance matrix Q1 which is supposed to be diagonal.

The linear velocity is the integration of the linear acceleration, which is also expected to

be the output of a first order shaping filter, driven by a white noise C with a diagonal

covariance matrix Q2.

x8=xll

xI9=x12

x10o=x13

S111=-11x11+ 1

x12=-P12x12+C2

1i 13=-13+13 3

We have seen in Chapter 3 that the dynamics of the semicircular canal afferences could be

described in term of a transfer function having the angular velocity as input. We gave

acceptable values for the different time constants that are involved and we are going to suppose

that those dynamics are the same for the three axes. Using the canonical correspondence

between transfer function and state space representations, we end up getting:

x14=X15

i15=-0.02075x14-0.1792x15+x5

x16=x17
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i17=-0.02075x16-0.1792x17+x6

X 18=X19

X19=-0.02075x18-0.1792x19+X7

Also, as seen in Chapter 3, the otoliths are considered as dynamic systems of second

order, having the specific force as input. That specific force is the vectorial difference between

the gravitation vector and the applied acceleration. Expressed in head coordinates, we get:

0
sf=B 0 - a

sB 9.81-

The acceleration of the gravity is expressed in m/s. As B and a can both be expressed in

terms of our state vector, we get:

sfl=19.62(x2x 4-xl1X3) - 11

sfl=19.62(x4X3-x1X2) - X12

sfl=9.81(x 2+x2-x 2-x2) - x13

The equations for the otolith afferent rates being:

X20=X2 1

X21=-100.1x20-10x 21+sfl

x22=X23

i2 3=-100.1x22-10x 23+sf2

X24=X25

l25=- 100.1 x24-10x25+sf 3
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4.2.2 Measurement Equations

The measurement equations are easily derived from the state space representation of the

canals and otoliths transfer function, and from the fact that vection is supposed to provide a

measure of the angular and linear velocity. We thus have:

yl=-0.002075x14-0.1792x 15+x5

y2=-0.002075x16-0.1792x 17+x6

y3=-0.002075xig-0.1792x19+x7

y4=X5

y5=x6

Y6=X7

y7=x8

ys=x9

y9=xlo

y10=X20

Yl1=x22

canals afferent rates

angular vection

linear vection

otoliths afferent rates

Y12=x24

Finally, the fact that the norm of the quaternion vector is unity, can be implemented as a

measurement equation in the filter.

Y13= X1+X2+X3+X 4

The measurement value corresponding to that equation being 1 all the time. This "trick"

turns out to be essential in the filtering process. Actually, if we don't use it, the norm of the

quaternion can differ dramatically from 1, and then this vector becomes meaningless in terms

of correspondence with the transformation matrix. Values of the quaternion vector and its norm

are given in Appendix B.
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Note finally that this last measurement equation is nonlinear.

4.3 Structure of the Central Nervous System

The problem is now stated in the form of the estimation of a random vector having a set

of measurements and under the constraint of estimated dynamics. However, the problem of

estimating a nonlinear process is recognized to be much more complicated than the linear case.

The main reason is that the gaussian property of the stochastic process is not necessarily

progated throughout in nonlinear systems. Actually, in the linear case, gaussian assumptions

on the initial conditions and the different noises allow us to calculate the conditional mean, -

which is then equal to the minimum variance and the maximum likelihood estimates- as a linear

operation on the measurement data, which is known as the Kalman Filter. In the nonlinear

case, Bayesian estimation, or the optimization of the conditional probability density function,

leads to estimates that are different from the conditional mean.

An approximate approach can, however, be taken in order to come up with an algorithm

to calculate an estimate, suboptimal in a minimun variance sense (meaning that it would be

optimal if all the simplifying assumptions were true). Considering, for instance, that the

estimate is close to the real value of the state vector, we can write that:

fW If= I

with the residual term being very small and, hence, neglected. This first order linearization

about the estimate allows the propagation of the covariance of the estimation error along the

trajectory and leads to an algorithm known as the Extended Kalman Filter. This algorithm has

been very popular in the world of engineering since the mid-sixties (among others it helped

man to reach the moon, having been implemented in the onboard computer of the Apollo

spacecraft [19]).
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A good derivation of this filter, and of the general estimation problem, can be found in

Gelb's book [20] on optimal estimation. Given initial conditions on the estimation error, mean

and covariance, and given the statistics of the noise involved, the Extended Kalman Filter for a

continuous process with discrete measurements can be described as follows:

Between two measurements, the propagation of the estimate occurs according to the

equation:

P=F ().P+P.F(x")T+Q

The estimate is propagated with its covariance matrix until the measurement time, ending

up with the values:

x- and P-

At the measurement time, update of the estimate occurs according to:

^+=x-+K(zk-h(^-))

P+=(I-K.H(x-)).P-

K=P-.H(^-).(H(-).P-.H(^--)R +R )-1

where P is the covariance of the estimation error, Q the covariance of the driving noise, R

the covariance of the measurement noise, and:

F(R)Jaf i
(Fx X

SIn7X=!X~
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There is of course a lot to say about this algorithm, but we will restrict ourselves to a few

comments. First, there are no rules for the convergence of the filter. As the computation of the

gain involves the estimate itself, which is a random vector, the gain is also stochastic. In the

linear case, the gain could be calculated "off-line" from a Ricatti differential equation. Here the

gain is the solution of a stochastic differential equation for which very few convergence results

are available. The performance of the filter has then to be tested by Monte Carlo simulations.

Second, the algorithm turns out to be very sensitive to initial conditions due to the first order

approximation. If the initial estimate is too far from the real solution, the filter is going to

diverge in most of the cases. Third, the computation of the gain involve the inversion of a

matrix which can lead to numerical problems, if the matrix (HPH'+R) is too small or close to

singular.

If we now suppose that the Central Nervous System is "trying" to optimize a kind of

minimum variance criterion, given measurements and estimated dynamics, we can say that the

internal representation of the state vector will be close to the solution of the Extended Kalman

Filter applied to our model. In other words, our basic asumption is to say that the Central

Nervous System is an Extended Kalman Filter.

As a conclusion to this chapter in which we have presented a model for the Central

Nervous System we can make a few comments. The basic problem of finding an orientation or

a position in space using intruments that are related to the moving body is closely related to the

inertial navigation of vehicles using "strap-down" systems'. In other words, the vestibular

1 Inertial navigation uses gyroscopes and accelerometers to calculate the position and velocity in space of

a moving vehicle. A classical way of navigating with inertial instruments, is to use the gyroscopes to stabilize,

in an inertial space, a platform on which the accelerometers are set up. The gravity vector is added to the

measurement of the accelerometers, the ensemble being integrated two times to find the position. A "stap-down"

system is an inertial navigator where the instruments are linked to the vehicle and, therefore, give measurements

in the moving coordinates. A quaternion integration is then necessary to keep track of the position of the gravity

vector in the navigation loop.
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system can be understood as an inertial platform, providing measurements of the angular

velocity and the specific force applied to the CNS. It is then not surprising to include a

quaternion integration in the system, knowing that it is part of the mechanization of the "strap-

down" inertial navigation system as well. Also, repesenting an unknown acceleration, in a filter

which involves measurements of velocities, by the output of a shaping filter driven by a white

noise process is frequently used in estimation problems. An example that we have in mind is

the estimation of the trajectory of a ballistic missile, using angular measurements of the position

and Doppler measurements of the velocity. However, let us keep in mind that human

mechanisms are certainly much more complex than all models which try to represent them.
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Chapter 5

Implementation Considerations
and Simulation Results

5.1 Time History Generation

In order to study the mechanism of the Central Nervous System, modeled as an Extended

Kalman Filter, we need to generate the set of measurements corresponding to the outputs of the

human sensors in a particular situation. Such a situation can be characterized by the definition

of two functions of time: the angular velocity and the linear acceleration.

Actually, the angular velocity provides the input to the semicircular canal dynamics

ending up with the canals afferences. It also activates the quaternion integration which keeps

track of the position of the head referential. Also, combined algebraically with the gravitation

vector, the linear acceleration provides the specific force which becomes the input to the otolith

dynamics.

In a more general closed-loop model, like Oman's model as in Figure 1.1, the angular

velocities and linear acceleration would be the output of the dynamic equations of the vehicle,

given the pilot's control. Here, we consider an open-loop model, in which the subject has no

control of the movement of the vehicle. The angular velocities and linear accelerations are then

precalculated and used as input to a "Time History Model".

The model of Figure 5.1 is close to the internal model of Figure 4.4. Actually, the

"Internal Model" stands for the internal representation of that "Time History Model". However,

a few differences need to be pointed out. First, in trying to represent reality as closely as

possible, the "Time History Model" includes the nonlinearities that we've described earlier as

well as thresholds for the vestibular cues, and thresholds and saturations for the visual cues.

Second, the nonlinearities operate on the canals and otoliths sensitive axes.
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In other words, we need to transform the entering signals, which are given in "head

coordinates", into the canal and otolith coordinates before applying the transfer functions and

the nonlinearities.

5.2 Computer Implementation

The model was implemented on a Macintosh II, using the software Mac II-MatLab, @The

MathWork, Inc. The advantage of such a language is of course the ease of use for matrix

manipulations. The main problem, however, is computation time. A 30 second simulation on

MatLab takes 4 hours! But for a first iteration in the model design, where the model outputs are

tested on simple and understandable simulations, this software support turned out to be

adequate.

The basic structure of the computer simulation, for our model of spatial orientation is as

follows:

- Initialization of the parameters of the "Time History Generation" (thresholds, saturation

and so on..)

- Generation of the angular velocities and linear accelerations as functions of time.

- Integration of the differential equation providing the set of measurements.

- Initialization of the state estimate and covariance error, along with the initialization of the

internal model parameters (bandwith of expected signal, covariance of the measurement noise).

- Integration of the Extended Kalman Filter.

5.2.1 Integration of the "Time History Generation".

The mathematical model corresponding to the block diagram of Figure 5.1 is easily

derived from the Internal Model developed in Chapter 4, with the addition of matrix

transformation and nonlinear operations (actually, as we considered that the thresholds and

saturations were calculated in the canal and otolith coordinates, the state vector needs to be
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calculated in these reference frames before being transformed into "head coordinates"). We

thus get a function of the form:

x=f(x)+u(t)

where x is a state vector of the same size as the internal state vector and u is an input function

containing the angular velocities and the linear accelerations. The numerical integration of such

a nonlinear differential equation is done by a Runge-Kutta algorithm of the third order (the

equations are given in Appendix C).

It can be proven that the numerical integration will converge if the integration step is

chosen to be of the order of the shortest time constant involved in the system. This is one of the

limitations for using the otolith dynamics suggested by Grant and Best [21]. As the model is

not simple, using a time step of 0.0002s would make simulation last for ever, at least on

MatLab. This is the main reason for which we have chosen a 0.01 second time constant for the

otolith dynamics.

The afferent firing rates are then calculated at each time from the value xk, and are stored

in the columns of a large vector. The codes corresponding to those operations are given in

Appendix C under the names:

angvel Angular Velocity as a function of time.

linacc Linear acceleration as a function of time.

thmodel Time History Model.

R K3 Integration using a Runge-Kutta third order.

AFR Calculation of the afferent firing rates.

5.2.2 Extended Kalman Filter
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We have chosen to implement a continuous-time filter with discrete measurements as

developed in Chapter 4. The frequency of the measurement update has been set to 25 Hz,

which is approximately the frequency of the visual information. The integration algorithm for

the propagation equation is also a Runge-Kutta of the third order, with a 0.01s time step.

Assuming that the experiment is started at rest, the subject has very good initial

knowledge of its spatial orientation. The quaternion vector then starts with the value (1,0,0,0),

meaning that the head referential is initially aligned with the earth referential. Being only

submitted to the gravitation before the start of the simulation, all of the states but one are

assumed to be zero. Actually, only the state corresponding to the vertical axis in the otolith

model is in steady state value. As the otolith dynamics is modeled by,

R+100.1•+10x=sf

the steady state value corresponding to a constant specific force of 9.81 m/s2 is xss=0.981.

The initialization of the covariance of the estimation error and the different noises reflects

the skill of the subject in an experimental case. Actually, a well trained pilot will be more

confident in his internal measures of spatial orientation than a novice. We can, therefore, take

into account a certain expertise of the pilot by diminishing the values of the initial covariances.

We integrated the covariance equation using the same algorithm as before. We preferred,

however, to use an equivalent form of the covariance update, called Joseph's Form, which has

the advantage of keeping the positive definite form of the covariance matrix.

K=P-.HT.(H.P-.HT+R)1

P+=(I-K.H).P-.(I-K.H)T+K.R.K T

Actually, numerical errors due to the matrix inversion in the calculation of K can lead to

the appearance of negative eigenvalues in P, which is, of course, not reasonable for a

covariance matrix.
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The measurement noise is added at each step to the measure coming from the "Time

History Model" data, using signal-noise ratio, as in Borah et al [10]; Those ratios are

parameters of the filter.

The corresponding codes are given in Appendix C as:

model Equation of the model propagation

grad Calculation of the gradient matrix

filtering Global simulation involving everything

5.3 Simulation Results, Comparison with Previous Studies

As a way of testing our model, we first simulate the cases that are used in Borah et al.

Their basic simulations were a rotation stimulus about the yaw axis, and a forward acceleration

along the x-axis.

5.3.1 Yaw Motion

n 12 angular velocity input

0.25 ......

0 .1 5 .. . ..................... ........... ........... ........... ...........

• 0 .1 . ....................................................................

0 0 .0 5 .......... ........... ........... ........................ ...........

i _
0 5 10 15 20 25 30

time

Figure 5.1

The input stimulus is the angular velocity about the yaw axis (z-axis) of Figure 5.1. The

pitch and roll angular velocity and the linear accelerations are set to zero all the time. This
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situation is comparable to a rotating chair experiment. We have chosen a simulation time of 30

seconds.

A plot of the semicircular canals afference is given in Figure 5.2
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0.1

0.05

0

0 5 10 15 20 25 30

time

Figure 5.2

5.3.1.1 Rotation in the Light

The measurement set used for the filter includes the semicircular canals afference and the

circular vection. The estimated value for the angular velocity is plotted in Figure 5.3. The

estimation is almost perfect. This result was expected, since the filter has excellent knowledge

of the angular velocity from the visual information. The quaternion vector turns out to be well

integrated in the filter, providing the right angular orientation. This example was mainly used to

set up the numerical parameters of the discrete-time integration.
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Estimation of the angular velocity0.3

0.25

0.2

0.15.

0.1.

0.05

0
20 25 30

5.3.1.2 Rotation in the Dark

The rotation in the dark is simulated by taking out the visual measurement on the

measurement vector. The CNS relies then only on the vestibular system.
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time

Figure 5.4

Figure 5.4 shows the well documented adaption to continuous rotation.
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5.3.1.3 Circular Vection

By setting the vestibular afferent firing rate to zero, we can simulate the effect of circular

vection.

0.3
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.• 0.2

8 0.15

0.1

0.05

0

0 5 10 15 20 25 30

time

Figure 5.5

We can see the gradual acceptance of the angular velocity that has been proved

experimentally. Borah et al [10] comment on that result that experimental records of visually

induced movement were showing delays, whereas here, the onset on angular velocity sensation

is shown to begin immediately after the onset of visual field motion. The fact that our model

doesn't include physiological reaction to sensory conflict is certainly one of the reasons, along

with the fact that the time-varying filter is much faster than the steady state filter. Borah et al

"fixed" this manually by including a kind of switchable gain on the visual channel. We

preferred not to do this manipulation, and refer the reader to our comments about possible

improvements in the conclusion of this thesis.

The estimate of the quaternion vector turned out to give results that were coherent with

the estimated angular velocity.

5.3.2 Forward Acceleration
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Borah et al considered the case of a linear acceleration of 0.2g, reached after one second,

and lasting throughout the experiment. In order to compare our model with theirs, we have

used the same values.

n25 CLinear acceleration

0.2

0.15

0.1

0.05

5 10 15 20 25 30

time

Figure 5.6

5.3.2.1 Acceleration in the Dark

When no visual cues are present, the estimated acceleration is progressively replaced by a

pitch-up sensation as shown in Figures 5.7 and 5.8.

Estimation of the linear acceleration
VI.)

0.1

0.05

. -0.05

_n 1
0 5 10 15

time
20 25 30

Figure 5.7
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Figure 5.8

The estimated values are plotted as they come out from the filter, without any numerical

filtering techniques. However, we can see that they are very noisy. Actually, this kind of

estimation turns out to be very sensitive to numerical errors, especially in the quaternion

integration part. As the noise added looked like white noise, and as the interesting signal has a

very low frequency spectrum, a way of getting rid of it is to pass the result trough a low-pass

filter.

Due to the fact that the pitch angle sensation involved is very small, sufficiently small to

validate a first order approximation, the model prediction is very similar to Borah's.

The fact that, in steady state, the CNS tends to interpret a linear acceleration by a pitch

sensation, and that perceived specific force seems to be aligned with gravity has been

confirmed in centrifuge experiments by Wolfe and Kramer [22].

5.3.2.2 Acceleration in the Light

We have seen previously that linear vection would provide information on the linear

velocity up to a saturation value.
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The filter interprets that hypothesis by considering that the linear acceleration is equal to

zero when the speed has reached the saturation value, ending up with a pitch sensation.

Estimation of the linear acceleration1.5

1

0.5

0

-0.5
800

Figure 5.9

Pitch-up sensation, acceleration in the light

5 10 15

time
20 25 30

Figure 5.10

The plot of the estimation of the linear acceleration was passed through a low pass filter.

We give in Figure 5.11 the estimated linear velocity. It is clear on the plot that the hypothesis of

a brute saturation without changing parameters in the filter is a bit unrealistic.
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time

Figure 5.11

If, on the other hand, we consider that there are no saturation limits on the measurement

of the linear velocity, the estimation of the linear acceleration turns out to be accurate, leading to

no pitch sensation.

1.5

1

0.5

Estimation of the linear acceleration

5 10 15 20 25 30
time

Figure 5.12

5.3.2.3 Linear Vection

Borah et al are considering the experimental case of Chu [23], where linear vection was

experienced in front of a 15 cm/s moving field.
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Figure 5.13

The model prediction agrees with the experiment, showing a gradual acceptance of visual

field velocity. Once again, the model output is not showing the delays that are evident in

experiments. We will discuss that point in our conclusion.

5.3.3 Tilting Motion

In the following figures, we present the model prediction to a rotation about the

horizontal axis, or pitch axis, of an angle of 0.2 radians reached in 3 seconds. Figure 5.14

corresponds to a stimulus in the light, Figure 5.15 to the same in the dark, showing the

estimated pitch angle, angular velocity and linear acceleration.

We note that, in both cases, the pitch angle and the angular velocity are well estimated.

The illusion of linear acceleration is inexistent when visual cues are present, and very small in

the "in the dark" case. This issue was unclear in Borah et al, who found a significant linear

acceleration and quite bad estimation of the pitch angle. This is explained by the fact that a time

varying Kalman Filter is much faster than the steady state filter, and also by the fact that the

quaternion integration provides a more accurate estimate of the orientation angles.
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Figure 5.14, Pitch in the light
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Figure 5.15, Pitch in the dark
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5.4 Sensitivity to Filter Parameters

We have seen that the estimation algorithm, was parametrized by the "expected"

frequency bandwiths of the internal model, and the measurement and driving noises. It is,

therefore, interesting to study the sensitivity of the filter to those parameters.

5.4.1 Frequency Bandwith in Angular Velocity

Figure 5.16 shows the results of the estimation of the angular velocity, in the

experimental case of paragraph 5.1, and without visual cues ("in the dark"), for different

values of the parameter br.
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Figure 5.16

We can see that large expected frequency bandwiths lead to bad estimation of the angular

velocity. Actually, the input is almost a "step" in angular velocity (having 1/s for Laplace

transform), and if the internal model has the right description of the input signal, it can be
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shown that the system is observable with the vestibular measurement. In other words, a small

br gets the system closer to observability, and the estimation more accurate.

This parameter can be understood as a "skill" value, in the sense that someone who is

used to rotating chair, might use, in his internal model, a smaller value of br than someone who

is at his first try.

5.4.2 Frequency Bandwith in Linear Acceleration

Figure 5.17 presents the estimation of the linear acceleration in the dark, with respect to

different values of the "expected frequency bandwith". Once again, as the input is almost a step

in acceleration, the smaller the parameter the better the estimation. However, we note that in

every case, the estimate goes to zero due to the associated pitch sensation.
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Estimation of the linear acceleration
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Figure 5.17

5.4.3 Driving Noise

The driving noise is the white noise that drives the internal representation of the angular

velocity and linear acceleration. We have seen that those models were first order transfer
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functions driven by white noise. In the filtering process, the driving noise is represented in

terms of its covariance which affects the computation of the suboptimal gain. Figures 5.18 and

5.19 present the results of simulations in the dark for varying driving noise covariances on the

linear acceleration case.
Estimation of the linear acceleration
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Figure 5.18
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Figure 5.19

We can see that the covariance of the driving noise can dramatically affect the estimate of

the linear acceleration and the pitch angle illusion.

Figure 5.20 shows the effect of the driving noise on the angular velocity channel.

3, Estimation of the angular velocity
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Figure 5.20

As in the preceding section, the estimation of the angular velocity can be tuned up by

adjusting the covariance of the driving noise. However, we can see that numerical problems

appear in the filter with large driving noises.

Intuitively, we try to fit a step function with a first order exponential. A small calculus on

that reduced problem, can show that the dynamics of the estimator is basically inversly

proportional to the driving noise. In other words, higher driving noises lead to slower

dynamics and then better estimators.

5.4.4 Measurement Noise
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As in Borah et al [10] we quantified the measurement noises by a signal-noise ratio. What

we called R is the covariance of the measurement noise as referred to the cited reference. Figure

5.21 shows the predictions of our model for different measurement noises, in a "rotation in the

dark" case.
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Figure 5.21

The filtering process turns out to be quite robust to measurement noise, the shape of the

estimation of the angular velocity remaining the same throughout the simulations.

5.5 Centrifuge Experiment

Most of the experiments on which a spatial orientation model can be tested concern

centrifuges. In order to generate the angular velocities and linear acceleration experienced in a

centrifuge, we are going to consider a "simplified" model in which the specific force is always

aligned with the vertical axis of the subject. We also suppose that the center of mass of the

cabin is located at the junction with the rotating axis.
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Y
fic force

z

Figure 5.22 Model of a Centrifuge

With this simplified dynamics, we end up getting for the linear acceleration of the subject:

0

·--·--- ·- . J

Also, we get that:

.2

tan()=- r.1 or
g

angvel={ 0

8 x,YZ

"2

Y=tan-l(-r'o )
g

e.sin(Y)

e.cos(Y) .x,y,z

. ." 2 "" 2
linacc=A=-r.OX-r.e .Y=-r.E.x-r.E (cos T.y-sin T.z)
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"2
-r.e .cos

.2
r. E .sin T -x,y,z

With our conventions, a rotation where the subject faces the movement implies:

50 and TYO

5.5.1 Stimulus to the Vestibular System

The following figures are showing the actual stimulus to the vestibular system, expressed

in head coordinates, during a centrifuge experiment. The data are taken from the M.S. Thesis

of Braden McGrath of the Man Vehicle Lab at MIT [24].
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Figure 5.23 Angular Velocity Stimulus
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Figure 5.24 Orientation Angles
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Figure 524 Linear Acceleration Stimulus

5.5.2 Simulation Results

The angular velocities, Euler angles and linear acceleration are estimated as follows:
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Estimation of the roll angular velocity
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Figure 5.24 Estimation of the Angular Velocities
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Figure 5.26 Estimation of the Euler Angles
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Figure 5.27 Estimation of the Linear Acceleration

Those results deserve a few comments. First, the calculation of the Euler angles from the

quaternion vector, as explained in Appendix A, is valid for angles that are between -n/2 and

n/2. In our case, the yaw angle is increasing at a rate of 2 rad/s when the centrifuge is

stabilized, meaning that it goes above I/2 very quickly. In other words, the angle plotted in

Figure 5.26 is the angle between -7/2 and rl/2 that has the same sine as the yaw angle. A way

to figure out the real yaw angle is to look at the yaw velocity. As this one is negative during

most of the simulation time, the yaw angle is decreasing.

We can see that the roll angle is quite well estimated, meaning that the CNS kept track of

the position of the gravity.

After the deceleration, we see that the estimated pitch angle decreases rapidly, giving an

impression of tumbling around. Also, a strong forward linear acceleration is experienced after

the centrifuge has stopped. All those phenomena are actually experienced by subjects in

centrifuge experiments [24].
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We see that the internal representation of the state variables that involve the quaternion

vector (quaternion itself and linear movement) present oscillations. We didn't have the material

to figure out whether it is coming from numerical errors (essentially from the quaternion), or if

it corresponds to realistic sensations. This point needs to be investigated further.

Finally, due to memory limitations, we couldn't test our model on longer simulations.

Comparaison with real cases would need to run simulations for several minutes.
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Chapter 6

Conclusions and Possible Improvements

6.1 Results Summary

Our model for the spatial orientation of a human using only the vestibular cues, has been

tested on the generic cases used in previous major studies in the field (principally Borah et al

[10]). Using a time-varying nonlinear filter model turned out to give as good or better results in

any simulation cases. In particular, we solved some of the problems that Borah et al have

pointed out:

(i) No large angle problems with the use of a quaternion integration in the internal model.

(ii) The linear velocity in the dark is correctly estimated as the integral of the estimated

linear acceleration. Borah et al predicted an aberrant linear velocity with their model.

(iii) The pitch angle is correctly estimated in pitch simulation cases. The illusion of linear

acceleration remains very small in the "in the dark" case, whereas Borah et al estimated an

unrealistically large linear acceleration.

However, the simulations done on vection phenomena do not show the delays that are

found in real experiments. Further modeling is then necessary, as discussed in the following

paragraph.

6.2 Possible Improvements

The model that we developed used only vestibular cues to calculate the estimate of the

spatial orientation state vector, whereas it is known, as described in Chapter 2, that other cues

such as tactile or proprioceptive, play an important role in the orientation process. However,

non-vestibular afferences are far less investigated in the literature than vestibular. It was then

not worthwhile to add them, knowing that the added information would either degrade or
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improve the estimate in an unrealistic way. Borah et al add to their model -as presented in

Chapter 3- nonvestibular cues, but the results of their simulations turned out to be

inconclusive. More experiments and modeling have to be done before including nonvestibular

cues in a spatial orientation model.

A great deal of work, also, could be done by adding to the internal model, physiological

parameters coming from "motion sickness" behavior involved in spatial orientation (or

disorientation). The "measurement error" vector that is used in the Kalman Filter is called by

Oman [12,13] the "sensory conflict" vector, and motion sickness phenomena can be affected

by it, and influence it through internal feedback.

Actually, Oman showed that the physiological troubles that are associted with motion

sickness can be modeled by dynamic systems driven by the "sensory conflict" vector. As the

CNS is part of a body that is going to react to motion sickness, we can think that the orientation

process might be affected. We know that pilots who are submitted to heavy workload have

problems to accomplish simple tasks. Motion sickness adds workload on the CNS, and the

orientation task can be affected adversly.

The observer gain could then be "scheduled" with respect to this "sensory conflict"

vector, using adaptive filtering techniques. We believe, for example, that vection delays could

be predicted with such techniques. More work along these lines needs to be carried out.
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Appendix A

A.1 Calculation of the Euler angles

From the quaternions that were considered as part of the state vector, we have calculated

the transformation matrix between the moving and the inertial coordinates:

.-Ir -0c1

0

(02

-(02
(03
0

-0O1

-02
qo 1

q=q2
q3

Sqý+qj-q4-qe
B= 2(qlq2+qoq3)

L 2(qlq3-qq02)

2(qlq2-qoq3)
22 +2 2q

qoq+q-q-qi
2(q2q3+qoql)

2(qlq3+qoq2)

2(q3q2-qoq 1)

920 9 "R '9 .

If we now consider that this

the following transformation:

transformation matrix is the linear operator corresponding to

'1,Y2

Y

X2,X3

Figure A.1
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where we have the succession of three rotations of angles 0,4,P and about Z, Y1 and

X2 respectively, we can derive that:

cos Q.cos O

cos 4.sin O

-sin (D

-sin Ocos Q+cos Osin 4sin ' sin Osin Y+cos esin ecos '

cos Y.cos e+sin Osin Asin TP -sin '.cos e+sin Osin cos '

sin Y.cos (D cos Y.cos Q

Knowing the matrix B=b(i,j), we can easily calculate the angles ,O,P,,

values are between -nd/2 and +7C/2.

O=sin( b(2,1)
cos(O)

Cb=sin-'(b(3, 1))

W=sin-l b(3,2)
cos(Q)

As the terms bij can directly be expressed in terms of the state vector, those equations

can be implemented as measurement equations in the Extended Filter. This measurement

corresponds to the interpretation of the instrument panel by the pilot, or to a look outside of the

cockpit. D and 'P are given by the artificial horizon, 0 by the ball.
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Appendix B

B.1 Example of Quaternion Estimate

The following two figures show the differences on the norm of the quaternion vector,

when using the Extended Kalman Filter with and without the nonlinear measurement on the

norm.
Rimiblation withount mp~mlrPemnt an the norm

time

Figure B.1
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Figure B.2
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Appendix C

C.1 Main MatLab Code

We are giving in this Appendix the Matlab code that we used for the simulations.

angvel(t) and linacc(t) are two small functions that calculate the angular velocities and

the linear acceleration as a function of time.

function y-angvel (t)
if t<=l
y (3) =.26*t;
else
y(3)=.26;
end
y (1:2)=zeros (1,2);

function
if t<=3

y=linacc (t)

y (1) =30;
else
y (1) =0;
end
y (2:3)=zeros (1, 2);

thmodel(t,x) is the function that calculates the derivative of the "real" state vector in the

Time History generation process.

function y=thmodel (t, X)

% Where dX/dt=thmodel (t,X)

% Generation of the input

-77-



u=angvel (t);
v=linacc (t);

% Head to otoliths change

c=cos (25*pi/180);
s=sin(25*pi/180);
B2=[c 0 -s;0 1 0;s 0 c];

% Head to canals coordinates

q=1/srt (2);
Bl=B2*[q -q 0;q q 0;0 0 1];

% Quaternion integration

N=sqrt (X (1) ^2+X (2) A2+X (3) A2+X (4) A2);

X (1)=X (1) /N;
X(2)=X (2)/N;
X (3)=X(3)/N;
X(4)=X(4)/N;

(-u (1) *X (2)-u (2) *X (3)-u (3) *X (4)
(u(1) *X(1)+u (3) *X (3)-u(2) *X(4))
(u (2) *X(1) -u (3) *X(2)+u (1) *X(4))
(u (3) *X (1) +u (2) *X (2)-u (1) *X (3))

B (1, 1)=X (1) ̂ 2+X (2) ^2-X (3) ^2-X (4) ̂ 2;
(2, 1) =2* (X(2) *X(3)+X (1) *X(4));
(3, 1) =2* (X(2) *X(4)-X (1) *X(3) );
(1,2)-=2 (X(2) *X(3)-X(1) *X(4));
(2,2)=X (1) ^2+X (3) A2-X(2) ^2-X(4) 2;
(3,2)=2* (X(3) *X(4)+X(1) *X (2));
(1, 3)=2* (X(2) *X(4)+X (1) *X(3));
(2,
(3,

3)=2* (X(4) *X(3) -X(1) *X(2));
3)=X(1) ^2+X(4) 2-X(2) A^2-X(3) ^2;

% Angular velocity and angular acceleration

(5)=0;
(6)=0;
(7)=0;
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% Linear velocity and linear acceleration

y(8)=v(1);
y(9)=v(2);
y(10)=-v(3);

(11)=0;
(12)=0;
(13)=0;

% Semicircular canal response

u=Bl*u';

y(14)=X(15);
y (15)=-.002075*X
y(16)=X(17);
y (17) =-.002075*X
y(18)=X(19);
y (19)=-.002075*X

(14) -. 1792*X (15)+u(1) ;

(16) -. 1792*X (17) +u (2) ;

(18)-.1792*X (19) +u(3) ;

% Otoliths response

sf=B'*[0;0;9.81]-v';

% transformation to otolith coordonates

sfl=B2*sf;

(20) =X (21);
(21) =-10*X (20)
(22)=X(23);
(23) =-10*X (22)
(24)=X(25);
(25) =-10*X (24)

-100.1*X(21)+sfl (1);

-100.1*X(23)+sfl(2);

-100.1*X(25)+sfl1(3);

RK3(function,h,tO,tf,x) integrates the function from tO to tf, with initial condition x,

and using a Runge-Kutta of the third order.
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[t, y] =PK3 (FunFcn, h, to, tf, x)

t-to;

while to<tf
sl=feval (FunFcn, to, x);
s2=feval (FunFcn, to, x+h*sl) ;
s3=feval (FunFcn, to+h/2, x+h* (sl+s2)/4);

x=x+h* (sl+s2+4*s3) /6;
to=to+h;
y= [y, x] ;
t=[t, to];

end

AFR(x,u,v,TH,THs,sat,B1,B2) calculate the afferent firing rates of the internal

sensors, from the state vector x, the angular velocities u, the linear acceleration v, the

thresholds and saturations (TH, THs, sat) and the transformation matrices from the head

coordinates to the canal and otolith coordinates, respectively (B 1, B2).

function y=AFR(X,u, v, TH, THs, sat, B1,B2);

% Semicircular canals afference

ul=Bl*u';

(1)=-0.0021*X(14) -. 1792*X (15)+ul (1);
(2) =-0.0021*X (16)-. 1792*X (17) +ul (2);
(3)=-0.0021*X (18) -. 1792*X (19) +ul (3);

(1) -thres (y(1)
(2) --thres (y (2)
(3) -thres (y(3)

,TH (1)
,TH (2)
,TH (3)

y(1:3)=(Bl'*y(1:3) ')';

-80-

function



% Circular vection

y (4) =satur
y (5) =satur
y (6) =satur

(u(1)
(u(2)
(u(3)

,THs
,THs
,THs

(1) ,sat (1)
(2) ,sat(2)
(3) ,sat (3)

% Focal vision

(13)=asin(2*
(14)=asin (2*
(X (2) *X(4)-X
(15) =asin (2*
(X(2)*X(4)-X

(X (2) *X (4)-X (1) *X (3)) ) ;
(X (2) *X (3) +X (1) *X (4))/sqrt (1-
(1)*X(3))^2));
(X(3) *X(4)+X(1) *X(2))/sq-rt (1-
(1)*X(3))^2));

% Linear vection

y (7) =satur (X(8) ,THs (4) ,sat (4));
y(8)=satur(X(9),THs (5),sat (5));
y(9)=satur(X(10), THs (6), sat (6));

% Otolith afference

y(10)=thres (X(20)
y(11)= thres (X(22)
y(12)=thres (X (24)

,TH(4)
,TH(5)
,TH (6)

y(10:12)=(B2'*y(10:12) ')';

thgeneration initializes the simulation and integrates thmodel to generate the set of';

thgeneration initializes the simulation and integrates thmodel to generate the set of

corresponding measurements.

clear
rand (' normal')

% Calculation of the measurement vector,
History Generation

or Time
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% init of the state vector

x0=[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -. 41459 0 0
0 .88909 0]';

% generation of the set of measurements

% Values of the thresholds and saturations

% Semicircular canals

TH(1)=2; % deg/s
TH (2) =2;
TH (3) =2;

% Otoliths

TH(4)=0.063; % m/s2
TH (5)=0.057;
TH(6)=0.154;

% Saturations

sat (1)=60*pi/180; % rad/s
sat (2)=60*pi/180;
sat (3) =60*pi/180;

sat(4)=100; % m/s
sat(5)=100;
sat(6)=100;

% Thresholds for the vection

THs=zeros (1,6);

% COORDINATE MATRICES

% Head to otoliths change

c=cos (25*pi/180);
s=sin (25*pi/180);
B2=[c 0 -s;0 1 0;s 0 c];
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% Head to canals coordinates

cyl/sqrt (2);
Bl=B2* [q -q O;q q 0;0 0 1];

% Beginning and end of the simulation

tO=O; % sec
tf=30;
h=.01;

% Simulation using Runge-Kutta 2nd and 3rd order

[t, x] =RK3 (' thmodel ', h, tO, tf, xO);

% Calculation of the afferent firing rates

k=length (t);
for i=l:k
u=angvel (t);
vlinacc (t);
z(:, i) =AFR(x(:, i), u,v, TH, THs, sat, B, B2);

end

% z contains the measurement values

model(t,x,br,bl) calculates the derivative of the estimated state based on the internal

model. The values of the expected frequency bandwith are entered as parameters (br,bl).

function y=model (X, br, bl)

% Where dX/dt=nodel (X)

% Generation of the input

% Quaternion integration
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(1)=.5*
(2)=.5*
(3)=.5*
(4)=.5*

(-X (5) *X (2)-X (6) *X (3)-X (7) *X (4)
(X(5) *X(I) +X(7) *X(3) -X(6) *X(4))
(X(6) *X(1)-X(7) *X(2)+X(5) *X(4))
(X(7) *X(1) +X(6) *X(2)-X(5) *X (3))

B (1, 1)=X(1) A^2+X (2) ^2-X (3) ^2-X(4) 2;
(2,
(3,
(1,
(2,
(3,
(1,
(2,

1)=2* (X (2) *X (3)+X (1) *X (4));
1)=2* (X(2) *X (4) -X (1) *X(3) ) ;
2)=2* (X(2) *X (3) -X (1) *X(4) ) ;
2)=X(1) A2+X(3) A^2-X(2) A2-X(4) 2;
2)=2* (X(3) *X(4)+X (1) *X(2));
3)=2* (X (2) *X (4) +X (1) *X (3)) ;
3) =2 * (X(4) *X(3)-X(1) *X(2));

B (3,3)=X (1) ̂ 2+X (4) A2-X (2) ^2-X (3) ^2;

% Angular velocity and angular acceleration

% Linear velocity and linear acceleration

y(8)=X(11);
y(9)=X(12);
y(10)=X(13);

% Semicircular canal response

(I14)

(15)
(16)
(17)
(18)
(19)

=x (15);
=-.002075*X
=X(17);
=-.002075*X
=X (19);
=-.002075*X

(14)-.1792*X(15)+X(5);

(16)-.1792*X(17)+X(6);

(18)-.1792*X (19) +X (7) ;

% Otoliths response

sf=B'*[0;0;9.81]-X(11:13);
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(5) ;

=-br*X 

(6) ;

=-br*X 

(7) ;

=-br*X (5);
=-br*X(6);
=--br*X (7);

(12) =-bl*X (12);
(13) =-bl*X (13);
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y(20)=X(21);
y (21) =-10*X (20) -100. 1*X (21) +sf () ;
y(22)=X(23);
y (23)=-10*X (22) -100. .1*X (23)+sf (2);
y(24)=X(25);
y (25)=-10*X (24) -100.1*X (25) +sf (3);

y=y'; % column vector

grad(x) calculates the gradient matrix in x, of the internal representation of the dynamic

function.

function y=grad (x,br,bl)

g=9.81;

% This function calculate the gradient in x of the
% internal model function

y(l,:)=[0 -. 5*x(5) -. 5"x(6) -. 5*x(7) -. 5"x(2) -. 5*x(3)
-.5*x(4) zeros(1,18)];
y(2,:)=[.5*x(5) 0 .5*x(7) -.5*x(6) .5*x(1) -.5*x(4)
.5*x(3) zeros(1,18)];
y(3,:)=[.5*x(6) -.5*x(7) 0 .5*x(5) .5*x(4) .5*x(l) -
.5*x(2) zeros(1,18)];
y(4,:)=[.5*x(7) .5*x(6) -.5*x(5) 0 -.5*x(3) .5*x(2)
.5*x(1) zeros (1,18)];

y(5:7,1:25)=[zeros (3,4) -br*eye(3) zeros(3,18)];

y(8:10,1:25)=[zeros(3,10) eye(3) zeros(3,12)];

y(11:13,1:25)=[zeros (3,10) -bl*eye(3) zeros(3,12)];

y(14:15,1:25)=[zeros(2,4) [0;1] zeros(2,8) [0 1;-
.002075 -.1792] zeros(2,10)];

y(16:17,1:25)=[zeros(2,5) [0;1] zeros(2,9) [0 1;-
.002705 -. 1792] zeros(2,8)];
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y(18:19,1:25)=[zeros(2,6) [0;1] zeros(2,10)
.002705 -.1792] zeros(2,6)];

(20,
(21,

2*g*x
100.1

[0 1;-

)=[zeros(1,19) 0 1 0 0 0 0];
)=[-2*g*x(3) ,2*g*x(4) ,-

(1),2*g*x(2)
0 0 0 0];

,zeros(1,6),-1 0 0,zeros(1,6),-10 -

y (22, :)=[zeros (1,
y(23, :)=[2*g*x (2)
),0 -1 0,zeros(1,

y(24, :)=[zeros(1,
y(25,:)=[2*g*x (1)
2*g*x(3),2*g*x(4)
-10 -100.1];

19) 0 0 0 1 0 0];
,2*g*x(1),2*g*x(4)
6),0 0 -10 -100.1

,2*g*x (3),zeros (1,6
0 0];

19) 0 0 0 0 0 1];
, -2*g*x(2),-
,zeros(1,6),0 0 -1,zeros(1,6),0 0 0 0

meas(x) calculates the expected measurement from the estimated state vector. The

measurement vector is given "in the dark", meaning without visual cues.

function y-neas (x)

y(1)=x(1) ^2+x(2) ^2+x(3) ^2+x(4) ^2;

% measurement matrix

A=[-.0021 -.1792 0 0
-.0021 -.1792];
B=[1 0 0 0 0 0;0 0 1
H=[zeros(3,4) eye(3)

zeros(3,19) B];

0 0;0 0 -.0021 -.1792 0 0;0 0 0 0

0 0 0;0 0 0 0 1 0];
zeros(3,,6) A zeros(3,6)

y(2:7)=H*x;

y YI ;
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gmeas(x) calculates the gradient in x, of the measurement equation in the dark.

function H=gmeas (x)

H(1,:)=[2*x(1) 2*x(2) 2*x(3) 2*x(4) zeros(1,21)];

A=[-.0021 -.1792 0 0
-. 0021 -. 1792];
B=[1 0 0 0 0 0;0 0 1
H(2:7, :)=[zeros(3,4)

zeros(3,19) B];

0 0;0 0 -.0021 -.1792 0 0;0 0 0 0

0 0 0;
eye (3)

0 0 0 0 1 0]
zeros (3,6) A zeros (3,6)

filter(t,z) initializes the Extended Kalman Filter and uses the set of measurements to

calculate the estimate of the state vector. t=[tO:timestep:tf], and z is a vector containing the

measurements taken at each time step.

% initialisation

xe=[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .981
0]';
xhat-xe;

% initial covariance

P=diag([.01*ones (1, 10) .1*ones (, 3)

% covariance of the driving noise

zeros
zeros
zeros
zeros
zeros

.01*ones(1,12)]);

(4,25);
(3,4) eye(3) zeros(3,18);
(3,25);
(3,10) 10*eye(3) zeros(3,12);
(12,25)];

R=diag([.0001, .0001, .0001, .0001, .001,.001, .001]);
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ro=sqrt (R) ;

% Parameters of the internal model

brl10;
bl=.l;
h=.01;

% Filtering equation

for i=l: (length(t)-l)/4

k=4*i;

for j=1:4

% Propagation of the estimate using Runge Kutta

s01=model (xe, br, bl) ;
s02=grad (xe, br, bl) *P+P*grad (xe, br, bl) '+Q;

xel=xe+h*s0l;
Pl=P+h*s02;

sll1=model (xel,br, bl);
sl2=grad (xel,br, bl) *Pl+Pl*grad (xel,br,bl) '+Q;

xe2=xe+h* (sOl+sll)/4;
P2=P+h* (s02+s12)/4;

s21=model (xe2,br,bl);
s22=grad (xe2, br, bl) *P2+P2*grad (xe2, br, bl) ' +Q;

xe=xe+h* (s01+sll+4*s21)/6;
P=P+h* (s02+s12+4*s22)/6;

end

% Covariance of the output & measurement noise

r=diag (ro*y);
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% Kalman gain and covariance update

H=gmeas (xe);
K=P*H' / (H*P*H'+R);
P=- (eye (25) -K*H) *P* (eye (25) -K*H) '+K*R*K';

% Noisy measurement and estimate update

y=y+r*rand (7, 1);
xe=xe+K* (y-meas (xe));

xhat= [xhat, xe];

end

C.2 Mechanism of a Simulation

A simulation starts with the definition of the angular velocities and linear acceleration.

Then run thgeneration after having set the parameters (initial time, final time,

thresholds and so on).

Finally run filter. The estimate of the state vector is stored in the columns of the variable

xhat.
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