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ABSTRACT

The task of a Mission Planning System may be defined as the specification of a
desirable trajectory by means of a sufficiently detailed sequence of waypoints.
However, if real-time execution of the desired trajectory is required, the Planner
must communicate its intentions to the vehicle control system as a stream of
essentially continuous commands. If the waypoint spacing is sufficiently small,
commands can be generated using a curve-fitting process in conjunction with a
tracking loop. However, construction of a suitable waypoint sequence will involve
the minimization of a risk function with respect to a set of trajectory parameters.
This thesis addresses the question of how control system commands can be
generated directly by minimizing the risk with respect to parameters defining
control command histories rather than spatial trajectories. A suitable method is
presented and evaluated.
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Glossary of Symbols

Vectors and matrices are represented by lower and upper case boldface characters

respectively.

anc normal acceleration command

an normal acceleration

ao normal acceleration at start of segment

Oc bank angle command

Sbank angle

00 bank angle at start of segment
x, y, z components of aircraft position in reference frame

vx, Vy, Vz components of aircraft velocity in reference frame

ax, ay, as components of aircraft acceleration in reference frame

Ta time constant of normal acceleration channel in F.C.S.
Tf time constant of bank angle channel in F.C.S.

g acceleration due to gravity

Ca normal acceleration command coefficient vector
c4 bank angle command coefficient vector
Ti i th Chebyshev polynomial

t time

A normalized time

ti time at start of segment
tf time at end of segment
Th(x,y) horizontal threat function
Tv(z) vertical threat function
T(x,y,z) composite threat function
J risk function
s distance along trajectory
d vector of constrained variables
k vector of constraint levels

p vector of penalty functions
P diagonal matrix of penalty functions



0vector of constraint violations

M matrix of constraint derivatives

Ja augmented risk function

L Lagrangian function

F(x) scalar function of n-vector x

Pk k th linear search direction

ok linear search parameter

gk gradient of F(x) at x = xk

Gk Hessian of F(x) at x = xk

Hk inverse Hessian

Qk Quasi-Newton update for Hk

kalt proportionality constant in vertical threat function Tv

Zref desired altitude

Ii intensity of i th threat source in Th

(Pf forward difference operator

(Oc central difference operator
h derivative step length

Tf(h) truncation error in forward derivative using step length h

C((,h) cancellation error in forward derivative using step length h

ea bound on error in computed function values
Et normalized truncation error

Ec normalized cancellation error

abound upper bound on peak normal acceleration



CHAPTER 1

INTRODUCTION

An increasingly important issue in the design of future aerospace vehicle systems

will be the need for autonomous or semi-autonomous operation under adverse

environmental or mission-imposed conditions. Automatic Mission Planning

Systems are therefore being developed which will formulate optimal strategies for

the accomplishment of specific goals using prior knowledge of vehicle

characteristics and a continuously updated database containing information

about objectives and threats.

This research has its basis in the characteristics and requirements of a
Mission Planning System which is under development at the Charles Stark
Draper Laboratory. The organization of the vehicle-independent portion of the
planning function is illustrated in Figure 1.1. At the highest level is a Goalpoint

Planner which uses knowledge about overall mission objectives to generate a

far-term plan consisting of an ordered sequence of goals and their geographic

locations along with associated constraints on time and energy. The second level

may be characterized as a High-Level Trajectory Planner because it identifies

maximum survivability flight paths between goals along with the basic aircraft

mode sequences and subsystem actions that are necessary for execution of the
desired flight path. At this level, the information upon which the plan is based
will consist primarily of data relating to major threat concentrations, operational
facilities and weather systems which have a direct bearing on the basic feasibility
of the mission. Flight paths are specified by waypoints whose disposition is such
that major threat concentrations are avoided. The primary output from the high
level planner is therefore a sequence of waypoints which have been determined to
be consistent with successful completion of the mission. They are located as close



together as possible, but not so close that there is any doubt about the physical
ability of the vehicle to follow them exactly while remaining within its dynamic
envelope. It is not the function of these waypoints to specify a detailed trajectory;
merely to ensure that intermediate goals are met and that large-scale threat
concentrations are avoided. Nor is it necessary for the aircraft to fly through
them exactly; it will normally be possible to achieve the mission goals if the
trajectory passes within some non-zero Capture Radius of each waypoint. Each
capture radius is therefore a measure of how important it is to get close to the
associated waypoint.

Goalpoint Planner

High-Level Trajectory Planner

Threats

Operational Facilities

Weather Systems, etc

Minimum Risk Flight Plan

Mission Planning System

Mission Goals Time, Energy Constraints

Figure 1.1



In the related research of Alexander[1], it was assumed that a third

vehicle-independent level within the hierarchy called the Low-Level Trajectory
Planner was capable of constructing a minimum-risk trajectory from the
high-level waypoints in the form of a detailed sequence of waypoints with a
separation in the order of 100 meters. (Such detailed planning is predicated on

the existence of a correspondingly detailed threat database.) For autonomous

operation, execution of the desired trajectory calls for communication between

the Planner and the vehicle control system. Specifying trajectories with
waypoints is natural from the point of view of the planning function, but the
control system requires continuous commands. Alexander has shown how the
Planner/Control System interaction can be regarded as an interfacing task and
has designed a Command Interface which will generate appropriate commands by
a curve fitting process in conjunction with a tracking loop. The operation of the
Command Interface and its relationship with the low-level trajectory planner is
illustrated in Figure 1.2 (a).

Implicit in the interfacing approach is the assumption that the trajectories
supplied by the low-level planner are consistent with the dynamic limitations of
the vehicle. Consistency alone can be assured by imposing a posteriori constraints
such as curvature limits on the unconstrained minimum-risk trajectory but it is
entirely possible that a better solution could be found if more complete
knowledge of the dynamics of the vehicle and its control system had been
incorporated in the search process from the outset. If dynamical equations
relating the controls to the vehicle state are available, and if a suitable space of
smooth control functions can be spanned by a finite number of parameters, and if
a suitable Risk Function is defined at every point in this space then it is possible
to search for the required commands directly by minimizing the risk function
with respect to the parameters. This approach has the advantage that the
minimization process no longer ignores the vehicle-planner interaction because a
model of the dynamics is embedded in the process of evaluating the risk function.
By the same token, a separate Command Interface is no longer necessary because
the planner outputs are now inherently compatible with the control system. This
integration of the planning and interfacing functions is achieved at the expense of
increased complexity in the cost function. It is relatively simple to establish a
physically meaningful measure of the risk associated with a given trajectory in
space because the threat distributions which govern risk are themselves spatial in
character. However, if the risk associated with a given set of control system



commands is required, it is necessary first to propagate the commands through
the dynamical equations to determine the associated trajectory before risk can be
evaluated as before.

The purpose of the present research is to investigate how the techniques of
constrained non-linear optimization can be used to design a Command Planner
which will implement the same function as the Low Level Trajectory Planner and
the Command Interface combined without going through the intermediate step of
defining trajectories explicitly. The structure is illustrated in Figure 1.2 (b).
Since the dynamics of the vehicle and its control system are necessarily embedded
in the process of evaluating the risk function, this approach provides a framework
within which the role of vehicle limitations in the selection of optimal commands
can be explicitly recognized from the outset.
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CHAPTER 2

PROBLEM FORMULATION

2.1 Preliminary Assumptions

Mission Planning Systems have a variety of potential applications and many of

the higher-level planning tasks can be performed without detailed knowledge of

the vehicle characteristics. However, as the planner/vehicle interface is
approached from these higher levels, the dynamical behavior of the vehicle
becomes an increasingly important consideration. This is particularly true in the
case of a high-speed vehicle where a significant distance may be covered in the
time required to execute a typical maneuver. The present research is therefore
based on the characteristics of a high performance military aircraft. To this end,
the following specific assumptions are made:

* Nominal Speed: 250 ms- 1

* Initial Altitude: 200 m

* Maximum Normal Acceleration: 4 g

These conditions resemble those encountered when operating at low level in a
Terrain Following/Terrain Avoidance mode.



2.2 Information Required By Command Planner

Real-time measurements of the position, velocity and acceleration of the vehicle

are essential for implementation of the command planning task and it is assumed
that they are provided by on-board sensors.

With the vehicle characteristics defined in Section 2.1, the minimum
turning radius is about 1500 meters and so a nominal separation between the
waypoints supplied by the High-Level Trajectory Planner in the order of 5000
meters is appropriate. Since planning takes place in real time and since there is a
limit to the look-ahead capability of the system, it is assumed that only the next
two waypoints are available to the Command Planner at a given instant,
together with their respective capture radii.

An important high-level constraint which impacts the Command Planner
directly is the requirement that the mission should be accomplished using a
limited amount of fuel. It is assumed that the High-Level Planner is capable of
using this overall restriction to derive a time constraint for each inter-waypoint
segment using knowledge about engine characteristics and the operational
environment.

To summarize, the information which is available to the Command
Planner is as follows:

* Present Position, Velocity, Acceleration, time
* Coordinates of next two waypoints to be captured
* Capture Radius for each waypoint
* Approximate time available for each inter-waypoint segment

2.3 Flight Control System and Vehicle Dynamics

The command variables chosen for the Flight Control System are Normal
Acceleration (anc) and Bank Angle (0c). When operating in TF/TA mode at
speeds close to Mach 1, the normal practice is to maintain a constant power
setting and so thrust is not considered to be an active control in this thesis. The
reference directions for the aircraft body frame are taken to be Forward, Right
and Down as depicted in Figure 2.3.1.

Motion can be controlled in three dimensions using forces normal to the



velocity vector. The sideslip angle and the angle of attack are neglected for
simplicity so that the Forward body axis coincides with the direction of motion.
The Flight Control System is modeled as a first order lag between each of the
command variables anc, #c and the corresponding physical quantities an, 0 as
depicted in Figure 2.3.2.

a 1
nc 1 + sra an

5c 1 + sr7~

Figure 2.3.2 Flight Control System Model

Motion is referred to a flat earth reference frame whose z axis points vertically
downwards and whose x and y axes lie in the horizontal plane. The relationship
between the Normal Acceleration in the body frame and this reference frame is
given by the following Euler Transformation:

ax] = an
ay
as.

cos # sin 0 cos # + sin # sin ¶b
cos s sin sin # - sin o cos 0
cos 0 cos 0

2.3.1

where:

0, 0, # = bank, pitch, yaw angles

ax, ay, a. = acceleration components in reference frame



Combining the Flight Control System model with the Euler Transformation leads
to the following state equations for the vehicle and its control system:

.= vx 2.3.2

y =Vy 2.3.3

V = v 2.3.4

• x = an ( cos 0 sin 0 cos # + sin # sin # ) 2.3.5
vy = an ( cos # sin 0 sin # - sin 0 cos # ) 2.3.6
vz = an cos # cos 0 + g 2.3.7
-1= - (anc -an) 2.3.8

Ta

(0c - ) 2.3.9

where:

x, y, z = position in reference coordinates

Vx, Vy, vZ = velocity in reference coordinates

Ta = F.C.S. time constant for normal acceleration channel

T4  = F.C.S. time constant for bank angle channel

g = Acceleration Due to Gravity

2.4 Representation of Command Functions

In order to be able to search for the commands which lead to a minimum risk
trajectory, it is necessary to restrict the infinite set of all possible command
functions to one which can be spanned by a finite number of parameters. This
can be done by specifying the structure of each command as a function of time
which has n degrees of freedom by virtue of its dependence on n parameters:

ane = anc(Ca, t) Ca E Rn 2.4.1

0c = Oc(C4, t) c+ E En 2.4.2



A useful way to structure the command functions is as a weighted sum of n basis
functions which are orthogonal on the interval [ti,tf] where ti and tf are the
initial and final times associated with a particular trajectory segment. The

Chebyshev Polynomials[2]1 defined by the following recursion are orthogonal on

the interval [-1, 1]:

To(A) = 1 2.4.3

T1(A) = A 2.4.4

Ti,(A) = 2 A Ti(A) - Ti_1 (A) i > 1 2.4.5

A basis which is orthogonal on [ti, tf] is then obtained using the following change
of variable:

=2t -ti I 2.4.6
tf- ti

It was decided to use a 4th order representation (i.e. n=5) so that all possible
commands can be represented as follows:

anc(ca,A) = cal + ca2 TI(A) + ca3 T2 (A) + ca4 T3 (A) + Ca5 T4 (A) 2.4.7

#c(c~,A) = c, 1 + c 2 T1(A) + C,3 T2(A) C04 T3(A) + c 5 T4(A) 2.4.8

where:

Ca = [ Cal ca2 Ca3 Ca4 Ca5 ]T 2.4.9

c4 = [ C0•4 2 c03 c 4 C5 ] T 2.4.10

The command functions must be continuous at the start of a given segment and
so it will be necessary for them to take prescribed values ao and 0o at t=ti. Using
Equation 2.4.6-2.4.8 to evaluate anc and gc at t=ti indicates that the command
coefficients are subject to the following constraints:



ao = cal - Ca2 + Ca3 - Ca4 + Ca5

0o = c41- c€2 + C€3 - C 4 + C 5  2.4.12

Since any selected element from either Ca or c€ can now be expressed in terms of
the other four, it is clear that imposition of a prescribed initial value on each
command eliminates one of its degrees of freedom so that the dimension of the
space of all admissible commands is 8 (rather than 10).

2.5 Threat Distribution and Risk Function

It is assumed that a non-negative three dimensional function T(x,y,z) is defined
at every point in the vicinity of the aircraft's present position. The value of
T(x,y,z) is a measure of the threat to which the aircraft is exposed when its
position is (x,y,z). The Risk J of an arbitrary trajectory C is defined as the
integral of the threat function with respect to distance s along its length:

J = f T(x,y,z) ds 2.5.1

The optimal trajectory which is sought has the property that it minimizes J
subject to certain constraints which will be specified later. Unconstrained
minimization of J always leads to the trivial result J*=0 and so the trajectory
must always be constrained to have non-zero length to ensure a physically
meaningful problem.

For a given set of command functions defined by Ca and c4, the
corresponding trajectory can be found by integrating the dynamics given in
Equations 2.3.2-2.3.9 and it is therefore possible to express the position histories
formally as follows:

x = x(Ca,C4, t) 2.5.2

y = y(ca,C¢,t) 2.5.3

z = Z(Ca,C4,t) 2.5.4

2.4.11



Further simplification can be effected by noting that from Equations 2.4.11 and

2.4.12, only four of the five elements in each of the vectors Ca and c4 are
independent and that it is therefore possible to write:

x = x(c,t)
y = y(c,t)

z = z(c,t)

C = [ Ca2 cas ca4 ca5 c 2 C,3c 4 c4 5

This means

beginning at

that the risk associated with a particular trajectory segment

t=ti and ending at t=tf can be written as follows:

tf dsJ(c) = f T [x(c,t),y(c,t) ,z(c,t)] - dt

ti

where:

d[[ ]2 Y p2 2]1

2.5.9

2.5.10

It is therefore possible to search for desirable commands by minimizing J with
respect to the vector c which contains the free command coefficients.

2.6 Problem Statement

Under the conditions described in Section 2.2, the core problem to be solved by
the Command Planner at any given time is to generate a segment of the complete
command history that will cause the aircraft to capture the next two waypoints
ahead of its present position while minimizing the risk as defined in Section 2.5.

where:

2.5.5

2.5.6

2.5.7

2.5.8



A typical scenario is illustrated in Figure 2.6.1.
Since both the waypoints and the threat environment are subject to

change as the mission proceeds, it is desirable to update the solution to this
problem as rapidly as possible. Each time an update becomes available, the
unused portion of the preceding segment is discarded in favor of the new one and

continuity is ensured by using the measured position,velocity and acceleration of
the aircraft as initial conditions. The question of how to allow for the
computational delay between the start of the update when the initial conditions
are valid and the point at which the commands become available is not addressed
here in detail. The initial conditions used in the minimization will be predicted
values obtained by extrapolating from the measurements which are available
when the calculation begins and so it is necessary that the processing delay
should be small in relation to the dominant time constant of the vehicle. In this
thesis, it is assumed that the environment does not change appreciably in the
time taken to cover one inter-waypoint distance (approximately 20 seconds at
250 m/s) and so it will be sufficient to compute a new solution each time the
aircraft passes a new waypoint. Thus, each command segment will normally be
executed only up to the point where the trajectory has its point of closest
approach with respect to the first waypoint. A new solution for the next
two-waypoint segment will then be obtained which will be executed as far as the
next waypoint - and so on. This process is illustrated in Figure 2.6.2. The fact
that the next two waypoints are always available tends to reduce the need for
unnecessarily sharp turns.

In Section 2.2 it was pointed out that each waypoint pair has an
associated time constraint which derives ultimately from the fuel allocation for
the entire mission. It is reasonable to assume that the fuel allocation will be
conservative so that it is not necessary to insist on precise compliance with the
time constraint for each segment. Nor is it desirable to do so because there will
frequently be situations where the pressing need to avoid threats should be
allowed to override the need to comply with a nominal time constraint in the
short term. Accordingly, the time constraint is used to fix the duration of each
2-waypoint segment but the time to reach the point of closest approach with
respect to the first waypoint is allowed to vary freely depending on the needs of
the risk minimization process. This approach provides for a limited amount of
freedom in the inter-waypoint timing while still causing the time constraint to
be loosely enforced.



The core problem may be stated in words as follows:

Given initial values for position, velocity, normal acceleration and bank angle, find
the normal acceleration and bank angle command histories that will cause the
aircraft to pass within specified capture radii corresponding to each of the next

two waypoints with minimum risk within a prescribed time and subject to the
constraint that the Normal Acceleration shall not exceed a predetermined
maximum value.

Mathematically, the problem may be stated in the following form:

Minimize:

tf
J(c) = T

ti

Subject to:

d - k1 < 0

d2 - k2  0

dg - k3 _ 0

where:

= initial time for current segment

= final time for current segment (based on fuel allocation)

di = minimum miss distance relative to waypoint 1

d2 = miss distance relative to waypoint 2 at t=tf

d3 = upper bound on absolute value of maximum acceleration

kl = capture radius for waypoint 1

k2 = capture radius for waypoint 2

k3 = limit on normal acceleration

2.6.1

2.6.2

2.6.3

2.6.4

ds[x(c,t),y(c,t),z(c,t)] t-dt



x

Aircraft Reference Frame

Reference directions are Forward (x), Right (y) and Down (z)

Figure 2.3.1
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capture specified waypoints while minimizing threat
exposure and satisfying acceleration constraint.

Figure 2.6.1
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CHAPTER 3

PENALTY FUNCTION ALGORITHM

With reference to the problem statement in Section 2.6 (Equations 2.6.1-2.6.4),
unconstrained minimization of J with respect to c does not lead to a useful
solution because it embodies no recognition of the need to satisfy the constraints.
To remedy this, the cost function is augmented with quadratic terms which

penalize the constrained quantities d1, d2 and d3:

Ja(c) =f T [x(c,t),y(c,t),z(c,t)] dsdt + P d12 + Pd 2
2+P3 d32 3.1.1

ti

By choosing the penalty functions P 1 - P 3 appropriately, it is possible to penalize
constraint violations to a sufficient extent that the unconstrained minimizing
argument of Ja is the same as the minimum of J with the constraints enforced.
The procedure for constrained minimization using this approach is as follows:

assign small values to P 1, P2, P3

while (any constraint violated)

Minimize Ja without constraints

increase penalties for violated constraints

end while



Selection of an unconstrained minimization method is dealt with in Section 3.2.
Assume for the moment that a suitable algorithm is available for this purpose.

The procedure used to update the penalty functions must be chosen with care to

ensure efficiency. Correct values for the Penalty Functions can always be found

by making sufficiently small corrections at each stage but this is likely to lead to

very slow convergence. On the other hand, if the penalties become unnecessarily

large, the minimum of the augmented cost function becomes difficult to locate

because it tends to lie at the bottom of a steeply-sided n-dimensional ravine.

The procedure to be described strikes a balance between these extremes by
building up an estimate of how rapidly the constraint violations are changing in
response to changes in each of the penalty functions and using this information to
determine appropriate penalty updates after each unconstrained minimization.
Equation 3.1.1 can be written more compactly as follows:

tf dS
Ja(c)= tf T [x(c,t),y(c,t),z(c,t)] dt + dP d 3.1.2

ti

where:

d= [ dd 2 d3 ]T

P = diag (p)

p= [P 1 P2 P3 ] T

The motivation for the following development is that each time Ja is
re-minimized with a new value of p, the change in p and the consequent change
in d together contain information about the derivative of d with respect to p. To
first order, the incremental relationship between d and p can be written as:

Ad = I Ap 3.1.3

where:



1I =

a0d 1

ad2

ad3

ad2

Od3

V2z

ad1

ad2

ad3

V33

3.1.4

Suppose that the kth unconstrained minimization has just been performed and

that an estimate Mk is available. If Adk and Apk are the changes in d and p

which occurred during the preceding minimization then it is necessary that an

updated estimate Mk,1 of M should satisfy:

Adk Mk+1 Apk

where

Adk = dk - dk-1

Apk = Pk - Pk-1

This can be re-written as:

Adk = ( Ik + AIk ) Apk

Or equivalently as:

ARk Apk = Aek

where:

Aek = Adk - Ik Apk

3.1.5

3.1.6

3.1.7

3.1.8

3.1.9

3.1.10

Thus, Aek can be regarded as the error between the change in d that actually
resulted from changing p by Apk and the change that would have been predicted
using the best M estimate that was available before doing the kth minimization.
The value of AMk which minimizes the sum of the squares its elements while
satisfying the constraint imposed by Equation 3.1.9 is obtained by solving



the following problem:

minimize: tr (A[ AAkT )

subject to: Alk Apk = Aek

The Lagrangian function is:

L = tr ( AIk AilkT ) + T (AdkApk - Aek)

= tr ( AIk AAT ) + tr [ AT (AkApk - Aek)l]

Differentiating with respect to AMk:

dL 2Alk + A ApkT

The minimizing value of AMk is therefore given by:

Alk= - A ApkT

Substituting for AMk in the constraint equation gives:

A =- 2 Aek
Apk APk

Substituting for A in Equation 3.1.16 gives the required AMk:

Ak = Aek Apk
ApkTApk

3.1.11

3.1.12

3.1.13

3.1.14

3.1.15

3.1.16

3.1.17

3.1.18



To summarize, the equations that are used to update M after each minimization

are:

Ik., = Ilk + Alk 3.1.19

Alk = Ae TApk 3.1.20

Aek = Adk - Ik Apk 3.1.21

The following recursive update for Mk-1 will also be useful and arises from

parallel reasoning:

Ik,4-1 = Ik -1 + Alk-1 3.1.22

Ak-1 = Aek AdkT 3.1.23
AdkTAdk

Aek = Apk - lk -1 Adk 3.1.24

Mk,1-1 can be used to determine how Pk should be changed so as to reduce any
constraint violation in the next cycle. Define a constraint violation vector # as
follows:

k = dk - k 3.1.25

where k is a vector containing the constraint levels to be imposed. If all three
elements in #k are positive then all three constraints are violated and the desired
change in d to be achieved by changing p is simply:

Adk = - #k 3.1.26

To first order, the change in pk that will be necessary in the next minimization to
eliminate this violation is given by:



3.1.27

Since Apk], is chosen on the basis of constraint violations, it will be
underdetermined when one or more of the constraints is satisfied. In this case a

vector Adk representing the desired changes in the elements of dk corresponding
to the violated constraints is constructed and a corresponding partition Mk]1 is
formed so that the constraints to be satisfied by Apk,1 can be expressed in the

following form:

Adk = Ik,1 Apk,1 3.1.28

A unique value for Apk,1 is obtained by choosing the minimum norm solution of
3.1.28. This is reasonable in view of the fact that large changes in Pk.l are
undesirable. Specifically, APk.1 is found as the solution to the following
constrained minimization problem:

minimize: ApkT Apk,1 3.1.29

subject to: Adk = ik41 APk,1 3.1.30

The Lagrangian function is:

L= 1 A T T
L p. APk.1 + (t (k.1 AP1- dk) 3.1.31

Differentiating with respect to Apk,1:

dL= ApkT + iT k, 3.1.32

For stationarity,

APk+1 -- r]E+1-1 Ok



T-
APk, = -Ikg1

Substituting for Apk+i in Equation 3.1.30 gives:

Ak = - Ik+. ik T A

3.1.33

3.1.34

Solving for A and substituting in Equation 3.1.30 gives:

Apk. 1 = ik. ( i*l kt )-1 Aak

The desired change Adk is given by:

Aak = - ik

3.1.35

3.1.36

where &k is a vector containing the constraint violations which are positive. The
required penalty update in this case is therefore:

T = -, ( lc )1 1 3.1.37

Notice that 3.1.37 reduces to 3.1.27 when all three constraints are violated so

that ik.l = Ik+1 and jk = #k. Having determined the penalty increment, the

penalty vector to be used in the next minimization is found using:

Pk+1 = Pk + Apk,+ 3.1.38

To the extent that the first order approximation is valid, this penalty vector will
cause the violated constraints to be reduced to zero after the next minimization.
However, since the non-violated constraints were ignored in the derivation of the
penalty update, there is no guarantee that they will continue to be satisfied after
application of Apk, 1. Rather than performing an entire minimization to



determine whether this is the case, Mkt can be used to obtain the following

prediction of the constraint variables:

dkl' = dk + k*.1 Apk,1 3.1.39

If any element in dkel'-k is positive it is added to the corresponding element in

I& and Apk.l is recomputed before calculating Pkul. This process is repeated until

all elements in dk,1' are less than or equal to their limits.



CHAPTER 4

UNCONSTRAINED MINIMIZATION

In Chapter 2, it was shown how parameters defining a desirable set of commands

can be found as the solution of a problem in constrained non-linear optimization.

The penalty function approach presented in Chapter 3 allows such a problem to

be solved by performing a sequence of unconstrained minimizations. A variety of

methods is available for minimization without constraints [3][4][ 5] and this

chapter deals with the selection of a suitable one for the present purpose.

4.1 Descent Methods

The more efficient and well-proven algorithms for unconstrained minimization of
an arbitrary function of n variables F(x) rely on an iterative process comprising a
series of univariate minimizations conducted along a specific set of search
directions. Thus, if the current estimate of the minimum at the start of the kth
iteration is Xk, the next estimate can be expressed in the form:

Xk+l = xk + +k Pk 4.1.1

where:

Pk = kth search direction

ak = arg min F(xk + a pk)
a



In practice, it is found that algorithms which satisfy the following descent

condition have good convergence characteristics:

F(xk.1) < F(xk) V k > 0 4.1.2

Assuming that F is continuously differentiable, an explicit requirement on Pk

which guarantees that F can be reduced at the kth iteration can be found by

considering the first order Taylor expansion of F(xk) about xk:

F(xk + Pk Pk) zF(xk) + ak gk Pk 4.1.3
where:

gk = OF 4.1.4

The descent condition will always be met for sufficiently small Ok if Pk is chosen

so that:

gk Pk < 0 V k > 0 4.1.5

When Pk satisfies this condition, it is said to be a descent direction and the

corresponding algorithm will have the descent property. The steepest descent

algorithm is obtained by choosing:

Pk = - gk 4.1.6

This rationale is intuitively appealing because -gk is the direction along which
F(x) has its greatest rate of decrease and because calculation of Pk is
straightforward. However, the algorithm is characterized by very slow
convergence and therefore has little practical utility. It is mentioned primarily
because a single "steepest descent" step is generally used as the starting point for
the more powerful Quasi-Newton methods described in the following section.



4.2 Quasi Newton Methods

The essential basis for the steepest descent method is a linear approximation to

the objective function in the vicinity of the minimum. If the second derivative or

Hessian matrix of F(x) is available (or can be estimated) in addition to the

gradient, it is possible to develop more rapidly convergent techniques. The second

order Taylor expansion of F(x) about xk is:

F(xk + pk) F(xk)+ gk Pk + pT Gkp 4.2.1

In the neighborhood of a strong minimum, Equation 4.2.1 can be regarded as a

quadratic model of the objective function and Gk will be positive definite. The

direction and magnitude of the step from xk to the minimum of the model

function is obtained by solving the following system for pk:

Gk Pk = - gk 4.2.2

When Pk is determined using Equation 4.2.2, the corresponding minimization

technique is referred to as Newton's Method. A distinguishing feature of this
technique is that the minimum of a quadratic objective function with a positive
definite Hessian can be located in one step from an arbitrary starting point. Even
when the objective function is non-quadratic, the Newton step will still be
productive if xk is in the neighborhood of a strong minimum. This is because the
quantity gk pk in the descent test (Equation 4.1.5) is intrinsically negative when
the Hessian is positive definite. Moreover, it can be shown that the rate of

convergence of Newton's Method is always second order when the Hessian is
positive definite at the minimum. Newton's Method is therefore very desirable in
situations where the Hessian is readily available but it is often prohibitively
expensive to compute the Hessian and so various Quasi-Newton algorithms have
been developed whose performance approaches that of Newton's Method without
the requirement for explicit calculation of the Hessian matrix.

Quasi-Newton methods are based on the idea that an approximation to
the curvature of a non-linear function can be built up as the iterations of a
descent method proceed using only function and gradient evaluations. In the



particular algorithm to be described, the curvature information is propagated in
the form of an estimate of the inverse Hessian matrix H. This eliminates the need
to solve a system of linear equations to obtain the search vector Pk so that at any
point the required search direction is calculated using:

Pk = - Hk gk 4.2.3

Suppose that the current estimate of the inverse Hessian is Hk. After each
iteration, Hk is updated using the following formula:

Hk+l = Hk + Qk 4.2.4

Qk is a matrix which is to be chosen in such a way that Hk,1 contains the same
curvature information as Gk-1 in the direction Pk when the objective function is
quadratic. This constraint is enforced by requiring that Hk+, satisfy the following
Quasi-Newton Condition:

Hkl Agk = Axk 4.2.5

where:

Agk = gk+1- gk

Axk = Xk+1- Xk

4.3 Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method

The Quasi-Newton Condition does not specify the H matrix uniquely and many
updating formulae are available. The technique used in this research employs an
update formula due to Broyden, Fletcher, Goldfarb and Shanno which can be
stated in the following form:

Ti T
Hk+I I - Ax _ A k  I - xk A gkT  I AXkAXkT 4.3.1

k1 :T Jk AbT Agk bAXkT bgk



In recent years, the BFGS formula has gained widespread acceptance as an
efficient basis for implementation of the Quasi Newton method. The main reason
for this is its relative insensitivity to the accuracy of the line search so that the
number of function evaluations needed to make a given amount of progress
towards the minimum is generally smaller than that required when using other

update schemes.

The algorithm can be started with Ho set equal to any positive definite
matrix. The identity matrix is normally used when there is no prior information
about curvature and so the first step will be along the direction of steepest
descent (Equation 4.2.3). Exit occurs if either the gradient norm or the difference
between two consecutive function evaluations become smaller than small
thresholds gtol and ftol respectively. To summarize, the BFGS algorithm used
has the following form:

input xo, H0o, gtol, ftol

do k=0, itmax

Pk -HIlk gk

ak -arg min F(xk + a Pk)
a

Xk+l - Xk + ak Pk

if 2*1F(xk+,) - F(xk) )I ftol*(IF(xk,lt) + IF(xk) ) exit

gk+1 +- v F (x)IXXk+I

if I(gk.1Il • gtol exit

AXk - Xkel - Xk

Agk 1 gk - gk

Ak+Xk Agk T Axk Agk T  + Axk AgT
k1end dok TAXkT Agk AxkT Agk AXk Agk

end do



4.4 Line Search Algorithm

The efficiency of the procedure used to conduct line searches along the directions

Pk is an important factor in the overall effectiveness of the multivariate
minimization process. Although the BFGS method is less demanding than most

in terms of univariate search accuracy, the computational expense associated

with evaluating the risk function in the present application means that it is
particularly important for the chosen line search technique to be as frugal as
possible in its use of function evaluations. Methods which use the gradient of the
objective function are to be avoided because the evaluation of derivatives calls for
multiple function evaluations (see Chapter 5). Parabolic interpolation converges

rapidly to a stationary point which has been bracketed in a finite interval, but it

makes no distinction between maxima and minima and gives unreliable results if
the curvature is low. On the other hand, function comparison methods such as
Golden Section Search are slower, but will always converge towards the lowest
function value in a given interval. The technique used here is based on an
algorithm due to Brent[6][7] which uses a sequence of Golden Section and
Parabolic Interpolation steps to bracket the minimum in a progressively smaller
interval. At each stage, the algorithm uses retained information about the recent
behavior of the function to decide whether Golden Section or Parabolic
Interpolation is appropriate for the next step. The search is terminated when the
minimum has been bracketed with a fractional precision of 10%.



CHAPTER 5

IMPLEMENTATION

5.1 Evaluation of Risk Function

In order to minimize the risk J(c) defined in Equation 2.5.9, it is necessary to

specify its dependence upon the elements of the command coefficient vector c

explicitly. A closed form for J(c) is not available, primarily because x(c,t), y(c,t)

and z(c,t) arise from propagation of the controls (implied by c) through the

non-linear vehicle dynamics and are not expressible in terms of elementary

functions. It is therefore necessary to evaluate the risk numerically, even when

the threat distribution T(x,y,z) is a relatively simple function. In this thesis, the

horizontal and vertical variations of the threat function are considered separately
so that the threat is resolved as follows:

T(x,y,z) = Th(x,y) + T,(z)

where:

Th(x,y) = Horizontal Threat Distribution

Tv(z) = Vertical Threat Distribution

It is further assumed that the primary consideration with regard to the vertical
component of the aircraft's motion is the need to maintain a safe altitude and
that this requirement can be adequately reflected in the following vertical threat
distribution:



Tv(x,y,z) = kalt (z - Zref)2

where:

kalt = scale factor

Zref = desired altitude

Th(x,y) is constructed as the superposition of a number of discrete threat sources

on the basis that the contribution of a given source located at (xi,yi,zi) is

inversely proportional to its horizontal distance from the aircraft:

T(x,y) = i 5.1.1

i= (x-xi) 2 + (y-yi)

where:

ri = intensity of i th threat

This characterization has merit in cases where the source is truly localized in

space and where the threat varies inversely with the length of the displacement

vector from the aircraft to the source. It is possible to conceive of a threat whose

lethality varies with the direction of the displacement as well as its magnitude so
that the contours of equal threat might be ellipses or some quite arbitrary figure
rather than circles. Also, the threat data in an implemented system is likely to be
given in the form of a table of numerical values. The analytical form given above
was adopted purely for convenience and it is not thought that the use of any
reasonably well-behaved threat function would compromise the operation of the
algorithm as a whole. As suggested by Equation 2.5.9, J is evaluated by treating
it as an additional state variable to be integrated numerically alongside
Equations 2.3.2-2.3.9. Figure 5.1 illustrates the time evolution of the system
dynamics in block diagram form. A fourth order Runge-Kutta method[ 7] is used
to perform the integration.



5.2 Finite Difference Approximation of Gradient

Analytical gradients are not available and finite difference approximations are
necessary for the reasons discussed in Section 5.1. Each element in the gradient is
a partial derivative of the multivariate risk function, but in order to simplify the
notation, a univariate objective function will be considered in the following
discussion. Function evaluations are expensive and the following Forward

Difference Formula is therefore attractive because it requires evaluation at only
two points:

p(f,h) = -(x+h)h- -(x) 5.2.1

where: F(f,h) is the forward difference operator, ?(x+h) and I(x) are computed

function values and h is the step length. The computed function values are
subject to machine-dependent errors which can be represented as follows:

!(x) = f(x) + u 5.2.2

S(x+h) = f(x+h) + oh 5.2.3

The forward difference approximation can therefore be written:

VF(f,h)= x+h)- fx) h 5.2.4

In addition to these machine-dependent errors, the forward difference
approximation will also differ from the true derivative because it arises from a
truncated Taylor series. This can be seen by expanding f(x+h) to second order:

f(x+h) = f(x) + h f' (x) + f' '(x) + O(h3) 5.2.5



Substituting for f(x+h) in Equation 5.2.4 gives the following relationship between

vF and the true derivative f' (x):

5.2.6(pf(f,h) = f'(x) + Tf(h) + C(opf,h)

where:

Tf(h) = f"(x) + O(h2) truncation error

cancellation error

It can be seen that the truncation error is an increasing function of h while the

cancellation error decreases with h. Moreover, if second and higher order terms

are neglected, the total error is bounded by:

5.2.9

where ea is a bound on the error in the computed function values in the vicinity
of x. In principle, an optimal step length could be found by minimizing Equation

5.2.9 with respect to h. Unfortunately, f'' is not known and further information

is therefore required before the error associated with a particular value of h can

be estimated. Such information can be obtained at the expense of an additional

function evaluation by considering the following Central Difference Formula:

.(f,h) = (x+h)2h (x-h) 5.2.10

Introducing the explicit machine-dependent errors o0 and a-h and expanding
f(x+h) and f(x-h) to third order gives a relationship analogous to Equation 5.2.6:

5.2.7

5.2.8C(Vh) = h0

h 2IV(fh)- f' (x)l ! IfZ"N) +,ca



cp(f,h) = f' (x) + Tc(h) + C(soc,h)

where:

Tc(h) = O(h2)

C(e,h) = = -2h

truncation error 5.2.12

cancellation error 5.2.13

The fact that pc is accurate to second order in h while

suggests the following as a computable estimate of the

f(f,h) - Vc(f,h) = Tf(h) + C((,h) - Tc(h) - C(Vc,h)

R is accurate to first order

error in Vf:

5.2.14

= hf ' - 2+ + a-h

The triangle inequality leads to the following upper bound on the unknown
second derivative:

f ' (x) I 1 (f,h) -pc(f,h) I + 1 ea 5.2.15

Substitution in Equation 5.2.9 gives a bound on the total error in the forward
approximation:

4I f(fh) - f' (x) •_ I •(f,h) - po(fh) I + 1H fa 5.2.16

Since the objective function will never be zero in the present context, Ea can be
related to the relative precision er of f(x) (which is known) as follows:

Ea = Er If(x)

5.2.11

5.2.17



Equation 5.2.17 can be re-written in terms of the relative error in the gradient as

follows:

<f(f , h) - f'(x) (
fi < rEt + Ec 5.2.18

where:

Et •= of(fh) 5.2.19

Ec = 4e f(x) 5.2.20
f(x+h) - ?(x)

Ec is a measure of the cancellation error, and if it is small then Et will be

dominated by the truncation error. Accordingly, the policy adopted in the

gradient algorithm is to use the smallest h for which Ec is less than .1%. The

corresponding estimate of the total forward difference error was usually

sufficiently small, a warning message being generated in the event that it exceeds

1%. Moreover, the value assigned to the derivative is that obtained using the

central difference formula so that the actual truncation error will normally be

significantly better than that indicated by Equation 5.2.18.

5.3 Acceleration Constraint

The maximum absolute value of the acceleration command must not exceed the
predetermined value of 4g. Since each acceleration command segment has the
form of a quartic polynomial in time, the peak will always occur either at one of
the end-points or at one of the stationary points of which there are at most
three. It is therefore a straightforward matter to identify and penalize the peak
associated with a given set of command coefficients. However, the constrained
minimization technique of Section 3 does not perform well in this situation
because the method requires that each constrained quantity should be continuous
with respect to changes in the penalty functions. The fact that the peak
acceleration can occur at any one of five points means that a small change in one



of the penalty functions can cause a large change in the location and value of the
peak as illustrated by Figure 5.3.1. Instead of penalizing the peak directly, it was
decided to use a property of the Chebyshev coefficients to establish an upper
bound on the peak acceleration which has the required continuity. None of the
Chebyshev basis polynomials Ti(A) (see Section 2.4) can have an absolute value
greater than unity within the interval in which they are defined (i.e. [-1,1]). This
means that the value of the acceleration command can never exceed the sum of
the absolute values of the relevant Chebyshev coefficients:

anc • abound 5.3.1

where:

4

abound = cail 5.3.2
iI 1

As expected, the performance of the penalty function algorithm was found to be
much better when abound was penalized rather than the peak value.

5.4 Initializing Command Coefficient Vector

It is appropriate to choose the initial value co of the command coefficient vector
with some care at the start of each constrained minimization . A moderate
amount of effort expended here to ensure that co is in some sense reasonably close
to the minimum will expedite the minimization considerably. The approach
adopted is to ignore the threats and the acceleration constraint initially and to
search for a command vector c that will minimize the waypoint penalty terms
alone in the expression for Ja(c) given in Equation 3.1.1. This can be done
relatively quickly and the resulting value for c will be "close" to the minimum in
the sense that it will at least satisfy the waypoint constraints.



5.5 Initializing Constraint Derivatives

In order to start the penalty function algorithm described in Chapter 3, an initial

estimate of the matrix of constraint derivatives M is required where:

1=

Odi

0d2

da3

Odl

Od2

ad3
V2z

ad

8d2

0d3

5.5.1

Initial values for the elements

the initial penalty vector by a

forward difference formula:

Mij = di(po + iui) - di(po)

where:

Mij = i,j th element in M

of M are obtained by perturbing each element in

small amount bj, j=1,2,3 and using the following

5.5.2

di(p) = value of i th constrained quantity corresponding to penalty vector p

un = unit vector along j th direction in n-space
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CHAPTER 6

RESULTS

The procedure for finding desirable command functions which has been described
in the preceding chapters was implemented and tested using a variety of
waypoint and threat geometries chosen to resemble realistic scenarios. The
horizontal and vertical threat functions defined in Section 5.1 are used

throughout this section. The algorithm is unlikely to experience difficulty with
other practically likely distributions although additional processing would be
necessary to handle a case where the threat is known only at discrete points or
where there are discontinuities in the distribution.

The "core" problem of finding a command segment that will capture the
next two waypoints was solved in a variety of test cases. A selection of the
resulting trajectories, altitude profiles and command histories is presented in
Figures 6.1-6.4. It is emphasized that the altitude profiles result from the use of
the very simple vertical threat function discussed in Section 5.1 which penalizes
departure from a fixed altitude of 200 meters. The effect on the computed
acceleration command and the associated trajectory of progressively reducing the
constraint level is illustrated in Figure 6.5. The process by which extended
trajectories can be constructed by repeatedly solving the core problem is
illustrated in Figures 6.6-6.8. In these examples, a new solution is computed each
time the aircraft passes a waypoint (approximately every 20 seconds in real
time). More frequent updates would be desirable if sufficient computer duty cycle
was available.

The results discussed here were obtained using an IBM compatible
personal computer operating at a clock speed of 20 MHz with an 80387 math



coprocessor. Matlab was used extensively for matrix manipulations, but the

BFGS minimization routines were coded in Microsoft Fortran. The speed with
which the algorithms could be executed in this environment falls well short of
that required for real time operation. Each evaluation of the risk function takes

approximately 2 seconds. The gradient is estimated once per BFGS cycle using

central differences (see Section 5.2) and this requires a minimum of 16 function

evaluations, 20 being more typical when allowance is made for the adaptive step

size control process. In addition, each line search calls for approximately 30
function evaluations so that a typical BFGS cycle can be expected to take about

100 seconds. For a given set of penalty functions, BFGS locates the minimum

after approximately 15 line searches and each unconstrained minimization in the

penalty function algorithm therefore takes about 30 minutes. Convergence to the
correct penalty function values was typically found to occur after 6 iterations so

that the entire constrained minimization can easily take 3 hours. In addition,
initialization of the constraint derivatives using the method described in Section
5.3 requires 3 additional unconstrained minimizations which adds another hour to
the total time to compute one segment. To put these figures in perspective, the
aircraft will cover each segment in approximately 30 seconds, so it is clear that a
dramatic increase in the execution speed would be necessary to permit real-time
operation.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

A technique by which the process of generating Flight Control System commands

can be integrated into the lowest level of a Mission Planning System has been

developed within the guidelines imposed by the requirements of a high

performance military aircraft. The essential information upon which the choice of

commands is based is supplied from higher levels in the planning hierarchy. It

includes a sequence of waypoints which defines a desirable trajectory to the

extent that this can be done without reference to the capabilities of a specific

vehicle. While these waypoints will be chosen so that major threat concentrations

are avoided, they will normally be too widely spaced to provide a basis for

construction of the best possible trajectory, as determined by the degree to which

it minimizes an appropriately defined measure of risk. Further definition of the

minimum risk trajectory, and therefore of the required commands, calls for

information about the dynamics of the aircraft and its limitations in addition to

quantitative knowledge of the threat environment. In this thesis, the required

commands are found by minimization of the risk with respect to parameters that

span a suitable space of control functions, subject to constraints imposed by the

waypoints and vehicle limitations. An algorithm which performs this constrained

minimization using a penalty function approach is developed and presented. The

method has been shown to perform satisfactorily in a variety of scenarios
involving realistic waypoint and threat geometries.

From the outset it was clear that this approach to the generation of
commands would be computationally intensive in view of the fact that each



evaluation of the risk function calls for a simulation of the aircraft dynamics. The
speed with which the algorithms could be executed on a Personal Computer was
much slower than that required for real time operation. The most time
consuming tasks were coded in Fortran. Some improvement could be expected
from a machine code implementation, but it is clear a substantially faster
processor would be required for real-time operation.

7.2 Recommendations

In this thesis, a very simple model of the aircraft and its control system has been
used. A question which merits further attention is that of exactly how accurate
this model needs to be. Modeling errors will manifest themselves as discrepancies
between the actual trajectory flown by the aircraft in response to a given set of
commands and the computed trajectory predicted by the model. Since the
computed trajectory is intrinsic to the process by which risk is evaluated,
modeling errors will lead to the selection of non-optimal commands. On the
other hand, the aircraft will always be subject to external disturbances (wind
gusts, shear etc.) and there is little to be gained by using a better model unless
the modeling errors are significantly larger than the unavoidable trajectory
perturbations due to these effects. Indeed, there is a substantial price to be paid
for increasing the modeling accuracy in terms of the increased computational
burden associated with evaluating the risk function. Future work should therefore
be directed towards establishing a quantitative comparison between trajectory
errors due to modeling and those due to disturbances.

A related question is that of how frequently a new command segment can
be computed. In this thesis it has been assumed that it is sufficient to do this
each time the aircraft passes a waypoint, i.e. approximately every 5000m.
Between these updates, there is no protection against disturbances, so it is
certainly desirable to update more frequently if there is enough computing power
to do so. If this is not possible, attention should be directed towards the
introduction of continuous position and velocity feedback to enhance the
disturbance rejection capability of the system. This would also suppress the
effects of modeling errors and so reduce the required complexity of the model
used in the optimization.



The implications of increasing the order of the polynomial form used for
the command functions from four to some higher value should be investigated
(refer to Section 2.4). Any consequent improvement in performance would have
to be weighed against increased complexity in the risk function.

The simple threat function used in this work has a valid physical basis,
but its form was chosen in a somewhat arbitrary way. Some consideration should
be given to the formulation of a general policy for the construction of threat
databases using realistic data which may be incomplete or discontinuous.

An extremely important question is that of how to assess the fundamental
reasonability of each solution segment before executing it. One situation which
could lead to the generation of an unreasonable solution would arise if the
algorithm converged to a non-global minimum. Given the complexity of the risk
function, it is probably impossible to test for this condition explicitly but suitable
validity tests may reduce its impact on flight safety to an acceptable level, at
least in the context of an unmanned vehicle.

Finally, it would be worthwhile to investigate the implications of using
the techniques described here in vehicles other than a high performance military
aircraft.
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